Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.102

version 1.41.2.2, 2003/06/13 07:45:28 version 1.102, 2004/09/15 17:31:30
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.102  2004/09/15 17:31:30  brouard
      Add the possibility to read data file including tab characters.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.101  2004/09/15 10:38:38  brouard
   first survey ("cross") where individuals from different ages are    Fix on curr_time
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.100  2004/07/12 18:29:06  brouard
   second wave of interviews ("longitudinal") which measure each change    Add version for Mac OS X. Just define UNIX in Makefile
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.99  2004/06/05 08:57:40  brouard
   model. More health states you consider, more time is necessary to reach the    *** empty log message ***
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.98  2004/05/16 15:05:56  brouard
   probability to be observed in state j at the second wave    New version 0.97 . First attempt to estimate force of mortality
   conditional to be observed in state i at the first wave. Therefore    directly from the data i.e. without the need of knowing the health
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    state at each age, but using a Gompertz model: log u =a + b*age .
   'age' is age and 'sex' is a covariate. If you want to have a more    This is the basic analysis of mortality and should be done before any
   complex model than "constant and age", you should modify the program    other analysis, in order to test if the mortality estimated from the
   where the markup *Covariates have to be included here again* invites    cross-longitudinal survey is different from the mortality estimated
   you to do it.  More covariates you add, slower the    from other sources like vital statistic data.
   convergence.  
     The same imach parameter file can be used but the option for mle should be -3.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Agnès, who wrote this part of the code, tried to keep most of the
   identical for each individual. Also, if a individual missed an    former routines in order to include the new code within the former code.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Current limitations:
   split into an exact number (nh*stepm) of unobserved intermediate    A) Even if you enter covariates, i.e. with the
   states. This elementary transition (by month or quarter trimester,    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   semester or year) is model as a multinomial logistic.  The hPx    B) There is no computation of Life Expectancy nor Life Table.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.97  2004/02/20 13:25:42  lievre
   hPijx.    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.96  2003/07/15 15:38:55  brouard
      * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    rewritten within the same printf. Workaround: many printfs.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.95  2003/07/08 07:54:34  brouard
   from the European Union.    * imach.c (Repository):
   It is copyrighted identically to a GNU software product, ie programme and    (Repository): Using imachwizard code to output a more meaningful covariance
   software can be distributed freely for non commercial use. Latest version    matrix (cov(a12,c31) instead of numbers.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.94  2003/06/27 13:00:02  brouard
      Just cleaning
 #include <math.h>  
 #include <stdio.h>    Revision 1.93  2003/06/25 16:33:55  brouard
 #include <stdlib.h>    (Module): On windows (cygwin) function asctime_r doesn't
 #include <unistd.h>    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "wgnuplot"    Revision 1.92  2003/06/25 16:30:45  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    (Module): On windows (cygwin) function asctime_r doesn't
 #define FILENAMELENGTH 80    exist so I changed back to asctime which exists.
 /*#define DEBUG*/  
     Revision 1.91  2003/06/25 15:30:29  brouard
 /*#define windows*/    * imach.c (Repository): Duplicated warning errors corrected.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Repository): Elapsed time after each iteration is now output. It
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    concerning matrix of covariance. It has extension -cov.htm.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.90  2003/06/24 12:34:15  brouard
 #define NINTERVMAX 8    (Module): Some bugs corrected for windows. Also, when
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    mle=-1 a template is output in file "or"mypar.txt with the design
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    of the covariance matrix to be input.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.89  2003/06/24 12:30:52  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Some bugs corrected for windows. Also, when
 #define AGESUP 130    mle=-1 a template is output in file "or"mypar.txt with the design
 #define AGEBASE 40    of the covariance matrix to be input.
   
     Revision 1.88  2003/06/23 17:54:56  brouard
 int erreur; /* Error number */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.87  2003/06/18 12:26:01  brouard
 int npar=NPARMAX;    Version 0.96
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.86  2003/06/17 20:04:08  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Change position of html and gnuplot routines and added
 int popbased=0;    routine fileappend.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.85  2003/06/17 13:12:43  brouard
 int maxwav; /* Maxim number of waves */    * imach.c (Repository): Check when date of death was earlier that
 int jmin, jmax; /* min, max spacing between 2 waves */    current date of interview. It may happen when the death was just
 int mle, weightopt;    prior to the death. In this case, dh was negative and likelihood
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    was wrong (infinity). We still send an "Error" but patch by
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    assuming that the date of death was just one stepm after the
 double jmean; /* Mean space between 2 waves */    interview.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Repository): Because some people have very long ID (first column)
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    we changed int to long in num[] and we added a new lvector for
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    memory allocation. But we also truncated to 8 characters (left
 FILE *ficgp,*ficresprob,*ficpop;    truncation)
 FILE *ficreseij;    (Repository): No more line truncation errors.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.84  2003/06/13 21:44:43  brouard
   char fileresv[FILENAMELENGTH];    * imach.c (Repository): Replace "freqsummary" at a correct
  FILE  *ficresvpl;    place. It differs from routine "prevalence" which may be called
   char fileresvpl[FILENAMELENGTH];    many times. Probs is memory consuming and must be used with
     parcimony.
 #define NR_END 1    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 #define NRANSI  
 #define ITMAX 200    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 #define TOL 2.0e-4  
   */
 #define CGOLD 0.3819660  /*
 #define ZEPS 1.0e-10     Interpolated Markov Chain
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Short summary of the programme:
 #define GOLD 1.618034    
 #define GLIMIT 100.0    This program computes Healthy Life Expectancies from
 #define TINY 1.0e-20    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 static double maxarg1,maxarg2;    interviewed on their health status or degree of disability (in the
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    case of a health survey which is our main interest) -2- at least a
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    second wave of interviews ("longitudinal") which measure each change
      (if any) in individual health status.  Health expectancies are
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    computed from the time spent in each health state according to a
 #define rint(a) floor(a+0.5)    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 static double sqrarg;    simplest model is the multinomial logistic model where pij is the
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    probability to be observed in state j at the second wave
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int imx;    'age' is age and 'sex' is a covariate. If you want to have a more
 int stepm;    complex model than "constant and age", you should modify the program
 /* Stepm, step in month: minimum step interpolation*/    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 int estepm;    convergence.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     The advantage of this computer programme, compared to a simple
 int m,nb;    multinomial logistic model, is clear when the delay between waves is not
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    identical for each individual. Also, if a individual missed an
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    intermediate interview, the information is lost, but taken into
 double **pmmij, ***probs, ***mobaverage;    account using an interpolation or extrapolation.  
 double dateintmean=0;  
     hPijx is the probability to be observed in state i at age x+h
 double *weight;    conditional to the observed state i at age x. The delay 'h' can be
 int **s; /* Status */    split into an exact number (nh*stepm) of unobserved intermediate
 double *agedc, **covar, idx;    states. This elementary transition (by month, quarter,
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    and the contribution of each individual to the likelihood is simply
 double ftolhess; /* Tolerance for computing hessian */    hPijx.
   
