1: <html>
2:
3: <head>
4: <meta http-equiv="Content-Type"
5: content="text/html; charset=iso-8859-1">
6: <meta name="ProgId" content="Word.Document">
7: <meta name="Originator" content="Microsoft Word 9">
8: <meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
9: <title>Computing Health Expectancies using IMaCh</title>
10: <link rel="File-List" href="./imach_fichiers/filelist.xml">
11: <link rel="Edit-Time-Data" href="./imach_fichiers/editdata.mso">
12: <!--[if !mso]>
13: <style>
14: v\:* {behavior:url(#default#VML);}
15: o\:* {behavior:url(#default#VML);}
16: w\:* {behavior:url(#default#VML);}
17: .shape {behavior:url(#default#VML);}
18: </style>
19: <![endif]-->
20: <!--[if gte mso 9]><xml>
21: <o:DocumentProperties>
22: <o:Author>agnes lievre</o:Author>
23: <o:Template>Normal</o:Template>
24: <o:LastAuthor>agnes lievre</o:LastAuthor>
25: <o:Revision>23</o:Revision>
26: <o:TotalTime>311</o:TotalTime>
27: <o:Created>2002-03-02T16:20:00Z</o:Created>
28: <o:LastSaved>2002-03-03T21:50:00Z</o:LastSaved>
29: <o:Pages>15</o:Pages>
30: <o:Words>6119</o:Words>
31: <o:Characters>34882</o:Characters>
32: <o:Lines>290</o:Lines>
33: <o:Paragraphs>69</o:Paragraphs>
34: <o:CharactersWithSpaces>42837</o:CharactersWithSpaces>
35: <o:Version>9.4402</o:Version>
36: </o:DocumentProperties>
37: </xml><![endif]-->
38: <!--[if gte mso 9]><xml>
39: <w:WordDocument>
40: <w:HyphenationZone>21</w:HyphenationZone>
41: </w:WordDocument>
42: </xml><![endif]-->
43: <style>
44: <!--
45: /* Font Definitions */
46: @font-face
47: {font-family:Wingdings;
48: panose-1:5 0 0 0 0 0 0 0 0 0;
49: mso-font-charset:2;
50: mso-generic-font-family:auto;
51: mso-font-pitch:variable;
52: mso-font-signature:0 268435456 0 0 -2147483648 0;}
53: /* Style Definitions */
54: p.MsoNormal, li.MsoNormal, div.MsoNormal
55: {mso-style-parent:"";
56: margin:0cm;
57: margin-bottom:.0001pt;
58: mso-pagination:widow-orphan;
59: font-size:12.0pt;
60: font-family:"Times New Roman";
61: mso-fareast-font-family:"Times New Roman";}
62: h1
63: {margin-right:0cm;
64: mso-margin-top-alt:auto;
65: mso-margin-bottom-alt:auto;
66: margin-left:0cm;
67: mso-pagination:widow-orphan;
68: mso-outline-level:1;
69: font-size:24.0pt;
70: font-family:"Times New Roman";
71: mso-font-kerning:18.0pt;
72: font-weight:bold;}
73: h2
74: {margin-right:0cm;
75: mso-margin-top-alt:auto;
76: mso-margin-bottom-alt:auto;
77: margin-left:0cm;
78: mso-pagination:widow-orphan;
79: mso-outline-level:2;
80: font-size:18.0pt;
81: font-family:"Times New Roman";
82: font-weight:bold;}
83: h3
84: {margin-right:0cm;
85: mso-margin-top-alt:auto;
86: mso-margin-bottom-alt:auto;
87: margin-left:0cm;
88: mso-pagination:widow-orphan;
89: mso-outline-level:3;
90: font-size:13.5pt;
91: font-family:"Times New Roman";
92: font-weight:bold;}
93: h4
94: {margin-right:0cm;
95: mso-margin-top-alt:auto;
96: mso-margin-bottom-alt:auto;
97: margin-left:0cm;
98: mso-pagination:widow-orphan;
99: mso-outline-level:4;
100: font-size:12.0pt;
101: font-family:"Times New Roman";
102: font-weight:bold;}
103: h5
104: {margin-right:0cm;
105: mso-margin-top-alt:auto;
106: mso-margin-bottom-alt:auto;
107: margin-left:0cm;
108: mso-pagination:widow-orphan;
109: mso-outline-level:5;
110: font-size:10.0pt;
111: font-family:"Times New Roman";
112: font-weight:bold;}
113: a:link, span.MsoHyperlink
114: {color:blue;
115: text-decoration:underline;
116: text-underline:single;}
117: a:visited, span.MsoHyperlinkFollowed
118: {color:blue;
119: text-decoration:underline;
120: text-underline:single;}
121: p
122: {margin-right:0cm;
123: mso-margin-top-alt:auto;
124: mso-margin-bottom-alt:auto;
125: margin-left:0cm;
126: mso-pagination:widow-orphan;
127: font-size:12.0pt;
128: font-family:"Times New Roman";
129: mso-fareast-font-family:"Times New Roman";}
130: pre
131: {margin:0cm;
132: margin-bottom:.0001pt;
133: mso-pagination:widow-orphan;
134: tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt;
135: font-size:10.0pt;
136: font-family:"Courier New";
137: mso-fareast-font-family:"Courier New";}
138: @page Section1
139: {size:595.3pt 841.9pt;
140: margin:70.85pt 70.85pt 70.85pt 70.85pt;
141: mso-header-margin:35.4pt;
142: mso-footer-margin:35.4pt;
143: mso-paper-source:0;}
144: div.Section1
145: {page:Section1;}
146: /* List Definitions */
147: @list l0
148: {mso-list-id:184488806;
149: mso-list-type:hybrid;
150: mso-list-template-ids:-1529696740 -412605010 -907664984 -2032001966 -1219577922 -1989525672 1804215288 1798964568 2064445346 -921394074;}
151: @list l0:level1
152: {mso-level-number-format:bullet;
153: mso-level-text:\F0B7;
154: mso-level-tab-stop:36.0pt;
155: mso-level-number-position:left;
156: text-indent:-18.0pt;
157: mso-ansi-font-size:10.0pt;
158: font-family:Symbol;}
159: @list l1
160: {mso-list-id:204831336;
161: mso-list-type:hybrid;
162: mso-list-template-ids:-1844294122 94378308 -806846340 -1272687644 -333439258 -1126675816 1099701808 1453997410 1355317140 -183874942;}
163: @list l1:level1
164: {mso-level-number-format:bullet;
165: mso-level-text:\F0B7;
166: mso-level-tab-stop:36.0pt;
167: mso-level-number-position:left;
168: text-indent:-18.0pt;
169: mso-ansi-font-size:10.0pt;
170: font-family:Symbol;}
171: @list l2
172: {mso-list-id:441344838;
173: mso-list-type:hybrid;
174: mso-list-template-ids:-1624363430 -1068334662 975101306 1309600228 -2116116870 769974826 -307843868 1028545738 868800422 -1496705886;}
175: @list l2:level1
176: {mso-level-number-format:bullet;
177: mso-level-text:\F0B7;
178: mso-level-tab-stop:36.0pt;
179: mso-level-number-position:left;
180: text-indent:-18.0pt;
181: mso-ansi-font-size:10.0pt;
182: font-family:Symbol;}
183: @list l3
184: {mso-list-id:628702260;
185: mso-list-type:hybrid;
186: mso-list-template-ids:-927709454 416302846 373988436 -1134147144 -1982968238 475822148 827730770 934571264 602550890 1800972154;}
187: @list l3:level1
188: {mso-level-number-format:bullet;
189: mso-level-text:\F0B7;
190: mso-level-tab-stop:36.0pt;
191: mso-level-number-position:left;
192: text-indent:-18.0pt;
193: mso-ansi-font-size:10.0pt;
194: font-family:Symbol;}
195: @list l4
196: {mso-list-id:752507057;
197: mso-list-type:hybrid;
198: mso-list-template-ids:-1773518296 67895297 67895299 67895301 67895297 67895299 67895301 67895297 67895299 67895301;}
199: @list l4:level1
200: {mso-level-number-format:bullet;
201: mso-level-text:\F0B7;
202: mso-level-tab-stop:36.0pt;
203: mso-level-number-position:left;
204: text-indent:-18.0pt;
205: font-family:Symbol;}
206: @list l5
207: {mso-list-id:818232419;
208: mso-list-type:hybrid;
209: mso-list-template-ids:-1143944236 -95769308 -1426324944 1101845342 1451904852 -884162680 1945505468 -1163215946 -592140202 1700436632;}
210: @list l5:level1
211: {mso-level-number-format:bullet;
212: mso-level-text:\F0B7;
213: mso-level-tab-stop:36.0pt;
214: mso-level-number-position:left;
215: text-indent:-18.0pt;
216: mso-ansi-font-size:10.0pt;
217: font-family:Symbol;}
218: @list l6
219: {mso-list-id:883836538;
220: mso-list-type:hybrid;
221: mso-list-template-ids:32399718 -134710470 -1096777840 1309058016 1376137788 -1290646696 -883388418 -1972580442 -797425852 -2051513306;}
222: @list l6:level1
223: {mso-level-number-format:bullet;
224: mso-level-text:\F0B7;
225: mso-level-tab-stop:36.0pt;
226: mso-level-number-position:left;
227: text-indent:-18.0pt;
228: mso-ansi-font-size:10.0pt;
229: font-family:Symbol;}
230: @list l7
231: {mso-list-id:904297090;
232: mso-list-type:hybrid;
233: mso-list-template-ids:651483934 -1330890910 68314940 -1090220572 161909366 1495697220 -847235596 603869070 -2107325174 -1292888626;}
234: @list l7:level1
235: {mso-level-number-format:bullet;
236: mso-level-text:\F0B7;
237: mso-level-tab-stop:36.0pt;
238: mso-level-number-position:left;
239: text-indent:-18.0pt;
240: mso-ansi-font-size:10.0pt;
241: font-family:Symbol;}
242: @list l8
243: {mso-list-id:1063483777;
244: mso-list-type:hybrid;
245: mso-list-template-ids:1396622820 67895297 67895299 67895301 67895297 67895299 67895301 67895297 67895299 67895301;}
246: @list l8:level1
247: {mso-level-number-format:bullet;
248: mso-level-text:\F0B7;
249: mso-level-tab-stop:36.0pt;
250: mso-level-number-position:left;
251: text-indent:-18.0pt;
252: font-family:Symbol;}
253: @list l9
254: {mso-list-id:1168903496;
255: mso-list-type:hybrid;
256: mso-list-template-ids:-2008413052 -1461950228 -1012751362 -919308802 443596168 -1469662014 -359112926 504948540 1759957928 1612641564;}
257: @list l9:level1
258: {mso-level-number-format:bullet;
259: mso-level-text:\F0B7;
260: mso-level-tab-stop:36.0pt;
261: mso-level-number-position:left;
262: text-indent:-18.0pt;
263: mso-ansi-font-size:10.0pt;
264: font-family:Symbol;}
265: @list l10
266: {mso-list-id:1190214980;
267: mso-list-type:hybrid;
268: mso-list-template-ids:934709936 -291345380 -81906558 -968867310 665229182 1336730126 -1107941388 -20391304 -674328264 -1574639962;}
269: @list l10:level1
270: {mso-level-number-format:bullet;
271: mso-level-text:\F0B7;
272: mso-level-tab-stop:36.0pt;
273: mso-level-number-position:left;
274: text-indent:-18.0pt;
275: mso-ansi-font-size:10.0pt;
276: font-family:Symbol;}
277: @list l11
278: {mso-list-id:1384715951;
279: mso-list-type:hybrid;
280: mso-list-template-ids:-515744014 -566093190 799967300 770599756 -1594063690 -869741144 1377056636 315393812 -1370061484 1511570004;}
281: @list l11:level1
282: {mso-level-number-format:bullet;
283: mso-level-text:\F0B7;
284: mso-level-tab-stop:36.0pt;
285: mso-level-number-position:left;
286: text-indent:-18.0pt;
287: mso-ansi-font-size:10.0pt;
288: font-family:Symbol;}
289: @list l12
290: {mso-list-id:1593661621;
291: mso-list-type:hybrid;
292: mso-list-template-ids:-1035417432 1271449484 -308236740 -1122210034 -380844018 1478807872 266132728 -1091829500 812926462 -1442827238;}
293: @list l12:level1
294: {mso-level-number-format:bullet;
295: mso-level-text:\F0B7;
296: mso-level-tab-stop:36.0pt;
297: mso-level-number-position:left;
298: text-indent:-18.0pt;
299: mso-ansi-font-size:10.0pt;
300: font-family:Symbol;}
301: @list l13
302: {mso-list-id:1636450504;
303: mso-list-type:hybrid;
304: mso-list-template-ids:-711022678 -1038569226 1304059700 -837663288 -1699980300 571783806 -231993906 -744861656 1958002196 -1476655198;}
305: @list l13:level1
306: {mso-level-number-format:bullet;
307: mso-level-text:\F0B7;
308: mso-level-tab-stop:36.0pt;
309: mso-level-number-position:left;
310: text-indent:-18.0pt;
311: mso-ansi-font-size:10.0pt;
312: font-family:Symbol;}
313: @list l14
314: {mso-list-id:1752386307;
315: mso-list-type:hybrid;
316: mso-list-template-ids:-347696224 -386773934 1871641532 667840386 1914592500 1728978276 -196066776 1566372654 -755335742 341755130;}
317: @list l14:level1
318: {mso-level-number-format:bullet;
319: mso-level-text:\F0B7;
320: mso-level-tab-stop:36.0pt;
321: mso-level-number-position:left;
322: text-indent:-18.0pt;
323: mso-ansi-font-size:10.0pt;
324: font-family:Symbol;}
325: @list l14:level2
326: {mso-level-number-format:bullet;
327: mso-level-text:o;
328: mso-level-tab-stop:72.0pt;
329: mso-level-number-position:left;
330: text-indent:-18.0pt;
331: mso-ansi-font-size:10.0pt;
332: font-family:"Courier New";
333: mso-bidi-font-family:"Times New Roman";}
334: @list l15
335: {mso-list-id:1756245288;
336: mso-list-type:hybrid;
337: mso-list-template-ids:531934386 67895297 67895299 67895301 67895297 67895299 67895301 67895297 67895299 67895301;}
338: @list l15:level1
339: {mso-level-number-format:bullet;
340: mso-level-text:\F0B7;
341: mso-level-tab-stop:36.0pt;
342: mso-level-number-position:left;
343: text-indent:-18.0pt;
344: font-family:Symbol;}
345: @list l16
346: {mso-list-id:1839273133;
347: mso-list-type:hybrid;
348: mso-list-template-ids:-556523634 -715873828 -243865004 563531560 -898876536 640947630 967865102 1305671924 1810678544 -1115658030;}
349: @list l16:level1
350: {mso-level-number-format:bullet;
351: mso-level-text:\F0B7;
352: mso-level-tab-stop:36.0pt;
353: mso-level-number-position:left;
354: text-indent:-18.0pt;
355: mso-ansi-font-size:10.0pt;
356: font-family:Symbol;}
357: @list l17
358: {mso-list-id:1841849959;
359: mso-list-type:hybrid;
360: mso-list-template-ids:2053128728 -543362536 926470224 151426154 998932566 84972724 844683600 1807279286 -841218426 -1132452502;}
361: @list l17:level1
362: {mso-level-number-format:bullet;
363: mso-level-text:\F0B7;
364: mso-level-tab-stop:36.0pt;
365: mso-level-number-position:left;
366: text-indent:-18.0pt;
367: mso-ansi-font-size:10.0pt;
368: font-family:Symbol;}
369: @list l18
370: {mso-list-id:1848639524;
371: mso-list-type:hybrid;
