Annotation of imach/html/README.htm, revision 1.1
1.1 ! brouard 1: <html>
! 2:
! 3: <head>
! 4: <meta http-equiv="Content-Type"
! 5: content="text/html; charset=iso-8859-1">
! 6: <meta name="ProgId" content="Word.Document">
! 7: <meta name="Originator" content="Microsoft Word 9">
! 8: <meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
! 9: <title>Computing Health Expectancies using IMaCh</title>
! 10: <link rel="File-List" href="./imach_fichiers/filelist.xml">
! 11: <link rel="Edit-Time-Data" href="./imach_fichiers/editdata.mso">
! 12: <!--[if !mso]>
! 13: <style>
! 14: v\:* {behavior:url(#default#VML);}
! 15: o\:* {behavior:url(#default#VML);}
! 16: w\:* {behavior:url(#default#VML);}
! 17: .shape {behavior:url(#default#VML);}
! 18: </style>
! 19: <![endif]-->
! 20: <!--[if gte mso 9]><xml>
! 21: <o:DocumentProperties>
! 22: <o:Author>agnes lievre</o:Author>
! 23: <o:Template>Normal</o:Template>
! 24: <o:LastAuthor>agnes lievre</o:LastAuthor>
! 25: <o:Revision>23</o:Revision>
! 26: <o:TotalTime>311</o:TotalTime>
! 27: <o:Created>2002-03-02T16:20:00Z</o:Created>
! 28: <o:LastSaved>2002-03-03T21:50:00Z</o:LastSaved>
! 29: <o:Pages>15</o:Pages>
! 30: <o:Words>6119</o:Words>
! 31: <o:Characters>34882</o:Characters>
! 32: <o:Lines>290</o:Lines>
! 33: <o:Paragraphs>69</o:Paragraphs>
! 34: <o:CharactersWithSpaces>42837</o:CharactersWithSpaces>
! 35: <o:Version>9.4402</o:Version>
! 36: </o:DocumentProperties>
! 37: </xml><![endif]-->
! 38: <!--[if gte mso 9]><xml>
! 39: <w:WordDocument>
! 40: <w:HyphenationZone>21</w:HyphenationZone>
! 41: </w:WordDocument>
! 42: </xml><![endif]-->
! 43: <style>
! 44: <!--
! 45: /* Font Definitions */
! 46: @font-face
! 47: {font-family:Wingdings;
! 48: panose-1:5 0 0 0 0 0 0 0 0 0;
! 49: mso-font-charset:2;
! 50: mso-generic-font-family:auto;
! 51: mso-font-pitch:variable;
! 52: mso-font-signature:0 268435456 0 0 -2147483648 0;}
! 53: /* Style Definitions */
! 54: p.MsoNormal, li.MsoNormal, div.MsoNormal
! 55: {mso-style-parent:"";
! 56: margin:0cm;
! 57: margin-bottom:.0001pt;
! 58: mso-pagination:widow-orphan;
! 59: font-size:12.0pt;
! 60: font-family:"Times New Roman";
! 61: mso-fareast-font-family:"Times New Roman";}
! 62: h1
! 63: {margin-right:0cm;
! 64: mso-margin-top-alt:auto;
! 65: mso-margin-bottom-alt:auto;
! 66: margin-left:0cm;
! 67: mso-pagination:widow-orphan;
! 68: mso-outline-level:1;
! 69: font-size:24.0pt;
! 70: font-family:"Times New Roman";
! 71: mso-font-kerning:18.0pt;
! 72: font-weight:bold;}
! 73: h2
! 74: {margin-right:0cm;
! 75: mso-margin-top-alt:auto;
! 76: mso-margin-bottom-alt:auto;
! 77: margin-left:0cm;
! 78: mso-pagination:widow-orphan;
! 79: mso-outline-level:2;
! 80: font-size:18.0pt;
! 81: font-family:"Times New Roman";
! 82: font-weight:bold;}
! 83: h3
! 84: {margin-right:0cm;
! 85: mso-margin-top-alt:auto;
! 86: mso-margin-bottom-alt:auto;
! 87: margin-left:0cm;
! 88: mso-pagination:widow-orphan;
! 89: mso-outline-level:3;
! 90: font-size:13.5pt;
! 91: font-family:"Times New Roman";
! 92: font-weight:bold;}
! 93: h4
! 94: {margin-right:0cm;
! 95: mso-margin-top-alt:auto;
! 96: mso-margin-bottom-alt:auto;
! 97: margin-left:0cm;
! 98: mso-pagination:widow-orphan;
! 99: mso-outline-level:4;
! 100: font-size:12.0pt;
! 101: font-family:"Times New Roman";
! 102: font-weight:bold;}
! 103: h5
! 104: {margin-right:0cm;
! 105: mso-margin-top-alt:auto;
! 106: mso-margin-bottom-alt:auto;
! 107: margin-left:0cm;
! 108: mso-pagination:widow-orphan;
! 109: mso-outline-level:5;
! 110: font-size:10.0pt;
! 111: font-family:"Times New Roman";
! 112: font-weight:bold;}
! 113: a:link, span.MsoHyperlink
! 114: {color:blue;
! 115: text-decoration:underline;
! 116: text-underline:single;}
! 117: a:visited, span.MsoHyperlinkFollowed
! 118: {color:blue;
! 119: text-decoration:underline;
! 120: text-underline:single;}
! 121: p
! 122: {margin-right:0cm;
! 123: mso-margin-top-alt:auto;
! 124: mso-margin-bottom-alt:auto;
! 125: margin-left:0cm;
! 126: mso-pagination:widow-orphan;
! 127: font-size:12.0pt;
! 128: font-family:"Times New Roman";
! 129: mso-fareast-font-family:"Times New Roman";}
! 130: pre
! 131: {margin:0cm;
! 132: margin-bottom:.0001pt;
! 133: mso-pagination:widow-orphan;
! 134: tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt;
! 135: font-size:10.0pt;
! 136: font-family:"Courier New";
! 137: mso-fareast-font-family:"Courier New";}
! 138: @page Section1
! 139: {size:595.3pt 841.9pt;
! 140: margin:70.85pt 70.85pt 70.85pt 70.85pt;
! 141: mso-header-margin:35.4pt;
! 142: mso-footer-margin:35.4pt;
! 143: mso-paper-source:0;}
! 144: div.Section1
! 145: {page:Section1;}
! 146: /* List Definitions */
! 147: @list l0
! 148: {mso-list-id:184488806;
! 149: mso-list-type:hybrid;
! 150: mso-list-template-ids:-1529696740 -412605010 -907664984 -2032001966 -1219577922 -1989525672 1804215288 1798964568 2064445346 -921394074;}
! 151: @list l0:level1
! 152: {mso-level-number-format:bullet;
! 153: mso-level-text:\F0B7;
! 154: mso-level-tab-stop:36.0pt;
! 155: mso-level-number-position:left;
! 156: text-indent:-18.0pt;
! 157: mso-ansi-font-size:10.0pt;
! 158: font-family:Symbol;}
! 159: @list l1
! 160: {mso-list-id:204831336;
! 161: mso-list-type:hybrid;
! 162: mso-list-template-ids:-1844294122 94378308 -806846340 -1272687644 -333439258 -1126675816 1099701808 1453997410 1355317140 -183874942;}
! 163: @list l1:level1
! 164: {mso-level-number-format:bullet;
! 165: mso-level-text:\F0B7;
! 166: mso-level-tab-stop:36.0pt;
! 167: mso-level-number-position:left;
! 168: text-indent:-18.0pt;
! 169: mso-ansi-font-size:10.0pt;
! 170: font-family:Symbol;}
! 171: @list l2
! 172: {mso-list-id:441344838;
! 173: mso-list-type:hybrid;
! 174: mso-list-template-ids:-1624363430 -1068334662 975101306 1309600228 -2116116870 769974826 -307843868 1028545738 868800422 -1496705886;}
! 175: @list l2:level1
! 176: {mso-level-number-format:bullet;
! 177: mso-level-text:\F0B7;
! 178: mso-level-tab-stop:36.0pt;
! 179: mso-level-number-position:left;
! 180: text-indent:-18.0pt;
! 181: mso-ansi-font-size:10.0pt;
! 182: font-family:Symbol;}
! 183: @list l3
! 184: {mso-list-id:628702260;
! 185: mso-list-type:hybrid;
! 186: mso-list-template-ids:-927709454 416302846 373988436 -1134147144 -1982968238 475822148 827730770 934571264 602550890 1800972154;}
! 187: @list l3:level1
! 188: {mso-level-number-format:bullet;
! 189: mso-level-text:\F0B7;
! 190: mso-level-tab-stop:36.0pt;
! 191: mso-level-number-position:left;
! 192: text-indent:-18.0pt;
! 193: mso-ansi-font-size:10.0pt;
! 194: font-family:Symbol;}
! 195: @list l4
! 196: {mso-list-id:752507057;
! 197: mso-list-type:hybrid;
! 198: mso-list-template-ids:-1773518296 67895297 67895299 67895301 67895297 67895299 67895301 67895297 67895299 67895301;}
! 199: @list l4:level1
! 200: {mso-level-number-format:bullet;
! 201: mso-level-text:\F0B7;
! 202: mso-level-tab-stop:36.0pt;
! 203: mso-level-number-position:left;
! 204: text-indent:-18.0pt;
! 205: font-family:Symbol;}
! 206: @list l5
! 207: {mso-list-id:818232419;
! 208: mso-list-type:hybrid;
! 209: mso-list-template-ids:-1143944236 -95769308 -1426324944 1101845342 1451904852 -884162680 1945505468 -1163215946 -592140202 1700436632;}
! 210: @list l5:level1
! 211: {mso-level-number-format:bullet;
! 212: mso-level-text:\F0B7;
! 213: mso-level-tab-stop:36.0pt;
! 214: mso-level-number-position:left;
! 215: text-indent:-18.0pt;
! 216: mso-ansi-font-size:10.0pt;
! 217: font-family:Symbol;}
! 218: @list l6
! 219: {mso-list-id:883836538;
! 220: mso-list-type:hybrid;
! 221: mso-list-template-ids:32399718 -134710470 -1096777840 1309058016 1376137788 -1290646696 -883388418 -1972580442 -797425852 -2051513306;}
! 222: @list l6:level1
! 223: {mso-level-number-format:bullet;
! 224: mso-level-text:\F0B7;
! 225: mso-level-tab-stop:36.0pt;
! 226: mso-level-number-position:left;
! 227: text-indent:-18.0pt;
! 228: mso-ansi-font-size:10.0pt;
! 229: font-family:Symbol;}
! 230: @list l7
! 231: {mso-list-id:904297090;
! 232: mso-list-type:hybrid;
! 233: mso-list-template-ids:651483934 -1330890910 68314940 -1090220572 161909366 1495697220 -847235596 603869070 -2107325174 -1292888626;}
! 234: @list l7:level1
! 235: {mso-level-number-format:bullet;
! 236: mso-level-text:\F0B7;
! 237: mso-level-tab-stop:36.0pt;
! 238: mso-level-number-position:left;
! 239: text-indent:-18.0pt;
! 240: mso-ansi-font-size:10.0pt;
! 241: font-family:Symbol;}
! 242: @list l8
! 243: {mso-list-id:1063483777;
! 244: mso-list-type:hybrid;
! 245: mso-list-template-ids:1396622820 67895297 67895299 67895301 67895297 67895299 67895301 67895297 67895299 67895301;}
! 246: @list l8:level1
! 247: {mso-level-number-format:bullet;
! 248: mso-level-text:\F0B7;
! 249: mso-level-tab-stop:36.0pt;
! 250: mso-level-number-position:left;
! 251: text-indent:-18.0pt;
! 252: font-family:Symbol;}
! 253: @list l9
! 254: {mso-list-id:1168903496;
! 255: mso-list-type:hybrid;
! 256: mso-list-template-ids:-2008413052 -1461950228 -1012751362 -919308802 443596168 -1469662014 -359112926 504948540 1759957928 1612641564;}
! 257: @list l9:level1
! 258: {mso-level-number-format:bullet;
! 259: mso-level-text:\F0B7;
! 260: mso-level-tab-stop:36.0pt;
! 261: mso-level-number-position:left;
! 262: text-indent:-18.0pt;
! 263: mso-ansi-font-size:10.0pt;
! 264: font-family:Symbol;}
! 265: @list l10
! 266: {mso-list-id:1190214980;
! 267: mso-list-type:hybrid;
! 268: mso-list-template-ids:934709936 -291345380 -81906558 -968867310 665229182 1336730126 -1107941388 -20391304 -674328264 -1574639962;}
! 269: @list l10:level1
! 270: {mso-level-number-format:bullet;
! 271: mso-level-text:\F0B7;
! 272: mso-level-tab-stop:36.0pt;
! 273: mso-level-number-position:left;
! 274: text-indent:-18.0pt;
! 275: mso-ansi-font-size:10.0pt;
! 276: font-family:Symbol;}
! 277: @list l11
! 278: {mso-list-id:1384715951;
! 279: mso-list-type:hybrid;
! 280: mso-list-template-ids:-515744014 -566093190 799967300 770599756 -1594063690 -869741144 1377056636 315393812 -1370061484 1511570004;}
! 281: @list l11:level1
! 282: {mso-level-number-format:bullet;
! 283: mso-level-text:\F0B7;
! 284: mso-level-tab-stop:36.0pt;
! 285: mso-level-number-position:left;
! 286: text-indent:-18.0pt;
! 287: mso-ansi-font-size:10.0pt;
! 288: font-family:Symbol;}
! 289: @list l12
! 290: {mso-list-id:1593661621;
! 291: mso-list-type:hybrid;
! 292: mso-list-template-ids:-1035417432 1271449484 -308236740 -1122210034 -380844018 1478807872 266132728 -1091829500 812926462 -1442827238;}
! 293: @list l12:level1
! 294: {mso-level-number-format:bullet;
! 295: mso-level-text:\F0B7;
! 296: mso-level-tab-stop:36.0pt;
! 297: mso-level-number-position:left;
! 298: text-indent:-18.0pt;
! 299: mso-ansi-font-size:10.0pt;
! 300: font-family:Symbol;}
! 301: @list l13
! 302: {mso-list-id:1636450504;
! 303: mso-list-type:hybrid;
! 304: mso-list-template-ids:-711022678 -1038569226 1304059700 -837663288 -1699980300 571783806 -231993906 -744861656 1958002196 -1476655198;}
! 305: @list l13:level1
! 306: {mso-level-number-format:bullet;
! 307: mso-level-text:\F0B7;
! 308: mso-level-tab-stop:36.0pt;
! 309: mso-level-number-position:left;
! 310: text-indent:-18.0pt;
! 311: mso-ansi-font-size:10.0pt;
! 312: font-family:Symbol;}
! 313: @list l14
! 314: {mso-list-id:1752386307;
! 315: mso-list-type:hybrid;
! 316: mso-list-template-ids:-347696224 -386773934 1871641532 667840386 1914592500 1728978276 -196066776 1566372654 -755335742 341755130;}
! 317: @list l14:level1
! 318: {mso-level-number-format:bullet;
! 319: mso-level-text:\F0B7;
! 320: mso-level-tab-stop:36.0pt;
! 321: mso-level-number-position:left;
! 322: text-indent:-18.0pt;
! 323: mso-ansi-font-size:10.0pt;
! 324: font-family:Symbol;}
! 325: @list l14:level2
! 326: {mso-level-number-format:bullet;
! 327: mso-level-text:o;
! 328: mso-level-tab-stop:72.0pt;
! 329: mso-level-number-position:left;
! 330: text-indent:-18.0pt;
! 331: mso-ansi-font-size:10.0pt;
! 332: font-family:"Courier New";
! 333: mso-bidi-font-family:"Times New Roman";}
! 334: @list l15
! 335: {mso-list-id:1756245288;
! 336: mso-list-type:hybrid;
! 337: mso-list-template-ids:531934386 67895297 67895299 67895301 67895297 67895299 67895301 67895297 67895299 67895301;}
! 338: @list l15:level1
! 339: {mso-level-number-format:bullet;
! 340: mso-level-text:\F0B7;
! 341: mso-level-tab-stop:36.0pt;
! 342: mso-level-number-position:left;
! 343: text-indent:-18.0pt;
! 344: font-family:Symbol;}
! 345: @list l16
! 346: {mso-list-id:1839273133;
! 347: mso-list-type:hybrid;
! 348: mso-list-template-ids:-556523634 -715873828 -243865004 563531560 -898876536 640947630 967865102 1305671924 1810678544 -1115658030;}
! 349: @list l16:level1
! 350: {mso-level-number-format:bullet;
! 351: mso-level-text:\F0B7;
! 352: mso-level-tab-stop:36.0pt;
! 353: mso-level-number-position:left;
! 354: text-indent:-18.0pt;
! 355: mso-ansi-font-size:10.0pt;
! 356: font-family:Symbol;}
! 357: @list l17
! 358: {mso-list-id:1841849959;
! 359: mso-list-type:hybrid;
! 360: mso-list-template-ids:2053128728 -543362536 926470224 151426154 998932566 84972724 844683600 1807279286 -841218426 -1132452502;}
! 361: @list l17:level1
! 362: {mso-level-number-format:bullet;
! 363: mso-level-text:\F0B7;
! 364: mso-level-tab-stop:36.0pt;
! 365: mso-level-number-position:left;
! 366: text-indent:-18.0pt;
