<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="ProgId" content="Word.Document">
<meta name="Originator" content="Microsoft Word 9">
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
<title>Computing Health Expectancies using IMaCh</title>
<link rel="File-List" href="./imach_fichiers/filelist.xml">
<link rel="Edit-Time-Data" href="./imach_fichiers/editdata.mso">
<!--[if !mso]>
<style>
v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style>
<![endif]-->
<!--[if gte mso 9]><xml>
<o:DocumentProperties>
<o:Author>agnes lievre</o:Author>
<o:Template>Normal</o:Template>
<o:LastAuthor>agnes lievre</o:LastAuthor>
<o:Revision>23</o:Revision>
<o:TotalTime>311</o:TotalTime>
<o:Created>2002-03-02T16:20:00Z</o:Created>
<o:LastSaved>2002-03-03T21:50:00Z</o:LastSaved>
<o:Pages>15</o:Pages>
<o:Words>6119</o:Words>
<o:Characters>34882</o:Characters>
<o:Lines>290</o:Lines>
<o:Paragraphs>69</o:Paragraphs>
<o:CharactersWithSpaces>42837</o:CharactersWithSpaces>
<o:Version>9.4402</o:Version>
</o:DocumentProperties>
</xml><![endif]-->
<!--[if gte mso 9]><xml>
<w:WordDocument>
<w:HyphenationZone>21</w:HyphenationZone>
</w:WordDocument>
</xml><![endif]-->
<style>
<!--
/* Font Definitions */
@font-face
{font-family:Wingdings;
panose-1:5 0 0 0 0 0 0 0 0 0;
mso-font-charset:2;
mso-generic-font-family:auto;
mso-font-pitch:variable;
mso-font-signature:0 268435456 0 0 -2147483648 0;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{mso-style-parent:"";
margin:0cm;
margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:"Times New Roman";
mso-fareast-font-family:"Times New Roman";}
h1
{margin-right:0cm;
mso-margin-top-alt:auto;
mso-margin-bottom-alt:auto;
margin-left:0cm;
mso-pagination:widow-orphan;
mso-outline-level:1;
font-size:24.0pt;
font-family:"Times New Roman";
mso-font-kerning:18.0pt;
font-weight:bold;}
h2
{margin-right:0cm;
mso-margin-top-alt:auto;
mso-margin-bottom-alt:auto;
margin-left:0cm;
mso-pagination:widow-orphan;
mso-outline-level:2;
font-size:18.0pt;
font-family:"Times New Roman";
font-weight:bold;}
h3
{margin-right:0cm;
mso-margin-top-alt:auto;
mso-margin-bottom-alt:auto;
margin-left:0cm;
mso-pagination:widow-orphan;
mso-outline-level:3;
font-size:13.5pt;
font-family:"Times New Roman";
font-weight:bold;}
h4
{margin-right:0cm;
mso-margin-top-alt:auto;
mso-margin-bottom-alt:auto;
margin-left:0cm;
mso-pagination:widow-orphan;
mso-outline-level:4;
font-size:12.0pt;
font-family:"Times New Roman";
font-weight:bold;}
h5
{margin-right:0cm;
mso-margin-top-alt:auto;
mso-margin-bottom-alt:auto;
margin-left:0cm;
mso-pagination:widow-orphan;
mso-outline-level:5;
font-size:10.0pt;
font-family:"Times New Roman";
font-weight:bold;}
a:link, span.MsoHyperlink
{color:blue;
text-decoration:underline;
text-underline:single;}
a:visited, span.MsoHyperlinkFollowed
{color:blue;
text-decoration:underline;
text-underline:single;}
p
{margin-right:0cm;
mso-margin-top-alt:auto;
mso-margin-bottom-alt:auto;
margin-left:0cm;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:"Times New Roman";
mso-fareast-font-family:"Times New Roman";}
pre
{margin:0cm;
margin-bottom:.0001pt;
mso-pagination:widow-orphan;
tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt;
font-size:10.0pt;
font-family:"Courier New";
mso-fareast-font-family:"Courier New";}
@page Section1
{size:595.3pt 841.9pt;
margin:70.85pt 70.85pt 70.85pt 70.85pt;
mso-header-margin:35.4pt;
mso-footer-margin:35.4pt;
mso-paper-source:0;}
div.Section1
{page:Section1;}
/* List Definitions */
@list l0
{mso-list-id:184488806;
mso-list-type:hybrid;
mso-list-template-ids:-1529696740 -412605010 -907664984 -2032001966 -1219577922 -1989525672 1804215288 1798964568 2064445346 -921394074;}
@list l0:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1
{mso-list-id:204831336;
mso-list-type:hybrid;
mso-list-template-ids:-1844294122 94378308 -806846340 -1272687644 -333439258 -1126675816 1099701808 1453997410 1355317140 -183874942;}
@list l1:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l2
{mso-list-id:441344838;
mso-list-type:hybrid;
mso-list-template-ids:-1624363430 -1068334662 975101306 1309600228 -2116116870 769974826 -307843868 1028545738 868800422 -1496705886;}
@list l2:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l3
{mso-list-id:628702260;
mso-list-type:hybrid;
mso-list-template-ids:-927709454 416302846 373988436 -1134147144 -1982968238 475822148 827730770 934571264 602550890 1800972154;}
@list l3:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l4
{mso-list-id:752507057;
mso-list-type:hybrid;
mso-list-template-ids:-1773518296 67895297 67895299 67895301 67895297 67895299 67895301 67895297 67895299 67895301;}
@list l4:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Symbol;}
@list l5
{mso-list-id:818232419;
mso-list-type:hybrid;
mso-list-template-ids:-1143944236 -95769308 -1426324944 1101845342 1451904852 -884162680 1945505468 -1163215946 -592140202 1700436632;}
@list l5:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l6
{mso-list-id:883836538;
mso-list-type:hybrid;
mso-list-template-ids:32399718 -134710470 -1096777840 1309058016 1376137788 -1290646696 -883388418 -1972580442 -797425852 -2051513306;}
@list l6:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l7
{mso-list-id:904297090;
mso-list-type:hybrid;
mso-list-template-ids:651483934 -1330890910 68314940 -1090220572 161909366 1495697220 -847235596 603869070 -2107325174 -1292888626;}
@list l7:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l8
{mso-list-id:1063483777;
mso-list-type:hybrid;
mso-list-template-ids:1396622820 67895297 67895299 67895301 67895297 67895299 67895301 67895297 67895299 67895301;}
@list l8:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Symbol;}
@list l9
{mso-list-id:1168903496;
mso-list-type:hybrid;
mso-list-template-ids:-2008413052 -1461950228 -1012751362 -919308802 443596168 -1469662014 -359112926 504948540 1759957928 1612641564;}
@list l9:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l10
{mso-list-id:1190214980;
mso-list-type:hybrid;
mso-list-template-ids:934709936 -291345380 -81906558 -968867310 665229182 1336730126 -1107941388 -20391304 -674328264 -1574639962;}
@list l10:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l11
{mso-list-id:1384715951;
mso-list-type:hybrid;
mso-list-template-ids:-515744014 -566093190 799967300 770599756 -1594063690 -869741144 1377056636 315393812 -1370061484 1511570004;}
@list l11:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l12
{mso-list-id:1593661621;
mso-list-type:hybrid;
mso-list-template-ids:-1035417432 1271449484 -308236740 -1122210034 -380844018 1478807872 266132728 -1091829500 812926462 -1442827238;}
@list l12:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l13
{mso-list-id:1636450504;
mso-list-type:hybrid;
mso-list-template-ids:-711022678 -1038569226 1304059700 -837663288 -1699980300 571783806 -231993906 -744861656 1958002196 -1476655198;}
@list l13:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l14
{mso-list-id:1752386307;
mso-list-type:hybrid;
mso-list-template-ids:-347696224 -386773934 1871641532 667840386 1914592500 1728978276 -196066776 1566372654 -755335742 341755130;}
@list l14:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l14:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:72.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l15
{mso-list-id:1756245288;
mso-list-type:hybrid;
mso-list-template-ids:531934386 67895297 67895299 67895301 67895297 67895299 67895301 67895297 67895299 67895301;}
@list l15:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Symbol;}
@list l16
{mso-list-id:1839273133;
mso-list-type:hybrid;
mso-list-template-ids:-556523634 -715873828 -243865004 563531560 -898876536 640947630 967865102 1305671924 1810678544 -1115658030;}
@list l16:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l17
{mso-list-id:1841849959;
mso-list-type:hybrid;
mso-list-template-ids:2053128728 -543362536 926470224 151426154 998932566 84972724 844683600 1807279286 -841218426 -1132452502;}
@list l17:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l18
{mso-list-id:1848639524;
mso-list-type:hybrid;
mso-list-template-ids:638092306 940881202 -784414886 1026841176 1011505968 -653358884 -269310374 2133217052 1173680566 -1995784172;}
@list l18:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
ol
{margin-bottom:0cm;}
ul
{margin-bottom:0cm;}
-->
</style>
<!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1027"/>
</xml><![endif]-->
<!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1"/>
</o:shapelayout></xml><![endif]-->
<!-- Changed by: Agnes Lievre, 12-Oct-2000 -->
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#0000FF" lang="FR"
style="tab-interval:35.4pt">
<hr size="3" noshade color="#EC5E5E">
<h1 align="center" style="text-align:center"><span lang="EN-GB" style="color:#00006A;
mso-ansi-language:EN-GB">Computing Health
Expectancies using IMaCh</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h1>
<h1 align="center" style="text-align:center"><span lang="EN-GB" style="font-size:
18.0pt;color:#00006A;mso-ansi-language:EN-GB">(a Maximum
Likelihood Computer Program using Interpolation of Markov Chains)</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h1>
<p align="center" style="text-align:center"><span lang="EN-GB" style="mso-ansi-language:
EN-GB"> <o:p></o:p></span></p>
<p align="center" style="text-align:center"><a
