Annotation of imach/src/imach.exe, revision 1.11

1.1       lievre      1: MZ@ !&L!This program cannot be run in DOS mode.

1.11    ! lievre      2: $PEL&ہD0&8&^p&@&W pT.text0&& `.data&&@.rdata`S&T&@@.bss P.idataTp(@U]U1ۉu1=wC=r[&$1҉T$&&tzt$л؋u]]=twJ=t؋u]]=t[=u$1t$`&&tjt$=$&L$0&v#&l$1ɉL$&&t0R$?$&D$&%$&\$&'US$]$@&&EPBU\$
AD$T$L$$PB&PBtXAqBt PBD$qBK0$F&qBtPB\$
qBQP$ &&A&&L$PBT$PB$3&&$&D$qBB$&qBUv'U$&qB&U$qB&U
qB]t&U
qB]ᐐU(}}]utzM$&]
        !             3: T$u>Ձޱ&1$t$D$&Éֹ@BL$1҉T$$t$&1ɸ@BD$L$$t$&G}t:58PBt?
qB1M]&)qBC]1u}]&8PB봍vUWVS$E&EE\L$$&X&$s&Ǻ\$M$E&4$]E)\$D$
&3t$$A     &4$!&|\t\D&t$$A&u.T$4$&tG}p&t$<$&U$&4$&@M)É\$EL$$y&};1҃[^_]Ë}]|$$t&4$&T$&tʉt$$A,v'UWVS1ۋu}4$7&9<\tC9~[^_]Í/C'UVS1EuE4$&19E8B&9~[^]
UWVS1EE}E<$&P9w(vUC&8t8T&tuÉ<$d&P9vۉ<$S&1MB;U|U1ɋE9.X&]'9MU)Ӊ]UDA9~[^_]ÉE놉U&
qBT$D$@L$$)A&qB5AMT$@L$$_&$&C&vUS]U)ڍ$&t)[B]$)AqBL$&T$@\$5A:&\$
qB9AD$@$&$&&UEU&ЃE]v&US]U)ڍ$b&t)[B]$)AqBL$&T$@\$5A&\$
qBVAD$@$&$&&UEU&ЃE]&US]U)ڍ$&t)[B]$)AqBL$&T$@\$5A&\$
qBVAD$@$l&$&P&UEU&ЃE]&UWVS}M]U))Ӎp&C]$&tcMXU)Ӎ$&MU)ȉB9M&D&ȉB9~[^_]$)AqB\$&tA|$@T$&t$qB5At$@$Z&$&>&M&AqB\$|$@D$$)Ae&t$
U]]Muu\D$&]u]]&&UWVS}M]U))Ӎp&C]$o&tcMXU)Ӎ$K&MU)ȉB9M&D&ȉB9~[^_]$)AqB\$&tA|$@T$H&t$qB5At$@$&$&&M&AqB\$|$@D$$)A&t$
U]]Muu\D$(&]u]]&&UWVS,uEUM})]p&)$)AMBU&&Ux])ߍ$轿&U&UXM)ӋUB9ʉUMv\&ˉB;U~EUE$`&UuuU])B9ډU]&D&؉B;U~];]FMUuMM萋MDEM
        !             4: D&A;M~C;]~Ӄ,[^_]$)A
qBt$&A\$@L$&|$qB5AT$@$茾&$&p&E
qB&t$|$@L$$)A蛼&AD$$)A
qB&T$\$@L$e&tAD$b&UuuE}}]]L$製&t\$落&u]u}]|&U^BL$$gB赽&$gB蹻&$gB/fgBED$&ɸgBÍvU^BD$$gBe&$gBi&$gBU/fgBT$ʼ&$gBED$跼&ɸgBU^BD$$gB&$gB    &$gBM/fgBL$j&$gBUT$W&$gBED$D&ɸgBÍ'UVS fBJ$2&tK5fB&9
hB_BE@9~$YB$]ۻ&E [^]$)A
qBT$&9AD$5A@L$&t$
qB\$@$賻&$&藻&&UVSu EE]U]E&UU$ݝx݅xUU]Љ'ݕptݝxpEUĉMEM$$.EAAU]]&&qB $q&$.
pbBL$˸&pbB$M&Ee݅xE
AmٞEEEEEEeevEE]
AٞsfEsXE۞sFEE]۞&Eٞ&2EٞP&E]E
A]EE&E.&E$]ݝxEE݅xUEE]E]]]]C$)AqB&L$5AD$@\$޶&t$qBAT$@$p&$&T&t&vGUEsEuNzLEE]]]PEEUUeEEsEztLEu{EUċMMUIuEEB]UEɋu,Ġ[^]
UWVS,E]}u$U M$U UvMU&U"
A$U E &ʋUM"&!ڞ AHPBɞXPB
        !             5: &
(A
,Aٞٞ۞rQ$]U EEUM&ٞ؃,[^_]Ðt&
A AHPBɞXPBv8Av0AvH$]U E؋M&4U#
AUWVSlE}ufB$誴&&hB$蕴&&_B&];EYB%
hB'@;E~@U]]L$T$E؉\$UȉD$MЉT$]]ȉL$$@A@ED$$L$\$E\$E\$E$Z&U;E!E&@;E~؋=_B<$茳&5hB4$~&l[^_]$)AqBL$&9A|$5A@D$±&t$qB\$@$Y&$&=&'UE.‰(M}uų]]<
1.9       brouard     6: $)iQ&|$)4
1.11    ! lievre      7: )Ɖt$i)щȺ&)‰T$))L$HAD$Q&؋u]}]ÉUWVSlEEE$W&E$D&E$1&$&EE$U$] &
Uu@;E~M&&]Ћ
[B[B]؍U
@QBDQB$E螲&u
        !             8: L$EuUEu>Չ$ޱ&1ۉ\$t$b&T$1ɉL$@B։$D$C&[B@B1$T$D$t$胬&[B8PBqB
        !             9: ȉ롈qB&
@QB)aB[BPdBaBƋ] ))ȋUt$D$&\$2$xAt$&qB $n&;]fEA؉\$$A\$躰&MpbBى\$t$$\$z&EA5dBCL$4$\$X&;]~$
        !            10: w&$
        !            11: 
pbBL$Q&$
        !            12: 5dBt$;&dB$软&];&&;]M &&'&
uB;U~]ȉ\$$Aԯ&qB $S&\$5pbBAD$4$舯&
pbB$*&|$U$E uMT$D$t$$fEȋU Eٞv]؉]C;]L     ] EEMM9&%]uU@;E~֋M$U$EEЋu EezEhPB"EUٞEU $[B虭&fBXfBH
fBp5fBPfBXfBH
fBp5fBP $fBfB-&D$$\Bͭ&$\B[B[BWBWB軫&\B
        !            13: 7
@QB[B])ȉD$3$At$Ac&[B@QBM)ЉD$t$pbB\$$&E
        !            14: E@QBUċ[B$WB)ʉ)&УWBr&aBH
aBXaBp5aBPaBH
aBXaBp5aBP $aBbB&D$$`dB覬&$`dB說&_dB
1.10      brouard    15: &$gB5[BE.‹
WB)ų4
1.11    ! lievre     16: )iހQ&t$HAt$)&)i\$gB)MEыU&)щȉL$))EUT$`&\$Mĺ`dBT$\BD$L$$A跫&$gB5[BE.‹
WB)ų4
        !            17: )iހQ&t$HAt$)پAȉ&)i\$)MEыU&)ʉL$))UED$蚪&t$\B]ĉT$pbB`dBD$gBL$\$$ƪ&E
        !            18: }&8PBcƀ_dB:)؉|$Uu$M ]$t$L$\$x&;U]uM]B9~ƀ\BM<$&u4$ީ&M$ө&}<$ȩ&e[^_]$)AqBT$&At$@\$&|$qB5AL$@$裩&$&臩&$)A
qBT$&9A|$@L$跧&t$륐UWVS<EE&}u9E
AU&IUM̉MȻ&;]}jEUEMHEА&&94UE‹UU&؍DƋUDt&A9~MC;]|؋E@9EE|bUEUMJUԹ&94UE‹UU&؍DƋUDt&A9~MC9]}؋]؋E]9ؿ&9E&9E}E4C$芨&E]9|
AW&uU&9|'EC$W&E]
Au&9}]&E9]uEu&9|)$&M
AFE&9}׋};}+uEF&9}E<[^_]Ë
AuEF&9|Ã&&|)}1|B?9Ӊ|}F9}ƋE<[^_]$_&MF9|
A$vUWVSEU}E9bM ;M$OuUU1D9&uE4uu(uB9~A;M$~EM9M~E[^_]Ív'UW&VSEEA&؃&|1ÉJ&|}9t@9}A9}AE5AE?%A]U5,PB&U 9Uu-0]BU,=QB5YB\͸A;M~(PB&9
RBE<B9L\~
VB&9ωMYB50]BU,|
VBfBME]U]M4GB|MdB|dP$;}\~UE=eB
hBT$]<$L$\$D$ݝhE&5A}Ex&9}݅h&9]Eu &1t97Eu`t&'uȋ`B9~A9~E9}~&M;u}M }~WE$B&A5AEٞ؁ļ[^_]þ&M;u}M }&;]}'&;x!ED&B;x~UE<\HPBXPBw1HPB\wC;]`XPBkHPBXPBw.F;uE$؋Eļ[^_]믍t&U&WVSAxxE &&|Rt‰J&|-](U49t9t@9}ߋtA9}E&M9ME&}uO9u}"}]]uU$ߋ=,PBE,EL3Q&$95AE]2QB0]BU0]5YBU\͸A9~(PB&9
RBE4B9L\~
VB&9ωMYB0]BU0p
VB5fBM|]U|M4GBpMdBpdP$;}\~xE} D$U ]&
hB5eBT$\$L$4$E&9}Em&9\EU,&1t97uE(4`t&'u`B9~A9~E9}~E}](9}M],M(AxAx&xlE &&|K\&&|#l]E4ӋB}9}l\l9}EJEļ[^_]Í&UW&VSAݝp9Љ11ۉtŨ\Ŭ@;~RB&t_
        !            19: ݕP1ۺ&\LgB9\s؋5 dBX
,PB&99=QB=\B\$ݜxB9~ً\&XPIIaBHA&T&Ѓ&|^=YB‰=0bBJ&|+9t9t@9}ދA9}؋5PaB1ҋPD\
YB
0bB@LPHL0aB\[BA<D4Ë(PBP$5Aι&9ݕxRB=QB5\B ݅x \A;ݜx~ҋThD$]&hB5eBL$\$T$4$&9&9hLt&&1t9:@4t&B9~A9~9~DLPaBPYB<\L5[B0bBD9@5YB=A5AaBTHA
gBd9d
        !            20: &DŨ@;~ۅLܵP[^_]ݕP&1
gB9L؋ dB|,PB&98QB=\B$ݜxB9~ً&|tKK
aBlA&x&؃&|b=YB‹50bBJ&|+9t9t@9}ދA9}؋PaB1ҋthYB
0bBdptlp0aB[BA<h4Ë(PBP$5Aι&9ݕxORB=QB5\B ݅x A;ݜx~ҋxhD$]&hB5eBL$\$T$4$$& 9 &9h p&1t9> d4'$B9~A9~ 9 }hpPaBtYB`p5[B0bBh9d5YB|=AA5aBxlݕP&
gB19L&؋= dB,PB&995QB=\B$ݜxB9~ً&KKU
aBA&&؃&0bBƋ=YB‰J&|19tË9t@9}؋A9}؋=PaB14~5YB0aB
[B
A<(PB&P$95AݕxRB=QB5\B ݅x A;ݜx~ҋhD$]&ϋhB
eBt$&\$T$$Z<9<@&9n<v'&1t9:<4t&@B9~A9~<9<wPaBYB5[B0bB95YBr        =A
AaBݕP&
gB19L؋ dB,PB&98QB=\B$ݜxB9~ً&KK

aBA&&؃&
0bBƋ=YB‰J&|19tË9t@9}؋A9}؋=PaB14  5YB0aB
[B
A<(PB&P$95Aݕx/RB=QB5\B ݅x A;ݜx~ҋhD$]&ϋhB
eBt$&\$T$$4948z&9c4&1t9944t&8B9~A9~494~PaBYB5[B0bB95YB=A
AaBݕP1ɿ&L
gBd9؋= dB,PB&9J5QB\B4d$ݜxB9~͋d&`KK
aBA&&؃&|a¡YB艕=0bBJ&|+9t9t@9}ދA9}؋PaB1ҋ`\d<4_=YB50bB`
[B
A0aB\d&W=(PB$95Aݕx&QBRB5\B ݅x A9dݜx~ЋhD$U&ϋhB
eBt$&T$\$$RD9DH}&9fD&1t9:D4t&HB9~A9~D9D~\PaB`YBXd5[B0bB\95YB~KAA
aB;A=aBA`dTBdD`4@bB΋;T/X&A50bBB̃~$&݅P=aBL`d5 hB`d΋5TBɋ<ݝPɋ= dBDըI;`\ը6=A=aBHPH\TBD<44$>&݅P
aBPP hBH
TB dBLɉXݝPɋ4J;PD\5A=aBATBD45@bB4AٞA<$'&݅PaBL
 hB5TB dBɋI;DݨݝP\ݨ5A=aBATBD4@bB4A4ݕ(A<ݝ($&܍(
0bBݝ($&݅(݅(݅PaB hB4L
TB dBʋ<ݝPODը;\ը5AA=aBlltTBD<;0bB`<4,$Ɇ&݅P5aBLt= hBltϋ=TB dB4ɋ|I;tDըݝP\ըs&5AAء0bBX4<,`4!A$؅&=AgB\9\c&;vX=0bBAB;~<X=0bBA4;X0bBAB;~0bBA
gB9i=A
gB9/@=A
gB90bB&'UW&VS\&Aݝp9ЉD11ɉ\ŨLŬ@;D~gB&1`5gB9` _B{؋= dB<
,PB&99QB=\B`؉ݜxB9~ً`&<\IIA&DH&؃&|b0=YB‰4=0bBJ&|+49t9t@9}ދ0A9}؋PaB1ҋ\X`5YB
0bB8@@5aB\
[B
A0aB<X`&<P$50A=(PB9ݕxQQBRB5\B,݅x,A9`ݜx~ЋHhDD$DU&ϋhB
eBt$&T$\$$L9LP&9oL@t&'&1t9:L84t&PB9~A9~L9LvX@PaB\YBT`@5[B0bBX985YBAADH=A5gBD`9`gBɸ&     DŨ@;D~ _B0hBP$u=ٽffaBffd٭dUB٭f\&[^_]=ADA
aB\`TB<\D
@bB4;D~
=RBVRB&$L؃IT$#&gB`
 hB _B\aBgBTBɡ0hBDը\ըu;\
 dB`<H;\!5AD=$ݝ&݅0bBT
 hB\$DPaB\$<\$4ɋ\\$$\$,`aBL$ t$
pVBAD$\$ZBT$|$<t$|$$&n~&;ARaBA5ZBDݨCUBʉ|$ʉ4$\$ݝ ~&;A݅ZB'AT$$\$}&&;D5T=0bB@AB;D~؋
0bBT<,8A0bBݕT@Aݝ$|&݅0bBɋ<ݝ$|&݅݅T&8A0bBٞvNT@A<T0bB@A<@AT<TUWVSu]M$]U(}MU}<$UUu[^_]Ë=ZBdB/<$dBl{&$gB^BD$'|&$gB+z&\$/HAfgB$gB{&$gB^BL${&$gBy&fgB|$$gBR{&\$
YBgBT$gBD$$n{&5YBu[^_]       {&$dBilkfB
dBT$z&$dBAD${&ZBD$&\$&L$$A@y&\$ZB4D$&$AT$y&9#t&\$ZBAT$C$z&9~$AZBL$&|$\$x&/$AdBL$z&pbBdBAT$D$$?z&ZBt&U&WVS<}D$$&|$|$GE&96&&9]9t@9~A9~$Aw&pbB&\$powT$D$$Aw&5YBfBL$$YB1y&$YBAT$y&dBr&D$&L$&T$$#Axw&;u\A'E&&Ѓ&29t%\$dB9At$L$$x&AEC&9}F;u~$
        !            21: dB\$v&E|$UML$u$ED$]\$T$t$$u~<$Ax&E$6x&
dB$w&U$U$$DA]\$\$Xx&u4$|AU$}临A
pbBD$|$$\$x&U$U$t$]}\$<$\$w&<[^_]$AYBA\$w&t$
pbBYBD$$w&dBO&'UWVSlEA}u$] ݝ׸&ݝUݜ@9~1ɉۅ$@\$&$\$w&ݝ݅ݝZ&A&ڞ&ػ
1.9       brouard    22: C
