Annotation of imach/html/doc/imach.htm, revision 1.1

1.1     ! brouard     1: <!-- $Id: imach.htm,v 1.12 2002/03/13 17:27:44 brouard Exp $ --!>
        !             2: <html>
        !             3: 
        !             4: <head>
        !             5: <meta http-equiv="Content-Type"
        !             6: content="text/html; charset=iso-8859-1">
        !             7: <meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
        !             8: <title>Computing Health Expectancies using IMaCh</title>
        !             9: <!-- Changed by: Agnes Lievre, 12-Oct-2000 -->
        !            10: <html>
        !            11: 
        !            12: <head>
        !            13: <meta http-equiv="Content-Type"
        !            14: content="text/html; charset=iso-8859-1">
        !            15: <title>IMaCh</title>
        !            16: </head>
        !            17: 
        !            18: <body bgcolor="#FFFFFF">
        !            19: 
        !            20: <hr size="3" color="#EC5E5E">
        !            21: 
        !            22: <h1 align="center"><font color="#00006A">Computing Health
        !            23: Expectancies using IMaCh</font></h1>
        !            24: 
        !            25: <h1 align="center"><font color="#00006A" size="5">(a Maximum
        !            26: Likelihood Computer Program using Interpolation of Markov Chains)</font></h1>
        !            27: 
        !            28: <p align="center">&nbsp;</p>
        !            29: 
        !            30: <p align="center"><a href="http://www.ined.fr/"><img
        !            31: src="logo-ined.gif" border="0" width="151" height="76"></a><img
        !            32: src="euroreves2.gif" width="151" height="75"></p>
        !            33: 
        !            34: <h3 align="center"><a href="http://www.ined.fr/"><font
        !            35: color="#00006A">INED</font></a><font color="#00006A"> and </font><a
        !            36: href="http://euroreves.ined.fr"><font color="#00006A">EUROREVES</font></a></h3>
        !            37: 
        !            38: <p align="center"><font color="#00006A" size="4"><strong>Version
        !            39: 0.8a, May 2002</strong></font></p>
        !            40: 
        !            41: <hr size="3" color="#EC5E5E">
        !            42: 
        !            43: <p align="center"><font color="#00006A"><strong>Authors of the
        !            44: program: </strong></font><a href="http://sauvy.ined.fr/brouard"><font
        !            45: color="#00006A"><strong>Nicolas Brouard</strong></font></a><font
        !            46: color="#00006A"><strong>, senior researcher at the </strong></font><a
        !            47: href="http://www.ined.fr"><font color="#00006A"><strong>Institut
        !            48: National d'Etudes Démographiques</strong></font></a><font
        !            49: color="#00006A"><strong> (INED, Paris) in the &quot;Mortality,
        !            50: Health and Epidemiology&quot; Research Unit </strong></font></p>
        !            51: 
        !            52: <p align="center"><font color="#00006A"><strong>and Agnès
        !            53: Lièvre<br clear="left">
        !            54: </strong></font></p>
        !            55: 
        !            56: <h4><font color="#00006A">Contribution to the mathematics: C. R.
        !            57: Heathcote </font><font color="#00006A" size="2">(Australian
        !            58: National University, Canberra).</font></h4>
        !            59: 
        !            60: <h4><font color="#00006A">Contact: Agnès Lièvre (</font><a
        !            61: href="mailto:lievre@ined.fr"><font color="#00006A"><i>lievre@ined.fr</i></font></a><font
        !            62: color="#00006A">) </font></h4>
        !            63: 
        !            64: <hr>
        !            65: 
        !            66: <ul>
        !            67:     <li><a href="#intro">Introduction</a> </li>
        !            68:     <li><a href="#data">On what kind of data can it be used?</a></li>
        !            69:     <li><a href="#datafile">The data file</a> </li>
        !            70:     <li><a href="#biaspar">The parameter file</a> </li>
        !            71:     <li><a href="#running">Running Imach</a> </li>
        !            72:     <li><a href="#output">Output files and graphs</a> </li>
        !            73:     <li><a href="#example">Exemple</a> </li>
        !            74: </ul>
        !            75: 
        !            76: <hr>
        !            77: 
        !            78: <h2><a name="intro"><font color="#00006A">Introduction</font></a></h2>
        !            79: 
        !            80: <p>This program computes <b>Healthy Life Expectancies</b> from <b>cross-longitudinal
        !            81: data</b> using the methodology pioneered by Laditka and Wolf (1).
        !            82: Within the family of Health Expectancies (HE), Disability-free
        !            83: life expectancy (DFLE) is probably the most important index to
        !            84: monitor. In low mortality countries, there is a fear that when
        !            85: mortality declines, the increase in DFLE is not proportionate to
        !            86: the increase in total Life expectancy. This case is called the <em>Expansion
        !            87: of morbidity</em>. Most of the data collected today, in
        !            88: particular by the international <a href="http://www.reves.org">REVES</a>
        !            89: network on Health expectancy, and most HE indices based on these
        !            90: data, are <em>cross-sectional</em>. It means that the information
        !            91: collected comes from a single cross-sectional survey: people from
        !            92: various ages (but mostly old people) are surveyed on their health
        !            93: status at a single date. Proportion of people disabled at each
        !            94: age, can then be measured at that date. This age-specific
        !            95: prevalence curve is then used to distinguish, within the
        !            96: stationary population (which, by definition, is the life table
        !            97: estimated from the vital statistics on mortality at the same
        !            98: date), the disable population from the disability-free
        !            99: population. Life expectancy (LE) (or total population divided by
        !           100: the yearly number of births or deaths of this stationary
        !           101: population) is then decomposed into DFLE and DLE. This method of
        !           102: computing HE is usually called the Sullivan method (from the name
        !           103: of the author who first described it).</p>
        !           104: 
        !           105: <p>Age-specific proportions of people disable are very difficult
        !           106: to forecast because each proportion corresponds to historical
        !           107: conditions of the cohort and it is the result of the historical
        !           108: flows from entering disability and recovering in the past until
        !           109: today. The age-specific intensities (or incidence rates) of
        !           110: entering disability or recovering a good health, are reflecting
        !           111: actual conditions and therefore can be used at each age to
        !           112: forecast the future of this cohort. For example if a country is
        !           113: improving its technology of prosthesis, the incidence of
        !           114: recovering the ability to walk will be higher at each (old) age,
        !           115: but the prevalence of disability will only slightly reflect an
        !           116: improve because the prevalence is mostly affected by the history
        !           117: of the cohort and not by recent period effects. To measure the
        !           118: period improvement we have to simulate the future of a cohort of
        !           119: new-borns entering or leaving at each age the disability state or
        !           120: dying according to the incidence rates measured today on
        !           121: different cohorts. The proportion of people disabled at each age
        !           122: in this simulated cohort will be much lower (using the exemple of
        !           123: an improvement) that the proportions observed at each age in a
        !           124: cross-sectional survey. This new prevalence curve introduced in a
        !           125: life table will give a much more actual and realistic HE level
        !           126: than the Sullivan method which mostly measured the History of
        !           127: health conditions in this country.</p>
        !           128: 
        !           129: <p>Therefore, the main question is how to measure incidence rates
        !           130: from cross-longitudinal surveys? This is the goal of the IMaCH
        !           131: program. From your data and using IMaCH you can estimate period
        !           132: HE and not only Sullivan's HE. Also the standard errors of the HE
        !           133: are computed.</p>
        !           134: 
        !           135: <p>A cross-longitudinal survey consists in a first survey
        !           136: (&quot;cross&quot;) where individuals from different ages are
        !           137: interviewed on their health status or degree of disability. At
        !           138: least a second wave of interviews (&quot;longitudinal&quot;)
        !           139: should measure each new individual health status. Health
        !           140: expectancies are computed from the transitions observed between
        !           141: waves and are computed for each degree of severity of disability
        !           142: (number of life states). More degrees you consider, more time is
        !           143: necessary to reach the Maximum Likelihood of the parameters
        !           144: involved in the model. Considering only two states of disability
        !           145: (disable and healthy) is generally enough but the computer
        !           146: program works also with more health statuses.<br>
        !           147: <br>
        !           148: The simplest model is the multinomial logistic model where <i>pij</i>
        !           149: is the probability to be observed in state <i>j</i> at the second
        !           150: wave conditional to be observed in state <em>i</em> at the first
        !           151: wave. Therefore a simple model is: log<em>(pij/pii)= aij +
        !           152: bij*age+ cij*sex,</em> where '<i>age</i>' is age and '<i>sex</i>'
        !           153: is a covariate. The advantage that this computer program claims,
        !           154: comes from that if the delay between waves is not identical for
        !           155: each individual, or if some individual missed an interview, the
        !           156: information is not rounded or lost, but taken into account using
        !           157: an interpolation or extrapolation. <i>hPijx</i> is the
        !           158: probability to be observed in state <i>i</i> at age <i>x+h</i>
        !           159: conditional to the observed state <i>i</i> at age <i>x</i>. The
        !           160: delay '<i>h</i>' can be split into an exact number (<i>nh*stepm</i>)
        !           161: of unobserved intermediate states. This elementary transition (by
        !           162: month or quarter trimester, semester or year) is modeled as a
        !           163: multinomial logistic. The <i>hPx</i> matrix is simply the matrix
        !           164: product of <i>nh*stepm</i> elementary matrices and the
        !           165: contribution of each individual to the likelihood is simply <i>hPijx</i>.