 /**************** split *************************/    Also this programme outputs the covariance matrix of the parameters but also
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    of the life expectancies. It also computes the stable prevalence. 
 {    
    char *s;                             /* pointer */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    int  l1, l2;                         /* length counters */             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
    l1 = strlen( path );                 /* length of path */    from the European Union.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    It is copyrighted identically to a GNU software product, ie programme and
 #ifdef windows    software can be distributed freely for non commercial use. Latest version
    s = strrchr( path, '\\' );           /* find last / */    can be accessed at http://euroreves.ined.fr/imach .
 #else  
    s = strrchr( path, '/' );            /* find last / */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #endif    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    if ( s == NULL ) {                   /* no directory, so use current */    
 #if     defined(__bsd__)                /* get current working directory */    **********************************************************************/
       extern char       *getwd( );  /*
     main
       if ( getwd( dirc ) == NULL ) {    read parameterfile
 #else    read datafile
       extern char       *getcwd( );    concatwav
     freqsummary
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    if (mle >= 1)
 #endif      mlikeli
          return( GLOCK_ERROR_GETCWD );    print results files
       }    if mle==1 
       strcpy( name, path );             /* we've got it */       computes hessian
    } else {                             /* strip direcotry from path */    read end of parameter file: agemin, agemax, bage, fage, estepm
       s++;                              /* after this, the filename */        begin-prev-date,...
       l2 = strlen( s );                 /* length of filename */    open gnuplot file
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    open html file
       strcpy( name, s );                /* save file name */    stable prevalence
       strncpy( dirc, path, l1 - l2 );   /* now the directory */     for age prevalim()
       dirc[l1-l2] = 0;                  /* add zero */    h Pij x
    }    variance of p varprob
    l1 = strlen( dirc );                 /* length of directory */    forecasting if prevfcast==1 prevforecast call prevalence()
 #ifdef windows    health expectancies
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Variance-covariance of DFLE
 #else    prevalence()
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }     movingaverage()
 #endif    varevsij() 
    s = strrchr( name, '.' );            /* find last / */    if popbased==1 varevsij(,popbased)
    s++;    total life expectancies
    strcpy(ext,s);                       /* save extension */    Variance of stable prevalence
    l1= strlen( name);   end
    l2= strlen( s)+1;  */
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  
 }   
   #include <math.h>
   #include <stdio.h>
 /******************************************/  #include <stdlib.h>
   #include <unistd.h>
 void replace(char *s, char*t)  
 {  /* #include <sys/time.h> */
   int i;  #include <time.h>
   int lg=20;  #include "timeval.h"
   i=0;  
   lg=strlen(t);  /* #include <libintl.h> */
   for(i=0; i<= lg; i++) {  /* #define _(String) gettext (String) */
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  #define MAXLINE 256
   }  #define GNUPLOTPROGRAM "gnuplot"
 }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 int nbocc(char *s, char occ)  /*#define DEBUG*/
 {  /*#define windows*/
   int i,j=0;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   int lg=20;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   i=0;  
   lg=strlen(s);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   for(i=0; i<= lg; i++) {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   if  (s[i] == occ ) j++;  
   }  #define NINTERVMAX 8
   return j;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 void cutv(char *u,char *v, char*t, char occ)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   int i,lg,j,p=0;  #define AGESUP 130
   i=0;  #define AGEBASE 40
   for(j=0; j<=strlen(t)-1; j++) {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #ifdef UNIX
   }  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
   lg=strlen(t);  #else
   for(j=0; j<p; j++) {  #define DIRSEPARATOR '\\'
     (u[j] = t[j]);  #define ODIRSEPARATOR '/'
   }  #endif
      u[p]='\0';  
   /* $Id$ */
    for(j=0; j<= lg; j++) {  /* $State$ */
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  char version[]="Imach version 0.97c, September 2004, INED-EUROREVES ";
 }  char fullversion[]="$Revision$ $Date$"; 
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 /********************** nrerror ********************/  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 void nrerror(char error_text[])  int npar=NPARMAX;
 {  int nlstate=2; /* Number of live states */
   fprintf(stderr,"ERREUR ...\n");  int ndeath=1; /* Number of dead states */
   fprintf(stderr,"%s\n",error_text);  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   exit(1);  int popbased=0;
 }  
 /*********************** vector *******************/  int *wav; /* Number of waves for this individuual 0 is possible */
 double *vector(int nl, int nh)  int maxwav; /* Maxim number of waves */
 {  int jmin, jmax; /* min, max spacing between 2 waves */
   double *v;  int gipmx, gsw; /* Global variables on the number of contributions 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));                     to the likelihood and the sum of weights (done by funcone)*/
   if (!v) nrerror("allocation failure in vector");  int mle, weightopt;
   return v-nl+NR_END;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /************************ free vector ******************/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 void free_vector(double*v, int nl, int nh)  double jmean; /* Mean space between 2 waves */
 {  double **oldm, **newm, **savm; /* Working pointers to matrices */
   free((FREE_ARG)(v+nl-NR_END));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 /************************ivector *******************************/  int globpr; /* Global variable for printing or not */
 int *ivector(long nl,long nh)  double fretone; /* Only one call to likelihood */
 {  long ipmx; /* Number of contributions */
   int *v;  double sw; /* Sum of weights */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char filerespow[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   return v-nl+NR_END;  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /******************free ivector **************************/  FILE *fichtm, *fichtmcov; /* Html File */
 void free_ivector(int *v, long nl, long nh)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  FILE  *ficresvij;
 }  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 /******************* imatrix *******************************/  char fileresvpl[FILENAMELENGTH];
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char title[MAXLINE];
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   int **m;  char command[FILENAMELENGTH];
    int  outcmd=0;
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  char filelog[FILENAMELENGTH]; /* Log file */
   m -= nrl;  char filerest[FILENAMELENGTH];
    char fileregp[FILENAMELENGTH];
    char popfile[FILENAMELENGTH];
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m[nrl] -= ncl;  struct timezone tzp;
    extern int gettimeofday();
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
    long time_value;
   /* return pointer to array of pointers to rows */  extern long time();
   return m;  char strcurr[80], strfor[80];
 }  
   #define NR_END 1
 /****************** free_imatrix *************************/  #define FREE_ARG char*
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define FTOL 1.0e-10
       int **m;  
       long nch,ncl,nrh,nrl;  #define NRANSI 
      /* free an int matrix allocated by imatrix() */  #define ITMAX 200 
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define TOL 2.0e-4 
   free((FREE_ARG) (m+nrl-NR_END));  
 }  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 /******************* matrix *******************************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  #define GOLD 1.618034 
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define GLIMIT 100.0 
   double **m;  #define TINY 1.0e-20 
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  static double maxarg1,maxarg2;
   if (!m) nrerror("allocation failure 1 in matrix()");  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m += NR_END;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   m -= nrl;    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define rint(a) floor(a+0.5)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  static double sqrarg;
   m[nrl] -= ncl;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int agegomp= AGEGOMP;
   return m;  
 }  int imx; 
   int stepm=1;
 /*************************free matrix ************************/  /* Stepm, step in month: minimum step interpolation*/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  int estepm;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   free((FREE_ARG)(m+nrl-NR_END));  
 }  int m,nb;
   long *num;
 /******************* ma3x *******************************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double *ageexmed,*agecens;
   double ***m;  double dateintmean=0;
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double *weight;
   if (!m) nrerror("allocation failure 1 in matrix()");  int **s; /* Status */
   m += NR_END;  double *agedc, **covar, idx;
   m -= nrl;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double ftolhess; /* Tolerance for computing hessian */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
     /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    */ 
   m[nrl][ncl] += NR_END;    char  *ss;                            /* pointer */
   m[nrl][ncl] -= nll;    int   l1, l2;                         /* length counters */
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (i=nrl+1; i<=nrh; i++) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    if ( ss == NULL ) {                   /* no directory, so use current */
     for (j=ncl+1; j<=nch; j++)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       m[i][j]=m[i][j-1]+nlay;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   }      /* get current working directory */
   return m;      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /*************************free ma3x ************************/      }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      strcpy( name, path );               /* we've got it */
 {    } else {                              /* strip direcotry from path */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      ss++;                               /* after this, the filename */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      l2 = strlen( ss );                  /* length of filename */
   free((FREE_ARG)(m+nrl-NR_END));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /***************** f1dim *************************/      dirc[l1-l2] = 0;                    /* add zero */
 extern int ncom;    }
 extern double *pcom,*xicom;    l1 = strlen( dirc );                  /* length of directory */
 extern double (*nrfunc)(double []);    /*#ifdef windows
      if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 double f1dim(double x)  #else
 {    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   int j;  #endif
   double f;    */
   double *xt;    ss = strrchr( name, '.' );            /* find last / */
      if (ss >0){
   xt=vector(1,ncom);      ss++;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];      strcpy(ext,ss);                     /* save extension */
   f=(*nrfunc)(xt);      l1= strlen( name);
   free_vector(xt,1,ncom);      l2= strlen(ss)+1;
   return f;      strncpy( finame, name, l1-l2);
 }      finame[l1-l2]= 0;
     }
 /*****************brent *************************/    return( 0 );                          /* we're done */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  }
 {  
   int iter;  
   double a,b,d,etemp;  /******************************************/
   double fu,fv,fw,fx;  
   double ftemp;  void replace_back_to_slash(char *s, char*t)
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    int i;
      int lg=0;
   a=(ax < cx ? ax : cx);    i=0;
   b=(ax > cx ? ax : cx);    lg=strlen(t);
   x=w=v=bx;    for(i=0; i<= lg; i++) {
   fw=fv=fx=(*f)(x);      (s[i] = t[i]);
   for (iter=1;iter<=ITMAX;iter++) {      if (t[i]== '\\') s[i]='/';
     xm=0.5*(a+b);    }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  int nbocc(char *s, char occ)
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    int i,j=0;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    int lg=20;
 #endif    i=0;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    lg=strlen(s);
       *xmin=x;    for(i=0; i<= lg; i++) {
       return fx;    if  (s[i] == occ ) j++;
     }    }
     ftemp=fu;    return j;
     if (fabs(e) > tol1) {  }
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  void cutv(char *u,char *v, char*t, char occ)
       p=(x-v)*q-(x-w)*r;  {
       q=2.0*(q-r);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       if (q > 0.0) p = -p;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       q=fabs(q);       gives u="abcedf" and v="ghi2j" */
       etemp=e;    int i,lg,j,p=0;
       e=d;    i=0;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    for(j=0; j<=strlen(t)-1; j++) {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       else {    }
         d=p/q;  
         u=x+d;    lg=strlen(t);
         if (u-a < tol2 || b-u < tol2)    for(j=0; j<p; j++) {
           d=SIGN(tol1,xm-x);      (u[j] = t[j]);
       }    }
     } else {       u[p]='\0';
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }     for(j=0; j<= lg; j++) {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      if (j>=(p+1))(v[j-p-1] = t[j]);
     fu=(*f)(u);    }
     if (fu <= fx) {  }
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  /********************** nrerror ********************/
         SHFT(fv,fw,fx,fu)  
         } else {  void nrerror(char error_text[])
           if (u < x) a=u; else b=u;  {
           if (fu <= fw || w == x) {    fprintf(stderr,"ERREUR ...\n");
             v=w;    fprintf(stderr,"%s\n",error_text);
             w=u;    exit(EXIT_FAILURE);
             fv=fw;  }
             fw=fu;  /*********************** vector *******************/
           } else if (fu <= fv || v == x || v == w) {  double *vector(int nl, int nh)
             v=u;  {
             fv=fu;    double *v;
           }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         }    if (!v) nrerror("allocation failure in vector");
   }    return v-nl+NR_END;
   nrerror("Too many iterations in brent");  }
   *xmin=x;  
   return fx;  /************************ free vector ******************/
 }  void free_vector(double*v, int nl, int nh)
   {
 /****************** mnbrak ***********************/    free((FREE_ARG)(v+nl-NR_END));
   }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  /************************ivector *******************************/
 {  int *ivector(long nl,long nh)
   double ulim,u,r,q, dum;  {
   double fu;    int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   *fa=(*func)(*ax);    if (!v) nrerror("allocation failure in ivector");
   *fb=(*func)(*bx);    return v-nl+NR_END;
   if (*fb > *fa) {  }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  /******************free ivector **************************/
       }  void free_ivector(int *v, long nl, long nh)
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    free((FREE_ARG)(v+nl-NR_END));
   while (*fb > *fc) {  }
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  /************************lvector *******************************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  long *lvector(long nl,long nh)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  {
     ulim=(*bx)+GLIMIT*(*cx-*bx);    long *v;
     if ((*bx-u)*(u-*cx) > 0.0) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       fu=(*func)(u);    if (!v) nrerror("allocation failure in ivector");
     } else if ((*cx-u)*(u-ulim) > 0.0) {    return v-nl+NR_END;
       fu=(*func)(u);  }
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  /******************free lvector **************************/
           SHFT(*fb,*fc,fu,(*func)(u))  void free_lvector(long *v, long nl, long nh)
           }  {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    free((FREE_ARG)(v+nl-NR_END));
       u=ulim;  }
       fu=(*func)(u);  
     } else {  /******************* imatrix *******************************/
       u=(*cx)+GOLD*(*cx-*bx);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       fu=(*func)(u);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     }  { 
     SHFT(*ax,*bx,*cx,u)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       SHFT(*fa,*fb,*fc,fu)    int **m; 
       }    
 }    /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 /*************** linmin ************************/    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
 int ncom;    m -= nrl; 
 double *pcom,*xicom;    
 double (*nrfunc)(double []);    
      /* allocate rows and set pointers to them */ 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double brent(double ax, double bx, double cx,    m[nrl] += NR_END; 
                double (*f)(double), double tol, double *xmin);    m[nrl] -= ncl; 
   double f1dim(double x);    
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
               double *fc, double (*func)(double));    
   int j;    /* return pointer to array of pointers to rows */ 
   double xx,xmin,bx,ax;    return m; 
   double fx,fb,fa;  } 
    