372: mso-list-template-ids:638092306 940881202 -784414886 1026841176 1011505968 -653358884 -269310374 2133217052 1173680566 -1995784172;}
373: @list l18:level1
374: {mso-level-number-format:bullet;
375: mso-level-text:\F0B7;
376: mso-level-tab-stop:36.0pt;
377: mso-level-number-position:left;
378: text-indent:-18.0pt;
379: mso-ansi-font-size:10.0pt;
380: font-family:Symbol;}
381: ol
382: {margin-bottom:0cm;}
383: ul
384: {margin-bottom:0cm;}
385: -->
386: </style>
387: <!--[if gte mso 9]><xml>
388: <o:shapedefaults v:ext="edit" spidmax="1027"/>
389: </xml><![endif]-->
390: <!--[if gte mso 9]><xml>
391: <o:shapelayout v:ext="edit">
392: <o:idmap v:ext="edit" data="1"/>
393: </o:shapelayout></xml><![endif]-->
394: <!-- Changed by: Agnes Lievre, 12-Oct-2000 -->
395: </head>
396:
397: <body bgcolor="#FFFFFF" link="#0000FF" vlink="#0000FF" lang="FR"
398: style="tab-interval:35.4pt">
399:
400: <hr size="3" noshade color="#EC5E5E">
401:
402: <h1 align="center" style="text-align:center"><span lang="EN-GB" style="color:#00006A;
403: mso-ansi-language:EN-GB">Computing Health
404: Expectancies using IMaCh</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h1>
405:
406: <h1 align="center" style="text-align:center"><span lang="EN-GB" style="font-size:
407: 18.0pt;color:#00006A;mso-ansi-language:EN-GB">(a Maximum
408: Likelihood Computer Program using Interpolation of Markov Chains)</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h1>
409:
410: <p align="center" style="text-align:center"><span lang="EN-GB" style="mso-ansi-language:
411: EN-GB"> <o:p></o:p></span></p>
412:
413: <p align="center" style="text-align:center"><a
414: href="http://www.ined.fr/"><span style="text-decoration:none;text-underline:none"><img src="logo-ined.gif" border="0"
415: width="151" height="76" id="_x0000_i1026"></span></a><img
416: src="euroreves2.gif" width="151" height="75" id="_x0000_i1027"></p>
417:
418: <h3 align="center" style="text-align:center"><a
419: href="http://www.ined.fr/"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">INED</span><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"></a> and </span><a
420: href="http://euroreves.ined.fr"><span lang="EN-GB" style="color:#00006A;
421: mso-ansi-language:EN-GB">EUROREVES</span><span lang="EN-GB" style="mso-ansi-language:
422: EN-GB"><o:p></o:p></span></a></h3>
423:
424: <p align="center" style="text-align:center"><strong><span lang="EN-GB" style="font-size:13.5pt;color:#00006A;mso-ansi-language:EN-GB">Version 0.7,
425: February 2002</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></strong></p>
426:
427: <hr size="3" noshade color="#EC5E5E">
428:
429: <p align="center" style="text-align:center"><strong><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Authors of
430: the program: </span></strong><a href="http://sauvy.ined.fr/brouard"><strong><span lang="EN-GB" style="color:#00006A;
431: mso-ansi-language:EN-GB">Nicolas
432: Brouard</span><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"></strong></a><strong>, senior researcher at the </span></strong><a
433: href="http://www.ined.fr"><strong><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Institut National d'Etudes
434: Démographiques</span><span lang="EN-GB" style="color:#00006A;
435: mso-ansi-language:EN-GB"></strong></a><strong> (INED, Paris) in the
436: "Mortality, Health and Epidemiology" Research Unit </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></strong></p>
437:
438: <p align="center" style="text-align:center"><strong><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">and Agnès
439: Lièvre</span></strong><b><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"><br clear="left"
440: style="mso-special-character:line-break">
441: </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></b></p>
442:
443: <h4><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Contribution to the mathematics: C. R. Heathcote </span><span lang="EN-GB" style="font-size:
444: 10.0pt;color:#00006A;mso-ansi-language:EN-GB">(Australian
445: National University, Canberra).</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
446:
447: <h4><span style="color:#00006A">Contact: Agnès Lièvre (</span><a href="mailto:lievre@ined.fr"><i><span style="color:#00006A">lievre@ined.fr</span><span style="color:#00006A"></i></a>)
448: </span></h4>
449:
450: <hr>
451: <span style="font-size:12.0pt;font-family:"Times New Roman";mso-fareast-font-family:
452: "Times New Roman";mso-ansi-language:FR;mso-fareast-language:FR;mso-bidi-language:
453: AR-SA">
454: <ul type="disc">
455: <li class="MsoNormal"
456: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
457: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
458: href="#intro"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Introduction</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
459: <li class="MsoNormal"
460: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
461: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
462: href="#data"><span lang="EN-GB" style="mso-ansi-language:EN-GB">On what kind of data can it be used?</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></li>
463: <li class="MsoNormal"
464: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
465: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
466: href="#datafile"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The data file</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
467: <li class="MsoNormal"
468: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
469: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
470: href="#biaspar"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The parameter file</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
471: <li class="MsoNormal"
472: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
473: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
474: href="#running"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Running Imach</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
475: <li class="MsoNormal"
476: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
477: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
478: href="#output"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Output files and graphs</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
479: <li class="MsoNormal"
480: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
481: mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
482: href="#example">Exemple</a> </li>
483: </ul>
484: </span>
485: <hr>
486:
487: <h2><a name="intro"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Introduction</span><span style="mso-bookmark:intro"></span><span lang="EN-GB" style="mso-ansi-language:
488: EN-GB"><o:p></o:p></span></a></h2>
489:
490: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This program computes <b>Healthy
491: Life Expectancies</b> from <b>cross-longitudinal data</b> using
492: the methodology pioneered by Laditka and Wolf (1). Within the
493: family of Health Expectancies (HE), Disability-free life
494: expectancy (DFLE) is probably the most important index to
495: monitor. In low mortality countries, there is a fear that when
496: mortality declines, the increase in DFLE is not proportionate to
497: the increase in total Life expectancy. This case is called the <em>Expansion
498: of morbidity</em>. Most of the data collected today, in
499: particular by the international </span><a href="http://euroreves/reves"><span lang="EN-GB" style="mso-ansi-language:EN-GB">REVES</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>
500: network on Health expectancy, and most HE indices based on these
501: data, are <em>cross-sectional</em>. It means that the information
502: collected comes from a single cross-sectional survey: people from
503: various ages (but mostly old people) are surveyed on their health
504: status at a single date. Proportion of people disabled at each
505: age, can then be measured at that date. This age-specific
506: prevalence curve is then used to distinguish, within the
507: stationary population (which, by definition, is the life table
508: estimated from the vital statistics on mortality at the same
509: date), the disable population from the disability-free
510: population. Life expectancy (LE) (or total population divided by
511: the yearly number of births or deaths of this stationary
512: population) is then decomposed into DFLE and DLE. This method of
513: computing HE is usually called the Sullivan method (from the name
514: of the author who first described it).<o:p></o:p></span></p>
515:
516: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Age-specific proportions of people
517: disable are very difficult to forecast because each proportion
518: corresponds to historical conditions of the cohort and it is the
519: result of the historical flows from entering disability and
520: recovering in the past until today. The age-specific intensities
521: (or incidence rates) of entering disability or recovering a good
522: health, are reflecting actual conditions and therefore can be
523: used at each age to forecast the future of this cohort. For
524: example if a country is improving its technology of prosthesis,
525: the incidence of recovering the ability to walk will be higher at
526: each (old) age, but the prevalence of disability will only
527: slightly reflect an improve because the prevalence is mostly
528: affected by the history of the cohort and not by recent period
529: effects. To measure the period improvement we have to simulate
530: the future of a cohort of new-borns entering or leaving at each
531: age the disability state or dying according to the incidence
532: rates measured today on different cohorts. The proportion of
533: people disabled at each age in this simulated cohort will be much
534: lower (using the example of an improvement) that the proportions
535: observed at each age in a cross-sectional survey. This new
536: prevalence curve introduced in a life table will give a much more
537: actual and realistic HE level than the Sullivan method which
538: mostly measured the History of health conditions in this country.<o:p></o:p></span></p>
539:
540: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Therefore, the main question is how
541: to measure incidence rates from cross-longitudinal surveys? This
542: is the goal of the IMaCH program. From your data and using IMaCH
543: you can estimate period HE and not only Sullivan's HE. Also the
544: standard errors of the HE are computed.<o:p></o:p></span></p>
545:
546: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">A cross-longitudinal survey
547: consists in a first survey ("cross") where individuals
548: from different ages are interviewed on their health status or
549: degree of disability. At least a second wave of interviews
550: ("longitudinal") should measure each new individual
551: health status. Health expectancies are computed from the
552: transitions observed between waves and are computed for each
553: degree of severity of disability (number of life states). More
554: degrees you consider, more time is necessary to reach the Maximum
555: Likelihood of the parameters involved in the model. Considering
556: only two states of disability (disable and healthy) is generally
557: enough but the computer program works also with more health
558: statuses.<span style="mso-spacerun:
559: yes"> </span><br>
560: <br>
561: The simplest model is the multinomial logistic model where <i>pij</i>
562: is the probability to be observed in state <i>j</i> at the second
563: wave conditional to be observed in state <em>i</em> at the first
564: wave. Therefore a simple model is: log<em>(pij/pii)= aij +
565: bij*age+ cij*sex,</em> where '<i>age</i>' is age and '<i>sex</i>'
566: is a covariate. The advantage that this computer program claims,
567: comes from that if the delay between waves is not identical for
568: each individual, or if some individual missed an interview, the
569: information is not rounded or lost, but taken into account using
570: an interpolation or extrapolation. <i>hPijx</i> is the
571: probability to be observed in state <i>i</i> at age <i>x+h</i>
572: conditional to the observed state <i>i</i> at age <i>x</i>. The
573: delay '<i>h</i>' can be split into an exact number (<i>nh*stepm</i>)
574: of unobserved intermediate states. This elementary transition (by
575: month or quarter trimester, semester or year) is modeled as a
576: multinomial logistic. The <i>hPx</i> matrix is simply the matrix
577: product of <i>nh*stepm</i> elementary matrices and the
578: contribution of each individual to the likelihood is simply <i>hPijx</i>.