href="http://www.ined.fr/"><span style="text-decoration:none;text-underline:none"><img src="logo-ined.gif" border="0"
width="151" height="76" id="_x0000_i1026"></span></a><img
src="euroreves2.gif" width="151" height="75" id="_x0000_i1027"></p>
<h3 align="center" style="text-align:center"><a
href="http://www.ined.fr/"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">INED</span><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"></a> and </span><a
href="http://euroreves.ined.fr"><span lang="EN-GB" style="color:#00006A;
mso-ansi-language:EN-GB">EUROREVES</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"><o:p></o:p></span></a></h3>
<p align="center" style="text-align:center"><strong><span lang="EN-GB" style="font-size:13.5pt;color:#00006A;mso-ansi-language:EN-GB">Version 0.7,
February 2002</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></strong></p>
<hr size="3" noshade color="#EC5E5E">
<p align="center" style="text-align:center"><strong><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Authors of
the program: </span></strong><a href="http://sauvy.ined.fr/brouard"><strong><span lang="EN-GB" style="color:#00006A;
mso-ansi-language:EN-GB">Nicolas
Brouard</span><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"></strong></a><strong>, senior researcher at the </span></strong><a
href="http://www.ined.fr"><strong><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Institut National d'Etudes
Démographiques</span><span lang="EN-GB" style="color:#00006A;
mso-ansi-language:EN-GB"></strong></a><strong> (INED, Paris) in the
"Mortality, Health and Epidemiology" Research Unit </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></strong></p>
<p align="center" style="text-align:center"><strong><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">and Agnès
Lièvre</span></strong><b><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"><br clear="left"
style="mso-special-character:line-break">
</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></b></p>
<h4><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Contribution to the mathematics: C. R. Heathcote </span><span lang="EN-GB" style="font-size:
10.0pt;color:#00006A;mso-ansi-language:EN-GB">(Australian
National University, Canberra).</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
<h4><span style="color:#00006A">Contact: Agnès Lièvre (</span><a href="mailto:lievre@ined.fr"><i><span style="color:#00006A">lievre@ined.fr</span><span style="color:#00006A"></i></a>)
</span></h4>
<hr>
<span style="font-size:12.0pt;font-family:"Times New Roman";mso-fareast-font-family:
"Times New Roman";mso-ansi-language:FR;mso-fareast-language:FR;mso-bidi-language:
AR-SA">
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
href="#intro"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Introduction</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
href="#data"><span lang="EN-GB" style="mso-ansi-language:EN-GB">On what kind of data can it be used?</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
href="#datafile"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The data file</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
href="#biaspar"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The parameter file</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
href="#running"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Running Imach</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
href="#output"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Output files and graphs</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l17 level1 lfo3;tab-stops:list 36.0pt"><a
href="#example">Exemple</a> </li>
</ul>
</span>
<hr>
<h2><a name="intro"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Introduction</span><span style="mso-bookmark:intro"></span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"><o:p></o:p></span></a></h2>
<p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This program computes <b>Healthy
Life Expectancies</b> from <b>cross-longitudinal data</b> using
the methodology pioneered by Laditka and Wolf (1). Within the
family of Health Expectancies (HE), Disability-free life
expectancy (DFLE) is probably the most important index to
monitor. In low mortality countries, there is a fear that when
mortality declines, the increase in DFLE is not proportionate to
the increase in total Life expectancy. This case is called the <em>Expansion
of morbidity</em>. Most of the data collected today, in
particular by the international </span><a href="http://euroreves/reves"><span lang="EN-GB" style="mso-ansi-language:EN-GB">REVES</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>
network on Health expectancy, and most HE indices based on these
data, are <em>cross-sectional</em>. It means that the information
collected comes from a single cross-sectional survey: people from
various ages (but mostly old people) are surveyed on their health
status at a single date. Proportion of people disabled at each
age, can then be measured at that date. This age-specific
prevalence curve is then used to distinguish, within the
stationary population (which, by definition, is the life table
estimated from the vital statistics on mortality at the same
date), the disable population from the disability-free
population. Life expectancy (LE) (or total population divided by
the yearly number of births or deaths of this stationary
population) is then decomposed into DFLE and DLE. This method of
computing HE is usually called the Sullivan method (from the name
of the author who first described it).<o:p></o:p></span></p>
<p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Age-specific proportions of people
disable are very difficult to forecast because each proportion
corresponds to historical conditions of the cohort and it is the
result of the historical flows from entering disability and
recovering in the past until today. The age-specific intensities
(or incidence rates) of entering disability or recovering a good
health, are reflecting actual conditions and therefore can be
used at each age to forecast the future of this cohort. For
example if a country is improving its technology of prosthesis,
the incidence of recovering the ability to walk will be higher at
each (old) age, but the prevalence of disability will only
slightly reflect an improve because the prevalence is mostly
affected by the history of the cohort and not by recent period
effects. To measure the period improvement we have to simulate
the future of a cohort of new-borns entering or leaving at each
age the disability state or dying according to the incidence
rates measured today on different cohorts. The proportion of
people disabled at each age in this simulated cohort will be much
lower (using the example of an improvement) that the proportions
observed at each age in a cross-sectional survey. This new
prevalence curve introduced in a life table will give a much more
actual and realistic HE level than the Sullivan method which
mostly measured the History of health conditions in this country.<o:p></o:p></span></p>
<p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Therefore, the main question is how
to measure incidence rates from cross-longitudinal surveys? This
is the goal of the IMaCH program. From your data and using IMaCH
you can estimate period HE and not only Sullivan's HE. Also the
standard errors of the HE are computed.<o:p></o:p></span></p>
<p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">A cross-longitudinal survey
consists in a first survey ("cross") where individuals
from different ages are interviewed on their health status or
degree of disability. At least a second wave of interviews
("longitudinal") should measure each new individual
health status. Health expectancies are computed from the
transitions observed between waves and are computed for each
degree of severity of disability (number of life states). More
degrees you consider, more time is necessary to reach the Maximum
Likelihood of the parameters involved in the model. Considering
only two states of disability (disable and healthy) is generally
enough but the computer program works also with more health
statuses.<span style="mso-spacerun:
yes"> </span><br>
<br>
The simplest model is the multinomial logistic model where <i>pij</i>
is the probability to be observed in state <i>j</i> at the second
wave conditional to be observed in state <em>i</em> at the first
wave. Therefore a simple model is: log<em>(pij/pii)= aij +
bij*age+ cij*sex,</em> where '<i>age</i>' is age and '<i>sex</i>'
is a covariate. The advantage that this computer program claims,
comes from that if the delay between waves is not identical for
each individual, or if some individual missed an interview, the
information is not rounded or lost, but taken into account using
an interpolation or extrapolation. <i>hPijx</i> is the
probability to be observed in state <i>i</i> at age <i>x+h</i>
conditional to the observed state <i>i</i> at age <i>x</i>. The
delay '<i>h</i>' can be split into an exact number (<i>nh*stepm</i>)
of unobserved intermediate states. This elementary transition (by
month or quarter trimester, semester or year) is modeled as a
multinomial logistic. The <i>hPx</i> matrix is simply the matrix
product of <i>nh*stepm</i> elementary matrices and the
contribution of each individual to the likelihood is simply <i>hPijx</i>.