   ncom=n;  /****************** free_imatrix *************************/
   pcom=vector(1,n);  void free_imatrix(m,nrl,nrh,ncl,nch)
   xicom=vector(1,n);        int **m;
   nrfunc=func;        long nch,ncl,nrh,nrl; 
   for (j=1;j<=n;j++) {       /* free an int matrix allocated by imatrix() */ 
     pcom[j]=p[j];  { 
     xicom[j]=xi[j];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   }    free((FREE_ARG) (m+nrl-NR_END)); 
   ax=0.0;  } 
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /******************* matrix *******************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double **matrix(long nrl, long nrh, long ncl, long nch)
 #ifdef DEBUG  {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 #endif    double **m;
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     p[j] += xi[j];    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
   free_vector(xicom,1,n);    m -= nrl;
   free_vector(pcom,1,n);  
 }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /*************** powell ************************/    m[nrl] += NR_END;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m[nrl] -= ncl;
             double (*func)(double []))  
 {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   void linmin(double p[], double xi[], int n, double *fret,    return m;
               double (*func)(double []));    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   int i,ibig,j;     */
   double del,t,*pt,*ptt,*xit;  }
   double fp,fptt;  
   double *xits;  /*************************free matrix ************************/
   pt=vector(1,n);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   ptt=vector(1,n);  {
   xit=vector(1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   xits=vector(1,n);    free((FREE_ARG)(m+nrl-NR_END));
   *fret=(*func)(p);  }
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /******************* ma3x *******************************/
     fp=(*fret);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     ibig=0;  {
     del=0.0;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    double ***m;
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     printf("\n");    if (!m) nrerror("allocation failure 1 in matrix()");
     for (i=1;i<=n;i++) {    m += NR_END;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m -= nrl;
       fptt=(*fret);  
 #ifdef DEBUG    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       printf("fret=%lf \n",*fret);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #endif    m[nrl] += NR_END;
       printf("%d",i);fflush(stdout);    m[nrl] -= ncl;
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         del=fabs(fptt-(*fret));  
         ibig=i;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 #ifdef DEBUG    m[nrl][ncl] += NR_END;
       printf("%d %.12e",i,(*fret));    m[nrl][ncl] -= nll;
       for (j=1;j<=n;j++) {    for (j=ncl+1; j<=nch; j++) 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      m[nrl][j]=m[nrl][j-1]+nlay;
         printf(" x(%d)=%.12e",j,xit[j]);    
       }    for (i=nrl+1; i<=nrh; i++) {
       for(j=1;j<=n;j++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         printf(" p=%.12e",p[j]);      for (j=ncl+1; j<=nch; j++) 
       printf("\n");        m[i][j]=m[i][j-1]+nlay;
 #endif    }
     }    return m; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 #ifdef DEBUG             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       int k[2],l;    */
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /*************************free ma3x ************************/
       for (j=1;j<=n;j++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         printf(" %.12e",p[j]);  {
       printf("\n");    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       for(l=0;l<=1;l++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         for (j=1;j<=n;j++) {    free((FREE_ARG)(m+nrl-NR_END));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  }
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  /*************** function subdirf ***********/
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  char *subdirf(char fileres[])
       }  {
 #endif    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
       free_vector(xit,1,n);    strcat(tmpout,fileres);
       free_vector(xits,1,n);    return tmpout;
       free_vector(ptt,1,n);  }
       free_vector(pt,1,n);  
       return;  /*************** function subdirf2 ***********/
     }  char *subdirf2(char fileres[], char *preop)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  {
     for (j=1;j<=n;j++) {    
       ptt[j]=2.0*p[j]-pt[j];    /* Caution optionfilefiname is hidden */
       xit[j]=p[j]-pt[j];    strcpy(tmpout,optionfilefiname);
       pt[j]=p[j];    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
     fptt=(*func)(ptt);    strcat(tmpout,fileres);
     if (fptt < fp) {    return tmpout;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /*************** function subdirf3 ***********/
         for (j=1;j<=n;j++) {  char *subdirf3(char fileres[], char *preop, char *preop2)
           xi[j][ibig]=xi[j][n];  {
           xi[j][n]=xit[j];    
         }    /* Caution optionfilefiname is hidden */
 #ifdef DEBUG    strcpy(tmpout,optionfilefiname);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    strcat(tmpout,"/");
         for(j=1;j<=n;j++)    strcat(tmpout,preop);
           printf(" %.12e",xit[j]);    strcat(tmpout,preop2);
         printf("\n");    strcat(tmpout,fileres);
 #endif    return tmpout;
       }  }
     }  
   }  /***************** f1dim *************************/
 }  extern int ncom; 
   extern double *pcom,*xicom;
 /**** Prevalence limit ****************/  extern double (*nrfunc)(double []); 
    