! 367: mso-ansi-font-size:10.0pt;
! 368: font-family:Symbol;}
! 369: @list l18
! 370: {mso-list-id:1848639524;
! 371: mso-list-type:hybrid;
! 372: mso-list-template-ids:638092306 940881202 -784414886 1026841176 1011505968 -653358884 -269310374 2133217052 1173680566 -1995784172;}
! 373: @list l18:level1
! 374: {mso-level-number-format:bullet;
! 375: mso-level-text:\F0B7;
! 376: mso-level-tab-stop:36.0pt;
! 377: mso-level-number-position:left;
! 378: text-indent:-18.0pt;
! 379: mso-ansi-font-size:10.0pt;
! 380: font-family:Symbol;}
! 381: ol
! 382: {margin-bottom:0cm;}
! 383: ul
! 384: {margin-bottom:0cm;}
! 385: -->
! 386: </style>
! 387: <!--[if gte mso 9]><xml>
! 388: <o:shapedefaults v:ext="edit" spidmax="1027"/>
! 389: </xml><![endif]-->
! 390: <!--[if gte mso 9]><xml>
! 391: <o:shapelayout v:ext="edit">
! 392: <o:idmap v:ext="edit" data="1"/>
! 393: </o:shapelayout></xml><![endif]-->
! 394: <!-- Changed by: Agnes Lievre, 12-Oct-2000 -->
! 395: </head>
! 396:
! 397: <body bgcolor="#FFFFFF" link="#0000FF" vlink="#0000FF" lang="FR"
! 398: style="tab-interval:35.4pt">
! 399:
! 400: <hr size="3" noshade color="#EC5E5E">
! 401:
! 402: <h1 align="center" style="text-align:center"><span lang="EN-GB" style="color:#00006A;
! 403: mso-ansi-language:EN-GB">Computing Health
! 404: Expectancies using IMaCh</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h1>
! 405:
! 406: <h1 align="center" style="text-align:center"><span lang="EN-GB" style="font-size:
! 407: 18.0pt;color:#00006A;mso-ansi-language:EN-GB">(a Maximum
! 408: Likelihood Computer Program using Interpolation of Markov Chains)</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h1>
! 409:
! 410: <p align="center" style="text-align:center"><span lang="EN-GB" style="mso-ansi-language:
! 411: EN-GB"> <o:p></o:p></span></p>
! 412:
! 413: <p align="center" style="text-align:center"><a
! 414: href="http://www.ined.fr/"><span style="text-decoration:none;text-underline:none"><img src="logo-ined.gif" border="0"
! 415: width="151" height="76" id="_x0000_i1026"></span></a><img
! 416: src="euroreves2.gif" width="151" height="75" id="_x0000_i1027"></p>
! 417:
! 418: <h3 align="center" style="text-align:center"><a
! 419: href="http://www.ined.fr/"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">INED</span><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"></a> and </span><a
! 420: href="http://euroreves.ined.fr"><span lang="EN-GB" style="color:#00006A;
! 421: mso-ansi-language:EN-GB">EUROREVES</span><span lang="EN-GB" style="mso-ansi-language:
! 422: EN-GB"><o:p></o:p></span></a></h3>
! 423:
! 424: <p align="center" style="text-align:center"><strong><span lang="EN-GB" style="font-size:13.5pt;color:#00006A;mso-ansi-language:EN-GB">Version 0.7,
! 425: February 2002</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></strong></p>
! 426:
! 427: <hr size="3" noshade color="#EC5E5E">
! 428:
! 429: <p align="center" style="text-align:center"><strong><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Authors of
! 430: the program: </span></strong><a href="http://sauvy.ined.fr/brouard"><strong><span lang="EN-GB" style="color:#00006A;
! 431: mso-ansi-language:EN-GB">Nicolas
! 432: Brouard</span><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"></strong></a><strong>, senior researcher at the </span></strong><a
! 433: href="http://www.ined.fr"><strong><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Institut National d'Etudes
! 434: Démographiques</span><span lang="EN-GB" style="color:#00006A;
! 435: mso-ansi-language:EN-GB"></strong></a><strong> (INED, Paris) in the
! 436: "Mortality, Health and Epidemiology" Research Unit </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></strong></p>
! 437:
! 438: <p align="center" style="text-align:center"><strong><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">and Agnès
! 439: Lièvre</span></strong><b><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"><br clear="left"
! 440: style="mso-special-character:line-break">
! 441: </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></b></p>
! 442:
! 443: <h4><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Contribution to the mathematics: C. R. Heathcote </span><span lang="EN-GB" style="font-size:
! 444: 10.0pt;color:#00006A;mso-ansi-language:EN-GB">(Australian
! 445: National University, Canberra).</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
! 446:
! 447: <h4><span style="color:#00006A">Contact: Agnès Lièvre (</span><a href="mailto:lievre@ined.fr"><i><span style="color:#00006A">lievre@ined.fr</span><span style="color:#00006A"></i></a>)
! 448: </span></h4>
! 449:
! 450: <hr>
! 451: <span style="font-size:12.0pt;font-family:"Times New Roman";mso-fareast-font-family:
! 452: "Times New Roman";mso-ansi-language:FR;mso-fareast-language:FR;mso-bidi-language:
! 453: AR-SA">
! 454: <ul type="disc">
! 455: <li class="MsoNormal"
! 456: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 457: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
! 458: href="#intro"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Introduction</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
! 459: <li class="MsoNormal"
! 460: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 461: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
! 462: href="#data"><span lang="EN-GB" style="mso-ansi-language:EN-GB">On what kind of data can it be used?</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></li>
! 463: <li class="MsoNormal"
! 464: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 465: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
! 466: href="#datafile"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The data file</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
! 467: <li class="MsoNormal"
! 468: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 469: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
! 470: href="#biaspar"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The parameter file</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
! 471: <li class="MsoNormal"
! 472: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 473: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
! 474: href="#running"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Running Imach</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
! 475: <li class="MsoNormal"
! 476: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 477: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
! 478: href="#output"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Output files and graphs</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
! 479: <li class="MsoNormal"
! 480: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 481: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
! 482: href="#example">Exemple</a> </li>
! 483: </ul>
! 484: </span>
! 485: <hr>
! 486:
! 487: <h2><a name="intro"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Introduction</span><span style="mso-bookmark:intro"></span><span lang="EN-GB" style="mso-ansi-language:
! 488: EN-GB"><o:p></o:p></span></a></h2>
! 489:
! 490: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This program computes <b>Healthy
! 491: Life Expectancies</b> from <b>cross-longitudinal data</b> using
! 492: the methodology pioneered by Laditka and Wolf (1). Within the
! 493: family of Health Expectancies (HE), Disability-free life
! 494: expectancy (DFLE) is probably the most important index to
! 495: monitor. In low mortality countries, there is a fear that when
! 496: mortality declines, the increase in DFLE is not proportionate to
! 497: the increase in total Life expectancy. This case is called the <em>Expansion
! 498: of morbidity</em>. Most of the data collected today, in
! 499: particular by the international </span><a href="http://euroreves/reves"><span lang="EN-GB" style="mso-ansi-language:EN-GB">REVES</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>
! 500: network on Health expectancy, and most HE indices based on these
! 501: data, are <em>cross-sectional</em>. It means that the information
! 502: collected comes from a single cross-sectional survey: people from
! 503: various ages (but mostly old people) are surveyed on their health
! 504: status at a single date. Proportion of people disabled at each
! 505: age, can then be measured at that date. This age-specific
! 506: prevalence curve is then used to distinguish, within the
! 507: stationary population (which, by definition, is the life table
! 508: estimated from the vital statistics on mortality at the same
! 509: date), the disable population from the disability-free
! 510: population. Life expectancy (LE) (or total population divided by
! 511: the yearly number of births or deaths of this stationary
! 512: population) is then decomposed into DFLE and DLE. This method of
! 513: computing HE is usually called the Sullivan method (from the name
! 514: of the author who first described it).<o:p></o:p></span></p>
! 515:
! 516: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Age-specific proportions of people
! 517: disable are very difficult to forecast because each proportion
! 518: corresponds to historical conditions of the cohort and it is the
! 519: result of the historical flows from entering disability and
! 520: recovering in the past until today. The age-specific intensities
! 521: (or incidence rates) of entering disability or recovering a good
! 522: health, are reflecting actual conditions and therefore can be
! 523: used at each age to forecast the future of this cohort. For
! 524: example if a country is improving its technology of prosthesis,
! 525: the incidence of recovering the ability to walk will be higher at
! 526: each (old) age, but the prevalence of disability will only
! 527: slightly reflect an improve because the prevalence is mostly
! 528: affected by the history of the cohort and not by recent period
! 529: effects. To measure the period improvement we have to simulate
! 530: the future of a cohort of new-borns entering or leaving at each
! 531: age the disability state or dying according to the incidence
! 532: rates measured today on different cohorts. The proportion of
! 533: people disabled at each age in this simulated cohort will be much
! 534: lower (using the example of an improvement) that the proportions
! 535: observed at each age in a cross-sectional survey. This new
! 536: prevalence curve introduced in a life table will give a much more
! 537: actual and realistic HE level than the Sullivan method which
! 538: mostly measured the History of health conditions in this country.<o:p></o:p></span></p>
! 539:
! 540: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Therefore, the main question is how
! 541: to measure incidence rates from cross-longitudinal surveys? This
! 542: is the goal of the IMaCH program. From your data and using IMaCH
! 543: you can estimate period HE and not only Sullivan's HE. Also the
! 544: standard errors of the HE are computed.<o:p></o:p></span></p>
! 545:
! 546: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">A cross-longitudinal survey
! 547: consists in a first survey ("cross") where individuals
! 548: from different ages are interviewed on their health status or
! 549: degree of disability. At least a second wave of interviews
! 550: ("longitudinal") should measure each new individual
! 551: health status. Health expectancies are computed from the
! 552: transitions observed between waves and are computed for each
! 553: degree of severity of disability (number of life states). More
! 554: degrees you consider, more time is necessary to reach the Maximum
! 555: Likelihood of the parameters involved in the model. Considering
! 556: only two states of disability (disable and healthy) is generally
! 557: enough but the computer program works also with more health
! 558: statuses.<span style="mso-spacerun:
! 559: yes"> </span><br>
! 560: <br>
! 561: The simplest model is the multinomial logistic model where <i>pij</i>
! 562: is the probability to be observed in state <i>j</i> at the second
! 563: wave conditional to be observed in state <em>i</em> at the first
! 564: wave. Therefore a simple model is: log<em>(pij/pii)= aij +
! 565: bij*age+ cij*sex,</em> where '<i>age</i>' is age and '<i>sex</i>'
! 566: is a covariate. The advantage that this computer program claims,
! 567: comes from that if the delay between waves is not identical for
! 568: each individual, or if some individual missed an interview, the
! 569: information is not rounded or lost, but taken into account using
! 570: an interpolation or extrapolation. <i>hPijx</i> is the
! 571: probability to be observed in state <i>i</i> at age <i>x+h</i>
! 572: conditional to the observed state <i>i</i> at age <i>x</i>. The
! 573: delay '<i>h</i>' can be split into an exact number (<i>nh*stepm</i>)
! 574: of unobserved intermediate states. This elementary transition (by
! 575: month or quarter trimester, semester or year) is modeled as a
! 576: multinomial logistic. The <i>hPx</i> matrix is simply the matrix
! 577: product of <i>nh*stepm</i> elementary matrices and the
! 578: contribution of each individual to the likelihood is simply <i>hPijx</i>.