1.10      brouard    23: t&'SU$܍Mݝ$ݜ׋M݅ܥ,ɉ$ݝݜ݅Aܥ˞ܵܵ
Aٻ
1.9       brouard    24: C
                     25: NFػ
1.11    ! lievre     26: Awv݅ݝC݅}l[^_]ÉUWVS\]}u$UE&ݝɸ&ݜ@;E~ۅݜݝ$ݜUMܥݝ݅<ݜ݅<,$ݜUEܥݝ݅<,ݜ݅<$ݜUUܥݝ݅<,ݜ݅<,$ݜU݅MܥܥܥɃ
A܍܍
Aف\[^_]ÍUWVS,]UM]}UM$s&EM&;ML&;]!C;]wC;]~j&‹UA;M~ؾ&;u&&9}*&vB9|C9|;uL
&vB9|MrBى]C;]~;ut8&;E]t&@;E~tC;]뿋]Muz  @A;uN&t;M4B;U~;M؋}},[^_]q&]EMs$)AqBt$&|$@\$o&AT$
qB5AD$@$q&$&mq&$)AqBD$&9At$@\$o&|$뤍&UW&VSuE]9]1ҍ'DMDËEteE9|MLM쐍t&ËM@9}\GB9~؉~_&'ˍA&96}@9~'zt}G\B9g믍vE4I[^_]Í&UWVS\&\$}&$&|$|$bE$HA#n&$tA
pbB,T$&D$L$;n&9$
1.10      brouard    27: n&$
1.11    ! lievre     28: 5pbBt$&m&$Am&$ApbB&L$=D$\$m&|$&T$|$$&諭t$wE|$|$$&膭E$o&i$o&E؅E&9}1&9 uU܋UUu@9~E9}~ω|$E؍UT$MD$$E&9}&&t&1t@9~EMо&?9DW1ҍ&DM؋DMɅ&E9|MLMĐËM@9}\FB9~؅&v'ˍA&9u@9~\$$Am&5qB 4$]m&\$pbBAL$$m&pbB$5m&E\$u |$MUt$L$\$$E܋4C9~&9_&9
9&C9~FzuF\E4I&vӋuMЋB9~E9}%$"Aj&$4A
pbBD$&T$L$j&E&9}&9HŰM܋$GA\$l&ŰM܋pbBGA$FD$\$=l&9~$
1.10      brouard    29: ]j&$
                     30: 5pbBt$7j&E9}~E&9}1&9 uUUUu@9~E9}~ω|$Mut$U؉$T$uF$wk&4$ok&}w4$ak&U$Vk&$Nk&M؉$Ck&E܋x<$5k&]܉$*k&\[^_]É\$t$$MA^k&qB $j&\$pbBMAL$t$$k&pbB$j&\$M U|$EL$T$$t$MU܋C$)AqBL$&9AT$@D$h&|$qB5AT$@$|j&$&`j&$)A
qB|$&VAt$@L$h&\$륍v'U VB( A`AD$XBD$EL$^BT$SAL$T$$i&Í&UWVS\&Uݕ ݝ$i&
1.11    ! lievre     31: $&UpE}T$D$|$跧4]fX\$X$i&$AL$i&0dB;
        !            32: $]T$
Au&ˉ|$t$\$\$辨85,PB1D=$PB@       &@&L9L<L&},HDE
A&ȃ|X؉Ã|7U9|'8t&1|B9}A9}ɋF9}&;M0E9|41ۉ\@9}A;M~ݕ &U 9ݕ
&,PB1艵=$PB\B(@
0]BA= hBPB݅&V;&EDM$}( C!;~Nu 9dع VB AXBL$
0dB^B|$`ASAt$D$T$\$$gf&=,PB$hA0dB&\$&D$T$}d&;$PBI}$D0]B}(4AC50dBL$D$|$4$e&;$PB~$A0dBL$&\$D$d&&;]%\$0dBA\$Ct$$e&;]~$
1.10      brouard    33: =0dB|$c&}9{9<&|$5pbBA\$4$-e&&;]S؋u
A&΋j8ɋB9}C;]~&;]~?&ك<&q\$
pbBA\$C\$t$$d&;]y8B~Aٞr<&
Aɉ\$A5pbB\$CT$D$4$\$d&;]~&;]RuA&Ƌ1҃Z8     &ɋB9}C;]~ݕ(&;Uݝ&݅4ыB;Uݝ݅(ݝ(~ͻ&;]A݅6<&rA5pbB؉\$\$
AɉL$\$4$ܵ\$b&;}\A݅݅(A4\$\$0dB݅(<|$t$$\$b&C;]1
AE&ȃ
'L<&؋ApbB\$t$D$\$$b&
AUC&98ٞzuҋ;>ۅ&݅܅ ݝ ݝF;&E0]4]<uzMAQ$׋uz]S$׋U~c;M^Nj4ٽVVffT٭T۝P٭VPȋ;]D8ٽVVf
fT٭T۝P٭VPˋ]D\IF;vu 95HLE,H9<9L@9L݅ 
0dBܵ$PB^&8C]x&߃<$B_&8V$._&8$_&$_&4~&$^&4$^&\&[^_]ËE,&@@&&\$$ A_&\$
pbB A\$$^&$^&$)AqBD$&9A|$5A@T$\&t$
qB\$@$w^&$&뤋EF&9;}>&<&T&$
                     34: 5pbBGt$S\&\$\$t$$A6^&8<&&\$HA5pbB؉\$L$4$\$]&݅(bA450dB\$C|$L$4$\$]&1T$
Aʉ\$ݝ\$$A\$s]&݅\$\$\$$AG]&i$
1.11    ! lievre     35: 0dB\$#[&<&$uAZ&\$ډ\$$HA\$\&ډ\$\$
A$A\$ܵ\$\&T$ApbBL$&\$D$Z&,$A1҉<UZ&UWVSU0}M]UЋE }$UMu(]M4E܋]8}؋E<uԋ}PfE@M̋uTEHɉ]ȉE]]}ufUEm]mEm]mM|L$]\$E$&D$ҙE5,PB=$PBE}E&u9u&E&]E̋<&&E&;MD&E9||+u
1ۉ\@9|}A;M~ľ&;u
,PB&b&$PB&9׉UL&
RB\BUx
0]BEEt&xUUlUЋl C!;]~OF;uV]ű<]9||uh㈺>pt݅pt&&;UM4B;U~&;M&;]&؍t&A;M~C9|}E;}\E}9}4]uCT$MY&]Ĭ[^_];Y&]&;]E}ȋEċ5Aٞ&EMuz}GW$uzMQ$}}ff}m]mE;E|;|~\$t$$A\$X&U~[;UVM܋<}}Ef
fEm]m= hBMȋMD\
CCrUu؋EA;M~؍vC9|+E&UB&QUWVSUE}MUU$u}܋E}(M]M UȋU,u؋u0EԋE4}Ŀ&9׉]л&M̹UuEUETB
gBUB]1Uԋ;EJMF;]ċ}/UC;M;  Ш&uуt̃t;]|ыUԋ     MȋUԋM9~UF]4u0PBu}&3G;}V&;}FE&E<&#U؃U&t&]̋uU
A
AA$jU&}uEffum]mM;
gB
gB=paBMEE]E]u}UE)‰UQ&)ރ=RB&};]]UM܋Mu
1.10      brouard    36: &4EEEu94]&UMԋuZ94Au&
AUM̋2
AA$5T&}MffMm]m}E&EU;gB|gB=paBM;
TB
TB=`aB|$pVB$AL$T&E&|$
pVBTApbB4\$$t$6T&EpVBpaB}
gB`aBT$4TBL$t$<UBD$|$$AT&UB] 5paBu
gBM`aB]TBEAU=pbB}Ĝ[^_]S&&M]]܉4EMEE4E&u94v'GdvE;TB>TB=`aBM34PBMQMԋ44t$$4D$ 4M̋5pVB|$\$L$D$4t$M$AL$R&UEԋJ4T$(E]ԋ44t$$]̋4pVB|$\$D$4t$ApbB\$Et$$D$(R&Kv]:&]UM܋464PBUԋL$$D$ M̋pVB|$\$L$D$T$]$pA\$Q&E&M$AL$Q&U]ԋJ4D$(4D$$4]̋5pVB|$\$\$&
pbBD$4pA\$t$AT$$P&Et$pbBD$$P& ]ME܋4ZU1WVS1ۃ|E$PB1ɉL@|
cB&@~5VB&,PBrH\B]Y&;U<Mu}Ef
fEm]mED;E~EB;U~1;ETt@;E~E&3&~01BDtuuA9}E;E}СVBG,PBB9G11|@|
hB&&
]4BD9}
RB&&|t;^B@B~H$PB|[^_]Ív'UWVSu]}UuME ]u$](}܋},UԺ AMع VBEи`Au̾XB]Ȼ^B}ċ}0T$PbBL$SAL$$t$t\$&D$N&t$PbB&\$D$$AL&$EA
PbBT$&D$L$L&;uO&;]$\$PbBKAt$CT$$%N&;]~܉t$
PbBUA\$F$N&;u~$
1.11    ! lievre     37: 5PbBt$ L&;}}A1ۋEeEə
A}EA$L&}}ff}m]mu
A}&ED$\$}܉T$$&&ω|$|$EEЉE]]MI\MĉL$(UȉT$$ủt$ E؉D$}܉|$]\$ut$E\$ML$U$趪EW&$5A}]ff]Em]m]]$]A\$L&5qB 4$;L&\$pbB]AL$$pL&pbB$L&|u9|A&}܉d9d|uU'd11҃\M4t||C|E<dl&DB9\M}dU9d~|}9|3EaA&D$
PbB\$$VK&xU9x{&;u]=EM䋕x<gA=PbBF]\$L$<$J&;u~EgA5PbBD$\$4$J&xU9x~$
1.10      brouard    38: PbB\$H&EAE]h}_C$VJ&uV$HJ&M$=J&$
                     39: H&=pbBE
1.11    ! lievre     40: }[^_]bH&E؉|$$mAD$KJ&IUWVS|&u} ]MuUE}Ћu$}8M܋M,EԋE4]](U؋U0űuЉU]ȉMĹ&E}t$]ԉ\$]ۉ\$L$\$$&[EAJ$bI&\AH<<$?I&X\$=A&t$XB|$`A$&dE&\$L$\$^B$&?E VBSAT$ WB AL$$|$+t$&\$D$H&t$ WB&|$D$$AF&$EA WBL$&T$\$F&;uI&;]!\$ WBAt$CT$$EH&ډt$ WBUAL$F$'H&$
1.10      brouard    41:  WB VB AXBD$!F&|$=RB^BT$`ASAt$L$\$&<$&D$G&\$5RBPL$$At$&E&|$RBD$$EAT$E&M9ى&]܉9ߋ&&E&u9uމ&;ub]&؋]&EF&;uE9t$MFL$-AT$L$RBD$$F&E&;u~Eu9u~U܋]&9X}9$
1.11    ! lievre     42: 
RBL${D&E9ENuuTA&EeEə
XA}T\A$cE&}MffMm]m}1T1҉PD$AT$]܉t$&&É\$\$$&uEP&|$A&L$]܉D$$&&Ӊ\$\$7E]܋
At$ۉ|$&L$&\$P$T$xA&L$D$t$\$P$t$„t\$|$t$$$E&\$T$t$$EEЉ|ݝݝ8
        !            43: N}؋T0V$5XA]&p=A9p&9p#;p‹\t;X@9G;pUu;ppu\uŋpuX$@9~؋}ĉ|$(}ȉ|$$ỦT$ u؉t$]܉\$\D$TL$݅\$PT$u4$X]ĉ|$$\$(ẺD$ }؉|$}܉|$XL$TT$݅\$Pt$]$&9\A&M܉9K1ۃ0|fMUE܋4&4D}ދ|ЋDC90}]9zu9:؋Uܾ&J|t1ɸ?݅1ۃ0|Exp|E}C,p904}F9}pZ1ۃ0|ou@@&&|;&9)xtB9~F9}90}]ܿ&ۃ&J        }u݅ffum۝4m&&|#EB49D}㋝G9}ȋ4$]A\$1@&=qB <$V@&4]ApbBD$t$$@&
pbB$'@&0WM܋=Aɉ 0EU܋tҋ& L9L&9cLEt&&1D97Lt&uȋB9~A9~L 9L|u&xD9DH&;sDU&'&1t9:DE4&HB9~A;~D9Dh &&|b&&|BE4E&EӋ4B9M}9}Eu9090]ĉ\$(EȉD$$}̉|$ M؉L$u܉t$U&T$T\$݅\$PD$}<$腛;u\A&;]kM11҃04||.}D4B90M}C;]~F;u~݅aA&T$ WB\$$=&E9&&;}ݕhݕ`B&؋ى$݅hM䋝4&;M܍G4ݝh^U܋֋$&]4]&&݅`A4&;Mݝ`~ዝU܋Eڋ4&ˋ4%\$
 WB=A44GމT$$\$;&;}݅`\$
 WB=A݅hT$$\$b;&}9h$
1.10      brouard    44: = WB&|$R9&݅aARBD$\$$;&E9؉(M܅(}܋U&&߉&M܉9xى,M܅~X,]&&uM&Nt89U4RBʹKAL$$\$X:&M&Nu]9~u&a}9%$
                     45: RBT$#8&݅`A݅8ݝl|$9&|4$9&]$9&}<$t9&xH$a9&34$W9&ڃ$J9&t>G$29&$(9&$ 9&uVz<$9&F$&9&4$8&MYS$8&}G$8&u4$8&$
                     46:  7&$
                     47: 
pbBL$6&X$8&\$8&}G$8&u4$u8&]K$g8&$_8&]}ԋSBt4$G8&K$<8&]|&[^_]*8&$)AqB|$&9At$@D${6&\$qB5AL$@$
8&$&7&D$E$mAD$
                     48: 8&}}݅ff}m۝4m$6&E݅`$6&&&UWVSD$PBE,PB&EEۋM &    Ш&u  ب&LE&tM=A&9s&;MM}]UffUmUmUEA;M~F9ɹ&;M~F9~&EM9M&5Aű]K؉]ԙ&W$5&UE&U9U  &u}&Mĉu&;}}MU]Eff]mUm]4M4UE؋uEuȉEЃ}&E؋U|U]EMUȋ4UuЋMЃ'&UMuًU]M4G;}xE}9}r؃Eu9u1҃D[^_]E&u?UWVS&}X&E-staEblbaEsed-EU\UHprmov8rpre4f@hAT$<A$D$3&\$8$83&Mȍ8L$$3&$fBD$3&t$މ$U4&aBu*\$$A3&t$pbBAT$$3&$lA88\$ A3&t$pbBlAL$`A$3&\$aB VBT$XBSAT$^Bt$L$$AD$C3&uLAaBL$t$$&3&\$UH5aBT$4$
3&UE
AB&ȉ9|Zt$aBFAD$&$2&;]&\$
aBPA\$Ct$T$$2&Ջ]FA&9$
1.11    ! lievre     49: aBT$0&t$
fB&D$u$^AL$0&$tAYBT$&L$\$0&t$YB
AD$$ A2&AM&щL$t$L$4$^B%p\$ XB`A VBXBD$SAT$L$t$&D$$1&t$ XBdL$$AT$/&}X&$A XBCT$&L$\$/&$EA
 XBt$&&L$D$n/&;u/&;]"\$ XBAt$CD$$0&F$
        !            50: 
 XBL$.&5AN$0&$&&At$uT$t$n(&t$L$t$$&n$AA&D$\$&щL$$rn A򋍴&‰T$L$T$$InA$&
A&؉T$L$D$n5A&)؍$/&uA)&փ)Ή$P/&)؋5A&L$AET$&D$$mmu 9uL}LE$} E,ɉݕE ݝ݅1-B
BܵB$.&ٽ2=A2t$$&ff0٭0۝,٭2,ș&T$D$E&D$&D$n&L$]5AT$\$t$|$&$m]&D$$\$t$ l&\$L$t$$kA9ٽ22݅ff0٭0۝٭2&9>@9(;uu⋝M@9~݅EH]4u }8D$(\$ t$|$$uL$\$T$t$\$$螊E@\$}Ht$M8U4\$E<݅|$$L$T$\$$u}X&x&;u}1ۋ9a1ҹ&T%E<A;M~9~F;u~E5A&9|JƋ&&E<@A;M~C9}؋A&;]@9~݅UH]4u }8T$(\$ t$|$$uL$\$$t$\$D$E@\$}Ht$M8E4\$U<݅|$$L$D$\$$Ƅ}X&&;u}1ۋ9a1ҹ&T%E<A;M~9~F;u~5AE&9|LƋ&(E<@A;M~C9}ؾ&;u`B1;HC,U;4~F;u~؋M&9|?BË],4@9}A9E&U\9uX&o5 cBuH}<A;M~CE\9uX&5 cBuH}<A;M~M$]&9]X<uHE<A;M~]&9]XN<uHE<A;M~"ٽ22݅f