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  double f1dim(double x) 
 {  { 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    int j; 
      matrix by transitions matrix until convergence is reached */    double f;
     double *xt; 
   int i, ii,j,k;   
   double min, max, maxmin, maxmax,sumnew=0.;    xt=vector(1,ncom); 
   double **matprod2();    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double **out, cov[NCOVMAX], **pmij();    f=(*nrfunc)(xt); 
   double **newm;    free_vector(xt,1,ncom); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    return f; 
   } 
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /*****************brent *************************/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
     int iter; 
    cov[1]=1.;    double a,b,d,etemp;
      double fu,fv,fw,fx;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double ftemp;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     newm=savm;    double e=0.0; 
     /* Covariates have to be included here again */   
      cov[2]=agefin;    a=(ax < cx ? ax : cx); 
      b=(ax > cx ? ax : cx); 
       for (k=1; k<=cptcovn;k++) {    x=w=v=bx; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    fw=fv=fx=(*f)(x); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    for (iter=1;iter<=ITMAX;iter++) { 
       }      xm=0.5*(a+b); 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for (k=1; k<=cptcovprod;k++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #ifdef DEBUG
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
     savm=oldm;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     oldm=newm;        *xmin=x; 
     maxmax=0.;        return fx; 
     for(j=1;j<=nlstate;j++){      } 
       min=1.;      ftemp=fu;
       max=0.;      if (fabs(e) > tol1) { 
       for(i=1; i<=nlstate; i++) {        r=(x-w)*(fx-fv); 
         sumnew=0;        q=(x-v)*(fx-fw); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        p=(x-v)*q-(x-w)*r; 
         prlim[i][j]= newm[i][j]/(1-sumnew);        q=2.0*(q-r); 
         max=FMAX(max,prlim[i][j]);        if (q > 0.0) p = -p; 
         min=FMIN(min,prlim[i][j]);        q=fabs(q); 
       }        etemp=e; 
       maxmin=max-min;        e=d; 
       maxmax=FMAX(maxmax,maxmin);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     if(maxmax < ftolpl){        else { 
       return prlim;          d=p/q; 
     }          u=x+d; 
   }          if (u-a < tol2 || b-u < tol2) 
 }            d=SIGN(tol1,xm-x); 
         } 
 /*************** transition probabilities ***************/      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      } 
 {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double s1, s2;      fu=(*f)(u); 
   /*double t34;*/      if (fu <= fx) { 
   int i,j,j1, nc, ii, jj;        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
     for(i=1; i<= nlstate; i++){          SHFT(fv,fw,fx,fu) 
     for(j=1; j<i;j++){          } else { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){            if (u < x) a=u; else b=u; 
         /*s2 += param[i][j][nc]*cov[nc];*/            if (fu <= fw || w == x) { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];              v=w; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/              w=u; 
       }              fv=fw; 
       ps[i][j]=s2;              fw=fu; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/            } else if (fu <= fv || v == x || v == w) { 
     }              v=u; 
     for(j=i+1; j<=nlstate+ndeath;j++){              fv=fu; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){            } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    } 
       }    nrerror("Too many iterations in brent"); 
       ps[i][j]=s2;    *xmin=x; 
     }    return fx; 
   }  } 
     /*ps[3][2]=1;*/  
   /****************** mnbrak ***********************/
   for(i=1; i<= nlstate; i++){  
      s1=0;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for(j=1; j<i; j++)              double (*func)(double)) 
       s1+=exp(ps[i][j]);  { 
     for(j=i+1; j<=nlstate+ndeath; j++)    double ulim,u,r,q, dum;
       s1+=exp(ps[i][j]);    double fu; 
     ps[i][i]=1./(s1+1.);   
     for(j=1; j<i; j++)    *fa=(*func)(*ax); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *fb=(*func)(*bx); 
     for(j=i+1; j<=nlstate+ndeath; j++)    if (*fb > *fa) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      SHFT(dum,*ax,*bx,dum) 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        SHFT(dum,*fb,*fa,dum) 
   } /* end i */        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    *fc=(*func)(*cx); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    while (*fb > *fc) { 
       ps[ii][jj]=0;      r=(*bx-*ax)*(*fb-*fc); 
       ps[ii][ii]=1;      q=(*bx-*cx)*(*fb-*fa); 
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        fu=(*func)(u); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
      printf("%lf ",ps[ii][jj]);        fu=(*func)(u); 
    }        if (fu < *fc) { 
     printf("\n ");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     }            SHFT(*fb,*fc,fu,(*func)(u)) 
     printf("\n ");printf("%lf ",cov[2]);*/            } 
 /*      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        u=ulim; 
   goto end;*/        fu=(*func)(u); 
     return ps;      } else { 
 }        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
 /**************** Product of 2 matrices ******************/      } 
       SHFT(*ax,*bx,*cx,u) 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        SHFT(*fa,*fb,*fc,fu) 
 {        } 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  } 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  /*************** linmin ************************/
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  int ncom; 
   long i, j, k;  double *pcom,*xicom;
   for(i=nrl; i<= nrh; i++)  double (*nrfunc)(double []); 
     for(k=ncolol; k<=ncoloh; k++)   
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         out[i][k] +=in[i][j]*b[j][k];  { 
     double brent(double ax, double bx, double cx, 
   return out;                 double (*f)(double), double tol, double *xmin); 
 }    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
 /************* Higher Matrix Product ***************/    int j; 
     double xx,xmin,bx,ax; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    double fx,fb,fa;
 {   
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    ncom=n; 
      duration (i.e. until    pcom=vector(1,n); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    xicom=vector(1,n); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    nrfunc=func; 
      (typically every 2 years instead of every month which is too big).    for (j=1;j<=n;j++) { 
      Model is determined by parameters x and covariates have to be      pcom[j]=p[j]; 
      included manually here.      xicom[j]=xi[j]; 
     } 
      */    ax=0.0; 
     xx=1.0; 
   int i, j, d, h, k;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   double **out, cov[NCOVMAX];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   double **newm;  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /* Hstepm could be zero and should return the unit matrix */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1;i<=nlstate+ndeath;i++)  #endif
     for (j=1;j<=nlstate+ndeath;j++){    for (j=1;j<=n;j++) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      xi[j] *= xmin; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      p[j] += xi[j]; 
     }    } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free_vector(xicom,1,n); 
   for(h=1; h <=nhstepm; h++){    free_vector(pcom,1,n); 
     for(d=1; d <=hstepm; d++){  } 
       newm=savm;  
       /* Covariates have to be included here again */  char *asc_diff_time(long time_sec, char ascdiff[])
       cov[1]=1.;  {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    long sec_left, days, hours, minutes;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    days = (time_sec) / (60*60*24);
       for (k=1; k<=cptcovage;k++)    sec_left = (time_sec) % (60*60*24);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    hours = (sec_left) / (60*60) ;
       for (k=1; k<=cptcovprod;k++)    sec_left = (sec_left) %(60*60);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    return ascdiff;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************** powell ************************/
       savm=oldm;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       oldm=newm;              double (*func)(double [])) 
     }  { 
     for(i=1; i<=nlstate+ndeath; i++)    void linmin(double p[], double xi[], int n, double *fret, 
       for(j=1;j<=nlstate+ndeath;j++) {                double (*func)(double [])); 
         po[i][j][h]=newm[i][j];    int i,ibig,j; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    double del,t,*pt,*ptt,*xit;
          */    double fp,fptt;
       }    double *xits;
   } /* end h */    int niterf, itmp;
   return po;  
 }    pt=vector(1,n); 
     ptt=vector(1,n); 
     xit=vector(1,n); 
 /*************** log-likelihood *************/    xits=vector(1,n); 
 double func( double *x)    *fret=(*func)(p); 
 {    for (j=1;j<=n;j++) pt[j]=p[j]; 
   int i, ii, j, k, mi, d, kk;    for (*iter=1;;++(*iter)) { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      fp=(*fret); 
   double **out;      ibig=0; 
   double sw; /* Sum of weights */      del=0.0; 
   double lli; /* Individual log likelihood */      last_time=curr_time;
   int s1, s2;      (void) gettimeofday(&curr_time,&tzp);
   long ipmx;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   /*extern weight */      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   /* We are differentiating ll according to initial status */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      */
   /*for(i=1;i<imx;i++)     for (i=1;i<=n;i++) {
     printf(" %d\n",s[4][i]);        printf(" %d %.12f",i, p[i]);
   */        fprintf(ficlog," %d %.12lf",i, p[i]);
   cov[1]=1.;        fprintf(ficrespow," %.12lf", p[i]);
       }
   for(k=1; k<=nlstate; k++) ll[k]=0.;      printf("\n");
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      fprintf(ficlog,"\n");
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      fprintf(ficrespow,"\n");fflush(ficrespow);
     for(mi=1; mi<= wav[i]-1; mi++){      if(*iter <=3){
       for (ii=1;ii<=nlstate+ndeath;ii++)        tm = *localtime(&curr_time.tv_sec);
         for (j=1;j<=nlstate+ndeath;j++){        strcpy(strcurr,asctime(&tm));
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*       asctime_r(&tm,strcurr); */
           savm[ii][j]=(ii==j ? 1.0 : 0.0);        forecast_time=curr_time; 
         }        itmp = strlen(strcurr);
       for(d=0; d<dh[mi][i]; d++){        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         newm=savm;          strcurr[itmp-1]='\0';
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for (kk=1; kk<=cptcovage;kk++) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for(niterf=10;niterf<=30;niterf+=10){
         }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
                  tmf = *localtime(&forecast_time.tv_sec);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*      asctime_r(&tmf,strfor); */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          strcpy(strfor,asctime(&tmf));
         savm=oldm;          itmp = strlen(strfor);
         oldm=newm;          if(strfor[itmp-1]=='\n')
                  strfor[itmp-1]='\0';
                  printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       } /* end mult */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
              }
       s1=s[mw[mi][i]][i];      }
       s2=s[mw[mi+1][i]][i];      for (i=1;i<=n;i++) { 
       if( s2 > nlstate){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         /* i.e. if s2 is a death state and if the date of death is known then the contribution        fptt=(*fret); 
            to the likelihood is the probability to die between last step unit time and current  #ifdef DEBUG
            step unit time, which is also the differences between probability to die before dh        printf("fret=%lf \n",*fret);
            and probability to die before dh-stepm .        fprintf(ficlog,"fret=%lf \n",*fret);
            In version up to 0.92 likelihood was computed  #endif
            as if date of death was unknown. Death was treated as any other        printf("%d",i);fflush(stdout);
            health state: the date of the interview describes the actual state        fprintf(ficlog,"%d",i);fflush(ficlog);
            and not the date of a change in health state. The former idea was        linmin(p,xit,n,fret,func); 
            to consider that at each interview the state was recorded        if (fabs(fptt-(*fret)) > del) { 
            (healthy, disable or death) and IMaCh was corrected; but when we          del=fabs(fptt-(*fret)); 
            introduced the exact date of death then we should have modified          ibig=i; 
            the contribution of an exact death to the likelihood. This new        } 
            contribution is smaller and very dependent of the step unit  #ifdef DEBUG
            stepm. It is no more the probability to die between last interview        printf("%d %.12e",i,(*fret));
            and month of death but the probability to survive from last        fprintf(ficlog,"%d %.12e",i,(*fret));
            interview up to one month before death multiplied by the        for (j=1;j<=n;j++) {
            probability to die within a month. Thanks to Chris          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
            Jackson for correcting this bug.  Former versions increased          printf(" x(%d)=%.12e",j,xit[j]);
            mortality artificially. The bad side is that we add another loop          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
            which slows down the processing. The difference can be up to 10%        }
            lower mortality.        for(j=1;j<=n;j++) {
         */          printf(" p=%.12e",p[j]);
         lli=log(out[s1][s2] - savm[s1][s2]);          fprintf(ficlog," p=%.12e",p[j]);
       }else{        }
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */        printf("\n");
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        fprintf(ficlog,"\n");
       }  #endif
       ipmx +=1;      } 
       sw += weight[i];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #ifdef DEBUG
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/        int k[2],l;
     } /* end of wave */        k[0]=1;
   } /* end of individual */        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        fprintf(ficlog,"Max: %.12e",(*func)(p));
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        for (j=1;j<=n;j++) {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          printf(" %.12e",p[j]);
   /*exit(0);*/          fprintf(ficlog," %.12e",p[j]);
   return -l;        }
 }        printf("\n");
         fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 /*********** Maximum Likelihood Estimation ***************/          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i,j, iter;          }
   double **xi,*delti;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double fret;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   xi=matrix(1,npar,1,npar);        }
   for (i=1;i<=npar;i++)  #endif
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");        free_vector(xit,1,n); 
   powell(p,xi,npar,ftol,&iter,&fret,func);        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        free_vector(pt,1,n); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        return; 
       } 
 }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
 /**** Computes Hessian and covariance matrix ***/        ptt[j]=2.0*p[j]-pt[j]; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        xit[j]=p[j]-pt[j]; 
 {        pt[j]=p[j]; 
   double  **a,**y,*x,pd;      } 
   double **hess;      fptt=(*func)(ptt); 
   int i, j,jk;      if (fptt < fp) { 
   int *indx;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
   double hessii(double p[], double delta, int theta, double delti[]);          linmin(p,xit,n,fret,func); 
   double hessij(double p[], double delti[], int i, int j);          for (j=1;j<=n;j++) { 
   void lubksb(double **a, int npar, int *indx, double b[]) ;            xi[j][ibig]=xi[j][n]; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;            xi[j][n]=xit[j]; 
           }
   hess=matrix(1,npar,1,npar);  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   printf("\nCalculation of the hessian matrix. Wait...\n");          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=npar;i++){          for(j=1;j<=n;j++){
     printf("%d",i);fflush(stdout);            printf(" %.12e",xit[j]);
     hess[i][i]=hessii(p,ftolhess,i,delti);            fprintf(ficlog," %.12e",xit[j]);
     /*printf(" %f ",p[i]);*/          }
     /*printf(" %lf ",hess[i][i]);*/          printf("\n");
   }          fprintf(ficlog,"\n");
    #endif
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++)  {      } 
       if (j>i) {    } 
         printf(".%d%d",i,j);fflush(stdout);  } 
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      /**** Prevalence limit (stable prevalence)  ****************/
         /*printf(" %lf ",hess[i][j]);*/  
       }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     }  {
   }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   printf("\n");       matrix by transitions matrix until convergence is reached */
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    int i, ii,j,k;
      double min, max, maxmin, maxmax,sumnew=0.;
   a=matrix(1,npar,1,npar);    double **matprod2();
   y=matrix(1,npar,1,npar);    double **out, cov[NCOVMAX], **pmij();
   x=vector(1,npar);    double **newm;
   indx=ivector(1,npar);    double agefin, delaymax=50 ; /* Max number of years to converge */
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    for (ii=1;ii<=nlstate+ndeath;ii++)
   ludcmp(a,npar,indx,&pd);      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;     cov[1]=1.;
     lubksb(a,npar,indx,x);   
     for (i=1;i<=npar;i++){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       matcov[i][j]=x[i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     }      newm=savm;
   }      /* Covariates have to be included here again */
        cov[2]=agefin;
   printf("\n#Hessian matrix#\n");    
   for (i=1;i<=npar;i++) {        for (k=1; k<=cptcovn;k++) {
     for (j=1;j<=npar;j++) {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       printf("%.3e ",hess[i][j]);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     }        }
     printf("\n");        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   ludcmp(a,npar,indx,&pd);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   /*  printf("\n#Hessian matrix recomputed#\n");  
       savm=oldm;
   for (j=1;j<=npar;j++) {      oldm=newm;
     for (i=1;i<=npar;i++) x[i]=0;      maxmax=0.;
     x[j]=1;      for(j=1;j<=nlstate;j++){
     lubksb(a,npar,indx,x);        min=1.;
     for (i=1;i<=npar;i++){        max=0.;
       y[i][j]=x[i];        for(i=1; i<=nlstate; i++) {
       printf("%.3e ",y[i][j]);          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     printf("\n");          prlim[i][j]= newm[i][j]/(1-sumnew);
   }          max=FMAX(max,prlim[i][j]);
   */          min=FMIN(min,prlim[i][j]);
         }
   free_matrix(a,1,npar,1,npar);        maxmin=max-min;
   free_matrix(y,1,npar,1,npar);        maxmax=FMAX(maxmax,maxmin);
   free_vector(x,1,npar);      }
   free_ivector(indx,1,npar);      if(maxmax < ftolpl){
   free_matrix(hess,1,npar,1,npar);        return prlim;
       }
     }
 }  }
   