<o:p></o:p></span></p>
<p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The program presented in this
manual is a quite general program named <strong>IMaCh</strong>
(for <strong>I</strong>nterpolated <strong>MA</strong>rkov <strong>CH</strong>ain),
designed to analyse transition data from longitudinal surveys.
The first step is the parameters estimation of a transition
probabilities model between an initial status and a final status.
From there, the computer program produces some indicators such as
observed and stationary prevalence, life expectancies and their
variances and graphs. Our transition model consists in absorbing
and non-absorbing states with the possibility of return across
the non-absorbing states. The main advantage of this package,
compared to other programs for the analysis of transition data
(For example: Proc Catmod of SAS<sup>(r)</sup>) is that the whole
individual information is used even if an interview is missing, a
status or a date is unknown or when the delay between waves is
not identical for each individual. The program can be executed
according to parameters: selection of a sub-sample, number of
absorbing and non-absorbing states, number of waves taken in
account (the user inputs the first and the last interview), a
tolerance level for the maximization function, the periodicity of
the transitions (we can compute annual, quarterly or monthly
transitions), covariates in the model. It works on Windows or on
Unix.<o:p></o:p></span></p>
<hr>
<p><span lang="EN-GB" style="mso-ansi-language:EN-GB">(1) Laditka, Sarah B. and Wolf, Douglas A. (1998), "New
Methods for Analyzing Active Life Expectancy". <i>Journal of
Aging and Health</i>. </span>Vol 10, No. 2. </p>
<hr>
<h2><a name="data"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">On what kind of data can it be used?</span><span style="mso-bookmark:data"></span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h2>
<p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The minimum data required for a
transition model is the recording of a set of individuals
interviewed at a first date and interviewed again at least one
another time. From the observations of an individual, we obtain a
follow-up over time of the occurrence of a specific event. In
this documentation, the event is related to health status at
older ages, but the program can be applied on a lot of
longitudinal studies in different contexts. To build the data
file explained into the next section, you must have the month and
year of each interview and the corresponding health status. But
in order to get age, date of birth (month and year) is required
(missing values is allowed for month). Date of death (month and
year) is an important information also required if the individual
is dead. Shorter steps (i.e. a month) will more closely take into
account the survival time after the last interview.<o:p></o:p></span></p>
<hr>
<h2><a name="datafile"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:
EN-GB">The data file</span><span style="mso-bookmark:datafile"></span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h2>
<p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">In this example, 8,000 people have
been interviewed in a cross-longitudinal survey of 4 waves (1984,
1986, 1988, 1990). Some people missed 1, 2 or 3 interviews.
Health statuses are healthy (1) and disable (2). The survey is
not a real one. It is a simulation of the American Longitudinal
Survey on Aging. The disability state is defined if the
individual missed one of four ADL (Activity of daily living, like
bathing, eating, walking). Therefore, even is the individuals
interviewed in the sample are virtual, the information brought
with this sample is close to the situation of the United States.
Sex is not recorded is this sample.<o:p></o:p></span></p>
<p><span lang="EN-GB" style="mso-ansi-language:EN-GB">Each line of the data set (named </span><a href="data1.txt"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">data1.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>
in this first example) is an individual record which fields are: <o:p></o:p></span></p>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Index
number</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: positive number (field 1) <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">First
covariate</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b> positive number (field 2) <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Second
covariate</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b> positive number (field 3) <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><a
name="Weight"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Weight</span><span style="mso-bookmark:Weight"></span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"></b></a>: positive number (field
4) . In most surveys individuals are weighted according
to the stratification of the sample.<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
of birth</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates are coded
as 99/9999 (field 5) <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
of death</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates are coded
as 99/9999 (field 6) <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
of first interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates
are coded as 99/9999 (field 7) <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Status
at first interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: positive number. Missing values
ar coded -1. (field 8) <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
of second interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates
are coded as 99/9999 (field 9) <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">Status
at second interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong> positive number. Missing
values ar coded -1. (field 10) <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
of third interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates
are coded as 99/9999 (field 11) <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">Status
at third interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong> positive number. Missing
values ar coded -1. (field 12) <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">Date
of fourth interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>: coded as mm/yyyy. Missing dates
are coded as 99/9999 (field 13) <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">Status
at fourth interview</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong> positive number. Missing
values are coded -1. (field 14) <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l12 level1 lfo6;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">etc<o:p></o:p></span></li>
</ul>
<p><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></p>
<p style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If your longitudinal survey do not
include information about weights or covariates, you must fill
the column with a number (e.g. 1) because a missing field is not
allowed.<o:p></o:p></span></p>
<hr>
<h2><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Your first example parameter file</span><a
href="http://euroreves.ined.fr/imach"></a><a name="uio"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h2>
<h2><a name="biaspar"><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>#Imach version 0.7, February 2002,
INED-EUROREVES <o:p></o:p></span></h2>
<p><span lang="EN-GB" style="mso-ansi-language:EN-GB">This is a comment. Comments start with a '#'.<o:p></o:p></span></p>
<h4><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">First uncommented line</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">title=1st_example datafile=data1.txt lastobs=8600 firstpass=1 lastpass=4<o:p></o:p></span></pre>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l1 level1 lfo9;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">title=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
1st_example is title of the run. <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l1 level1 lfo9;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">datafile=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>data1.txt
is the name of the data set. Our example is a six years
follow-up survey. It consists in a baseline followed by 3
reinterviews. <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l1 level1 lfo9;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">lastobs=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
8600 the program is able to run on a subsample where the
last observation number is lastobs. It can be set a
bigger number than the real number of observations (e.g.
100000). In this example, maximisation will be done on
the 8600 first records. <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l1 level1 lfo9;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">firstpass=1</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
, <b>lastpass=4 </b>In case of more than two interviews
in the survey, the program can be run on selected
transitions periods. firstpass=1 means the first
interview included in the calculation is the baseline
survey. lastpass=4 means that the information brought by
the 4th interview is taken into account.<o:p></o:p></span></li>
</ul>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></p>
<h4
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Second
uncommented line</span><a name="biaspar-2"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h4>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">ftol=1.e-08 stepm=1 ncov=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0<o:p></o:p></span></pre>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">ftol=1e-8</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
Convergence tolerance on the function value in the
maximisation of the likelihood. Choosing a correct value
for ftol is difficult. 1e-8 is a correct value for a 32
bits computer.<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">stepm=1</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
Time unit in months for interpolation. Examples:<o:p></o:p></span></li>
<li><ul type="circle">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
stepm=1, the unit is a month <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
stepm=4, the unit is a trimester<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
stepm=12, the unit is a year <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
stepm=24, the unit is two years<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">...
