Annotation of imach/html/doc/docmortweb.tex, revision 1.1
1.1 ! brouard 1: % -*-Latex-*-
! 2: % $Id: $
! 3: %\documentstyle[11pt,epsf,a4]{article}
! 4: \documentclass[12pt,oneside]{article}
! 5: \usepackage[T1]{fontenc}
! 6: \usepackage{mathmacr,amsmath} %\usepackage{english}
! 7: \usepackage[francais]{babel} %\selectlanguage{francais}
! 8: \usepackage{graphicx,a4,indentfirst,latexsym,color}
! 9: \usepackage[cyr]{aeguill}
! 10: \usepackage{vmargin}
! 11: \usepackage{amsmath}
! 12: %\usepackage{times}
! 13: %\usepackage{shorttoc}
! 14: %\pagestyle{empty}
! 15: %\pagestyle{headings}
! 16: %\setmarginsrb{3cm}{1.7cm}{2.5cm}{3cm}{0cm}{2cm}{1cm}{1cm}
! 17: %\renewcommand{\baselinestretch}{1.5}
! 18: %\usepackage{fancyheadings}
! 19: %\pagestyle{headings}
! 20: \interfootnotelinepenalty=10000
! 21:
! 22: %\rfoot{\leftmark\\\rightmark}
! 23: %\cfoot{}
! 24: \begin{document}
! 25: %\maketitle
! 26:
! 27: \makeatletter
! 28: \renewcommand{\@biblabel}[1]{}
! 29: \makeatother
! 30: \bibliographystyle{apalike}
! 31:
! 32: \section*{Estimation of the force of mortality -independently of the
! 33: initial health state- from cross-longitudinal surveys using IMaCh
! 34: version 0.97}
! 35:
! 36: \newcommand{\thetah}{{\hat{\theta}}}
! 37: \newcommand{\thetat}{{\underset{\tilde{~}}{\theta}}}
! 38: \newcommand{\thetaht}{{\hat{\underset{\tilde{~}}{\theta}}}}
! 39:
! 40:
! 41:
! 42:
! 43:
! 44: The starting point (origin of time) of the duration of survival of
! 45: each individual is the date of entry in the study, i.e. its age at the
! 46: date of the first wave. The time of survival is measured until the
! 47: date of the death if the subject died before the last interview
! 48: or until the age at the last interview if the subject is still alive.
! 49: The models classically used in analysis of the biographies consider
! 50: only the duration of survival and suppose that all the individuals are
! 51: interviewed at the same time. Because of the great disparities of the
! 52: ages at the first wave, it is mandatory to take into account the age
! 53: in the model of analysis of survival. The estimated parameters are
! 54: calculated with the method of the maximum of probability.
! 55:
! 56:
! 57: Let be $x_i$ the age at the first interview of individual $i$, $x_i^d$ is the
! 58: age at death, $x_i^c$ is the age at the last interview and
! 59: $\delta_i$ a dummy variable indicating the status ($\delta_i$=0 if
! 60: the individual is dead and 1 otherwise).
! 61:
! 62: If the subject is dead, its contribution to the likelihood is the
! 63: product of the survival probability between age $x_i$ and $x_i^d$ by
! 64: the probability of dying between age $x_i^d$ and $x_i^d+1$. This
! 65: contribution is
! 66: \begin{eqnarray}
! 67: \mu (x_i^d)\exp\left(-\int_{x_i}^{x_i^d}\mu(u)du\right).
! 68: \end{eqnarray}
! 69:
! 70: The contribution of a surviving suject to the date of the last wave is the
! 71: survival probability between age $x_i$ and $x_i^c$, i.e.
! 72: \begin{eqnarray}
! 73: \exp\left(-\int_{x_i}^{x_i^c}\mu(u)du\right).
! 74: \end{eqnarray}
! 75:
! 76:
! 77: \bigskip The total likelihood $L$ of $n$ independant sujects,
! 78: indexed by $i$, is the product of the contributions of each individuals:
! 79: \begin{eqnarray}
! 80: L = \Pi_{i=1}^{n} \left[\mu
! 81: (x_i^d)\exp\left(-\int_{x_i}^{x_i^d}\mu(u)du\right)\right]^{(1-\delta_i)}\left[\exp\left(-\int_{x_i}^{x_i^c}\mu(u)du\right)\right]^{(\delta_i)}
! 82: \end{eqnarray}
! 83: where $\mu(x)$ is the force of mortality at age $x$. By definition,
! 84: $\mu(x)dx$ is the probability for an individual aged $x$ to die
! 85: between ages $x$ and $x+dx$.
! 86:
! 87: \bigskip The log-likelihood is then
! 88: \begin{eqnarray}
! 89: \label{e:loglik}
! 90: l =
! 91: \sum_{i=1}^{n}(1-\delta_i)\left[\left(-\int_{x_i}^{x_i^d}\mu(u)du\right)
! 92: +\log(\mu(x_i^d))\right]+\delta_i\left[-\int_{x_i}^{x_i^c}\mu(u)du\right]
! 93: \end{eqnarray}
! 94:
! 95: \bigskip
! 96:
! 97: Suppose that the force of mortality is modelled by a Gompertz law
! 98: where the two parameters are $\mu_{100}$ and $\theta_1$. The force of
! 99: mortality is $\mu(x) = \mu_{100} \exp(\theta_1 (x-100))$. The
! 100: parameter $\mu_{100}$ is the force at age 100 ans and $\theta_1$ is
! 101: the slope.
! 102:
! 103: \bigskip Then the log-likelihood is
! 104: \begin{eqnarray}
! 105: \label{e:llgompertz}
! 106: l(\mu_{100},\theta_1) &=& \sum (1-\delta_i) \left[ - \frac{\mu_{100}}{\theta1}
! 107: \left( \exp(\theta_1x_i^d)-\exp(\theta_1x_i)\right)
! 108: + \log(\mu_{100}) + \theta_1(x_i^d) \right] \nonumber\\
! 109: &&
! 110: + \delta_i \left[ - \frac{\mu_{100}}{\theta1} \left( \exp(\theta_1x_i^c)
! 111: -\exp(\theta_1x_i)\right)\right]
! 112: \end{eqnarray}
! 113:
! 114:
! 115:
! 116: \bigskip The usual software of statistics cannot be employed to
! 117: implement this parametric model because their procedures making it
! 118: possible to carry out biographical analyses do not take into account
! 119: the age. All the estimates and the construction of the confidence
! 120: intervals were carried out with a program written in language C. We
! 121: used a function of maximization based on the algorithm of Powell
! 122: describes in the book { \em Numerical Recipes in C }
! 123: (1992). The matrix of covariance is calculated
! 124: like the reverse of the matrix hessienne to the optimum.
! 125:
! 126:
! 127:
! 128:
! 129:
! 130:
! 131: \end{document}
! 132:
! 133:
! 134:
! 135:
! 136:
! 137:
! 138:
! 139:
! 140:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>