579: <o:p></o:p></span></p>
580:
581: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The program presented in this
582: manual is a quite general program named <strong>IMaCh</strong>
583: (for <strong>I</strong>nterpolated <strong>MA</strong>rkov <strong>CH</strong>ain),
584: designed to analyse transition data from longitudinal surveys.
585: The first step is the parameters estimation of a transition
586: probabilities model between an initial status and a final status.
587: From there, the computer program produces some indicators such as
588: observed and stationary prevalence, life expectancies and their
589: variances and graphs. Our transition model consists in absorbing
590: and non-absorbing states with the possibility of return across
591: the non-absorbing states. The main advantage of this package,
592: compared to other programs for the analysis of transition data
593: (For example: Proc Catmod of SAS<sup>(r)</sup>) is that the whole
594: individual information is used even if an interview is missing, a
595: status or a date is unknown or when the delay between waves is
596: not identical for each individual. The program can be executed
597: according to parameters: selection of a sub-sample, number of
598: absorbing and non-absorbing states, number of waves taken in
599: account (the user inputs the first and the last interview), a
600: tolerance level for the maximization function, the periodicity of
601: the transitions (we can compute annual, quarterly or monthly
602: transitions), covariates in the model. It works on Windows or on
603: Unix.<o:p></o:p></span></p>
604:
605: <hr>
606:
607: <p><span lang="EN-GB" style="mso-ansi-language:EN-GB">(1) Laditka, Sarah B. and Wolf, Douglas A. (1998), "New
608: Methods for Analyzing Active Life Expectancy". <i>Journal of
609: Aging and Health</i>. </span>Vol 10, No. 2. </p>
610:
611: <hr>
612:
613: <h2><a name="data"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">On what kind of data can it be used?</span><span style="mso-bookmark:data"></span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h2>
614:
615: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The minimum data required for a
616: transition model is the recording of a set of individuals
617: interviewed at a first date and interviewed again at least one
618: another time. From the observations of an individual, we obtain a
619: follow-up over time of the occurrence of a specific event. In
620: this documentation, the event is related to health status at
621: older ages, but the program can be applied on a lot of
622: longitudinal studies in different contexts. To build the data
623: file explained into the next section, you must have the month and
624: year of each interview and the corresponding health status. But
625: in order to get age, date of birth (month and year) is required
626: (missing values is allowed for month). Date of death (month and
627: year) is an important information also required if the individual
628: is dead. Shorter steps (i.e. a month) will more closely take into
629: account the survival time after the last interview.<o:p></o:p></span></p>
630:
631: <hr>
632:
633: <h2><a name="datafile"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:
634: EN-GB">The data file</span><span style="mso-bookmark:datafile"></span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h2>
635:
636: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">In this example, 8,000 people have
637: been interviewed in a cross-longitudinal survey of 4 waves (1984,
638: 1986, 1988, 1990). Some people missed 1, 2 or 3 interviews.
639: Health statuses are healthy (1) and disable (2). The survey is
640: not a real one. It is a simulation of the American Longitudinal
641: Survey on Aging. The disability state is defined if the
642: individual missed one of four ADL (Activity of daily living, like
643: bathing, eating, walking). Therefore, even is the individuals
644: interviewed in the sample are virtual, the information brought
645: with this sample is close to the situation of the United States.
646: Sex is not recorded is this sample.<o:p></o:p></span></p>
647:
648: <p><span lang="EN-GB" style="mso-ansi-language:EN-GB">Each line of the data set (named </span><a href="data1.txt"><span lang="EN-GB" style="mso-ansi-language:
649: EN-GB">data1.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>
650: in this first example) is an individual record which fields are: <o:p></o:p></span></p>
651:
652: <ul type="disc">
653: <li class="MsoNormal"
654: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
655: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Index
656: number</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: positive number (field 1) <o:p></o:p></span></li>
657: <li class="MsoNormal"
658: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
659: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">First
660: covariate</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b> positive number (field 2) <o:p></o:p></span></li>
661: <li class="MsoNormal"
662: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
663: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Second
664: covariate</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b> positive number (field 3) <o:p></o:p></span></li>
665: <li class="MsoNormal"
666: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
667: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><a
668: name="Weight"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Weight</span><span style="mso-bookmark:Weight"></span><span lang="EN-GB" style="mso-ansi-language:
669: EN-GB"></b></a>: positive number (field
670: 4) . In most surveys individuals are weighted according
671: to the stratification of the sample.<o:p></o:p></span></li>
672: <li class="MsoNormal"
673: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
674: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
675: of birth</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates are coded
676: as 99/9999 (field 5) <o:p></o:p></span></li>
677: <li class="MsoNormal"
678: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
679: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
680: of death</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates are coded
681: as 99/9999 (field 6) <o:p></o:p></span></li>
682: <li class="MsoNormal"
683: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
684: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
685: of first interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates
686: are coded as 99/9999 (field 7) <o:p></o:p></span></li>
687: <li class="MsoNormal"
688: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
689: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Status
690: at first interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: positive number. Missing values
691: ar coded -1. (field 8) <o:p></o:p></span></li>
692: <li class="MsoNormal"
693: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
694: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
695: of second interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates
696: are coded as 99/9999 (field 9) <o:p></o:p></span></li>
697: <li class="MsoNormal"
698: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
699: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">Status
700: at second interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong> positive number. Missing
701: values ar coded -1. (field 10) <o:p></o:p></span></li>
702: <li class="MsoNormal"
703: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
704: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
705: of third interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates
706: are coded as 99/9999 (field 11) <o:p></o:p></span></li>
707: <li class="MsoNormal"
708: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
709: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">Status
710: at third interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong> positive number. Missing
711: values ar coded -1. (field 12) <o:p></o:p></span></li>
712: <li class="MsoNormal"
713: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
714: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
715: of fourth interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates
716: are coded as 99/9999 (field 13) <o:p></o:p></span></li>
717: <li class="MsoNormal"
718: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
719: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">Status
720: at fourth interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong> positive number. Missing
721: values are coded -1. (field 14) <o:p></o:p></span></li>
722: <li class="MsoNormal"
723: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
724: mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">etc<o:p></o:p></span></li>
725: </ul>
726:
727: <p><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></p>
728:
729: <p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If your longitudinal survey do not
730: include information about weights or covariates, you must fill
731: the column with a number (e.g. 1) because a missing field is not
732: allowed.<o:p></o:p></span></p>
733:
734: <hr>
735:
736: <h2><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Your first example parameter file</span><a
737: href="http://euroreves.ined.fr/imach"></a><a name="uio"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h2>
738:
739: <h2><a name="biaspar"><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>#Imach version 0.7, February 2002,
740: INED-EUROREVES <o:p></o:p></span></h2>
741:
742: <p><span lang="EN-GB" style="mso-ansi-language:EN-GB">This is a comment. Comments start with a '#'.<o:p></o:p></span></p>
743:
744: <h4><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">First uncommented line</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
745:
746: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">title=1st_example datafile=data1.txt lastobs=8600 firstpass=1 lastpass=4<o:p></o:p></span></pre>
747:
748: <ul type="disc">
749: <li class="MsoNormal"
750: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
751: text-align:justify;mso-list:l1 level1 lfo9;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">title=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
752: 1st_example is title of the run. <o:p></o:p></span></li>
753: <li class="MsoNormal"
754: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
755: text-align:justify;mso-list:l1 level1 lfo9;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">datafile=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>data1.txt
756: is the name of the data set. Our example is a six years
757: follow-up survey. It consists in a baseline followed by 3
758: reinterviews. <o:p></o:p></span></li>
759: <li class="MsoNormal"
760: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
761: text-align:justify;mso-list:l1 level1 lfo9;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">lastobs=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
762: 8600 the program is able to run on a subsample where the
763: last observation number is lastobs. It can be set a
764: bigger number than the real number of observations (e.g.
765: 100000). In this example, maximisation will be done on
766: the 8600 first records. <o:p></o:p></span></li>
767: <li class="MsoNormal"
768: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
769: text-align:justify;mso-list:l1 level1 lfo9;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">firstpass=1</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
770: , <b>lastpass=4 </b>In case of more than two interviews
771: in the survey, the program can be run on selected
772: transitions periods. firstpass=1 means the first
773: interview included in the calculation is the baseline
774: survey. lastpass=4 means that the information brought by
775: the 4th interview is taken into account.<o:p></o:p></span></li>
776: </ul>
777:
778: <p
779: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></p>
780:
781: <h4
782: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Second
783: uncommented line</span><a name="biaspar-2"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h4>
784:
785: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">ftol=1.e-08 stepm=1 ncov=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0<o:p></o:p></span></pre>
786:
787: <ul type="disc">
788: <li class="MsoNormal"
789: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
790: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">ftol=1e-8</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
791: Convergence tolerance on the function value in the
792: maximisation of the likelihood. Choosing a correct value
793: for ftol is difficult. 1e-8 is a correct value for a 32
794: bits computer.<o:p></o:p></span></li>
795: <li class="MsoNormal"
796: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
797: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">stepm=1</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
798: Time unit in months for interpolation. Examples:<o:p></o:p></span></li>
799: <li><ul type="circle">
800: <li class="MsoNormal"
801: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
802: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
803: stepm=1, the unit is a month <o:p></o:p></span></li>
804: <li class="MsoNormal"
805: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
806: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
807: stepm=4, the unit is a trimester<o:p></o:p></span></li>
808: <li class="MsoNormal"
809: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
810: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
811: stepm=12, the unit is a year <o:p></o:p></span></li>
812: <li class="MsoNormal"
813: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
814: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
815: stepm=24, the unit is two years<o:p></o:p></span></li>
816: <li class="MsoNormal"
817: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
818: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">...