f0٭0۝٭2T$]&D$&|$\$t$$[g1ɋ9^=A&;u8&9)B9~F;u~9~=A5AE&9|5&9B9~A9}ыM S&$;]5B4&;U$EB;UD~C;]~1ۋ919&4&M9&9j('&1D974t&uB9~A9~]9x&M9&;Mf$&1t9:(4t&B9~A;M~M9{&]9L&;U1M$ыB;Uɋ~]9~909؋]&9؉y&9\ &1t924uB9~A9~9~U&9Ӊ9c&1t95 4A9~B;~9uE&9|:‹9|@9}G9}݅}Hu4] M8|$(t$ \$uL$$]T$\$<$\$t$D$"E@t$MH\$U8E4\$}<݅L$$T$D$\$<${}X&E
A&9|JƋ&&E<@A;M~C9}؋UHAt$aBT$L$$!&}A&9\$AaB&|$$\$ !&;]=}<AA
aB\$CT$$\$ &;]~F}A&9[$
1.10      brouard    51: =aBB|$&݅\$5 XB4$&\$ &;uC&;]3UKA
 XBCT$$\$R &;]~F;u~$
1.11    ! lievre     52: 
 XBL$Q&;<$&؃$&$&$&>_$&$&$&9_$&$z&$i&Ny<$R&^$G&4$?&݅BE,ݝgL;$&T3$&G&؃$&<$&44$&|<$&$BfB&T$DL$D$&$PB=fB&L$TD$|$/&$gB^BT$&$gB&fgB8|$$gB&fBBgBL$D$$$&$gB^BD$?&$gBC&|$/fgB$gB&fBBgBL$D$$&$gB^BD$&$gB&|$/fgB$gBJ&fB&BgBL$D$$j&$gB^BD$&$gB&|$/fgB$gB&$gB^BD$H&$gBL&|$/gBfgB$gB&|$
YBgBT$8&B/D$$&$gB^BT$&$gB&fgB&B$gB4D$?&$gBMȉL$,&$gBUT$&|$ML&BT$=YBgBD$L$<$}+&$gB^BD$F&$gBJ&$gB/&BfgBT$&|$&B$gB&$gBED$&|$fBgBT$4L$$&$_&$W$N&<$F&(H$5&(<$'&&؃$&D$& $& T$&&˃$&D$&u\t-qV$&C$&$z&aB$&fB$?&=YB<$1&ļ&[^_]ËE\u9&9S5 cB}Hu<A;M~'&;M4}HE<A;M~t$]L$mA\$&$B5 XBoD$&\$t$h$&&L$&t$\$T$D$?YE,u\E$ɋ
 cBt$\$\$\$$]\BpbBL$\$$$&$BE\D$1&E\t,E-popEulbaEsed-EmobiElav-EHE-popEulbaEsed-EnomoEbil-E'$&Q$)AqBL$&5At$@T$&\$=qB9AD$@<$P&$&4&t&UWVSUE$}uE,ɉUE}]4]ȋM8u؋U<E܋}H]uM VBE@ɹ`AU A}XB^B]]uԉL$T$D$SA\$|$YBD$&$&|$
YB5T$$BL$&\$YB&L$&$EAD$&9#\$
YBB\$Ct$$,&;]~$
        !            53: =YB|$1&AH$&E=A&\$|$u$&t$UEUԹ&L$$&T$T$TEEE]NUԍp}Ի&$&5A\$|$t$TEp$*&E@p$&|$A&9&&91v}@9M9uu؋}@9~؋UT$$E\$}|$ut$E\$ML$EԉD$U$zo&vuEB;U~A&u@9}9uM$UT$$E\$ut$ML$E\$}|$EԉD$U$n&;U}t&'M|<B;U~&;EPu1ҿ?hl݅h
|uM,4@;E~CA9oT$&D$]$&\$&R;]ԉEB=A&9 u'uB9~C;]~Ѻ&;U&Uԉx9xx&9^xu&1t97xE4d&udB9~A9~x]9x~&Uԉt9t{&;M`tE&1D97tE4d&udB9~A;M~t]9t~&;M7}}Eff}m]m]u}A;M~EB
YB\$&\$$&;]}UEffUm]mu0\$YBBM<CD$$\$3&;]sM<zt$N&밺&=A;U}MEffMm]mMu1ۋB;U\~$
        !            54: YB\$&u4$j&|$\&}O$N&<$F&UZ$8&u4$-&EBE]]$&uF$&M$&}W$&}ļ[^_]&$)AqB|$&9A\$@D$ &t$qB5AL$@$&$&&UfBWVSprobLL$ƅ$+&$AT$&TBcovfBprobAT$4$&|$4$o&gBPcorprobfBD$<$&<$AL$$&PXB\$$B&\$pbBBL$hB$&t$$hB&t$pbB A\$`A$X&|$$Bh&|$pbBBL$ VB$(&|$=TB^BL$SAXBT$t$\$.<$&D$&\$5TB&D$ A$Bt$ VB
&|$
TBT$SA$EAL$&t$5gB^BT$XB`A\$L$|$4$&D$U&$<BgB&L$.D$\$ VBx&|$gB^Bt$SAT$$EAP&\$PXB`AL$XB AT$|$t$$&D$
&$lBPXB/L$&T$D$&\$=PXB&t$|$$EA&;]A}&&׃&kt$TBBL$\$$:
&t$=gBB\$D$<$
&t$PXBB\$FL$$&AE&9}C;]zAK44$&D!$&5A&\$E&U
A&‰L$D$Jl=Au\$M$&&t$t$Jٽ=AhM$&u&E$fEf٭۝٭٭۝٭L$\$D$J\uA\$}&\$&$&&T$t$t$aKKHfB&|$BT$D$$&B     &t$YB&L$[B$<B\$z &$
1.10      brouard    55: YBT$4        &|$YB[BD$$&
                     56: &t$\BBL$$
1.11    ! lievre     57: &|$\B\$$BD$   &$B5\BL$&T$t$&=,PB$PB]u&1ۉ9&E85,PB[$hATBL$&&\$D$=&;5$PBORB=0]B}4=TBAD$FT$L$<$        &;5$PB~$  BTB&D$
&|$T$&t$
gB&\$L$$hA&;5$PBORB=0]B}4A<|$gBL$FD$$&;5$PB~$     BgB&D$
&|$T$&t$
fB&\$L$$hA&;5$PBORB=0]B}4     B<|$fBL$FD$$F&;5$PB~$ BfB&D$
&|$3T$\&t$
\B&\$L$$        B9&;5$PBORB=0]B}4A<|$YBL$FD$$&;5$PB~$      B\B&D$(&|$T$&t$
PXB&\$L$$hA&;5$PBORB=0]B}4A<|$PXBL$FD$$&;5$PB~$A
PXB\$&t$L$&EE$ݝP)     =A݅P&5,PB]950]B\U0\]4\͸A9~ߋ(PB&9
RBE4B9L\~&
VB90]Bu,VB
fB@4@BM4@XBM4XP$9\~$&U&\$A&D$}׉T$Cd=A&L$]U$&5A&ډt$\$IC`MAu&΍<<$&<uAE&$&8&=AL9L&9>D@9(;LMu⋵L]D@9~؋DE]D$
hB=eBt$&L$\$<$Z19SeBAP]&Ӄ&&|*P
@A<9}F;u~eBPA&
        !            58: D@9;LMu䋝Lu$֋DE
hBD$]Pt$&L$\$$Y1;ucA]=eB&ӉP&&|#P&@A89}F;u~͋U&MAUM&&у&|YLd1ۿ?`d݅`&8<LƋu,4@9}L=A9LE&M&&EE&0U&904&9j0l&1t9@0`T&'uȋTB9~A9~0490uM&(E&9(,&;,d(h&1t96(l4TdTB9~A;,~(,9(w<$q&8$c&`V$R&4$J&dO$9&<$&,&]UuT$hB
eB\$1ۉt$D$$VPu9P*ٽ
A=eB&݅Pff٭۝٭&&|/Pt&CB\9֋}PM9P~&EU&H|iPыu&&|1Hht&ыB9}uPP;}&
1.10      brouard    59: BTB|$&
                     60: Bt$$&
                     61: BgBL$T$$&|$PXBt$$=AMU&ʃ&G\$\
                     62: BTB4CƉ|$$\$L=AEM&9 H<zt$G뇋A&EM&&T&9`dB9~C9T}݅P0BE$ݝP&}&9(
A&U&ʃ&
                     63: 9
                     64: ؋H¿&&؉;}
                     65: U&&ʃ&&UF&99tG‹&9Љ~Eeٽ݅gfffff٭۝٭؉)э9AHH؋D4ݝ8B܍ݝ8B܍ݝًݝ8B܍ݝ8B܍ݝݝ8B܍ݝ\8B܍݅܍ݝ؋<ݝ8B܍ݝ8Bݝ
1.9       brouard    66: 
1.10      brouard    67: ܽݝx݅܅ݝ݅ݕ
@B      ܅HBܥ
@Bݝ݅?      9   ܭHBݝ݅ܥܵܵD    >   1Ҹ?ܽݝ݅ܥܵ܍ݕܵ&ݕp|   ݅p
                     68: Bt$|$݅\$l݅ɉL$
pbB\$d\$\݅݅ɉT$\$\$T\$L݅݅xɉD$$\$D\$<݅݅\$4\$,݅݅\$$\$&x݅x1ҹy
                     69: B\B\$L$\$$\$
                     70: Bt$|$T$fBL$D$$݅\$fB
                     71: B݅ɉL$\$$\$t݅ݕݝ݅ݕݝ@:݅YS݅rl݅ɻ@1\$ @1݅ɉ\$
                     72: B\$`݅ʉD$@T$D\$0\$X݅\$L$\$P݅\$H݅\$8݅\$(݅\$\$fB$e݅0BE$ݕ$gB^BD$\$gB`$gB/KBfgBL$$gB]\$gBt$|$T$fBD$TBL$\$D$$&
A$}B
fB1҉&L$T$D$t$BT$|$L$
fBD$$-$BfB%T$&L$D$V$gB^BD$!$gB%$gBKB/L$fgB$gBED$q$gB^BT$$gB$gB/fgBKBD$/$gBUT$t$<|$8T$@T$(T$\BL$4L$gBL$BL$$D$DD$0gBD$,t$$|$ D$t$|$$gB^BD$$gB $gB/KBfgBT$h$gBED$Ut$|$D$\BL$gBT$BL$T$$P݅xB\$\BL$\$$+$gB^BD$F$gBJ$gB/KBfgBT$$gBED$t$|$D$fBL$gBT$BL$T$$݅
                     73: B\$fB݅ɉL$\$$\$`\$
                     74: Bt$fBD$L$|$T$$)݅ݕݝ݅ݕݝNH݅\V݅f`݅ɻ@1\$ @1݅ɉ\$
B\$`݅ʉD$@T$D\$0\$X݅U&;}9]8949}8&G&q|$$A|$
pbBAD$$t$$At$=pbBAT$<$\$A$A\$pbBt$$Xv$ݝh$n݅hQ$ݝhP݅ht&$6݅$"ݝ݅t&'݅$݅
݅ݝh$݅ho݅$ݝG=݅1҉t$\$h݅\$X݅ɉ\$`݅\$H݅xɉD$\$P݅\$8݅ɉL$\$@݅\$(݅ɉ|$\$0݅\$\$$
B\$ ݅$ݝ݅݅$݅݅ݝh$y݅h{݅$^ݝu&U&&a\BgBL$$\$BC=PXBt$<$\$=AEM&9}&]19M&&&]&BgBt$B\$$\$D$ \$PXBt$$&L$D$9'H%B
gBT$$\$H493ًH<֋4ݝ &&ܽ %B5PXBT$C4$\$(9@=A]&;E9pٽA݅Pff٭۝٭)H{O&ك$[HF$J4$B\W&Ӄ$,<$$hY$h4$lG$<$D$
TB$`gB$R5PXB4$D=fB<$\B$yL[^_]$)AqBD$&5At$@\$|$qB9AL$@$p$&Tt&$$UWVSM<EHUDuM]YB]EPUu&]EX]軐^B]E`]Eh]Ep]|$^Bt$/D$$PB\$B$gB$gB$gBB/T$fgB@E$gBD$-|$B$gB$gBfgB\$^B$gBM$gBL$gBgB5YBT$<D$8E\$0E\$(E\$ E\$E\$E؉|$^B4$/\$\$B$gB$gB$gBB/T$fgBCE$gBD$0|$$gB$gBfgBB\$$gBM$gBL$gBgBYBT$D$}t$^B|$$/$gB^BL$$gB$gB/fgB$BD$n}$gB|$gBVt$(B$gB$gBfgB$BL$$gBU$gBT$|$YBgBt$^B$/D$$gB^BL$8$gB<$gB/fgBvBD$}$gB|$gBt$$gB$gBfgBvBxBL$$gBFU$gBT$3|$gB
YBD$&u$\$t$H|$YBD$$,BT$u5,PB$PB]\BE&\B19UcBE&]ht&',PBG$LB
YB&t$A&L$D$;5$PBW0]BRBYB  BL$YBT$FD$$=;5$PB~$B
YB+\$&t$L$]$gB^BBT$#$gB^B"\$/^BfgB$gBt$^B$gBl$gB^BD$$gB$gBB/L$fgB*\$gB$gBt$gB$gBp$gBt$gB/fgBBD$$gB^BL$\$gBYBT$Bt$^B|$ |$|$EL$$^BD$t$/$gB$gB$gB/fgBBD$7$gB^BL$"\$/$gB}$gBfgBBBT$$gB$gB^BD$$gB^BL$&$gB*fgBgBt$$gB$gB^BT$y\$gBgBD$YBlB|$ &|$L$|$uT$$t$uA9d&&$gB^B^BD$v$gBz$gB/BL$fgBt$^B$gB$gB^BD$$gB#$gB/BL$fgBt$^B$gBm$gB^BD$$gB$gB/BL$fgB+t$lB$gB\$$gBgBD$ YBgB\$\$C|$(|$T$|$L$t$$A9&9g&&$gB^B/D$$gB
                     75: fgBB/T$$gBi$gB^BL$T$gB^BD$$gBfgBB/T$$gB$gB^BL$$gB^BD$X$gB\fgBBgBT$$gB$gB^BL$t$$5YBgB\$(gBB\$\$\$C|$,|$ D$|$T$L$4$;AEcBM]9\BE9Uw$BYBT$&B|$MBD$M\$5YB^BL$L$4$/$gB^BD$*$gB.|$/gBfgB$gBM$gBL$z\$TB$gB$gBfgBMBD$$gB=U$gBT$*|$5YBgBL$B\$^B4$/<$gB^BD$W$gB[|$/gBfgB$gBM$gBL$\$B$gB$gBfgBBD$$gBjU$gBT$W|$5YBgBL$B\$^B4$/i$gB^BD$$gB|$/gBfgB$gBM$gBL$\$B$gB/$gB3fgBBD$$gBU$gBT$|$5YBgBL$?B\$^B4$/$gB^BD$$gB|$/gBfgB$gBM$gBL$&\$$gBa$gBefgB?BDBT$$gBE$gBD$|$gBYBL$/]$t$^B\$$gB^BD$$gBfgBBBL$$gB?]$gB\$gB't$$gB$gB|$/fgB$gBE$gBD$\$gB=YBL$BBuT$<$/t$$gB^BD$$gB\$/gBfgB$gBeu$gBt$gBM$gB^BT$$gBfgBBBL$$gBE$gBD$\$
YB/t$U$NB|$^BT$$gB^BD$#$gB'fgBt$gB$gBU$gBT$x|$PB$gB$gB$gB/fgBNBD$6]$gB\$/t$
YBgBT$B|$^B$5$gB^BD$P$gBTfgBBt$gB$gBU$gBT$|$B$gB$gB\$/fgB$gBcE$gBD$Pt$
YBgBT$|$$lYB$t$YB&T$$DBD$=,PB$PBW\BE&\B19UcBE&u,PBG$LB
YB&D$A&\$L$;5$PBW0]BRBYBYBD$   BD$F$L$];5$PB~$B