        !           166: <br>
        !           167: </p>
        !           168: 
        !           169: <p>The program presented in this manual is a quite general
        !           170: program named <strong>IMaCh</strong> (for <strong>I</strong>nterpolated
        !           171: <strong>MA</strong>rkov <strong>CH</strong>ain), designed to
        !           172: analyse transition data from longitudinal surveys. The first step
        !           173: is the parameters estimation of a transition probabilities model
        !           174: between an initial status and a final status. From there, the
        !           175: computer program produces some indicators such as observed and
        !           176: stationary prevalence, life expectancies and their variances and
        !           177: graphs. Our transition model consists in absorbing and
        !           178: non-absorbing states with the possibility of return across the
        !           179: non-absorbing states. The main advantage of this package,
        !           180: compared to other programs for the analysis of transition data
        !           181: (For example: Proc Catmod of SAS<sup>®</sup>) is that the whole
        !           182: individual information is used even if an interview is missing, a
        !           183: status or a date is unknown or when the delay between waves is
        !           184: not identical for each individual. The program can be executed
        !           185: according to parameters: selection of a sub-sample, number of
        !           186: absorbing and non-absorbing states, number of waves taken in
        !           187: account (the user inputs the first and the last interview), a
        !           188: tolerance level for the maximization function, the periodicity of
        !           189: the transitions (we can compute annual, quarterly or monthly
        !           190: transitions), covariates in the model. It works on Windows or on
        !           191: Unix.<br>
        !           192: </p>
        !           193: 
        !           194: <hr>
        !           195: 
        !           196: <p>(1) Laditka, Sarah B. and Wolf, Douglas A. (1998), &quot;New
        !           197: Methods for Analyzing Active Life Expectancy&quot;. <i>Journal of
        !           198: Aging and Health</i>. Vol 10, No. 2. </p>
        !           199: 
        !           200: <hr>
        !           201: 
        !           202: <h2><a name="data"><font color="#00006A">On what kind of data can
        !           203: it be used?</font></a></h2>
        !           204: 
        !           205: <p>The minimum data required for a transition model is the
        !           206: recording of a set of individuals interviewed at a first date and
        !           207: interviewed again at least one another time. From the
        !           208: observations of an individual, we obtain a follow-up over time of
        !           209: the occurrence of a specific event. In this documentation, the
        !           210: event is related to health status at older ages, but the program
        !           211: can be applied on a lot of longitudinal studies in different
        !           212: contexts. To build the data file explained into the next section,
        !           213: you must have the month and year of each interview and the
        !           214: corresponding health status. But in order to get age, date of
        !           215: birth (month and year) is required (missing values is allowed for
        !           216: month). Date of death (month and year) is an important
        !           217: information also required if the individual is dead. Shorter
        !           218: steps (i.e. a month) will more closely take into account the
        !           219: survival time after the last interview.</p>
        !           220: 
        !           221: <hr>
        !           222: 
        !           223: <h2><a name="datafile"><font color="#00006A">The data file</font></a></h2>
        !           224: 
        !           225: <p>In this example, 8,000 people have been interviewed in a
        !           226: cross-longitudinal survey of 4 waves (1984, 1986, 1988, 1990).
        !           227: Some people missed 1, 2 or 3 interviews. Health statuses are
        !           228: healthy (1) and disable (2). The survey is not a real one. It is
        !           229: a simulation of the American Longitudinal Survey on Aging. The
        !           230: disability state is defined if the individual missed one of four
        !           231: ADL (Activity of daily living, like bathing, eating, walking).
        !           232: Therefore, even is the individuals interviewed in the sample are
        !           233: virtual, the information brought with this sample is close to the
        !           234: situation of the United States. Sex is not recorded is this
        !           235: sample.</p>
        !           236: 
        !           237: <p>Each line of the data set (named <a href="data1.txt">data1.txt</a>
        !           238: in this first example) is an individual record which fields are: </p>
        !           239: 
        !           240: <ul>
        !           241:     <li><b>Index number</b>: positive number (field 1) </li>
        !           242:     <li><b>First covariate</b> positive number (field 2) </li>
        !           243:     <li><b>Second covariate</b> positive number (field 3) </li>
        !           244:     <li><a name="Weight"><b>Weight</b></a>: positive number
        !           245:         (field 4) . In most surveys individuals are weighted
        !           246:         according to the stratification of the sample.</li>
        !           247:     <li><b>Date of birth</b>: coded as mm/yyyy. Missing dates are
        !           248:         coded as 99/9999 (field 5) </li>
        !           249:     <li><b>Date of death</b>: coded as mm/yyyy. Missing dates are
        !           250:         coded as 99/9999 (field 6) </li>
        !           251:     <li><b>Date of first interview</b>: coded as mm/yyyy. Missing
        !           252:         dates are coded as 99/9999 (field 7) </li>
        !           253:     <li><b>Status at first interview</b>: positive number.
        !           254:         Missing values ar coded -1. (field 8) </li>
        !           255:     <li><b>Date of second interview</b>: coded as mm/yyyy.
        !           256:         Missing dates are coded as 99/9999 (field 9) </li>
        !           257:     <li><strong>Status at second interview</strong> positive
        !           258:         number. Missing values ar coded -1. (field 10) </li>
        !           259:     <li><b>Date of third interview</b>: coded as mm/yyyy. Missing
        !           260:         dates are coded as 99/9999 (field 11) </li>
        !           261:     <li><strong>Status at third interview</strong> positive
        !           262:         number. Missing values ar coded -1. (field 12) </li>
        !           263:     <li><b>Date of fourth interview</b>: coded as mm/yyyy.
        !           264:         Missing dates are coded as 99/9999 (field 13) </li>
        !           265:     <li><strong>Status at fourth interview</strong> positive
        !           266:         number. Missing values are coded -1. (field 14) </li>
        !           267:     <li>etc</li>
        !           268: </ul>
        !           269: 
        !           270: <p>&nbsp;</p>
        !           271: 
        !           272: <p>If your longitudinal survey do not include information about
        !           273: weights or covariates, you must fill the column with a number
        !           274: (e.g. 1) because a missing field is not allowed.</p>
        !           275: 
        !           276: <hr>
        !           277: 
        !           278: <h2><font color="#00006A">Your first example parameter file</font><a
        !           279: href="http://euroreves.ined.fr/imach"></a><a name="uio"></a></h2>
        !           280: 
        !           281: <h2><a name="biaspar"></a>#Imach version 0.8a, May 2002,
        !           282: INED-EUROREVES </h2>
        !           283: 
        !           284: <p>This is a comment. Comments start with a '#'.</p>
        !           285: 
        !           286: <h4><font color="#FF0000">First uncommented line</font></h4>
        !           287: 
        !           288: <pre>title=1st_example datafile=data1.txt lastobs=8600 firstpass=1 lastpass=4</pre>
        !           289: 
        !           290: <ul>
        !           291:     <li><b>title=</b> 1st_example is title of the run. </li>
        !           292:     <li><b>datafile=</b> data1.txt is the name of the data set.
        !           293:         Our example is a six years follow-up survey. It consists
        !           294:         in a baseline followed by 3 reinterviews. </li>
        !           295:     <li><b>lastobs=</b> 8600 the program is able to run on a
        !           296:         subsample where the last observation number is lastobs.
        !           297:         It can be set a bigger number than the real number of
        !           298:         observations (e.g. 100000). In this example, maximisation
        !           299:         will be done on the 8600 first records. </li>
        !           300:     <li><b>firstpass=1</b> , <b>lastpass=4 </b>In case of more
        !           301:         than two interviews in the survey, the program can be run
        !           302:         on selected transitions periods. firstpass=1 means the
        !           303:         first interview included in the calculation is the
        !           304:         baseline survey. lastpass=4 means that the information
        !           305:         brought by the 4th interview is taken into account.</li>
        !           306: </ul>
        !           307: 
        !           308: <p>&nbsp;</p>
        !           309: 
        !           310: <h4><a name="biaspar-2"><font color="#FF0000">Second uncommented
        !           311: line</font></a></h4>
        !           312: 
        !           313: <pre>ftol=1.e-08 stepm=1 ncovcol=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0</pre>
        !           314: 
        !           315: <ul>
        !           316:     <li><b>ftol=1e-8</b> Convergence tolerance on the function
        !           317:         value in the maximisation of the likelihood. Choosing a
        !           318:         correct value for ftol is difficult. 1e-8 is a correct
        !           319:         value for a 32 bits computer.</li>
        !           320:     <li><b>stepm=1</b> Time unit in months for interpolation.
        !           321:         Examples:<ul>
        !           322:             <li>If stepm=1, the unit is a month </li>
        !           323:             <li>If stepm=4, the unit is a trimester</li>
        !           324:             <li>If stepm=12, the unit is a year </li>
        !           325:             <li>If stepm=24, the unit is two years</li>
        !           326:             <li>... </li>
        !           327:         </ul>
        !           328:     </li>
        !           329:     <li><b>ncovcol=2</b> Number of covariate columns in the
        !           330:         datafile which precede the date of birth. Here you can
        !           331:         put variables that won't necessary be used during the
        !           332:         run. It is not the number of covariates that will be
        !           333:         specified by the model. The 'model' syntax describe the
        !           334:         covariates to take into account. </li>
        !           335:     <li><b>nlstate=2</b> Number of non-absorbing (alive) states.