819: <o:p></o:p></span> </li>
820: </ul>
821: </li>
822: <li class="MsoNormal"
823: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
824: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">ncov=2</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
825: Number of covariates in the datafile. The intercept and
826: the age parameter are counting for 2 covariates.<o:p></o:p></span></li>
827: <li class="MsoNormal"
828: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
829: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">nlstate=2</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
830: Number of non-absorbing (alive) states. Here we have two
831: alive states: disability-free is coded 1 and disability
832: is coded 2. <o:p></o:p></span></li>
833: <li class="MsoNormal"
834: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
835: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">ndeath=1</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
836: Number of absorbing states. The absorbing state death is
837: coded 3. <o:p></o:p></span></li>
838: <li class="MsoNormal"
839: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
840: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">maxwav=4</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
841: Number of waves in the datafile.<o:p></o:p></span></li>
842: <li class="MsoNormal"
843: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
844: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><a
845: name="mle"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">mle</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b></a><b>=1</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b> Option for the
846: Maximisation Likelihood Estimation. <o:p></o:p></span></li>
847: <li><ul type="circle">
848: <li class="MsoNormal"
849: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
850: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
851: mle=1 the program does the maximisation and the
852: calculation of health expectancies <o:p></o:p></span></li>
853: <li class="MsoNormal"
854: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
855: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
856: mle=0 the program only does the calculation of
857: the health expectancies. <o:p></o:p></span></li>
858: </ul>
859: </li>
860: <li class="MsoNormal"
861: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
862: text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">weight=0</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
863: Possibility to add weights. <o:p></o:p></span></li>
864: <li><ul type="circle">
865: <li class="MsoNormal"
866: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
867: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
868: weight=0 no weights are included <o:p></o:p></span></li>
869: <li class="MsoNormal"
870: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
871: auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
872: weight=1 the maximisation integrates the weights
873: which are in field </span><a href="#Weight"><span lang="EN-GB" style="mso-ansi-language:EN-GB">4</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></li>
874: </ul>
875: </li>
876: </ul>
877:
878: <h4
879: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Covariates</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
880:
881: <p
882: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Intercept
883: and age are systematically included in the model. Additional
884: covariates can be included with the command <o:p></o:p></span></p>
885:
886: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">model=<em>list of covariates<o:p></o:p></span></em></pre>
887:
888: <ul type="disc">
889: <li class="MsoNormal"
890: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
891: text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if<strong>
892: model=. </strong>then no covariates are included<o:p></o:p></span></li>
893: <li class="MsoNormal"
894: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
895: text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
896: <strong>model=V1</strong> the model includes the first
897: covariate (field 2)<o:p></o:p></span></li>
898: <li class="MsoNormal"
899: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
900: text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
901: <strong>model=V2 </strong>the model includes the second
902: covariate (field 3)<o:p></o:p></span></li>
903: <li class="MsoNormal"
904: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
905: text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
906: <strong>model=V1+V2 </strong>the model includes the first
907: and the second covariate (fields 2 and 3)<o:p></o:p></span></li>
908: <li class="MsoNormal"
909: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
910: text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
911: <strong>model=V1*V2 </strong>the model includes the
912: product of the first and the second covariate (fields 2
913: and 3)<o:p></o:p></span></li>
914: <li class="MsoNormal"
915: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
916: text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
917: <strong>model=V1+V1*age</strong> the model includes the
918: product covariate*age<o:p></o:p></span></li>
919: </ul>
920:
921: <h4
922: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Guess
923: values for optimisation</span><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"> </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
924:
925: <p
926: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">You
927: must write the initial guess values of the parameters for
928: optimisation. The number of parameters, <em>N</em> depends on the
929: number of absorbing states and non-absorbing states and on the
930: number of covariates. <br>
931: <em>N</em> is given by the formula <em>N</em>=(<em>nlstate</em> +
932: <em>ndeath</em>-1)*<em>nlstate</em>*<em>ncov</em> . <br>
933: <br>
934: Thus in the simple case with 2 covariates (the model is log
935: (pij/pii) = aij + bij * age where intercept and age are the two
936: covariates), and 2 health degrees (1 for disability-free and 2
937: for disability) and 1 absorbing state (3), you must enter 8
938: initials values, a12, b12, a13, b13, a21, b21, a23, b23. You can
939: start with zeros as in this example, but if you have a more
940: precise set (for example from an earlier run) you can enter it
941: and it will speed up them<br>
942: Each of the four lines starts with indices "ij": <b>ij
943: aij bij</b> <o:p></o:p></span></p>
944:
945: <pre
946: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:
947: 36.0pt;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Guess values of aij and bij in log (pij/pii) = aij + bij * age<o:p></o:p></span></pre>
948:
949: <pre
950: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
951: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
952: EN-GB">12 -14.155633<span style="mso-spacerun: yes"> </span>0.110794 <o:p></o:p></span></pre>
953:
954: <pre
955: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
956: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
957: EN-GB">13<span style="mso-spacerun: yes"> </span>-7.925360<span style="mso-spacerun: yes"> </span>0.032091 <o:p></o:p></span></pre>
958:
959: <pre
960: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
961: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
962: EN-GB">21<span style="mso-spacerun: yes"> </span>-1.890135 -0.029473 <o:p></o:p></span></pre>
963:
964: <pre
965: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
966: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
967: EN-GB">23<span style="mso-spacerun: yes"> </span>-6.234642<span style="mso-spacerun: yes"> </span>0.022315 <o:p></o:p></span></pre>
968:
969: <p
970: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">or,
971: to simplify: <o:p></o:p></span></p>
972:
973: <pre
974: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:
975: 36.0pt;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">12 0.0 0.0<o:p></o:p></span></pre>
976:
977: <pre
978: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
979: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
980: EN-GB">13 0.0 0.0<o:p></o:p></span></pre>
981:
982: <pre
983: style="margin-top:0cm;margin-right:
984: 36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;text-align:
985: justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">21 0.0 0.0<o:p></o:p></span></pre>
986:
987: <pre
988: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
989: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
990: EN-GB">23 0.0 0.0<o:p></o:p></span></pre>
991:
992: <h4
993: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Guess
994: values for computing variances</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
995:
996: <p
997: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
998: is an output if </span><a href="#mle"><span lang="EN-GB" style="mso-ansi-language:EN-GB">mle</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>=1. But it can be used as
999: an input to get the various output data files (Health
1000: expectancies, stationary prevalence etc.) and figures without
1001: rerunning the rather long maximisation phase (mle=0). <o:p></o:p></span></p>
1002:
1003: <p
1004: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
1005: scales are small values for the evaluation of numerical
1006: derivatives. These derivatives are used to compute the hessian
1007: matrix of the parameters, that is the inverse of the covariance
1008: matrix, and the variances of health expectancies. Each line
1009: consists in indices "ij" followed by the initial scales
1010: (zero to simplify) associated with aij and bij. <o:p></o:p></span></p>
1011:
1012: <ul type="disc">
1013: <li class="MsoNormal"
1014: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1015: text-align:justify;mso-list:l16 level1 lfo18;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
1016: mle=1 you can enter zeros:<o:p></o:p></span></li>
1017: </ul>
1018:
1019: <pre
1020: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:
1021: 36.0pt;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Scales (for hessian or gradient estimation)<o:p></o:p></span></pre>
1022:
1023: <pre
1024: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
1025: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
1026: EN-GB">12 0. 0. <o:p></o:p></span></pre>
1027:
1028: <pre
1029: style="margin-top:0cm;margin-right:
1030: 36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;text-align:
1031: justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">13 0. 0. <o:p></o:p></span></pre>
1032:
1033: <pre
1034: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
1035: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
1036: EN-GB">21 0. 0. <o:p></o:p></span></pre>
1037:
1038: <pre
1039: style="margin-top:0cm;margin-right:
1040: 36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;text-align:
1041: justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">23 0. 0. <o:p></o:p></span></pre>
1042:
1043: <ul type="disc">
1044: <li class="MsoNormal"
1045: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1046: text-align:justify;mso-list:l11 level1 lfo21;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
1047: mle=0 you must enter a covariance matrix (usually
1048: obtained from an earlier run).<o:p></o:p></span></li>
1049: </ul>
1050:
1051: <h4
1052: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Covariance
1053: matrix of parameters</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
1054:
1055: <p
1056: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
1057: is an output if </span><a href="#mle"><span lang="EN-GB" style="mso-ansi-language:EN-GB">mle</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>=1. But it can be used as
1058: an input to get the various output data files (Health
1059: expectancies, stationary prevalence etc.) and figures without
1060: rerunning the rather long maximisation phase (mle=0). <o:p></o:p></span></p>
1061:
1062: <p
1063: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Each
1064: line starts with indices "ijk" followed by the
1065: covariances between aij and bij: <o:p></o:p></span></p>
1066:
1067: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
1068:
1069: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>121 Var(a12) <o:p></o:p></span></pre>
1070:
1071: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>122 Cov(b12,a12)<span style="mso-spacerun: yes"> </span>Var(b12) <o:p></o:p></span></pre>
1072:
1073: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>...<o:p></o:p></span></pre>
1074:
1075: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>232 Cov(b23,a12)<span style="mso-spacerun: yes"> </span>Cov(b23,b12) ... Var (b23) <o:p></o:p></span></pre>
1076:
1077: <ul type="disc">
1078: <li class="MsoNormal"
1079: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1080: text-align:justify;mso-list:l18 level1 lfo24;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
1081: mle=1 you can enter zeros. <o:p></o:p></span></li>
1082: </ul>
1083:
1084: <pre
1085: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:
1086: 36.0pt;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Covariance matrix<o:p></o:p></span></pre>
1087:
1088: <pre
1089: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
1090: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
1091: EN-GB">121 0.<o:p></o:p></span></pre>
1092:
1093: <pre
1094: style="margin-top:0cm;margin-right:
1095: 36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;text-align:
1096: justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">122 0. 0.<o:p></o:p></span></pre>
1097:
1098: <pre
1099: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
1100: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
1101: EN-GB">131 0. 0. 0. <o:p></o:p></span></pre>
1102:
1103: <pre
1104: style="margin-top:0cm;
1105: margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;
1106: text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">132 0. 0. 0. 0. <o:p></o:p></span></pre>
1107:
1108: <pre
1109: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
1110: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
1111: EN-GB">211 0. 0. 0. 0. 0. <o:p></o:p></span></pre>
1112:
1113: <pre
1114: style="margin-top:0cm;
1115: margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;
1116: text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">212 0. 0. 0. 0. 0. 0. <o:p></o:p></span></pre>
1117:
1118: <pre
1119: style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
1120: margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
1121: EN-GB">231 0. 0. 0. 0. 0. 0. 0. <o:p></o:p></span></pre>
1122:
1123: <pre
1124: style="margin-top:
1125: 0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:
1126: .0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">232 0. 0. 0. 0. 0. 0. 0. 0.<o:p></o:p></span></pre>
1127:
1128: <ul type="disc">
1129: <li class="MsoNormal"
1130: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1131: text-align:justify;mso-list:l7 level1 lfo27;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
1132: mle=0 you must enter a covariance matrix (usually
1133: obtained from an earlier run).<o:p></o:p></span></li>
1134: </ul>
1135:
1136: <h4
1137: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Age
1138: range for calculation of stationary prevalences and health
1139: expectancies</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
1140:
1141: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">agemin=70 agemax=100 bage=50 fage=100<o:p></o:p></span></pre>
1142:
1143: <p
1144: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Once
1145: we obtained the estimated parameters, the program is able to
1146: calculated stationary prevalence, transitions probabilities and
1147: life expectancies at any age. Choice of age range is useful for
1148: extrapolation. In our data file, ages varies from age 70 to 102.
1149: Setting bage=50 and fage=100, makes the program computing life
1150: expectancy from age bage to age fage. As we use a model, we can
1151: compute life expectancy on a wider age range than the age range
1152: from the data. But the model can be rather wrong on big
1153: intervals.<o:p></o:p></span></p>
1154:
1155: <p
1156: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Similarly,
1157: it is possible to get extrapolated stationary prevalence by age
1158: ranging from agemin to agemax. <o:p></o:p></span></p>
1159:
1160: <ul type="disc">
1161: <li class="MsoNormal"
1162: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1163: text-align:justify;mso-list:l13 level1 lfo30;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">agemin=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
1164: Minimum age for calculation of the stationary prevalence <o:p></o:p></span></li>
1165: <li class="MsoNormal"
1166: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1167: text-align:justify;mso-list:l13 level1 lfo30;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">agemax=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
1168: Maximum age for calculation of the stationary prevalence <o:p></o:p></span></li>
1169: <li class="MsoNormal"
1170: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1171: text-align:justify;mso-list:l13 level1 lfo30;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">bage=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
1172: Minimum age for calculation of the health expectancies <o:p></o:p></span></li>
1173: <li class="MsoNormal"
1174: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1175: text-align:justify;mso-list:l13 level1 lfo30;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">fage=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
1176: Maximum age for calculation of the health expectancies <o:p></o:p></span></li>
1177: </ul>
1178:
1179: <h4
1180: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><a
1181: name="Computing"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Computing</span><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB"></a> the observed prevalence</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
1182:
1183: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">begin-prev-date=1/1/1984 end-prev-date=1/6/1988 <o:p></o:p></span></pre>
1184:
1185: <p
1186: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Statements
1187: 'begin-prev-date' and 'end-prev-date' allow to select the period
1188: in which we calculate the observed prevalences in each state. In
1189: this example, the prevalences are calculated on data survey
1190: collected between 1 January 1984 and 1 June 1988. <o:p></o:p></span></p>
1191:
1192: <ul type="disc">
1193: <li class="MsoNormal"
1194: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1195: text-align:justify;mso-list:l3 level1 lfo33;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">begin-prev-date=
1196: </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> </strong>Starting date (day/month/year)<o:p></o:p></span></li>
1197: <li class="MsoNormal"
1198: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1199: text-align:justify;mso-list:l3 level1 lfo33;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">end-prev-date=
1200: </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> </strong>Final date (day/month/year)<o:p></o:p></span></li>
1201: </ul>
1202:
1203: <h4
1204: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Population-
1205: or status-based health expectancies</span><span lang="EN-GB" style="mso-ansi-language:
1206: EN-GB"><o:p></o:p></span></h4>
1207:
1208: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">pop_based=0<o:p></o:p></span></pre>
1209:
1210: <p
1211: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
1212: user has the possibility to choose between population-based or
1213: status-based health expectancies. If pop_based=0 then
1214: status-based health expectancies are computed and if pop_based=1,
1215: the programme computes population-based health expectancies.
