File:  [Local Repository] / imach / src / Attic / imach.exe
Revision 1.7: download - view: text, annotated - select for diffs
Mon May 24 18:32:25 2004 UTC (20 years, 5 months ago) by brouard
Branches: MAIN
CVS tags: HEAD
  Agnes added a direct estimation of mortality (without the need of
  computing period prevalence and differential mortality). Thus here
  is version 0.97a which has been distributed to some people at
  REVES 16 in Brugge using an Inno setup.exe for PCs. Estimates of
  mortality using covariates is not done today. Estimating direct
  mortality is a very different process because it doesn't need
  interpolation because it is easy to get the lx from the force of
  the mortality mux in the simplest case as for a Gompertz (log mux
  = a + b*x . But we have been able to incorporate the new code
  within former imach program (0.96d) without deteriorating too much
  the understanding of the program.

Gnuplot is now installed in the same directory (on Windows) as imach.
Thus the full path of gnuplot is executed in order to access the
current version.

MZ@	!L!This program cannot be run in DOS mode.

$PEL7@B884>0P@ $.text34``.dataP8@.bss`.idata$:@U($PBED$PBED$PBD$ED$0]Ít&UPBtFPBBuQt@0$PBD$X0Bt@P$PBD$:0%0PB]É'@T$$0B뙍v'U]E1ۉu1==sg=t؋u]]$D$/t"t$&'л$D$S/㐾$D$7/tz$$D$
/t딉=t=t=U$@]{1I.PB$PBT$D$艒j.$B1U$tB1]ÉU$tBh1]ÉUE$B]Ív'UE$B]ÐU]US4}E$0EEEEEUEUE*P!NbEUD$
D$$T$wEU]EUD$@BD$$T$L]EUD$@BD$$T$C}tE=(`Bun/(`B]B)‰ЉU|BB]U(E$/E}uEGD$\E$.E}u7D$E$uEED$E$.fEE$.E}uEED$E$M.UE)ЉD$ED$E$.UE)Љ‹EE$3.ED$.E$
.EEED$E$-E$-EE$-@EUE)ЉD$ED$E$-UE)Љ‹EEEUEEE$-EEE;E~.EU‹EEEE8\u	EE/EUEEEEEE$-EEE;E~EE:EuEE܋EUEEEEEE$,H9Ev+EE:EtEE@:EuE@EE‹E$,EEE;E|EU‹EEE܋EEEE;E~)E@9E|UE)EPEEEERREUR ...
%s
UD$@B@$+ED$D$@B@$+$c+allocation failure in vectorUUE)$+E}u$=@iEE)ЃUEE$*allocation failure in ivectorUUE)$*E}u$@EE)ЃUEE$H*UUE)$:*E}u$@EE)ЃUEE$)Ðt&allocation failure 1 in matrix()allocation failure 2 in matrix()UWVSUE)@EUE)@EE$])E}u$@EEE)EuEE$)EE<u$@SEMEEE<uEME)Љ>E@EE;E~+EMEEPEEˋE[^_]UEUE
$"(EE$(UWVSUE)@EUE)@EE$'E}u$@9EEE)EuEE$'EE<u$@EMEEE<uEME)Љ>E@EE;E~+EMEEPEEˋE[^_]UEUE
$&EE$&Ðallocation failure 3 in matrix()UWVSUE)@EUE)@EUE)@EE$1&E܃}u$@E܃EE)Eu܋EE$%EE܃<u$@'EM܋EE܋E<u܋EM܋E)Љ>E@EE;E~+EM܋EE܍PEEˋEU܋E4
EEE$%3EM܋E<u$@:EU܋E<4
EM܋E>EU܋E4<
EU܋E
E)Љ7E@EE;E~EEU܋E4
EU܋E
PEE뱋E@EE;E~EU܋E4
EE܍PEEE
E@EE;E~EEU܋E4
EU܋E
PEE뱍EQE܃[^_]USEUE
E$"EUE
$"EE$"[]/UD$lB$@tB"D$@$@tB|"ED$$@tBi"@tBUD$lB$@tB"D$@$@tB4"ED$$@tB!"ED$$@tB"@tBUD$lB$@tBM"D$@$@tB!ED$$@tB!ED$$@tB!ED$$@tB!@tBUWVS<E]0tBD$$_EEE;0tB~AE4}ԋE0vBE@mBE7E벋Eԉ$gB]ء0tBD$D$Eԉ$ E؃<[^_].Too many iterations in brent&?|=ŋ!r?UE]E]E]E$]ݝ8EEwEݝ(	Eݝ(݅(]EEwEݝ 	Eݝ ݅ ]EݕXݕPݝH݅H$E ]EU]E}~EE!@ݝ@݅HM!@ݕpݝh$!@B $pD$!@oB$oB$N݅Hܥ@Ee!@݅hsE,݅HEݝ0%E]݅8݅pw݅HܥPEeݝx݅HܥXEe]݅HܥXM݅HܥP܍x]Eܥx]EwEpE`݅8]Eݝ8EE!@Ms0EܥHMEsEܥHMEsS݅H݅@sEܥHݝEܥHݝ݅ݕ8!@]Eu]݅HEݝ`݅`e݅hwEܥ`݅hw݅pݝ݅@ܥHw݅]N݅H݅@sEܥHݝEܥHݝ݅ݕ8!@]E݅ps݅HEݝ<Ew݅p܅Hݝ݅p݅Hݝ݅ݝ`݅`$E ]EEsf݅`݅Hs݅H]	݅H]݅PݝX݅HݝP݅`ݝHE]E]E]݅`݅Hw݅`]	݅`]EEs݅P݅Hzt&݅PݝX݅`ݝPE]E]OEEs0݅X݅Hzt݅X݅Pzt݅`ݝXE]E4$!@E,݅HEݝ0݅0Ívw?#B;Y@USdE$E ЋEE$E ЋEEUw4E]ЋUEEEE]ЋUEEEM]EU"x'@E$E ЋEEUwEU"EU"]EU"EU"]؋EEċEU"]EM]EU"ME]Eew\Ee8`B'@H`B8`BH`Bw8`B]H`B]Eu]^Ee8`B'@H`B8`BH`Bw8`B]H`B]Eu]Ee]MEU"'@]EeEE wE$E ]EeEewrE$E ]ȋEEwUEEEMEU"x'@]UEEEE$E ]]EeEE sE]E$E ]*MEU"x'@]E$E ]ȋUEUEEEUEUEEE6d[]Ít&-C6*?UWVSlE0tBED$$&0vBED$$@mBEgBEE;E~ME
0vBEEE
@mBEEE]]D$ @ED$ED$ED$EЉD$ED$Eȉ$E؉D$$+@\$D$ @E\$E\$E$EEE;E~ZE]EEME4}EMEE7E뜋ED$D$@mB$ED$D$0vB$l[^_]Í&%d day(s) %d hour(s) %d minute(s) %d second(s)U(ME.)‰ЉEME.)‰iQ)ȉEMų)‰ЉEMų)‰i)ȉEM)‰ЉEM)‰))ȉEED$ED$ED$ED$D$,@E$(EÍv
Powell iter=%d -2*LL=%.12f %ld sec. %ld sec. %d %.12f %d %.12lf %.12lf

Considering the time needed for this last iteration #%d: %ld seconds,
   - if your program needs %d iterations to converge, convergence will be 
   reached in %s or
   on %s (current time is %s);
%dpowell exceeding maximum iterations.UWVSE]ED$$EċED$$zEED$$dEED$$NEE$E$ЋE EE;E~'E܍MċE܍EEϋEE ]E]С`iBdiB aB$aBD$nB$`iB"qB`iB)ЉD$ aB`iB)ЉD$E \$ED$$ .@B $bEE;E~EE\$ED$$N.@7EE\$ED$D$X.@oB$WEE\$D$c.@PqB$.Ei$k.@D$k.@oB$D$k.@PqB$PqB$E8p$`iBI‹sBBsBBsBBsBBtBBtBBtBBtBB tB$@oBD$$`jB`iBdiBfBfB$`jBEE_jB8
uE_jB aB`iB)ЉD$ED$$.@ aB`iB)ЉD$ED$D$.@oB$E
}~[EE)ы aB`iB)`iBfB$fB
‹@oBBDoBBHoBBLoBBPoBBToBBXoBB\oBB `oB$@oBD$$qBH$qB\EEqB8
uEqBD$@tB`iBfB)Љ$CD$`jBD$qBD$ED$$.@mD$@tB`iBfB)Љ$D$`jBD$qBD$ED$D$.@oB$pE
EE;E~EE;E~4E܍<uE܍ME>E‹E ]ED$$_/@
B $
ED$D$_/@oB$
oB$X
E$D$E D$ED$ED$E$E E EwE E ]ЋEEEE E EE MsmED$D$E$	ED$D$E$ED$D$E$ED$D$Eĉ$9E8u$/@EE;E~E܍]E܍EE܍E$E܍4}E܍ME܍E$7E܍MċE܍EEgE$E$]EEwXE EE]E E eX`BuzX`B
X`BE]
E]EeX`BuzX`B
X`BME]EE]E]EwE$D$E D$ED$ED$E$wEE;E~nE܍UE<4
E܍ME>E܍UE
E܍EE눋E>Č[^_]ÍvI@(@UWVS,E]E$]]08@ݝ@EPBE9E~xEPBE9E~XEЍUE8
4E;Eu
ݝ(ݝ(݅(84E뙍Eyݝ`PB88@EݝHEܥ@݅HsE T݅HݝhEE;`B~{Uȉ$EȍaB4=0gBE,jBEȍaB7$ݜhExEE;`B~?EȍaBEȍaB݄h܍hݜhEEE;dB~EȍdB EȍsB4=0gBE,jBEȍsB47EȍsB4=0gBE,jBEȍsB73
P$d$ ݜhEED$ED$@uBD$XD$ sB$‹ED$ PBED$D$PBED$D$PBED$D$T$T$EEE TE]EE;E~]]EE;E~a]EE;PB~0EԍTEEE]EËEԍUE̍4<
EԍTE̍e7E8`BEԍME̍H`B8`BH`Bw8`BݝH`Bݝ݅]E8`BEԍME̍H`B8`BH`Bw8`BݝH`Bݝ݅]EEe]E8`BEH`B8`BH`Bw8`BݝH`Bݝ݅]EEEwE<!PB88@݅HݝH<,[^_]UWVS<EE;E~[EE;E|E]E;E~QEHEM؋UJPBHHEEЍMEЍEE]E륋E܍ME؍EEbE@EءPBE9E~E]E;E~SEHEM؋UJPBHEEЍMEЍEE]E룋E܍ME؍EE[EEE;E~]EE;E|4E܍ME؍$E]E‹E@EءPBE9E~4E܍ME؍$E]E뽋E܍UE܍
EEE;E|fE܍UE؍4<
E܍ME؍$GE܍ME܍7E됋E@EءPBE9E~fE܍UE؍4<
E܍ME؍$E܍ME܍7E닍E:E@E̡PBE9E~bEPBE9E~EE̍MEȍE̍ME̍E묍E돋E<[^_]UWVSEEE;E~E EE;E$~EEEMEE;E~EUEE
MEUEE܋
M؋EUE4<
EM(E7E܋UEUEcE'E
E[^_]Í&(@UWVSE]EPBE 9E~EPBE 9E~E܍U(EE
|E;Eu
ݝpݝp݅pE|E܍ME؍lE;Eu
ݝ`ݝ`݅`lENE+EE;E~hEE;E~E,E]EHEEHE$P$d$C@E]EE;`B~xẺ\E̍aB4=0gBE0jBE̍aB7\\՘E{EE;`B~6E̍aBE̍aBDŘM\͘EEE;dB~E̍dBXE̍sB4=0gBE0jBE̍sBT47PE̍sB4=0gBE0jBE̍sB7TP
P$d$X\ŘEE D$ED$@uBD$ED$ sB$D$ PBE D$D$PBE D$D$PBE D$D$E(D$E$EȋE(E,EE(E*EPBE 9E~kEPBE 9E~NE܍UE؍
EЍ<4E܍ME؍>E룍E농EE[^_](@:0yE>UWVSݝ@EE;PB~EݜxE=bBEDžݝ(E;0uB~EE;`B~@u؋E؍aB
 jBEݜHEEEpqBH9E~EPBPB9E~EPBPB9E~EgBE
E;Eu
ݝݝ݅EoBE
E;Eu
ݝݝ݅E9EEEԍnBEE;
|oBpiBEԍ
0oBEnBE
EPBP$d$G@ݝHEE;`B~dE̍aB4E̍aBaB
 jBE܍HݜHE돡PBD$ED$@uBD$8D$ sB$rD$ PBPBD$D$PBPBD$D$PBPBD$D$gBD$piB$4gBoBpiBgBEBEԍ
0oBE
`dBEE0oBHE
`dBEEԍ
oBEPBݝ;PB~\44<

oB7$$ݝ l݅4
oB݅$Lݝ E`uB݅(ݝ(Eԍ
0oBE
`dBE4Eԍ
0oBE
`dBEE`uB܍ ݄xݜxEEY=bBEDžݝ(E;0uB~EE;`B~@u؋E؍aB
 jBEݜHEEEpqBH9E~.EPBPB9E~EPBPB9E~EgBE
E;Eu
ݝݝ݅EoBE
E;Eu
ݝݝ݅E9EEEԍnBEE;
~oBpiBEԍ
0oBEnBE
EPBP$d$G@ݝHEE;`B~dE̍aB4E̍aBaB
 jBE܍HݜHE돡PBD$ED$@uBD$8D$ sB$D$ PBPBD$D$PBPBD$D$PBPBD$D$gBD$piB$4gBoBpiBgBEBEԍ
0oBE
`dBEE0oBHE
`dBEEԍ
oBEPBݝ
oBG@wn݅4
oB݅$ݝ>݅4$rݝ݅ݝ E`uB݅(ݝ(Eԍ
0oBE
`dBE4Eԍ
0oBE
`dBEE`uB܍ ݄xݜxEE@=bBEDžݝ(E;0uB~EE;`B~@u؋E؍aB
 jBEݜHEEEpqBH9E~SEPBPB9E~EPBPB9E~EgBE
E;Eu
ݝݝ݅EoBE
E;Eu
ݝݝ݅E9EEEԍnBEE;
|oBpiBEԍ
0oBEnBE
EPBP$d$G@ݝHEE;`B~dE̍aB4E̍aBaB
 jBE܍HݜHE돡PBD$ED$@uBD$8D$ sB$D$ PBPBD$D$PBPBD$D$PBPBD$D$gBD$piB$(4gBoBpiBgBEBEԍ
0oBE
`dBEE0oBHE
`dBEEԍ
oBEPBݝ
oBG@w݅ݝ4$݅ݝ
oB$܍݅ݝ>݅4$gݝ݅ݝ E`uB݅(ݝ(Eԍ
0oBE
`dBE4Eԍ
0oBE
`dBEE`uB܍ ݄xݜxEE=bBEDžݝ(E;0uB~
EE;`B~@u؋E؍aB
 jBEݜHEEEpqBH9E~EPBPB9E~EPBPB9E~EgBE
E;Eu
ݝݝ݅EoBE|
xE;Eu
ݝpݝp݅p|xE9EEEԍnBEE;
|oBpiBEԍ
0oBEnBE
EPBP$d$G@ݝHEE;`B~dE̍aB4E̍aBaB
 jBE܍HݜHE돡PBD$ED$@uBD$8D$ sB$D$ PBPBD$D$PBPBD$D$PBPBD$D$gBD$piB$4gBoBpiBgBEBEԍ
0oBE
`dBEE0oBHE
`dBE;PB~_44<