<o:p></o:p></span> </li>
</ul>
</li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">ncov=2</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
Number of covariates in the datafile. The intercept and
the age parameter are counting for 2 covariates.<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">nlstate=2</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
Number of non-absorbing (alive) states. Here we have two
alive states: disability-free is coded 1 and disability
is coded 2. <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">ndeath=1</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
Number of absorbing states. The absorbing state death is
coded 3. <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">maxwav=4</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
Number of waves in the datafile.<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><a
name="mle"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">mle</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b></a><b>=1</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b> Option for the
Maximisation Likelihood Estimation. <o:p></o:p></span></li>
<li><ul type="circle">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
mle=1 the program does the maximisation and the
calculation of health expectancies <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
mle=0 the program only does the calculation of
the health expectancies. <o:p></o:p></span></li>
</ul>
</li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l14 level1 lfo12;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">weight=0</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
Possibility to add weights. <o:p></o:p></span></li>
<li><ul type="circle">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
weight=0 no weights are included <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:
auto;text-align:justify;mso-list:l14 level2 lfo12;tab-stops:list 72.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
weight=1 the maximisation integrates the weights
which are in field </span><a href="#Weight"><span lang="EN-GB" style="mso-ansi-language:EN-GB">4</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></li>
</ul>
</li>
</ul>
<h4
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Covariates</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Intercept
and age are systematically included in the model. Additional
covariates can be included with the command <o:p></o:p></span></p>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">model=<em>list of covariates<o:p></o:p></span></em></pre>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if<strong>
model=. </strong>then no covariates are included<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
<strong>model=V1</strong> the model includes the first
covariate (field 2)<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
<strong>model=V2 </strong>the model includes the second
covariate (field 3)<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
<strong>model=V1+V2 </strong>the model includes the first
and the second covariate (fields 2 and 3)<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
<strong>model=V1*V2 </strong>the model includes the
product of the first and the second covariate (fields 2
and 3)<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l2 level1 lfo15;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">if
<strong>model=V1+V1*age</strong> the model includes the
product covariate*age<o:p></o:p></span></li>
</ul>
<h4
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Guess
values for optimisation</span><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"> </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
<p
style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">You
must write the initial guess values of the parameters for
optimisation. The number of parameters, <em>N</em> depends on the
number of absorbing states and non-absorbing states and on the
number of covariates. <br>
<em>N</em> is given by the formula <em>N</em>=(<em>nlstate</em> +
<em>ndeath</em>-1)*<em>nlstate</em>*<em>ncov</em> . <br>
<br>
Thus in the simple case with 2 covariates (the model is log
(pij/pii) = aij + bij * age where intercept and age are the two
covariates), and 2 health degrees (1 for disability-free and 2
for disability) and 1 absorbing state (3), you must enter 8
initials values, a12, b12, a13, b13, a21, b21, a23, b23. You can
start with zeros as in this example, but if you have a more
precise set (for example from an earlier run) you can enter it
and it will speed up them<br>
Each of the four lines starts with indices "ij": <b>ij
aij bij</b> <o:p></o:p></span></p>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:
36.0pt;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Guess values of aij and bij in log (pij/pii) = aij + bij * age<o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">12 -14.155633<span style="mso-spacerun: yes"> </span>0.110794 <o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">13<span style="mso-spacerun: yes"> </span>-7.925360<span style="mso-spacerun: yes"> </span>0.032091 <o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">21<span style="mso-spacerun: yes"> </span>-1.890135 -0.029473 <o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">23<span style="mso-spacerun: yes"> </span>-6.234642<span style="mso-spacerun: yes"> </span>0.022315 <o:p></o:p></span></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">or,
to simplify: <o:p></o:p></span></p>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:
36.0pt;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">12 0.0 0.0<o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">13 0.0 0.0<o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:
36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;text-align:
justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">21 0.0 0.0<o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">23 0.0 0.0<o:p></o:p></span></pre>
<h4
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Guess
values for computing variances</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
is an output if </span><a href="#mle"><span lang="EN-GB" style="mso-ansi-language:EN-GB">mle</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>=1. But it can be used as
an input to get the various output data files (Health
expectancies, stationary prevalence etc.) and figures without
rerunning the rather long maximisation phase (mle=0). <o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
scales are small values for the evaluation of numerical
derivatives. These derivatives are used to compute the hessian
matrix of the parameters, that is the inverse of the covariance
matrix, and the variances of health expectancies. Each line
consists in indices "ij" followed by the initial scales
(zero to simplify) associated with aij and bij. <o:p></o:p></span></p>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l16 level1 lfo18;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
mle=1 you can enter zeros:<o:p></o:p></span></li>
</ul>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:
36.0pt;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Scales (for hessian or gradient estimation)<o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">12 0. 0. <o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:
36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;text-align:
justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">13 0. 0. <o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">21 0. 0. <o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:
36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;text-align:
justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">23 0. 0. <o:p></o:p></span></pre>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l11 level1 lfo21;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
mle=0 you must enter a covariance matrix (usually
obtained from an earlier run).<o:p></o:p></span></li>
</ul>
<h4
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Covariance
matrix of parameters</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
is an output if </span><a href="#mle"><span lang="EN-GB" style="mso-ansi-language:EN-GB">mle</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>=1. But it can be used as
an input to get the various output data files (Health
expectancies, stationary prevalence etc.) and figures without
rerunning the rather long maximisation phase (mle=0). <o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Each
line starts with indices "ijk" followed by the
covariances between aij and bij: <o:p></o:p></span></p>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>121 Var(a12) <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>122 Cov(b12,a12)<span style="mso-spacerun: yes"> </span>Var(b12) <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>...<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>232 Cov(b23,a12)<span style="mso-spacerun: yes"> </span>Cov(b23,b12) ... Var (b23) <o:p></o:p></span></pre>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l18 level1 lfo24;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
mle=1 you can enter zeros. <o:p></o:p></span></li>
</ul>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:
36.0pt;margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Covariance matrix<o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">121 0.<o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:
36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;text-align:
justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">122 0. 0.<o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">131 0. 0. 0. <o:p></o:p></span></pre>
<pre
style="margin-top:0cm;
margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;
text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">132 0. 0. 0. 0. <o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">211 0. 0. 0. 0. 0. <o:p></o:p></span></pre>
<pre
style="margin-top:0cm;
margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;
text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">212 0. 0. 0. 0. 0. 0. <o:p></o:p></span></pre>
<pre
style="margin-top:0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;
margin-bottom:.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">231 0. 0. 0. 0. 0. 0. 0. <o:p></o:p></span></pre>
<pre
style="margin-top:
0cm;margin-right:36.0pt;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:
.0001pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">232 0. 0. 0. 0. 0. 0. 0. 0.<o:p></o:p></span></pre>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l7 level1 lfo27;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">If
mle=0 you must enter a covariance matrix (usually
obtained from an earlier run).<o:p></o:p></span></li>
</ul>
<h4
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Age
range for calculation of stationary prevalences and health
expectancies</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">agemin=70 agemax=100 bage=50 fage=100<o:p></o:p></span></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Once
we obtained the estimated parameters, the program is able to
calculated stationary prevalence, transitions probabilities and
life expectancies at any age. Choice of age range is useful for
extrapolation. In our data file, ages varies from age 70 to 102.
Setting bage=50 and fage=100, makes the program computing life
expectancy from age bage to age fage. As we use a model, we can
compute life expectancy on a wider age range than the age range
from the data. But the model can be rather wrong on big
intervals.<o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Similarly,
it is possible to get extrapolated stationary prevalence by age
ranging from agemin to agemax. <o:p></o:p></span></p>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l13 level1 lfo30;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">agemin=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
Minimum age for calculation of the stationary prevalence <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l13 level1 lfo30;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">agemax=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
Maximum age for calculation of the stationary prevalence <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l13 level1 lfo30;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">bage=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
Minimum age for calculation of the health expectancies <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l13 level1 lfo30;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">fage=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
Maximum age for calculation of the health expectancies <o:p></o:p></span></li>
</ul>
<h4
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><a
name="Computing"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Computing</span><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB"></a> the observed prevalence</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">begin-prev-date=1/1/1984 end-prev-date=1/6/1988 <o:p></o:p></span></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Statements
'begin-prev-date' and 'end-prev-date' allow to select the period
in which we calculate the observed prevalences in each state. In
this example, the prevalences are calculated on data survey
collected between 1 January 1984 and 1 June 1988. <o:p></o:p></span></p>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l3 level1 lfo33;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">begin-prev-date=
</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> </strong>Starting date (day/month/year)<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l3 level1 lfo33;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">end-prev-date=
</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> </strong>Final date (day/month/year)<o:p></o:p></span></li>
</ul>
<h4
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Population-
or status-based health expectancies</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"><o:p></o:p></span></h4>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">pop_based=0<o:p></o:p></span></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
user has the possibility to choose between population-based or
status-based health expectancies. If pop_based=0 then
status-based health expectancies are computed and if pop_based=1,
the programme computes population-based health expectancies.
Health expectancies are weighted averages of health expectancies
respective of the initial state. For a status-based index, the
weights are the cross-sectional prevalences observed between two
dates, as </span><a href="#Computing"><span lang="EN-GB" style="mso-ansi-language:EN-GB">previously explained</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>, whereas
for a population-based index, the weights are the stationary
prevalences.<o:p></o:p></span></p>
<h4
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Prevalence
forecasting </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">starting-proj-date=1/1/1989 final-proj-date=1/1/1992 mov_average=0 <o:p></o:p></span></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Prevalence
and population projections are available only if the
interpolation unit is a month, i.e. stepm=1. The programme
estimates the prevalence in each state at a precise date
expressed in day/month/year. The programme computes one
forecasted prevalence a year from a starting date (1 January of
1989 in this example) to a final date (1 January 1992). The
statement mov_average allows to compute smoothed forecasted
prevalences with a five-age moving average centred at the mid-age
of the five-age period. <o:p></o:p></span></p>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">starting-proj-date</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong>=
starting date (day/month/year) of forecasting<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">final-proj-date=
</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> </strong>final date (day/month/year) of forecasting<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">mov_average</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong>=
smoothing with a five-age moving average centred at the
mid-age of the five-age period. The command<strong>
mov_average</strong> takes value 1 if the prevalences are
smoothed and 0 otherwise.<o:p></o:p></span></li>
</ul>
<h4
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="color:red;mso-ansi-language:EN-GB">Last
uncommented line : Population forecasting </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h4>
<pre><span lang="EN-GB" style="mso-ansi-language:EN-GB">popforecast=0 popfile=pyram.txt popfiledate=1/1/1989 last-popfiledate=1/1/1992<o:p></o:p></span></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
command is available if the interpolation unit is a month, i.e.