YB+\$&t$L$}&;A&$gB^B/L$&$gB*fgBB/T$$gB$gB^BD$t$gB^BL$$gBfgBBgBT$$gB2$gB^BD$\$YBgB\$dB\$C|$ L$|$t$T$$%;A     $gB^B/D$/$gB^B.fgBvB/T$$gB\$gB$gBx$gB^BL$$gBfgBvB$gBBD$6$gB^BT$!\$YBgB|$|$L$t$$;EcBU]94\BE9U$BYB\$&L$T$:=YB}Ĝ[^_]5cB&\BF&=cB&\BG&'UW@VxBS&E(t$fBvplD$$\$PB$|$\$ٽUX$T$ff٭۝٭2A&9"&9F9~޿&9
&&9։q

A
1.9       brouard    76: &&G
1.10      brouard    77: 9@
;t&;hBߋU,BCfBt$FL$\$$<$
                     78: fBT$F;hB~A
A$gB^BBD$&$gB*\$/fgB$gB$gBUT${|$fBgB|$BD$$&L$!9BtBD$fBC$k;A~$gB^BBD$y$gB}\$/fgB$gB$gBUT$|$fBgB|$BD$$&L$!9BtBD$fBC$;A~$gB^BD$$gB$gB/BfgBL$4$gB]\$!|$fB|$gB<BT$D$L$$.9$gB^BBD$,$gB0\$/fgB$gB$gBUT$t$gBL$fBBD$|$$^Bt$BL$}fBT$|$B$^\$B$gBy$gB}|$/fgB$gB$gBML$E gB\$D$fB&\$OE|$ |$$\$!9BtBD$fBC$;A~$gB^B/D$$gBgBfgBvB9BT$$gB$gBML$t$&|$fB\$$E PB
fBT$\$E$\$AZ&K{$gB^B/D$$gBfgBNBgBT$$gBY$gBML$F\$fBB|$&|$D$$^
AA&*9BtBD$fBC$1
AA9}ԃ&
fBFBD$\$$$gB^B/D$$gBfgBNBBT$$gBx$gBML$e\$fBgB|$&|$D$$}
AA&*9BtBD$fBC$P
AA9}$B
fB\$&NBL$D$h$gB^BT$3$gB7\$/fgB$gB$gBED$|$fBgBT$B|$$&L$AB&&,9BtBD$fBC$lAB&9}ҍZ&9$BfBL$&\$D$}AFZ&9;9b&9>&9y$gB^BD$/Iэt
                     79: $gBfgBBT$$gB6$gBML$#BgBT$
fBt$^B$\$/D$%t$$gBE$gBIfgBvB$gBgBD$$gBUT$E @B|$ |$\$fB\$Et$$&L$(\$D$$;5A$gB^BT$$gB$gB/fgBvBD$$gB]\$^&\$B|$|$T$fB&L$gBt$މD$$;5AX$gB^BT$$gB$gB/fgBvBD$U$gB]\$B=|$AgB&|$t$5fBL$D$\$4$:A9V9&9E&9$gB^B/D$$gBBfgBBt$$gB_$gBUT$L\$gB|$5fBD$L$4$^$gB^BT$y$gB}$gB/fgBBD$$gB]\$BEt$$gB\$5fBWT$ &\$EL$D$4$\$;A}'
fBsBt$CT$$;A|ى|$fBW&BT$L$$j$gB5A^BD$Ay$gB&x$gB/BfgBsL$$gBEt>&D$\$gBt$fBBL$T$$&D$A9}3ABt$&ǍLfBL$C$A9|͋B=fB\$D$<$D$bA9h9>9&&9u$gB^B\$gB$gB$gB/BfgBL$v$gBED$c\$BT$
fBt$|$$t$BfBT$&L$\$EB&L$fB&\$E$\$
A9SA&&9= BD$5fBAL$\$4$&;hBVQBGL0]BTYBC
fBt$L BFD$T$$;hBpRBS;u;
(PBQBFL0]BCYBT B|$GL$
fBD$$;hB~$^ B
fB\$&&t$L$|&;
A&|c BhBt$OءfB$&ӍK&\$L$&5hB&x|RBSx;u;
(PBs&QBL0]BTYBƋL$L B&L$5fBTT$C4$x5hB9~$)=fB|$x||;
Ar B
fBD$t$$|$
A&ڋA4K9t"$,fBT$
AAhB&<;99[fB$Ĭ&[^_]áQBL0]BYB֋L$T B&L$5fBDD$C4$xA B= BL$fBG|$T$$\$;$ BfB't$&|$D$OAF$ BfBD$&L$T$-$ B
fB&\$D$L$臿3UWVS&}\E<]X
0XB|$L0cBcBE4ɉ\$H=YB\$@QBE,E$ʉL$4
gBT$0AD$,0aB|$(=TB\$8\$L$ T$D$\$$|$\$ cB$XJd$UffXT$/$AD$RBu*\$$ Be\$pbB BT$$+\$!B$!B6\$pbB|$$MlucB&UDt"BٽNANR$f
fL%"B٭L۝H٭NH<$$٭L۝@٭N&@`bB9DPBәPt$$j݅Pt$ݝt"B$Jx"B݅Pɉt$ݝ$(݅Puz݅ٞuz=,PBMl0&0E<4!B&E4ʉ\$RB\$1\$0PB\$(݅ɉ$\$ ݅\$\$V|$5RB L$$|!Bt$胼<0& aBcB}l&8mE`eݝ<RBT$&t$&\$$!B;ulIRB0]B<<YB<!BD$|$RBFL$$k$!B
RB&T$&\$$L$臻t$RB&|$D$$"BeA
A&˃&|a&9(\$=RB%"Bt$CD$<$׼;A~؉t$RB,"B|$F$購A
A&9}݅1ɉDcݝ$
1.11    ! lievre     80: RBT$膺݅4"BRBEEɉL$$\$E\$\$0E$%"BEPݝ(?݅(1-"BA
t"B|"B$5ٽN5AN\$$&ffL&٭L۝H٭N|$HșD$A&D$D$3@XBaB݅(<YB5A0bB=AT$$EhL$(\$ t$1|$D$T$\$L$$494&111ۉ1ۅ5t"BA݅5A&A&ك&&&&9ݝ ?ٽN݅(=ANt"Bf}D&fL٭L۝٭N+ cB4ʋ8W$Ƀ܅ ݝ ۅ݅;C9~ۅW$Ƀ݅o=A&;4&&&&94fp~<$J$и$¸݅(m$ݕ(݅@&DۅDݝ+8cB}l895 aBF;05 aBaUDt3r~<$%Y$$RB$舷Č&[^_]ÉT$D$$mA)A$&&L$&|$\$T$D$EP}DE$ɋ
 cB|$\$\$\$$]DBpbBL$\$$j$BEDD$woz^؋["B4=RBЉt$<$\$1(@5A=A݅v'C9G8Ћ4W$Ƀ܅ ݝ ۅ݅u\$5RB["B|$C4$H5A1(@=A9݅zt"B=Ak݅ ["BRBT$\$$5A_8$
        !            81: 
RB&L$س;ulM=RB<0]BYBa"BD$=RB\$FT$<$k;ul~ۅh"B5RB5t"B|$4$A܅(\$݅E\$$q&UW&VS&&|$u\\$&L$T$D$$&~&|$\$L$T$D$$&I#B=APBE
0XB|$L0cB\$HcBL$4=YB
gBT$0QBAD$,0aBL$ T$|$(\$$Eݝ(E5#B܅(%PBE<\$@E4ݝ(\$8D$ cB=TBE,E$ɉ$X\$\$|$rW$UpopXT$X$AD$cBu*\$$ B莳\$pbB BT$$T\$!B$!B_\$pbB|$$)
$PBucB&UD    &=A}X&Ml1Ҿ&5 aB@cB
$PB<&<ٽV݅(*VE`effT٭T۝٭Vݝ@&cBt$&\$|$$!B_;5$PBKRB0]B@=YB      B<cB|$FL$T$$辱$!B5cBL$&&|$t$߯\$cBD$&$EAT$路
A5A&&+\$=cB"BL$C<$8AA&9}Ӄ}X&
11*D11ۉ)ʉۅD"BcBEEɉ|$$\$\$ݕE\$蛰#BEPv)Q$m$ݕH݅H1- #BA#B$臯ٽV
AV\$$&ffT٭T۝P٭VP&T$D$A&ȉD$D$@XB5aB݅H@YB
A50bBAt$$Eh|$(\$ L$T$D$|$\$t$$
1ɋ8981ɉ#B݅ٽVVf
܅(fT٭T۝P٭VP;8ءA&AI cB艕h&9_}D&݅Hh٭T۝P٭VP<A98~ۅ܅(٭T۝P٭VP;8P؋F9Rؿ&9݅H5A#B٭T۝d٭Vۅ&9+dt&'B<9~ۅdd<G9$ۅ܅(܅H٭T۝P٭VPNۅ܅(٭T۝P٭VP;88&98{KA$`S$U$M݅H1ҋ%#Bp)v(@ݝH)Q$5(#Btm$݅p݅H&9(@Cx<$襫K$蚫$蒫݅1%#Bpt݅pݝ݅5(#Bm$݅4x݅ۅxݝf<
$PBcB<94 aBC;]l aBTUDt3Zs4$ʪx<$蹪$諪}X&u34$蔪$<$胪 $rxO$^s4$M$?Cx<$+K$ $5cB4$蚩&[^_]É4$"BL$~dB$j$ x4$ $蝩H&p t$dB"B\$T$$蝨@YG$&&L$&|$\$T$D$EP}DE$ɋ
 cB|$\$\$\$$q]DBpbBL$\$$٨$BEDD$݅H<٭T۝P٭VP<z؍݅H٭T۝P٭VPD<A98~&9S݅H#B٭T۝P٭VP<"B<cBF׉L$$\$ʧ;5A~ۅ"B5cB|$4$A܅H\$茧ٽVVffTDDo݅&ɉxݝ*)ʉ݅"B5cBEEɉD$4$\$E\$\$谦#BEPR)S$m$ݕ)R)S$ݝ݅1- #BA#B$pٽVAVt$$&ffT&٭T۝P٭V|$PșD$A&؉D$D$n5@XBaB݅@5YBA0bB=AT$$EhL$(t$ \$1ۉ|$D$T$\$t$$9,݅ٽV1
(#BVf܅(fT٭T۝٭V9<&A&5A|&v'&9ٽV݅VffT٭T۝P٭VP\lt&l<A9؋~ۅ܅(٭T۝P٭VP;t.؋|G93ٽVVffT\$5RB"BT$4$蝣A5A|ۅ"BRB5(#BL$$A܅\$U$"BcB
t$&\$D$r=gB&9Ӌ<B$)AqB\$&t$@D$9AL$qB5A|$@$蝢$&聢$)AqBD$&VA\$@T$豠t$뤉t$$"Bk$묉U0#BS]D$$腢t$ɡ&[]É\$$2#B\$pbB2#BL$$1[]Ít&'UWV&S$L#Bß$#BM:T$&D$L$ޟ;u]}&||&&G9|9t|$t$$#Bd|$U#Bt$L$$(E~7]$#B2$#BMT$&D$L$=Ku$
1.10      brouard    82: $
                     83: ]\$]F;uE$#BE&.t$&D$|$$$B֞;uMU&щtt&&G9t9t|$M#BT$t$$4|$t$$#B@qB $]~7]$#B$#BUL$&D$T$%Ku$
                     84: $
                     85: ]\$ӝMF;u5$/$B訝qB $7$C$BUL$&D$T$貝E&u}&x1&dpE9px&&l&p9l&&uh9he&hdE`}&EN$X$Bhlp\$X$BT$L$踞\$hlpU|$D$t$$kE&E19Ex&&t&;}tm&;]cF;dSEـ`;dM}&&$#B$#BET$&L$D$$C;]~G9x}E}9}`$
                     86: ڛ$
                     87: ut$跛hu9hll9xWp%}&P$a$BpMȉL$lCT$D$MpMȋlL$T$UD$a$BD$$&|$MED$lEȉD$CL$pT$$p$BL$ߜ|$UML$lMȉT$pD$p$BT$UL$D$$~$$BhlpL$|$D$oh$BlL$p}t$\$T$<$E}ļ[^_]Ðt&$BUW1VSL5gBU}UI]x. hB荴&'E@9]E]}ػ&9_ dB'&<&~65 hBC;gBE]0gB<&tEu΃<&C;gB~ۍt&'E
$BMuUL[^_]Ít&<&~G@hBG]Ѐu׀A,E]$t\B]A,O$XEȡgB dBMKG(@
gBG]uǀA,E]$\B]A,O$mEG5$B]$誙EgB]A,O$t$E]} dBEo
U~WVSl&E4YBu,}0]T$\$&D$$$B
A$%BYBL$F\$FT$$\$耙]&&EɺV%B\$ʋ
YBT$CT$\$$\$~$t%BYB!|$&D$\$&&\$YBL$g$BT$$%B=YB&T$!D$|$&і\$
YB|$$%BL$賖AS$E%L&Bw
A)W$N$豘A0[BN)W$N$]艘N$&B=0[B
\BQB<\$4ً
YB\$,\$$E\$\$߉\$CT$\$$蝗S$E%L&BC5YBul[^_]$衖$荖t&UxBSD&M(T$fB],L$$Mh$L$1$P&B
fBvpl&L$T$D$$l&B
fB?T$&D$L$$&B
fBT$&D$L$Δ$&B
fBT$&D$L$覔
A&BfBL$C\$CL$T$$\$$D&[]Ít&'U\WVS011>BB='B
'BCBɋ
                     88: 'Bݕ`'Bݝ5'Bh'BCB='Bl
                     89: ݕhݝp1ٝ艝t1ۉx1|0#Bݕ(ݕ0ݕ8ݕ@ݕHݕPݕf}0#B'B$'B 'B\vBݕɉ"'Bݕݕݝݝ $(,<$R
1.11    ! lievre     90: L$>Ձޱ&1҉$1t$T$T$ø@BD$։|$$PdB1ҹ@BL$T$$t$=TdB8PBn
qBqBȉPdB[B&)=TdBaB3=[B$PdB5aB8
fBPfBXfBp5fBx=fBH
fBPfBXfB@ $PdBfB]05WBx=WBH
WBPWBXXBp1ۉ5XBxd=XBH8
XBP $fBXBdD$$ VB0PB14PBt$<$;$$'B A`AL$T$轒}&M8q<$t$諒}XB_\$$+'BXBD$ut$^B8L$$ RB\$8^BL$ RBXBT$D$78$H'Bt$ RB\$^B8T$88$ RBGt$XB8L$^B8T$D$|$$'B豑$4$&D$
1.10      brouard    91: ]Bmkdi^B
]Br T$f5]B$]B$]B!PBZ
                     92: $_B^BAt$ʐ$_B>ƀ_B.log_B|$$_B<pbB   $_B'B|$`A\$谐t$=pbB$'BT$ A^BL$<$ RB肐$'BpbB&L$!D$\$8褎t$XB8T$pbB8|$(B VB$L$\$ VBt$D$
1.11    ! lievre     93: |$^B$p(B\$
pbB(BD$.txt$Տ5pbB4$w|$rffB$fBk$fBߍfBƀfB"BD$$ RBݏRB
$TBofBf=TB\$$TBAL$蚏aB18d@#u}T$F$#$
RB&T$L$$$aBD$ь$=pbB|$迌RBzOzy$RB#tT$A8$b\$,@aBdBT$0ARBT$ AD$8AFL$4^BT$RBD$(AL$$PB\$YBD$SBL$(B|$<\$L$$D$RB5dBA|$<
@aBD$4At$8A$4)B5^BL$0AT$,
A\$(PBt$$D$ YBSB\$L$T$\$t$D$聍A|$@AdBRB5@aBD$0
AT$<PB\$8^Bt$4AL$,5AD$T$(aBYB\$$SBt$4)B\$L$T$\$t$$ɌA|$@RBdB5@aBA\$8AT$<=At$4
^BD$0A\$5PB|$,pbBL$(SBT$$YB4)B\$t$L$T$$8D$|$)5pbB4$ˋn:G:#T$$#؊$
RB&T$L$݊$߉$5aBt$轉$=pbB|$諉RBBHBy$RB#yT$1ۉ$Nt$ N&L$T$$\B8,PB&!‰%t u8)&v581ۉ4$31918+B&9~S&,PB$&=,PB&D$5A_hBG=eB=A\$&|$J&T$ωt$ˉ
A/THǡRBYP8ur:G:#T$$#$RB&T$D$$$5aBt$$=pbB|$ЇRBJIJy$'RB#zT$&$ut$A&L$A=hB\$&‰|$J&T$$&`
A9A1&&;9tRB#BD$F\$$L$9m9IT$aB#BD$L$$袈=RB&
t$pbB#B|$D$$&q;hBt&`)BL$ڋRBD$$V=RB&`)B
pbBډ$D$\$`)BaBCT$$\$Շ;hBiRB)BL$$҆=RB&*$
1.10      brouard    94: pbBT$詅$
                     95: aBD$蔅A
A=$)B RBt$n RB)BT$D$pbB$.