oB7$$*ݝ Eԍ
0oBE
`dBE44E0oBHE
`dBE7$ݝ E`uB݅(ݝ(Eԍ
0oBE
`dBE4Eԍ
0oBE
`dBEE`uB܍ ݄xݜxEEPEDžݝ(E;0uB~3EE;`B~@u؋E؍aB
 jBEݜHEEEpqBH9E~EPBPB9E~EPBPB9E~EgBEl
hE;Eu
ݝ`ݝ`݅`lhEoBE\
XE;Eu
ݝPݝP݅P\XE9EEEԍnBEE;
|oBpiBEԍ
0oBEnBE
EPBP$d$G@ݝHEE;`B~dE̍aB4E̍aBaB
 jBE܍HݜHE돡PBD$ED$@uBD$8D$ sB$D$ PBPBD$D$PBPBD$D$PBPBD$D$gBD$piB$T4gBoBpiBgBEBEԍ
0oBE
`dBEE0oBHE
`dBEEԍ
0oBE
`dBE44E0oBHE
`dBE7$)ݝ E`uB݅(ݝ(Eԍ
0oBE
`dBE4Eԍ
0oBE
`dBEE`uB܍ ݄xݜxE2EE]E;PB~EE܄x]EۅMܵ(]E[^_]Ív%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f %10.6f %10.6f %10.6f  %10.6f %10.6f
(@:0yE>UWVS|ݝ@EE;PB~EݜxEElB uBE;0uB~
EE;`B~@u؋E؍aB
 jBEݜHEEEpqBH9E~(
EPBPB9E~EPBPB9E~EgBE
E;Eu
ݝݝ݅EoBE
E;Eu
ݝݝ݅E9EEEԍnBEE;
|oBpiBEԍ
0oBEnBE
EPBP$d$pe@ݝHEE;`B~dE̍aB4E̍aBaB
 jBE܍HݜHE돡PBD$ED$@uBD$8D$ sB$D$ PBPBD$D$PBPBD$D$PBPBD$D$gBD$piB$4Eԍ
0oBE
`dBEE0oBHE
`dBEgBoBpiBgBEEԍ
0oBE
`dBEE0oBHE
`dBEEԍ
oBEPBݝ;PB~h=bB_44<

oB7$$Zݝ(=bBuq݅4
oB݅$ݝ(=bB
oBxe@wn݅4
oB݅$+ݝ>݅4$ݝ݅ݝ(=bB
oBxe@w݅ݝ4$O݅ݝ
oB$܍݅ݝ>݅4$ݝ݅ݝ(s=bBu64$zݝ(44$Dݝ(lBE`uB uB uBEԍ
0oBE
`dBE4Eԍ
0oBE
`dBEE`uB܍(݄xݜx=puB݅($[
oB\$D4\$<E`uB܍(\$4E`uB\$,\$$Eԍ
nBED$ Eԍ
0oBED$EԉD$D$D$ED$EdBD$D$ e@hB$Eݝ ]E;PB~bE oB܌xdB݅ ݝ E݄x oBdB\$D$_e@hB$^E݅ \$D$ge@hB$6EEFE]E;PB~EE܄x]ElBM5 uB]=puBu:lB oB uBٽf
f٭dB٭E|[^_]ilkwProblem with resultfile: %s
#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total
#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav  -2*gipw/gsw*weight*ll[%d]++&' -2*gipw/gsw*weight*ll(total)

<br>File of contributions to the likelihood: <a href="%s">%s</a><br>
USE8D$#q@$rBD$PsB$rBD$'q@$rBhB=hBu1D$rB$)q@D$rBD$)q@oB$D$`q@hB$D$`r@hB$EE;E~#ED$D$r@hB$ED$r@hB$E$E(ЋE$E8tQhB$$rBm$rB_\$D$D$r@gB$,gB$[]Powell
pow# Powell
# iter -2*LL p%1d%1d
#Number of iterations = %d, -2 Log likelihood = %.12f
&
#Number of iterations = %d, -2 Log likelihood = %.12f 
&#Number of iterations = %d, -2 Log likelihood = %.12f 
UXE]ED$D$ED$$认EEE;E~[EE;E~CEUEEԋ
MЋE;Eu]]EȋEԋUE볍E$t@D$t@oB$ZD$t@$ hBfD$PsB$ hBD$'q@$ hBnPqB=PqBu1D$ hB$)q@D$ hBD$)q@oB$D$t@PqB$EE;E~OEPBE9E~2E;Et#ED$ED$D$t@PqB$xE뿍ED$k.@PqB$UE$D$ED$ED$E\$ED$ED$E$PqB$SE$E$\$ED$$t@E$E$\$ED$D$ u@oB$E$E$\$ED$D$`u@E$Ít&'
Calculation of the hessian matrix. Wait...
.%d%d'
Inverting the hessian to get the covariance matrix. Wait...

#Hessian matrix#
%.3e UWVS\E]ED$D$ED$$茡E$ x@iD$ x@oB$EE;E~EȉD$$_/@-B $
EȉD$D$_/@oB$QoB$ED$E D$ED$EȉD$E\$E$EȍM̋EȍEREE;E~EE;E~E;EEĉD$EȉD$$Mx@QB $1EĉD$EȉD$D$Mx@oB$noB$ED$E D$EĉD$EȉD$ED$E$EȍM̋EčEčŰEȍ<4
EȍM̋Eč>EE$k.@lD$k.@oB$$`x@KD$`x@oB$ED$D$ED$$(EED$D$ED$$EED$$ӛE܋ED$$<EEE;E~YEE;E~AEȍUEč<4
EȍM̋Eč>E뵍E띍EЉD$ED$ED$E$EE;E~EE;E~EȍEE݋EčEE܉D$ED$ED$E$EE;E~4EȍUEč
EȍEEEH$x@kD$x@oB$EE;E~EE;E~jEȍM̋Eč\$$x@EȍM̋Eč\$D$x@oB$E$k.@D$k.@oB$EMEE;E~YEE;E~AEȍUEč<4
EȍMEč>E뵍E띍EЉD$ED$ED$E$ED$D$ED$D$E$3ED$D$ED$D$E$
ED$D$E܉$ED$D$E$JED$D$ED$D$Ẻ$譜\[^_]Ív-C6?$@@UE]EE@ݝ@ݝݝ@ݝDž|Džx
E$EݝEE;E ~!MEEݜ͸EEE;E~E\$@$7ݝp݅ݝDž||;x|ۅ|܍pEݝMEE܅ݜ͸$Eܥ]؋MEEܥݜ͸$Eܥ]EEܵܵ@ݝ݅ܵ@Ew"݅ܵ@Ewx|݅ܵEw݅ܵEw@x|E@ٽnnf
fl٭l]٭n:݅ܵEw݅ܵEw݅ݝ|@EEE݅݅Ív@@UVSpEEE$E]Dž~~EE;E~!MEEݜͨEՋuE]EEۅݜuE]EEۅݜ$Ee]uE]EEۅݜuE]EEۅݜ$Ee]؋uE]EEۅݜuE]EEۅݜ$Ee]ЋuE]EEۅݜuE]EEۅݜ$Ee]EeeE@EE4ۅɋEE4ۅ@]tEp[^]ÐSingular matrix in routine ludcmp#B;UWVSLED$$.EEEE;E~]EE;E~@EME]EEwE]؍EEzt$@6EEuE`EE;E~cEE;E|EME]EE;E|IEUE4<
EME7E]ȍE뭋EMEEEO]؋EEE;E~EME]EE;E|IEUE4<
EME7E]ȍE뭋EMEEEEEUEsE]؋EEEE;EEE;E~EME]ЋEUE<4
EME>EMEEEoUEEMEEEUE
EMEzt#EME@E;EtwEME4]ЋE@EE;E~DEUE4<
EMEM7E벍EED$D$E$1L[^_]UWVSEEE;E~EEEEE]؋EMEE}tMEEEH9E~TEUE
EEE]؍EEuzEEEEEE%EE}EE]؋E@EE;E~<EUE
EEE]؍E뺋E4}EMEE47E[[^_]pvProblem with prevalence resultfile: %s

#********** Variable V%d=%d **********
# Age Prev(%d) N(%d) NTotalSee log file for details...
Age %d %d.=%.0f loss[%d]=%.1f%% %d.=%.0f loss[%d]=NaNQ%% %d.=%.0f prev[%d]=%.1f%% %d.=%.0f prev[%d]=NaNQ%% %d %.5f %.0f %.0f %d NaNq %.0f %.0f %d%d=%.0fOthers in log...
(@|=Y@h㈵>UWVSl]]ED$$豊EED$ED$ED$$褍ED$@$ED$$rD$'q@$E}uAD$$ @-D$D$ @oB$^$BED$ED$PBED$D$PBED$$膎EE`BE=`BEE,EEE;E~oEE؍U,E;
~DEEPBE9E~jEPBE9E~MEEE9E~3EUE܍
EEE뤍EEE;E~@EEE9E~&EMEE͍E]]EE;E ~E=`BEE;`B~EȍE$ jBE
EȍE$4}(EЍ
jBEȍ7uzEEL}`BEE;PB~EU4E4<
EM0E`@7]EMEzt)EUEE@P$d$
EMEzt+EUEEP$d$
EME<6EME;EEME4}EMEٽf
f٭۝٭47EME4}EME٭۝٭7E`uBE;PB EMEuEEHE<4EMEٽf
f٭۝٭<>EMEuEEHE<4EME٭۝٭>E`uBEMEuEEHEE
xEMEuEEHEE
HE`uBEMEwIEUEEP$d$
wEE]E]EE=`BD$H@E$裭EE;`B~|EȍE$4}(EЍ
jBEȍ7D$EȍE$D$D$_@E$EwD$g@E$EE;E~(ED$ED$D$t@E$άED$k.@E$贬EEE9E~-E9EuD$@oB$~5}uE$@ED$D$@oB$GEE;E~EE܍EPBE9E~eE܍4}EUE܍UE
E7E댍E\EE;E~E]}~7E܍UE
EE]EE܍Eh@s}uMEp@ɋE܍E4\$E܉D$E܍E\$E܉D$$@vEp@ɋE܍E4\$E܉D$E܍E\$E܉D$D$@oB$pk}u.E܉D$E܍E\$E܉D$$΋@E܉D$E܍E\$E܉D$D$΋@oB$EdEE;E~EE܍EPBE9E~eE܍4}EUE܍UE
E7E댍E\E]]E;E~@E܍EE]E܍MEE]EEE;E~Ex@s}uME܍Ep@u\$E܉D$E܍E\$E܉D$$@%E܍Ep@u\$E܉D$E܍E\$E܉D$D$@oB$k}u.E܉D$E܍E\$E܉D$$@虧E܉D$E܍E\$E܉D$D$@oB$貧E;EEx@shE\$E܍ME\$E܍MEu\$ED$D$@E$,BE\$E܍ME\$ED$D$/@E$EEPBE9E~EPBE9E~E܍UE
Euz}uHE܍UE
E\$ED$E܉D$$B@ҥE܍UE
E\$ED$E܉D$D$B@oB$ѥE	EE;ED$k.@E$袥}u$M@@D$k.@oB${EEEEu `BE$膤ED$ED$PBED$D$PBED$D$E$要ED$D$E$yED$ED$ED$D$E$}l[^_]ÉError on individual =%d agev[m][i]=%f m=%d
t&(@h㈵>UWVSE]E]E@]EH]Eٽvvf
ft٭t۝|٭vE٭t۝x٭vxD$|D$E$D$${EE`BE=`BEE4EE;E~_EEU4E;
~4EEE;E$~F|Eȋx9E~&E̍MEȍEʍEEE;E(~E=`BEE;`B~EaB jBEl
hEaB4}0E
jBE7lhuzEEH}EPEȋE;ET~EȍU<E̍4<
EȍM8E̍0@7]EEstEEsbEȍM E̍zt,EȍU E̍x@P$d$
EȍM E̍zt.EȍU E̍xP$d$
EȍM E̍ٽvvf
ft٭t۝p٭vp;||DEȍM E̍٭t۝p٭vpx9;EȉD$EȍM E̍\$ẺD$$@ڟEȍME̍<EȍME̍;E$EȍME̍4}EȍM E̍ٽvvf
ft٭t۝p٭vpd47`EȍME̍4}EȍM E̍٭t۝p٭vp7E̍`uBd`EȍME̍Ux
pEȍME̍Ux
HE̍`uBEE |E̋x9E~E]E;E$~*EčME̍E]EEE;E$~pE;x^E8@sJE̍UEč
E4<EčME̍u7E농E"EExD$|D$E$D$D$E$vĬ[^_]ÐWarning! None valid information for:%ld line=%d (skipped) and may be others, see log file
t&Warning! None valid information for:%ld line=%d (skipped)
t&Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d
    We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.
  You MUST fix the contradiction between dates.
Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d
 Delay (in months) between two waves Min=%d Max=%d Mean=%f