1216: Health expectancies are weighted averages of health expectancies
1217: respective of the initial state. For a status-based index, the
1218: weights are the cross-sectional prevalences observed between two
1219: dates, as </span><a href="#Computing"><span lang="EN-GB" style="mso-ansi-language:EN-GB">previously explained</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>, whereas
1220: for a population-based index, the weights are the stationary
1221: prevalences.<o:p></o:p></span></p>
1222:
1223: <h4
1224: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Prevalence
1225: forecasting </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
1226:
1227: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">starting-proj-date=1/1/1989 final-proj-date=1/1/1992 mov_average=0 <o:p></o:p></span></pre>
1228:
1229: <p
1230: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Prevalence
1231: and population projections are available only if the
1232: interpolation unit is a month, i.e. stepm=1. The programme
1233: estimates the prevalence in each state at a precise date
1234: expressed in day/month/year. The programme computes one
1235: forecasted prevalence a year from a starting date (1 January of
1236: 1989 in this example) to a final date (1 January 1992). The
1237: statement mov_average allows to compute smoothed forecasted
1238: prevalences with a five-age moving average centred at the mid-age
1239: of the five-age period. <o:p></o:p></span></p>
1240:
1241: <ul type="disc">
1242: <li class="MsoNormal"
1243: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1244: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">starting-proj-date</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong>=
1245: starting date (day/month/year) of forecasting<o:p></o:p></span></li>
1246: <li class="MsoNormal"
1247: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1248: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">final-proj-date=
1249: </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> </strong>final date (day/month/year) of forecasting<o:p></o:p></span></li>
1250: <li class="MsoNormal"
1251: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1252: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">mov_average</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong>=
1253: smoothing with a five-age moving average centred at the
1254: mid-age of the five-age period. The command<strong>
1255: mov_average</strong> takes value 1 if the prevalences are
1256: smoothed and 0 otherwise.<o:p></o:p></span></li>
1257: </ul>
1258:
1259: <h4
1260: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Last
1261: uncommented line : Population forecasting </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
1262:
1263: <pre><span lang="EN-GB" style="mso-ansi-language:EN-GB">popforecast=0 popfile=pyram.txt popfiledate=1/1/1989 last-popfiledate=1/1/1992<o:p></o:p></span></pre>
1264:
1265: <p
1266: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
1267: command is available if the interpolation unit is a month, i.e.
1268: stepm=1 and if popforecast=1. From a data file including age and
1269: number of persons alive at the precise date ‘</span><span lang="EN-GB" style="font-size:10.0pt;mso-bidi-font-size:12.0pt;font-family:"Courier New";
1270: mso-ansi-language:EN-GB">popfiledate’,
1271: </span><span lang="EN-GB" style="mso-ansi-language:EN-GB">you can forecast the number of persons in each state until date</span><span lang="EN-GB" style="font-size:10.0pt;mso-bidi-font-size:
1272: 12.0pt;font-family:"Courier New";mso-ansi-language:EN-GB">
1273: ‘last-popfiledate’. </span><span lang="EN-GB" style="mso-ansi-language:EN-GB">In this example, the popfile </span><a
1274: href="pyram.txt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">pyram.txt</span><span style="mso-ansi-language:EN-GB"></b></a><b> </span><span lang="EN-GB" style="mso-ansi-language:
1275: EN-GB"><span style="mso-spacerun: yes"></b> </span>includes real
1276: data which are the Japanese population in 1989.<span style="mso-spacerun: yes"> </span><o:p></o:p></span></p>
1277:
1278: <ul type="disc">
1279: <li class="MsoNormal"
1280: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1281: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">popforecast=
1282: 0</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b> Option for population forecasting. If
1283: popforecast=1, the programme does the forecasting<b>.<o:p></o:p></span></b></li>
1284: <li class="MsoNormal"
1285: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1286: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">popfile=
1287: </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> </b>name of the population file<o:p></o:p></span></li>
1288: <li class="MsoNormal"
1289: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1290: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">popfiledate=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
1291: date of the population population<o:p></o:p></span></li>
1292: <li class="MsoNormal"
1293: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1294: text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">last-popfiledate</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>=
1295: date of the last population projection <o:p></o:p></span></li>
1296: </ul>
1297:
1298: <hr>
1299:
1300: <h2
1301: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><a
1302: name="running"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"></a>Running Imach with this example</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h2>
1303:
1304: <p
1305: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">We
1306: assume that you entered your </span><a href="biaspar.imach"><span lang="EN-GB" style="mso-ansi-language:EN-GB">1st_example
1307: parameter file</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> as explained </span><a href="#biaspar"><span lang="EN-GB" style="mso-ansi-language:
1308: EN-GB">above</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>. To
1309: run the program you should click on the imach.exe icon and enter
1310: the name of the parameter file which is for example </span><a
1311: href="..\mle\biaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">C:\usr\imach\mle\biaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> (you
1312: also can click on the biaspar.txt icon located in </span><a
1313: href="..\mle"><span lang="EN-GB" style="mso-ansi-language:EN-GB">C:\usr\imach\mle</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> and put it with the mouse on
1314: the imach window).<o:p></o:p></span></p>
1315:
1316: <p
1317: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
1318: time to converge depends on the step unit that you used (1 month
1319: is cpu consuming), on the number of cases, and on the number of
1320: variables.<o:p></o:p></span></p>
1321:
1322: <p
1323: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
1324: program outputs many files. Most of them are files which will be
1325: plotted for better understanding.<o:p></o:p></span></p>
1326:
1327: <hr>
1328:
1329: <h2
1330: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><a
1331: name="output"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Output of the program and graphs</span><span style="mso-bookmark:output"><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> </span></span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h2>
1332:
1333: <p
1334: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Once
1335: the optimization is finished, some graphics can be made with a
1336: grapher. We use Gnuplot which is an interactive plotting program
1337: copyrighted but freely distributed. A gnuplot reference manual is
1338: available </span><a href="http://www.gnuplot.info/"><span lang="EN-GB" style="mso-ansi-language:EN-GB">here</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>. <br>
1339: When the running is finished, the user should enter a character
1340: for plotting and output editing. <o:p></o:p></span></p>
1341:
1342: <p
1343: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">These
1344: characters are:<o:p></o:p></span></p>
1345:
1346: <ul type="disc">
1347: <li class="MsoNormal"
1348: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1349: text-align:justify;mso-list:l0 level1 lfo41;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">'c'
1350: to start again the program from the beginning.<o:p></o:p></span></li>
1351: <li class="MsoNormal"
1352: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1353: text-align:justify;mso-list:l0 level1 lfo41;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">'e'
1354: opens the </span><a href="biaspar.htm"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">biaspar.htm</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong></a>
1355: file to edit the output files and graphs. <o:p></o:p></span></li>
1356: <li class="MsoNormal"
1357: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1358: text-align:justify;mso-list:l0 level1 lfo41;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">'q'
1359: for exiting.<o:p></o:p></span></li>
1360: </ul>
1361:
1362: <h5
1363: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:18.0pt;mso-bidi-font-size:10.0pt;color:#00006A;
1364: mso-ansi-language:EN-GB">Results
1365: files</span><strong><span lang="EN-GB" style="font-size:13.5pt;mso-ansi-language:EN-GB"> </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong><br>
1366: <br>
1367: </span><strong><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;
1368: mso-ansi-language:EN-GB">- </strong><a name="Observed_prevalence_in_each_state"><strong>Observed
1369: prevalence in each state</strong></a><strong> (and at first pass)</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong>:
1370: </span><a href="prbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">prbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
1371:
1372: <p
1373: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
1374: first line is the title and displays each field of the file. The
1375: first column is age. The fields 2 and 6 are the proportion of
1376: individuals in states 1 and 2 respectively as observed during the
1377: first exam. Others fields are the numbers of people in states 1,
1378: 2 or more. The number of columns increases if the number of
1379: states is higher than 2.<br>
1380: The header of the file is <o:p></o:p></span></p>
1381:
1382: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Age Prev(1) N(1) N Age Prev(2) N(2) N<o:p></o:p></span></pre>
1383:
1384: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">70 1.00000 631 631 70 0.00000 0 631<o:p></o:p></span></pre>
1385:
1386: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">71 0.99681 625 627 71 0.00319 2 627 <o:p></o:p></span></pre>
1387:
1388: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">72 0.97125 1115 1148 72 0.02875 33 1148 <o:p></o:p></span></pre>
1389:
1390: <p
1391: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">It
1392: means that at age 70, the prevalence in state 1 is 1.000 and in
1393: state 2 is 0.00 . At age 71 the number of individuals in state 1
1394: is 625 and in state 2 is 2, hence the total number of people aged
1395: 71 is 625+2=627. <o:p></o:p></span></p>
1396:
1397: <h5
1398: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
1399: Estimated parameters and covariance matrix</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
1400: href="rbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">rbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
1401:
1402: <p
1403: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
1404: file contains all the maximisation results: <o:p></o:p></span></p>
1405:
1406: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>-2 log likelihood= 21660.918613445392<o:p></o:p></span></pre>
1407:
1408: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> Estimated parameters: a12 = -12.290174 b12 = 0.092161 <o:p></o:p></span></pre>
1409:
1410: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span><span style="mso-spacerun: yes"> </span>a13 = -9.155590<span style="mso-spacerun: yes"> </span>b13 = 0.046627 <o:p></o:p></span></pre>
1411:
1412: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>a21 = -2.629849<span style="mso-spacerun: yes"> </span>b21 = -0.022030 <o:p></o:p></span></pre>
1413:
1414: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>a23 = -7.958519<span style="mso-spacerun: yes"> </span>b23 = 0.042614<span style="mso-spacerun: yes"> </span><o:p></o:p></span></pre>
1415:
1416: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Covariance matrix: Var(a12) = 1.47453e-001<o:p></o:p></span></pre>
1417:
1418: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(b12) = 2.18676e-005<o:p></o:p></span></pre>
1419:
1420: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(a13) = 2.09715e-001<o:p></o:p></span></pre>
1421:
1422: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(b13) = 3.28937e-005<span style="mso-spacerun: yes"> </span><o:p></o:p></span></pre>
1423:
1424: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(a21) = 9.19832e-001<o:p></o:p></span></pre>
1425:
1426: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(b21) = 1.29229e-004<o:p></o:p></span></pre>
1427:
1428: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span></span><span lang="DE" style="mso-ansi-language:DE">Var(a23) = 4.48405e-001<o:p></o:p></span></pre>
1429:
1430: <pre style="text-align:justify"><span lang="DE" style="mso-ansi-language:DE"><span style="mso-spacerun: yes"> </span>Var(b23) = 5.85631e-005 <o:p></o:p></span></pre>
1431:
1432: <pre style="text-align:justify"><span lang="DE" style="mso-ansi-language:DE"><span style="mso-spacerun: yes"> </span><o:p></o:p></span></pre>
1433:
1434: <p
1435: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">By
1436: substitution of these parameters in the regression model, we
1437: obtain the elementary transition probabilities:<o:p></o:p></span></p>
1438:
1439: <p
1440: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><img
1441: src="pebiaspar1.gif" width="400" height="300" id="_x0000_i1037"></p>
1442:
1443: <h5
1444: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
1445: Transition probabilities</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="pijrbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:
1446: EN-GB">pijrbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:
1447: EN-GB"><o:p></o:p></span></a></h5>
1448:
1449: <p
1450: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Here
1451: are the transitions probabilities Pij(x, x+nh) where nh is a
1452: multiple of 2 years. The first column is the starting age x (from
1453: age 50 to 100), the second is age (x+nh) and the others are the
1454: transition probabilities p11, p12, p13, p21, p22, p23. For
1455: example, line 5 of the file is: <o:p></o:p></span></p>
1456:
1457: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>100 106 0.02655 0.17622 0.79722 0.01809 0.13678 0.84513 <o:p></o:p></span></pre>
1458:
1459: <p
1460: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">and
1461: this means: <o:p></o:p></span></p>
1462:
1463: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p11(100,106)=0.02655<o:p></o:p></span></pre>
1464:
1465: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p12(100,106)=0.17622<o:p></o:p></span></pre>
1466:
1467: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p13(100,106)=0.79722<o:p></o:p></span></pre>
1468:
1469: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p21(100,106)=0.01809<o:p></o:p></span></pre>
1470:
1471: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p22(100,106)=0.13678<o:p></o:p></span></pre>
1472:
1473: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p22(100,106)=0.84513 <o:p></o:p></span></pre>
1474:
1475: <h5
1476: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
1477: <a name="Stationary_prevalence_in_each_state">Stationary
1478: prevalence in each state</span><span style="mso-bookmark:Stationary_prevalence_in_each_state"></span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>: </span><a href="plrbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">plrbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
1479:
1480: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#Prevalence<o:p></o:p></span></pre>
1481:
1482: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#Age 1-1 2-2<o:p></o:p></span></pre>
1483:
1484: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
1485:
1486: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#************ <o:p></o:p></span></pre>
1487:
1488: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">70 0.90134 0.09866<o:p></o:p></span></pre>
1489:
1490: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">71 0.89177 0.10823 <o:p></o:p></span></pre>
1491:
1492: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">72 0.88139 0.11861 <o:p></o:p></span></pre>
1493:
1494: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">73 0.87015 0.12985 <o:p></o:p></span></pre>
1495:
1496: <p
1497: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">At
1498: age 70 the stationary prevalence is 0.90134 in state 1 and
1499: 0.09866 in state 2. This stationary prevalence differs from
1500: observed prevalence. Here is the point. The observed prevalence
1501: at age 70 results from the incidence of disability, incidence of
1502: recovery and mortality which occurred in the past of the cohort.