stepm=1 and if popforecast=1. From a data file including age and
number of persons alive at the precise date ‘</span><span lang="EN-GB" style="font-size:10.0pt;mso-bidi-font-size:12.0pt;font-family:"Courier New";
mso-ansi-language:EN-GB">popfiledate’,
</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">you can forecast the number of persons in each state until date</span><span lang="EN-GB" style="font-size:10.0pt;mso-bidi-font-size:
12.0pt;font-family:"Courier New";mso-ansi-language:EN-GB">
‘last-popfiledate’. </span><span lang="EN-GB" style="mso-ansi-language:EN-GB">In this example, the popfile </span><a
href="pyram.txt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">pyram.txt</span><span style="mso-ansi-language:EN-GB"></b></a><b> </span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"><span style="mso-spacerun: yes"></b> </span>includes real
data which are the Japanese population in 1989.<span style="mso-spacerun: yes"> </span><o:p></o:p></span></p>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">popforecast=
0</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b> Option for population forecasting. If
popforecast=1, the programme does the forecasting<b>.<o:p></o:p></span></b></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">popfile=
</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> </b>name of the population file<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">popfiledate=</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>
date of the population population<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l10 level1 lfo36;tab-stops:list 36.0pt"><b><span lang="EN-GB" style="mso-ansi-language:EN-GB">last-popfiledate</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></b>=
date of the last population projection <o:p></o:p></span></li>
</ul>
<hr>
<h2
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><a
name="running"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"></a>Running Imach with this example</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h2>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">We
assume that you entered your </span><a href="biaspar.imach"><span lang="EN-GB" style="mso-ansi-language:EN-GB">1st_example
parameter file</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> as explained </span><a href="#biaspar"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">above</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>. To
run the program you should click on the imach.exe icon and enter
the name of the parameter file which is for example </span><a
href="..\mle\biaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">C:\usr\imach\mle\biaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> (you
also can click on the biaspar.txt icon located in </span><a
href="..\mle"><span lang="EN-GB" style="mso-ansi-language:EN-GB">C:\usr\imach\mle</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> and put it with the mouse on
the imach window).<o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
time to converge depends on the step unit that you used (1 month
is cpu consuming), on the number of cases, and on the number of
variables.<o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
program outputs many files. Most of them are files which will be
plotted for better understanding.<o:p></o:p></span></p>
<hr>
<h2
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><a
name="output"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB">Output of the program and graphs</span><span style="mso-bookmark:output"><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> </span></span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h2>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Once
the optimization is finished, some graphics can be made with a
grapher. We use Gnuplot which is an interactive plotting program
copyrighted but freely distributed. A gnuplot reference manual is
available </span><a href="http://www.gnuplot.info/"><span lang="EN-GB" style="mso-ansi-language:EN-GB">here</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>. <br>
When the running is finished, the user should enter a character
for plotting and output editing. <o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">These
characters are:<o:p></o:p></span></p>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l0 level1 lfo41;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">'c'
to start again the program from the beginning.<o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l0 level1 lfo41;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">'e'
opens the </span><a href="biaspar.htm"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">biaspar.htm</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong></a>
file to edit the output files and graphs. <o:p></o:p></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
text-align:justify;mso-list:l0 level1 lfo41;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">'q'
for exiting.<o:p></o:p></span></li>
</ul>
<h5
style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:18.0pt;mso-bidi-font-size:10.0pt;color:#00006A;
mso-ansi-language:EN-GB">Results
files</span><strong><span lang="EN-GB" style="font-size:13.5pt;mso-ansi-language:EN-GB"> </span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong><br>
<br>
</span><strong><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;
mso-ansi-language:EN-GB">- </strong><a name="Observed_prevalence_in_each_state"><strong>Observed
prevalence in each state</strong></a><strong> (and at first pass)</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></strong>:
</span><a href="prbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">prbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
first line is the title and displays each field of the file. The
first column is age. The fields 2 and 6 are the proportion of
individuals in states 1 and 2 respectively as observed during the
first exam. Others fields are the numbers of people in states 1,
2 or more. The number of columns increases if the number of
states is higher than 2.<br>
The header of the file is <o:p></o:p></span></p>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Age Prev(1) N(1) N Age Prev(2) N(2) N<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">70 1.00000 631 631 70 0.00000 0 631<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">71 0.99681 625 627 71 0.00319 2 627 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">72 0.97125 1115 1148 72 0.02875 33 1148 <o:p></o:p></span></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">It
means that at age 70, the prevalence in state 1 is 1.000 and in
state 2 is 0.00 . At age 71 the number of individuals in state 1
is 625 and in state 2 is 2, hence the total number of people aged
71 is 625+2=627. <o:p></o:p></span></p>
<h5
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
Estimated parameters and covariance matrix</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
href="rbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">rbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
file contains all the maximisation results: <o:p></o:p></span></p>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>-2 log likelihood= 21660.918613445392<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> Estimated parameters: a12 = -12.290174 b12 = 0.092161 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span><span style="mso-spacerun: yes"> </span>a13 = -9.155590<span style="mso-spacerun: yes"> </span>b13 = 0.046627 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>a21 = -2.629849<span style="mso-spacerun: yes"> </span>b21 = -0.022030 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>a23 = -7.958519<span style="mso-spacerun: yes"> </span>b23 = 0.042614<span style="mso-spacerun: yes"> </span><o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Covariance matrix: Var(a12) = 1.47453e-001<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(b12) = 2.18676e-005<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(a13) = 2.09715e-001<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(b13) = 3.28937e-005<span style="mso-spacerun: yes"> </span><o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(a21) = 9.19832e-001<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>Var(b21) = 1.29229e-004<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span></span><span lang="DE" style="mso-ansi-language:DE">Var(a23) = 4.48405e-001<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="DE" style="mso-ansi-language:DE"><span style="mso-spacerun: yes"> </span>Var(b23) = 5.85631e-005 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="DE" style="mso-ansi-language:DE"><span style="mso-spacerun: yes"> </span><o:p></o:p></span></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">By
substitution of these parameters in the regression model, we
obtain the elementary transition probabilities:<o:p></o:p></span></p>
<p
style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><img
src="pebiaspar1.gif" width="400" height="300" id="_x0000_i1037"></p>
<h5
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
Transition probabilities</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="pijrbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">pijrbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"><o:p></o:p></span></a></h5>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Here
are the transitions probabilities Pij(x, x+nh) where nh is a
multiple of 2 years. The first column is the starting age x (from
age 50 to 100), the second is age (x+nh) and the others are the
transition probabilities p11, p12, p13, p21, p22, p23. For
example, line 5 of the file is: <o:p></o:p></span></p>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span>100 106 0.02655 0.17622 0.79722 0.01809 0.13678 0.84513 <o:p></o:p></span></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">and
this means: <o:p></o:p></span></p>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p11(100,106)=0.02655<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p12(100,106)=0.17622<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p13(100,106)=0.79722<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p21(100,106)=0.01809<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p22(100,106)=0.13678<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">p22(100,106)=0.84513 <o:p></o:p></span></pre>
<h5
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
<a name="Stationary_prevalence_in_each_state">Stationary
prevalence in each state</span><span style="mso-bookmark:Stationary_prevalence_in_each_state"></span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>: </span><a href="plrbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">plrbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#Prevalence<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#Age 1-1 2-2<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#************ <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">70 0.90134 0.09866<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">71 0.89177 0.10823 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">72 0.88139 0.11861 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">73 0.87015 0.12985 <o:p></o:p></span></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">At
age 70 the stationary prevalence is 0.90134 in state 1 and
0.09866 in state 2. This stationary prevalence differs from
observed prevalence. Here is the point. The observed prevalence
at age 70 results from the incidence of disability, incidence of
recovery and mortality which occurred in the past of the cohort.
Stationary prevalence results from a simulation with actual
incidences and mortality (estimated from this cross-longitudinal
survey). It is the best predictive value of the prevalence in the
future if "nothing changes in the future". This is
exactly what demographers do with a Life table. Life expectancy
is the expected mean time to survive if observed mortality rates
(incidence of mortality) "remains constant" in the
future. <o:p></o:p></span></p>
<h5
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
Standard deviation of stationary prevalence</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
href="vplrbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">vplrbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">The
stationary prevalence has to be compared with the observed
prevalence by age. But both are statistical estimates and
subjected to stochastic errors due to the size of the sample, the
design of the survey, and, for the stationary prevalence to the
model used and fitted. It is possible to compute the standard
deviation of the stationary prevalence at each age.<o:p></o:p></span></p>
<h5
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-Observed
and stationary prevalence in state (2=disable) with the confident
interval</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="vbiaspar21.htm"><span lang="EN-GB" style="mso-ansi-language:EN-GB">vbiaspar21.gif</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
graph exhibits the stationary prevalence in state (2) with the
confidence interval in red. The green curve is the observed
prevalence (or proportion of individuals in state (2)). Without
discussing the results (it is not the purpose here), we observe
that the green curve is rather below the stationary prevalence.