! 579: <o:p></o:p></span></p>
! 580:
! 581: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The program presented in this
! 582: manual is a quite general program named <strong>IMaCh</strong>
! 583: (for <strong>I</strong>nterpolated <strong>MA</strong>rkov <strong>CH</strong>ain),
! 584: designed to analyse transition data from longitudinal surveys.
! 585: The first step is the parameters estimation of a transition
! 586: probabilities model between an initial status and a final status.
! 587: From there, the computer program produces some indicators such as
! 588: observed and stationary prevalence, life expectancies and their
! 589: variances and graphs. Our transition model consists in absorbing
! 590: and non-absorbing states with the possibility of return across
! 591: the non-absorbing states. The main advantage of this package,
! 592: compared to other programs for the analysis of transition data
! 593: (For example: Proc Catmod of SAS<sup>(r)</sup>) is that the whole
! 594: individual information is used even if an interview is missing, a
! 595: status or a date is unknown or when the delay between waves is
! 596: not identical for each individual. The program can be executed
! 597: according to parameters: selection of a sub-sample, number of
! 598: absorbing and non-absorbing states, number of waves taken in
! 599: account (the user inputs the first and the last interview), a
! 600: tolerance level for the maximization function, the periodicity of
! 601: the transitions (we can compute annual, quarterly or monthly
! 602: transitions), covariates in the model. It works on Windows or on
! 603: Unix.<o:p></o:p></span></p>
! 604:
! 605: <hr>
! 606:
! 607: <p><span lang="EN-GB" style="mso-ansi-language:EN-GB">(1) Laditka, Sarah B. and Wolf, Douglas A. (1998), "New
! 608: Methods for Analyzing Active Life Expectancy". <i>Journal of
! 609: Aging and Health</i>. </span>Vol 10, No. 2. </p>
! 610:
! 611: <hr>
! 612:
! 613: <h2><a name="data"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">On what kind of data can it be used?</span><span style="mso-bookmark:data"></span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h2>
! 614:
! 615: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The minimum data required for a
! 616: transition model is the recording of a set of individuals
! 617: interviewed at a first date and interviewed again at least one
! 618: another time. From the observations of an individual, we obtain a
! 619: follow-up over time of the occurrence of a specific event. In
! 620: this documentation, the event is related to health status at
! 621: older ages, but the program can be applied on a lot of
! 622: longitudinal studies in different contexts. To build the data
! 623: file explained into the next section, you must have the month and
! 624: year of each interview and the corresponding health status. But
! 625: in order to get age, date of birth (month and year) is required
! 626: (missing values is allowed for month). Date of death (month and
! 627: year) is an important information also required if the individual
! 628: is dead. Shorter steps (i.e. a month) will more closely take into
! 629: account the survival time after the last interview.<o:p></o:p></span></p>
! 630:
! 631: <hr>
! 632:
! 633: <h2><a name="datafile"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:
! 634: EN-GB">The data file</span><span style="mso-bookmark:datafile"></span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h2>
! 635:
! 636: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">In this example, 8,000 people have
! 637: been interviewed in a cross-longitudinal survey of 4 waves (1984,
! 638: 1986, 1988, 1990). Some people missed 1, 2 or 3 interviews.
! 639: Health statuses are healthy (1) and disable (2). The survey is
! 640: not a real one. It is a simulation of the American Longitudinal
! 641: Survey on Aging. The disability state is defined if the
! 642: individual missed one of four ADL (Activity of daily living, like
! 643: bathing, eating, walking). Therefore, even is the individuals
! 644: interviewed in the sample are virtual, the information brought
! 645: with this sample is close to the situation of the United States.
! 646: Sex is not recorded is this sample.<o:p></o:p></span></p>
! 647:
! 648: <p><span lang="EN-GB" style="mso-ansi-language:EN-GB">Each line of the data set (named </span><a href="data1.txt"><span lang="EN-GB" style="mso-ansi-language:
! 649: EN-GB">data1.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>
! 650: in this first example) is an individual record which fields are: <o:p></o:p></span></p>
! 651:
! 652: <ul type="disc">
! 653: <li class="MsoNormal"
! 654: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 655: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Index
! 656: number</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: positive number (field 1) <o:p></o:p></span></li>
! 657: <li class="MsoNormal"
! 658: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 659: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">First
! 660: covariate</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b> positive number (field 2) <o:p></o:p></span></li>
! 661: <li class="MsoNormal"
! 662: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 663: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Second
! 664: covariate</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b> positive number (field 3) <o:p></o:p></span></li>
! 665: <li class="MsoNormal"
! 666: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 667: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><a
! 668: name="Weight"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Weight</span><span style="mso-bookmark:Weight"></span><span lang="EN-GB" style="mso-ansi-language:
! 669: EN-GB"></b></a>: positive number (field
! 670: 4) . In most surveys individuals are weighted according
! 671: to the stratification of the sample.<o:p></o:p></span></li>
! 672: <li class="MsoNormal"
! 673: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 674: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
! 675: of birth</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates are coded
! 676: as 99/9999 (field 5) <o:p></o:p></span></li>
! 677: <li class="MsoNormal"
! 678: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 679: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
! 680: of death</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates are coded
! 681: as 99/9999 (field 6) <o:p></o:p></span></li>
! 682: <li class="MsoNormal"
! 683: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 684: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
! 685: of first interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates
! 686: are coded as 99/9999 (field 7) <o:p></o:p></span></li>
! 687: <li class="MsoNormal"
! 688: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 689: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Status
! 690: at first interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: positive number. Missing values
! 691: ar coded -1. (field 8) <o:p></o:p></span></li>
! 692: <li class="MsoNormal"
! 693: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 694: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
! 695: of second interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates
! 696: are coded as 99/9999 (field 9) <o:p></o:p></span></li>
! 697: <li class="MsoNormal"
! 698: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 699: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">Status
! 700: at second interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong> positive number. Missing
! 701: values ar coded -1. (field 10) <o:p></o:p></span></li>
! 702: <li class="MsoNormal"
! 703: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 704: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
! 705: of third interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates
! 706: are coded as 99/9999 (field 11) <o:p></o:p></span></li>
! 707: <li class="MsoNormal"
! 708: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 709: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">Status
! 710: at third interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong> positive number. Missing
! 711: values ar coded -1. (field 12) <o:p></o:p></span></li>
! 712: <li class="MsoNormal"
! 713: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 714: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
! 715: of fourth interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates
! 716: are coded as 99/9999 (field 13) <o:p></o:p></span></li>
! 717: <li class="MsoNormal"
! 718: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 719: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">Status
! 720: at fourth interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong> positive number. Missing
! 721: values are coded -1. (field 14) <o:p></o:p></span></li>
! 722: <li class="MsoNormal"
! 723: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 724: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">etc<o:p></o:p></span></li>
! 725: </ul>
! 726:
! 727: <p><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></p>
! 728:
! 729: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If your longitudinal survey do not
! 730: include information about weights or covariates, you must fill
! 731: the column with a number (e.g. 1) because a missing field is not
! 732: allowed.<o:p></o:p></span></p>
! 733:
! 734: <hr>
! 735:
! 736: <h2><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Your first example parameter file</span><a
! 737: href="http://euroreves.ined.fr/imach"></a><a name="uio"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h2>
! 738:
! 739: <h2><a name="biaspar"><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>#Imach version 0.7, February 2002,
! 740: INED-EUROREVES <o:p></o:p></span></h2>
! 741:
! 742: <p><span lang="EN-GB" style="mso-ansi-language:EN-GB">This is a comment. Comments start with a '#'.<o:p></o:p></span></p>
! 743:
! 744: <h4><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">First uncommented line</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
! 745:
! 746: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">title=1st_example datafile=data1.txt lastobs=8600 firstpass=1 lastpass=4<o:p></o:p></span></pre>
! 747:
! 748: <ul type="disc">
! 749: <li class="MsoNormal"
! 750: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 751: text-align:justify;mso-list:l1 level1 lfo9;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">title=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 752: 1st_example is title of the run. <o:p></o:p></span></li>
! 753: <li class="MsoNormal"
! 754: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 755: text-align:justify;mso-list:l1 level1 lfo9;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">datafile=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>data1.txt
! 756: is the name of the data set. Our example is a six years
! 757: follow-up survey. It consists in a baseline followed by 3
! 758: reinterviews. <o:p></o:p></span></li>
! 759: <li class="MsoNormal"
! 760: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 761: text-align:justify;mso-list:l1 level1 lfo9;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">lastobs=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 762: 8600 the program is able to run on a subsample where the
! 763: last observation number is lastobs. It can be set a
! 764: bigger number than the real number of observations (e.g.
! 765: 100000). In this example, maximisation will be done on
! 766: the 8600 first records. <o:p></o:p></span></li>
! 767: <li class="MsoNormal"
! 768: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 769: text-align:justify;mso-list:l1 level1 lfo9;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">firstpass=1</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 770: , <b>lastpass=4 </b>In case of more than two interviews
! 771: in the survey, the program can be run on selected
! 772: transitions periods. firstpass=1 means the first
! 773: interview included in the calculation is the baseline
! 774: survey. lastpass=4 means that the information brought by
! 775: the 4th interview is taken into account.<o:p></o:p></span></li>
! 776: </ul>
! 777:
! 778: <p
! 779: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></p>
! 780:
! 781: <h4
! 782: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Second
! 783: uncommented line</span><a name="biaspar-2"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h4>
! 784:
! 785: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">ftol=1.e-08 stepm=1 ncov=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0<o:p></o:p></span></pre>
! 786:
! 787: <ul type="disc">
! 788: <li class="MsoNormal"
! 789: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 790: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">ftol=1e-8</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 791: Convergence tolerance on the function value in the
! 792: maximisation of the likelihood. Choosing a correct value
! 793: for ftol is difficult. 1e-8 is a correct value for a 32
! 794: bits computer.<o:p></o:p></span></li>
! 795: <li class="MsoNormal"
! 796: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 797: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">stepm=1</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 798: Time unit in months for interpolation. Examples:<o:p></o:p></span></li>
! 799: <li><ul type="circle">
! 800: <li class="MsoNormal"
! 801: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
! 802: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
! 803: stepm=1, the unit is a month <o:p></o:p></span></li>
! 804: <li class="MsoNormal"
! 805: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
! 806: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
! 807: stepm=4, the unit is a trimester<o:p></o:p></span></li>
! 808: <li class="MsoNormal"
! 809: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
! 810: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
! 811: stepm=12, the unit is a year <o:p></o:p></span></li>
! 812: <li class="MsoNormal"
! 813: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
! 814: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
! 815: stepm=24, the unit is two years<o:p></o:p></span></li>
! 816: <li class="MsoNormal"
! 817: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
! 818: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">...