        !           336:         Here we have two alive states: disability-free is coded 1
        !           337:         and disability is coded 2. </li>
        !           338:     <li><b>ndeath=1</b> Number of absorbing states. The absorbing
        !           339:         state death is coded 3. </li>
        !           340:     <li><b>maxwav=4</b> Number of waves in the datafile.</li>
        !           341:     <li><a name="mle"><b>mle</b></a><b>=1</b> Option for the
        !           342:         Maximisation Likelihood Estimation. <ul>
        !           343:             <li>If mle=1 the program does the maximisation and
        !           344:                 the calculation of health expectancies </li>
        !           345:             <li>If mle=0 the program only does the calculation of
        !           346:                 the health expectancies. </li>
        !           347:         </ul>
        !           348:     </li>
        !           349:     <li><b>weight=0</b> Possibility to add weights. <ul>
        !           350:             <li>If weight=0 no weights are included </li>
        !           351:             <li>If weight=1 the maximisation integrates the
        !           352:                 weights which are in field <a href="#Weight">4</a></li>
        !           353:         </ul>
        !           354:     </li>
        !           355: </ul>
        !           356: 
        !           357: <h4><font color="#FF0000">Covariates</font></h4>
        !           358: 
        !           359: <p>Intercept and age are systematically included in the model.
        !           360: Additional covariates can be included with the command: </p>
        !           361: 
        !           362: <pre>model=<em>list of covariates</em></pre>
        !           363: 
        !           364: <ul>
        !           365:     <li>if<strong> model=. </strong>then no covariates are
        !           366:         included</li>
        !           367:     <li>if <strong>model=V1</strong> the model includes the first
        !           368:         covariate (field 2)</li>
        !           369:     <li>if <strong>model=V2 </strong>the model includes the
        !           370:         second covariate (field 3)</li>
        !           371:     <li>if <strong>model=V1+V2 </strong>the model includes the
        !           372:         first and the second covariate (fields 2 and 3)</li>
        !           373:     <li>if <strong>model=V1*V2 </strong>the model includes the
        !           374:         product of the first and the second covariate (fields 2
        !           375:         and 3)</li>
        !           376:     <li>if <strong>model=V1+V1*age</strong> the model includes
        !           377:         the product covariate*age</li>
        !           378: </ul>
        !           379: 
        !           380: <p>In this example, we have two covariates in the data file
        !           381: (fields 2 and 3). The number of covariates included in the data
        !           382: file between the id and the date of birth is ncovcol=2 (it was
        !           383: named ncov in version prior to 0.8). If you have 3 covariates in
        !           384: the datafile (fields 2, 3 and 4), you will set ncovcol=3. Then
        !           385: you can run the programme with a new parametrisation taking into
        !           386: account the third covariate. For example, <strong>model=V1+V3 </strong>estimates
        !           387: a model with the first and third covariates. More complicated
        !           388: models can be used, but it will takes more time to converge. With
        !           389: a simple model (no covariates), the programme estimates 8
        !           390: parameters. Adding covariates increases the number of parameters
        !           391: : 12 for <strong>model=V1, </strong>16 for <strong>model=V1+V1*age
        !           392: </strong>and 20 for <strong>model=V1+V2+V3.</strong></p>
        !           393: 
        !           394: <h4><font color="#FF0000">Guess values for optimization</font><font
        !           395: color="#00006A"> </font></h4>
        !           396: 
        !           397: <p>You must write the initial guess values of the parameters for
        !           398: optimization. The number of parameters, <em>N</em> depends on the
        !           399: number of absorbing states and non-absorbing states and on the
        !           400: number of covariates. <br>
        !           401: <em>N</em> is given by the formula <em>N</em>=(<em>nlstate</em> +
        !           402: <em>ndeath</em>-1)*<em>nlstate</em>*<em>ncovmodel</em>&nbsp;. <br>
        !           403: <br>
        !           404: Thus in the simple case with 2 covariates (the model is log
        !           405: (pij/pii) = aij + bij * age where intercept and age are the two
        !           406: covariates), and 2 health degrees (1 for disability-free and 2
        !           407: for disability) and 1 absorbing state (3), you must enter 8
        !           408: initials values, a12, b12, a13, b13, a21, b21, a23, b23. You can
        !           409: start with zeros as in this example, but if you have a more
        !           410: precise set (for example from an earlier run) you can enter it
        !           411: and it will speed up them<br>
        !           412: Each of the four lines starts with indices &quot;ij&quot;: <b>ij
        !           413: aij bij</b> </p>
        !           414: 
        !           415: <blockquote>
        !           416:     <pre># Guess values of aij and bij in log (pij/pii) = aij + bij * age
        !           417: 12 -14.155633  0.110794 
        !           418: 13  -7.925360  0.032091 
        !           419: 21  -1.890135 -0.029473 
        !           420: 23  -6.234642  0.022315 </pre>
        !           421: </blockquote>
        !           422: 
        !           423: <p>or, to simplify (in most of cases it converges but there is no
        !           424: warranty!): </p>
        !           425: 
        !           426: <blockquote>
        !           427:     <pre>12 0.0 0.0
        !           428: 13 0.0 0.0
        !           429: 21 0.0 0.0
        !           430: 23 0.0 0.0</pre>
        !           431: </blockquote>
        !           432: 
        !           433: <p>In order to speed up the convergence you can make a first run
        !           434: with a large stepm i.e stepm=12 or 24 and then decrease the stepm
        !           435: until stepm=1 month. If newstepm is the new shorter stepm and
        !           436: stepm can be expressed as a multiple of newstepm, like newstepm=n
        !           437: stepm, then the following approximation holds: </p>
        !           438: 
        !           439: <pre>aij(stepm) = aij(n . stepm) - ln(n)
        !           440: </pre>
        !           441: 
        !           442: <p>and </p>
        !           443: 
        !           444: <pre>bij(stepm) = bij(n . stepm) .</pre>
        !           445: 
        !           446: <p>For example if you already ran for a 6 months interval and
        !           447: got:<br>
        !           448: </p>
        !           449: 
        !           450: <pre># Parameters
        !           451: 12 -13.390179  0.126133 
        !           452: 13  -7.493460  0.048069 
        !           453: 21   0.575975 -0.041322 
        !           454: 23  -4.748678  0.030626 
        !           455: </pre>
        !           456: 
        !           457: <p>If you now want to get the monthly estimates, you can guess
        !           458: the aij by substracting ln(6)= 1,7917<br>
        !           459: and running<br>
        !           460: </p>
        !           461: 
        !           462: <pre>12 -15.18193847  0.126133 
        !           463: 13 -9.285219469  0.048069
        !           464: 21 -1.215784469 -0.041322
        !           465: 23 -6.540437469  0.030626
        !           466: </pre>
        !           467: 
        !           468: <p>and get<br>
        !           469: </p>
        !           470: 
        !           471: <pre>12 -15.029768 0.124347 
        !           472: 13 -8.472981 0.036599 
        !           473: 21 -1.472527 -0.038394 
        !           474: 23 -6.553602 0.029856 
        !           475: 
        !           476: which is closer to the results. The approximation is probably useful
        !           477: only for very small intervals and we don't have enough experience to
        !           478: know if you will speed up the convergence or not.
        !           479: </pre>
        !           480: 
        !           481: <pre>         -ln(12)= -2.484
        !           482:  -ln(6/1)=-ln(6)= -1.791
        !           483:  -ln(3/1)=-ln(3)= -1.0986
        !           484: -ln(12/6)=-ln(2)= -0.693
        !           485: </pre>
        !           486: 
        !           487: <h4><font color="#FF0000">Guess values for computing variances</font></h4>
        !           488: 
        !           489: <p>This is an output if <a href="#mle">mle</a>=1. But it can be
        !           490: used as an input to get the various output data files (Health
        !           491: expectancies, stationary prevalence etc.) and figures without
        !           492: rerunning the rather long maximisation phase (mle=0). </p>
        !           493: 
        !           494: <p>The scales are small values for the evaluation of numerical
        !           495: derivatives. These derivatives are used to compute the hessian
        !           496: matrix of the parameters, that is the inverse of the covariance
        !           497: matrix, and the variances of health expectancies. Each line
        !           498: consists in indices &quot;ij&quot; followed by the initial scales
        !           499: (zero to simplify) associated with aij and bij. </p>
        !           500: 
        !           501: <ul>
        !           502:     <li>If mle=1 you can enter zeros:</li>
        !           503:     <li><blockquote>
        !           504:             <pre># Scales (for hessian or gradient estimation)
        !           505: 12 0. 0. 
        !           506: 13 0. 0. 
        !           507: 21 0. 0. 
        !           508: 23 0. 0. </pre>
        !           509:         </blockquote>
        !           510:     </li>
        !           511:     <li>If mle=0 you must enter a covariance matrix (usually
        !           512:         obtained from an earlier run).</li>
        !           513: </ul>
        !           514: 
        !           515: <h4><font color="#FF0000">Covariance matrix of parameters</font></h4>
        !           516: 
        !           517: <p>This is an output if <a href="#mle">mle</a>=1. But it can be
        !           518: used as an input to get the various output data files (Health
        !           519: expectancies, stationary prevalence etc.) and figures without
        !           520: rerunning the rather long maximisation phase (mle=0). <br>
        !           521: Each line starts with indices &quot;ijk&quot; followed by the
        !           522: covariances between aij and bij:<br>
        !           523: </p>
        !           524: 
        !           525: <pre>
        !           526:    121 Var(a12) 
        !           527:    122 Cov(b12,a12)  Var(b12) 
        !           528:           ...