It suggests an increase of the disability prevalence in the
future.<o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><img
src="vbiaspar21.gif" width="400" height="300" id="_x0000_i1038"></p>
<h5
style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-Convergence
to the stationary prevalence of disability</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
href="pbiaspar11.gif"><span lang="EN-GB" style="mso-ansi-language:EN-GB">pbiaspar11.gif</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a><br>
</span><img src="pbiaspar11.gif" width="400" height="300"
id="_x0000_i1039"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h5>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
graph plots the conditional transition probabilities from an
initial state (1=healthy in red at the bottom, or 2=disable in
green on top) at age <em>x </em>to the final state 2=disable<em> </em>at
age <em>x+h. </em>Conditional means at the condition to be alive
at age <em>x+h </em>which is <i>hP12x</i> + <em>hP22x</em>. The
curves <i>hP12x/(hP12x</i> + <em>hP22x) </em>and <i>hP22x/(hP12x</i>
+ <em>hP22x) </em>converge with <em>h, </em>to the <em>stationary
prevalence of disability</em>. In order to get the stationary
prevalence at age 70 we should start the process at an earlier
age, i.e.50. If the disability state is defined by severe
disability criteria with only a few chance to recover, then the
incidence of recovery is low and the time to convergence is
probably longer. But we don't have experience yet.<o:p></o:p></span></p>
<h5
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
Life expectancies by age and initial health status</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
href="erbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">erbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Health expectancies <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Age 1-1 1-2 2-1 2-2 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">70 10.9226 3.0401 5.6488 6.2122 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">71 10.4384 3.0461 5.2477 6.1599 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">72 9.9667 3.0502 4.8663 6.1025 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">73 9.5077 3.0524 4.5044 6.0401 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">For example 70 10.9226 3.0401 5.6488 6.2122 means:<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="DE" style="mso-ansi-language:DE">e11=10.9226 e12=3.0401 e21=5.6488 e22=6.2122<o:p></o:p></span></pre>
<pre style="text-align:justify"><img src="expbiaspar21.gif"
width="400" height="300" id="_x0000_i1040"><img
src="expbiaspar11.gif" width="400" height="300" id="_x0000_i1041"></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">For
example, life expectancy of a healthy individual at age 70 is
10.92 in the healthy state and 3.04 in the disability state
(=13.96 years). If he was disable at age 70, his life expectancy
will be shorter, 5.64 in the healthy state and 6.21 in the
disability state (=11.85 years). The total life expectancy is a
weighted mean of both, 13.96 and 11.85; weight is the proportion
of people disabled at age 70. In order to get a pure period index
(i.e. based only on incidences) we use the </span><a
href="#Stationary prevalence in each state"><span lang="EN-GB" style="mso-ansi-language:EN-GB">computed or
stationary prevalence</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> at age 70 (i.e. computed from
incidences at earlier ages) instead of the </span><a
href="#Observed prevalence in each state"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">observed prevalence</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"></a>
(for example at first exam) (</span><a href="#Health expectancies"><span lang="EN-GB" style="mso-ansi-language:EN-GB">see
below</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>).<o:p></o:p></span></p>
<h5
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
Variances of life expectancies by age and initial health status</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a
href="vrbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">vrbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">For
example, the covariances of life expectancies Cov(ei,ej) at age
50 are (line 3) <o:p></o:p></span></p>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span></span><span lang="DE" style="mso-ansi-language:DE">Cov(e1,e1)=0.4776<span style="mso-spacerun: yes"> </span>Cov(e1,e2)=0.0488=Cov(e2,e1)<span style="mso-spacerun: yes"> </span>Cov(e2,e2)=0.0424<o:p></o:p></span></pre>
<h5
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
<a name="Health_expectancies">Health expectancies</a> with
standard errors in parentheses</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="trbiaspar.txt"><span lang="EN-GB" style="font-family:"Courier New";
mso-ansi-language:EN-GB">trbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#Total LEs with variances: e.. (std) e.1 (std) e.2 (std) <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">70 13.76 (0.22) 10.40 (0.20) 3.35 (0.14) <o:p></o:p></span></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Thus,
at age 70 the total life expectancy, e..=13.76years is the
weighted mean of e1.=13.96 and e2.=11.85 by the stationary
prevalence at age 70 which are 0.90134 in state 1 and 0.09866 in
state 2, respectively (the sum is equal to one). e.1=10.40 is the
Disability-free life expectancy at age 70 (it is again a weighted
mean of e11 and e21). e.2=3.35 is also the life expectancy at age
70 to be spent in the disability state.<o:p></o:p></span></p>
<h5
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-Total
life expectancy by age and health expectancies in states
(1=healthy) and (2=disable)</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="ebiaspar1.gif"><span lang="EN-GB" style="mso-ansi-language:EN-GB">ebiaspar1.gif</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
figure represents the health expectancies and the total life
expectancy with the confident interval in dashed curve. <o:p></o:p></span></p>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"><span style="mso-spacerun: yes"> </span></span><img
src="ebiaspar1.gif" width="400" height="300" id="_x0000_i1042"></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Standard
deviations (obtained from the information matrix of the model) of
these quantities are very useful. Cross-longitudinal surveys are
costly and do not involve huge samples, generally a few
thousands; therefore it is very important to have an idea of the
standard deviation of our estimates. It has been a big challenge
to compute the Health Expectancy standard deviations. Don't be
confuse: life expectancy is, as any expected value, the mean of a
distribution; but here we are not computing the standard
deviation of the distribution, but the standard deviation of the
estimate of the mean.<o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Our
health expectancies estimates vary according to the sample size
(and the standard deviations give confidence intervals of the
estimate) but also according to the model fitted. Let us explain
it in more details.<o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Choosing
a model means at least two kind of choices. First we have to
decide the number of disability states. Second we have to design,
within the logit model family, the model: variables, covariables,
confounding factors etc. to be included.<o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">More
disability states we have, better is our demographical approach
of the disability process, but smaller are the number of
transitions between each state and higher is the noise in the
measurement. We do not have enough experiments of the various
models to summarize the advantages and disadvantages, but it is
important to say that even if we had huge and unbiased samples,
the total life expectancy computed from a cross-longitudinal
survey, varies with the number of states. If we define only two
states, alive or dead, we find the usual life expectancy where it
is assumed that at each age, people are at the same risk to die.
If we are differentiating the alive state into healthy and
disable, and as the mortality from the disability state is higher
than the mortality from the healthy state, we are introducing
heterogeneity in the risk of dying. The total mortality at each
age is the weighted mean of the mortality in each state by the
prevalence in each state. Therefore if the proportion of people
at each age and in each state is different from the stationary
equilibrium, there is no reason to find the same total mortality
at a particular age. Life expectancy, even if it is a very useful
tool, has a very strong hypothesis of homogeneity of the
population. Our main purpose is not to measure differential
mortality but to measure the expected time in a healthy or
disability state in order to maximise the former and minimize the
latter. But the differential in mortality complexifies the
measurement.<o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Incidences
of disability or recovery are not affected by the number of
states if these states are independant. But incidences estimates
are dependant on the specification of the model. More covariates
we added in the logit model better is the model, but some
covariates are not well measured, some are confounding factors
like in any statistical model. The procedure to "fit the
best model' is similar to logistic regression which itself is
similar to regression analysis. We haven't yet been so far
because we also have a severe limitation which is the speed of
the convergence. On a Pentium III, 500 MHz, even the simplest
model, estimated by month on 8,000 people may take 4 hours to
converge. Also, the program is not yet a statistical package,
which permits a simple writing of the variables and the model to
take into account in the maximisation. The actual program allows
only to add simple variables like age+sex or age+sex+ age*sex but
will never be general enough. But what is to remember, is that
incidences or probability of change from one state to another is
affected by the variables specified into the model.<o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Also,
the age range of the people interviewed has a link with the age
range of the life expectancy which can be estimated by
extrapolation. If your sample ranges from age 70 to 95, you can
clearly estimate a life expectancy at age 70 and trust your
confidence interval which is mostly based on your sample size,
but if you want to estimate the life expectancy at age 50, you
should rely in your model, but fitting a logistic model on a age
range of 70-95 and estimating probabilities of transition out of
this age range, say at age 50 is very dangerous. At least you
should remember that the confidence interval given by the
standard deviation of the health expectancies, are under the
strong assumption that your model is the 'true model', which is
probably not the case.<o:p></o:p></span></p>
<h5
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
Copy of the parameter file</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB">: </span><a href="orbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">orbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
copy of the parameter file can be useful to re-run the program
while saving the old output files. <o:p></o:p></span></p>
<h5
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
Prevalence forecasting</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="frbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">frbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></h5>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">First,
we have estimated the observed prevalence between 1/1/1984 and
1/6/1988. <span style="mso-spacerun:
yes"> </span>The mean date of interview (weighed average of
the interviews performed between1/1/1984 and 1/6/1988) is
estimated to be 13/9/1985, as written on the top on the file.