 v@p@(@?UStE]EPdBuBdBEE;E,~eEE$EEME;E0~VEME<~%EEUEE
E;E(|E놋EME;E0~%EEUEE
EUE
}ut`B}u0ED$EdBD$$@BE}u2ED$EdBD$D$ @oB$SEEE;E,~	EEUE;
|}4&EMEEEHEME;E0}EE@wEE@ɋEMEM E@@$O}Ef
fEm]mƃ}uE}`BEEHEMED$$EMEMED$ EMEM E\$ED$EdBD$EEHED$EMED$ED$$`@vEE4D$$@\EEHEMED$(EMEMED$$EMEM E\$ED$EdBD$EEHED$EMED$ED$D$`@oB$脔E4D$D$@oB$hEE;uB|EuBE;PdBEPdBEE]5EEHEM E@ɋEMEM E@@$ϒ}Ef
fEm]mƍEE;uB|
EuBE;PdBEPdB}M`BEEHEMED$$EMEMED$ EMEM E\$ED$EdBD$EEHED$EMED$ED$$@ۑEEHEMED$(EMEMED$$EMEM E\$ED$EdBD$EEHED$EMED$ED$D$@oB$EE]ȋUM4MЋM9EEE܋E܉U4E)ЉEԋE@U4E)ЉE؃=bB}uFEUEE܉
EME4EUEE@
EUEE؉
E9EBEUEE܉
EUEEԉ
AEUEE@
EUEE؉
EME<uAEMEEUEE؉
EEEEdBdB\$uBD$PdBD$$`@蔎dB\$uBD$PdBD$D$`@oB$賎t[]UStEEE`BEE;E|EDEE}~E`pBEEdB`B9E~PEE;E~aEE
 jBE}Ef
fEm]mEDE;E~EEEEE;E~#E|tE`pBEEEE`pBE;
~xEE;E~]E|t2EEUEE
EE`pBE;
~E뙍EnEEE;E|EDEE@uB9E~!EEEEDEEEE;E~7E|t&E;lBEaBE
EE뿋EH`Bt[]# Health expectancies
# Age %1d-%1d (SE)Problem %d lower than %d
%d|%3.0f %9.4f (%.4f)t&@`@(@?@UWVSE D$ED$EED$D$EED$$dEPBD$$_EPBD$D$EED$$bEEED$D$EED$$bED$@oB$ĊD$@oB$诊EE;E~BEE;E~*ED$ED$D$@oB$jE̍ED$k.@oB$GE0;E}ED$E0D$$ɶ@ՉE0EUE$Ћ$9$$E@]E]E Es
Ee@E@$}Ef
fEm]mU؍M$Ћ$9$$EED$D$PBED$D$PBED$$bEEED$D$PBD$D$ED$$obEEED$D$ED$$`EEED$D$ED$$p`EE,D$(E(D$$E$D$ ED$ED$ED$ED$E\$ED$E$LjEEP$d$@]EE;PB~EE;PB~qEEUUEEݝxE;EuEE4݅xݝp݅xݝp݅pEUE낋E,D$(E(D$$E$D$ ED$ED$ED$ED$E\$ED$E$LJEEE;E~EE;E~EEE܍MEЍEH9E~E܍UEl
hEUE
E܍4<EUE
E7@lhE]EEEE;PB~EdM`EEݝXE;EuEE4݅X$ݝP݅XݝP݅Pd`EpE,D$(E(D$$E$D$ ED$ED$ED$ED$E\$ED$E$ՅEEE;E~EE;E~EEE܍MEЍEH9E~E܍UEL
HEUE
E܍4<EUE
E7@LHE]EEEEE9E~EEH9E~E܍UE
ED@E܍UE4<
E܍ME7$@EE44D@EXE6ECPBD$D$EED$D$ED$$\EEEH9E~EEE9E~yEE;PB~[E܍UE
E4<E܍UE
E7E똍EyEZE}Ef
fEEE9E~[EEE9E~?EUE
Em]mEE볍EEm]mED$$@謁B $茁E}Ef
fEm]mED$D$@oB$赁oB$HEEH9E~EEH9E~E8D$ PBD$D$PBD$D$EED$D$E܍ED$E$lEԍED$ EED$D$PBD$D$EED$D$ED$E$EEE9E~EEE9E~EUE
E}Ef
fEm]mE<8EUE
Em]mE4<EMEMM7<8E1EE8EEE;E~EE;E~cEEUE
E}Ef
fEm]mEEH9E~EUE
Em]mE40EUE
Em]mE,(EUE
E܍4<EUE
E7@M,(40EEErE\$D$@oB$	~EEE;E~EE;E~EEЍUEЍ
E}Ef
fEm]mE$|\$EUE
E}Ef
fEm]mE\$D$@oB$&}E5ED$k.@oB$|EED$D$ED$D$E$UEED$D$ED$D$E$UEED$D$PBD$D$ED$D$E$	YPBD$D$EED$D$ED$D$E$XED$D$PBED$D$PBED$D$E$XE]$k.@z{D$k.@oB${PBD$D$E$PPBD$D$EED$D$E$dTEED$D$EED$D$E$3TE D$ED$EED$D$EED$D$E$W[^_]-populbased-mobilav--populbased-nomobil--stablbased-& Error in movingaverage mobilav=%d
prmorprev%-d&'Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' 
# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()
# Age cov=%-d p.%-d SE w%1d p%-d%-d
# Routine varevsij
<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>

<br>%s  <br>
# Variance and covariance of health expectancies e.j 
#  (weighted average of eij where weights are the stable prevalence in health states i
 Cov(e%1d, e%1d)%3d %d  %11.3e %11.3e %11.3e %11.3e %.0f  %.4f&'
set noparametric;set nolabel; set ter png small;set size 0.65, 0.65
 set log y; set nolog x;set xlabel "Age"; set ylabel "Force of mortality (year-1)";t&'
 plot "%s"  u 1:($3) not w l 1 
 replot "%s"  u 1:(($3+1.96*$4)) t "95%% interval" w l 2 t&
 replot "%s"  u 1:(($3-1.96*$4)) not w l 2 
<br> File (multiple files are possible if covariates are present): <A href="%s">%s</a>
varmuptjgr
<br> Probability is computed over estepm=%d months. <br> <img src="%s%s.png"> <br>

set out "%s%s.png";replot;
@`@(@?@UWVS<E$]E,]E@]Ѓ}Xu6}\tD$@($t.D$@($tD$@($t}\D$D$D$D$D$$MTE\D$TD$E\$E\$ppB$tt/E\D$D$@oB$tE\D$$@sD$$@$tEHD$D$.@L$bsLD$$zs(D$$bsD$PsB$LsD$'q@$rnB=nBu5D$$)q@sD$D$)q@oB$3sD$$@@rD$D$@@oB$rELD$D$@nB$rEHD$D$&@nB$rE@EPBE9E~eED$D$4@nB$rEE;E~1ED$ED$ED$D$>@nB$YrEōED$k.@nB$6rD$L@ tB$!rD$`@gB$r(D$D$@gB$qPBED$E@D$PBED$E@$IxD$ @PfB$qD$@PfB$qEE;E~BEE;E~*ED$ED$D$@PfB$LqE̍ED$k.@PfB$)qPBD$$EEPBD$D$ED$$HE̋ED$D$ED$$HEȡPBD$D$PBED$E@$`HEġPBED$E@D$PBED$E@$1HEPBED$E@D$PBD$$HEPBED$E@$DEPBED$E@$D|PBD$D$PBED$E@$GEEL;E }E D$ELD$$ɶ@goELEUE Ћ9Ex@ݝ`Eݝh݅hEs݅`ܥh@E @$fnٽf
f٭]٭UMЋ9EED$D$PBED$D$PBED$$HtED$D$PBD$D$ED$$GEED$D$ED$$FEED$D$ED$$EEDžPP;PB~S
EE;PB~EUEEݝE;Pu!PE݅ݝx݅ݝx݅xEjEHD$(E8D$$E4D$ E D$ED$ED$ED$݅h\$ED$t$mEHD$$E\$E8D$E4D$݅h\$ED$ED$E<$ob}X@}\EE;E~"EU<E4<
݅hٽf
f٭۝٭ppBE
EH7ElEE;E~EU<E4<
݅hٽf
f٭۝٭TE
EH7ElEE;E~EE;E~EEMEE;E~EUEt
pEUEl
hEU<E4<
EtE
E7lhtpE;EEE@EPBE9E~EEEE;E~EdU`E\}EU<EX4
EtEX\d`EaE,EE;PB~ETEPEEݝHE;Pu!PE݅H$ݝ@݅Hݝ@݅@TPEjEHD$(E8D$$E4D$ E D$ED$ED$ED$݅h\$ED$t$iEHD$$E\$E8D$E4D$݅h\$ED$ED$E<$]}X@}\EE;E~"EU<E4<
݅hٽf
f٭۝٭ppBE
EH7ElEE;E~EU<E4<
݅hٽf
f٭۝٭TE
EH7ElEE;E~EE;E~EEMEE;E~EUE<
8EUE4
0EU<E4<
EtE
E740<8E;EEE@EPBE9E~EE|E;E~E,|(E$|EU<E 4
EtE $,(E[E#EE;E~EE;E~EUP
EEUE4<
EME7$@PE4ESE5E@EPBE9E~ePUE4<
EME|$@PE47E댍PPBD$D$ED$D$ED$$<EEE;E~EE;E~DžPP;PB~dEUE
P4<EUP
E7P댍EkEME@EPBE9E~kDžPP;PB~JEUP<4
PME>P릍E놋EE P$d$@ݝXEE;E~EE;E~fEUE
݅hٽf
f٭۝٭E됍ErEE;E~EE;E~ED$ PBD$D$PBD$D$ED$D$EED$Ẻ$_`EED$ ED$D$PBD$D$ED$D$ẺD$Eȉ$
`EE;E~	EE;E~EUE
݅hٽf
f٭۝٭EUE
݅h٭۝٭4<EMȋE܍X܍X7EEE EED$ PBD$D$PBD$D$PBED$E@D$ED$Eĉ$^ED$ PBED$E@D$PBD$D$PBED$E@D$EĉD$E$8^E@EPBE9E~aE@EPBE9E~DExE<4
EME>E뭍E됋EHD$(E8D$$E4D$ E D$ED$ED$ED$݅h\$ED$t$^EHD$$E\$E8D$E4D$݅h\$ED$ED$E<$yS}X:}\Eٽf
fE;E~EU<E<4
݅h٭۝٭ppBE
EH>EEٽf
fE;E~EU<E<4
݅h٭۝٭TE
EH>Eٽf
fE@EPBE9E~EE|E;E~E|E|EU<E4
EtEE[E#EHD$݅h٭۝٭D$D$@nB$k[E@EPBE9E~ExE$JZ\$E|\$D$@nB$ZEE;E~fEtE\$EM<E\$D$@nB$ZE됍ED$k.@nB$dZ݅h\$D$@PfB$EZEE;E~EE;E~EUE
݅hٽf
f٭۝٭\$D$@PfB$YEsEUD$k.@PfB$~YED$D$ED$D$E$O2ED$D$ED$D$E$&2ED$D$PBD$D$ED$D$E$5PBD$D$ED$D$ED$D$E$\5ED$D$PBED$D$PBED$D$t$5݅hݝhPBED$E@D$E$.-PBED$E@D$|$-PBED$E@D$PBD$D$E$0PBD$D$PBED$E@D$E$0D$@ tB$WD$`@ tB$W$4D$D$@ tB$lW$t4D$D$@ tB$EW$M4D$D$@@ tB$W$&4Í$4\$D$D$@gB$V(D$D$@E$4LD$T$ELD$D$@gB$V(D$D$@E$64LD$T$D$U@ tB$XVPBD$D$E$++ED$D$ED$D$Eȉ$
/PBD$D$ED$D$Ẻ$.PBED$E@D$PBED$E@D$E$.PBD$D$PBED$E@D$Eĉ$.PBED$E@D$PBED$E@D$x$I.}\t>D$D$D$D$D$D$T$1nB$>T tB$TgB$T<[^_]É'# Standard deviation of stable prevalences 
 %1d-%1d %.5f (%.5f)t&@`@(@?@UWVSE$]E,]E@]D$@hB$5TD$@hB$ TEE;E~*EȉD$EȉD$D$
@hB$SED$k.@hB$SPBD$$e(EPBD$D$ED$$X+EЋED$D$ED$$3+EEUE LЋL9LLE(@]E]EEsEe0@E 8@$+R}Ef
fEm]mE 0@sEUMLЋL9LLEED$D$PBD$$B*EED$$'EED$$&EEE;PB~EE;PB~zEEU|EȍEݝpE;EuEE݅pݝh݅pݝh݅hE|EyEHD$$E\$E8D$E4D$E\$ED$ED$E<$FEE;E~4Eȍ<uEȍM<Eȍ>EEE;PB~EdE`EȍEݝXE;EuEE݅X$ݝP݅XݝP݅Pd`EpEHD$$E\$E8D$E4D$E\$ED$ED$E<$EEE;E~4Eȍ<uEȍM<Eȍ>EEE;E~\EUEȍ4<
EȍMEȍE$@@EE47E뚍ERPBD$D$ED$$:'EEE;E~\EE;PB~AEčUE<4
EMEč>E벍EEE;E~AEȍ]E}Ef
fEm]mEE뵋ED$ PBD$D$PBD$D$ED$D$ED$EЉ$MED$ ED$D$PBD$D$ED$D$EЉD$Ẻ$kMEE;E~\EȍME}Ef
fEm]mE<4EȍM̋Eȍ>EE\$D$@hB$MEE;E~Eȍ]E}Ef
fEm]mE$eL\$EȍM<Eȍ\$D$@hB$MEoD$k.@hB$LED$D$E$!ED$D$E$!ED$D$PBD$D$E$%PBD$D$ED$D$E$\%E]#PBD$D$E$&!PBD$D$ED$D$Ẻ$%ED$D$ED$D$EЉ$$[^_]probprobcovprobcorComputing standard deviation of one-step probabilities: result on file '%s' 
Computing matrix of variance covariance of one-step probabilities: result on file '%s' 
&and correlation matrix of one-step probabilities: result on file '%s' 
#One-step probabilities and stand. devi in ()
#One-step probabilities and covariance matrix
#One-step probabilities and correlation matrix
 p%1d-%1d (SE) p%1d-%1d 
# Routine varprobv
<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>

<li><h4> <a href="%s">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>

<h4>Matrix of variance-covariance of pairs of step probabilities</h4>
  file %s<br>
v'
Ellipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimatedand drawn. It helps understanding how is the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>