        !           529:    232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23) </pre>
        !           530: 
        !           531: <ul>
        !           532:     <li>If mle=1 you can enter zeros. </li>
        !           533:     <li><pre># Covariance matrix
        !           534: 121 0.
        !           535: 122 0. 0.
        !           536: 131 0. 0. 0. 
        !           537: 132 0. 0. 0. 0. 
        !           538: 211 0. 0. 0. 0. 0. 
        !           539: 212 0. 0. 0. 0. 0. 0. 
        !           540: 231 0. 0. 0. 0. 0. 0. 0. 
        !           541: 232 0. 0. 0. 0. 0. 0. 0. 0.</pre>
        !           542:     </li>
        !           543:     <li>If mle=0 you must enter a covariance matrix (usually
        !           544:         obtained from an earlier run). </li>
        !           545: </ul>
        !           546: 
        !           547: <h4><font color="#FF0000">Age range for calculation of stationary
        !           548: prevalences and health expectancies</font></h4>
        !           549: 
        !           550: <pre>agemin=70 agemax=100 bage=50 fage=100</pre>
        !           551: 
        !           552: <pre>
        !           553: Once we obtained the estimated parameters, the program is able
        !           554: to calculated stationary prevalence, transitions probabilities
        !           555: and life expectancies at any age. Choice of age range is useful
        !           556: for extrapolation. In our data file, ages varies from age 70 to
        !           557: 102. It is possible to get extrapolated stationary prevalence by
        !           558: age ranging from agemin to agemax.
        !           559: 
        !           560: 
        !           561: Setting bage=50 (begin age) and fage=100 (final age), makes
        !           562: the program computing life expectancy from age 'bage' to age
        !           563: 'fage'. As we use a model, we can interessingly compute life
        !           564: expectancy on a wider age range than the age range from the data.
        !           565: But the model can be rather wrong on much larger intervals.
        !           566: Program is limited to around 120 for upper age!
        !           567: </pre>
        !           568: 
        !           569: <ul>
        !           570:     <li><b>agemin=</b> Minimum age for calculation of the
        !           571:         stationary prevalence </li>
        !           572:     <li><b>agemax=</b> Maximum age for calculation of the
        !           573:         stationary prevalence </li>
        !           574:     <li><b>bage=</b> Minimum age for calculation of the health
        !           575:         expectancies </li>
        !           576:     <li><b>fage=</b> Maximum age for calculation of the health
        !           577:         expectancies </li>
        !           578: </ul>
        !           579: 
        !           580: <h4><a name="Computing"><font color="#FF0000">Computing</font></a><font
        !           581: color="#FF0000"> the observed prevalence</font></h4>
        !           582: 
        !           583: <pre>begin-prev-date=1/1/1984 end-prev-date=1/6/1988 estepm=1</pre>
        !           584: 
        !           585: <pre>
        !           586: Statements 'begin-prev-date' and 'end-prev-date' allow to
        !           587: select the period in which we calculate the observed prevalences
        !           588: in each state. In this example, the prevalences are calculated on
        !           589: data survey collected between 1 january 1984 and 1 june 1988. 
        !           590: </pre>
        !           591: 
        !           592: <ul>
        !           593:     <li><strong>begin-prev-date= </strong>Starting date
        !           594:         (day/month/year)</li>
        !           595:     <li><strong>end-prev-date= </strong>Final date
        !           596:         (day/month/year)</li>
        !           597:     <li><strong>estepm= </strong>Unit (in months).We compute the
        !           598:         life expectancy from trapezoids spaced every estepm
        !           599:         months. This is mainly to measure the difference between
        !           600:         two models: for example if stepm=24 months pijx are given
        !           601:         only every 2 years and by summing them we are calculating
        !           602:         an estimate of the Life Expectancy assuming a linear
        !           603:         progression inbetween and thus overestimating or
        !           604:         underestimating according to the curvature of the
        !           605:         survival function. If, for the same date, we estimate the
        !           606:         model with stepm=1 month, we can keep estepm to 24 months
        !           607:         to compare the new estimate of Life expectancy with the
        !           608:         same linear hypothesis. A more precise result, taking
        !           609:         into account a more precise curvature will be obtained if
        !           610:         estepm is as small as stepm.</li>
        !           611: </ul>
        !           612: 
        !           613: <h4><font color="#FF0000">Population- or status-based health
        !           614: expectancies</font></h4>
        !           615: 
        !           616: <pre>pop_based=0</pre>
        !           617: 
        !           618: <p>The program computes status-based health expectancies, i.e
        !           619: health expectancies which depends on your initial health state.
        !           620: If you are healthy your healthy life expectancy (e11) is higher
        !           621: than if you were disabled (e21, with e11 &gt; e21).<br>
        !           622: To compute a healthy life expectancy independant of the initial
        !           623: status we have to weight e11 and e21 according to the probability
        !           624: to be in each state at initial age or, with other word, according
        !           625: to the proportion of people in each state.<br>
        !           626: We prefer computing a 'pure' period healthy life expectancy based
        !           627: only on the transtion forces. Then the weights are simply the
        !           628: stationnary prevalences or 'implied' prevalences at the initial
        !           629: age.<br>
        !           630: Some other people would like to use the cross-sectional
        !           631: prevalences (the &quot;Sullivan prevalences&quot;) observed at
        !           632: the initial age during a period of time <a href="#Computing">defined
        !           633: just above</a>. <br>
        !           634: </p>
        !           635: 
        !           636: <ul>
        !           637:     <li><strong>popbased= 0 </strong>Health expectancies are
        !           638:         computed at each age from stationary prevalences
        !           639:         'expected' at this initial age.</li>
        !           640:     <li><strong>popbased= 1 </strong>Health expectancies are
        !           641:         computed at each age from cross-sectional 'observed'
        !           642:         prevalence at this initial age. As all the population is
        !           643:         not observed at the same exact date we define a short
        !           644:         period were the observed prevalence is computed.</li>
        !           645: </ul>
        !           646: 
        !           647: <h4><font color="#FF0000">Prevalence forecasting ( Experimental)</font></h4>
        !           648: 
        !           649: <pre>starting-proj-date=1/1/1989 final-proj-date=1/1/1992 mov_average=0 </pre>
        !           650: 
        !           651: <p>Prevalence and population projections are only available if
        !           652: the interpolation unit is a month, i.e. stepm=1 and if there are
        !           653: no covariate. The programme estimates the prevalence in each
        !           654: state at a precise date expressed in day/month/year. The
        !           655: programme computes one forecasted prevalence a year from a
        !           656: starting date (1 january of 1989 in this example) to a final date
        !           657: (1 january 1992). The statement mov_average allows to compute
        !           658: smoothed forecasted prevalences with a five-age moving average
        !           659: centered at the mid-age of the five-age period. <br>
        !           660: </p>
        !           661: 
        !           662: <ul>
        !           663:     <li><strong>starting-proj-date</strong>= starting date
        !           664:         (day/month/year) of forecasting</li>
        !           665:     <li><strong>final-proj-date= </strong>final date
        !           666:         (day/month/year) of forecasting</li>
        !           667:     <li><strong>mov_average</strong>= smoothing with a five-age
        !           668:         moving average centered at the mid-age of the five-age
        !           669:         period. The command<strong> mov_average</strong> takes
        !           670:         value 1 if the prevalences are smoothed and 0 otherwise.</li>
        !           671: </ul>
        !           672: 
        !           673: <h4><font color="#FF0000">Last uncommented line : Population
        !           674: forecasting </font></h4>
        !           675: 
        !           676: <pre>popforecast=0 popfile=pyram.txt popfiledate=1/1/1989 last-popfiledate=1/1/1992</pre>
        !           677: 
        !           678: <p>This command is available if the interpolation unit is a
        !           679: month, i.e. stepm=1 and if popforecast=1. From a data file
        !           680: including age and number of persons alive at the precise date
        !           681: &#145;popfiledate&#146;, you can forecast the number of persons
        !           682: in each state until date &#145;last-popfiledate&#146;. In this
        !           683: example, the popfile <a href="pyram.txt"><b>pyram.txt</b></a>
        !           684: includes real data which are the Japanese population in 1989.<br>
        !           685: </p>
        !           686: 
        !           687: <ul type="disc">
        !           688:     <li class="MsoNormal"
        !           689:     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>popforecast=
        !           690:         0 </b>Option for population forecasting. If
        !           691:         popforecast=1, the programme does the forecasting<b>.</b></li>
        !           692:     <li class="MsoNormal"
        !           693:     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>popfile=
        !           694:         </b>name of the population file</li>
        !           695:     <li class="MsoNormal"
        !           696:     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>popfiledate=</b>
        !           697:         date of the population population</li>
        !           698:     <li class="MsoNormal"
        !           699:     style="TEXT-ALIGN: justify; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto; mso-list: l10 level1 lfo36; tab-stops: list 36.0pt"><b>last-popfiledate</b>=
        !           700:         date of the last population projection&nbsp;</li>
        !           701: </ul>
        !           702: 
        !           703: <hr>
        !           704: 
        !           705: <h2><a name="running"></a><font color="#00006A">Running Imach
        !           706: with this example</font></h2>
        !           707: 
        !           708: <pre>We assume that you typed in your <a href="biaspar.imach">1st_example
        !           709: parameter file</a> as explained <a href="#biaspar">above</a>. 