Then we forecast the probability to be in each state. <o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Example,
at date 1/1/1989 : <o:p></o:p></span></p>
<p class="MsoNormal"><span lang="DE" style="mso-ansi-language:DE"># StartingAge FinalAge P.1 P.2 P.3<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Forecasting at date 1/1/1989 <o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB" style="mso-ansi-language:EN-GB">73 0.807 0.078 0.115 <o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Since
the minimum age is 70 on the 13/9/1985, the youngest forecasted
age is 73. This means that at age a person aged 70 at 13/9/1989
has a probability to enter state1 of 0.807 at age 73 on 1/1/1989.
Similarly, the probability to be in state 2 is 0.078 and the
probability to die is 0.115. Then, on the 1/1/1989, the
prevalence of disability at age 73 is estimated to be 0.088.<o:p></o:p></span></p>
<h5
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="font-size:12.0pt;color:#EC5E5E;mso-ansi-language:EN-GB">-
Population forecasting</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">: </span><a href="poprbiaspar.txt"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">poprbiaspar.txt</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"><o:p></o:p></span></a></h5>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Age P.1 P.2 P.3 [Population]<o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Forecasting at date 1/1/1989 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">75 572685.22 83798.08 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">74 621296.51 79767.99 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">73 645857.70 69320.60 <o:p></o:p></span></pre>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># Forecasting at date 1/1/1990<o:p></o:p></span></pre>
<pre style="text-align:justify">76 442986.68 92721.14 120775.48</pre>
<pre style="text-align:justify">75 487781.02 91367.97 121915.51</pre>
<pre style="text-align:justify">74 512892.07 85003.47 117282.76 </pre>
<pre style="text-align:justify"> <o:p></o:p></pre>
<p class="MsoNormal"><span lang="EN-GB" style="mso-ansi-language:EN-GB">From the population file, we estimate the
number of people in each state. At age 73, 645857 persons are in
state 1 and 69320 are in state 2. One year latter, 512892 are
still in state 1, 85003 are in state 2 and 117282 died before
1/1/1990.<o:p></o:p></span></p>
<pre style="text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
<hr>
<h2
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><a
name="example"><span lang="EN-GB" style="color:#00006A;mso-ansi-language:EN-GB"></a>Trying an example</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></h2>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Since
you know how to run the program, it is time to test it on your
own computer. Try for example on a parameter file named </span><a
href="..\mytry\imachpar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">imachpar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> which is a copy of </span><span lang="EN-GB" style="font-size:10.0pt;font-family:"Courier New";mso-ansi-language:EN-GB">mypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">
included in the subdirectory of imach, </span><span lang="EN-GB" style="font-size:10.0pt;font-family:"Courier New";
mso-ansi-language:EN-GB">mytry</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB">. Edit it to change
the name of the data file to </span><span lang="EN-GB" style="font-size:10.0pt;font-family:"Courier New";mso-ansi-language:
EN-GB">..\data\mydata.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> if you don't want
to copy it on the same directory. The file </span><span lang="EN-GB" style="font-family:"Courier New";mso-ansi-language:EN-GB">mydata.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"> is a
smaller file of 3,000 people but still with 4 waves. <o:p></o:p></span></p>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Click
on the imach.exe icon to open a window. Answer to the question: '<strong>Enter
the parameter file name:'<o:p></o:p></span></strong></p>
<table border="1" cellpadding="0"
style="mso-cellspacing:1.5pt;mso-padding-alt:
0cm 0cm 0cm 0cm">
<tr>
<td width="100%"
style="width:100.0%;padding:.75pt .75pt .75pt .75pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">IMACH,
Version 0.7</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></strong><p style="text-align:justify"><strong><span lang="EN-GB" style="mso-ansi-language:
EN-GB">Enter
the parameter file name: ..\mytry\imachpar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></strong></p>
</td>
</tr>
</table>
<p
style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Most
of the data files or image files generated, will use the
'imachpar' string into their name. The running time is about 2-3
minutes on a Pentium III. If the execution worked correctly, the
outputs files are created in the current directory, and should be
the same as the mypar files initially included in the directory </span><span lang="EN-GB" style="font-size:10.0pt;font-family:"Courier New";mso-ansi-language:EN-GB">mytry</span><span lang="EN-GB" style="mso-ansi-language:EN-GB">.<o:p></o:p></span></p>
<pre
style="margin-left:36.0pt;text-indent:-18.0pt;mso-list:l5 level1 lfo43"><span lang="EN-GB" style="font-family:Symbol;mso-ansi-language:EN-GB">·<span style="font:7.0pt "Times New Roman""> </span></span><u><span lang="EN-GB" style="mso-ansi-language:EN-GB">Output on the screen</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></u> The output screen looks like </span><a
href="imachrun.LOG"><span lang="EN-GB" style="mso-ansi-language:EN-GB">this Log file</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></pre>
<pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">#title=MLE datafile=..\data\mydata.txt lastobs=3000 firstpass=1 lastpass=3<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">ftol=1.000000e-008 stepm=24 ncov=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Total number of individuals= 2965, Agemin = 70.00, Agemax= 100.92<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Warning, no any valid information for:126 line=126<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Warning, no any valid information for:2307 line=2307<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Delay (in months) between two waves Min=21 Max=51 Mean=24.495826<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="font-family:"Times New Roman";mso-ansi-language:EN-GB">These lines give some warnings on the data file and also some raw statistics on frequencies of transitions.</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Age 70 1.=230 loss[1]=3.5% 2.=16 loss[2]=12.5% 1.=222 prev[1]=94.1% 2.=14<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> prev[2]=5.9% 1-1=8 11=200 12=7 13=15 2-1=2 21=6 22=7 23=1<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Age 102 1.=0 loss[1]=NaNQ% 2.=0 loss[2]=NaNQ% 1.=0 prev[1]=NaNQ% 2.=0 <o:p></o:p></span></pre>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l6 level1 lfo46;tab-stops:list 36.0pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Maximisation
with the Powell algorithm. 8 directions are given
corresponding to the 8 parameters. This can be rather
long to get convergence.<br>
</span><span lang="EN-GB" style="font-size:7.5pt;font-family:"Courier New";
mso-ansi-language:EN-GB"> <br>
Powell iter=1 -2*LL=11531.405658264877 1 0.000000000000 2
0.000000000000 3<br>
0.000000000000 4 0.000000000000 5 0.000000000000 6
0.000000000000 7 <br>
0.000000000000 8 0.000000000000<br>
1..........2.................3..........4.................5.........<br>
6................7........8...............<br>
Powell iter=23 -2*LL=6744.954108371555 1 -12.967632334283
<br>
2 0.135136681033 3 -7.402109728262 4 0.067844593326 <br>
5 -0.673601538129 6 -0.006615504377 7 -5.051341616718 <br>
8 0.051272038506<br>
1..............2...........3..............4...........<br>
5..........6................7...........8.........<br>
#Number of iterations = 23, -2 Log likelihood =
6744.954042573691<br>
# Parameters<br>
12 -12.966061 0.135117 <br>
13 -7.401109 0.067831 <br>
21 -0.672648 -0.006627 <br>
23 -5.051297 0.051271 </span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"><o:p></o:p></span></li>
</ul>
<pre
style="margin-left:36.0pt;text-align:justify;text-indent:-18.0pt;
mso-list:l6 level1 lfo46"><span lang="EN-GB" style="font-family:Symbol;mso-ansi-language:EN-GB">·<span style="font:7.0pt "Times New Roman""> </span></span><span lang="EN-GB" style="mso-ansi-language:EN-GB">Calculation of the hessian matrix. Wait...<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">12345678.12.13.14.15.16.17.18.23.24.25.26.27.28.34.35.36.37.38.45.46.47.48.56.57.58.67.68.78<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Inverting the hessian to get the covariance matrix. </span>Wait...</pre>
<pre style="margin-left:18.0pt;text-align:justify"> <o:p></o:p></pre>
<pre style="margin-left:18.0pt;text-align:justify">#Hessian matrix#</pre>
<pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">3.344e+002 2.708e+004 -4.586e+001 -3.806e+003 -1.577e+000 -1.313e+002 3.914e-001 3.166e+001 <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">2.708e+004 2.204e+006 -3.805e+003 -3.174e+005 -1.303e+002 -1.091e+004 2.967e+001 2.399e+003 <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">-4.586e+001 -3.805e+003 4.044e+002 3.197e+004 2.431e-002 1.995e+000 1.783e-001 1.486e+001 <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">-3.806e+003 -3.174e+005 3.197e+004 2.541e+006 2.436e+000 2.051e+002 1.483e+001 1.244e+003 <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">-1.577e+000 -1.303e+002 2.431e-002 2.436e+000 1.093e+002 8.979e+003 -3.402e+001 -2.843e+003 <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">-1.313e+002 -1.091e+004 1.995e+000 2.051e+002 8.979e+003 7.420e+005 -2.842e+003 -2.388e+005 <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">3.914e-001 2.967e+001 1.783e-001 1.483e+001 -3.402e+001 -2.842e+003 1.494e+002 1.251e+004 <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt"><span lang="DE" style="mso-ansi-language:DE">3.166e+001 2.399e+003 1.486e+001 1.244e+003 -2.843e+003 -2.388e+005 1.251e+004 1.053e+006 <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