1503: Stationary prevalence results from a simulation with actual
1504: incidences and mortality (estimated from this cross-longitudinal
1505: survey). It is the best predictive value of the prevalence in the
1506: future if "nothing changes in the future". This is
1507: exactly what demographers do with a Life table. Life expectancy
1508: is the expected mean time to survive if observed mortality rates
1509: (incidence of mortality) "remains constant" in the
1510: future. <o:p></o:p></span></p>
1511:
1512: <h5
1513: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
1514: Standard deviation of stationary prevalence</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
1515: href="vplrbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">vplrbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
1516:
1517: <p
1518: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
1519: stationary prevalence has to be compared with the observed
1520: prevalence by age. But both are statistical estimates and
1521: subjected to stochastic errors due to the size of the sample, the
1522: design of the survey, and, for the stationary prevalence to the
1523: model used and fitted. It is possible to compute the standard
1524: deviation of the stationary prevalence at each age.<o:p></o:p></span></p>
1525:
1526: <h5
1527: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-Observed
1528: and stationary prevalence in state (2=disable) with the confident
1529: interval</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="vbiaspar21.htm"><span lang="EN-GB" style="mso-ansi-language:EN-GB">vbiaspar21.gif</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
1530:
1531: <p
1532: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
1533: graph exhibits the stationary prevalence in state (2) with the
1534: confidence interval in red. The green curve is the observed
1535: prevalence (or proportion of individuals in state (2)). Without
1536: discussing the results (it is not the purpose here), we observe
1537: that the green curve is rather below the stationary prevalence.
1538: It suggests an increase of the disability prevalence in the
1539: future.<o:p></o:p></span></p>
1540:
1541: <p
1542: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><img
1543: src="vbiaspar21.gif" width="400" height="300" id="_x0000_i1038"></p>
1544:
1545: <h5
1546: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-Convergence
1547: to the stationary prevalence of disability</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
1548: href="pbiaspar11.gif"><span lang="EN-GB" style="mso-ansi-language:EN-GB">pbiaspar11.gif</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a><br>
1549: </span><img src="pbiaspar11.gif" width="400" height="300"
1550: id="_x0000_i1039"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h5>
1551:
1552: <p
1553: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
1554: graph plots the conditional transition probabilities from an
1555: initial state (1=healthy in red at the bottom, or 2=disable in
1556: green on top) at age <em>x </em>to the final state 2=disable<em> </em>at
1557: age <em>x+h. </em>Conditional means at the condition to be alive
1558: at age <em>x+h </em>which is <i>hP12x</i> + <em>hP22x</em>. The
1559: curves <i>hP12x/(hP12x</i> + <em>hP22x) </em>and <i>hP22x/(hP12x</i>
1560: + <em>hP22x) </em>converge with <em>h, </em>to the <em>stationary
1561: prevalence of disability</em>. In order to get the stationary
1562: prevalence at age 70 we should start the process at an earlier
1563: age, i.e.50. If the disability state is defined by severe
1564: disability criteria with only a few chance to recover, then the
1565: incidence of recovery is low and the time to convergence is
1566: probably longer. But we don't have experience yet.<o:p></o:p></span></p>
1567:
1568: <h5
1569: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
1570: Life expectancies by age and initial health status</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
1571: href="erbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">erbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
1572:
1573: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Health expectancies <o:p></o:p></span></pre>
1574:
1575: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Age 1-1 1-2 2-1 2-2 <o:p></o:p></span></pre>
1576:
1577: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">70 10.9226 3.0401 5.6488 6.2122 <o:p></o:p></span></pre>
1578:
1579: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">71 10.4384 3.0461 5.2477 6.1599 <o:p></o:p></span></pre>
1580:
1581: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">72 9.9667 3.0502 4.8663 6.1025 <o:p></o:p></span></pre>
1582:
1583: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">73 9.5077 3.0524 4.5044 6.0401 <o:p></o:p></span></pre>
1584:
1585: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">For example 70 10.9226 3.0401 5.6488 6.2122 means:<o:p></o:p></span></pre>
1586:
1587: <pre style="text-align:justify"><span lang="DE" style="mso-ansi-language:DE">e11=10.9226 e12=3.0401 e21=5.6488 e22=6.2122<o:p></o:p></span></pre>
1588:
1589: <pre style="text-align:justify"><img src="expbiaspar21.gif"
1590: width="400" height="300" id="_x0000_i1040"><img
1591: src="expbiaspar11.gif" width="400" height="300" id="_x0000_i1041"></pre>
1592:
1593: <p
1594: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">For
1595: example, life expectancy of a healthy individual at age 70 is
1596: 10.92 in the healthy state and 3.04 in the disability state
1597: (=13.96 years). If he was disable at age 70, his life expectancy
1598: will be shorter, 5.64 in the healthy state and 6.21 in the
1599: disability state (=11.85 years). The total life expectancy is a
1600: weighted mean of both, 13.96 and 11.85; weight is the proportion
1601: of people disabled at age 70. In order to get a pure period index
1602: (i.e. based only on incidences) we use the </span><a
1603: href="#Stationary prevalence in each state"><span lang="EN-GB" style="mso-ansi-language:EN-GB">computed or
1604: stationary prevalence</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> at age 70 (i.e. computed from
1605: incidences at earlier ages) instead of the </span><a
1606: href="#Observed prevalence in each state"><span lang="EN-GB" style="mso-ansi-language:
1607: EN-GB">observed prevalence</span><span lang="EN-GB" style="mso-ansi-language:
1608: EN-GB"></a>
1609: (for example at first exam) (</span><a href="#Health expectancies"><span lang="EN-GB" style="mso-ansi-language:EN-GB">see
1610: below</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>).<o:p></o:p></span></p>
1611:
1612: <h5
1613: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
1614: Variances of life expectancies by age and initial health status</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
1615: href="vrbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">vrbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
1616:
1617: <p
1618: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">For
1619: example, the covariances of life expectancies Cov(ei,ej) at age
1620: 50 are (line 3) <o:p></o:p></span></p>
1621:
1622: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span></span><span lang="DE" style="mso-ansi-language:DE">Cov(e1,e1)=0.4776<span style="mso-spacerun: yes"> </span>Cov(e1,e2)=0.0488=Cov(e2,e1)<span style="mso-spacerun: yes"> </span>Cov(e2,e2)=0.0424<o:p></o:p></span></pre>
1623:
1624: <h5
1625: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
1626: <a name="Health_expectancies">Health expectancies</a> with
1627: standard errors in parentheses</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="trbiaspar.txt"><span lang="EN-GB" style="font-family:"Courier New";
1628: mso-ansi-language:EN-GB">trbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
1629:
1630: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#Total LEs with variances: e.. (std) e.1 (std) e.2 (std) <o:p></o:p></span></pre>
1631:
1632: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">70 13.76 (0.22) 10.40 (0.20) 3.35 (0.14) <o:p></o:p></span></pre>
1633:
1634: <p
1635: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Thus,
1636: at age 70 the total life expectancy, e..=13.76years is the
1637: weighted mean of e1.=13.96 and e2.=11.85 by the stationary
1638: prevalence at age 70 which are 0.90134 in state 1 and 0.09866 in
1639: state 2, respectively (the sum is equal to one). e.1=10.40 is the
1640: Disability-free life expectancy at age 70 (it is again a weighted
1641: mean of e11 and e21). e.2=3.35 is also the life expectancy at age
1642: 70 to be spent in the disability state.<o:p></o:p></span></p>
1643:
1644: <h5
1645: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-Total
1646: life expectancy by age and health expectancies in states
1647: (1=healthy) and (2=disable)</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="ebiaspar1.gif"><span lang="EN-GB" style="mso-ansi-language:EN-GB">ebiaspar1.gif</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
1648:
1649: <p
1650: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
1651: figure represents the health expectancies and the total life
1652: expectancy with the confident interval in dashed curve. <o:p></o:p></span></p>
1653:
1654: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span></span><img
1655: src="ebiaspar1.gif" width="400" height="300" id="_x0000_i1042"></pre>
1656:
1657: <p
1658: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Standard
1659: deviations (obtained from the information matrix of the model) of
1660: these quantities are very useful. Cross-longitudinal surveys are
1661: costly and do not involve huge samples, generally a few
1662: thousands; therefore it is very important to have an idea of the
1663: standard deviation of our estimates. It has been a big challenge
1664: to compute the Health Expectancy standard deviations. Don't be
1665: confuse: life expectancy is, as any expected value, the mean of a
1666: distribution; but here we are not computing the standard
1667: deviation of the distribution, but the standard deviation of the
1668: estimate of the mean.<o:p></o:p></span></p>
1669:
1670: <p
1671: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Our
1672: health expectancies estimates vary according to the sample size
1673: (and the standard deviations give confidence intervals of the
1674: estimate) but also according to the model fitted. Let us explain
1675: it in more details.<o:p></o:p></span></p>
1676:
1677: <p
1678: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Choosing
1679: a model means at least two kind of choices. First we have to
1680: decide the number of disability states. Second we have to design,
1681: within the logit model family, the model: variables, covariables,
1682: confounding factors etc. to be included.<o:p></o:p></span></p>
1683:
1684: <p
1685: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">More
1686: disability states we have, better is our demographical approach
1687: of the disability process, but smaller are the number of
1688: transitions between each state and higher is the noise in the
1689: measurement. We do not have enough experiments of the various
1690: models to summarize the advantages and disadvantages, but it is
1691: important to say that even if we had huge and unbiased samples,
1692: the total life expectancy computed from a cross-longitudinal
1693: survey, varies with the number of states. If we define only two
1694: states, alive or dead, we find the usual life expectancy where it
1695: is assumed that at each age, people are at the same risk to die.