pbB$Іqt+$)B"\$$)BRquۍe[^_]$*B_BL$몉D$^B8\$D$$*Bdž~t$$Z*B貆؆8PB$t*B葆=qBT$|$8<$P1!%t uȃ)7
                     96: |$$*B
4$*BD$~t8t\$|$$*B݅\$8$ۅ8#u`$)B\$萅`BG95pbB84$n:G:#T$$#$RB&D$T$$$
aBL$܂$=pbB|$ʂRBrNry$!RB#y$&T$o
A9&A\&&&
RB#BT$\$$D$^؉))…+t$#B|$$#B&\$#B
aBT$$D$ۃ\$&
pbBT$D$$调;hBt&T*BD$ً
RBT$$薂T$*B\$wTaB*Bى$D$\$-T
pbB*BCD$$\$;hBVRB)BF\$$$
                     97: $
                     98: aBD$׀$
1.11    ! lievre     99: 
pbBL$
AA\9 G9pbB8$Tq~Pd:G:#u}T$&$#t$
RB$L$!$)$=aB|$$pbBT$RBBHBy$LRB#tT$&$螀$&A&T$\$\$ۿ;5AX&|$
RB)BD$$舀=RB&
<$pbB&T$D=aB|$<$,9X*BD$ً
RBT$$=RB&X*BpbBى$D$\$ɀX*BءaBT$C\$$袀9vRB)BD$$=RB&$
1.10      brouard   100: pbBFT$~$
                    101: 
aBL$i~
A9&96w&9Ή,XXB9~싽,9~ʃ=RB&$
1.11    ! lievre    102: =pbBXB|$A}5pbB4$q$VB^BrT$fVBa$VB}\$.fVB$VB9|$$VBPhB$`A*BT$L$B$YB"BD$VB@aBK<<$~0s$&@aB&t$@|$D$臻J44$~rpVB$c~ksfB$N~VsYB$9~Asp^B$$~,sZB$~sgB4$}/r bB$}r hB&?\B;~$&&T$@aBt$\$0cB=@aB&L$t$|$$&ǻ0XB@aB&t$BT$D$$&TB$$-},\q$$}HqcB&1VB8&|$$D${&      ;89!%t uȍ8)x8 8&Hy8&!‰%t u8)эY8 €
1.9       brouard   103: K8 
1.10      brouard   104:     Ш&u
t1Ɉ98#   @aB҉
                    105: 11ۍ84$zÍ84$yH9wu8 C&tڀ9 uЉ̉t$|$$#B{$
                    106: yX$*B\$h{S 8H8$fy18B9|119=_&9
8)wA9~yWB
                    107: t$xL$<$uyxbBWB;85TB<1ۉ$1D$z8$xÍ8$xP9w8 C&tڀ9 uЉ̍8$Nx18B9|119=_&9
8)wA9~䍵*Bt$xL$|$4$Axu/4$*BT$,x
                    108: c'ۅ
0XB0cB4O֍8ۅӉL$4$Fy211ۍ8$6wÍ8$$wP9w8 C&tڀ9 uЉ̍8$v18B9|119=_&9
8)wA9~䋍*Bt$xL$|$4$vu94$h*BD$T$vlc'ۅZB8
p^Bۅ1ۉ|$14$w84$uÍ84$uƍ@9w8 C&tڀ9 uЉ̍8$u18B9|119=_&9
8)wA9~䋍*B|$xL$t$<$uu/<$*BT$ufc'ۅ8YB
fBۅ1ۉ<$1t$v84$tÍ84$tƍ@9w8 C&tڀ9 uЉ̍8$|t18B9|119=_&9
8)wA9~t
                    109: WBL$xt$<$tx£bBWB;P8$ hB\$$u^B҉<&11ۍ84$sÍ84$sP9w8 C&tڀ9 uЉ̍8$Qs18B9|119=_&9
8)wA9~s
                    110: WBL$xt$<$`sx£bBWB;H&d5\BKR8$L$$it!ډ%t uȍ)Ѓ       $xr
pVB|$$)BsN$
1.11    ! lievre    111: q"$*BTBt$sTB*B01Ɉ7U$q5pVB{
aB8TBD$A5AL$=hBT$t$<$&4\$$*BspbBTB*BL$D$$r|$A&D$A5hBT$&ىt$I&L$$&S`=At$$&|$|$诰X"$H+BfB\$or*$p+BYBt$Ur=pbB8+BD$8\$<$       rt$$+BrL$\$t$|$$+Bt$q$&q$+B@aB8L$xT$\$t$|$D$q몉D$T$낉T$8t$$,B|$D$`qm$
        !           112: _o;T$8|$t$D$\$$-BVB$'p$@KgBpdQB$@updVB$@\pdRBL$&D$|$$&fB$@pLdRB81!%t u8)ك&!$1&&1n191ۀ8+B&9~썕81ۉ$m1918*B&9~쉝F8VB8-B(5,PB8T$$lot-B88$-B8-B|$o|$pbB\$$nT$8|$$.Bt$D$r$.B8T$xt$D$\$L$A8
aB\$ATBT$5hBL$D$4$o$/BTBL$Jn\$pbB/BD$$nwN$m_$m<$maB$AmpbB$3m$m=dB&t,&; hB?t@;~$&
gB&|$@aB&L$D$襫0aBgB9O@aB9~=&
p^B٭۝٭c@aBF9&
0cB<ٽf
f٭۝٭cu=TBA9q=0XB@LL=ZB٭۝٭='٭۝٭c&ZB٭۝٭'
TBA<9\$pVBcD$4PB$d/BL$k=p^B0BpVBߋ=pbB\$\$L$<$T$kTBngBC9'&9d5ACB=p^BfB5ZB
YBߋ=gB<ɋ5PB;=AG9
gBٞp^Bٽff٭۝٭cZB٭۝٭'t[0aB<F;R&=TBƒ  Ш&0'
0aB묃       CB=0cB0XB
0aB<fBɡYB5HCB5HCBٽf
f٭۝٭ct>٭۝٭='t݅d&ݝ=0aB
AgBC9&9=A
AATB=PB;&
C;9$~߉L$4PB|$D$<t$\$|$$0BUh
AA=TBL$0BD$T$=pbBt$\$T$L$<$g݅<ٞݝNt&TBA9;\$pVB4PBT$٭\$٭٭\$٭$0Brg\$
pVBZB<
p^B|$0BءpbBٽff٭\$٭٭\$٭|$$fTB
p^BٽffP؋ZB٭۝٭'\$pVB0PB<$1B|$~f\$pVB1B=pbB<$D$L$6f0aB=ALF9M݅݅ɉT$$1B\$\$e݅1BgB݅ɉT$5pbB\$\$\$4$eٽ݅0f
f٭۝٭$=A-eS$e4$efB$&e=YB<$d
p^B$dZB$dgBJ44$dY dB=PB&T$5AgB$&)F\$&t$mPaBPB&D$A
gB$&)BT$L$6@bB
PBA|$5gB$&)@t$D$aBAAD$5gB=A\$,
PB@bBT$(0aBgBt$$5TB|$ =PaBL$
 dBT$D$$\$t$|$$&cWWB1T$|$t$$NYB
cBA&,PB~T$gBQBD$$$&&dT$
        !           113: @|$1\$$PBt$&0]B$\$cٽf;5$PBf٭۝٭8&ۅݝV&$ݝۅ@݅$T$\$ݝ bܽ݅ cB&&1G;~&0]BCQBS
$PB@$)A$ݝ$$T$\$]bܽ݅scB9dF;5$PB$@[B^Bt$a=RBu#$@[Bt_fD[B-mor@[B$@[BA_\$.gp@[B$@[BafB$2B@[BD$'a$``B^BL$"a=RBu#$``Bt_fd`B-mor``B$``B.htm^``Bƀd`BAD$$``B`YBP$[B^B.htmD$`$[B^[B-covA[Bƀ[BL$$[B`\B!P$
dB8t$,AYBt$A$2BL$(=PBSBD$$ A\$ `A|$fBL$\$@[B|$_Bt$_BD$_\$P VB@[BL$X^BfBD$TXBfB|$LXBt$H^BL$@
dBD$<A\$8A|$4=PBt$0YBt$5YBT$D8T$,SBL$( AD$$`A\$ fB|$2BL$T$\$8|$ VB4$D$^YB$t^$8L$^$^BD$a^$^B\ٽ
YB|$050XB$fB0cBcBL$ RBt$,=gB5AT$(0aBf\$$TBD$f݅T$٭\$٭|$t$\$D$$
        !           114: =YB|$[UB4B5gB݅ɉL$TBgB\$$YB݅\$t$ &\$T$\$$]t$=AA$&&T$T$蝛eBA&L$A$&&؉D$D$n@XB=A&T$5A$&&t$t$>cBA&L$A$&&؉D$D$aB=@XB5cB0bB`=YB15[BZ=RB=0hBK\pW@aB=A\$ gBAt$\ _BD$PhB0hBT$L$\$&$|$t$gB$l5B _B\$aBT$\$\\߉\$C$5B\$[;A~$
        !           115: &Y0hBpW@aBt$ gBAD$5A _BT$\0hBL$PhB\$&D$$|$t$gB$5B
 _B\$aBL$\$X[$\߉\$C$5B\$2[;A~$
1.10      brouard   116: .Y
RB~IA`=@=AL$hB5A\$\PhB|$\$t$D$${AdB8t$<@aB
AD$8A=AT$4^B5AL$0PBD$PhB|$,YB\$(SBt$$5B\$T$L$|$&\$t$:$
Z|$PhB:L$$#BT$:X$L#BWt$pbB&D$&$#B\$X&A9
A
1.9       brouard   117: &&G
1.10      brouard   118: 99t|$W6Bt$$W6BY\$pbB&|$t$$CY|$
PhB]6Bt$T$$$Y;hB\C$e6B\$Ye6B\ʋpbBD$\$$Xe6B\ȋ
PhBT$\$$X;hBz$
                    119: V$
                    120: 
pbBL$V$
                    121: PhB\$zV
AA$`Ai6B|$t$&%XfBp6B@[BD$T$$X|$
fBt$$v6BL$7V(11ۍ84$UH9w!8+C&t
1.11    ! lievre    122: 9+tΉljȍ8$U19}8B119=_&9
8)wA9~䍽81ۉ<$nU19É18+B&9~u8xt$$&W*x1$1ۉT$kUGx$Uƍ@9Fx*C&ty*F$&&D$\$|$貔444$7VlJgB$VK\B$VK4$@hBUJgB&9G
1.10      brouard   123: =APBTB=A9< B;~F9=RBtEA`=@PD$A\\BX\$L$\$T$4$$$B=PhB&L$.&D$|$&PS$#BSt$pbB.T$&$$B\$S|A9]&
A
1.9       brouard   124: &&G
1.10      brouard   125: 95&9t|$PhB#B\$&t$$rT|$t$$#B~T|$pbB#Bt$L$$?T;hBPC|$6B\$3T|6BPʋ
pbBD$\$$S|6BPЋPhBL$\$$S|;hBz$
                    126: Q$
                    127: 
pbBL$Q$
                    128: PhB\$Q
AAF9$6BPhBwT$&|$\$Q5RB~$7B-Q$6B=pbB&D$wt$|$EQA&&1x9xW
A&
                    129: &t(x9t&&;hBppGE`&US5RB~*$X$BptxT$D$\$MRtX$BxL$ppbB\$t$D$$QpX$BtL$xD$\$t$
PhB1ۉ$Q&
A9&A4&&h&&9:&hB&9#&&&&
RB~X$6B\$=QX6BpbBىT$$\$PXع6BPhBL$\$$PhBF9C9E`U9Y&&RB~X$6B\$PX6B
pbBډD$$\$OPXSA
A4;9oRB~$
                    130: 'N$
                    131: 
pbBL$&N$
                    132: PhBT$Mpp;hB3
AAt4
                    133: ;tvRB~'$a$BtUȉT$xD$L$OxMȋtL$D$pbBT$a$BT$$/OxEȋtD$T$PhBL$a$BL$$N(
RB~B$p$BED$EȉL$tT$xL$D$T$NUT$UȉL$xD$tL$
pbBD$p$BT$$D$_NML$MȉD$xT$tD$PhBT$p$BL$T$$N>
RB~*$$Bptxt$D$\$Mp$BtT$xpbB\$L$t$$M\$x$Bt$T$L$x9x}pbB$M=PhB<$LRBBHB:G:#T$8$#K4$RB&L$\$K4$J4$aBT$J덉A9&&9&= dB@hBaB
0aB=\BgBɉ4H~4&CB
gB%ٞv;PB~;AB;gB-غ&4&9t@~B~ CB\[(CBmort$AfBSIt$pbB&D$$AT$pI=YBpow-
YBYB\$$YBJ$YBAT$CKdBu:$AYBYBT$Jt$
pbBAD$$JdBD$&L$|$$#AH$
1.11    ! lievre    134: dB\$HA@@AL$4T$\t$@@A\$D$|$${dB$mI0CBt$XL$P\$&\$D$|$K&X4XB~~$7B&I&XC$e6B\$I~$7BF{I~Nj\<$HA\D$ C\$Cɻ&\$t$\$$7B(IXv7p7ɋ\ݝ+7%7\݅\$\$C$7B\$Hs$OHW=0[B$6H>=QB$H%=\BAj@0[B|!6\)P$I$vH\J5@=5AٞT$1x$MF5`bB`bBpT$RB`|$h7BD$$\$L$t$EF`bBo&A9}`bBCB݅xr݅`ݝp݅hݝx$8B=PhB&L$Z`8B\$`8B|$D݅xt$`bBPhB\$ ݅pD$($\$݅h\$݅`\$gF݅x\$=`bB
aB\$ ݅p|$($\$݅h\$݅`\$#FRBrNr@#uxT$&$#D\$=RB8$|$D8$C5aB8$t$C녡A$FRBaT$H@$QDt$5RB\T$ P(D$08BT$8|$\$8BL$4$D$;D݅P\$
aB\\$0݅H$|$8\$(݅@\$ ݅8\$݅0\$݅(\$D݅P8B\D$5PhB\$0݅HT$84$\$(݅@\$ ݅8\$݅0\$݅(\$fD݅P$8B\\$,݅H|$4\$$݅@\$݅8\$݅0\$݅(\$4D݅P8B\L$pbB\$0݅H\$8$\$(݅@\$ ݅8\$݅0\$݅(\$CRBJIJ&C#ubT$8$#_B4$RB&D$T$dB4$lA4$=aB|$JA둉$CRB-T$,9B$B݅0 PBt$=RBCBʉD$,9B<CBɉ<$܅8ݝ@݅(܅@ݝ@݅Hܭ@܅Pݝ8A PB,9BaBL$\$$Bt$ PB=PhBD$<$dBRBJIJC#umT$&8$#At$RB8<$D$A$@
aB8$L$?놉$RBRB;T$$@\$ $D$RBT$$L$<9BL$t$|$T$\$$@݅9B$T$aB\$4݅t$<|$$\$,݅\$$݅\$݅\$݅\$@݅$9B$\$0݅L$8D$\$(݅\$ ݅\$݅\$݅\$@݅9B$T$pbB\$4݅t$<9B|$\$,݅$1\$$݅\$݅\$݅\$2@݅t$$8=PhB\$4݅L$<D$<$\$,݅\$$݅\$݅\$݅\$?8$=98\tC/C݅x^Bt$ \\$1$fB\$݅hL$$\$݅`\$i݅PVBt$8=gBT$4
TB`bB\$hgBA݅H|$(5dBL$$=AD$<
PB8\$`݅@\$ YBD$SB\$X݅8L$T$t$\$P݅0|$\$H݅(\$@UB\$,\$D$$fBQS5 dB4$S>=PaBW$B><$:>@bBK$)>$!>5aBF$>4$fB>=pVB<$A=gB$=aB$d=
PhB$V=ReBplfPeBt$$PeB=|$$PeB$>aB+$:BPeBPeBL$=\$5pbB:BD$ AXB4$SAs=|$ VB`AT$aB^BL$$\$&t$D$4=\$=aBL$&$<:B|$\;t$aB&T$$[:BD$:;;A7\$=aBa:B\$CT$<$<։$(=RBd$
        !           135: 
aB&L$:\$A$&D$D$z݅`d5,PB$PB݅hɅݝhݝp&&= aB10cB& aB4&$!BaBD$&t$G&T$:$!B;\$
pbB&T$$!BL$90]BRBYBL$     BL$aBD$$T;0]BRBYBD$$     BL$=;0]BRBYBL$    BL$pbBFD$$:;5$PB8$!B5aBT$&D$t$&8$h:B8\$
pbBt$$!BL$8݅h݅pݝx3&݅xٺ|=t$
0bBYBT$ 5AdL$\\$\$t$&$|$$D$ړ݅xBaBL$\$$=0]BRBYBD$a"B\$aBFL$$9;5$PB~&(do:B5aBCL$4$\$c9;A~$
        !           136: aB\$e7݅x@CBݕx݅p aBcB94@9ȣ aBaBA$;8$0_BfBpijL$0_B|8|$$0_B9`B&$x:B0_Bx:B\$8|$5pbB0_BL$4$SAe8CBٽ=AWf$f%@CB٭۝٭$$٭۝٭$ VB$\$`Bt$1$٭۝٭șXB A^BT$L$|$&`AD$7$:B`B&L$HD$T$5= aBl"%cB&h aB4l&
`BT$        &|$L$$:BC5;5$PBRRBl0]B=YB<A|$`BD$FT$$6;5$PB~$!B
`B\$&t$L$4݅xݝ݅݅p݅1-PCBA
CB8CB$p5ٽ5A\$$&ff=A٭۝٭&|$|$ș&T$D$nu@XBaB݅lYB5A0bB=AD$$\L$(\$ t$|$!L$T$\$D$$&|$5`B&T$$:Bt$&Y3
A9KA&&1\$`BBL$Ct$$4
AA<9}F9~$
1.10      brouard   137: 5`B1t$2;1ۉۅ;B&5CBT$l`BL$$A܅\$݅\$;4
A9VA&&<`Bo:BCL$$\$3
AA9}F9~$
                    138: `BG\$1&;$VJ$e3F$Z34$R3$
                    139: =`B|$1݅%@CBh aBcBh9@9ȣ aB݅x VBT$0=YBt$4l$^B
AQB\$P\݅p|$,XT$$\$L$\$(D$t$&|$
1.11    ! lievre    140: "`B$1|$&T$&L$D$t$$&(r cB4&&DB~C~G~̃&݅$fB=$PB\݅@ɋA\$X