<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix and made the appropriate rotation to look at the uncorrelated principal directions.<br>To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> 
**********
#
 V%d=%d 
<hr  size="2" color="#EC5E5E">********** Variable **********
<hr size="2" color="#EC5E5E">
%d %11.3e (%11.3e) %11.3e 
%d %d-%d %11.3e&%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f
Others in log...
'%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f

set parametric;unset labelv
set log y;set log x; set xlabel "p%1d%1d (year-1)";set ylabel "p%1d%1d (year-1)"&'
set ter png small
set size 0.65,0.65varpijgr
<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href="%s%d%1d%1d-%1d%1d.png">%s%d%1d%1d-%1d%1d.png</A>, 
<br><img src="%s%d%1d%1d-%1d%1d.png"> 
<br> Correlation at age %d (%.3f),
set out "%s%d%1d%1d-%1d%1d.png"
set label "%d" at %11.3e,%11.3e center
# Age %d, p%1d%1d - p%1d%1d
plot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not %d (%.3f),&'
replot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not
set out "%s%d%1d%1d-%1d%1d.png";replot;&@(@@UWVSE]E$]EEEpAݝD$@$>D$PsB$>D$'q@$=pdB=pdBu5D$$)q@9>D$D$)q@oB$j>D$@$t>D$PsB$=D$'q@$x=uB=uBu5D$$)q@=D$D$)q@oB$=D$@$=D$PsB$y=D$'q@$<fB=fBu5D$$)q@/=D$D$)q@oB$`=D$$@<D$D$@oB$+=D$$`@<D$D$`@oB$<D$$@<D$D$@oB$<D$ @pdB$<D$@pdB$<D$`@uB$<D$@uB$m<D$@fB$X<D$@uB$C<EE;E~EPBE9E~pEЉD$EԉD$D$@pdB$;EЉD$EԉD$D$@uB$;EЉD$EԉD$D$@fB$;E끍EcPBD$$4$PBD$D$PBEED$$,PBEED$D$PBEED$$(Eٽf
f٭۝٭D$E٭۝٭D$PBEED$$iEٽf
f٭۝٭D$E٭۝٭D$PBEED$D$PBEED$$ED$@ tB$9D$@gB$9D$k.@gB$9D$iBD$@gB$9D$iBD$@PjB$9D$`@PjB$z9D$`@PjB$e9ݝ`BE=`BEE8EEE;E~ EEU8E;
~E=`BD$H@pdB$8EE;`B~EaB4}4E
jBE7D$EaBD$D$_@pdB$G8EnD$@pdB$(8D$H@uB$8EE;`B~EaB4}4E
jBE7D$EaBD$D$_@uB$7EnD$@uB$e7D$H@ tB$P7EE;`B~EaB4}4E
jBE7D$EaBD$D$@ tB$6EnD$@ tB$6D$ @PjB$6EE;`B~EaB4}4E
jBE7D$EaBD$D$_@gB$5EnD$`@PjB$5D$H@fB$5EE;`B~EaB4}4E
jBE7D$EaBD$D$_@fB$;5EnD$g@fB$5Eݝ݅Es|݅ݝEE;`B~qUEE04}4EjBEE07ݜEEE;`B~?EaBEaB݄܍ݜEEE;dB~EdBEsB4}4E,jBEsB47EsB4}4E,jBEsB73
P$d$ݜEPBEED$D$PBD$$
PBD$D$PBEED$$W
PBEED$$ PBEED$$Dž;PB~EE;PB~E$EԍEݝE;u!E݅ݝ݅ݝ݅EgED$$D$@uBD$D$ sB$,EEE;E~\EPBE9E~?EE< Eԍ
 sBEЍ>E벍EEE;PB~E$EԍEݝE;u!E݅$ݝ݅ݝ݅EgED$$D$@uBD$D$ sB$+EEE;E~\EPBE9E~?EE<Eԍ
 sBEЍ>E벍EEPBEE9E~kEԍ4<
Eԍ Eԍ$pAE47E낍EPBEE9E~tDž;PB~PEЍ<4
EЍ>렍EyED$ PBD$D$PBD$D$PBEED$D$D$,$r-D$ PBEED$D$PBD$D$PBEED$D$,D$($-PBU¡PBE‰D$D$ $PBU¡PBE‰D$D$$WPBD$D$PBU¡PBE‰D$D$$"PBD$D$PBU¡PBE‰D$D$$ED$ED$@uBD$D$ sB$;(EEٽf
fE;E~EPBE9E~gEE݅٭۝٭<4
Eԍ
 sBEЍ>E늍ElEPBEE9E~EPBEE9E~rEԍEЍ
݅٭۝٭<4Eԍ(EЍ>E{ET݅٭۝٭D$D$@pdB$+݅ٽf
f٭۝٭D$D$@uB$*݅ٽf
f٭۝٭D$D$@fB$x*EPBEE9E~EԍEԍ
݅ٽf
f٭۝٭$)\$Eԍ݅ٽf
f٭۝٭\$D$@pdB$)EEPBEE9E~Eԍ݅ٽf
f٭۝٭\$D$@uB$(Eԍ݅ٽf
f٭۝٭\$D$@fB$(EEEE;E~EPBE9E~EԉEԍEED$ED$݅ٽf
f٭۝٭D$D$@uB$'ED$ED$݅ٽf
f٭۝٭D$D$@fB$'EE;E~EԍEЍ
݅ٽf
f٭۝٭\$D$@uB$&EԍEЍ
݅ٽf
f٭۝٭4<EԍEԍ
݅٭۝٭$g%7ݝEЍEЍ
݅ٽf
f٭۝٭$$ܽ\$D$@fB$%E1EIE+݅ݝoEEE;E~5EPBE9E~E;EuUJPBEEEEE;E~EPBE9E~E;EuUJPBEEĉEԋE;EvEݝ݅Es݅ٽf
f٭۝٭gfff)‰)ȅ
EԍEԍ
݅٭۝٭PBxAPBxAݝHEЍEЍ
݅٭۝٭PBxAPBxAݝ@EԍEЍ
݅٭۝٭PBxAPBxA]Eԍ݅٭۝٭PBxA]EЍ݅٭۝٭PBxA]݅H܍@$!Eݝ8݅H܅@ݝ݅H܅@݅H܅@݅H܍@EMA$%!݅pAݝx݅H܅@ݝ݅H܅@݅H܅@݅H܍@EMA$ ݅pAݝp݅Hܥx݅Hܥxuu${ ݝX݅xܥHu܍Xݝ`݅`ݝh݅XݝP݅`ܵXݝ0}E݅0\$h݅`\$`݅X\$X݅p\$P݅x\$HE\$@݅8\$8݅@\$0݅H\$(E\$ E\$ED$ED$EĉD$EȉD$݅ٽf
f٭۝٭D$$@݅0\$l݅`\$d݅X\$\݅p\$T݅x\$LE\$D݅8\$<݅@\$4݅H\$,E\$$E\$ED$ED$EĉD$EȉD$݅ٽf
f٭۝٭D$D$@@oB$b}ED$@ tB$<ED$ED$EĉD$EȉD$D$@ tB$D$ A tB$D$FAE$AD$FAE$,‹ED$DED$@EĉD$<EȉD$8ED$4\$0ED$,ED$(EĉD$$EȉD$ ED$T$ED$ED$EĉD$EȉD$D$`APjB$MD$FAE$‹ED$ED$EĉD$EȉD$ED$T$D$APjB$݅8\$݅ٽf
f٭۝٭D$D$@APjB$D$FAE$‹ED$ED$EĉD$EȉD$ED$T$D$A tB$RE\$E\$݅ٽf
f٭۝٭D$D$A tB$ED$ED$EĉD$EȉD$݅ٽf
f٭۝٭D$D$A tB$݅p$ݝ݅x$ݝ݅p$tݝx݅x$`݅\$`݅P\$X݅\$P݅`\$H݅\$@E\$8݅x\$0݅h\$(\$ ݅X\$݅\$E\$D$ A tB$E݅8\$݅ٽf
f٭۝٭D$D$APjB$ZED$ED$EĉD$EȉD$݅ٽf
f٭۝٭D$D$A tB$E\$E\$݅ٽf
f٭۝٭D$D$A tB$݅p$ݝp݅x$ݝh݅p$|ݝ`݅x$h݅p\$`݅P\$X݅h\$P݅`\$H݅\$@E\$8݅`\$0݅h\$(\$ ݅X\$݅\$E\$D$A tB$݅ݝD$FAE$‹ED$ED$EĉD$EȉD$ED$T$D$@A tB$aEE?E!EEEEEٽf
f٭۝٭D$E٭۝٭D$PBED$D$ED$D$$;Eٽf
f٭۝٭D$E٭۝٭D$PBU¡PBE‰D$D$$PBD$D$$$pdB$&uB$fB$ tB$_PjB$R[^_]Ð<ul><li><h4>Result files (first order: no variance)</h4>
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href="%s">%s</a> <br>
 pij - Estimated transition probabilities over %d (stepm) months: <a href="%s">%s</a><br>
 plt& - Stable prevalence in each health state: <a href="%s">%s</a> <br>
e - Life expectancies by age and initial health status (estepm=%2d months):    <a href="%s">%s</a> <br>
</li> 
<ul><li><b>Graphs</b></li><p><hr  size="2" color="#EC5E5E">************ Results for covariates ************
<hr size="2" color="#EC5E5E">pe<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> <img src="%s%d1.png">
<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> <img src="%s%d2.png"><br>- Stable prevalence in each health state : p%s%d%d.png<br> <img src="%s%d%d.png">exp
<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> <img src="%s%d%d.png"></ul>'
<br><li><h4> Result files (second order: variances)</h4>
 - Parameter file with estimated parameters and covariance matrix: <a href="%s">%s</a> <br>
' - Variance of one-step probabilities: <a href="%s">%s</a> <br>
 - Variance-covariance of one-step probabilities: <a href="%s">%s</a> <br>
 - Correlation matrix of one-step probabilities: <a href="%s">%s</a> <br>
v - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href="%s">%s</a><br>
t - Health expectancies with their variances (no covariance): <a href="%s">%s</a> <br>
vplt& - Standard deviation of stable prevalences: <a href="%s">%s</a> <br>
 <ul><li><b>Graphs</b></li><p><br>- Observed (cross-sectional) and period (incidence based) prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br><img src="%s%d%d.png">
<br>- Total life expectancy by age and health expectancies in states (1) and (2): %s%d.png<br><img src="%s%d.png">UWVSE4]EH]EP]EX]E`]Eh]Ep]D$@E$D$@E$\$<D$8E\$0E\$(E\$ E\$E\$E\$D$ +AgB$7
D$+AE$D$+AE$m\$D$ED$D$,AgB$D$X,AE$6D$X,AE$!\$D$D$`,AgB$D$,AE$D$,AE$\$D$EDD$D$,AgB$ZD$@-AgB$E`B0jB=`B0jB`pBEEE;0jB~EE`pBE;
~E=`BD$`-AgB$EE;`B~EaB4=0gBE
jBE7D$EaBD$D$@gB$EkD$-AgB$D$-A$lBJD$-A$lB4‹ED$\$ED$T$ED$D$.AgB$
D$-A$lBD$-A$lB‹ED$\$ED$T$ED$D$.AgB$D
EE;PB|lD$@$lBzD$@$lBd‹ED$ED$\$ED$ED$T$D$/AgB$	EEE;PB~sD$/A$lBD$/A$lB‹ED$ ED$\$ED$ED$T$ED$D$0AgB$D	E뀍E>ED$m0AgB$	E<D$E<D$D$0AgB$D$@E$<D$@E$'\$D$D$ 1AgB$D$@E$D$@E$\$D$D$1AgB$gD$@E$D$@E$\$D$D$1AgB$"D$+2AE$mD$+2AE$X\$D$EDD$D$@2AgB$D$2AE$!D$2AE$\$D$D$2AgB$D$73AE$D$73AE$\$D$D$@3AgB$LgB$D$3AgB$*`B0jB=`B0jB`pBEEE;0jB~EE`pBE;
~E=`BD$`-AgB$EE;`B~EaB4=0gBE
jBE7D$EaBD$D$@gB$EkD$-AgB$EE;PB~sD$+2A$lBD$+2A$lB‹ED$ ED$\$ED$ED$T$ED$D$3AgB$eED$,A$lBD$,A$lB‹ED$\$ED$T$D$`4AgB$E#ED$m0AgB$gB$qČ[^_]cd "%s" 

set out "%s%d%d.png" 

#set out "v%s%d%d.png" 
set xlabel "Age" 
set ylabel "Probability" 
set ter png small
set size 0.65,0.65
plot [%.f:%.f] "%s" every :::%d::%d u 1:2 "%%lf %%lf (%%lf) %%*lf (%%*lf)v" t"Stable prevalence" w l 0,"%s" every :::%d::%d u 1:($2+1.96*$3) "%%lf" t"95%% CI" w l 1,"%s" every :::%d::%d u 1:($2-1.96*$3) "%%lf" t"" w l 1,"%s" every :::%d::%d u 1:($%d) t"Observed prevalence " w l 2
set out "%s%d.png" 
set ylabel "Years" 
set ter png small
set size 0.65,0.65
plot [%.f:%.f] "%s" every :::%d::%d u 1:2 "%%lf" t"TLE" w l ," t"LE in state (%d)" w l ,"%s" every :::%d::%d u 1:($2-$3*2) "%%lf" t"" w l 0,v'"%s" every :::%d::%d u 1:($2+$3*2) "%%lf" t"" w l 0t&'set ter png small
set size 0.65,0.65
plot [%.f:%.f] "%s" every :::%d::%d u 1:%d t "e%d1" w lv ,"%s" every :::%d::%d u 1:%d t "e%d%d" w lset xlabel "Age" 
set ylabel "Probability" 
set ter png small
set size 0.65,0.65
unset log y
plot [%.f:%.f] "%s" u ($1==%d ? ($3):1/0):($%d/($%d+$%d)) t"prev(%d,%d)" w l,"%s" u ($1==%d ? ($3):1/0):($%d/($%d)) t"prev(%d,%d)" w l
p%d=%f 
set ylabel "Quasi-incidence per year"

set title "Probability"

set ter png small
set size 0.65,0.65
set log y
plot  [%.f:%.f]  %f*exp(p%d+p%d*x exp(p%d+p%d*x+p%d*%d*x+p%d*%d)/(1+exp(p%d+p%d*x)) t "p%d%d" ,&@(@UWVSE]E]E ]ЋE(D$D$=A tB$`B\$CA$ٽvvf
ft٭t۝٭vED$8$OD$73A$9Dž;PB~Dž;~D$+2AE$*‹D$D$T$D$=A tB$D$D$ED$D$>A tB$mD$73AE$‹HD$ HD$T$E\$E\$D$@>A tB$Dž;PB~D;uD$>A tB$D$>A tB$D$73AE$‹HD$HD$T$D$>A tB$yDž;PB~D;uD$>A tB$<D$>A tB$%D$73AE$f‹HD$HD$T$D$@?A tB$Dž;PB~D;uD$>A tB$D$>A tB$D$@E$‹D$HD$HD$T$D$?A tB$%&Dž;~D$,AE$9‹D$T$D$?A tB$E\$E\$D$?A tB$DžPB@9~D$2AE$‹HD$HD$T$D$@@A tB$$DžPB@9~D;uD$>A tB$D$>A tB$묃uD$a@A tB$ HD$D$p@A tB$D$2AE$‹HD$HD$T$D$@A tB$BDžPB@9~D;uD$>A tB$D$>A tB$D$@A tB$D$2AE$‹HD$HD$T$D$@A tB$DžPB@9~D;uD$>A tB$ND$>A tB$7묡PB@9uD$	AA tB$
D$@A tB$]Dž;~Dž;PB~bPBD$/AE$‹D$D$T$D$=A tB$BD$,AE$‹D$(D$$HD$ HD$T$E\$E\$D$ AA tB$Dž;PB|xD$,AE$
‹@D$D$D$HD$HD$T$D$AA tB$WxaDž;~XDž;PB~.DžD$@E$7‹D$D$T$D$=A tB$D$+AE$‹@D$$@D$ D$T$E\$E\$D$AA tB$HDž;PB|0@D$D$QBA tB$@D$D$D$VBA tB$PBPB|D$+AE$‹|@D$|@D$D$T$D$BA tB$eDž;PB|KPBPB||@D$D$QBA tB$
륋@D$@D$D$BA tB$DžDž;PB~DžPBPB9~;twDž;@uB~]E,\$D$D$BA tB$D$k.@ tB$듍V,Džxx~Dž;~D$-AE$‹xD$D$T$D$=A tB$\xuD$BA tB$>D$CA tB$'E\$E\$D$@CA tB$DžDž;PB~DžPBPB9~;xu>@D$D$PBCA\$D$CA tB$X*@D$D$D$CA tB$,DžDž;@uB~UaB;;`BaB4=0gBjBaB7D$HD$D$CA tB$C|aB50gBjB
D$HD$D$CA tB$D$CA tB$Dž;PB~H@uB@D$H@uBD$D$CA tB$8DžDž;@uB~taB;;`BaB4=0gBjBaB7D$H@uBHD$D$CA tB$AaB50gBjB
D$H@uBHD$D$CA tB$yD$CA tB$D$D$D$CA tB$R¡PBPB9tD$CA tB$@uB<8x tB$oļ[^_]UWVSTE]E]E`BEЃ=`BE} t} t} t} t} u	EE EE]EEsEE;PB~EE;E~E}Ef
fEm]mEUE܍
Eԍ<4Em]mEUE܍
Eԍ>EnEME]%EE;E~UJP$d$E]UJP$d$EEsEE;PB~EE;E~tE}Ef
fEm]mEUE܍
Eԍ<4Em]mEUE܍
Eԍ>EUJ9E~\Em]mEUE܍
EE<Em]mEUE܍
EE4Em]mE+E؍UE܍
EԍMEEm]mEUE܍
EE<Em]mEUE܍
EE4Em]mEE؍UE܍
EԍMEEEm]mEUE܍
Eԍ4<Em]mEUE܍
EԍE7EE^E]EȃEEET[^_]f&Problem with forecast resultfile: %s
Computing forecasting: result on file '%s' 
# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f 
#****** Routine prevforecast **