DE"># Scales<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:
justify"><span lang="DE" style="mso-ansi-language:DE">12 1.00000e-004 1.00000e-006<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
DE">13 1.00000e-004 1.00000e-006<o:p></o:p></span></pre>
<pre style="margin-left:
18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:DE">21 1.00000e-003 1.00000e-005<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
DE">23 1.00000e-004 1.00000e-005<o:p></o:p></span></pre>
<pre style="margin-left:
18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:DE"># Covariance<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
DE"><span style="mso-spacerun: yes"> </span>1 5.90661e-001<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
DE"><span style="mso-spacerun: yes"> </span>2 -7.26732e-003 8.98810e-005<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
DE"><span style="mso-spacerun: yes"> </span>3 8.80177e-002 -1.12706e-003 5.15824e-001<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
DE"><span style="mso-spacerun: yes"> </span>4 -1.13082e-003 1.45267e-005 -6.50070e-003 8.23270e-005<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
DE"><span style="mso-spacerun: yes"> </span>5 9.31265e-003 -1.16106e-004 6.00210e-004 -8.04151e-006 1.75753e+000<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
DE"><span style="mso-spacerun: yes"> </span>6 -1.15664e-004 1.44850e-006 -7.79995e-006 1.04770e-007 -2.12929e-002 2.59422e-004<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
DE"><span style="mso-spacerun: yes"> </span>7 1.35103e-003 -1.75392e-005 -6.38237e-004 7.85424e-006 4.02601e-001 -4.86776e-003 1.32682e+000<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="DE" style="mso-ansi-language:
DE"><span style="mso-spacerun: yes"> </span>8 -1.82421e-005 2.35811e-007 7.75503e-006 -9.58687e-008 -4.86589e-003 5.91641e-005 -1.57767e-002 1.88622e-004<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"># agemin agemax for lifexpectancy, bage fage (if mle==0 ie no data nor Max likelihood).<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB"> <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">agemin=70 agemax=100 bage=50 fage=100<o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing prevalence limit: result on file 'plrmypar.txt' <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing pij: result on file 'pijrmypar.txt' <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing Health Expectancies: result on file 'ermypar.txt' <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing Variance-covariance of DFLEs: file 'vrmypar.txt' <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing Total LEs with variances: file 'trmypar.txt' <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Computing Variance-covariance of Prevalence limit: file 'vplrmypar.txt' <o:p></o:p></span></pre>
<pre style="margin-left:18.0pt;text-align:justify"><span lang="EN-GB" style="mso-ansi-language:EN-GB">End of Imach<o:p></o:p></span></pre>
<p
style="text-align:justify;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Once
the running is finished, the program requires a caracter:<o:p></o:p></span></p>
<table border="1" cellpadding="0"
style="mso-cellspacing:1.5pt;mso-padding-alt:
0cm 0cm 0cm 0cm">
<tr>
<td width="100%"
style="width:100.0%;padding:.75pt .75pt .75pt .75pt"><strong><span lang="EN-GB" style="mso-ansi-language:EN-GB">Type
e to edit output files, c to start again, and q for
exiting:</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"><o:p></o:p></span></strong></td>
</tr>
</table>
<p
style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">First
you should enter <strong>e </strong>to edit the master file
mypar.htm. <o:p></o:p></span></p>
<ul type="disc">
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l9 level1 lfo49;tab-stops:list 36.0pt"><u><span lang="EN-GB" style="mso-ansi-language:EN-GB">Outputs
files</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></u> <br>
<br>
- Observed prevalence in each state: </span><a
href="..\mytry\prmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">pmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
- Estimated parameters and the covariance matrix: </span><a
href="..\mytry\rmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">rmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
- Stationary prevalence in each state: </span><a
href="..\mytry\plrmypar.txt"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">plrmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"></a> <br>
- Transition probabilities: </span><a
href="..\mytry\pijrmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">pijrmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
- Copy of the parameter file: </span><a
href="..\mytry\ormypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">ormypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
- Life expectancies by age and initial health status: </span><a
href="..\mytry\ermypar.txt"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">ermypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"></a> <br>
- Variances of life expectancies by age and initial
health status: </span><a href="..\mytry\vrmypar.txt"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">vrmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"></a>
<br>
- Health expectancies with their variances: </span><a
href="..\mytry\trmypar.txt"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">trmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"></a> <br>
- Standard deviation of stationary prevalence: </span><a
href="..\mytry\vplrmypar.txt"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">vplrmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"></a><br>
- Prevalences forecasting: </span><a href="frmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">frmypar.txt</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>
<br>
- Population forecasting (if popforecast=1): </span><a
href="poprmypar.txt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">poprmypar.txt</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
<li class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-list:l9 level1 lfo49;tab-stops:list 36.0pt"><u><span lang="EN-GB" style="mso-ansi-language:EN-GB">Graphs</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></u>
<br>
<br>
-</span><a href="..\mytry\pemypar1.gif"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">One-step transition
probabilities</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a><br>
-</span><a href="..\mytry\pmypar11.gif"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">Convergence to the
stationary prevalence</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a><br>
-</span><a href="..\mytry\vmypar11.gif"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">Observed and stationary
prevalence in state (1) with the confident interval</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
-</span><a href="..\mytry\vmypar21.gif"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">Observed and stationary
prevalence in state (2) with the confident interval</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> <br>
-</span><a href="..\mytry\expmypar11.gif"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Health life
expectancies by age and initial health state (1)</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"></a> <br>
-</span><a href="..\mytry\expmypar21.gif"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Health life
expectancies by age and initial health state (2)</span><span lang="EN-GB" style="mso-ansi-language:
EN-GB"></a> <br>
-</span><a href="..\mytry\emypar1.gif"><span lang="EN-GB" style="mso-ansi-language:
EN-GB">Total life expectancy by
age and health expectancies in states (1) and (2).</span><span style="mso-ansi-language:EN-GB"></a> <span lang="EN-GB"><o:p></o:p></span></span></li>
</ul>
<p
style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">This
software have been partly granted by </span><a
href="http://euroreves.ined.fr"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Euro-REVES</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a>, a concerted
action from the European Union. It will be copyrighted
identically to a GNU software product, i.e. program and software
can be distributed freely for non commercial use. Sources are not
widely distributed today. You can get them by asking us with a
simple justification (name, email, institute) </span><a
href="mailto:brouard@ined.fr"><span lang="EN-GB" style="mso-ansi-language:EN-GB">mailto:brouard@ined.fr</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> and </span><a
href="mailto:lievre@ined.fr"><span lang="EN-GB" style="mso-ansi-language:EN-GB">mailto:lievre@ined.fr</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"></a> .<o:p></o:p></span></p>
<p
style="tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt"><span lang="EN-GB" style="mso-ansi-language:EN-GB">Latest
version (0.7 of February 2002) can be accessed at </span><a
href="http://euroreves.ined.fr/imach"><span lang="EN-GB" style="mso-ansi-language:EN-GB">http://euroreves.ined.fr/imach</span><span lang="EN-GB" style="mso-ansi-language:EN-GB"><o:p></o:p></span></a></p>
</body>
</html>
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>