 /*************** hessian matrix ****************/  /*************** transition probabilities ***************/ 
 double hessii( double x[], double delta, int theta, double delti[])  
 {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   int i;  {
   int l=1, lmax=20;    double s1, s2;
   double k1,k2;    /*double t34;*/
   double p2[NPARMAX+1];    int i,j,j1, nc, ii, jj;
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      for(i=1; i<= nlstate; i++){
   double fx;        for(j=1; j<i;j++){
   int k=0,kmax=10;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double l1;            /*s2 += param[i][j][nc]*cov[nc];*/
             s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   fx=func(x);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   for (i=1;i<=npar;i++) p2[i]=x[i];          }
   for(l=0 ; l <=lmax; l++){          ps[i][j]=s2;
     l1=pow(10,l);  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     delts=delt;        }
     for(k=1 ; k <kmax; k=k+1){        for(j=i+1; j<=nlstate+ndeath;j++){
       delt = delta*(l1*k);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       p2[theta]=x[theta] +delt;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       k1=func(p2)-fx;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       p2[theta]=x[theta]-delt;          }
       k2=func(p2)-fx;          ps[i][j]=s2;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      }
            /*ps[3][2]=1;*/
 #ifdef DEBUG      
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for(i=1; i<= nlstate; i++){
 #endif        s1=0;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        for(j=1; j<i; j++)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          s1+=exp(ps[i][j]);
         k=kmax;        for(j=i+1; j<=nlstate+ndeath; j++)
       }          s1+=exp(ps[i][j]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        ps[i][i]=1./(s1+1.);
         k=kmax; l=lmax*10.;        for(j=1; j<i; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        for(j=i+1; j<=nlstate+ndeath; j++)
         delts=delt;          ps[i][j]= exp(ps[i][j])*ps[i][i];
       }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     }      } /* end i */
   }      
   delti[theta]=delts;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   return res;        for(jj=1; jj<= nlstate+ndeath; jj++){
            ps[ii][jj]=0;
 }          ps[ii][ii]=1;
         }
 double hessij( double x[], double delti[], int thetai,int thetaj)      }
 {      
   int i;  
   int l=1, l1, lmax=20;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double k1,k2,k3,k4,res,fx;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   double p2[NPARMAX+1];  /*         printf("ddd %lf ",ps[ii][jj]); */
   int k;  /*       } */
   /*       printf("\n "); */
   fx=func(x);  /*        } */
   for (k=1; k<=2; k++) {  /*        printf("\n ");printf("%lf ",cov[2]); */
     for (i=1;i<=npar;i++) p2[i]=x[i];         /*
     p2[thetai]=x[thetai]+delti[thetai]/k;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        goto end;*/
     k1=func(p2)-fx;      return ps;
    }
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /**************** Product of 2 matrices ******************/
     k2=func(p2)-fx;  
    double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     p2[thetai]=x[thetai]-delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     k3=func(p2)-fx;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
      /* in, b, out are matrice of pointers which should have been initialized 
     p2[thetai]=x[thetai]-delti[thetai]/k;       before: only the contents of out is modified. The function returns
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       a pointer to pointers identical to out */
     k4=func(p2)-fx;    long i, j, k;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for(i=nrl; i<= nrh; i++)
 #ifdef DEBUG      for(k=ncolol; k<=ncoloh; k++)
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
 #endif          out[i][k] +=in[i][j]*b[j][k];
   }  
   return res;    return out;
 }  }
   