PB|$d$݅x\$,݅ɉ\$`\$H݅pT$TL$PD$<\$@݅8\$\$4݅\$$݅\$݅\$݅\$Hp$0WBtfBf
0WBAD$1t$$0WB1RB$$;B0WBe\$;1pbB0WB$;BT$fBAL$$0f5PB|$$PB0\$$PB+1PbBG$p;BPBPBt$0|$pbBp;B\$A$0ZBstdefB
ZBD$$ZB0t$$ZB0 WB$;BZB;BL$F0t$=pbBZBD$cve<$0TBfBT$$TB/$TBAL$60RB.$;BTBv\$/pbBTB;BT$fBAL$$/f5bB|$$bB//\$$bB/ XB$4<BbB\$]/pbBbB4<BT$L$$/݅85A=PB݅@ɋ0XB\$@0cBt$L
cB|$HYB\$85QB\$4=gBT$0AL$,0aBD$(
TBt$$ cB݅݅ɉ|$ \$T$L$\$\$$8\r1&5 aBd
cB&` aBfd   =RBT$&&L$|$$:BE,;5$PBL=RB0]BdYBA\$D$RBFL$$-$!BRB\$&     D$&   T$+|$
PbB t$&L$$:B+\$ WB&D$$:BT$o+t$
RB&|$L$$:BL+;5$PBd0]BRBYBL$AL$PbBD$$,0]BRBYBL$AL$ WBD$$f,RB0]B=YBA<|$L$=RBFD$<$",!$!BPbB&L$D$&T$;*|$ WB  t$&\$$!B*$!BRB&L$D$T$)t$ XB&|$\$$:B);5$PBJ=RB0]BdYBAD$= XB\$FL$<$(+$!B XB&T$&\$D$J)ٽ
A݅xL$ff٭\$٭݅p٭\$٭t$L$$&Xjٽ=@XBL`bB VB݅xD$,5A|$=YB=A\$(aBt$df|$\Lf٭\$٭݅p\$$T$ ٭\$٭t$|$0bB$fBٽP VBD$4X`bBL$,\$$0bBfT$0YBD$(A\$ Af݅x٭\$٭݅pT$٭\$٭D$\$t$|$1$fBٽ
A&݅xT$L$L$ff٭\$٭݅p٭\$٭$&hٽ
@XB|$P\Hd VBL$,݅x`
YB\$T`bBD$X aB|$@faBf٭۝٭\$Ddt$LىD$H|=t$8D$<\$4T$0W$0bB\$$AA݅pP\٭۝٭XVH$T$D$\$L$|$t$$^B\$= PB& VBXB AL$
RB`A\$^BSAT$y$D$|$t$D'\$RB&T$&$h<BD$m%;A\$5RB<B|$C4$&$
        !           141: RBD$%A$&݅p݅xݕX݅Xٸ|=L$d0bBD$ YB\t$$d5A\$T$\$|$t$$$= PB&݅X<B5RB\$4$&\$&A9T&9&ٽ݅Xff٭۝(٭ɋdL(A9~ˋFD\9j&9ٺ&9Jٽ݅XHff٭۝٭B9~G9~1+\$<BDRBT$$&\$$;Aٽ݅Xff٭۝٭2\$<BRBCT$$\$E$;A@H<zt$W#ɋFD\9$
        !           142: 5RBt$"݅X@CBݝX݅X݅x݅pٽLff٭۝٭~OD$@#LV$/#4$'#ٽ݅pffH٭۝٭OYD$"W$"<$"$"` aB
cB`9@9У aBq= hB<$v"fBS$e"$]"5TBN$L"4$D"=0XBG$3"<$+"0cBS$"$"5 bB4$",<$!
PbB$x! WB$fBe!RB$X! XB$J!5RB4$<!=RB<$.!\$vpl
PQB$PQBs!$PQBAD$!YB$=BPQB&\$!&1
 aB9
cB&T aB4d$:BYB   L$&GT$&\$]B0]BRBYBAD$T$YBFL$$ ;5$PB~$!B5YBL$&D$t$ VBٽA݅x\$ff٭\$٭݅p٭\$٭$&z^ٽt$D|=@XBt$<݅xáaBL$8fdf5A٭۝٭T$,YBL$4
AD$0|$@R$0bB\$$݅p٭۝٭P$L$\$t$P\$\$fBXT$D$L$
1.10      brouard   143: ٽ݅pff٭۝٭SL$$T aB
cBT94@9У aBsYB$\t'NA$mV$b4$Z= cBWr4$F_$;<$3dW$"<$5eBN$       4$&@XBC$$=cBW$<$5aBN$4$\B$$Xz<$X4$|T_K$hG$]<$U50aBV$D4$<`_K$(G$<$cB$5QB4$VB$=RB<$
RB$WB$5YB$4$=0]B_$<$
YB$]fB$P4PBC 0PBD$T$$P=B
0PB=B54PBD$pbBL$t$$N$=B_B|$S4$
                    144: T$>Չޱ&11ۉL$<$t$T$Ǹ@BD$։\$<$cB1ɺ@BT$L$<$t$cB8PBu8PB=qB
qB&)aB&$cBaB8=fBXfBPfBp5fBH
fBx=fBXfBPfB@ $cBfB05WBH
WBx=WBXWBPXBp5XBH=B
XBx=XBX $fBXB&D$$\$ VBD$$=B|\$
pbB VBT$t$$=$gB=PdBE.‹
cB)ų<
1.9       brouard   145: )iQ&|$)4
1.10      brouard   146: )Ɖt$i)&)‰T$))L$HAD$S$">BgBT$$6>B5PdB
cB)L$$gB=PdBE.‹
cB)ų<
1.11    ! lievre    147: )iQ&|$HA|$)&)it$gB)鉍00ы0&)щȉL$))00T$tt$pbB">BD$6>B$t$
PdB=cBpbB)ω|$$\$
YBP>BT$ VB\$$m=YB<$5\B4$fB$pbB$$>B8T$@8$t$>B8L$&8T$4$att$$Z*B$`XBgnup8
`XBlot>B=dXB8D$t$2\$$`XB$>B`XBt$qB $$>B$\$$?B`XBD$?qB $$`XBI?BPUBT$@[B|$D$$O?B`XBL$qB $q$`XBPBt$i?B$?Bqa$?B\$$)B<e'&<gf&<qurt&X\5A&9ٽ݅X cBff٭۝٭ddA9~$A5A&9Yٽ݅Xff٭۝٭ddA9~$?B``BL$:5qB 4$$``Bql$`XBٽ VB\|$Xd&݅xL$P|=`|$@ aBt$T`bBff٭۝٭D$Ld\$H0bBT$DYBt$8L$<D$4\$0T$,V$\$$݅p٭۝٭AAPQ\X$HD$\$T$|$t$L$$^B\$($?BbB|$ȥ$@BTBT$$D@BZBD$$|@BPB$PUB`XBt$A0PB$@BF$@BpbB
T$&|$\$^$@BPQB{$&&T$&t$|$L$\$R݅x\= cB\$݅pD$t$<$\$\B
pbBT$\$$Z$B\D$d$AB0WBT$JcB$0AB0_B\$鱟$TABPeB|$ˊA;\)Q0[B$H$E\O,\F;}4A$\$A;}58CB
0[BQBD@؅;ٝ|مЋ
\Bы9~QB,\@9$ABA9މڋ\)R$O$<\ًA0[BO)Q$Oݝ8$O0[B\B݅8=QB<\$0\$(\$\$\$ ډ\$C$AB\$A9AG$ABS[Bt$$bBBI``B|$vljx$        19}xB119=_&9
x)'A9~(-B&
VB11ۍ$
P9&VC&t
1.10      brouard   148: Vtʉlj11ۍx$P
P9wxVC&tyVʍx$
1xB9|119=_&9
x)'A9~䍍($
5QB8T$$rlj!$q1xB9|119=x_&9
)A9~䍕$]
QB5RB(PBC(PB<B-B
VB11ۍ($ƍ@9w(VC&t)V&ʍ($1(xB9|119=x_&9
()A9~䍕${
QB=RB5(PBF5(PB`11ۍ(4$
                    149: ƍ@9w(VC&t)V&ʍ($
                    150: 1t&(xB9|119=x_&9
()A9~
^B=QB&ˉ11ۍ$O
                    151: P9'&VC&tVT$)A=qBT$&t$@|$
1.11    ! lievre    152: VAD$qB5A\$@$™ljlj$tBB8D$xL$T$\$jw81ۍ8$o       9&8\&C$)A=qB&L$t$@|$5       9A($
 1xB9|119=x_&9
)'A9~䋕(5VB$=fBC$fBB=,PBB&=QB
,PBr&ˉt&;W\B5^B&4$W
\B($@\BG;~"ljm/nt$=fBxBL$^BH<$&V  \$4$?u        |$fBL$vpl&T$$P&Bbt$fB&D$$l&B\$:|$fBL$&B$&BT$t$fB&D$$&B\$
A\fBL$B\$BL$|$$\$kۅ$fBX8L$\SBL$gB=dBt$(A5AD$$PBT$ YB\$,D$T$|$\$t$n=0[B<$QB$5\B4$bU1uu]t$ED$:tH&؋]u]ÉꐐU`CBQ&&@`CBr]ÐU]ÐUA8t
AQAAuÍ&US At)t' AKu$A:=Y[]1=$A
        !           153: @$Au뾍'USPBu5 A&
PBt$tt& AKu$A<X[]1=$A
        !           154: @$AuÐU ]]MuEۉ}UEM҉u59vcȉEȋMUt؃ڋ]u}]ÉE19wƒEu_9ӹ&9u    Ш&u1륅u
&11Ɖ1EEU؃^EكCE )MMM׉   NjEMMMM    Me9ډw1;u…IU8]]MuEۉ}UEEE&Uԅ҉ƉMЉuB9ȉUЍM&EEЉE؋U؋M܉ЉUʉM&9]v3M؉}܋E؋U܉EUMt
؃ډEU]u}]EԃEu;]9u    Ш&tE)}ԉEЍU}܋EЉEmu&1ƉUE,؃t&EكMȸ ]ȋU)ẺM      MȉUԉEMMM     Mȉuԉe9щw1;]…t)MԍEt'U)M̉UЉEM ‰UEUQ=r    -)     ̋@%hqB%`qB%dqB%qB%qB%xqB%rB%|qB%qB%tqB%qB%rB%qB%rB%4rB%qB%rB%qB%qB%,rB%qB%$rB%DrB%qB%LrB%HrB%qB%qB%qB%rB% rB%qB%qB%qB%qB%qB%rB%qB%(rB%qB%qB%qB%qB%8rB%rB%0rB%@rB%qB%qB%qB%rB%qB%<rB%`rB%XrB%\rB|=&
        !           155: &@$Revision: 1.120 $ $Date: 2006/03/16 15:10:38 $Imach version 0.98f, March 2006, INED-EUROREVES-Institut de longevite @,A DIRC2 = %s 
1.9       brouard   156:  DIRC3 = %s 
                    157:  DIRC = %s 
                    158: ERREUR ...
1.1       lievre    159: %s
1.9       brouard   160: allocation failure in vectorallocation failure in ivectorallocation failure 1 in matrix()allocation failure 2 in matrix()allocation failure 3 in matrix()Too many iterations in brent?|=ŋ!r??w?#B;B#B;#B׻-C6*?%d day(s) %d hour(s) %d minute(s) %d second(s)
                    161: Powell iter=%d -2*LL=%.12f %ld sec. %ld sec. %d %.12lf %d %.12f %.12lf%d
1.7       brouard   162: Considering the time needed for this last iteration #%d: %ld seconds,
1.8       lievre    163:    - if your program needs %d iterations to converge, convergence will be 
                    164:    reached in %s i.e.
1.7       brouard   165:    on %s (current time is %s);
1.10      brouard   166: powell exceeding maximum iterations.HB@A@A@A:0yE>?%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f %11.6f %11.6f %11.6f  %10.6f %10.6f
1.9       brouard   167: @A:0yE>?
                    168: <br>File of contributions to the likelihood: <a href="%s">%s</a><br>
                    169: w#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total
1.8       lievre    170: #num_i i s1 s2 mi mw dh likeli weight 2wlli out sav  -2*gipw/gsw*weight*ll[%d]++ -2*gipw/gsw*weight*ll(total)
1.9       brouard   171: Problem with resultfile: %s
                    172: PowellPowell
                    173: # Powell
1.8       lievre    174: # iter -2*LL p%1d%1d
1.1       lievre    175: #Number of iterations = %d, -2 Log likelihood = %.12f
1.9       brouard   176: #Number of iterations = %d, -2 Log likelihood = %.12f 
1.8       lievre    177: 
1.6       brouard   178: #Number of iterations = %d, -2 Log likelihood = %.12f 
1.9       brouard   179: -C6??h㈵>h㈵>>?Singular matrix in routine ludcmp#B;
                    180: Calculation of the hessian matrix. Wait...
1.1       lievre    181: Calculation of the hessian matrix. Wait...
1.9       brouard   182: 
                    183: Inverting the hessian to get the covariance matrix. Wait...
1.1       lievre    184: Inverting the hessian to get the covariance matrix. Wait...
                    185: 
1.9       brouard   186: #Hessian matrix#
1.1       lievre    187: #Hessian matrix#
1.10      brouard   188: %.3e .%d%d# %s.%s
                    189: #%s
                    190: #%s
                    191: # %s
1.2       lievre    192: #********** Variable V%d=%d **********
1.9       brouard   193: # Age Prev(%d) N(%d) NAge %d %d.=%.0f loss[%d]=NaNQ%% %d.=%.0f loss[%d]=%.1f%% %d.=%.0f prev[%d]=%.1f%% %d %.5f %.0f %.0f %d%d=%.0fProblem with prevalence resultfile: %s
1.10      brouard   194:  %d.=%.0f prev[%d]=NaNQ%% %d NaNq %.0f %.0fOthers in log...TotalSee log file for details...|=Bh㈵>Error on individual =%d agev[m][i]=%f m=%d
1.9       brouard   195: @AWarning! No valid information for individual %ld line=%d (skipped) and may be others, see log file
                    196: Warning! No valid information for individual %ld line=%d (skipped)
                    197: Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f
1.7       brouard   198: 
1.9       brouard   199:  Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d
                    200:  Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d
                    201:     We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.