! 819: <o:p></o:p></span> </li>
! 820: </ul>
! 821: </li>
! 822: <li class="MsoNormal"
! 823: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 824: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">ncov=2</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 825: Number of covariates in the datafile. The intercept and
! 826: the age parameter are counting for 2 covariates.<o:p></o:p></span></li>
! 827: <li class="MsoNormal"
! 828: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 829: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">nlstate=2</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 830: Number of non-absorbing (alive) states. Here we have two
! 831: alive states: disability-free is coded 1 and disability
! 832: is coded 2. <o:p></o:p></span></li>
! 833: <li class="MsoNormal"
! 834: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 835: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">ndeath=1</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 836: Number of absorbing states. The absorbing state death is
! 837: coded 3. <o:p></o:p></span></li>
! 838: <li class="MsoNormal"
! 839: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 840: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">maxwav=4</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 841: Number of waves in the datafile.<o:p></o:p></span></li>
! 842: <li class="MsoNormal"
! 843: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 844: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><a
! 845: name="mle"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">mle</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b></a><b>=1</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b> Option for the
! 846: Maximisation Likelihood Estimation. <o:p></o:p></span></li>
! 847: <li><ul type="circle">
! 848: <li class="MsoNormal"
! 849: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
! 850: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
! 851: mle=1 the program does the maximisation and the
! 852: calculation of health expectancies <o:p></o:p></span></li>
! 853: <li class="MsoNormal"
! 854: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
! 855: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
! 856: mle=0 the program only does the calculation of
! 857: the health expectancies. <o:p></o:p></span></li>
! 858: </ul>
! 859: </li>
! 860: <li class="MsoNormal"
! 861: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 862: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">weight=0</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 863: Possibility to add weights. <o:p></o:p></span></li>
! 864: <li><ul type="circle">
! 865: <li class="MsoNormal"
! 866: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
! 867: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
! 868: weight=0 no weights are included <o:p></o:p></span></li>
! 869: <li class="MsoNormal"
! 870: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
! 871: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
! 872: weight=1 the maximisation integrates the weights
! 873: which are in field </span><a href="#Weight"><span lang="EN-GB" style="mso-ansi-language:EN-GB">4</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></li>
! 874: </ul>
! 875: </li>
! 876: </ul>
! 877:
! 878: <h4
! 879: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Covariates</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
! 880:
! 881: <p
! 882: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Intercept
! 883: and age are systematically included in the model. Additional
! 884: covariates can be included with the command <o:p></o:p></span></p>
! 885:
! 886: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">model=<em>list of covariates<o:p></o:p></span></em></pre>
! 887:
! 888: <ul type="disc">
! 889: <li class="MsoNormal"
! 890: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 891: text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if<strong>
! 892: model=. </strong>then no covariates are included<o:p></o:p></span></li>
! 893: <li class="MsoNormal"
! 894: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 895: text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
! 896: <strong>model=V1</strong> the model includes the first
! 897: covariate (field 2)<o:p></o:p></span></li>
! 898: <li class="MsoNormal"
! 899: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 900: text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
! 901: <strong>model=V2 </strong>the model includes the second
! 902: covariate (field 3)<o:p></o:p></span></li>
! 903: <li class="MsoNormal"
! 904: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 905: text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
! 906: <strong>model=V1+V2 </strong>the model includes the first
! 907: and the second covariate (fields 2 and 3)<o:p></o:p></span></li>
! 908: <li class="MsoNormal"
! 909: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 910: text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
! 911: <strong>model=V1*V2 </strong>the model includes the
! 912: product of the first and the second covariate (fields 2
! 913: and 3)<o:p></o:p></span></li>
! 914: <li class="MsoNormal"
! 915: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 916: text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
! 917: <strong>model=V1+V1*age</strong> the model includes the
! 918: product covariate*age<o:p></o:p></span></li>
! 919: </ul>
! 920:
! 921: <h4
! 922: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Guess
! 923: values for optimisation</span><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"> </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
! 924:
! 925: <p
! 926: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">You
! 927: must write the initial guess values of the parameters for
! 928: optimisation. The number of parameters, <em>N</em> depends on the
! 929: number of absorbing states and non-absorbing states and on the
! 930: number of covariates. <br>
! 931: <em>N</em> is given by the formula <em>N</em>=(<em>nlstate</em> +
! 932: <em>ndeath</em>-1)*<em>nlstate</em>*<em>ncov</em> . <br>
! 933: <br>
! 934: Thus in the simple case with 2 covariates (the model is log
! 935: (pij/pii) = aij + bij * age where intercept and age are the two
! 936: covariates), and 2 health degrees (1 for disability-free and 2
! 937: for disability) and 1 absorbing state (3), you must enter 8
! 938: initials values, a12, b12, a13, b13, a21, b21, a23, b23. You can
! 939: start with zeros as in this example, but if you have a more
! 940: precise set (for example from an earlier run) you can enter it
! 941: and it will speed up them<br>
! 942: Each of the four lines starts with indices "ij": <b>ij
! 943: aij bij</b> <o:p></o:p></span></p>
! 944:
! 945: <pre
! 946: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:
! 947: 36.0pt;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Guess values of aij and bij in log (pij/pii) = aij + bij * age<o:p></o:p></span></pre>
! 948:
! 949: <pre
! 950: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
! 951: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
! 952: EN-GB">12 -14.155633<span style="mso-spacerun: yes"> </span>0.110794 <o:p></o:p></span></pre>
! 953:
! 954: <pre
! 955: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
! 956: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
! 957: EN-GB">13<span style="mso-spacerun: yes"> </span>-7.925360<span style="mso-spacerun: yes"> </span>0.032091 <o:p></o:p></span></pre>
! 958:
! 959: <pre
! 960: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
! 961: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
! 962: EN-GB">21<span style="mso-spacerun: yes"> </span>-1.890135 -0.029473 <o:p></o:p></span></pre>
! 963:
! 964: <pre
! 965: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
! 966: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
! 967: EN-GB">23<span style="mso-spacerun: yes"> </span>-6.234642<span style="mso-spacerun: yes"> </span>0.022315 <o:p></o:p></span></pre>
! 968:
! 969: <p
! 970: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">or,
! 971: to simplify: <o:p></o:p></span></p>
! 972:
! 973: <pre
! 974: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:
! 975: 36.0pt;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">12 0.0 0.0<o:p></o:p></span></pre>
! 976:
! 977: <pre
! 978: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
! 979: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
! 980: EN-GB">13 0.0 0.0<o:p></o:p></span></pre>
! 981:
! 982: <pre
! 983: style="margin-top:0cm;margin-right:
! 984: 36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;text-align:
! 985: justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">21 0.0 0.0<o:p></o:p></span></pre>
! 986:
! 987: <pre
! 988: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
! 989: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
! 990: EN-GB">23 0.0 0.0<o:p></o:p></span></pre>
! 991:
! 992: <h4
! 993: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Guess
! 994: values for computing variances</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
! 995:
! 996: <p
! 997: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
! 998: is an output if </span><a href="#mle"><span lang="EN-GB" style="mso-ansi-language:EN-GB">mle</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>=1. But it can be used as
! 999: an input to get the various output data files (Health
! 1000: expectancies, stationary prevalence etc.) and figures without
! 1001: rerunning the rather long maximisation phase (mle=0). <o:p></o:p></span></p>
! 1002:
! 1003: <p
! 1004: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
! 1005: scales are small values for the evaluation of numerical
! 1006: derivatives. These derivatives are used to compute the hessian
! 1007: matrix of the parameters, that is the inverse of the covariance
! 1008: matrix, and the variances of health expectancies. Each line
! 1009: consists in indices "ij" followed by the initial scales
! 1010: (zero to simplify) associated with aij and bij. <o:p></o:p></span></p>
! 1011:
! 1012: <ul type="disc">
! 1013: <li class="MsoNormal"
! 1014: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1015: text-align:justify;mso-list:l16 level1 lfo18;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
! 1016: mle=1 you can enter zeros:<o:p></o:p></span></li>
! 1017: </ul>
! 1018:
! 1019: <pre
! 1020: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:
! 1021: 36.0pt;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Scales (for hessian or gradient estimation)<o:p></o:p></span></pre>
! 1022:
! 1023: <pre
! 1024: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
! 1025: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
! 1026: EN-GB">12 0. 0. <o:p></o:p></span></pre>
! 1027:
! 1028: <pre
! 1029: style="margin-top:0cm;margin-right:
! 1030: 36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;text-align:
! 1031: justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">13 0. 0. <o:p></o:p></span></pre>
! 1032:
! 1033: <pre
! 1034: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
! 1035: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
! 1036: EN-GB">21 0. 0. <o:p></o:p></span></pre>
! 1037:
! 1038: <pre
! 1039: style="margin-top:0cm;margin-right:
! 1040: 36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;text-align:
! 1041: justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">23 0. 0. <o:p></o:p></span></pre>
! 1042:
! 1043: <ul type="disc">
! 1044: <li class="MsoNormal"
! 1045: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1046: text-align:justify;mso-list:l11 level1 lfo21;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
! 1047: mle=0 you must enter a covariance matrix (usually
! 1048: obtained from an earlier run).<o:p></o:p></span></li>
! 1049: </ul>
! 1050:
! 1051: <h4
! 1052: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Covariance
! 1053: matrix of parameters</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
! 1054:
! 1055: <p
! 1056: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
! 1057: is an output if </span><a href="#mle"><span lang="EN-GB" style="mso-ansi-language:EN-GB">mle</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>=1. But it can be used as
! 1058: an input to get the various output data files (Health
! 1059: expectancies, stationary prevalence etc.) and figures without
! 1060: rerunning the rather long maximisation phase (mle=0). <o:p></o:p></span></p>
! 1061:
! 1062: <p
! 1063: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Each
! 1064: line starts with indices "ijk" followed by the
! 1065: covariances between aij and bij: <o:p></o:p></span></p>
! 1066:
! 1067: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
! 1068:
! 1069: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>121 Var(a12) <o:p></o:p></span></pre>
! 1070:
! 1071: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>122 Cov(b12,a12)<span style="mso-spacerun: yes"> </span>Var(b12) <o:p></o:p></span></pre>
! 1072:
! 1073: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>...<o:p></o:p></span></pre>
! 1074:
! 1075: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>232 Cov(b23,a12)<span style="mso-spacerun: yes"> </span>Cov(b23,b12) ... Var (b23) <o:p></o:p></span></pre>
! 1076:
! 1077: <ul type="disc">
! 1078: <li class="MsoNormal"
! 1079: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1080: text-align:justify;mso-list:l18 level1 lfo24;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
! 1081: mle=1 you can enter zeros. <o:p></o:p></span></li>
! 1082: </ul>
! 1083:
! 1084: <pre
! 1085: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:
! 1086: 36.0pt;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Covariance matrix<o:p></o:p></span></pre>
! 1087:
! 1088: <pre
! 1089: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
! 1090: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
! 1091: EN-GB">121 0.<o:p></o:p></span></pre>
! 1092:
! 1093: <pre
! 1094: style="margin-top:0cm;margin-right:
! 1095: 36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;text-align:
! 1096: justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">122 0. 0.<o:p></o:p></span></pre>
! 1097:
! 1098: <pre
! 1099: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
! 1100: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
! 1101: EN-GB">131 0. 0. 0. <o:p></o:p></span></pre>
! 1102:
! 1103: <pre
! 1104: style="margin-top:0cm;
! 1105: margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;
! 1106: text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">132 0. 0. 0. 0. <o:p></o:p></span></pre>
! 1107:
! 1108: <pre
! 1109: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
! 1110: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
! 1111: EN-GB">211 0. 0. 0. 0. 0. <o:p></o:p></span></pre>
! 1112:
! 1113: <pre
! 1114: style="margin-top:0cm;
! 1115: margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;
! 1116: text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">212 0. 0. 0. 0. 0. 0. <o:p></o:p></span></pre>
! 1117:
! 1118: <pre
! 1119: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
! 1120: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
! 1121: EN-GB">231 0. 0. 0. 0. 0. 0. 0. <o:p></o:p></span></pre>
! 1122:
! 1123: <pre
! 1124: style="margin-top:
! 1125: 0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:
! 1126: .0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">232 0. 0. 0. 0. 0. 0. 0. 0.<o:p></o:p></span></pre>
! 1127:
! 1128: <ul type="disc">
! 1129: <li class="MsoNormal"
! 1130: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1131: text-align:justify;mso-list:l7 level1 lfo27;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
! 1132: mle=0 you must enter a covariance matrix (usually
! 1133: obtained from an earlier run).<o:p></o:p></span></li>
! 1134: </ul>
! 1135:
! 1136: <h4
! 1137: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Age
! 1138: range for calculation of stationary prevalences and health
! 1139: expectancies</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
! 1140:
! 1141: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">agemin=70 agemax=100 bage=50 fage=100<o:p></o:p></span></pre>
! 1142:
! 1143: <p
! 1144: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Once
! 1145: we obtained the estimated parameters, the program is able to
! 1146: calculated stationary prevalence, transitions probabilities and
! 1147: life expectancies at any age. Choice of age range is useful for
! 1148: extrapolation. In our data file, ages varies from age 70 to 102.