        !           710: 
        !           711: To run the program you should either:
        !           712: </pre>
        !           713: 
        !           714: <ul>
        !           715:     <li>click on the imach.exe icon and enter the name of the
        !           716:         parameter file which is for example <a
        !           717:         href="C:\usr\imach\mle\biaspar.imach">C:\usr\imach\mle\biaspar.imach</a>
        !           718:     </li>
        !           719:     <li>You also can locate the biaspar.imach icon in <a
        !           720:         href="C:\usr\imach\mle">C:\usr\imach\mle</a> with your
        !           721:         mouse and drag it with the mouse on the imach window). </li>
        !           722:     <li>With latest version (0.7 and higher) if you setup windows
        !           723:         in order to understand &quot;.imach&quot; extension you
        !           724:         can right click the biaspar.imach icon and either edit
        !           725:         with notepad the parameter file or execute it with imach
        !           726:         or whatever. </li>
        !           727: </ul>
        !           728: 
        !           729: <pre>The time to converge depends on the step unit that you used (1
        !           730: month is cpu consuming), on the number of cases, and on the
        !           731: number of variables.
        !           732: 
        !           733: 
        !           734: The program outputs many files. Most of them are files which
        !           735: will be plotted for better understanding.
        !           736: 
        !           737: </pre>
        !           738: 
        !           739: <hr>
        !           740: 
        !           741: <h2><a name="output"><font color="#00006A">Output of the program
        !           742: and graphs</font> </a></h2>
        !           743: 
        !           744: <p>Once the optimization is finished, some graphics can be made
        !           745: with a grapher. We use Gnuplot which is an interactive plotting
        !           746: program copyrighted but freely distributed. A gnuplot reference
        !           747: manual is available <a href="http://www.gnuplot.info/">here</a>. <br>
        !           748: When the running is finished, the user should enter a caracter
        !           749: for plotting and output editing. <br>
        !           750: These caracters are:<br>
        !           751: </p>
        !           752: 
        !           753: <ul>
        !           754:     <li>'c' to start again the program from the beginning.</li>
        !           755:     <li>'e' opens the <a href="biaspar.htm"><strong>biaspar.htm</strong></a>
        !           756:         file to edit the output files and graphs. </li>
        !           757:     <li>'g' to graph again</li>
        !           758:     <li>'q' for exiting.</li>
        !           759: </ul>
        !           760: 
        !           761: <h5><font size="4"><strong>Results files </strong></font><br>
        !           762: <br>
        !           763: <font color="#EC5E5E" size="3"><strong>- </strong></font><a
        !           764: name="Observed prevalence in each state"><font color="#EC5E5E"
        !           765: size="3"><strong>Observed prevalence in each state</strong></font></a><font
        !           766: color="#EC5E5E" size="3"><strong> (and at first pass)</strong></font><b>:
        !           767: </b><a href="prbiaspar.txt"><b>prbiaspar.txt</b></a><br>
        !           768: </h5>
        !           769: 
        !           770: <p>The first line is the title and displays each field of the
        !           771: file. The first column is age. The fields 2 and 6 are the
        !           772: proportion of individuals in states 1 and 2 respectively as
        !           773: observed during the first exam. Others fields are the numbers of
        !           774: people in states 1, 2 or more. The number of columns increases if
        !           775: the number of states is higher than 2.<br>
        !           776: The header of the file is </p>
        !           777: 
        !           778: <pre># Age Prev(1) N(1) N Age Prev(2) N(2) N
        !           779: 70 1.00000 631 631 70 0.00000 0 631
        !           780: 71 0.99681 625 627 71 0.00319 2 627 
        !           781: 72 0.97125 1115 1148 72 0.02875 33 1148 </pre>
        !           782: 
        !           783: <p>It means that at age 70, the prevalence in state 1 is 1.000
        !           784: and in state 2 is 0.00 . At age 71 the number of individuals in
        !           785: state 1 is 625 and in state 2 is 2, hence the total number of
        !           786: people aged 71 is 625+2=627. <br>
        !           787: </p>
        !           788: 
        !           789: <h5><font color="#EC5E5E" size="3"><b>- Estimated parameters and
        !           790: covariance matrix</b></font><b>: </b><a href="rbiaspar.txt"><b>rbiaspar.imach</b></a></h5>
        !           791: 
        !           792: <p>This file contains all the maximisation results: </p>
        !           793: 
        !           794: <pre> -2 log likelihood= 21660.918613445392
        !           795:  Estimated parameters: a12 = -12.290174 b12 = 0.092161 
        !           796:                        a13 = -9.155590  b13 = 0.046627 
        !           797:                        a21 = -2.629849  b21 = -0.022030 
        !           798:                        a23 = -7.958519  b23 = 0.042614  
        !           799:  Covariance matrix: Var(a12) = 1.47453e-001
        !           800:                     Var(b12) = 2.18676e-005
        !           801:                     Var(a13) = 2.09715e-001
        !           802:                     Var(b13) = 3.28937e-005  
        !           803:                     Var(a21) = 9.19832e-001
        !           804:                     Var(b21) = 1.29229e-004
        !           805:                     Var(a23) = 4.48405e-001
        !           806:                     Var(b23) = 5.85631e-005 
        !           807:  </pre>
        !           808: 
        !           809: <p>By substitution of these parameters in the regression model,
        !           810: we obtain the elementary transition probabilities:</p>
        !           811: 
        !           812: <p><img src="pebiaspar1.gif" width="400" height="300"></p>
        !           813: 
        !           814: <h5><font color="#EC5E5E" size="3"><b>- Transition probabilities</b></font><b>:
        !           815: </b><a href="pijrbiaspar.txt"><b>pijrbiaspar.txt</b></a></h5>
        !           816: 
        !           817: <p>Here are the transitions probabilities Pij(x, x+nh) where nh
        !           818: is a multiple of 2 years. The first column is the starting age x
        !           819: (from age 50 to 100), the second is age (x+nh) and the others are
        !           820: the transition probabilities p11, p12, p13, p21, p22, p23. For
        !           821: example, line 5 of the file is: </p>
        !           822: 
        !           823: <pre> 100 106 0.02655 0.17622 0.79722 0.01809 0.13678 0.84513 </pre>
        !           824: 
        !           825: <p>and this means: </p>
        !           826: 
        !           827: <pre>p11(100,106)=0.02655
        !           828: p12(100,106)=0.17622
        !           829: p13(100,106)=0.79722
        !           830: p21(100,106)=0.01809
        !           831: p22(100,106)=0.13678
        !           832: p22(100,106)=0.84513 </pre>
        !           833: 
        !           834: <h5><font color="#EC5E5E" size="3"><b>- </b></font><a
        !           835: name="Stationary prevalence in each state"><font color="#EC5E5E"
        !           836: size="3"><b>Stationary prevalence in each state</b></font></a><b>:
        !           837: </b><a href="plrbiaspar.txt"><b>plrbiaspar.txt</b></a></h5>
        !           838: 
        !           839: <pre>#Prevalence
        !           840: #Age 1-1 2-2
        !           841: 
        !           842: #************ 
        !           843: 70 0.90134 0.09866
        !           844: 71 0.89177 0.10823 
        !           845: 72 0.88139 0.11861 
        !           846: 73 0.87015 0.12985 </pre>
        !           847: 
        !           848: <p>At age 70 the stationary prevalence is 0.90134 in state 1 and
        !           849: 0.09866 in state 2. This stationary prevalence differs from
        !           850: observed prevalence. Here is the point. The observed prevalence
        !           851: at age 70 results from the incidence of disability, incidence of
        !           852: recovery and mortality which occurred in the past of the cohort.
        !           853: Stationary prevalence results from a simulation with actual
        !           854: incidences and mortality (estimated from this cross-longitudinal
        !           855: survey). It is the best predictive value of the prevalence in the
        !           856: future if &quot;nothing changes in the future&quot;. This is
        !           857: exactly what demographers do with a Life table. Life expectancy
        !           858: is the expected mean time to survive if observed mortality rates
        !           859: (incidence of mortality) &quot;remains constant&quot; in the
        !           860: future. </p>
        !           861: 
        !           862: <h5><font color="#EC5E5E" size="3"><b>- Standard deviation of
        !           863: stationary prevalence</b></font><b>: </b><a
        !           864: href="vplrbiaspar.txt"><b>vplrbiaspar.txt</b></a></h5>
        !           865: 
        !           866: <p>The stationary prevalence has to be compared with the observed
        !           867: prevalence by age. But both are statistical estimates and
        !           868: subjected to stochastic errors due to the size of the sample, the
        !           869: design of the survey, and, for the stationary prevalence to the
        !           870: model used and fitted. It is possible to compute the standard
        !           871: deviation of the stationary prevalence at each age.</p>
        !           872: 
        !           873: <h5><font color="#EC5E5E" size="3">-Observed and stationary
        !           874: prevalence in state (2=disable) with confidence interval</font>:<b>
        !           875: </b><a href="vbiaspar21.htm"><b>vbiaspar21.gif</b></a></h5>
        !           876: 
        !           877: <p>This graph exhibits the stationary prevalence in state (2)
        !           878: with the confidence interval in red. The green curve is the
        !           879: observed prevalence (or proportion of individuals in state (2)).