#****** V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ******
t&'# Covariate valuofcovar yearproj age p%d%d p.%d&'
# Forecasting at date %.lf/%.lf/%.lf %d %d %.f %.f  %.3fv@`@(@>@?UWVSE]E]E]E$]E,]E4]E<]EH]EP]E`]\AݝXE\D$LEXD$HE\$@E\$8`fBD$4pBD$0`pBD$,0gBD$(aBD$$0uBD$ PBD$nBD$`dBD$E\$E\$ppB$@D$wZAx$>ED$x$D$'q@x$CbB=bBu5xD$$ZAxD$D$ZAoB$xD$$ZAJxD$D$ZAoB${}luEl`pB}DD$D$D$D$D$$蒽EDD$D$E\$E\$ppB$+t/EDD$D$@oB$EDD$$@lPB\Aٽvvf
ft٭t۝p٭vpP$d$\A٭t]٭v=PBEoB;PB} PBD$oBD$$ɶ@oBEE=PBEHD$ `B$ݝ@݅Hݝ HD$݅@\A$ݝ8݅Hݝ(HD$݅8\A$ݝ@݅Hݝ0݅0ztݝ0݅(ztݝ0Ell=`B
DžlE\$0E\$( `B\$ ݅ \$݅(\$݅0\$D$[AbB$D$`[AbB$nBEnB;l~DžxEl`pBx;
~bED$[AbB$^EE;El~EaB4=0gBE
jBE7D$EaBD$D$[AbB$EnD$[AbB$D$\AbB$EPBPB9E~mDžtt;PB~0ED$tD$D$%\AbB$BtED$D$,\AbB$EEEEesD$k.@bB$EE\$E\$E\$D$@\AbB$Eݝ`E݅`se݅Xܥ`\APB\A$ٽvvf
ft٭t]٭vUMdЋd9ddEED$D$PBPBD$D$PBPBD$$LpfBgBnBoBED$(oBD$$gBD$ PBD$PBD$EhD$ED$݅`\$ED$$Džpp;E~pEP$d$\APBEztD$k.@bB$EE;El~EaB4=0gBE
jBE7D$EaBD$D$g\AbB$vEnpEP$d$\APB܅`\$EE\$D$n\AbB$!EPBPB9E~hݝPDžtt;PB~}DtE
p4<݅`ٽvvf
ft٭t۝p٭vpt
x7݅PݝPtE
p4<݅`ٽvvf
ft٭t۝p٭vpppBt
x7݅PݝPpEP$d$\APBEztLtE
p\$D$w\AbB$tpEP$d$\APBEzt݅P\$D$w\AbB$Ep1ED$D$PBPBD$D$PBPBD$D$$݅`ݝ`UEx~nBW}Dt>D$D$D$D$D$D$$kbB$[^_]poprProblem with population file : %s
%d %lf
 P.%d [Population]

# Forecasting at date %.lf/%.lf/%.lf 
 %3.f  %15.2f@`@(@v@?UWVSE]E]E]E$]E,]E4]E<]EH]EP]E`]D$D$D$D$D$$8D$D$D$D$D$$賱4iAݝXEiAEEiA% `BiAݝ`PBD$L`BD$HE\$@E\$8`fBD$4pBD$0`pBD$,0gBD$(aBD$$0uBD$ PBD$nBD$`dBD$E\$E\$ppB$3D$iA$ED$$
D$'q@$ qB= qBu5D$$ZAD$D$ZAoB$D$$ZAD$D$ZAoB$=`Bu`B`pB}DD$D$D$D$D$$ί0EDD$0D$E\$E\$ppB$gt/EDD$D$@oB$EDD$$@PBiAٽf
f٭۝٭P$d$iA٭]٭=PBEiAݝXEE=PBE}XYD$iAE\$qB=qBuE\D$$ iA$
D$$2lD$$虩DD$$@Džtt@D$tlD$D$CiAqB$||u
t몋t0uBDžtt;0uB|FtlDt@tnBEnB;El~2Džx`B`pBx;
~
ED$[A qB$EE;`B~EaB4=0gBE
jBE7D$EaBD$D$@ qB$EkD$[A qB$D$@ qB$EPBPB9E~#ED$D$KiA qB$E˃}XuD$QiA qB$E}~EE\$E\$E\$D$`iA qB$B݅`ٽf
f٭۝٭*)‰)P$d$iAE]݅`٭۝٭*)‰)P$d$iAEEs݅XeiAPBiA$ٽf
f٭]٭UMЋ9EED$D$PBPBD$D$PBPBD$$2<pfBgBnBoBED$(oBD$$gBD$ PBD$PBD$EhD$ED$E\$ED$<$Džpp;E~4EiA܅`ٽf
f٭۝٭9puVpEP$d$iAPBE\$D$iA qB$ٽf
fEPBPB9E~ݝPݝHDžtt;PB~6}Dt<E
p<4E٭۝٭0Pt
x>݅PݝPt<E
p4<E٭۝٭ppBt
x7݅PݝPtUP$d$܅`٭۝٭9puNE٭۝٭8E
x݅PEDžtt;PB~~ݝPEE;PB~[E٭۝٭8E
x݅PݝPEE٭۝٭4t
x4<E٭۝٭8t
xܵPUP$d$܅`EiAPBE٭۝٭D7toUP$d$܅`٭۝٭9pEE;PB~Eٽf
f٭۝٭4E
x\$D$iA qB$EipED$D$PBPBD$D$PBPBD$D$<$]E]ٽf
fEEEEesEE\$E\$E\$D$`iA qB$?݅`ٽf
f٭۝٭*)‰)P$d$iAE]݅`٭۝٭*)‰)P$d$iAEEs݅XeiAPBiA$|ٽf
f٭]٭UMЋ9EED$D$PBPBD$D$PBPBD$$/<pfBgBnBoBED$(oBD$$gBD$ PBD$PBD$EhD$ED$E\$ED$<$Džpp;E~EiA܅`ٽf
f٭۝٭9pu>pEP$d$iAPBE\$D$iAbB$EPBPB9E~?ݝPݝHDžtٽf
ft;PB~t<E
p<4E٭۝٭4Pt
x>݅PݝPtVUP$d$܅`٭۝٭9pu݅P\$D$iAbB$]EpED$D$PBPBD$D$PBPBD$D$<$蟢E]ٽf
fEIxnB}Dt>D$D$D$D$D$D$0$}XuZD$D$l$踚D$D$D$D$D$@$D$D$D$D$D$D$8$tD$D$D$D$D$D$4$6 qB$[^_]aProblem with file: %s
UD$6~AE$E}u8ED$$8~AED$D$8~AoB$EE$EE# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...
%1d%1d 0.# Scales (for hessian or gradient estimation)
# Covariance matrix
#%1d%1d%d%1d%1d%d Cov(%s%1d%1d,%s%1d%1d) Var(%s%1d%1d)U$~AD$~AE$EE;E~DžtEEE9E~E;EutED$ED$$~A6ED$ED$D$~AE$eEE;E~&$AD$AE$5E$k.@D$k.@E$E@E$ AD$ AE$EEHEEpEE;E~DžtEEE9E~E;EutED$ED$D$~AE$\ED$ED$$~AB $EE;E~&$AD$AE$EЍh$k.@D$k.@E$E(E$OAdB $DD$OAE$Džll~(DžtEE;E~EEE9E~E;EuEE;E~tE`EEluKED$ED$ED$$dA蔿ED$ED$ED$D$dAE$輿IED$ED$ED$$nAIED$ED$ED$D$nAE$qDžxEE;E~EEE9E~E;EuxDž||;E~^xx;t7|`EEx;tluxED$ED$ED$ED$ED$E؉D$$wAJED$ED$ED$ED$ED$E؉D$D$wAE$]$AD$AE$9sluKED$ED$E؉D$$A载ED$ED$E؉D$D$AE$$A臽D$AE$Ľ|EaEC$k.@GD$k.@E$脽hEBEElÍ&(@.@Uh]]]EE0uBH9E~3Eԍ`uBE]E]E]؍EE0uBH9E~EԍtB<ȋEԍpqB<!ȅEE0]ȋEhAEԍuBhAɋPBP$d$$x]EhAEԍjBhAɋPBP$d$$(mM]EԍtB<ȋEԍpqB<!ȅ8EE0]EhAEԍtBhAɋPBP$d$$聻]EhAEԍjBhAɋPBP$d$$1mE]EhA$EEhAEԍtBhAɋPBP$d$]hA$豹E]EԍpqB<ȋEԍuBpA!ȅtEԍ`uBEE]EExAMuÐ<ul><li><h4>Result files </h4>
 Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br> p[%d] = %lf [%f ; %f]<br>
<br><br><img src="graphmort.png">UWVS<D$AgB$萸PBD$E,\$E,\$D$AgB$ZE}~E4},EM0E$67]E4},EM0E$7E\$\$EE,\$ED$D$AgB$蘷E;D$AgB$yD$m0AgB$dgB$<[^_]set out "graphmort.png"
 t&set xlabel "Age"
 set ylabel "Force of mortality (per year)" 
 set ter png small
 set log y
set size 0.65,0.65
&'plot [%d:100] %lf*exp(%lf*(x-%d))UE]E]E ]E(D$D$=A tB$WED$H$bD$73A$LD$aA tB$D$A tB$D$A tB$D$ދA tB$صPBD$E,\$E,\$PBD$D$A tB$虵bcdc
%s
%s
Enter the parameter file name: %spathimach=%s, pathtot=%s,
path=%s,
optionfile=%s 
optionfilext=%s 
optionfilefiname=%s
mkdir Problem creating directory or it already exists %s%s, err=%d
.logProblem with logfile %s
Log filename:%s

Enter the parameter file name: 
pathimach=%s
pathtot=%s
 path=%s 
 optionfile=%s
 optionfilext=%s
 optionfilefiname=%s
Local time (at start):%sLocal time (at start): %s.txtProblem with optionfile %s
oProblem with Output resultfile: %s
title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d
ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s
title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d
ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d
model=%s
 You choose mle=-1, look at file %s for a template of covariance matrix 
 You choose mle=-3, look at file %s for a template of covariance matrix 
Error in line parameters number %d, %1d%1d instead of %1d%1d 
 %lf%le %le %.5leProblem writing new parameter file: %s
#%s
Problem with datafile: %s
ageage*ageError. Non available option model=%s Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased
Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.
Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.
Warning negative age at death: %ld line:%d
Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d
Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f

-mort.gpProblem with file %s
# %s
# %s
set missing 'NaNq'
.htmProblem with %s 
-cov.htm<body>
<title>IMaCh Cov %s</title>
 <font size="2">%s <br> %s</font> <hr size="2" color="#EC5E5E"> 
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>
'<body>
<title>IMaCh %s</title>
 <font size="2">%s <br> %s</font> <hr size="2" color="#EC5E5E"> 
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>