! 1149: Setting bage=50 and fage=100, makes the program computing life
! 1150: expectancy from age bage to age fage. As we use a model, we can
! 1151: compute life expectancy on a wider age range than the age range
! 1152: from the data. But the model can be rather wrong on big
! 1153: intervals.<o:p></o:p></span></p>
! 1154:
! 1155: <p
! 1156: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Similarly,
! 1157: it is possible to get extrapolated stationary prevalence by age
! 1158: ranging from agemin to agemax. <o:p></o:p></span></p>
! 1159:
! 1160: <ul type="disc">
! 1161: <li class="MsoNormal"
! 1162: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1163: text-align:justify;mso-list:l13 level1 lfo30;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">agemin=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 1164: Minimum age for calculation of the stationary prevalence <o:p></o:p></span></li>
! 1165: <li class="MsoNormal"
! 1166: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1167: text-align:justify;mso-list:l13 level1 lfo30;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">agemax=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 1168: Maximum age for calculation of the stationary prevalence <o:p></o:p></span></li>
! 1169: <li class="MsoNormal"
! 1170: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1171: text-align:justify;mso-list:l13 level1 lfo30;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">bage=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 1172: Minimum age for calculation of the health expectancies <o:p></o:p></span></li>
! 1173: <li class="MsoNormal"
! 1174: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1175: text-align:justify;mso-list:l13 level1 lfo30;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">fage=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 1176: Maximum age for calculation of the health expectancies <o:p></o:p></span></li>
! 1177: </ul>
! 1178:
! 1179: <h4
! 1180: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><a
! 1181: name="Computing"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Computing</span><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB"></a> the observed prevalence</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
! 1182:
! 1183: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">begin-prev-date=1/1/1984 end-prev-date=1/6/1988 <o:p></o:p></span></pre>
! 1184:
! 1185: <p
! 1186: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Statements
! 1187: 'begin-prev-date' and 'end-prev-date' allow to select the period
! 1188: in which we calculate the observed prevalences in each state. In
! 1189: this example, the prevalences are calculated on data survey
! 1190: collected between 1 January 1984 and 1 June 1988. <o:p></o:p></span></p>
! 1191:
! 1192: <ul type="disc">
! 1193: <li class="MsoNormal"
! 1194: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1195: text-align:justify;mso-list:l3 level1 lfo33;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">begin-prev-date=
! 1196: </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> </strong>Starting date (day/month/year)<o:p></o:p></span></li>
! 1197: <li class="MsoNormal"
! 1198: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1199: text-align:justify;mso-list:l3 level1 lfo33;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">end-prev-date=
! 1200: </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> </strong>Final date (day/month/year)<o:p></o:p></span></li>
! 1201: </ul>
! 1202:
! 1203: <h4
! 1204: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Population-
! 1205: or status-based health expectancies</span><span lang="EN-GB" style="mso-ansi-language:
! 1206: EN-GB"><o:p></o:p></span></h4>
! 1207:
! 1208: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">pop_based=0<o:p></o:p></span></pre>
! 1209:
! 1210: <p
! 1211: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
! 1212: user has the possibility to choose between population-based or
! 1213: status-based health expectancies. If pop_based=0 then
! 1214: status-based health expectancies are computed and if pop_based=1,
! 1215: the programme computes population-based health expectancies.
! 1216: Health expectancies are weighted averages of health expectancies
! 1217: respective of the initial state. For a status-based index, the
! 1218: weights are the cross-sectional prevalences observed between two
! 1219: dates, as </span><a href="#Computing"><span lang="EN-GB" style="mso-ansi-language:EN-GB">previously explained</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>, whereas
! 1220: for a population-based index, the weights are the stationary
! 1221: prevalences.<o:p></o:p></span></p>
! 1222:
! 1223: <h4
! 1224: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Prevalence
! 1225: forecasting </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
! 1226:
! 1227: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">starting-proj-date=1/1/1989 final-proj-date=1/1/1992 mov_average=0 <o:p></o:p></span></pre>
! 1228:
! 1229: <p
! 1230: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Prevalence
! 1231: and population projections are available only if the
! 1232: interpolation unit is a month, i.e. stepm=1. The programme
! 1233: estimates the prevalence in each state at a precise date
! 1234: expressed in day/month/year. The programme computes one
! 1235: forecasted prevalence a year from a starting date (1 January of
! 1236: 1989 in this example) to a final date (1 January 1992). The
! 1237: statement mov_average allows to compute smoothed forecasted
! 1238: prevalences with a five-age moving average centred at the mid-age
! 1239: of the five-age period. <o:p></o:p></span></p>
! 1240:
! 1241: <ul type="disc">
! 1242: <li class="MsoNormal"
! 1243: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1244: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">starting-proj-date</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong>=
! 1245: starting date (day/month/year) of forecasting<o:p></o:p></span></li>
! 1246: <li class="MsoNormal"
! 1247: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1248: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">final-proj-date=
! 1249: </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> </strong>final date (day/month/year) of forecasting<o:p></o:p></span></li>
! 1250: <li class="MsoNormal"
! 1251: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1252: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">mov_average</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong>=
! 1253: smoothing with a five-age moving average centred at the
! 1254: mid-age of the five-age period. The command<strong>
! 1255: mov_average</strong> takes value 1 if the prevalences are
! 1256: smoothed and 0 otherwise.<o:p></o:p></span></li>
! 1257: </ul>
! 1258:
! 1259: <h4
! 1260: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Last
! 1261: uncommented line : Population forecasting </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
! 1262:
! 1263: <pre><span lang="EN-GB" style="mso-ansi-language:EN-GB">popforecast=0 popfile=pyram.txt popfiledate=1/1/1989 last-popfiledate=1/1/1992<o:p></o:p></span></pre>
! 1264:
! 1265: <p
! 1266: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
! 1267: command is available if the interpolation unit is a month, i.e.
! 1268: stepm=1 and if popforecast=1. From a data file including age and
! 1269: number of persons alive at the precise date ‘</span><span lang="EN-GB" style="font-size:10.0pt;mso-bidi-font-size:12.0pt;font-family:"Courier New";
! 1270: mso-ansi-language:EN-GB">popfiledate’,
! 1271: </span><span lang="EN-GB" style="mso-ansi-language:EN-GB">you can forecast the number of persons in each state until date</span><span lang="EN-GB" style="font-size:10.0pt;mso-bidi-font-size:
! 1272: 12.0pt;font-family:"Courier New";mso-ansi-language:EN-GB">
! 1273: ‘last-popfiledate’. </span><span lang="EN-GB" style="mso-ansi-language:EN-GB">In this example, the popfile </span><a
! 1274: href="pyram.txt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">pyram.txt</span><span style="mso-ansi-language:EN-GB"></b></a><b> </span><span lang="EN-GB" style="mso-ansi-language:
! 1275: EN-GB"><span style="mso-spacerun: yes"></b> </span>includes real
! 1276: data which are the Japanese population in 1989.<span style="mso-spacerun: yes"> </span><o:p></o:p></span></p>
! 1277:
! 1278: <ul type="disc">
! 1279: <li class="MsoNormal"
! 1280: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1281: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">popforecast=
! 1282: 0</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b> Option for population forecasting. If
! 1283: popforecast=1, the programme does the forecasting<b>.<o:p></o:p></span></b></li>
! 1284: <li class="MsoNormal"
! 1285: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1286: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">popfile=
! 1287: </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> </b>name of the population file<o:p></o:p></span></li>
! 1288: <li class="MsoNormal"
! 1289: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1290: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">popfiledate=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
! 1291: date of the population population<o:p></o:p></span></li>
! 1292: <li class="MsoNormal"
! 1293: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1294: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">last-popfiledate</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>=
! 1295: date of the last population projection <o:p></o:p></span></li>
! 1296: </ul>
! 1297:
! 1298: <hr>
! 1299:
! 1300: <h2
! 1301: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><a
! 1302: name="running"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"></a>Running Imach with this example</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h2>
! 1303:
! 1304: <p
! 1305: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">We
! 1306: assume that you entered your </span><a href="biaspar.imach"><span lang="EN-GB" style="mso-ansi-language:EN-GB">1st_example
! 1307: parameter file</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> as explained </span><a href="#biaspar"><span lang="EN-GB" style="mso-ansi-language:
! 1308: EN-GB">above</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>. To
! 1309: run the program you should click on the imach.exe icon and enter
! 1310: the name of the parameter file which is for example </span><a
! 1311: href="..\mle\biaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">C:\usr\imach\mle\biaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> (you
! 1312: also can click on the biaspar.txt icon located in </span><a
! 1313: href="..\mle"><span lang="EN-GB" style="mso-ansi-language:EN-GB">C:\usr\imach\mle</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> and put it with the mouse on
! 1314: the imach window).<o:p></o:p></span></p>
! 1315:
! 1316: <p
! 1317: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
! 1318: time to converge depends on the step unit that you used (1 month
! 1319: is cpu consuming), on the number of cases, and on the number of
! 1320: variables.<o:p></o:p></span></p>
! 1321:
! 1322: <p
! 1323: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
! 1324: program outputs many files. Most of them are files which will be
! 1325: plotted for better understanding.<o:p></o:p></span></p>
! 1326:
! 1327: <hr>
! 1328:
! 1329: <h2
! 1330: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><a
! 1331: name="output"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Output of the program and graphs</span><span style="mso-bookmark:output"><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> </span></span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h2>
! 1332:
! 1333: <p
! 1334: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Once
! 1335: the optimization is finished, some graphics can be made with a
! 1336: grapher. We use Gnuplot which is an interactive plotting program
! 1337: copyrighted but freely distributed. A gnuplot reference manual is
! 1338: available </span><a href="http://www.gnuplot.info/"><span lang="EN-GB" style="mso-ansi-language:EN-GB">here</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>. <br>
! 1339: When the running is finished, the user should enter a character
! 1340: for plotting and output editing. <o:p></o:p></span></p>
! 1341:
! 1342: <p
! 1343: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">These
! 1344: characters are:<o:p></o:p></span></p>
! 1345:
! 1346: <ul type="disc">
! 1347: <li class="MsoNormal"
! 1348: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1349: text-align:justify;mso-list:l0 level1 lfo41;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">'c'
! 1350: to start again the program from the beginning.<o:p></o:p></span></li>
! 1351: <li class="MsoNormal"
! 1352: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1353: text-align:justify;mso-list:l0 level1 lfo41;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">'e'
! 1354: opens the </span><a href="biaspar.htm"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">biaspar.htm</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong></a>
! 1355: file to edit the output files and graphs. <o:p></o:p></span></li>
! 1356: <li class="MsoNormal"
! 1357: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1358: text-align:justify;mso-list:l0 level1 lfo41;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">'q'
! 1359: for exiting.<o:p></o:p></span></li>
! 1360: </ul>
! 1361:
! 1362: <h5
! 1363: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:18.0pt;mso-bidi-font-size:10.0pt;color:#00006A;
! 1364: mso-ansi-language:EN-GB">Results
! 1365: files</span><strong><span lang="EN-GB" style="font-size:13.5pt;mso-ansi-language:EN-GB"> </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong><br>
! 1366: <br>
! 1367: </span><strong><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;
! 1368: mso-ansi-language:EN-GB">- </strong><a name="Observed_prevalence_in_each_state"><strong>Observed
! 1369: prevalence in each state</strong></a><strong> (and at first pass)</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong>:
! 1370: </span><a href="prbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">prbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
! 1371:
! 1372: <p
! 1373: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
! 1374: first line is the title and displays each field of the file. The
! 1375: first column is age. The fields 2 and 6 are the proportion of
! 1376: individuals in states 1 and 2 respectively as observed during the
! 1377: first exam. Others fields are the numbers of people in states 1,
! 1378: 2 or more. The number of columns increases if the number of
! 1379: states is higher than 2.<br>
! 1380: The header of the file is <o:p></o:p></span></p>
! 1381:
! 1382: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Age Prev(1) N(1) N Age Prev(2) N(2) N<o:p></o:p></span></pre>
! 1383:
! 1384: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">70 1.00000 631 631 70 0.00000 0 631<o:p></o:p></span></pre>
! 1385:
! 1386: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">71 0.99681 625 627 71 0.00319 2 627 <o:p></o:p></span></pre>
! 1387:
! 1388: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">72 0.97125 1115 1148 72 0.02875 33 1148 <o:p></o:p></span></pre>
! 1389:
! 1390: <p
! 1391: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">It
! 1392: means that at age 70, the prevalence in state 1 is 1.000 and in
! 1393: state 2 is 0.00 . At age 71 the number of individuals in state 1
! 1394: is 625 and in state 2 is 2, hence the total number of people aged
! 1395: 71 is 625+2=627. <o:p></o:p></span></p>
! 1396:
! 1397: <h5
! 1398: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
! 1399: Estimated parameters and covariance matrix</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
! 1400: href="rbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">rbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
! 1401:
! 1402: <p
! 1403: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
! 1404: file contains all the maximisation results: <o:p></o:p></span></p>
! 1405:
! 1406: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>-2 log likelihood= 21660.918613445392<o:p></o:p></span></pre>
! 1407:
! 1408: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> Estimated parameters: a12 = -12.290174 b12 = 0.092161 <o:p></o:p></span></pre>
! 1409:
! 1410: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span><span style="mso-spacerun: yes"> </span>a13 = -9.155590<span style="mso-spacerun: yes"> </span>b13 = 0.046627 <o:p></o:p></span></pre>
! 1411:
! 1412: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>a21 = -2.629849<span style="mso-spacerun: yes"> </span>b21 = -0.022030 <o:p></o:p></span></pre>
! 1413:
! 1414: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>a23 = -7.958519<span style="mso-spacerun: yes"> </span>b23 = 0.042614<span style="mso-spacerun: yes"> </span><o:p></o:p></span></pre>
! 1415:
! 1416: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Covariance matrix: Var(a12) = 1.47453e-001<o:p></o:p></span></pre>
! 1417:
! 1418: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(b12) = 2.18676e-005<o:p></o:p></span></pre>
! 1419:
! 1420: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(a13) = 2.09715e-001<o:p></o:p></span></pre>
! 1421:
! 1422: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(b13) = 3.28937e-005<span style="mso-spacerun: yes"> </span><o:p></o:p></span></pre>
! 1423:
! 1424: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(a21) = 9.19832e-001<o:p></o:p></span></pre>
! 1425:
! 1426: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(b21) = 1.29229e-004<o:p></o:p></span></pre>
! 1427:
! 1428: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span></span><span lang="DE" style="mso-ansi-language:DE">Var(a23) = 4.48405e-001<o:p></o:p></span></pre>
! 1429:
! 1430: <pre style="text-align:justify"><span lang="DE" style="mso-ansi-language:DE"><span style="mso-spacerun: yes"> </span>Var(b23) = 5.85631e-005 <o:p></o:p></span></pre>
! 1431:
! 1432: <pre style="text-align:justify"><span lang="DE" style="mso-ansi-language:DE"><span style="mso-spacerun: yes"> </span><o:p></o:p></span></pre>
! 1433:
! 1434: <p
! 1435: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">By
! 1436: substitution of these parameters in the regression model, we
! 1437: obtain the elementary transition probabilities:<o:p></o:p></span></p>
! 1438:
! 1439: <p
! 1440: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><img
! 1441: src="pebiaspar1.gif" width="400" height="300" id="_x0000_i1037"></p>
! 1442:
! 1443: <h5
! 1444: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
! 1445: Transition probabilities</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="pijrbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:
! 1446: EN-GB">pijrbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:
! 1447: EN-GB"><o:p></o:p></span></a></h5>
! 1448:
! 1449: <p
! 1450: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Here
! 1451: are the transitions probabilities Pij(x, x+nh) where nh is a
! 1452: multiple of 2 years. The first column is the starting age x (from
! 1453: age 50 to 100), the second is age (x+nh) and the others are the
! 1454: transition probabilities p11, p12, p13, p21, p22, p23. For
! 1455: example, line 5 of the file is: <o:p></o:p></span></p>
! 1456:
! 1457: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>100 106 0.02655 0.17622 0.79722 0.01809 0.13678 0.84513 <o:p></o:p></span></pre>
! 1458:
! 1459: <p
! 1460: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">and
! 1461: this means: <o:p></o:p></span></p>
! 1462:
! 1463: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p11(100,106)=0.02655<o:p></o:p></span></pre>
! 1464:
! 1465: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p12(100,106)=0.17622<o:p></o:p></span></pre>
! 1466:
! 1467: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p13(100,106)=0.79722<o:p></o:p></span></pre>
! 1468:
! 1469: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p21(100,106)=0.01809<o:p></o:p></span></pre>
! 1470:
! 1471: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p22(100,106)=0.13678<o:p></o:p></span></pre>
! 1472:
! 1473: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p22(100,106)=0.84513 <o:p></o:p></span></pre>
! 1474:
! 1475: <h5
! 1476: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
! 1477: <a name="Stationary_prevalence_in_each_state">Stationary
! 1478: prevalence in each state</span><span style="mso-bookmark:Stationary_prevalence_in_each_state"></span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>: </span><a href="plrbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">plrbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
! 1479:
! 1480: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#Prevalence<o:p></o:p></span></pre>
! 1481:
! 1482: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#Age 1-1 2-2<o:p></o:p></span></pre>
! 1483:
! 1484: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
! 1485:
! 1486: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#************ <o:p></o:p></span></pre>
! 1487:
! 1488: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">70 0.90134 0.09866<o:p></o:p></span></pre>
! 1489:
! 1490: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">71 0.89177 0.10823 <o:p></o:p></span></pre>
! 1491:
! 1492: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">72 0.88139 0.11861 <o:p></o:p></span></pre>
! 1493:
! 1494: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">73 0.87015 0.12985 <o:p></o:p></span></pre>
! 1495:
! 1496: <p
! 1497: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">At
! 1498: age 70 the stationary prevalence is 0.90134 in state 1 and
! 1499: 0.09866 in state 2. This stationary prevalence differs from
! 1500: observed prevalence. Here is the point. The observed prevalence
! 1501: at age 70 results from the incidence of disability, incidence of
! 1502: recovery and mortality which occurred in the past of the cohort.