        !           880: Without discussing the results (it is not the purpose here), we
        !           881: observe that the green curve is rather below the stationary
        !           882: prevalence. It suggests an increase of the disability prevalence
        !           883: in the future.</p>
        !           884: 
        !           885: <p><img src="vbiaspar21.gif" width="400" height="300"></p>
        !           886: 
        !           887: <h5><font color="#EC5E5E" size="3"><b>-Convergence to the
        !           888: stationary prevalence of disability</b></font><b>: </b><a
        !           889: href="pbiaspar11.gif"><b>pbiaspar11.gif</b></a><br>
        !           890: <img src="pbiaspar11.gif" width="400" height="300"> </h5>
        !           891: 
        !           892: <p>This graph plots the conditional transition probabilities from
        !           893: an initial state (1=healthy in red at the bottom, or 2=disable in
        !           894: green on top) at age <em>x </em>to the final state 2=disable<em> </em>at
        !           895: age <em>x+h. </em>Conditional means at the condition to be alive
        !           896: at age <em>x+h </em>which is <i>hP12x</i> + <em>hP22x</em>. The
        !           897: curves <i>hP12x/(hP12x</i> + <em>hP22x) </em>and <i>hP22x/(hP12x</i>
        !           898: + <em>hP22x) </em>converge with <em>h, </em>to the <em>stationary
        !           899: prevalence of disability</em>. In order to get the stationary
        !           900: prevalence at age 70 we should start the process at an earlier
        !           901: age, i.e.50. If the disability state is defined by severe
        !           902: disability criteria with only a few chance to recover, then the
        !           903: incidence of recovery is low and the time to convergence is
        !           904: probably longer. But we don't have experience yet.</p>
        !           905: 
        !           906: <h5><font color="#EC5E5E" size="3"><b>- Life expectancies by age
        !           907: and initial health status with standard deviation</b></font><b>: </b><a
        !           908: href="erbiaspar.txt"><b>erbiaspar.txt</b></a></h5>
        !           909: 
        !           910: <pre># Health expectancies 
        !           911: # Age 1-1 (SE) 1-2 (SE) 2-1 (SE) 2-2 (SE)
        !           912: 70 10.4171 (0.1517)    3.0433 (0.4733)    5.6641 (0.1121)    5.6907 (0.3366)
        !           913: 71 9.9325 (0.1409)    3.0495 (0.4234)    5.2627 (0.1107)    5.6384 (0.3129)
        !           914: 72 9.4603 (0.1319)    3.0540 (0.3770)    4.8810 (0.1099)    5.5811 (0.2907)
        !           915: 73 9.0009 (0.1246)    3.0565 (0.3345)    4.5188 (0.1098)    5.5187 (0.2702)
        !           916: </pre>
        !           917: 
        !           918: <pre>For example 70 10.4171 (0.1517) 3.0433 (0.4733) 5.6641 (0.1121) 5.6907 (0.3366) means:
        !           919: e11=10.4171 e12=3.0433 e21=5.6641 e22=5.6907 </pre>
        !           920: 
        !           921: <pre><img src="expbiaspar21.gif" width="400" height="300"><img
        !           922: src="expbiaspar11.gif" width="400" height="300"></pre>
        !           923: 
        !           924: <p>For example, life expectancy of a healthy individual at age 70
        !           925: is 10.42 in the healthy state and 3.04 in the disability state
        !           926: (=13.46 years). If he was disable at age 70, his life expectancy
        !           927: will be shorter, 5.66 in the healthy state and 5.69 in the
        !           928: disability state (=11.35 years). The total life expectancy is a
        !           929: weighted mean of both, 13.46 and 11.35; weight is the proportion
        !           930: of people disabled at age 70. In order to get a pure period index
        !           931: (i.e. based only on incidences) we use the <a
        !           932: href="#Stationary prevalence in each state">computed or
        !           933: stationary prevalence</a> at age 70 (i.e. computed from
        !           934: incidences at earlier ages) instead of the <a
        !           935: href="#Observed prevalence in each state">observed prevalence</a>
        !           936: (for example at first exam) (<a href="#Health expectancies">see
        !           937: below</a>).</p>
        !           938: 
        !           939: <h5><font color="#EC5E5E" size="3"><b>- Variances of life
        !           940: expectancies by age and initial health status</b></font><b>: </b><a
        !           941: href="vrbiaspar.txt"><b>vrbiaspar.txt</b></a></h5>
        !           942: 
        !           943: <p>For example, the covariances of life expectancies Cov(ei,ej)
        !           944: at age 50 are (line 3) </p>
        !           945: 
        !           946: <pre>   Cov(e1,e1)=0.4776  Cov(e1,e2)=0.0488=Cov(e2,e1)  Cov(e2,e2)=0.0424</pre>
        !           947: 
        !           948: <h5><font color="#EC5E5E" size="3"><b>-Variances of one-step
        !           949: probabilities </b></font><b>: </b><a href="probrbiaspar.txt"><b>probrbiaspar.txt</b></a></h5>
        !           950: 
        !           951: <p>For example, at age 65</p>
        !           952: 
        !           953: <pre>   p11=9.960e-001 standard deviation of p11=2.359e-004</pre>
        !           954: 
        !           955: <h5><font color="#EC5E5E" size="3"><b>- </b></font><a
        !           956: name="Health expectancies"><font color="#EC5E5E" size="3"><b>Health
        !           957: expectancies</b></font></a><font color="#EC5E5E" size="3"><b>
        !           958: with standard errors in parentheses</b></font><b>: </b><a
        !           959: href="trbiaspar.txt"><font face="Courier New"><b>trbiaspar.txt</b></font></a></h5>
        !           960: 
        !           961: <pre>#Total LEs with variances: e.. (std) e.1 (std) e.2 (std) </pre>
        !           962: 
        !           963: <pre>70 13.26 (0.22) 9.95 (0.20) 3.30 (0.14) </pre>
        !           964: 
        !           965: <p>Thus, at age 70 the total life expectancy, e..=13.26 years is
        !           966: the weighted mean of e1.=13.46 and e2.=11.35 by the stationary
        !           967: prevalence at age 70 which are 0.90134 in state 1 and 0.09866 in
        !           968: state 2, respectively (the sum is equal to one). e.1=9.95 is the
        !           969: Disability-free life expectancy at age 70 (it is again a weighted
        !           970: mean of e11 and e21). e.2=3.30 is also the life expectancy at age
        !           971: 70 to be spent in the disability state.</p>
        !           972: 
        !           973: <h5><font color="#EC5E5E" size="3"><b>-Total life expectancy by
        !           974: age and health expectancies in states (1=healthy) and (2=disable)</b></font><b>:
        !           975: </b><a href="ebiaspar1.gif"><b>ebiaspar1.gif</b></a></h5>
        !           976: 
        !           977: <p>This figure represents the health expectancies and the total
        !           978: life expectancy with the confident interval in dashed curve. </p>
        !           979: 
        !           980: <pre>        <img src="ebiaspar1.gif" width="400" height="300"></pre>
        !           981: 
        !           982: <p>Standard deviations (obtained from the information matrix of
        !           983: the model) of these quantities are very useful.
        !           984: Cross-longitudinal surveys are costly and do not involve huge
        !           985: samples, generally a few thousands; therefore it is very
        !           986: important to have an idea of the standard deviation of our
        !           987: estimates. It has been a big challenge to compute the Health
        !           988: Expectancy standard deviations. Don't be confuse: life expectancy
        !           989: is, as any expected value, the mean of a distribution; but here
        !           990: we are not computing the standard deviation of the distribution,
        !           991: but the standard deviation of the estimate of the mean.</p>
        !           992: 
        !           993: <p>Our health expectancies estimates vary according to the sample
        !           994: size (and the standard deviations give confidence intervals of
        !           995: the estimate) but also according to the model fitted. Let us
        !           996: explain it in more details.</p>
        !           997: 
        !           998: <p>Choosing a model means ar least two kind of choices. First we
        !           999: have to decide the number of disability states. Second we have to
        !          1000: design, within the logit model family, the model: variables,
        !          1001: covariables, confonding factors etc. to be included.</p>
        !          1002: 
        !          1003: <p>More disability states we have, better is our demographical
        !          1004: approach of the disability process, but smaller are the number of
        !          1005: transitions between each state and higher is the noise in the
        !          1006: measurement. We do not have enough experiments of the various
        !          1007: models to summarize the advantages and disadvantages, but it is
        !          1008: important to say that even if we had huge and unbiased samples,
        !          1009: the total life expectancy computed from a cross-longitudinal
        !          1010: survey, varies with the number of states. If we define only two
        !          1011: states, alive or dead, we find the usual life expectancy where it
        !          1012: is assumed that at each age, people are at the same risk to die.