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)  /************* Higher Matrix Product ***************/
 {  
   int i,imax,j,k;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double big,dum,sum,temp;  {
   double *vv;    /* Computes the transition matrix starting at age 'age' over 
         'nhstepm*hstepm*stepm' months (i.e. until
   vv=vector(1,n);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   *d=1.0;       nhstepm*hstepm matrices. 
   for (i=1;i<=n;i++) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     big=0.0;       (typically every 2 years instead of every month which is too big 
     for (j=1;j<=n;j++)       for the memory).
       if ((temp=fabs(a[i][j])) > big) big=temp;       Model is determined by parameters x and covariates have to be 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");       included manually here. 
     vv[i]=1.0/big;  
   }       */
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {    int i, j, d, h, k;
       sum=a[i][j];    double **out, cov[NCOVMAX];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    double **newm;
       a[i][j]=sum;  
     }    /* Hstepm could be zero and should return the unit matrix */
     big=0.0;    for (i=1;i<=nlstate+ndeath;i++)
     for (i=j;i<=n;i++) {      for (j=1;j<=nlstate+ndeath;j++){
       sum=a[i][j];        oldm[i][j]=(i==j ? 1.0 : 0.0);
       for (k=1;k<j;k++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
         sum -= a[i][k]*a[k][j];      }
       a[i][j]=sum;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       if ( (dum=vv[i]*fabs(sum)) >= big) {    for(h=1; h <=nhstepm; h++){
         big=dum;      for(d=1; d <=hstepm; d++){
         imax=i;        newm=savm;
       }        /* Covariates have to be included here again */
     }        cov[1]=1.;
     if (j != imax) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       for (k=1;k<=n;k++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         dum=a[imax][k];        for (k=1; k<=cptcovage;k++)
         a[imax][k]=a[j][k];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         a[j][k]=dum;        for (k=1; k<=cptcovprod;k++)
       }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       *d = -(*d);  
       vv[imax]=vv[j];  
     }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     indx[j]=imax;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     if (a[j][j] == 0.0) a[j][j]=TINY;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     if (j != n) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       dum=1.0/(a[j][j]);        savm=oldm;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        oldm=newm;
     }      }
   }      for(i=1; i<=nlstate+ndeath; i++)
   free_vector(vv,1,n);  /* Doesn't work */        for(j=1;j<=nlstate+ndeath;j++) {
 ;          po[i][j][h]=newm[i][j];
 }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
            */
 void lubksb(double **a, int n, int *indx, double b[])        }
 {    } /* end h */
   int i,ii=0,ip,j;    return po;
   double sum;  }
    
   for (i=1;i<=n;i++) {  
     ip=indx[i];  /*************** log-likelihood *************/
     sum=b[ip];  double func( double *x)
     b[ip]=b[i];  {
     if (ii)    int i, ii, j, k, mi, d, kk;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     else if (sum) ii=i;    double **out;
     b[i]=sum;    double sw; /* Sum of weights */
   }    double lli; /* Individual log likelihood */
   for (i=n;i>=1;i--) {    int s1, s2;
     sum=b[i];    double bbh, survp;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    long ipmx;
     b[i]=sum/a[i][i];    /*extern weight */
   }    /* We are differentiating ll according to initial status */
 }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
 /************ Frequencies ********************/      printf(" %d\n",s[4][i]);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    */
 {  /* Some frequencies */    cov[1]=1.;
    
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double ***freq; /* Frequencies */  
   double *pp;    if(mle==1){
   double pos, k2, dateintsum=0,k2cpt=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   FILE *ficresp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   char fileresp[FILENAMELENGTH];        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   pp=vector(1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcpy(fileresp,"p");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresp,fileres);            }
   if((ficresp=fopen(fileresp,"w"))==NULL) {          for(d=0; d<dh[mi][i]; d++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);            newm=savm;
     exit(0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   j1=0;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   j=cptcoveff;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            savm=oldm;
              oldm=newm;
   for(k1=1; k1<=j;k1++){          } /* end mult */
     for(i1=1; i1<=ncodemax[k1];i1++){        
       j1++;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          /* But now since version 0.9 we anticipate for bias at large stepm.
         scanf("%d", i);*/           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for (i=-1; i<=nlstate+ndeath; i++)             * (in months) between two waves is not a multiple of stepm, we rounded to 
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * the nearest (and in case of equal distance, to the lowest) interval but now
           for(m=agemin; m <= agemax+3; m++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             freq[i][jk][m]=0;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                 * probability in order to take into account the bias as a fraction of the way
       dateintsum=0;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       k2cpt=0;           * -stepm/2 to stepm/2 .
       for (i=1; i<=imx; i++) {           * For stepm=1 the results are the same as for previous versions of Imach.
         bool=1;           * For stepm > 1 the results are less biased than in previous versions. 
         if  (cptcovn>0) {           */
           for (z1=1; z1<=cptcoveff; z1++)          s1=s[mw[mi][i]][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s2=s[mw[mi+1][i]][i];
               bool=0;          bbh=(double)bh[mi][i]/(double)stepm; 
         }          /* bias bh is positive if real duration
         if (bool==1) {           * is higher than the multiple of stepm and negative otherwise.
           for(m=firstpass; m<=lastpass; m++){           */
             k2=anint[m][i]+(mint[m][i]/12.);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          if( s2 > nlstate){ 
               if(agev[m][i]==0) agev[m][i]=agemax+1;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
               if(agev[m][i]==1) agev[m][i]=agemax+2;               to the likelihood is the probability to die between last step unit time and current 
               if (m<lastpass) {               step unit time, which is also equal to probability to die before dh 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];               minus probability to die before dh-stepm . 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];               In version up to 0.92 likelihood was computed
               }          as if date of death was unknown. Death was treated as any other
                        health state: the date of the interview describes the actual state
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          and not the date of a change in health state. The former idea was
                 dateintsum=dateintsum+k2;          to consider that at each interview the state was recorded
                 k2cpt++;          (healthy, disable or death) and IMaCh was corrected; but when we
               }          introduced the exact date of death then we should have modified
             }          the contribution of an exact death to the likelihood. This new
           }          contribution is smaller and very dependent of the step unit
         }          stepm. It is no more the probability to die between last interview
       }          and month of death but the probability to survive from last
                  interview up to one month before death multiplied by the
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
       if  (cptcovn>0) {          mortality artificially. The bad side is that we add another loop
         fprintf(ficresp, "\n#********** Variable ");          which slows down the processing. The difference can be up to 10%
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          lower mortality.
         fprintf(ficresp, "**********\n#");            */
       }            lli=log(out[s1][s2] - savm[s1][s2]);
       for(i=1; i<=nlstate;i++)          }else{
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       fprintf(ficresp, "\n");            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                } 
       for(i=(int)agemin; i <= (int)agemax+3; i++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         if(i==(int)agemax+3)          /*if(lli ==000.0)*/
           printf("Total");          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         else          ipmx +=1;
           printf("Age %d", i);          sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        } /* end of wave */
             pp[jk] += freq[jk][m][i];      } /* end of individual */
         }    }  else if(mle==2){
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pos += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
           if(pp[jk]>=1.e-10)          for (ii=1;ii<=nlstate+ndeath;ii++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            for (j=1;j<=nlstate+ndeath;j++){
           else              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
           for(d=0; d<=dh[mi][i]; d++){
         for(jk=1; jk <=nlstate ; jk++){            newm=savm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             pp[jk] += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
         for(jk=1,pos=0; jk <=nlstate ; jk++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           pos += pp[jk];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){            savm=oldm;
           if(pos>=1.e-5)            oldm=newm;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          } /* end mult */
           else        
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          s1=s[mw[mi][i]][i];
           if( i <= (int) agemax){          s2=s[mw[mi+1][i]][i];
             if(pos>=1.e-5){          bbh=(double)bh[mi][i]/(double)stepm; 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
               probs[i][jk][j1]= pp[jk]/pos;          ipmx +=1;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             else        } /* end of wave */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      } /* end of individual */
           }    }  else if(mle==3){  /* exponential inter-extrapolation */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=-1; jk <=nlstate+ndeath; jk++)        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=-1; m <=nlstate+ndeath; m++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            for (j=1;j<=nlstate+ndeath;j++){
         if(i <= (int) agemax)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficresp,"\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         printf("\n");            }
       }          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   dateintmean=dateintsum/k2cpt;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fclose(ficresp);            }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_vector(pp,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   /* End of Freq */            oldm=newm;
 }          } /* end mult */
         