1696: If we are differentiating the alive state into healthy and
1697: disable, and as the mortality from the disability state is higher
1698: than the mortality from the healthy state, we are introducing
1699: heterogeneity in the risk of dying. The total mortality at each
1700: age is the weighted mean of the mortality in each state by the
1701: prevalence in each state. Therefore if the proportion of people
1702: at each age and in each state is different from the stationary
1703: equilibrium, there is no reason to find the same total mortality
1704: at a particular age. Life expectancy, even if it is a very useful
1705: tool, has a very strong hypothesis of homogeneity of the
1706: population. Our main purpose is not to measure differential
1707: mortality but to measure the expected time in a healthy or
1708: disability state in order to maximise the former and minimize the
1709: latter. But the differential in mortality complexifies the
1710: measurement.<o:p></o:p></span></p>
1711:
1712: <p
1713: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Incidences
1714: of disability or recovery are not affected by the number of
1715: states if these states are independant. But incidences estimates
1716: are dependant on the specification of the model. More covariates
1717: we added in the logit model better is the model, but some
1718: covariates are not well measured, some are confounding factors
1719: like in any statistical model. The procedure to "fit the
1720: best model' is similar to logistic regression which itself is
1721: similar to regression analysis. We haven't yet been so far
1722: because we also have a severe limitation which is the speed of
1723: the convergence. On a Pentium III, 500 MHz, even the simplest
1724: model, estimated by month on 8,000 people may take 4 hours to
1725: converge. Also, the program is not yet a statistical package,
1726: which permits a simple writing of the variables and the model to
1727: take into account in the maximisation. The actual program allows
1728: only to add simple variables like age+sex or age+sex+ age*sex but
1729: will never be general enough. But what is to remember, is that
1730: incidences or probability of change from one state to another is
1731: affected by the variables specified into the model.<o:p></o:p></span></p>
1732:
1733: <p
1734: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Also,
1735: the age range of the people interviewed has a link with the age
1736: range of the life expectancy which can be estimated by
1737: extrapolation. If your sample ranges from age 70 to 95, you can
1738: clearly estimate a life expectancy at age 70 and trust your
1739: confidence interval which is mostly based on your sample size,
1740: but if you want to estimate the life expectancy at age 50, you
1741: should rely in your model, but fitting a logistic model on a age
1742: range of 70-95 and estimating probabilities of transition out of
1743: this age range, say at age 50 is very dangerous. At least you
1744: should remember that the confidence interval given by the
1745: standard deviation of the health expectancies, are under the
1746: strong assumption that your model is the 'true model', which is
1747: probably not the case.<o:p></o:p></span></p>
1748:
1749: <h5
1750: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
1751: Copy of the parameter file</span><span lang="EN-GB" style="mso-ansi-language:
1752: EN-GB">: </span><a href="orbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:
1753: EN-GB">orbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
1754:
1755: <p
1756: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
1757: copy of the parameter file can be useful to re-run the program
1758: while saving the old output files. <o:p></o:p></span></p>
1759:
1760: <h5
1761: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
1762: Prevalence forecasting</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="frbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">frbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
1763:
1764: <p
1765: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">First,
1766: we have estimated the observed prevalence between 1/1/1984 and
1767: 1/6/1988. <span style="mso-spacerun:
1768: yes"> </span>The mean date of interview (weighed average of
1769: the interviews performed between1/1/1984 and 1/6/1988) is
1770: estimated to be 13/9/1985, as written on the top on the file.
1771: Then we forecast the probability to be in each state. <o:p></o:p></span></p>
1772:
1773: <p
1774: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Example,
1775: at date 1/1/1989 : <o:p></o:p></span></p>
1776:
1777: <p class="MsoNormal"><span lang="DE" style="mso-ansi-language:DE"># StartingAge FinalAge P.1 P.2 P.3<o:p></o:p></span></p>
1778:
1779: <p class="MsoNormal"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Forecasting at date 1/1/1989 <o:p></o:p></span></p>
1780:
1781: <p class="MsoNormal"><span lang="EN-GB" style="mso-ansi-language:EN-GB">73 0.807 0.078 0.115 <o:p></o:p></span></p>
1782:
1783: <p
1784: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Since
1785: the minimum age is 70 on the 13/9/1985, the youngest forecasted
1786: age is 73. This means that at age a person aged 70 at 13/9/1989
1787: has a probability to enter state1 of 0.807 at age 73 on 1/1/1989.
1788: Similarly, the probability to be in state 2 is 0.078 and the
1789: probability to die is 0.115. Then, on the 1/1/1989, the
1790: prevalence of disability at age 73 is estimated to be 0.088.<o:p></o:p></span></p>
1791:
1792: <h5
1793: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
1794: Population forecasting</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="poprbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:
1795: EN-GB">poprbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:
1796: EN-GB"><o:p></o:p></span></a></h5>
1797:
1798: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Age P.1 P.2 P.3 [Population]<o:p></o:p></span></pre>
1799:
1800: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Forecasting at date 1/1/1989 <o:p></o:p></span></pre>
1801:
1802: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">75 572685.22 83798.08 <o:p></o:p></span></pre>
1803:
1804: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">74 621296.51 79767.99 <o:p></o:p></span></pre>
1805:
1806: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">73 645857.70 69320.60 <o:p></o:p></span></pre>
1807:
1808: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Forecasting at date 1/1/1990<o:p></o:p></span></pre>
1809:
1810: <pre style="text-align:justify">76 442986.68 92721.14 120775.48</pre>
1811:
1812: <pre style="text-align:justify">75 487781.02 91367.97 121915.51</pre>
1813:
1814: <pre style="text-align:justify">74 512892.07 85003.47 117282.76 </pre>
1815:
1816: <pre style="text-align:justify"> <o:p></o:p></pre>
1817:
1818: <p class="MsoNormal"><span lang="EN-GB" style="mso-ansi-language:EN-GB">From the population file, we estimate the
1819: number of people in each state. At age 73, 645857 persons are in
1820: state 1 and 69320 are in state 2. One year latter, 512892 are
1821: still in state 1, 85003 are in state 2 and 117282 died before
1822: 1/1/1990.<o:p></o:p></span></p>
1823:
1824: <pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
1825:
1826: <hr>
1827:
1828: <h2
1829: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><a
1830: name="example"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"></a>Trying an example</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h2>
1831:
1832: <p
1833: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Since
1834: you know how to run the program, it is time to test it on your
1835: own computer. Try for example on a parameter file named </span><a
1836: href="..\mytry\imachpar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">imachpar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> which is a copy of </span><span lang="EN-GB" style="font-size:10.0pt;font-family:"Courier New";mso-ansi-language:EN-GB">mypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">
1837: included in the subdirectory of imach, </span><span lang="EN-GB" style="font-size:10.0pt;font-family:"Courier New";
1838: mso-ansi-language:EN-GB">mytry</span><span lang="EN-GB" style="mso-ansi-language:
1839: EN-GB">. Edit it to change
1840: the name of the data file to </span><span lang="EN-GB" style="font-size:10.0pt;font-family:"Courier New";mso-ansi-language:
1841: EN-GB">..\data\mydata.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> if you don't want
1842: to copy it on the same directory. The file </span><span lang="EN-GB" style="font-family:"Courier New";mso-ansi-language:EN-GB">mydata.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> is a
1843: smaller file of 3,000 people but still with 4 waves. <o:p></o:p></span></p>
1844:
1845: <p
1846: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Click
1847: on the imach.exe icon to open a window. Answer to the question: '<strong>Enter
1848: the parameter file name:'<o:p></o:p></span></strong></p>
1849:
1850: <table border="1" cellpadding="0"
1851: style="mso-cellspacing:1.5pt;mso-padding-alt:
1852: 0cm 0cm 0cm 0cm">
1853: <tr>
1854: <td width="100%"
1855: style="width:100.0%;padding:.75pt .75pt .75pt .75pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">IMACH,
1856: Version 0.7</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></strong><p style="text-align:justify"><strong><span lang="EN-GB" style="mso-ansi-language:
1857: EN-GB">Enter
1858: the parameter file name: ..\mytry\imachpar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></strong></p>
1859: </td>
1860: </tr>
1861: </table>
1862:
1863: <p
1864: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Most
1865: of the data files or image files generated, will use the
1866: 'imachpar' string into their name. The running time is about 2-3
1867: minutes on a Pentium III. If the execution worked correctly, the
1868: outputs files are created in the current directory, and should be
1869: the same as the mypar files initially included in the directory </span><span lang="EN-GB" style="font-size:10.0pt;font-family:"Courier New";mso-ansi-language:EN-GB">mytry</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">.<o:p></o:p></span></p>
1870:
1871: <pre
1872: style="margin-left:36.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo43"><span lang="EN-GB" style="font-family:Symbol;mso-ansi-language:EN-GB">·<span style="font:7.0pt "Times New Roman""> </span></span><u><span lang="EN-GB" style="mso-ansi-language:EN-GB">Output on the screen</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></u> The output screen looks like </span><a
1873: href="imachrun.LOG"><span lang="EN-GB" style="mso-ansi-language:EN-GB">this Log file</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></pre>
1874:
1875: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
1876:
1877: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#title=MLE datafile=..\data\mydata.txt lastobs=3000 firstpass=1 lastpass=3<o:p></o:p></span></pre>
1878:
1879: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">ftol=1.000000e-008 stepm=24 ncov=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0<o:p></o:p></span></pre>
1880:
1881: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Total number of individuals= 2965, Agemin = 70.00, Agemax= 100.92<o:p></o:p></span></pre>
1882:
1883: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
1884:
1885: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Warning, no any valid information for:126 line=126<o:p></o:p></span></pre>
1886:
1887: <pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Warning, no any valid information for:2307 line=2307<o:p></o:p></span></pre>
1888:
1889: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Delay (in months) between two waves Min=21 Max=51 Mean=24.495826<o:p></o:p></span></pre>
1890:
1891: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="font-family:"Times New Roman";mso-ansi-language:EN-GB">These lines give some warnings on the data file and also some raw statistics on frequencies of transitions.</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></pre>
1892:
1893: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Age 70 1.=230 loss[1]=3.5% 2.=16 loss[2]=12.5% 1.=222 prev[1]=94.1% 2.=14<o:p></o:p></span></pre>
1894:
1895: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> prev[2]=5.9% 1-1=8 11=200 12=7 13=15 2-1=2 21=6 22=7 23=1<o:p></o:p></span></pre>
1896:
1897: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Age 102 1.=0 loss[1]=NaNQ% 2.=0 loss[2]=NaNQ% 1.=0 prev[1]=NaNQ% 2.=0 <o:p></o:p></span></pre>
1898:
1899: <ul type="disc">
1900: <li class="MsoNormal"
1901: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
1902: mso-list:l6 level1 lfo46;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Maximisation
1903: with the Powell algorithm. 8 directions are given
1904: corresponding to the 8 parameters. This can be rather
1905: long to get convergence.<br>
1906: </span><span lang="EN-GB" style="font-size:7.5pt;font-family:"Courier New";
1907: mso-ansi-language:EN-GB"> <br>
1908: Powell iter=1 -2*LL=11531.405658264877 1 0.000000000000 2
1909: 0.000000000000 3<br>
1910: 0.000000000000 4 0.000000000000 5 0.000000000000 6
1911: 0.000000000000 7 <br>
1912: 0.000000000000 8 0.000000000000<br>
1913: 1..........2.................3..........4.................5.........<br>
1914: 6................7........8...............<br>
1915: Powell iter=23 -2*LL=6744.954108371555 1 -12.967632334283
1916: <br>