<hr  size="2" color="#EC5E5E"> <ul><li><h4>Parameter files</h4>
 - Copy of the parameter file: <a href="o%s">o%s</a><br>
 - Log file of the run: <a href="%s">%s</a><br>
 - Gnuplot file name: <a href="%s">%s</a><br>
 - Date and time at start: %s</ul>
<br>Total number of observations=%d <br>
Youngest age at first (selected) pass %.2f, oldest age %.2f<br>
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>
pow-mort
Covariance matrix
 %f 
 iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))
%f [%f ; %f]
'First Likeli=%12.6f ipmx=%ld sw=%12.6f %d %8.5f
Second Likeli=%12.6f ipmx=%ld sw=%12.6ftitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d
ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d
model=%s
%d%d %1d%1d  %.5e# Covariance matrix 
# 121 Var(a12)
# 122 Cov(b12,a12) Var(b12)
#   ...
# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)
&agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d
'# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).
t&agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d
'begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d
begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d
pop_based=%d
prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d
vprevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d
Problem with stable prevalence resultfile: %s
Computing stable prevalence: result on file '%s' 
#Stable prevalence 
#Age %d-%d  %.5ft&Problem with Pij resultfile: %s
Computing pij: result on file '%s' 
#****** h Pij x Probability to be in state j at age x+h being in i at x 
#****** '# Cov Agex agex+h hpijx with i,j=%d %3.f %3.fProblem with total LE resultfile: %s
Computing Total LEs with variances: file '%s' 
Problem with Health Exp. resultfile: %s
Computing Health Expectancies: result on file '%s' 
t&'Problem with variance resultfile: %s
Computing Variance-covariance of DFLEs: file '%s' 
#Total LEs with variances: e.. (std) e.%d (std)  %4.0f %7.3f (%7.3f)Problem with variance of stable prevalence  resultfile: %s
t&Computing Variance-covariance of stable prevalence: file '%s' 
End of Imach with %d errors and/or %d warnings
End of Imach with %d errors and/or warnings %d
End of Imach
See log file on %s
&'Local time at start %s
Localtime at end   %sLocal time at start %s
Local time at end   %s
Total time used %s
Total time was %d Sec.
t&<br>Local time at start %s<br>Local time at end   %s<br>"gnuplot Starting graphs with: %s Problem with gnuplot
 Wait...
Type e to edit output files, g to graph again and q for exiting: Starting browser with: %s
Type  q for exiting: t&@xD@x@@|=@(@UUUUUU?@@`@?-C6?v@?UWVS@@莆E NEdEE8Aݝ8Aݝ@Aݝ@AݝDžDž
DžPDžLDžHDžDݝ0ݝ(HAݝ ݝݝHAݝݝݝHAݝݝݝHAݝPAݝݝHݝ@HAݝ8ݝ0ݝ(HAݝ Dž6~ADž6~ADžADžADžADž,AAD$nB$qBUlqBqB`iBdiB$qB裛‹sBBsBBsBBsBBtBBtBBtBBtBB tB$qB辚‹ fBB$fBB(fBB,fBB0fBB4fBB8fBB<fBB @fB$sBD$$臛`B`BẺD$$莊D$PPBD$PB$!AҚ}$$@AD$$aAڙED$$D$lBD$ gBD$aBD$E$kD$lBD$ gBD$aBD$$kD$lBD$ gBD$aBD$D$D$$A$oD$؍A$PkB;D$lB$PkBǙ$PkB˘`B=`Bt'`BD$D$lBD$$AvD$lB$PmBrD$A$PmB^D$'q@$PmBژoB=oBuD$PmB$#A需D$PmBD$<AoB$FD$PPBD$PBD$!AoB$!D$`AoB$D$lBD$ gBD$aBD$D$D$D$AoB$D$$A[D$D$AoB$茘oB$D$iA$PsB苘D$lB$PsBD$+A$PsBD$iA$aBbB=bBuCD$aB$0A轗D$aBD$0AoB$oB$胗D$LA$cBD$PsB$cBvD$'q@$cBnB=nBuCD$cB$`A0D$cBD$`AoB$coB$~EbB$#u|bBD$$踕bBD$D$$艕E$fnBD$$?oBD$$(YbBD$$<D$<D$8`qBD$4bBD$0nBD$,PBD$(PBD$$lBD$ PBD$PBD$PBD$`BD$D$@gBD$bBD$AbB$ED$<`qBD$8bBD$4nBD$0PBD$,PBD$(lBD$$PBD$ PB\$PBD$`BD$D$D$@gBD$bB$@A#D$@`qBD$<bBD$8nBD$4PBD$0PBD$,lBD$(PBD$$PB\$PBD$`BD$D$D$@gBD$bBD$@AnB$ߔD$@`qBD$<bBD$8nBD$4PBD$0PBD$,lBD$(PBD$$PB\$PBD$`BD$D$D$@gBD$bBD$@AoB$KoB$ޓbB$#u|bBD$$謒bBD$D$$}E$ZnBD$$3oBD$$YbBD$$0E؉D$D$D$$!k jB`B$耓vD$+$f@`B`B@uB@uBH0sBPBPBHPB@uBPB@uBD$D$PBPBHD$D$PBD$$l=bBnBD$D$PBD$PBD$@uB$=D$cB$AD$cBD$AoB$@uBD$D$PBPBHD$D$PBD$D$$znnB$	oB$$蠑=bBnBD$D$PBD$PBD$@uB$_D$cB$@A
D$cBD$@AoB$@@uBD$D$PBPBHD$D$PBD$$sjPBD$D$PBD$$hbB$~#u|bBD$$9bBD$D$$
E$nBD$$oBD$$詎YbBD$$轎@uBD$D$PBPBHD$D$PBD$$@iEE;PB~EEPBPB9E~E;EuED$D$D$~AbB$T;EtL;EtAD$D$ED$ED$ED$$A蹎$D$D$D$~AnB$Ԏ=bBuED$ED$$~AaED$ED$D$~AoB$莎EE;@uB~gEE
ED$D$ߑAbB$8=bBEE
E܍\$$ߑA融EE
E܍\$D$ߑAoB$訍FEE
E܍\$D$ߑAoB$`EE
E܍\$D$ߑAnB$ED$k.@bB$E=bBu$k.@葌D$k.@oB$̌D$k.@nB$跌E	EoB$6bB$3#u|bBD$$bBD$D$$迊E$蜊nBD$$uoBD$$^YbBD$$rEE;PB~EPBPBH9E~xD$D$D$~AbB$eU䋅)ыU)tAD$D$ED$ED$ED$$A$ED$ED$$~A蛊D$D$D$~AnB$ŠD$D$D$~AoB$虊EE;@uB~EE
ED$D$AbB$CEE
E܍\$$A趉EE
E܍\$D$AnB$EE
E܍\$D$AoB$zED$k.@bB$[E$k.@D$k.@nB$5D$k.@oB$ ErEQoB$蟈bB$蜇#u|bBD$$WbBD$D$$(E$nBD$$ކoBD$$džYbBD$$ۆPBD$D$PBD$$_EE;PB~D$D$aAbB$Ɇ=bBuD$$aAZD$D$aAoB$苇D$D$aAnB$lEE;E~EE
D$D$AbB$&=bBu0EE\$$A蝆EE\$D$AoB$贆EE\$D$AnB${ED$k.@bB$\E=bBu$k.@D$k.@oB$-D$k.@nB$EEE;PB~bE@EE;PB~GEE<4
EE>E묍E둃=bBu$k.@3D$k.@oB$noB$D$iA$dBmD$lB$dBD$!@$dBD$ gB$dBфD$'q@$dBMuB=uBuD$PsB$A苄lD$PBD$(AuB$蹄D$iA$@gBdB=dBuD$@gB$-A3kEءnBD$$
YE؉D$D$nB@D$$ZXE؉D$$YdBE؉D$$X@sBE؉D$$XhBE؉D$$~XkBE؉D$$fXhBE؉D$$NXtBE؉D$$XpoBE؉D$$X`uBEE;E~E`uBEۋE؉D$D$nBD$$ZpBE؉D$D$nBD$$Z`fBE؉D$D$nB@D$$Y`dBD$$WTD$$W`pBEdBD$D$$uE;|͋E;¡nBE}lD$ D$HD$$iUH$tƋE
`dBE4D$$D$/D$HD$$TE`fBE4
H$P$d$3D$$rD$ D$HD$$TEpBE4
H$mP$d$3D$$ED$/D$HD$$SE4hBH$~P$d$3D$$腀D$ D$HD$$SE4kBH$~P$d$3D$$D$/D$HD$$'SE4hBH$"~P$d$3D$$D$ D$HD$$RE4@sBH$}P$d$3D$$DD$ D$HD$$QRE4`uBH$L}P$d$3D$$~lBE}D$ D$HD$$QE jBE4
H$|P$d$3D$$N~Es$V~PP	~9P	TT$D|EdB"$ |EdBEEH0uBEE;0uB~ D$$RaBED$$zRdBD$$aRaBD$D$D$$`SsBD$$RaB$#}GEDžDžDžD$+$OED$*$~OE@`BdBD$$t|D$HA$ztD$LA$tzu:D$$`A{D$D$`AoB${cE@E}AD$+D$HD$$OD$+$NuD$H${D$*H$yYD$*HD$D$$ND$HA$jyuu
dBD$VD$XD$H$=NX$HyEaB`B`BaBE
D$HA$xuu
dBD$VD$XD$H$MX$xEaB`B`BaBE
]D$VD$XD$H$?MEaBlB
D$VD$D$H$LdBE
$wsBX$wsB`BaBsB`BaBHsBEE;~lB jBE<
8X$v jBE܍4<
$v
 jBE܍7<8ESLD$VHD$D$$.K$9vEaBD$$wE=`qBt,EE;E~E`uBEۡ0uBD$D$nBD$$NnBEE;0uB~PEE;nB~/EЍ
pBEٽJJf
fH٭H۝D٭JDcurEЍ
`dBE;PBJEЍ
`fBEXAEЍ
`dBEEkB٭H۝D٭JDcEhB٭H۝D٭JD='EЍ
`dBE;PBm`BED$EdBD$EhB٭H۝D٭JDD$EkB٭H۝D٭JDD$$AtED$EdBD$EhBٽJJf
fH٭H۝D٭JDD$EkB٭H۝D٭JDD$D$AoB$ytEЍ
`dBEٽJJf
fHEkB٭H۝D٭JDc*EhB٭H۝D٭JD='EЍ
`dBE;PB`BEkB٭H۝D٭JDD$ED$EdBD$$`ArEkB\$ED$EdBD$D$ AoB$sEЍ
`dBEEEEE;0uB~(EtBEkB`AEhBE@sB`AEhB`BEЋE;PB~EЍ
`dBE<FEЍ`dBEPB@9
EtBwEkBٽJJf
fH٭H۝D٭JDcthEhB٭H۝D٭JD='t7EЍnBE
EtBkEhB٭H۝D٭JD='6`BED$EdBD$$AXpED$EdBD$D$AoB$vpEЍ
nBEhAEЍ
`dBE<	EЍnBE4<
EЍ
pBE`ApAEЍ
`fBEE@sB`ApAEhB7EЍ
pBEٽJJf
fH٭H۝D٭JDctAEЍ
`fBE٭H۝D٭JD='t'EЍ
nBE EЍ
nBE݅w+EЍ
nBEݝEЍ
nBE݅wEЍ
nBEݝjEЍ
nBEEЍ
`dBE"EЍ
nBEEWEEE;0uB~/`BEЋE;PB~
EЍ`dBEPBPB9
`BPBPBD$PBD$PBD$EЍ
`dBED$ED$EЉD$$AxlPBPBD$PBD$PBD$EЍ
`dBED$ED$EЉD$D$AoB$`lSEE݅\$݅\$0uBD$$`Ak݅\$݅\$0uBD$D$`AoB$k݅ٽJJf
fH٭HPB٭JnBD$D$$@E؉D$D$nB@D$D$X$BE؉D$D$@sB$A@E؉D$D$hB$%@E؉D$D$kB$	@E؉D$D$hB$?0uBD$$@pqB0uBD$D$`BPB)@D$$AnB0uBD$D$`BPB)@D$$@oB0uBD$D$`BPB)@D$$@0oBPBD$,PBD$(0uBD$$PBD$ `BD$nBD$tBD$`dBD$0oBD$oBD$nBD$pqB$D$d$>fBD$D$D$$?0gB`pB=`B~0uBD$0gBD$aB$D$
D$D$d$?jBDž`B\$xA$ZٽJJf
fH٭H]٭JEE;`B~mEEݝ0Eݝ(E\$xA$Zܽ(݅0sEE܍`pBE;
~Džۅݝ EݝUܡ`B)@P$d$\$xA$Yܽ݅ s;E~
DžjBE܍E
5jBE܍aBE
'EEED$lB$hBvg=bBuD$A$hBfD$A$hBfD$'q@$hBaf tB= tBuD$hB$AfOD$PBD$A tB$fD$hBD$ŕA tB$fD$˕A tB$fD$lB$mBf=bBuD$A$mB-fD$ߕA$mBfD$'q@$mBegB=gBu D$mB$Ae$fD$lB$iB#fD$A$iBeD$'q@$iB+ePjB=PjBu D$iB$Aie$eD$,`qBD$(PBD$$PBD$ `BD$D$@gBD$bBD$PPBD$PBD$PsBD$APjB$BeD$HD$DhBD$@hBD$<PmBD$8PmBD$4PsBD$0PsBD$,`qBD$(PBD$$PBD$ `BD$D$@gBD$bBD$PPBD$PBD$PsBD$AgB$dgB$0dD$$dD$lB$"d$lBS`fBD$,pBD$(`pBD$$0gBD$ aBD$0uBD$PBD$nBD$`dBD$݅ٽJJf
fH٭H۝D٭JDD$݅٭H۝D٭JDD$$PsBmD$k.@gB$cdB\$$uBD$ PdBD$݅\$݅\$0uBD$D$AgB$:cPBPBD$D$PBPBD$$: sBPBPBD$D$PBPBD$$:pfBPBPBD$D$PBPBD$$^:@qBPBPBD$D$PBPBD$$':nBpfBgB@qBpiBnBoBpuB=bB"ED$D$ED$$9E؉D$$7tBE؉D$$j6jBE؉D$$R6uBE؉D$$6EE;0uB~|EEE;PB~GE
`dBE;PB~EE
E묍EwEE;0uB~)EpqB<E4=jB
0oBE
nBE7EpqBEEuBEjBȋEpqB<!ȅtPE4=uBE
0oBE
nBE7EtBEjBwEtBEtBAEȋEtB!E;`B!E;PB!ȅt.EtBEtBEEE;E~sEE;E~[EE
E;Eu
ݝݝ݅E뛍E냋AA$t@]D$t@oB$]D$/A$ hB]D$PsB$ hB]D$'q@$ hB]PqB=PqBu1D$ hB$)q@E]D$ hBD$)q@oB$x]D$t@PqB$c]D$k.@PqB$N]D$AD$EԉD$PB\$ED$D$$JPqB$?\D$AA\$D$ED$D$$˒EE;E~_E@EE;E~GEE<4
EE>E믍E$8A[EE;E~[EE;E~7EE\$$MA[E$QA[E뛋$螞ࡌPBD$ \$\$\$EԉD$$`A>[EE;E~E4EE$bZ7ݝE4EE$Z7݅\$\$E\$$AuZE4D$$8-D$$D$ ݅\$݅\$݅\$D$lB$PsBϣD$(D$$0uBD$ D$`qBD$PBD$PBD$`BD$D$@gBD$bB$PsBH':D$ e@D$oBD$ uBD$lBD$puBPBD$PBD$D$uB$ uB\$lBD$oB\$$A'YEE;PB~1E܍\$E܉D$$ǙAXE$k.@XpuBD$ e@D$oBD$ uBD$lBD$puBPBD$PBD$D$uB$B uB\$lBD$oB\$$ARXEE;PB~1E܍\$E܉D$$ǙAXE$k.@X=bB~DD$G@PB\$PBD$@uBD$PBD$D$uB$D$<`qBD$8nBD$4PBD$0PBD$,lBD$(PBD$$PB\$PBD$`BD$D$D$@gBD$bBD$ AuB$yWD$~AuB$dW$~AWD$~AoB$CWEDžE;PB~EPBPB9E~YE;ECE܉D$ED$$AVE܉D$ED$D$AoB$VE܉D$ED$D$AuB$VEE;@uB~\$$MA
V\$D$MAoB$.V\$D$MAuB$UEZ$k.@UD$k.@oB$UD$k.@uB$UEEq=bBtIPB@jBD$G@@jB\$D$PBD$D$$XD$ AuB$<U$ ATD$ AoB$UEDžE;PB~EPBPB9E~YE;ECED$ED$D$~AuB$TED$ED$$~AETED$ED$D$~AoB$rTEE;@uB~\$$AS\$D$AoB$T\$D$AuB$SEZ$k.@iSD$k.@oB$SD$k.@uB$SEEqD$AuB$fS=bB~$ASD$AoB$<SE}~eEEE;PB~=EPBPB9E~E;EuEE;@uB~EE`xƅy}=bB~!E܉D$ED$ED$$dA0RE܉D$ED$ED$D$dAoB$VRE܉D$ED$ED$D$dAuB$,R~=bB~!E܉D$ED$ED$$nAQE܉D$ED$ED$D$nAoB$QE܉D$ED$ED$D$nAuB$QEEE;PB~]EPBPB9E~7E;Eu EE;@uB~	EE;EE`XƅYE;E}=bB~<ED$ED$XD$ED$ED$xD$$wAPED$ED$XD$ED$ED$xD$D$wAoB$PED$ED$XD$ED$ED$xD$D$wAuB$EP=bB~0EE\$$AOEE\$D$AoB$OEE\$D$AuB$OA}=bB~$ED$ED$xD$$A	OED$ED$xD$D$AoB$,OED$ED$xD$D$AuB$N=bB~0EE\$$AqNEE\$D$AoB$NEE\$D$AuB$ONEEE=bB~$k.@MD$k.@oB$ND$k.@uB$MEEEEEoB$XMuB$KMbB$^L#uku`bBD$$LbBD$D$$K$KnBD$$KybBD$$KoBD$oBD$D$D$D$D$`AbB$K=oBtoB;PB|
PBoB݅xAs݅ݝ݅ݝD$AuB$ZLoBD$(݅\$ ݅\$݅\$݅\$D$AuB$LoBD$(݅\$ ݅\$݅\$݅\$D$AnB$KbB$J#uku`bBD$$@JbBD$D$$J$InBD$$IybBD$$IHD$ D$D$D$ D$(D$0D$D$@AbB$IHD$8݅\$0݅\$(݅\$ ݅ \$݅(\$݅0\$D$AnB$zJHD$8݅\$0݅\$(݅\$ ݅ \$݅(\$݅0\$D$AuB$JHD$4݅\$,݅\$$݅\$݅ \$݅(\$݅0\$$A}IHD$8݅\$0݅\$(݅\$ ݅ \$݅(\$݅0\$D$AoB$rIbB$%H#uku`bBD$$GbBD$D$$G$GnBD$$pGybBD$$G݅(`A܅ ݅0AݝX݅`A܅݅AݝPD$`BD$AbB$SG`BD$D$AnB$5H`BD$D$AuB$HbB$F#uku`bBD$$FbBD$D$$ZF$<FnBD$$FybBD$$)FPD$$ D$ (D$0D$8D$@D$HD$LD$D$AbB$FPD$<݅ \$4݅(\$,݅0\$$݅8\$݅@\$݅H\$LD$D$`AnB$FPD$8݅ \$0݅(\$(݅0\$ ݅8\$݅@\$݅H\$LD$$`AFPD$<݅ \$4݅(\$,݅0\$$݅8\$݅@\$݅H\$LD$D$`AoB$EPD$<݅ \$4݅(\$,݅0\$$݅8\$݅@\$݅H\$LD$D$`AuB$ED$$D$$D$ ݅\$݅\$݅\$D$lB$PsBkF݅\$h݅\$`݅\$X݅ \$P݅(\$H݅0\$@oBD$<DD$8D$4dBdB\$,uBD$(PdBD$$0uBD$ D$`qBD$PBD$PBD$`BD$D$@gBD$bB$PsB60uBD$D$pqB$0uBD$D$`BPB)@D$D$nB$0uBD$D$`BPB)@D$D$oB$^0uBD$D$`BPB)@D$D$0oB$&E؉D$D$dB$RE؉D$D$tB$VnB$BuB$BD$X,A$rBYCD$PsB$rBBD$'q@$rBaBoB=oBuD$rB$AB#*D$rB$ ABD$rBD$ AoB$BD$SAoB$BD$hAoB$BEE;PB~*ED$ED$D$nAoB$XBED$k.@oB$<BPBD$D$PBD$$݅ݝ݅ݝPAݝ`B=`B
DžnBEnB;~EnB`pBE;
~ED$[AoB$kA$[AAD$[AoB$JAEE;`B~rEaB4=0gBE܍
jBE7D$EaBD$D$@oB$@EaB4=0gBE܍
jBE7D$EaBD$$@?EaB4=0gBE܍
jBE7D$EaBD$D$@oB$?E~D$[AoB$?$[AP?D$[AoB$?݅ݝ݅݅sE܉D$$݅\$oBD$gBD$݅\$D$PBD$$4݅\$D$@oB$>EE;`B~EaB4=0gBE܍
jBE7D$EaBD$D$g\AoB$h>EkEE;PB~@EE\$D$uAoB$>ED$k.@oB$=݅ݝaE2nBoB$<D$+A$lB=D$PsB$lBV=D$'q@$lB<pnB=pnBuD$lB$A=$D$lB$A<D$lBD$AoB$*=PB`AٽJJf