 /************ Prevalence ********************/          s1=s[mw[mi][i]][i];
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          s2=s[mw[mi+1][i]][i];
 {  /* Some frequencies */          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          ipmx +=1;
   double ***freq; /* Frequencies */          sw += weight[i];
   double *pp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double pos, k2;        } /* end of wave */
       } /* end of individual */
   pp=vector(1,nlstate);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(mi=1; mi<= wav[i]-1; mi++){
   j1=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   j=cptcoveff;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
  for(k1=1; k1<=j;k1++){          for(d=0; d<dh[mi][i]; d++){
     for(i1=1; i1<=ncodemax[k1];i1++){            newm=savm;
       j1++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
       for (i=-1; i<=nlstate+ndeath; i++)                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for (jk=-1; jk<=nlstate+ndeath; jk++)              }
           for(m=agemin; m <= agemax+3; m++)          
             freq[i][jk][m]=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                               1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (i=1; i<=imx; i++) {            savm=oldm;
         bool=1;            oldm=newm;
         if  (cptcovn>0) {          } /* end mult */
           for (z1=1; z1<=cptcoveff; z1++)        
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s1=s[mw[mi][i]][i];
               bool=0;          s2=s[mw[mi+1][i]][i];
         }          if( s2 > nlstate){ 
         if (bool==1) {            lli=log(out[s1][s2] - savm[s1][s2]);
           for(m=firstpass; m<=lastpass; m++){          }else{
             k2=anint[m][i]+(mint[m][i]/12.);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          }
               if(agev[m][i]==0) agev[m][i]=agemax+1;          ipmx +=1;
               if(agev[m][i]==1) agev[m][i]=agemax+2;          sw += weight[i];
               if (m<lastpass)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
               else        } /* end of wave */
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      } /* end of individual */
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(i=(int)agemin; i <= (int)agemax+3; i++){            for (j=1;j<=nlstate+ndeath;j++){
           for(jk=1; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               pp[jk] += freq[jk][m][i];            }
           }          for(d=0; d<dh[mi][i]; d++){
           for(jk=1; jk <=nlstate ; jk++){            newm=savm;
             for(m=-1, pos=0; m <=0 ; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             pos += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                    }
          for(jk=1; jk <=nlstate ; jk++){          
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
              pp[jk] += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          }            savm=oldm;
                      oldm=newm;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          } /* end mult */
         
          for(jk=1; jk <=nlstate ; jk++){                    s1=s[mw[mi][i]][i];
            if( i <= (int) agemax){          s2=s[mw[mi+1][i]][i];
              if(pos>=1.e-5){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                probs[i][jk][j1]= pp[jk]/pos;          ipmx +=1;
              }          sw += weight[i];
            }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
                  } /* end of wave */
         }      } /* end of individual */
     }    } /* End of if */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    return -l;
   free_vector(pp,1,nlstate);  }
    
 }  /* End of Freq */  /*************** log-likelihood *************/
   double funcone( double *x)
 /************* Waves Concatenation ***************/  {
     /* Same as likeli but slower because of a lot of printf and if */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    int i, ii, j, k, mi, d, kk;
 {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double **out;
      Death is a valid wave (if date is known).    double lli; /* Individual log likelihood */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double llt;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    int s1, s2;
      and mw[mi+1][i]. dh depends on stepm.    double bbh, survp;
      */    /*extern weight */
     /* We are differentiating ll according to initial status */
   int i, mi, m;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /*for(i=1;i<imx;i++) 
      double sum=0., jmean=0.;*/      printf(" %d\n",s[4][i]);
     */
   int j, k=0,jk, ju, jl;    cov[1]=1.;
   double sum=0.;  
   jmin=1e+5;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   jmax=-1;  
   jmean=0.;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=imx; i++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     mi=0;      for(mi=1; mi<= wav[i]-1; mi++){
     m=firstpass;        for (ii=1;ii<=nlstate+ndeath;ii++)
     while(s[m][i] <= nlstate){          for (j=1;j<=nlstate+ndeath;j++){
       if(s[m][i]>=1)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         mw[++mi][i]=m;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(m >=lastpass)          }
         break;        for(d=0; d<dh[mi][i]; d++){
       else          newm=savm;
         m++;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }/* end while */          for (kk=1; kk<=cptcovage;kk++) {
     if (s[m][i] > nlstate){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       mi++;     /* Death is another wave */          }
       /* if(mi==0)  never been interviewed correctly before death */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          /* Only death is a correct wave */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       mw[mi][i]=m;          savm=oldm;
     }          oldm=newm;
         } /* end mult */
     wav[i]=mi;        
     if(mi==0)        s1=s[mw[mi][i]][i];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        s2=s[mw[mi+1][i]][i];
   }        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
   for(i=1; i<=imx; i++){         * is higher than the multiple of stepm and negative otherwise.
     for(mi=1; mi<wav[i];mi++){         */
       if (stepm <=0)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         dh[mi][i]=1;          lli=log(out[s1][s2] - savm[s1][s2]);
       else{        } else if (mle==1){
         if (s[mw[mi+1][i]][i] > nlstate) {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           if (agedc[i] < 2*AGESUP) {        } else if(mle==2){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           if(j==0) j=1;  /* Survives at least one month after exam */        } else if(mle==3){  /* exponential inter-extrapolation */
           k=k+1;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           if (j >= jmax) jmax=j;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           if (j <= jmin) jmin=j;          lli=log(out[s1][s2]); /* Original formula */
           sum=sum+j;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          lli=log(out[s1][s2]); /* Original formula */
           }        } /* End of if */
         }        ipmx +=1;
         else{        sw += weight[i];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           k=k+1;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           if (j >= jmax) jmax=j;        if(globpr){
           else if (j <= jmin)jmin=j;          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */   %10.6f %10.6f %10.6f ", \
           sum=sum+j;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         jk= j/stepm;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         jl= j -jk*stepm;            llt +=ll[k]*gipmx/gsw;
         ju= j -(jk+1)*stepm;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         if(jl <= -ju)          }
           dh[mi][i]=jk;          fprintf(ficresilk," %10.6f\n", -llt);
         else        }
           dh[mi][i]=jk+1;      } /* end of wave */
         if(dh[mi][i]==0)    } /* end of individual */
           dh[mi][i]=1; /* At least one step */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }    if(globpr==0){ /* First time we count the contributions and weights */
   jmean=sum/k;      gipmx=ipmx;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      gsw=sw;
  }    }
 /*********** Tricode ****************************/    return -l;
 void tricode(int *Tvar, int **nbcode, int imx)  }
 {  
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;  /*************** function likelione ***********/
   cptcoveff=0;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
    {
   for (k=0; k<19; k++) Ndum[k]=0;    /* This routine should help understanding what is done with 
   for (k=1; k<=7; k++) ncodemax[k]=0;       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {       Plotting could be done.
     for (i=1; i<=imx; i++) {     */
       ij=(int)(covar[Tvar[j]][i]);    int k;
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    if(*globpri !=0){ /* Just counts and sums, no printings */
       if (ij > cptcode) cptcode=ij;      strcpy(fileresilk,"ilk"); 
     }      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     for (i=0; i<=cptcode; i++) {        printf("Problem with resultfile: %s\n", fileresilk);
       if(Ndum[i]!=0) ncodemax[j]++;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     }      }
     ij=1;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     for (i=1; i<=ncodemax[j]; i++) {      for(k=1; k<=nlstate; k++) 
       for (k=0; k<=19; k++) {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         if (Ndum[k] != 0) {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           nbcode[Tvar[j]][ij]=k;    }
            