! 1503: Stationary prevalence results from a simulation with actual
! 1504: incidences and mortality (estimated from this cross-longitudinal
! 1505: survey). It is the best predictive value of the prevalence in the
! 1506: future if "nothing changes in the future". This is
! 1507: exactly what demographers do with a Life table. Life expectancy
! 1508: is the expected mean time to survive if observed mortality rates
! 1509: (incidence of mortality) "remains constant" in the
! 1510: future. <o:p></o:p></span></p>
! 1511:
! 1512: <h5
! 1513: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
! 1514: Standard deviation of stationary prevalence</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
! 1515: href="vplrbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">vplrbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
! 1516:
! 1517: <p
! 1518: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
! 1519: stationary prevalence has to be compared with the observed
! 1520: prevalence by age. But both are statistical estimates and
! 1521: subjected to stochastic errors due to the size of the sample, the
! 1522: design of the survey, and, for the stationary prevalence to the
! 1523: model used and fitted. It is possible to compute the standard
! 1524: deviation of the stationary prevalence at each age.<o:p></o:p></span></p>
! 1525:
! 1526: <h5
! 1527: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-Observed
! 1528: and stationary prevalence in state (2=disable) with the confident
! 1529: interval</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="vbiaspar21.htm"><span lang="EN-GB" style="mso-ansi-language:EN-GB">vbiaspar21.gif</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
! 1530:
! 1531: <p
! 1532: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
! 1533: graph exhibits the stationary prevalence in state (2) with the
! 1534: confidence interval in red. The green curve is the observed
! 1535: prevalence (or proportion of individuals in state (2)). Without
! 1536: discussing the results (it is not the purpose here), we observe
! 1537: that the green curve is rather below the stationary prevalence.
! 1538: It suggests an increase of the disability prevalence in the
! 1539: future.<o:p></o:p></span></p>
! 1540:
! 1541: <p
! 1542: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><img
! 1543: src="vbiaspar21.gif" width="400" height="300" id="_x0000_i1038"></p>
! 1544:
! 1545: <h5
! 1546: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-Convergence
! 1547: to the stationary prevalence of disability</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
! 1548: href="pbiaspar11.gif"><span lang="EN-GB" style="mso-ansi-language:EN-GB">pbiaspar11.gif</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a><br>
! 1549: </span><img src="pbiaspar11.gif" width="400" height="300"
! 1550: id="_x0000_i1039"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h5>
! 1551:
! 1552: <p
! 1553: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
! 1554: graph plots the conditional transition probabilities from an
! 1555: initial state (1=healthy in red at the bottom, or 2=disable in
! 1556: green on top) at age <em>x </em>to the final state 2=disable<em> </em>at
! 1557: age <em>x+h. </em>Conditional means at the condition to be alive
! 1558: at age <em>x+h </em>which is <i>hP12x</i> + <em>hP22x</em>. The
! 1559: curves <i>hP12x/(hP12x</i> + <em>hP22x) </em>and <i>hP22x/(hP12x</i>
! 1560: + <em>hP22x) </em>converge with <em>h, </em>to the <em>stationary
! 1561: prevalence of disability</em>. In order to get the stationary
! 1562: prevalence at age 70 we should start the process at an earlier
! 1563: age, i.e.50. If the disability state is defined by severe
! 1564: disability criteria with only a few chance to recover, then the
! 1565: incidence of recovery is low and the time to convergence is
! 1566: probably longer. But we don't have experience yet.<o:p></o:p></span></p>
! 1567:
! 1568: <h5
! 1569: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
! 1570: Life expectancies by age and initial health status</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
! 1571: href="erbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">erbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
! 1572:
! 1573: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Health expectancies <o:p></o:p></span></pre>
! 1574:
! 1575: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Age 1-1 1-2 2-1 2-2 <o:p></o:p></span></pre>
! 1576:
! 1577: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">70 10.9226 3.0401 5.6488 6.2122 <o:p></o:p></span></pre>
! 1578:
! 1579: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">71 10.4384 3.0461 5.2477 6.1599 <o:p></o:p></span></pre>
! 1580:
! 1581: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">72 9.9667 3.0502 4.8663 6.1025 <o:p></o:p></span></pre>
! 1582:
! 1583: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">73 9.5077 3.0524 4.5044 6.0401 <o:p></o:p></span></pre>
! 1584:
! 1585: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">For example 70 10.9226 3.0401 5.6488 6.2122 means:<o:p></o:p></span></pre>
! 1586:
! 1587: <pre style="text-align:justify"><span lang="DE" style="mso-ansi-language:DE">e11=10.9226 e12=3.0401 e21=5.6488 e22=6.2122<o:p></o:p></span></pre>
! 1588:
! 1589: <pre style="text-align:justify"><img src="expbiaspar21.gif"
! 1590: width="400" height="300" id="_x0000_i1040"><img
! 1591: src="expbiaspar11.gif" width="400" height="300" id="_x0000_i1041"></pre>
! 1592:
! 1593: <p
! 1594: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">For
! 1595: example, life expectancy of a healthy individual at age 70 is
! 1596: 10.92 in the healthy state and 3.04 in the disability state
! 1597: (=13.96 years). If he was disable at age 70, his life expectancy
! 1598: will be shorter, 5.64 in the healthy state and 6.21 in the
! 1599: disability state (=11.85 years). The total life expectancy is a
! 1600: weighted mean of both, 13.96 and 11.85; weight is the proportion
! 1601: of people disabled at age 70. In order to get a pure period index
! 1602: (i.e. based only on incidences) we use the </span><a
! 1603: href="#Stationary prevalence in each state"><span lang="EN-GB" style="mso-ansi-language:EN-GB">computed or
! 1604: stationary prevalence</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> at age 70 (i.e. computed from
! 1605: incidences at earlier ages) instead of the </span><a
! 1606: href="#Observed prevalence in each state"><span lang="EN-GB" style="mso-ansi-language:
! 1607: EN-GB">observed prevalence</span><span lang="EN-GB" style="mso-ansi-language:
! 1608: EN-GB"></a>
! 1609: (for example at first exam) (</span><a href="#Health expectancies"><span lang="EN-GB" style="mso-ansi-language:EN-GB">see
! 1610: below</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>).<o:p></o:p></span></p>
! 1611:
! 1612: <h5
! 1613: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
! 1614: Variances of life expectancies by age and initial health status</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
! 1615: href="vrbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">vrbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
! 1616:
! 1617: <p
! 1618: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">For
! 1619: example, the covariances of life expectancies Cov(ei,ej) at age
! 1620: 50 are (line 3) <o:p></o:p></span></p>
! 1621:
! 1622: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span></span><span lang="DE" style="mso-ansi-language:DE">Cov(e1,e1)=0.4776<span style="mso-spacerun: yes"> </span>Cov(e1,e2)=0.0488=Cov(e2,e1)<span style="mso-spacerun: yes"> </span>Cov(e2,e2)=0.0424<o:p></o:p></span></pre>
! 1623:
! 1624: <h5
! 1625: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
! 1626: <a name="Health_expectancies">Health expectancies</a> with
! 1627: standard errors in parentheses</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="trbiaspar.txt"><span lang="EN-GB" style="font-family:"Courier New";
! 1628: mso-ansi-language:EN-GB">trbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
! 1629:
! 1630: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#Total LEs with variances: e.. (std) e.1 (std) e.2 (std) <o:p></o:p></span></pre>
! 1631:
! 1632: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">70 13.76 (0.22) 10.40 (0.20) 3.35 (0.14) <o:p></o:p></span></pre>
! 1633:
! 1634: <p
! 1635: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Thus,
! 1636: at age 70 the total life expectancy, e..=13.76years is the
! 1637: weighted mean of e1.=13.96 and e2.=11.85 by the stationary
! 1638: prevalence at age 70 which are 0.90134 in state 1 and 0.09866 in
! 1639: state 2, respectively (the sum is equal to one). e.1=10.40 is the
! 1640: Disability-free life expectancy at age 70 (it is again a weighted
! 1641: mean of e11 and e21). e.2=3.35 is also the life expectancy at age
! 1642: 70 to be spent in the disability state.<o:p></o:p></span></p>
! 1643:
! 1644: <h5
! 1645: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-Total
! 1646: life expectancy by age and health expectancies in states
! 1647: (1=healthy) and (2=disable)</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="ebiaspar1.gif"><span lang="EN-GB" style="mso-ansi-language:EN-GB">ebiaspar1.gif</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
! 1648:
! 1649: <p
! 1650: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
! 1651: figure represents the health expectancies and the total life
! 1652: expectancy with the confident interval in dashed curve. <o:p></o:p></span></p>
! 1653:
! 1654: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span></span><img
! 1655: src="ebiaspar1.gif" width="400" height="300" id="_x0000_i1042"></pre>
! 1656:
! 1657: <p
! 1658: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Standard
! 1659: deviations (obtained from the information matrix of the model) of
! 1660: these quantities are very useful. Cross-longitudinal surveys are
! 1661: costly and do not involve huge samples, generally a few
! 1662: thousands; therefore it is very important to have an idea of the
! 1663: standard deviation of our estimates. It has been a big challenge
! 1664: to compute the Health Expectancy standard deviations. Don't be
! 1665: confuse: life expectancy is, as any expected value, the mean of a
! 1666: distribution; but here we are not computing the standard
! 1667: deviation of the distribution, but the standard deviation of the
! 1668: estimate of the mean.<o:p></o:p></span></p>
! 1669:
! 1670: <p
! 1671: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Our
! 1672: health expectancies estimates vary according to the sample size
! 1673: (and the standard deviations give confidence intervals of the
! 1674: estimate) but also according to the model fitted. Let us explain
! 1675: it in more details.<o:p></o:p></span></p>
! 1676:
! 1677: <p
! 1678: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Choosing
! 1679: a model means at least two kind of choices. First we have to
! 1680: decide the number of disability states. Second we have to design,
! 1681: within the logit model family, the model: variables, covariables,
! 1682: confounding factors etc. to be included.<o:p></o:p></span></p>
! 1683:
! 1684: <p
! 1685: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">More
! 1686: disability states we have, better is our demographical approach
! 1687: of the disability process, but smaller are the number of
! 1688: transitions between each state and higher is the noise in the
! 1689: measurement. We do not have enough experiments of the various
! 1690: models to summarize the advantages and disadvantages, but it is
! 1691: important to say that even if we had huge and unbiased samples,
! 1692: the total life expectancy computed from a cross-longitudinal
! 1693: survey, varies with the number of states. If we define only two
! 1694: states, alive or dead, we find the usual life expectancy where it
! 1695: is assumed that at each age, people are at the same risk to die.