1.10      brouard   202: C?(@# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age
                    203: # Age e%1d%1d  e%1d. %d|%3.0f%9.4fProblem %d lower than %d
                    204: C@A??# Health expectancies with standard errors
                    205:  e%1d%1d (SE)# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)
                    206:   %1d%1d,%1d%1d %9.4f (%.4f) %.4fC@A??%-dComputing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' 
1.9       brouard   207: # Age cov=%-d# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()
                    208:  p.%-d SE w%1d p%-d%-d
1.10      brouard   209: # Routine varevsij
                    210: <li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>
                    211: 
1.9       brouard   212: <br>%s  <br>
1.10      brouard   213: # Variance and covariance of health expectancies e.j 
                    214: #  (weighted average of eij where weights are the age specific period (stable) prevalences in each health state 
                    215:  Cov(e.%1d, e.%1d)%3d %d  %11.3e %11.3e %11.3e %11.3e %.0f 
1.8       lievre    216: set noparametric;set nolabel; set ter png small;set size 0.65, 0.65
                    217:  set log y; set nolog x;set xlabel "Age"; set ylabel "Force of mortality (year-1)";
                    218:  plot "%s"  u 1:($3) not w l 1 
                    219:  replot "%s"  u 1:(($3+1.96*$4)) t "95%% interval" w l 2 
                    220:  replot "%s"  u 1:(($3-1.96*$4)) not w l 2 
1.6       brouard   221: <br> File (multiple files are possible if covariates are present): <A href="%s">%s</a>
1.8       lievre    222: varmuptjgr
1.7       brouard   223: <br> Probability is computed over estepm=%d months. <br> <img src="%s%s.png"> <br>
                    224: 
                    225: set out "%s%s.png";replot;
1.10      brouard   226: the age specific prevalence observed in the population i.e cross-sectionally
                    227:  in each health state (popbased=1) Error in movingaverage mobilav=%d
                    228: @A??@`@# Standard deviation of period (stable) prevalences 
                    229:  %1d-%1d %.5f (%.5f)?Computing standard deviation of one-step probabilities: result on file '%s' 
1.8       lievre    230: Computing matrix of variance covariance of one-step probabilities: result on file '%s' 
                    231: and correlation matrix of one-step probabilities: result on file '%s' 
                    232: #One-step probabilities and stand. devi in ()
                    233: #One-step probabilities and covariance matrix
                    234: #One-step probabilities and correlation matrix
1.9       brouard   235:  p%1d-%1d (SE) p%1d-%1d 
                    236: <li><h4> <a href="%s">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>
                    237: 
1.8       lievre    238: # Routine varprob
1.6       brouard   239: <li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>
1.8       lievre    240: 
1.7       brouard   241: <h4>Matrix of variance-covariance of pairs of step probabilities</h4>
                    242:   file %s<br>
1.8       lievre    243: 
1.7       brouard   244: Ellipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimatedand drawn. It helps understanding how is the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>
1.8       lievre    245: 
1.7       brouard   246: <br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix and made the appropriate rotation to look at the uncorrelated principal directions.<br>To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> 
1.6       brouard   247: **********
                    248: #
1.8       lievre    249:  V%d=%d 
                    250: <hr  size="2" color="#EC5E5E">********** Variable **********
1.6       brouard   251: <hr size="2" color="#EC5E5E">
1.9       brouard   252: %d %11.3e (%11.3e) %d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f
                    253:  %d (%.3f),
                    254: # Age %d, p%1d%1d - p%1d%1d
                    255: set label "%d" at %11.3e,%11.3e center
                    256: replot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) notvarpijgr
                    257: set out "%s%d%1d%1d-%1d%1d.png";replot;
1.8       lievre    258: set parametric;unset label
                    259: set log y;set log x; set xlabel "p%1d%1d (year-1)";set ylabel "p%1d%1d (year-1)"
1.6       brouard   260: set ter png small
1.9       brouard   261: set size 0.65,0.65
1.8       lievre    262: <br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href="%s%d%1d%1d-%1d%1d.png">%s%d%1d%1d-%1d%1d.png</A>, 
                    263: <br><img src="%s%d%1d%1d-%1d%1d.png"> 
                    264: <br> Correlation at age %d (%.3f),
                    265: set out "%s%d%1d%1d-%1d%1d.png"
1.9       brouard   266: plot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f
                    267: Others in log...
                    268: %11.3e 
                    269: %d %d-%d %11.3e?(@@?<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>
                    270:     <li><a href='#secondorder'>Result files (second order (variance)</a>
                    271:  </ul>p<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>
1.7       brouard   272:   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href="%s">%s</a> <br>
1.9       brouard   273:  pij - Estimated transition probabilities over %d (stepm) months: <a href="%s">%s</a><br>
1.10      brouard   274:  pl - Period (stable) prevalence in each health state: <a href="%s">%s</a> <br>
                    275: e - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months):    <a href="%s">%s</a> <br>
                    276: </li> 
1.8       lievre    277: <ul><li><b>Graphs</b></li><p><hr  size="2" color="#EC5E5E">************ Results for covariates ************
1.10      brouard   278: <hr size="2" color="#EC5E5E">pe<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href="%s%d1.png">%s%d1.png</a><br> <img src="%s%d1.png"><br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href="%s%d2.png">%s%d2.png</a><br> <img src="%s%d2.png"><br>- Period (stable) prevalence in each health state : <a href="%s%d%d.png">%s%d%d.png</a><br> <img src="%s%d%d.png">exp
                    279: <br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href="%s%d%d.png">%s%d%d.png</a> <br> <img src="%s%d%d.png"></ul>
1.9       brouard   280: <br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>
1.6       brouard   281:  - Parameter file with estimated parameters and covariance matrix: <a href="%s">%s</a> <br>
1.9       brouard   282: prob - Variance of one-step probabilities: <a href="%s">%s</a> <br>
                    283: probcov - Variance-covariance of one-step probabilities: <a href="%s">%s</a> <br>
                    284: probcor - Correlation matrix of one-step probabilities: <a href="%s">%s</a> <br>
1.10      brouard   285: cve - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months):    <a href="%s">%s</a> <br>
                    286: </li>stde - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months):    <a href="%s">%s</a> <br>
                    287: </li>v - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href="%s">%s</a><br>
                    288: t - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href="%s">%s</a> <br>
                    289: vpl - Standard deviation of period (stable) prevalences: <a href="%s">%s</a> <br>
                    290:  <ul><li><b>Graphs</b></li><p><br>- Observed (cross-sectional) and period (incidence based) prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br><img src="%s%d%d.png">
1.8       lievre    291: <br>- Total life expectancy by age and health expectancies in states (1) and (2): %s%d.png<br><img src="%s%d.png">cd "%s" 
1.10      brouard   292: p%d=%f " t"Period (stable) prevalence" w l 0,"%s" every :::%d::%d u 1:($2+1.96*$3) "%%lf %%lf (%%lf) %%*lf (%%*lf)" t"95%% CI" w l 1,"%s" every :::%d::%d u 1:($2-1.96*$3) "%%lf" t"" w l 1,"%s" every :::%d::%d u 1:($%d) t"Observed prevalence " w l 2
1.7       brouard   293: set out "%s%d%d.png" 
1.6       brouard   294: 
1.7       brouard   295: #set out "v%s%d%d.png" 
1.9       brouard   296: set xlabel "Age" 
1.1       lievre    297: set ylabel "Probability" 
1.6       brouard   298: set ter png small
                    299: set size 0.65,0.65
1.9       brouard   300: plot [%.f:%.f] "%s" every :::%d::%d u 1:2 "%%lf
1.7       brouard   301: set out "%s%d.png" 
1.8       lievre    302: set ylabel "Years" 
1.6       brouard   303: set ter png small
                    304: set size 0.65,0.65
1.9       brouard   305: plot [%.f:%.f] "%s" every :::%d::%d u 1:2 "%%lf" t"LE in state (%d)" w l ,"%s" every :::%d::%d u 1:($2-$3*2) "%%lf" t"" w l 0,"%s" every :::%d::%d u 1:($2+$3*2) "%%lfset ter png small
1.6       brouard   306: set size 0.65,0.65
1.10      brouard   307: plot [%.f:%.f] "%s" every :::%d::%d u 1:%d t "e%d1" w l ,"%s" every :::%d::%d u 1:%d t "e%d%d" w l ,"%s" every :::%d::%d u 1:%d t "e%d." w lset xlabel "Age" 
1.1       lievre    308: set ylabel "Probability" 
1.6       brouard   309: set ter png small
                    310: set size 0.65,0.65
1.7       brouard   311: unset log y
1.8       lievre    312: plot [%.f:%.f] "%s" u ($1==%d ? ($3):1/0):($%d/($%d+$%d)) t"prev(%d,%d)" w l,"%s" u ($1==%d ? ($3):1/0):($%d/($%d)) t"prev(%d,%d)" w l
1.6       brouard   313: 
                    314: set title "Probability"
1.9       brouard   315: 
1.6       brouard   316: set ter png small
                    317: set size 0.65,0.65
1.1       lievre    318: set log y
1.9       brouard   319: plot  [%.f:%.f]  exp(p%d+p%d*x+p%d*%d+p%d*%d*x)/(1+exp(p%d+p%d*x) t "p%d%d"  %f*exp(p%d+p%d*x
                    320: set ylabel "Quasi-incidence per year"
                    321: " t"" w l 0" t"TLE" w l ,@AProblem with forecast resultfile: %s
1.8       lievre    322: Computing forecasting: result on file '%s' 
                    323: # Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f 
                    324: #****** Routine prevforecast **
                    325: 
                    326: #****** V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ******
                    327: # Covariate valuofcovar yearproj age p%d%d p.%d
1.9       brouard   328: # Forecasting at date %.lf/%.lf/%.lf  %.3f%d %d %.f %.f @AA??@`@ P.%d
1.1       lievre    329: 
1.9       brouard   330: # Forecasting at date %.lf/%.lf/%.lf r%d %lf
                    331:  %15.2f
                    332:  %3.f  [Population]Problem with population file : %s
                    333: @AC??@`@(@aProblem with file: %s
                    334: # Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...
                    335: %1d%1d 0.# Scales (for hessian or gradient estimation)# Scales (for hessian or gradient estimation)
                    336: # Covariance matrix# Covariance matrix
                    337: %1d%1d%d Var(%s%1d%1d) Cov(%s%1d%1d,%s%1d%1d)#%1d%1d%d(@<ul><li><h4>Result files </h4>
1.8       lievre    338:  Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br> p[%d] = %lf [%f ; %f]<br>
1.9       brouard   339: <br><br><img src="graphmort.png"><ul><li><h4>Life table</h4>
                    340:  <br>
                    341: Age   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>
                    342: @set out "graphmort.png"
                    343:  set xlabel "Age"
1.7       brouard   344:  set ylabel "Force of mortality (per year)" 
                    345:  set ter png small
                    346:  set log y
                    347: set size 0.65,0.65
1.9       brouard   348: plot [%d:100] %lf*exp(%lf*(x-%d))                         bcdc
1.7       brouard   349: %s
1.9       brouard   350: %s
                    351: argv[0]=%s argv[1]=%s, 
                    352: 
                    353: argv[0]=%s pathimach=%s, 
                    354: optionfile=%s 
                    355: optionfilext=%s 
                    356: optionfilefiname=%s
                    357: 
                    358: pathtot=%s,
1.7       brouard   359: path=%s,
                    360: optionfile=%s 
                    361: optionfilext=%s 
                    362: optionfilefiname=%s
1.6       brouard   363: Log filename:%s
1.9       brouard   364: 
1.7       brouard   365: Enter the parameter file name: 
1.8       lievre    366: pathimach=%s
1.7       brouard   367: pathtot=%s
                    368:  path=%s 
                    369:  optionfile=%s
                    370:  optionfilext=%s
                    371:  optionfilefiname=%s
1.9       brouard   372: Local time (at start):%sLocal time (at start): %stitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d
1.6       brouard   373: ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s
1.8       lievre    374: title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d
1.6       brouard   375: ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d
1.5       lievre    376: model=%s
1.9       brouard   377:  %lf
                    378: Problem with optionfile %s
                    379: 
                    380: Type  q for exiting: %sProblem with logfile %s
                    381: Problem creating directory or it already exists %s%s, err=%d
1.10      brouard   382: Current directory %s!
                    383: 
                    384: Enter the parameter file name: Pathr |%s|
                    385: "val= |%s| pathr=%s
                    386: %le %le %.5le#%s
                    387: %d/%d%s.Problem with Output resultfile: %s
                    388:  You choose mle=-3, look at file %s for a template of covariance matrix 
                    389: Problem writing new parameter file: %s
                    390: Problem while opening datafile: %s
1.9       brouard   391: Comment line
                    392: %s
1.10      brouard   393: Error in line parameters number %d, %1d%1d instead of %1d%1d 
1.9       brouard   394: Error reading data around '%d' at line number %d %s for individual %d, '%s'
                    395: Should be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.
                    396: Error reading data around '%d' at line number %ld %s for individual %d, '%s'
                    397: Should be a covar (meaning 0 for the reference or 1).  Exiting.
                    398: Error reading data around '%d' at line number %ld %s for individual %d, '%s'
                    399: Should be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.
1.10      brouard   400: ageage*ageError. Non available option model=%s Error reading data around '%d' at line number %ld %s for individual %d
                    401: Should be a weight.  Exiting.
1.9       brouard   402: Error reading data around '%s' at line number %ld %s for individual %d, '%s'
                    403: Should be a date of interview (mm/yyyy or .) at wave %d.  Exiting.
1.10      brouard   404:  You choose mle=-1, look at file %s for a template of covariance matrix 
                    405: Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.
1.8       lievre    406: Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.
1.10      brouard   407: Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d
1.9       brouard   408: Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased
1.10      brouard   409: Warning negative age at death: %ld line:%d
1.8       lievre    410: Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f
1.1       lievre    411: 
1.9       brouard   412: Problem with file %s<body>
1.7       brouard   413: <title>IMaCh Cov %s</title>
                    414:  <font size="2">%s <br> %s</font> <hr size="2" color="#EC5E5E"> 
                    415: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>
1.8       lievre    416: <body>
1.7       brouard   417: <title>IMaCh %s</title>
                    418:  <font size="2">%s <br> %s</font> <hr size="2" color="#EC5E5E"> 
                    419: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>
                    420: 
                    421: <hr  size="2" color="#EC5E5E"> <ul><li><h4>Parameter files</h4>
1.10      brouard   422:  - Parameter file: <a href="%s.%s">%s.%s</a><br>
1.7       brouard   423:  - Copy of the parameter file: <a href="o%s">o%s</a><br>
                    424:  - Log file of the run: <a href="%s">%s</a><br>
                    425:  - Gnuplot file name: <a href="%s">%s</a><br>
                    426:  - Date and time at start: %s</ul>
1.10      brouard   427: <br>Total number of observations=%d <br>
1.7       brouard   428: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>
                    429: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>
1.8       lievre    430: First Likeli=%12.6f ipmx=%ld sw=%12.6f %d %8.5fSecond Likeli=%12.6f ipmx=%ld sw=%12.6ftitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d
1.6       brouard   431: ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d
1.5       lievre    432: model=%s
1.9       brouard   433: %d%d %1d%1d %f 
                    434: # %s
                    435: # %s
                    436: set missing 'NaNq'
                    437:  %.5e# Covariance matrix 
1.6       brouard   438: # 121 Var(a12)
                    439: # 122 Cov(b12,a12) Var(b12)
                    440: #   ...
                    441: # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)
1.9       brouard   442: # Covariance matrix 
                    443: # 121 Var(a12)
                    444: # 122 Cov(b12,a12) Var(b12)
                    445: #   ...
                    446: # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)
                    447: Covariance matrix
                    448:  
                    449:  iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))
                    450: %f [%f ; %f]
                    451: agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d
1.8       lievre    452: # agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).