1917: 2 0.135136681033 3 -7.402109728262 4 0.067844593326 <br>
1918: 5 -0.673601538129 6 -0.006615504377 7 -5.051341616718 <br>
1919: 8 0.051272038506<br>
1920: 1..............2...........3..............4...........<br>
1921: 5..........6................7...........8.........<br>
1922: #Number of iterations = 23, -2 Log likelihood =
1923: 6744.954042573691<br>
1924: # Parameters<br>
1925: 12 -12.966061 0.135117 <br>
1926: 13 -7.401109 0.067831 <br>
1927: 21 -0.672648 -0.006627 <br>
1928: 23 -5.051297 0.051271 </span><span lang="EN-GB" style="mso-ansi-language:
1929: EN-GB"><o:p></o:p></span></li>
1930: </ul>
1931:
1932: <pre
1933: style="margin-left:36.0pt;text-align:justify;text-indent:-18.0pt;
1934: mso-list:l6 level1 lfo46"><span lang="EN-GB" style="font-family:Symbol;mso-ansi-language:EN-GB">·<span style="font:7.0pt "Times New Roman""> </span></span><span lang="EN-GB" style="mso-ansi-language:EN-GB">Calculation of the hessian matrix. Wait...<o:p></o:p></span></pre>
1935:
1936: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">12345678.12.13.14.15.16.17.18.23.24.25.26.27.28.34.35.36.37.38.45.46.47.48.56.57.58.67.68.78<o:p></o:p></span></pre>
1937:
1938: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
1939:
1940: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Inverting the hessian to get the covariance matrix. </span>Wait...</pre>
1941:
1942: <pre style="margin-left:18.0pt;text-align:justify"> <o:p></o:p></pre>
1943:
1944: <pre style="margin-left:18.0pt;text-align:justify">#Hessian matrix#</pre>
1945:
1946: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">3.344e+002 2.708e+004 -4.586e+001 -3.806e+003 -1.577e+000 -1.313e+002 3.914e-001 3.166e+001 <o:p></o:p></span></pre>
1947:
1948: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">2.708e+004 2.204e+006 -3.805e+003 -3.174e+005 -1.303e+002 -1.091e+004 2.967e+001 2.399e+003 <o:p></o:p></span></pre>
1949:
1950: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">-4.586e+001 -3.805e+003 4.044e+002 3.197e+004 2.431e-002 1.995e+000 1.783e-001 1.486e+001 <o:p></o:p></span></pre>
1951:
1952: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">-3.806e+003 -3.174e+005 3.197e+004 2.541e+006 2.436e+000 2.051e+002 1.483e+001 1.244e+003 <o:p></o:p></span></pre>
1953:
1954: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">-1.577e+000 -1.303e+002 2.431e-002 2.436e+000 1.093e+002 8.979e+003 -3.402e+001 -2.843e+003 <o:p></o:p></span></pre>
1955:
1956: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">-1.313e+002 -1.091e+004 1.995e+000 2.051e+002 8.979e+003 7.420e+005 -2.842e+003 -2.388e+005 <o:p></o:p></span></pre>
1957:
1958: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">3.914e-001 2.967e+001 1.783e-001 1.483e+001 -3.402e+001 -2.842e+003 1.494e+002 1.251e+004 <o:p></o:p></span></pre>
1959:
1960: <pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">3.166e+001 2.399e+003 1.486e+001 1.244e+003 -2.843e+003 -2.388e+005 1.251e+004 1.053e+006 <o:p></o:p></span></pre>
1961:
1962: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
1963: DE"># Scales<o:p></o:p></span></pre>
1964:
1965: <pre style="margin-left:18.0pt;text-align:
1966: justify"><span lang="DE" style="mso-ansi-language:DE">12 1.00000e-004 1.00000e-006<o:p></o:p></span></pre>
1967:
1968: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
1969: DE">13 1.00000e-004 1.00000e-006<o:p></o:p></span></pre>
1970:
1971: <pre style="margin-left:
1972: 18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:DE">21 1.00000e-003 1.00000e-005<o:p></o:p></span></pre>
1973:
1974: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
1975: DE">23 1.00000e-004 1.00000e-005<o:p></o:p></span></pre>
1976:
1977: <pre style="margin-left:
1978: 18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:DE"># Covariance<o:p></o:p></span></pre>
1979:
1980: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
1981: DE"><span style="mso-spacerun: yes"> </span>1 5.90661e-001<o:p></o:p></span></pre>
1982:
1983: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
1984: DE"><span style="mso-spacerun: yes"> </span>2 -7.26732e-003 8.98810e-005<o:p></o:p></span></pre>
1985:
1986: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
1987: DE"><span style="mso-spacerun: yes"> </span>3 8.80177e-002 -1.12706e-003 5.15824e-001<o:p></o:p></span></pre>
1988:
1989: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
1990: DE"><span style="mso-spacerun: yes"> </span>4 -1.13082e-003 1.45267e-005 -6.50070e-003 8.23270e-005<o:p></o:p></span></pre>
1991:
1992: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
1993: DE"><span style="mso-spacerun: yes"> </span>5 9.31265e-003 -1.16106e-004 6.00210e-004 -8.04151e-006 1.75753e+000<o:p></o:p></span></pre>
1994:
1995: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
1996: DE"><span style="mso-spacerun: yes"> </span>6 -1.15664e-004 1.44850e-006 -7.79995e-006 1.04770e-007 -2.12929e-002 2.59422e-004<o:p></o:p></span></pre>
1997:
1998: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
1999: DE"><span style="mso-spacerun: yes"> </span>7 1.35103e-003 -1.75392e-005 -6.38237e-004 7.85424e-006 4.02601e-001 -4.86776e-003 1.32682e+000<o:p></o:p></span></pre>
2000:
2001: <pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
2002: DE"><span style="mso-spacerun: yes"> </span>8 -1.82421e-005 2.35811e-007 7.75503e-006 -9.58687e-008 -4.86589e-003 5.91641e-005 -1.57767e-002 1.88622e-004<o:p></o:p></span></pre>
2003:
2004: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># agemin agemax for lifexpectancy, bage fage (if mle==0 ie no data nor Max likelihood).<o:p></o:p></span></pre>
2005:
2006: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
2007:
2008: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
2009:
2010: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">agemin=70 agemax=100 bage=50 fage=100<o:p></o:p></span></pre>
2011:
2012: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing prevalence limit: result on file 'plrmypar.txt' <o:p></o:p></span></pre>
2013:
2014: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing pij: result on file 'pijrmypar.txt' <o:p></o:p></span></pre>
2015:
2016: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing Health Expectancies: result on file 'ermypar.txt' <o:p></o:p></span></pre>
2017:
2018: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing Variance-covariance of DFLEs: file 'vrmypar.txt' <o:p></o:p></span></pre>
2019:
2020: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing Total LEs with variances: file 'trmypar.txt' <o:p></o:p></span></pre>
2021:
2022: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing Variance-covariance of Prevalence limit: file 'vplrmypar.txt' <o:p></o:p></span></pre>
2023:
2024: <pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">End of Imach<o:p></o:p></span></pre>
2025:
2026: <p
2027: style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Once
2028: the running is finished, the program requires a caracter:<o:p></o:p></span></p>
2029:
2030: <table border="1" cellpadding="0"
2031: style="mso-cellspacing:1.5pt;mso-padding-alt:
2032: 0cm 0cm 0cm 0cm">
2033: <tr>
2034: <td width="100%"
2035: style="width:100.0%;padding:.75pt .75pt .75pt .75pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">Type
2036: e to edit output files, c to start again, and q for
2037: exiting:</span><span lang="EN-GB" style="mso-ansi-language:
2038: EN-GB"><o:p></o:p></span></strong></td>
2039: </tr>
2040: </table>
2041:
2042: <p
2043: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">First
2044: you should enter <strong>e </strong>to edit the master file
2045: mypar.htm. <o:p></o:p></span></p>
2046:
2047: <ul type="disc">
2048: <li class="MsoNormal"
2049: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
2050: mso-list:l9 level1 lfo49;tab-stops:list 36.0pt"><u><span lang="EN-GB" style="mso-ansi-language:EN-GB">Outputs
2051: files</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></u> <br>
2052: <br>
2053: - Observed prevalence in each state: </span><a
2054: href="..\mytry\prmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">pmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
2055: - Estimated parameters and the covariance matrix: </span><a
2056: href="..\mytry\rmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">rmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
2057: - Stationary prevalence in each state: </span><a
2058: href="..\mytry\plrmypar.txt"><span lang="EN-GB" style="mso-ansi-language:
2059: EN-GB">plrmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
2060: EN-GB"></a> <br>
2061: - Transition probabilities: </span><a
2062: href="..\mytry\pijrmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">pijrmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
2063: - Copy of the parameter file: </span><a
2064: href="..\mytry\ormypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">ormypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
2065: - Life expectancies by age and initial health status: </span><a
2066: href="..\mytry\ermypar.txt"><span lang="EN-GB" style="mso-ansi-language:
2067: EN-GB">ermypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
2068: EN-GB"></a> <br>
2069: - Variances of life expectancies by age and initial
2070: health status: </span><a href="..\mytry\vrmypar.txt"><span lang="EN-GB" style="mso-ansi-language:
2071: EN-GB">vrmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
2072: EN-GB"></a>
2073: <br>
2074: - Health expectancies with their variances: </span><a
2075: href="..\mytry\trmypar.txt"><span lang="EN-GB" style="mso-ansi-language:
2076: EN-GB">trmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
2077: EN-GB"></a> <br>
2078: - Standard deviation of stationary prevalence: </span><a
2079: href="..\mytry\vplrmypar.txt"><span lang="EN-GB" style="mso-ansi-language:
2080: EN-GB">vplrmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
2081: EN-GB"></a><br>
2082: - Prevalences forecasting: </span><a href="frmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">frmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>
2083: <br>
2084: - Population forecasting (if popforecast=1): </span><a
2085: href="poprmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">poprmypar.txt</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
2086: <li class="MsoNormal"
2087: style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
2088: mso-list:l9 level1 lfo49;tab-stops:list 36.0pt"><u><span lang="EN-GB" style="mso-ansi-language:EN-GB">Graphs</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></u>
2089: <br>
2090: <br>
2091: -</span><a href="..\mytry\pemypar1.gif"><span lang="EN-GB" style="mso-ansi-language:
2092: EN-GB">One-step transition
2093: probabilities</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a><br>
2094: -</span><a href="..\mytry\pmypar11.gif"><span lang="EN-GB" style="mso-ansi-language:
2095: EN-GB">Convergence to the
2096: stationary prevalence</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a><br>
2097: -</span><a href="..\mytry\vmypar11.gif"><span lang="EN-GB" style="mso-ansi-language:
2098: EN-GB">Observed and stationary
2099: prevalence in state (1) with the confident interval</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
2100: -</span><a href="..\mytry\vmypar21.gif"><span lang="EN-GB" style="mso-ansi-language:
2101: EN-GB">Observed and stationary
2102: prevalence in state (2) with the confident interval</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
2103: -</span><a href="..\mytry\expmypar11.gif"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Health life
2104: expectancies by age and initial health state (1)</span><span lang="EN-GB" style="mso-ansi-language:
2105: EN-GB"></a> <br>
2106: -</span><a href="..\mytry\expmypar21.gif"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Health life
2107: expectancies by age and initial health state (2)</span><span lang="EN-GB" style="mso-ansi-language:
2108: EN-GB"></a> <br>
2109: -</span><a href="..\mytry\emypar1.gif"><span lang="EN-GB" style="mso-ansi-language:
2110: EN-GB">Total life expectancy by
2111: age and health expectancies in states (1) and (2).</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
2112: </ul>
2113:
2114: <p
2115: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
2116: software have been partly granted by </span><a
2117: href="http://euroreves.ined.fr"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Euro-REVES</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>, a concerted
2118: action from the European Union. It will be copyrighted
2119: identically to a GNU software product, i.e. program and software
2120: can be distributed freely for non commercial use. Sources are not
2121: widely distributed today. You can get them by asking us with a
2122: simple justification (name, email, institute) </span><a
2123: href="mailto:brouard@ined.fr"><span lang="EN-GB" style="mso-ansi-language:EN-GB">mailto:brouard@ined.fr</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> and </span><a
2124: href="mailto:lievre@ined.fr"><span lang="EN-GB" style="mso-ansi-language:EN-GB">mailto:lievre@ined.fr</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> .<o:p></o:p></span></p>
2125:
2126: <p
2127: style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Latest
2128: version (0.7 of February 2002) can be accessed at </span><a
2129: href="http://euroreves.ined.fr/imach"><span lang="EN-GB" style="mso-ansi-language:EN-GB">http://euroreves.ined.fr/imach</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></p>
2130: </body>
2131: </html>
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>