! 1696: If we are differentiating the alive state into healthy and
! 1697: disable, and as the mortality from the disability state is higher
! 1698: than the mortality from the healthy state, we are introducing
! 1699: heterogeneity in the risk of dying. The total mortality at each
! 1700: age is the weighted mean of the mortality in each state by the
! 1701: prevalence in each state. Therefore if the proportion of people
! 1702: at each age and in each state is different from the stationary
! 1703: equilibrium, there is no reason to find the same total mortality
! 1704: at a particular age. Life expectancy, even if it is a very useful
! 1705: tool, has a very strong hypothesis of homogeneity of the
! 1706: population. Our main purpose is not to measure differential
! 1707: mortality but to measure the expected time in a healthy or
! 1708: disability state in order to maximise the former and minimize the
! 1709: latter. But the differential in mortality complexifies the
! 1710: measurement.<o:p></o:p></span></p>
! 1711:
! 1712: <p
! 1713: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Incidences
! 1714: of disability or recovery are not affected by the number of
! 1715: states if these states are independant. But incidences estimates
! 1716: are dependant on the specification of the model. More covariates
! 1717: we added in the logit model better is the model, but some
! 1718: covariates are not well measured, some are confounding factors
! 1719: like in any statistical model. The procedure to "fit the
! 1720: best model' is similar to logistic regression which itself is
! 1721: similar to regression analysis. We haven't yet been so far
! 1722: because we also have a severe limitation which is the speed of
! 1723: the convergence. On a Pentium III, 500 MHz, even the simplest
! 1724: model, estimated by month on 8,000 people may take 4 hours to
! 1725: converge. Also, the program is not yet a statistical package,
! 1726: which permits a simple writing of the variables and the model to
! 1727: take into account in the maximisation. The actual program allows
! 1728: only to add simple variables like age+sex or age+sex+ age*sex but
! 1729: will never be general enough. But what is to remember, is that
! 1730: incidences or probability of change from one state to another is
! 1731: affected by the variables specified into the model.<o:p></o:p></span></p>
! 1732:
! 1733: <p
! 1734: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Also,
! 1735: the age range of the people interviewed has a link with the age
! 1736: range of the life expectancy which can be estimated by
! 1737: extrapolation. If your sample ranges from age 70 to 95, you can
! 1738: clearly estimate a life expectancy at age 70 and trust your
! 1739: confidence interval which is mostly based on your sample size,
! 1740: but if you want to estimate the life expectancy at age 50, you
! 1741: should rely in your model, but fitting a logistic model on a age
! 1742: range of 70-95 and estimating probabilities of transition out of
! 1743: this age range, say at age 50 is very dangerous. At least you
! 1744: should remember that the confidence interval given by the
! 1745: standard deviation of the health expectancies, are under the
! 1746: strong assumption that your model is the 'true model', which is
! 1747: probably not the case.<o:p></o:p></span></p>
! 1748:
! 1749: <h5
! 1750: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
! 1751: Copy of the parameter file</span><span lang="EN-GB" style="mso-ansi-language:
! 1752: EN-GB">: </span><a href="orbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:
! 1753: EN-GB">orbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
! 1754:
! 1755: <p
! 1756: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
! 1757: copy of the parameter file can be useful to re-run the program
! 1758: while saving the old output files. <o:p></o:p></span></p>
! 1759:
! 1760: <h5
! 1761: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
! 1762: Prevalence forecasting</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="frbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">frbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
! 1763:
! 1764: <p
! 1765: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">First,
! 1766: we have estimated the observed prevalence between 1/1/1984 and
! 1767: 1/6/1988. <span style="mso-spacerun:
! 1768: yes"> </span>The mean date of interview (weighed average of
! 1769: the interviews performed between1/1/1984 and 1/6/1988) is
! 1770: estimated to be 13/9/1985, as written on the top on the file.
! 1771: Then we forecast the probability to be in each state. <o:p></o:p></span></p>
! 1772:
! 1773: <p
! 1774: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Example,
! 1775: at date 1/1/1989 : <o:p></o:p></span></p>
! 1776:
! 1777: <p class="MsoNormal"><span lang="DE" style="mso-ansi-language:DE"># StartingAge FinalAge P.1 P.2 P.3<o:p></o:p></span></p>
! 1778:
! 1779: <p class="MsoNormal"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Forecasting at date 1/1/1989 <o:p></o:p></span></p>
! 1780:
! 1781: <p class="MsoNormal"><span lang="EN-GB" style="mso-ansi-language:EN-GB">73 0.807 0.078 0.115 <o:p></o:p></span></p>
! 1782:
! 1783: <p
! 1784: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Since
! 1785: the minimum age is 70 on the 13/9/1985, the youngest forecasted
! 1786: age is 73. This means that at age a person aged 70 at 13/9/1989
! 1787: has a probability to enter state1 of 0.807 at age 73 on 1/1/1989.
! 1788: Similarly, the probability to be in state 2 is 0.078 and the
! 1789: probability to die is 0.115. Then, on the 1/1/1989, the
! 1790: prevalence of disability at age 73 is estimated to be 0.088.<o:p></o:p></span></p>
! 1791:
! 1792: <h5
! 1793: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
! 1794: Population forecasting</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="poprbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:
! 1795: EN-GB">poprbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:
! 1796: EN-GB"><o:p></o:p></span></a></h5>
! 1797:
! 1798: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Age P.1 P.2 P.3 [Population]<o:p></o:p></span></pre>
! 1799:
! 1800: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Forecasting at date 1/1/1989 <o:p></o:p></span></pre>
! 1801:
! 1802: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">75 572685.22 83798.08 <o:p></o:p></span></pre>
! 1803:
! 1804: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">74 621296.51 79767.99 <o:p></o:p></span></pre>
! 1805:
! 1806: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">73 645857.70 69320.60 <o:p></o:p></span></pre>
! 1807:
! 1808: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Forecasting at date 1/1/1990<o:p></o:p></span></pre>
! 1809:
! 1810: <pre style="text-align:justify">76 442986.68 92721.14 120775.48</pre>
! 1811:
! 1812: <pre style="text-align:justify">75 487781.02 91367.97 121915.51</pre>
! 1813:
! 1814: <pre style="text-align:justify">74 512892.07 85003.47 117282.76 </pre>
! 1815:
! 1816: <pre style="text-align:justify"> <o:p></o:p></pre>
! 1817:
! 1818: <p class="MsoNormal"><span lang="EN-GB" style="mso-ansi-language:EN-GB">From the population file, we estimate the
! 1819: number of people in each state. At age 73, 645857 persons are in
! 1820: state 1 and 69320 are in state 2. One year latter, 512892 are
! 1821: still in state 1, 85003 are in state 2 and 117282 died before
! 1822: 1/1/1990.<o:p></o:p></span></p>
! 1823:
! 1824: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
! 1825:
! 1826: <hr>
! 1827:
! 1828: <h2
! 1829: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><a
! 1830: name="example"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"></a>Trying an example</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h2>
! 1831:
! 1832: <p
! 1833: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Since
! 1834: you know how to run the program, it is time to test it on your
! 1835: own computer. Try for example on a parameter file named </span><a
! 1836: href="..\mytry\imachpar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">imachpar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> which is a copy of </span><span lang="EN-GB" style="font-size:10.0pt;font-family:"Courier New";mso-ansi-language:EN-GB">mypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">
! 1837: included in the subdirectory of imach, </span><span lang="EN-GB" style="font-size:10.0pt;font-family:"Courier New";
! 1838: mso-ansi-language:EN-GB">mytry</span><span lang="EN-GB" style="mso-ansi-language:
! 1839: EN-GB">. Edit it to change
! 1840: the name of the data file to </span><span lang="EN-GB" style="font-size:10.0pt;font-family:"Courier New";mso-ansi-language:
! 1841: EN-GB">..\data\mydata.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> if you don't want
! 1842: to copy it on the same directory. The file </span><span lang="EN-GB" style="font-family:"Courier New";mso-ansi-language:EN-GB">mydata.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> is a
! 1843: smaller file of 3,000 people but still with 4 waves. <o:p></o:p></span></p>
! 1844:
! 1845: <p
! 1846: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Click
! 1847: on the imach.exe icon to open a window. Answer to the question: '<strong>Enter
! 1848: the parameter file name:'<o:p></o:p></span></strong></p>
! 1849:
! 1850: <table border="1" cellpadding="0"
! 1851: style="mso-cellspacing:1.5pt;mso-padding-alt:
! 1852: 0cm 0cm 0cm 0cm">
! 1853: <tr>
! 1854: <td width="100%"
! 1855: style="width:100.0%;padding:.75pt .75pt .75pt .75pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">IMACH,
! 1856: Version 0.7</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></strong><p style="text-align:justify"><strong><span lang="EN-GB" style="mso-ansi-language:
! 1857: EN-GB">Enter
! 1858: the parameter file name: ..\mytry\imachpar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></strong></p>
! 1859: </td>
! 1860: </tr>
! 1861: </table>
! 1862:
! 1863: <p
! 1864: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Most
! 1865: of the data files or image files generated, will use the
! 1866: 'imachpar' string into their name. The running time is about 2-3
! 1867: minutes on a Pentium III. If the execution worked correctly, the
! 1868: outputs files are created in the current directory, and should be
! 1869: the same as the mypar files initially included in the directory </span><span lang="EN-GB" style="font-size:10.0pt;font-family:"Courier New";mso-ansi-language:EN-GB">mytry</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">.<o:p></o:p></span></p>
! 1870:
! 1871: <pre
! 1872: style="margin-left:36.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo43"><span lang="EN-GB" style="font-family:Symbol;mso-ansi-language:EN-GB">·<span style="font:7.0pt "Times New Roman""> </span></span><u><span lang="EN-GB" style="mso-ansi-language:EN-GB">Output on the screen</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></u> The output screen looks like </span><a
! 1873: href="imachrun.LOG"><span lang="EN-GB" style="mso-ansi-language:EN-GB">this Log file</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></pre>
! 1874:
! 1875: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
! 1876:
! 1877: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#title=MLE datafile=..\data\mydata.txt lastobs=3000 firstpass=1 lastpass=3<o:p></o:p></span></pre>
! 1878:
! 1879: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">ftol=1.000000e-008 stepm=24 ncov=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0<o:p></o:p></span></pre>
! 1880:
! 1881: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Total number of individuals= 2965, Agemin = 70.00, Agemax= 100.92<o:p></o:p></span></pre>
! 1882:
! 1883: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
! 1884:
! 1885: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Warning, no any valid information for:126 line=126<o:p></o:p></span></pre>
! 1886:
! 1887: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Warning, no any valid information for:2307 line=2307<o:p></o:p></span></pre>
! 1888:
! 1889: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Delay (in months) between two waves Min=21 Max=51 Mean=24.495826<o:p></o:p></span></pre>
! 1890:
! 1891: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="font-family:"Times New Roman";mso-ansi-language:EN-GB">These lines give some warnings on the data file and also some raw statistics on frequencies of transitions.</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></pre>
! 1892:
! 1893: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Age 70 1.=230 loss[1]=3.5% 2.=16 loss[2]=12.5% 1.=222 prev[1]=94.1% 2.=14<o:p></o:p></span></pre>
! 1894:
! 1895: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> prev[2]=5.9% 1-1=8 11=200 12=7 13=15 2-1=2 21=6 22=7 23=1<o:p></o:p></span></pre>
! 1896:
! 1897: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Age 102 1.=0 loss[1]=NaNQ% 2.=0 loss[2]=NaNQ% 1.=0 prev[1]=NaNQ% 2.=0 <o:p></o:p></span></pre>
! 1898:
! 1899: <ul type="disc">
! 1900: <li class="MsoNormal"
! 1901: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 1902: mso-list:l6 level1 lfo46;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Maximisation
! 1903: with the Powell algorithm. 8 directions are given
! 1904: corresponding to the 8 parameters. This can be rather
! 1905: long to get convergence.<br>
! 1906: </span><span lang="EN-GB" style="font-size:7.5pt;font-family:"Courier New";
! 1907: mso-ansi-language:EN-GB"> <br>
! 1908: Powell iter=1 -2*LL=11531.405658264877 1 0.000000000000 2
! 1909: 0.000000000000 3<br>
! 1910: 0.000000000000 4 0.000000000000 5 0.000000000000 6
! 1911: 0.000000000000 7 <br>
! 1912: 0.000000000000 8 0.000000000000<br>
! 1913: 1..........2.................3..........4.................5.........<br>
! 1914: 6................7........8...............<br>
! 1915: Powell iter=23 -2*LL=6744.954108371555 1 -12.967632334283