                    453: agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d
                    454: begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d
                    455: begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d
1.5       lievre    456: pop_based=%d
1.8       lievre    457: prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d
                    458: prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d
1.10      brouard   459: Computing period (stable) prevalence: result on file '%s' 
                    460: # Period (stable) prevalence 
                    461: #Age %d-%d ****** %.5fComputing pij: result on file '%s' 
1.8       lievre    462: #****** h Pij x Probability to be in state j at age x+h being in i at x 
1.10      brouard   463: #****** # Cov Agex agex+h hpijx with i,j=%d %3.f %3.fComputing Total Life expectancies with their standard errors: file '%s' 
                    464: Computing Health Expectancies: result on file '%s' 
                    465: Computing Health Expectancies and standard errors: result on file '%s' 
                    466: Computing Covar. of Health Expectancies: result on file '%s' 
                    467: Computing Variance-covariance of DFLEs: file '%s' 
                    468: # Total life expectancy with std error and decomposition into time to be expected in each health state
                    469: # Age ( e.. (std) e.%d (std)  %4.0f %7.3f (%7.3f)Computing Variance-covariance of period (stable) prevalence: file '%s' 
                    470: End of Imach with %d errors and/or %d warnings
1.8       lievre    471: End of Imach with %d errors and/or warnings %d
1.6       brouard   472: See log file on %s
1.9       brouard   473: Local time at start %s
1.7       brouard   474: Local time at end   %s
1.9       brouard   475: Local time at start %s
                    476: Local time at end   %sTotal time used %s
1.7       brouard   477: Total time was %d Sec.
1.10      brouard   478: <br>Local time at start %s<br>Local time at end   %s<br>Before Current directory %s!
                    479: Can't move to directory %s!
                    480: "%sgnuplot.exe"Error gnuplot program not found: %s
1.9       brouard   481: GNUPLOTBINError gnuplot program not found: %s Environment GNUPLOTBIN not set.
                    482: %s %sStarting graphs with: %s
                    483: 
                    484:  Problem with gnuplot Wait...
1.10      brouard   485: Type e to edit output files, g to graph again and q for exiting: Starting browser with: %sProblem with variance resultfile: %s
                    486: Problem with Covar. Health Exp. resultfile: %s
                    487: Problem with Health Exp. and std errors resultfile: %s
                    488: Problem with Health Exp. resultfile: %s
1.9       brouard   489: End of ImachEnd of Imach
1.10      brouard   490: Problem with variance of period (stable) prevalence  resultfile: %s
                    491: Problem with total LE resultfile: %s
1.9       brouard   492: Problem with Pij resultfile: %s
1.10      brouard   493: Problem with period (stable) prevalence resultfile: %s
                    494: 
1.9       brouard   495: Age   lx     qx    dx    Lx     Tx     e(x)%d %.0lf %lf %.0lf %.0lf %.0lf %lf
1.10      brouard   496: Error reading data around '%s' at line number %ld %s for individual %d, '%s'
                    497: Should be a date of birth (mm/yyyy or .).  Exiting.
1.9       brouard   498: Problem with %s 
1.10      brouard   499: Error reading data around '%s' at line number %ld %s for individual %d, '%s'
                    500: Should be a date of death (mm/yyyy or .).  Exiting.
                    501: @xD@xD@AUUUUUU?@CS!uq?sh|??-C6??C?(@@`@TpDu`qhp,vtqLqDvXrhrtrrrrrrrrrrrsss(s4s@sLsTs\sdslsxssssssssssssssttt t,t8t@tHtTt`thttttttttttttttuhrtrrrrrrrrrrrsss(s4s@sLsTs\sdslsxssssssssssssssttt t,t8t@tHtTt`thttttttttttttttu_chdir%_getcwdO_stat'__getmainargs<__p__environ>__p__fmodeP__set_app_typey_cexit_daylight_errno_filbuf_iob^&_onexit&_setmode&_timezone&_tzsetasctimeatexitatoiatol*exit+exp-fclose0fflush3fgets6floor8fopen9fprintf:fputc;fputs?freeBfscanfGfwriteKgetenvOgmtimenlocaltimeologrmalloc|modf~powprintfputcharputsscanfsignalsprintfsqrtsscanfstrcatstrchrstrcpystrlenstrncpystrpbrkstrrchrstrtolsystemungetcExitProcess&GetSystemTimeAsFileTimeSetUnhandledExceptionFilterpppmsvcrt.dllpppppppppppppppppppppppppppppppppppppppppppppppppppppppmsvcrt.dll(p(p(pKERNEL32.dll.fileg&crt1.c& &P&& 2p& B& _atexit& __onexit& .text&&(.data&.bss&.fileZg&imach.ctzflag.08U& _split& c0& _nbocc& _cutv& _nrerror& _vector& z& _ivector& 0& _lvectorP& & _imatrix       & @
1.9       brouard   502: & _matrix
1.11    ! lievre    503: & & _ma3x& @& _subdirf& & P& _maxarg1H_maxarg2X& _powell& _sqrargh && _hpxij*& _func`-& _funconepG& O& _mlikeliR& _hesscov[& _pstampb& &&`b& &p& &t& _tricode{& _evsij}& _cvevsij & %&& /&& _varprob& ;&& I&& Z&&& h&0&& w&*&& &p*&& &@0&& &P2&& &5&& _main06&& && _lubksb[& _ludcmppX& _hessijV& _hessiiT& _pmij"& &%& _linminP& _brent& _f1dim& _mnbrak& .text&&&.data&.bss&h.rdata&XS.filedg&strsep.c_strsep&& &.text&&&H&.data&.bss&.filelg&CRTglob.c.text&&&.data&.bss&.filetg&CRTfmode.c.text&&&.data&.bss&.file|g&txtmode.c.text&&&.data&.bss&.fileg&pseudo-reloc.c&&& &.text&&&(.data&.bss&.fileg&CRT_fp10.c_fpreset&& &&&& .text&&&.data&.bss&.fileg&gccmain.c&p.0   && &@&& ___main&& .text&&&.data&&.bss&.fileg&/.text&&&.data&.bss&C&& &.text&&&U&.data&.bss&Mp&& &.textp&&&&.data&.bss&probev&&done&&.textp&&&-.data&.bss&.text&&&.data&.bss&.text&&.data.bss.idata$7@.idata$5h&.idata$4\.idata$6.text&&.data.bss.idata$78.idata$5`&.idata$4T.idata$6h.text&&.data.bss.idata$7<.idata$5d&.idata$4X.idata$6t.fileg&fakehnameTfthunk`&.text&&&.data&.bss&.idata$2&.idata$5\&&.idata$4P&.fileyg&fake.text&&&.data&.bss&.idata$4`&.idata$5l&&.idata$7D&.text&&.data.bss.idata$7p.idata$5&.idata$4.idata$6.text&&.data.bss.idata$7\.idata$5&.idata$4t.idata$6.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6@.text&&.data.bss.idata$7t.idata$5&.idata$4.idata$6.text&&.data.bss.idata$7`.idata$5&.idata$4x.idata$6.text&&.data.bss.idata$7T.idata$5x&.idata$4l.idata$6.text&&.data.bss.idata$7.idata$5.idata$4&.idata$6H.text&&.data.bss.idata$7X.idata$5|&.idata$4p.idata$6.text &&.data.bss.idata$7x.idata$5&.idata$4.idata$6.text0&&.data.bss.idata$7P.idata$5t&.idata$4h.idata$6.text@&&.data.bss.idata$7|.idata$5&.idata$4.idata$6.text@&&.data.bss.idata$7d.idata$5&.idata$4|.idata$6.text@&&.data.bss.idata$7.idata$5&.idata$4.idata$6.textP&&.data.bss.idata$7.idata$5.idata$4&.idata$68.text`&&.data.bss.idata$7.idata$5&.idata$4.idata$6.textp&&.data.bss.idata$7.idata$5.idata$4&.idata$6,.text&&.data.bss.idata$7.idata$54.idata$4(&.idata$6.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6.text&&.data.bss.idata$7.idata$5.idata$4&.idata$6@.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6L.text&&.data.bss.idata$7.idata$5,.idata$4 &.idata$6.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6T.text&&.data.bss.idata$7.idata$5$.idata$4&.idata$6h.text&&.data.bss.idata$7 .idata$5D.idata$48&.idata$6.text&&.data.bss.idata$7h.idata$5&.idata$4.idata$6.text &&.data.bss.idata$7(.idata$5L.idata$4@&.idata$6.text0&&.data.bss.idata$7$.idata$5H.idata$4<&.idata$6.text@&&.data.bss.idata$7.idata$5&.idata$4.idata$6.textP&&.data.bss.idata$7.idata$5&.idata$4.idata$6.text`&&.data.bss.idata$7.idata$5&.idata$4.idata$6.textp&&.data.bss.idata$7.idata$5.idata$4.idata$6.text&&.data.bss.idata$7.idata$5 .idata$4&.idata$6`.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6l.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6.text&&.data.bss.idata$7.idata$5&.idata$4.idata$64.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6.text&&.data.bss.idata$7.idata$5.idata$4&.idata$6T.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6x.text&&.data.bss.idata$7.idata$5(.idata$4&.idata$6t.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6.text &&.data.bss.idata$7.idata$5&.idata$4.idata$6.text0&&.data.bss.idata$7.idata$5&.idata$4.idata$6\.text@&&.data.bss.idata$7.idata$5&.idata$4.idata$6.textP&&.data.bss.idata$7.idata$58.idata$4,&.idata$6.text`&&.data.bss.idata$7.idata$5.idata$4.idata$6 .textp&&.data.bss.idata$7.idata$50.idata$4$&.idata$6.text&&.data.bss.idata$7.idata$5@.idata$44&.idata$6.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6(.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6.text&&.data.bss.idata$7l.idata$5&.idata$4.idata$6.text&&.data.bss.idata$7.idata$5.idata$4.idata$6.text&&.data.bss.idata$7.idata$5&.idata$4.idata$6d.text&&.data.bss.idata$7.idata$5<.idata$40&.idata$6.fileg&fakehnamehfthunkt&.text&&&.data&.bss&.idata$2&.idata$5p&&.idata$4d&.fileg&fake.text&&&.data&.bss&.idata$4D&&.idata$5P&.idata$7,&.text&&.data.bss.idata$7@.idata$5`.idata$4T&.idata$6.text&&.data.bss.idata$78.idata$5X.idata$4L&.idata$6.text&&.data.bss.idata$7<.idata$5\.idata$4P&.idata$6.fileg&fakehnameL&fthunkX.text &&&.data&.bss&.idata$2(&.idata$5T&.idata$4H&&.fileg&fake.text &&&.data&.bss&.idata$4X&&.idata$5d&.idata$7D&
W__cexit&& a&_putcharp&& n`S@&&P&_sprintf&& _lpop&_Tvar&_Tage&_Tvaraff _ficresf(&&_free&& _strcat&& _ficrest_mle_nlstate_ficpar&&& __tzset&& &&_ftol&2&=&L_nparY,__errno&& _modfp&& m`&z &_title_ungetc && _jmin&p&&_s&
&)P_jmean_gsw_Tprod3<B_version`_putsP&& Nx&b l&_nump_ficxD _fputc`&& 0_Tcode_endptr __filbuf&& &`S_tmg_scanf&&  _anint0_oldms@*P_plotcmd`9&_fputs@&& G&R`&& _nbcode    n       x&_fichtm     _oldm       _nrfunc       _annais                   
1.10      brouard   504: _andc
                    505: &&
1.11    ! lievre    506: h&_lsurv0__dll___fwrite&& !&_strncpyP&& /B@U@d&p{_atoi&& _newmL&_tpop_covar_m`S|&__argc_stat&& _agegomp!&&_strcurr_stepm_codtab0
0=@
_command
G0&& _chdir&& V`_moisdcpb &&_ncovcolp&&_fflush&&  _ipmx 0&_fprintf@&& __allocap&&&_xicom_filelog`_strtol&& & _tzp_savms)&_cptcovn,6,_cptcov __argvD &&_agev0_gmtimeP&& Sd&_maxwav@_dhP_fopen&& __fmode_ijmin`_ijmaxpa_strpbrk&& _ficparot_fretone_gipmx_mw_tmf~H_lval&_cod @_savm0&&8_bh@P_estepm`_ficlogp        &       _exp&&       _probs _mint0_getenv&& _popfile@*       5        B       _newmsL     W       __end__&_wav _strchr&& _log&& b       _signal&& _malloc && o   (&&_fclose&& }     &_strcpyp&& _sscanf&&    &_ndeath_ficresp0   _idx@     &       P       _nbwarn0     4_strfor`     &_sqrt&&      (
1.10      brouard   507: &
                    508: D!
                    509: 0/
1.11    ! lievre    510: && :
1.10      brouard   511: &K
                    512: _ficpopV
                    513: b
                    514: Pm
                    515: \_pmmij_nvar
                    516: _fileres
1.11    ! lievre    517: &_asctime&& 
1.10      brouard   518: &
                    519: t&_Tvard
                    520: &
1.11    ! lievre    521: &_tm_ficgp_nberr4_pow&& 
        !           522: &&&X_ncom_getcwd&& _tmpout_cens_agedc_nb&"`_jmaxG_sw_imxV&n && _strrchr&& (_atol&& &_fgets@&& $&_strlen&& _erreur&_exit0&& 4_printf`&& >$_outcmd_weight _globpr0L`S_agecens@nD_floor&& _ficresP_tmpout2`&_pcom_system0&& (_fscanf`&& &__gnu_exception_handler@4___mingw_CRTStartup_mainCRTStartup_WinMainCRTStartup_gettimeofday_replace_back_to_slash_free_vector_free_ivector_free_lvector_free_imatrix_free_matrix_free_ma3x_subdirf2_subdirf3_asc_diff_time_prevalim_likelione_freqsummary_prevalence_concatwav_varevsij_varprevlim_printinghtml_printinggnuplot_prevforecast_populforecast_fileappend_prwizard_gompertz_printinghtmlmort_printinggnuplotmort_movingaverage_matprod2__pei386_runtime_relocator__fpreset_initialized___do_global_dtors___do_global_ctorspseudo-reloc-list.c___divdi3___moddi3_filerese__imp__floor___RUNTIME_PSEUDO_RELOC_LIST___last_time__imp__getenv_fileresvpl__imp___setmode_optionfile__data_start_____DTOR_LIST____imp___onexit___p__fmode_SetUnhandledExceptionFilter@4__imp__modf__imp__log___tls_start___ficrescveij__libmsvcrt_a_iname__imp__chdir__size_of_stack_commit____size_of_stack_reserve____major_subsystem_version_____crt_xl_start___filereso___crt_xi_start_____chkstk_ficresprob___crt_xi_end___filerescve_pplotcmd__imp__strpbrk_cptcovprod__imp____p__environ_strstart__imp___iob_rfileres__libmoldname_a_iname_ficresstdeij_filerest_popbased__bss_start____imp__fputc_forecast_time___RUNTIME_PSEUDO_RELOC_LIST_END____size_of_heap_commit___ficresvij_ficresprobcor__imp___errno__imp__exp_optionfilext___p__environ_datafile___crt_xp_start____imp__putchar_ficresvpl_filerespow_ficresilk__imp___tzset___crt_xp_end___fileresstde__imp__stat__imp__signal__imp__puts__minor_os_version____imp__atexit__head_libmsvcrt_a_optionfilegnuplot__image_base____imp__exit_curr_time__section_alignment____imp__ungetc_optionfilehtmcov_ageexmed__imp__atol__head_libmoldname_a__RUNTIME_PSEUDO_RELOC_LIST___ftolhess__imp____p__fmode_fichtmcov_ExitProcess@4__data_end___fileregp___getmainargs_time_value__CTOR_LIST_____set_app_type__imp__sprintf__bss_end____CRT_fmode__imp__scanf_optionfilefiname_filerespij___crt_xc_end____imp__asctime_optionfilehtm_ficrespij___crt_xc_start____imp__sqrt__imp__fgets__imp__strchr___CTOR_LIST____imp__getcwd_ficresprobmorprev_ficrespl__imp__system__imp___daylight__file_alignment____imp__strrchr__imp__malloc__imp__atoi__imp__strncpy__major_os_version___ficreseij__imp__gmtime_fileresv_ncodemax_ficrespop_fullversion_end_time_ficrespow_weightopt_dateintmean__DTOR_LIST____imp__fprintf__imp__fclose__size_of_heap_reserve_____crt_xt_start___start_time__subsystem____imp__strlen__imp__fputs_cptcovage__imp__fflush__imp__strtol__imp__strcpy_localtime__imp___timezone__imp__pow_fileresilk_filerespl__imp__GetSystemTimeAsFileTime@4_moisnais__imp__localtime__imp__fopen__imp____getmainargs___tls_end____imp__fscanf_GetSystemTimeAsFileTime@4__imp__ExitProcess@4__imp__free__imp__SetUnhandledExceptionFilter@4_ficresprobcov__major_image_version____loader_flags____CRT_glob__setmode__imp__printf__head_libkernel32_a__imp___cexit_cptcoveff__minor_subsystem_version____minor_image_version____imp___filbuf_ncovmodel__imp____set_app_type_lastpass__imp__sscanf__RUNTIME_PSEUDO_RELOC_LIST_END____libkernel32_a_iname_firstpass___crt_xt_end____imp__strcat__imp__fwrite

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>