        !          1013: If we are differentiating the alive state into healthy and
        !          1014: disable, and as the mortality from the disability state is higher
        !          1015: than the mortality from the healthy state, we are introducing
        !          1016: heterogeneity in the risk of dying. The total mortality at each
        !          1017: age is the weighted mean of the mortality in each state by the
        !          1018: prevalence in each state. Therefore if the proportion of people
        !          1019: at each age and in each state is different from the stationary
        !          1020: equilibrium, there is no reason to find the same total mortality
        !          1021: at a particular age. Life expectancy, even if it is a very useful
        !          1022: tool, has a very strong hypothesis of homogeneity of the
        !          1023: population. Our main purpose is not to measure differential
        !          1024: mortality but to measure the expected time in a healthy or
        !          1025: disability state in order to maximise the former and minimize the
        !          1026: latter. But the differential in mortality complexifies the
        !          1027: measurement.</p>
        !          1028: 
        !          1029: <p>Incidences of disability or recovery are not affected by the
        !          1030: number of states if these states are independant. But incidences
        !          1031: estimates are dependant on the specification of the model. More
        !          1032: covariates we added in the logit model better is the model, but
        !          1033: some covariates are not well measured, some are confounding
        !          1034: factors like in any statistical model. The procedure to &quot;fit
        !          1035: the best model' is similar to logistic regression which itself is
        !          1036: similar to regression analysis. We haven't yet been sofar because
        !          1037: we also have a severe limitation which is the speed of the
        !          1038: convergence. On a Pentium III, 500 MHz, even the simplest model,
        !          1039: estimated by month on 8,000 people may take 4 hours to converge.
        !          1040: Also, the program is not yet a statistical package, which permits
        !          1041: a simple writing of the variables and the model to take into
        !          1042: account in the maximisation. The actual program allows only to
        !          1043: add simple variables like age+sex or age+sex+ age*sex but will
        !          1044: never be general enough. But what is to remember, is that
        !          1045: incidences or probability of change from one state to another is
        !          1046: affected by the variables specified into the model.</p>
        !          1047: 
        !          1048: <p>Also, the age range of the people interviewed has a link with
        !          1049: the age range of the life expectancy which can be estimated by
        !          1050: extrapolation. If your sample ranges from age 70 to 95, you can
        !          1051: clearly estimate a life expectancy at age 70 and trust your
        !          1052: confidence interval which is mostly based on your sample size,
        !          1053: but if you want to estimate the life expectancy at age 50, you
        !          1054: should rely in your model, but fitting a logistic model on a age
        !          1055: range of 70-95 and estimating probabilties of transition out of
        !          1056: this age range, say at age 50 is very dangerous. At least you
        !          1057: should remember that the confidence interval given by the
        !          1058: standard deviation of the health expectancies, are under the
        !          1059: strong assumption that your model is the 'true model', which is
        !          1060: probably not the case.</p>
        !          1061: 
        !          1062: <h5><font color="#EC5E5E" size="3"><b>- Copy of the parameter
        !          1063: file</b></font><b>: </b><a href="orbiaspar.txt"><b>orbiaspar.txt</b></a></h5>
        !          1064: 
        !          1065: <p>This copy of the parameter file can be useful to re-run the
        !          1066: program while saving the old output files. </p>
        !          1067: 
        !          1068: <h5><font color="#EC5E5E" size="3"><b>- Prevalence forecasting</b></font><b>:
        !          1069: </b><a href="frbiaspar.txt"><b>frbiaspar.txt</b></a></h5>
        !          1070: 
        !          1071: <p
        !          1072: style="TEXT-ALIGN: justify; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt">First,
        !          1073: we have estimated the observed prevalence between 1/1/1984 and
        !          1074: 1/6/1988. The mean date of interview (weighed average of the
        !          1075: interviews performed between1/1/1984 and 1/6/1988) is estimated
        !          1076: to be 13/9/1985, as written on the top on the file. Then we
        !          1077: forecast the probability to be in each state. </p>
        !          1078: 
        !          1079: <p
        !          1080: style="TEXT-ALIGN: justify; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt">Example,
        !          1081: at date 1/1/1989 : </p>
        !          1082: 
        !          1083: <pre class="MsoNormal"># StartingAge FinalAge P.1 P.2 P.3
        !          1084: # Forecasting at date 1/1/1989
        !          1085:   73 0.807 0.078 0.115</pre>
        !          1086: 
        !          1087: <p
        !          1088: style="TEXT-ALIGN: justify; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt">Since
        !          1089: the minimum age is 70 on the 13/9/1985, the youngest forecasted
        !          1090: age is 73. This means that at age a person aged 70 at 13/9/1989
        !          1091: has a probability to enter state1 of 0.807 at age 73 on 1/1/1989.
        !          1092: Similarly, the probability to be in state 2 is 0.078 and the
        !          1093: probability to die is 0.115. Then, on the 1/1/1989, the
        !          1094: prevalence of disability at age 73 is estimated to be 0.088.</p>
        !          1095: 
        !          1096: <h5><font color="#EC5E5E" size="3"><b>- Population forecasting</b></font><b>:
        !          1097: </b><a href="poprbiaspar.txt"><b>poprbiaspar.txt</b></a></h5>
        !          1098: 
        !          1099: <pre># Age P.1 P.2 P.3 [Population]
        !          1100: # Forecasting at date 1/1/1989 
        !          1101: 75 572685.22 83798.08 
        !          1102: 74 621296.51 79767.99 
        !          1103: 73 645857.70 69320.60 </pre>
        !          1104: 
        !          1105: <pre># Forecasting at date 1/1/19909 
        !          1106: 76 442986.68 92721.14 120775.48
        !          1107: 75 487781.02 91367.97 121915.51
        !          1108: 74 512892.07 85003.47 117282.76 </pre>
        !          1109: 
        !          1110: <p>From the population file, we estimate the number of people in
        !          1111: each state. At age 73, 645857 persons are in state 1 and 69320
        !          1112: are in state 2. One year latter, 512892 are still in state 1,
        !          1113: 85003 are in state 2 and 117282 died before 1/1/1990.</p>
        !          1114: 
        !          1115: <hr>
        !          1116: 
        !          1117: <h2><a name="example"></a><font color="#00006A">Trying an example</font></h2>
        !          1118: 
        !          1119: <p>Since you know how to run the program, it is time to test it
        !          1120: on your own computer. Try for example on a parameter file named <a
        !          1121: href="..\mytry\imachpar.imach">imachpar.imach</a> which is a copy
        !          1122: of <font size="2" face="Courier New">mypar.imach</font> included
        !          1123: in the subdirectory of imach, <font size="2" face="Courier New">mytry</font>.
        !          1124: Edit it to change the name of the data file to <font size="2"
        !          1125: face="Courier New">..\data\mydata.txt</font> if you don't want to
        !          1126: copy it on the same directory. The file <font face="Courier New">mydata.txt</font>
        !          1127: is a smaller file of 3,000 people but still with 4 waves. </p>
        !          1128: 
        !          1129: <p>Click on the imach.exe icon to open a window. Answer to the
        !          1130: question:'<strong>Enter the parameter file name:'</strong></p>
        !          1131: 
        !          1132: <table border="1">
        !          1133:     <tr>
        !          1134:         <td width="100%"><strong>IMACH, Version 0.8a</strong><p><strong>Enter
        !          1135:         the parameter file name: ..\mytry\imachpar.imach</strong></p>
        !          1136:         </td>
        !          1137:     </tr>
        !          1138: </table>
        !          1139: 
        !          1140: <p>Most of the data files or image files generated, will use the
        !          1141: 'imachpar' string into their name. The running time is about 2-3
        !          1142: minutes on a Pentium III. If the execution worked correctly, the
        !          1143: outputs files are created in the current directory, and should be
        !          1144: the same as the mypar files initially included in the directory <font
        !          1145: size="2" face="Courier New">mytry</font>.</p>
        !          1146: 
        !          1147: <ul>
        !          1148:     <li><pre><u>Output on the screen</u> The output screen looks like <a
        !          1149: href="imachrun.LOG">this Log file</a>
        !          1150: #
        !          1151: 
        !          1152: title=MLE datafile=..\data\mydata.txt lastobs=3000 firstpass=1 lastpass=3
        !          1153: ftol=1.000000e-008 stepm=24 ncovcol=2 nlstate=2 ndeath=1 maxwav=4 mle=1 weight=0</pre>
        !          1154:     </li>
        !          1155:     <li><pre>Total number of individuals= 2965, Agemin = 70.00, Agemax= 100.92
        !          1156: 
        !          1157: Warning, no any valid information for:126 line=126
        !          1158: Warning, no any valid information for:2307 line=2307
        !          1159: Delay (in months) between two waves Min=21 Max=51 Mean=24.495826
        !          1160: <font face="Times New Roman">These lines give some warnings on the data file and also some raw statistics on frequencies of transitions.</font>
        !          1161: Age 70 1.=230 loss[1]=3.5% 2.=16 loss[2]=12.5% 1.=222 prev[1]=94.1% 2.=14
        !          1162:  prev[2]=5.9% 1-1=8 11=200 12=7 13=15 2-1=2 21=6 22=7 23=1
        !          1163: Age 102 1.=0 loss[1]=NaNQ% 2.=0 loss[2]=NaNQ% 1.=0 prev[1]=NaNQ% 2.=0 </pre>
        !          1164:     </li>
        !          1165: </ul>
        !          1166: 
        !          1167: <p>&nbsp;</p>
        !          1168: 
        !          1169: <ul>
        !          1170:     <li>Maximisation with the Powell algorithm. 8 directions are
        !          1171:         given corresponding to the 8 parameters. this can be
        !          1172:         rather long to get convergence.<br>
        !          1173:         <font size="1" face="Courier New"><br>
        !          1174:         Powell iter=1 -2*LL=11531.405658264877 1 0.000000000000 2
        !          1175:         0.000000000000 3<br>
        !          1176:         0.000000000000 4 0.000000000000 5 0.000000000000 6
        !          1177:         0.000000000000 7 <br>
        !          1178:         0.000000000000 8 0.000000000000<br>
        !          1179:         1..........2.................3..........4.................5.........<br>
        !          1180:         6................7........8...............<br>
        !          1181:         Powell iter=23 -2*LL=6744.954108371555 1 -12.967632334283
        !          1182:         <br>
        !          1183:         2 0.135136681033 3 -7.402109728262 4 0.067844593326 <br>
        !          1184:         5 -0.673601538129 6 -0.006615504377 7 -5.051341616718 <br>
        !          1185:         8 0.051272038506<br>
        !          1186:         1..............2...........3..............4...........<br>
        !          1187:         5..........6................7...........8.........<br>
        !          1188:         #Number of iterations = 23, -2 Log likelihood =
        !          1189:         6744.954042573691<br>
        !          1190:         # Parameters<br>
        !          1191:         12 -12.966061 0.135117 <br>
        !          1192:         13 -7.401109 0.067831 <br>
        !          1193:         21 -0.672648 -0.006627 <br>
        !          1194:         23 -5.051297 0.051271 </font><br>
        !          1195:         </li>
        !          1196:     <li><pre><font size="2">Calculation of the hessian matrix. Wait...