fH٭H۝D٭JDP$d$`A٭H۝x٭JAݝۅx`A٭H۝@٭J@=PB@D$ApnB$r<nBEnB;~EnB`pBE;
~WED$IApnB$<EE;`B~EaB4=0gBE܍
jBE7D$EaBD$D$_@pnB$};EkD$[ApnB$^;݅ݝ0݅0݅s\݅ܥ0`APBA$<:ٽJJf
fH٭H۝<٭J<@Ћ9<<D$D$PBPBD$D$PBPBD$$pfBgBnBoBE܉D$(oBD$$gBD$ PBD$PBD$D$@D$݅0\$<D$$\:D$`ApnB$9EE;PB~JEPBPB9E~*ED$ED$D$
@pnB$9EčED$k.@pnB$l9Dž;<~@P$d$`APB܅0\$݅0\$E܉D$D$ApnB$8EE;PB~pEPBPB9E~PEE
\$D$uApnB$8E랍ED$k.@pnB$a8<D$D$PBPBD$D$PBPBD$D$$D$k.@pnB$7݅0ݝ0EnBf`pBD$00gBD$,aBD$(E܉D$$݅\$݅\$PBD$D$D$D$$lB6pnB$6D$D$D$D$D$$ppBE}~bE}~LE}~6EppBE
E܍EE묍E듃L`BD$dD$`݅ \$XPBD$T`BD$P݅\$H݅\$@PD$<݅P\$4݅X\$,݅\$$݅\$݅H\$݅@\$݅8\$$PsBOD$2A$peB6D$PsB$peB5D$'q@$peB5bB=bBuD$peB$AJ5D$peB$A15D$peBD$AoB$d5D$,A$`Bp5D$PsB$`B4D$'q@$`Bx4oB=oBu D$`B$ A4$4D$`B$`A4D$`BD$`AoB$4D$+2A$oB4D$PsB$oBa4D$'q@$oB3PfB=PfBu D$oB$A4$O4D$oB$A3D$oBD$AoB$.4PBD$L`BD$H݅P\$@݅X\$8`fBD$4pBD$0`pBD$,0gBD$(aBD$$0uBD$ PBD$nBD$`dBD$݅\$݅\$ppB$&HD$D$D$D$D$$HD$D$݅\$݅\$ppB$VFt5HD$D$@oB$2HD$$@2nBEnB;~
EnB`pBE;
~g
ED$IAbB$~2EE;`B~EaB4=0gBE܍
jBE7D$EaBD$D$_@bB$1EkD$[AbB$1D$IAoB$1EE;`B~EaB4=0gBE܍
jBE7D$EaBD$D$_@oB$&1EkD$[AoB$1D$IAPfB$0EE;`B~EaB4=0gBE܍
jBE7D$EaBD$D$_@PfB$`0EkD$[APfB$A0݅ٽJJf
fH٭H۝D٭JDD$݅٭H۝D٭JDD$PBD$D$PBD$$0	pfBgBnBoBD$0D$,oBD$(E܉D$$oBD$ gBD$݅ٽJJf
fH٭H۝D٭JDD$݅٭H۝D٭JDD$PBD$PBD$D$D$$PsBQ݅ٽJJf
fH٭H۝D٭JDD$݅٭H۝D٭JDD$PBD$D$PBD$$pfBgBnBoBHD$TD$PEĉD$LnBD$HoBD$DE܉D$@݅\$8D$4oBD$0gBD$,݅ٽJJf
fH٭H۝D٭JDP$d$\$$݅٭H۝D٭JDP$d$\$PBD$PBD$D$D$D$D$$lB#=`BHD$T`BD$PEĉD$LnBD$HoBD$DE܉D$@݅\$8D$4oBD$0gBD$,݅ٽJJf
fH٭H۝D٭JDP$d$\$$݅٭H۝D٭JDP$d$\$PBD$PBD$D$D$D$D$$lBD$ AbB$,EE;PB~#ED$D$FAbB$+ED$k.@bB$+PB@D$$V|݅ݝ݅݅sE܉D$$݅\$oBD$gBD$݅\$D$PBD$$ =`BOHEE;PB~+EE4<
݅ٽJJf
fH٭H۝D٭JDppBE
E܍7EfEE;PB~EE4<
݅ٽJJf
fH٭H۝D٭JDE
E܍7Ef݅\$D$RAbB$)EPB|E;PB~IEE|E;PB~E|E4|EE
EE
݅ٽJJf
fH٭H۝D٭JD7EPB|XPB|HE|EEݝpE;PB~EE;PB~sEE
݅ٽJJf
fH٭H۝D٭JD݅pݝpE뀍E_݅p$&\$PB|\$D$YAbB$V'EE;PB~EE
݅ٽJJf
fH٭H۝D٭JD$%\$E|\$D$YAbB$&END$k.@bB$&݅ݝ݅ٽJJf
fH٭H۝D٭JDD$݅٭H۝D٭JDD$PBD$D$PBD$D$$݅ٽJJf
fH٭H۝D٭JDD$݅٭H۝D٭JDD$PBD$D$PBD$D$$PB@D$D$|$*EznBVE؉D$D$`uB$D$D$D$D$sB$dE؉D$D$nB@D$D$`dB$6E؉D$D$nBD$D$`fB$|E؉D$D$nBD$D$pB$OE؉D$D$poB$D$D$T$oB$N#PfB$A#bB$4#bB$'#D$73A$0aB#D$PsB$0aB#D$'q@$0aB"hB=hBu D$0aB$A9#$m#D$0aB$A#nBEnB;~EnB`pBE;
~ED$IAhB$#EE;`B~EaB4=0gBE܍
jBE7D$EaBD$D$_@hB$t"EkD$[AhB$U"݅ٽJJf
fH٭H۝D٭JDD$݅٭H۝D٭JDD$PBD$$pfBgBnBoBE܉D$@݅\$8D$4oBD$0gBD$,݅ٽJJf
fH٭H۝D٭JDP$d$\$$݅٭H۝D٭JDP$d$\$PBD$PBD$D$D$D$D$$PsB݅ٽJJf
fH٭H۝D٭JDD$݅٭H۝D٭JDD$PBD$D$$jE'nBhB$Ht>D$D$D$D$D$D$$D$D$D$D$D$D$ppB$nPBPBD$D$PBPBD$D$ sB$PBPBD$D$PBPBD$D$pfB$NPBPBD$D$PBPBD$D$@qB$PBPBD$D$PBPBD$D$nB$E؉D$D$D$D$ jB$PBD$D$PBD$D$$|@uBD$D$PBPBHD$D$PBD$D$$0uBD$D$nBD$D$nB$@uBD$D$PBPBHD$D$PBD$D$$gD$D$`pB$D$D$aB$D$D$dB$D$D$aB$D$D$aB$D$dD$fB$gB$ tB$=`B=`BG`BD$`BD$$Ay`BD$`BD$D$@AoB$!$pADD$pAoB$D$PmB$~AD$nB$0qBg$0qB‹sBBsBBsBBsBBtBBtBBtBBtBB tB$0qB‹ fBB$fBB(fBB,fBB0fBB4fBB8fBB<fBB @fB$sBD$X$XD$D$$AXD$D$D$AoB$FD$@tBqB0qB)Љ$D$$AqB0qB)ЉD$$#AD$@tBqB0qB)Љ$>D$D$AoB$qB0qB)ЉD$D$#AoB$XD$D$D$@AgB$wgB$PjB$ tB$oB$$u	D$yA$fBAD$$fBD${A$fBD$yA$fBD$A$fBD$hB$fB{D$fB$AWB $7$fB[`B=`Bt$A!$Aqu$AD$$aAeu2D$mB$AB $$mB땀gu$fB{qn$qu$$A_D$$aAyэe[^_]ÐUVMS]u9s &'A‹9r[^]Ív'U$`BD$`BD$@]ÐU]ÐUPBu]Ít&'PBBRPBuؐU]CBt)u$*BK]]Ít&CBKu݋CB1t˺CBv@\u븐t&UPBt]É]
PB낐-LIBGCCW32-EH-SJLJ-GTHR-MINGW32UPvBP]Í&'U1$]|$8p`BQBC CBCQBSC,C`BC+BC$C(QBQBC0S4$|$]Ðt&UX]PvBut]u]ÐEAAAA+BuEAAAAEAAAAEء+BEAAAAEAAAAEܡ+BEAAAAEAAAAEࡌ+BEAAAA4$E䡐+BE衔+BE졘+BE+BEfub$8t\$$`ftPvBC@vBC`vB%$H4$Pv'$
UVSPut&'AuaLHy+BEء+BEܡ+BEࡌ+BE䡐+BE衔+BE졘+BE+BEE$؃fu1ҍe[^]É$9u獴&'UUST1ED$@T$$lt1t&'|AtHy;8u؋]	UWVS$]EMEEۋUEM܅҉uS9v-ȉǐ1ɉMM}EUt؃ڃ$[^_]Åu
11Ɖ1E9v1벉ƒEu9w19ur듍vEع )MԉMMԉM	NjEMMM	M؉Ӊe9w95;E,O&U؃EكUWVS4]EMEEۋUEr^Uԅ҉ƉMЉui9vHȉUЍMtEEЉE؋U؋M܉UMEt
]U]EU4[^_]Åu1ƉUE9]vM؉}܋E؋U܉EU뫍EԉÃu(;}w9urU)}ԉUЍMz}`UԸ )؉EM	‹EM̉UԉM	ljueЉE9w:9t.EM̋E+E׉EЉ	‰U6E9EvʋM)UԉM؃Eك{Q=r	-)	̋@%XB%\B\[?ߞ
@ox@t\@N "@A;@d@@.銑+@?ڐ?X?Rݛ?Z?𣂑?۠*B?s?;f?)TH?'*6ڿ?"4L?1
?8bunz8?{Q}<r?lX??7[r<]4͡<'KV<Vd4݋B쯗Cm<1jv<v׹Aqc>Y`/$?J~U?3n?k?mł?9B.??@MbP?@@?@UUUUUU?@UUUUUU?@U?@?݄$$$$\$hD$h݄$ٞuBz@1ɻ?\$$$L$$D$Č
%E=tD$h%E=u4\$@[D$@D$h!\$L$\$uD$hT$ɋL$ٞ\$z	uAD$h\$@$&D$@z3Bٞz؋
=B=B\$L$\$z|3BD$h3BD$hI3Bٞr-D$hw	\$؋
=B=BZD$h1\$@$D$@D$hڞuz13BlD$hPD$hٞv"\$L$\$1ɻ1zuD$hڞv2f"=B
=BnD$hv fl3مdtD$h3BD$h˞rsD$h%3BD$h%3B53B3BD$h%3B3BD$h%3B3BD$h3Bttٞuz3B\$$D$|D$
2Br	p2Br`2BrX2BٞrCغP2B$2B2B2BJtɸ82B02BJu$D$\$@\$0
D$0D$@4B\$`\$`S$D$$	D$|D$h\$0$D$0D$hD$`L$h\$ T$`$D$ D$0D$`\$`\$@T$`$YD$@D$`T$PT$`$;D$PD$T$@$	D$@4Bڞv؅4Bv؅t411|$zD$zl$`f
fD$xl$x\$tl$zT$tT$|v
%4BBD$|P3BX3BJuT$|ɉ҉x1É؉\$)P2BD$|P2B$:B3$\$@D$@D$h3B|$zD$zD$h$f
fD$xl$x\$l$z\$J!{D$h\$@\$0
3B$D$0D$@
3Bٞz9/\$@
D$@"w[vLw:3Bw$ڞvbTmo\$@D$@"w^vOw?3Bw'ڞvwAY=ID$D$T$$T$$yD$$Ð=BÐ?;f??3OP@?9B.?9B.@Ҽz+#9B&LD$Pt$@t$X\$<|$Dl$Hu\zZtFx*u!؍t&'\$<t$@|$Dl$HL=B܍Ȑ&uꍶtW$1\$H!ǍD$,D$BD$T$,BÅt@=BR$ɉ4$
=B%=B$
>B>Bٞ>Bv1ٞuz
 >B>Bvx;ut%tt؅y==B==B=B"eP$Ƀ%1D$%EÐ%tB%xB%lB%B%pB%B%hB%B%B%B%B%́B%B%B%0B%܁B%,B%B%B%؁B%B%B%B%B%āB%B%B%B%B%B%B%B%ЁB%B%B%ȁB%$B%B%(B% B%B%B%B%B%B%ԁB%PB%@B%LB%DB%<B%HBU]CBImach version 0.07a, May 2004, INED-EUROREVES $Revision: 1.7 $ $Date: 2004/05/24 18:32:25 $@
|=@CBTXdh8<Xdp̂؂$08@HP\hpxẵ؃(0<HT`lxĄԄXdp̂؂$08@HP\hpxẵ؃(0<HT`lxĄԄ_chdir&_getcwd'__getmainargs;__p__environ=__p__fmodeN__set_app_typev_cexit_daylight_errno_iobP_onexitu_setmode_timezone_tzsetabortasctimeatexitatoiatolexitexpfclosefflushfgetsfloor!fopen"fprintf$fputs(free*frexp+fscanf2getc8gmtimeTldexpWlocaltimeXlog[mallocemodfhprintfkputsuscanfysignal|sprintf}sqrtstrcatstrchrstrcmpstrcpystrlenstrncpystrrchrsystemungetcAddAtomAExitProcessFindAtomAGetAtomNameAGetSystemTimeAsFileTimeSetUnhandledExceptionFiltermsvcrt.dllmsvcrt.dll((((((KERNEL32.dll.filegcrt1.c @ 1 K _0 oP _atexitp __onexit .text#.data.bss.filegcrtstuff.c .text	.data.bss.filebgimach.c( _split E _nbocc _cutv _nrerror _vectorZ  _ivector  _lvector:  _imatrix	 7
 _matrixt
  _ma3x! T _subdirf  i _maxarg18_maxarg2H$ _powell _sqrargX3@( _hpxij3 _func7 _funconeU ='c _mlikelie _hesscovh H| U@ a _tricode _evsij  l vH _varprob $ 3 L Y On o u z "| _main E _lubksbvy _ludcmpu _hessijr _hessii o _pmij1. 1 _linmin _brent _f1dim _mnbrak .texta.data.bssh.filejgCRTglob.c.text@.data.bssp.filergCRTfmode.c.text@.data.bssp.filezgtxtmode.c.text@.data.bssp.filegpseudo-reloc.c@ / .text@f.data.bssp.filegCRT_fp10.cJ .text.data.bssp.fileggccmain.c_p.0T g z___main` .text.data.bssp.fileg.text.data.bssp p
 &@ Bp W  .text%.data.bssp l .textS.data.bssv  .text .data.bssprobe!done!.text!-.data.bss.text!.data.bss.text!.data.bss.idata$7.idata$5X.idata$4T.idata$6X.text".data.bss.idata$7.idata$5\.idata$4X.idata$6d.filegfakehnameTfthunkX.text".data.bss.idata$2.idata$5T.idata$4P.filegfake.text".data.bss.idata$4\.idata$5`.idata$7.filegpow.c_P"_Q0"_AP"_B"_RP#_reduc@- _pow $ .text"k>.data.bss.filegfp_consts.c_nan- .text-G.data.bss.file$gpowi.c___powi0. .text-|.data.bss.filegfpclassify.c`0 .text`0.data.bss.text0.data.bss.idata$7@.idata$5.idata$4.idata$6.text0.data.bss.idata$70.idata$5t.idata$4p.idata$6.text0.data.bss.idata$7\.idata$5.idata$4.idata$6$.text0.data.bss.idata$7D.idata$5.idata$4.idata$6.text0.data.bss.idata$74.idata$5x.idata$4t.idata$6.text0.data.bss.idata$7(.idata$5l.idata$4h.idata$6.text0.data.bss.idata$7.idata$5.idata$4.idata$6.text0.data.bss.idata$7,.idata$5p.idata$4l.idata$6.text0.data.bss.idata$7H.idata$5.idata$4.idata$6.text0.data.bss.idata$7$.idata$5h.idata$4d.idata$6p.text0.data.bss.idata$7L.idata$5.idata$4.idata$6.text0.data.bss.idata$78.idata$5|.idata$4x.idata$6.text0.data.bss.idata$7.idata$5.idata$4.idata$6<.text1.data.bss.idata$7.idata$5.idata$4.idata$6H.text1.data.bss.idata$7d.idata$5.idata$4.idata$68.text 1.data.bss.idata$7`.idata$5.idata$4.idata$60.text01.data.bss.idata$7.idata$5.idata$4.idata$6.text@1.data.bss.idata$7.idata$5.idata$4.idata$6.textP1.data.bss.idata$7x.idata$5.idata$4.idata$6h.text`1.data.bss.idata$7.idata$50.idata$4,.idata$6.textp1.data.bss.idata$7.idata$5.idata$4.idata$6.text1.data.bss.idata$7.idata$5,.idata$4(.idata$6.text1.data.bss.idata$7.idata$5.idata$4.idata$6.text1.data.bss.idata$7.idata$5.idata$4.idata$6.text1.data.bss.idata$7.idata$5.idata$4.idata$6.text1.data.bss.idata$7.idata$5.idata$4.idata$6.text1.data.bss.idata$7.idata$5.idata$4.idata$6(.text1.data.bss.idata$7|.idata$5.idata$4.idata$6p.text1.data.bss.idata$7p.idata$5.idata$4.idata$6P.text2.data.bss.idata$7.idata$5.idata$4.idata$6x.text2.data.bss.idata$7.idata$5.idata$4.idata$6.text 2.data.bss.idata$7X.idata$5.idata$4.idata$6.text02.data.bss.idata$7.idata$5.idata$4.idata$6.text@2.data.bss.idata$7.idata$5.idata$4.idata$6.textP2.data.bss.idata$7t.idata$5.idata$4.idata$6\.text`2.data.bss.idata$7.idata$5.idata$4.idata$6.textp2.data.bss.idata$7.idata$5.idata$4.idata$60.text2.data.bss.idata$7.idata$5.idata$4.idata$6.text2.data.bss.idata$7.idata$5.idata$4.idata$6.text2.data.bss.idata$7h.idata$5.idata$4.idata$6@.text2.data.bss.idata$7.idata$5.idata$4.idata$6.text2.data.bss.idata$7.idata$5$.idata$4 .idata$6l.text2.data.bss.idata$7.idata$5.idata$4.idata$6T.text2.data.bss.idata$7.idata$5(.idata$4$.idata$6x.text2.data.bss.idata$7.idata$5 .idata$4.idata$6`.text3.data.bss.idata$7P.idata$5.idata$4.idata$6.text3.data.bss.idata$7l.idata$5.idata$4.idata$6H.text 3.data.bss.idata$7T.idata$5.idata$4.idata$6.text03.data.bss.idata$7<.idata$5.idata$4|.idata$6.text@3.data.bss.idata$7.idata$5.idata$4.idata$6.textP3.data.bss.idata$7.idata$5.idata$4.idata$6.filegfakehnamedfthunkh.text`3.data.bss.idata$2.idata$5d.idata$4`.filegfake.text`3.data.bss.idata$40.idata$54.idata$7.text`3.data.bss.idata$7.idata$5P.idata$4L.idata$6.textp3.data.bss.idata$7.idata$5@.idata$4<.idata$6.text3.data.bss.idata$7.idata$5L.idata$4H.idata$6.text3.data.bss.idata$7.idata$5D.idata$4@.idata$6.text3.data.bss.idata$7.idata$5<.idata$48.idata$6.text3.data.bss.idata$7.idata$5H.idata$4D.idata$6.filegfakehname8fthunk<.text3.data.bss.idata$2(.idata$58.idata$44.filegfake.text3.data.bss.idata$4P.idata$5T.idata$7
.filegcrtstuff.c3 .text3	.data.bss.ctors3__cexit0  0_sprintf@2 _Tvar_Tage_Tvaraff_ficresf	3_free2 _strcatp2 _ficrest_mle_strcmp1 _nlstate_ficpar'60 __tzset3 B`3a@_ftol|_nparD__errno03 _modf1 X _getcp1 _title/3_ungetc`1 ;_jminPE!_s`Op_jmean_gsw_Tprod[_version_puts@1 gl{_num_ficp_Tcode_tmg _scanf1 P_anint`_oldmsp_plotcmd-_fputs01 ;F T0 _nbcode0b@_fichtm_oldm_fpreset_nrfunc_annais___QNAN-lw _andc__dll___strncpy2 @`	%_atoi 1 _newmp	;0I	[
eq_covar 
_m0
@
p__argc_frexpP3 P
_agegompp3_strcurr`
_stepm_codtab