! 1916: <br>
! 1917: 2 0.135136681033 3 -7.402109728262 4 0.067844593326 <br>
! 1918: 5 -0.673601538129 6 -0.006615504377 7 -5.051341616718 <br>
! 1919: 8 0.051272038506<br>
! 1920: 1..............2...........3..............4...........<br>
! 1921: 5..........6................7...........8.........<br>
! 1922: #Number of iterations = 23, -2 Log likelihood =
! 1923: 6744.954042573691<br>
! 1924: # Parameters<br>
! 1925: 12 -12.966061 0.135117 <br>
! 1926: 13 -7.401109 0.067831 <br>
! 1927: 21 -0.672648 -0.006627 <br>
! 1928: 23 -5.051297 0.051271 </span><span lang="EN-GB" style="mso-ansi-language:
! 1929: EN-GB"><o:p></o:p></span></li>
! 1930: </ul>
! 1931:
! 1932: <pre
! 1933: style="margin-left:36.0pt;text-align:justify;text-indent:-18.0pt;
! 1934: mso-list:l6 level1 lfo46"><span lang="EN-GB" style="font-family:Symbol;mso-ansi-language:EN-GB">·<span style="font:7.0pt "Times New Roman""> </span></span><span lang="EN-GB" style="mso-ansi-language:EN-GB">Calculation of the hessian matrix. Wait...<o:p></o:p></span></pre>
! 1935:
! 1936: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">12345678.12.13.14.15.16.17.18.23.24.25.26.27.28.34.35.36.37.38.45.46.47.48.56.57.58.67.68.78<o:p></o:p></span></pre>
! 1937:
! 1938: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
! 1939:
! 1940: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Inverting the hessian to get the covariance matrix. </span>Wait...</pre>
! 1941:
! 1942: <pre style="margin-left:18.0pt;text-align:justify"> <o:p></o:p></pre>
! 1943:
! 1944: <pre style="margin-left:18.0pt;text-align:justify">#Hessian matrix#</pre>
! 1945:
! 1946: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">3.344e+002 2.708e+004 -4.586e+001 -3.806e+003 -1.577e+000 -1.313e+002 3.914e-001 3.166e+001 <o:p></o:p></span></pre>
! 1947:
! 1948: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">2.708e+004 2.204e+006 -3.805e+003 -3.174e+005 -1.303e+002 -1.091e+004 2.967e+001 2.399e+003 <o:p></o:p></span></pre>
! 1949:
! 1950: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">-4.586e+001 -3.805e+003 4.044e+002 3.197e+004 2.431e-002 1.995e+000 1.783e-001 1.486e+001 <o:p></o:p></span></pre>
! 1951:
! 1952: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">-3.806e+003 -3.174e+005 3.197e+004 2.541e+006 2.436e+000 2.051e+002 1.483e+001 1.244e+003 <o:p></o:p></span></pre>
! 1953:
! 1954: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">-1.577e+000 -1.303e+002 2.431e-002 2.436e+000 1.093e+002 8.979e+003 -3.402e+001 -2.843e+003 <o:p></o:p></span></pre>
! 1955:
! 1956: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">-1.313e+002 -1.091e+004 1.995e+000 2.051e+002 8.979e+003 7.420e+005 -2.842e+003 -2.388e+005 <o:p></o:p></span></pre>
! 1957:
! 1958: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">3.914e-001 2.967e+001 1.783e-001 1.483e+001 -3.402e+001 -2.842e+003 1.494e+002 1.251e+004 <o:p></o:p></span></pre>
! 1959:
! 1960: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">3.166e+001 2.399e+003 1.486e+001 1.244e+003 -2.843e+003 -2.388e+005 1.251e+004 1.053e+006 <o:p></o:p></span></pre>
! 1961:
! 1962: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
! 1963: DE"># Scales<o:p></o:p></span></pre>
! 1964:
! 1965: <pre style="margin-left:18.0pt;text-align:
! 1966: justify"><span lang="DE" style="mso-ansi-language:DE">12 1.00000e-004 1.00000e-006<o:p></o:p></span></pre>
! 1967:
! 1968: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
! 1969: DE">13 1.00000e-004 1.00000e-006<o:p></o:p></span></pre>
! 1970:
! 1971: <pre style="margin-left:
! 1972: 18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:DE">21 1.00000e-003 1.00000e-005<o:p></o:p></span></pre>
! 1973:
! 1974: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
! 1975: DE">23 1.00000e-004 1.00000e-005<o:p></o:p></span></pre>
! 1976:
! 1977: <pre style="margin-left:
! 1978: 18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:DE"># Covariance<o:p></o:p></span></pre>
! 1979:
! 1980: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
! 1981: DE"><span style="mso-spacerun: yes"> </span>1 5.90661e-001<o:p></o:p></span></pre>
! 1982:
! 1983: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
! 1984: DE"><span style="mso-spacerun: yes"> </span>2 -7.26732e-003 8.98810e-005<o:p></o:p></span></pre>
! 1985:
! 1986: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
! 1987: DE"><span style="mso-spacerun: yes"> </span>3 8.80177e-002 -1.12706e-003 5.15824e-001<o:p></o:p></span></pre>
! 1988:
! 1989: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
! 1990: DE"><span style="mso-spacerun: yes"> </span>4 -1.13082e-003 1.45267e-005 -6.50070e-003 8.23270e-005<o:p></o:p></span></pre>
! 1991:
! 1992: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
! 1993: DE"><span style="mso-spacerun: yes"> </span>5 9.31265e-003 -1.16106e-004 6.00210e-004 -8.04151e-006 1.75753e+000<o:p></o:p></span></pre>
! 1994:
! 1995: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
! 1996: DE"><span style="mso-spacerun: yes"> </span>6 -1.15664e-004 1.44850e-006 -7.79995e-006 1.04770e-007 -2.12929e-002 2.59422e-004<o:p></o:p></span></pre>
! 1997:
! 1998: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
! 1999: DE"><span style="mso-spacerun: yes"> </span>7 1.35103e-003 -1.75392e-005 -6.38237e-004 7.85424e-006 4.02601e-001 -4.86776e-003 1.32682e+000<o:p></o:p></span></pre>
! 2000:
! 2001: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
! 2002: DE"><span style="mso-spacerun: yes"> </span>8 -1.82421e-005 2.35811e-007 7.75503e-006 -9.58687e-008 -4.86589e-003 5.91641e-005 -1.57767e-002 1.88622e-004<o:p></o:p></span></pre>
! 2003:
! 2004: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># agemin agemax for lifexpectancy, bage fage (if mle==0 ie no data nor Max likelihood).<o:p></o:p></span></pre>
! 2005:
! 2006: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
! 2007:
! 2008: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
! 2009:
! 2010: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">agemin=70 agemax=100 bage=50 fage=100<o:p></o:p></span></pre>
! 2011:
! 2012: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing prevalence limit: result on file 'plrmypar.txt' <o:p></o:p></span></pre>
! 2013:
! 2014: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing pij: result on file 'pijrmypar.txt' <o:p></o:p></span></pre>
! 2015:
! 2016: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing Health Expectancies: result on file 'ermypar.txt' <o:p></o:p></span></pre>
! 2017:
! 2018: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing Variance-covariance of DFLEs: file 'vrmypar.txt' <o:p></o:p></span></pre>
! 2019:
! 2020: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing Total LEs with variances: file 'trmypar.txt' <o:p></o:p></span></pre>
! 2021:
! 2022: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing Variance-covariance of Prevalence limit: file 'vplrmypar.txt' <o:p></o:p></span></pre>
! 2023:
! 2024: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">End of Imach<o:p></o:p></span></pre>
! 2025:
! 2026: <p
! 2027: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Once
! 2028: the running is finished, the program requires a caracter:<o:p></o:p></span></p>
! 2029:
! 2030: <table border="1" cellpadding="0"
! 2031: style="mso-cellspacing:1.5pt;mso-padding-alt:
! 2032: 0cm 0cm 0cm 0cm">
! 2033: <tr>
! 2034: <td width="100%"
! 2035: style="width:100.0%;padding:.75pt .75pt .75pt .75pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">Type
! 2036: e to edit output files, c to start again, and q for
! 2037: exiting:</span><span lang="EN-GB" style="mso-ansi-language:
! 2038: EN-GB"><o:p></o:p></span></strong></td>
! 2039: </tr>
! 2040: </table>
! 2041:
! 2042: <p
! 2043: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">First
! 2044: you should enter <strong>e </strong>to edit the master file
! 2045: mypar.htm. <o:p></o:p></span></p>
! 2046:
! 2047: <ul type="disc">
! 2048: <li class="MsoNormal"
! 2049: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 2050: mso-list:l9 level1 lfo49;tab-stops:list 36.0pt"><u><span lang="EN-GB" style="mso-ansi-language:EN-GB">Outputs
! 2051: files</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></u> <br>
! 2052: <br>
! 2053: - Observed prevalence in each state: </span><a
! 2054: href="..\mytry\prmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">pmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
! 2055: - Estimated parameters and the covariance matrix: </span><a
! 2056: href="..\mytry\rmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">rmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
! 2057: - Stationary prevalence in each state: </span><a
! 2058: href="..\mytry\plrmypar.txt"><span lang="EN-GB" style="mso-ansi-language:
! 2059: EN-GB">plrmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
! 2060: EN-GB"></a> <br>
! 2061: - Transition probabilities: </span><a
! 2062: href="..\mytry\pijrmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">pijrmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
! 2063: - Copy of the parameter file: </span><a
! 2064: href="..\mytry\ormypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">ormypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
! 2065: - Life expectancies by age and initial health status: </span><a
! 2066: href="..\mytry\ermypar.txt"><span lang="EN-GB" style="mso-ansi-language:
! 2067: EN-GB">ermypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
! 2068: EN-GB"></a> <br>
! 2069: - Variances of life expectancies by age and initial
! 2070: health status: </span><a href="..\mytry\vrmypar.txt"><span lang="EN-GB" style="mso-ansi-language:
! 2071: EN-GB">vrmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
! 2072: EN-GB"></a>
! 2073: <br>
! 2074: - Health expectancies with their variances: </span><a
! 2075: href="..\mytry\trmypar.txt"><span lang="EN-GB" style="mso-ansi-language:
! 2076: EN-GB">trmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
! 2077: EN-GB"></a> <br>
! 2078: - Standard deviation of stationary prevalence: </span><a
! 2079: href="..\mytry\vplrmypar.txt"><span lang="EN-GB" style="mso-ansi-language:
! 2080: EN-GB">vplrmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
! 2081: EN-GB"></a><br>
! 2082: - Prevalences forecasting: </span><a href="frmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">frmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>
! 2083: <br>
! 2084: - Population forecasting (if popforecast=1): </span><a
! 2085: href="poprmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">poprmypar.txt</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
! 2086: <li class="MsoNormal"
! 2087: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
! 2088: mso-list:l9 level1 lfo49;tab-stops:list 36.0pt"><u><span lang="EN-GB" style="mso-ansi-language:EN-GB">Graphs</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></u>
! 2089: <br>
! 2090: <br>
! 2091: -</span><a href="..\mytry\pemypar1.gif"><span lang="EN-GB" style="mso-ansi-language:
! 2092: EN-GB">One-step transition
! 2093: probabilities</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a><br>
! 2094: -</span><a href="..\mytry\pmypar11.gif"><span lang="EN-GB" style="mso-ansi-language:
! 2095: EN-GB">Convergence to the
! 2096: stationary prevalence</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a><br>
! 2097: -</span><a href="..\mytry\vmypar11.gif"><span lang="EN-GB" style="mso-ansi-language:
! 2098: EN-GB">Observed and stationary
! 2099: prevalence in state (1) with the confident interval</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
! 2100: -</span><a href="..\mytry\vmypar21.gif"><span lang="EN-GB" style="mso-ansi-language:
! 2101: EN-GB">Observed and stationary
! 2102: prevalence in state (2) with the confident interval</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
! 2103: -</span><a href="..\mytry\expmypar11.gif"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Health life
! 2104: expectancies by age and initial health state (1)</span><span lang="EN-GB" style="mso-ansi-language:
! 2105: EN-GB"></a> <br>
! 2106: -</span><a href="..\mytry\expmypar21.gif"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Health life
! 2107: expectancies by age and initial health state (2)</span><span lang="EN-GB" style="mso-ansi-language:
! 2108: EN-GB"></a> <br>
! 2109: -</span><a href="..\mytry\emypar1.gif"><span lang="EN-GB" style="mso-ansi-language:
! 2110: EN-GB">Total life expectancy by
! 2111: age and health expectancies in states (1) and (2).</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
! 2112: </ul>
! 2113:
! 2114: <p
! 2115: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
! 2116: software have been partly granted by </span><a
! 2117: href="http://euroreves.ined.fr"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Euro-REVES</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>, a concerted
! 2118: action from the European Union. It will be copyrighted
! 2119: identically to a GNU software product, i.e. program and software
! 2120: can be distributed freely for non commercial use. Sources are not
! 2121: widely distributed today. You can get them by asking us with a
! 2122: simple justification (name, email, institute) </span><a
! 2123: href="mailto:brouard@ined.fr"><span lang="EN-GB" style="mso-ansi-language:EN-GB">mailto:brouard@ined.fr</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> and </span><a
! 2124: href="mailto:lievre@ined.fr"><span lang="EN-GB" style="mso-ansi-language:EN-GB">mailto:lievre@ined.fr</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> .<o:p></o:p></span></p>
! 2125:
! 2126: <p
! 2127: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Latest
! 2128: version (0.7 of February 2002) can be accessed at </span><a
! 2129: href="http://euroreves.ined.fr/imach"><span lang="EN-GB" style="mso-ansi-language:EN-GB">http://euroreves.ined.fr/imach</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></p>
! 2130: </body>
! 2131: </html>
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>