        !          1197: 12345678.12.13.14.15.16.17.18.23.24.25.26.27.28.34.35.36.37.38.45.46.47.48.56.57.58.67.68.78
        !          1198: 
        !          1199: Inverting the hessian to get the covariance matrix. Wait...
        !          1200: 
        !          1201: #Hessian matrix#
        !          1202: 3.344e+002 2.708e+004 -4.586e+001 -3.806e+003 -1.577e+000 -1.313e+002 3.914e-001 3.166e+001 
        !          1203: 2.708e+004 2.204e+006 -3.805e+003 -3.174e+005 -1.303e+002 -1.091e+004 2.967e+001 2.399e+003 
        !          1204: -4.586e+001 -3.805e+003 4.044e+002 3.197e+004 2.431e-002 1.995e+000 1.783e-001 1.486e+001 
        !          1205: -3.806e+003 -3.174e+005 3.197e+004 2.541e+006 2.436e+000 2.051e+002 1.483e+001 1.244e+003 
        !          1206: -1.577e+000 -1.303e+002 2.431e-002 2.436e+000 1.093e+002 8.979e+003 -3.402e+001 -2.843e+003 
        !          1207: -1.313e+002 -1.091e+004 1.995e+000 2.051e+002 8.979e+003 7.420e+005 -2.842e+003 -2.388e+005 
        !          1208: 3.914e-001 2.967e+001 1.783e-001 1.483e+001 -3.402e+001 -2.842e+003 1.494e+002 1.251e+004 
        !          1209: 3.166e+001 2.399e+003 1.486e+001 1.244e+003 -2.843e+003 -2.388e+005 1.251e+004 1.053e+006 
        !          1210: # Scales
        !          1211: 12 1.00000e-004 1.00000e-006
        !          1212: 13 1.00000e-004 1.00000e-006
        !          1213: 21 1.00000e-003 1.00000e-005
        !          1214: 23 1.00000e-004 1.00000e-005
        !          1215: # Covariance
        !          1216:   1 5.90661e-001
        !          1217:   2 -7.26732e-003 8.98810e-005
        !          1218:   3 8.80177e-002 -1.12706e-003 5.15824e-001
        !          1219:   4 -1.13082e-003 1.45267e-005 -6.50070e-003 8.23270e-005
        !          1220:   5 9.31265e-003 -1.16106e-004 6.00210e-004 -8.04151e-006 1.75753e+000
        !          1221:   6 -1.15664e-004 1.44850e-006 -7.79995e-006 1.04770e-007 -2.12929e-002 2.59422e-004
        !          1222:   7 1.35103e-003 -1.75392e-005 -6.38237e-004 7.85424e-006 4.02601e-001 -4.86776e-003 1.32682e+000
        !          1223:   8 -1.82421e-005 2.35811e-007 7.75503e-006 -9.58687e-008 -4.86589e-003 5.91641e-005 -1.57767e-002 1.88622e-004
        !          1224: # agemin agemax for lifexpectancy, bage fage (if mle==0 ie no data nor Max likelihood).
        !          1225: 
        !          1226: 
        !          1227: agemin=70 agemax=100 bage=50 fage=100
        !          1228: Computing prevalence limit: result on file 'plrmypar.txt' 
        !          1229: Computing pij: result on file 'pijrmypar.txt' 
        !          1230: Computing Health Expectancies: result on file 'ermypar.txt' 
        !          1231: Computing Variance-covariance of DFLEs: file 'vrmypar.txt' 
        !          1232: Computing Total LEs with variances: file 'trmypar.txt' 
        !          1233: Computing Variance-covariance of Prevalence limit: file 'vplrmypar.txt' 
        !          1234: End of Imach
        !          1235: </font></pre>
        !          1236:     </li>
        !          1237: </ul>
        !          1238: 
        !          1239: <p><font size="3">Once the running is finished, the program
        !          1240: requires a caracter:</font></p>
        !          1241: 
        !          1242: <table border="1">
        !          1243:     <tr>
        !          1244:         <td width="100%"><strong>Type e to edit output files, g
        !          1245:         to graph again, c to start again, and q for exiting:</strong></td>
        !          1246:     </tr>
        !          1247: </table>
        !          1248: 
        !          1249: <p><font size="3">First you should enter <strong>e </strong>to
        !          1250: edit the master file mypar.htm. </font></p>
        !          1251: 
        !          1252: <ul>
        !          1253:     <li><u>Outputs files</u> <br>
        !          1254:         <br>
        !          1255:         - Copy of the parameter file: <a href="ormypar.txt">ormypar.txt</a><br>
        !          1256:         - Gnuplot file name: <a href="mypar.gp.txt">mypar.gp.txt</a><br>
        !          1257:         - Observed prevalence in each state: <a
        !          1258:         href="prmypar.txt">prmypar.txt</a> <br>
        !          1259:         - Stationary prevalence in each state: <a
        !          1260:         href="plrmypar.txt">plrmypar.txt</a> <br>
        !          1261:         - Transition probabilities: <a href="pijrmypar.txt">pijrmypar.txt</a><br>
        !          1262:         - Life expectancies by age and initial health status
        !          1263:         (estepm=24 months): <a href="ermypar.txt">ermypar.txt</a>
        !          1264:         <br>
        !          1265:         - Parameter file with estimated parameters and the
        !          1266:         covariance matrix: <a href="rmypar.txt">rmypar.txt</a> <br>
        !          1267:         - Variance of one-step probabilities: <a
        !          1268:         href="probrmypar.txt">probrmypar.txt</a> <br>
        !          1269:         - Variances of life expectancies by age and initial
        !          1270:         health status (estepm=24 months): <a href="vrmypar.txt">vrmypar.txt</a><br>
        !          1271:         - Health expectancies with their variances: <a
        !          1272:         href="trmypar.txt">trmypar.txt</a> <br>
        !          1273:         - Standard deviation of stationary prevalences: <a
        !          1274:         href="vplrmypar.txt">vplrmypar.txt</a> <br>
        !          1275:         No population forecast: popforecast = 0 (instead of 1) or
        !          1276:         stepm = 24 (instead of 1) or model=. (instead of .)<br>
        !          1277:         <br>
        !          1278:         </li>
        !          1279:     <li><u>Graphs</u> <br>
        !          1280:         <br>
        !          1281:         -<a href="../mytry/pemypar1.gif">One-step transition
        !          1282:         probabilities</a><br>
        !          1283:         -<a href="../mytry/pmypar11.gif">Convergence to the
        !          1284:         stationary prevalence</a><br>
        !          1285:         -<a href="..\mytry\vmypar11.gif">Observed and stationary
        !          1286:         prevalence in state (1) with the confident interval</a> <br>
        !          1287:         -<a href="..\mytry\vmypar21.gif">Observed and stationary
        !          1288:         prevalence in state (2) with the confident interval</a> <br>
        !          1289:         -<a href="..\mytry\expmypar11.gif">Health life
        !          1290:         expectancies by age and initial health state (1)</a> <br>
        !          1291:         -<a href="..\mytry\expmypar21.gif">Health life
        !          1292:         expectancies by age and initial health state (2)</a> <br>
        !          1293:         -<a href="..\mytry\emypar1.gif">Total life expectancy by
        !          1294:         age and health expectancies in states (1) and (2).</a> </li>
        !          1295: </ul>
        !          1296: 
        !          1297: <p>This software have been partly granted by <a
        !          1298: href="http://euroreves.ined.fr">Euro-REVES</a>, a concerted
        !          1299: action from the European Union. It will be copyrighted
        !          1300: identically to a GNU software product, i.e. program and software
        !          1301: can be distributed freely for non commercial use. Sources are not
        !          1302: widely distributed today. You can get them by asking us with a
        !          1303: simple justification (name, email, institute) <a
        !          1304: href="mailto:brouard@ined.fr">mailto:brouard@ined.fr</a> and <a
        !          1305: href="mailto:lievre@ined.fr">mailto:lievre@ined.fr</a> .</p>
        !          1306: 
        !          1307: <p>Latest version (0.8a of May 2002) can be accessed at <a
        !          1308: href="http://euroreves.ined.fr/imach">http://euroreves.ined.fr/imach</a><br>
        !          1309: </p>
        !          1310: </body>
        !          1311: </html>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>