_commandP0 _chdir! _moisdcP3_ncovcol+0;_fflushP2 JVbo_ipmx_fprintf2 __alloca!_xicom@
_filelogP

p_tzp_savms_cptcovn_cptcov__argv3_agev_gmtime1 ___SNAN-\_maxwavH_dh_fopen2 __fmode	-	_ficparo.	_fretone_gipmx _mw0_tmf@8	,F	T	|e	_codpx	(_savm			$_bh		_estepm_ficlog		_exp3 	`_probsp_mint_popfile	 	P

0_newms@
P
`__end___wavp_strchr0 _log2 *
7
 _signal0 _malloc2 D
3_fclose1 R
_strcpy2 a
_ndeatho
_idx

_nbwarn
 _strfor
_sqrt1 



02 
_abort 3 _ficpopL_pmmij _nvar08@_fileresPB`^_ldexp@3 _asctime 2 o|h_Tvard_tm_ficgp _nberr3@_ncom0_getcwd" _tmpout@_cens_agedc_nbP_jmax_sw _imx0'8C0 MZ_strrchr2 h<z(_atol1 x_fgetsP1 @_strlen2 _erreurPt_exit2 3

_printf`2 _outcmd_weight`___INF-
3_globprp%
_agecensG
]
_floor1 _ficres_tmpout2_pcom0_system1 h
_fscanf1 v
__mingw32_init_mainargs__mingw32_init_fmode__gnu_exception_handler@4___mingw_CRTStartup_mainCRTStartup_WinMainCRTStartup___do_sjlj_init_tzflag.0_gettimeofday_replace_back_to_slash_free_vector_free_ivector_free_lvector_free_imatrix_free_matrix_free_ma3x_subdirf2_subdirf3_asc_diff_time_prevalim_likelione_freqsummary_prevalence_concatwav_varevsij_varprevlim_printinghtml_printinggnuplot_prevforecast_populforecast_fileappend_prwizard_gompertz_printinghtmlmort_printinggnuplotmort_movingaverage_matprod2_do_pseudo_reloc__pei386_runtime_relocator__fpreset___do_global_dtors___do_global_ctors_initializedpseudo-reloc-list.c_w32_atom_suffix___w32_sharedptr_default_unexpected_dw2_object_mutex.0_dw2_once.1_sjl_fc_key.2_sjl_once.3___w32_eh_shared_initialize___w32_sharedptr_initialize___w32_sharedptr_set___w32_sharedptr_get___divdi3___moddi3___fpclassify___sjlj_init_ctor_filerese__imp__floor___RUNTIME_PSEUDO_RELOC_LIST___last_time_fileresvpl__imp___setmode_optionfile__data_start_____DTOR_LIST____imp___onexit___p__fmode_SetUnhandledExceptionFilter@4___w32_sharedptr_terminate__imp__modf__imp__log__libmsvcrt_a_iname__imp__FindAtomA@4__imp__getc__imp__abort__imp__chdir__size_of_stack_commit____size_of_stack_reserve____major_subsystem_version___AddAtomA@4_filereso___chkstk_ficresprob_cptcovprod__imp____p__environ__imp___iob_rfileres__libmoldname_a_iname_filerest_popbased__bss_start___forecast_time___RUNTIME_PSEUDO_RELOC_LIST_END____size_of_heap_commit___ficresvij_ficresprobcor__imp___errno__imp__exp_optionfilext___p__environ_datafile_ficresvpl_filerespow_ficresilk__imp___tzset__imp__signal__imp__puts__minor_os_version____imp__atexit__head_libmsvcrt_a_optionfilegnuplot__image_base____imp__exit_curr_time__section_alignment____imp__ungetc_optionfilehtmcov_ageexmed__imp__atol__head_libmoldname_a__RUNTIME_PSEUDO_RELOC_LIST___ftolhess__imp____p__fmode_fichtmcov_ExitProcess@4__data_end___fileregp___getmainargs_time_value___w32_sharedptr__CTOR_LIST_____set_app_type__imp__sprintf__bss_end____CRT_fmode__imp__scanf_optionfilefiname_filerespij__imp__asctime_optionfilehtm_ficrespij__imp__sqrt__imp__fgets__imp__strchr___CTOR_LIST____imp__getcwd__imp__GetAtomNameA@12___DENORM_ficresprobmorprev_ficrespl__imp__system__imp__strcmp__imp___daylight__file_alignment____imp__strrchr__imp__malloc__imp__atoi__imp__strncpy__major_os_version___ficreseij__imp__gmtime_fileresv_ncodemax_ficrespop_fullversion_end_time_ficrespow_weightopt__imp__ldexp_dateintmean__DTOR_LIST____imp__fprintf__imp__fclose__size_of_heap_reserve___start_time__subsystem____imp__strlen__imp__fputs_cptcovage__imp__fflush__imp__strcpy_localtime__imp___timezone_fileresilk_filerespl__imp__GetSystemTimeAsFileTime@4_moisnais___w32_sharedptr_unexpected__imp__localtime__imp__fopen__imp____getmainargs__imp__fscanf_GetSystemTimeAsFileTime@4__imp__ExitProcess@4__imp__free__imp__SetUnhandledExceptionFilter@4_ficresprobcov__major_image_version____loader_flags____CRT_glob__setmode__imp__frexp__imp__printf__imp__AddAtomA@4__head_libkernel32_a__imp___cexit_cptcoveff__minor_subsystem_version____minor_image_version___ncovmodel__imp____set_app_type_FindAtomA@4_lastpass_GetAtomNameA@12__RUNTIME_PSEUDO_RELOC_LIST_END____libkernel32_a_iname_firstpass__imp__strcat

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>