           ij++;    *fretone=(*funcone)(p);
         }    if(*globpri !=0){
         if (ij > ncodemax[j]) break;      fclose(ficresilk);
       }        fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     }      fflush(fichtm); 
   }      } 
     return;
  for (k=0; k<19; k++) Ndum[k]=0;  }
   
  for (i=1; i<=ncovmodel-2; i++) {  
       ij=Tvar[i];  /*********** Maximum Likelihood Estimation ***************/
       Ndum[ij]++;  
     }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
  ij=1;    int i,j, iter;
  for (i=1; i<=10; i++) {    double **xi;
    if((Ndum[i]!=0) && (i<=ncovcol)){    double fret;
      Tvaraff[ij]=i;    double fretone; /* Only one call to likelihood */
      ij++;    /*  char filerespow[FILENAMELENGTH];*/
    }    xi=matrix(1,npar,1,npar);
  }    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++)
     cptcoveff=ij-1;        xi[i][j]=(i==j ? 1.0 : 0.0);
 }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
 /*********** Health Expectancies ****************/    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
 {    }
   /* Health expectancies */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    for (i=1;i<=nlstate;i++)
   double age, agelim, hf;      for(j=1;j<=nlstate+ndeath;j++)
   double ***p3mat,***varhe;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   double **dnewm,**doldm;    fprintf(ficrespow,"\n");
   double *xp;  
   double **gp, **gm;    powell(p,xi,npar,ftol,&iter,&fret,func);
   double ***gradg, ***trgradg;  
   int theta;    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   xp=vector(1,npar);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);  }
    
   fprintf(ficreseij,"# Health expectancies\n");  /**** Computes Hessian and covariance matrix ***/
   fprintf(ficreseij,"# Age");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    double  **a,**y,*x,pd;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    double **hess;
   fprintf(ficreseij,"\n");    int i, j,jk;
     int *indx;
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   else  hstepm=estepm;      void lubksb(double **a, int npar, int *indx, double b[]) ;
   /* We compute the life expectancy from trapezoids spaced every estepm months    void ludcmp(double **a, int npar, int *indx, double *d) ;
    * This is mainly to measure the difference between two models: for example    double gompertz(double p[]);
    * if stepm=24 months pijx are given only every 2 years and by summing them    hess=matrix(1,npar,1,npar);
    * we are calculating an estimate of the Life Expectancy assuming a linear  
    * progression inbetween and thus overestimating or underestimating according    printf("\nCalculation of the hessian matrix. Wait...\n");
    * to the curvature of the survival function. If, for the same date, we    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    for (i=1;i<=npar;i++){
    * to compare the new estimate of Life expectancy with the same linear      printf("%d",i);fflush(stdout);
    * hypothesis. A more precise result, taking into account a more precise      fprintf(ficlog,"%d",i);fflush(ficlog);
    * curvature will be obtained if estepm is as small as stepm. */     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   /* For example we decided to compute the life expectancy with the smallest unit */      
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      /*  printf(" %f ",p[i]);
      nhstepm is the number of hstepm from age to agelim          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      nstepm is the number of stepm from age to agelin.    }
      Look at hpijx to understand the reason of that which relies in memory size    
      and note for a fixed period like estepm months */    for (i=1;i<=npar;i++) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (j=1;j<=npar;j++)  {
      survival function given by stepm (the optimization length). Unfortunately it        if (j>i) { 
      means that if the survival funtion is printed only each two years of age and if          printf(".%d%d",i,j);fflush(stdout);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      results. So we changed our mind and took the option of the best precision.          hess[i][j]=hessij(p,delti,i,j,func,npar);
   */          
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
   agelim=AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      }
     /* nhstepm age range expressed in number of stepm */    }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    printf("\n");
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    fprintf(ficlog,"\n");
     /* if (stepm >= YEARM) hstepm=1;*/  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    
     gp=matrix(0,nhstepm,1,nlstate*2);    a=matrix(1,npar,1,npar);
     gm=matrix(0,nhstepm,1,nlstate*2);    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    indx=ivector(1,npar);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for (i=1;i<=npar;i++)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      ludcmp(a,npar,indx,&pd);
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     /* Computing Variances of health expectancies */      x[j]=1;
       lubksb(a,npar,indx,x);
      for(theta=1; theta <=npar; theta++){      for (i=1;i<=npar;i++){ 
       for(i=1; i<=npar; i++){        matcov[i][j]=x[i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      }
       }    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
      printf("\n#Hessian matrix#\n");
       cptj=0;    fprintf(ficlog,"\n#Hessian matrix#\n");
       for(j=1; j<= nlstate; j++){    for (i=1;i<=npar;i++) { 
         for(i=1; i<=nlstate; i++){      for (j=1;j<=npar;j++) { 
           cptj=cptj+1;        printf("%.3e ",hess[i][j]);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        fprintf(ficlog,"%.3e ",hess[i][j]);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      }
           }      printf("\n");
         }      fprintf(ficlog,"\n");
       }    }
        
          /* Recompute Inverse */
       for(i=1; i<=npar; i++)    for (i=1;i<=npar;i++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      ludcmp(a,npar,indx,&pd);
        
       cptj=0;    /*  printf("\n#Hessian matrix recomputed#\n");
       for(j=1; j<= nlstate; j++){  
         for(i=1;i<=nlstate;i++){    for (j=1;j<=npar;j++) {
           cptj=cptj+1;      for (i=1;i<=npar;i++) x[i]=0;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      x[j]=1;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      lubksb(a,npar,indx,x);
           }      for (i=1;i<=npar;i++){ 
         }        y[i][j]=x[i];
       }        printf("%.3e ",y[i][j]);
              fprintf(ficlog,"%.3e ",y[i][j]);
          }
       printf("\n");
       for(j=1; j<= nlstate*2; j++)      fprintf(ficlog,"\n");
         for(h=0; h<=nhstepm-1; h++){    }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    */
         }  
     free_matrix(a,1,npar,1,npar);
      }    free_matrix(y,1,npar,1,npar);
        free_vector(x,1,npar);
 /* End theta */    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  
   
      for(h=0; h<=nhstepm-1; h++)  }
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)  /*************** hessian matrix ****************/
         trgradg[h][j][theta]=gradg[h][theta][j];  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
     int i;
      for(i=1;i<=nlstate*2;i++)    int l=1, lmax=20;
       for(j=1;j<=nlstate*2;j++)    double k1,k2;
         varhe[i][j][(int)age] =0.;    double p2[NPARMAX+1];
     double res;
     for(h=0;h<=nhstepm-1;h++){    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(k=0;k<=nhstepm-1;k++){    double fx;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    int k=0,kmax=10;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    double l1;
         for(i=1;i<=nlstate*2;i++)  
           for(j=1;j<=nlstate*2;j++)    fx=func(x);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    for (i=1;i<=npar;i++) p2[i]=x[i];
       }    for(l=0 ; l <=lmax; l++){
     }      l1=pow(10,l);
       delts=delt;
            for(k=1 ; k <kmax; k=k+1){
     /* Computing expectancies */        delt = delta*(l1*k);
     for(i=1; i<=nlstate;i++)        p2[theta]=x[theta] +delt;
       for(j=1; j<=nlstate;j++)        k1=func(p2)-fx;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        p2[theta]=x[theta]-delt;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        k2=func(p2)-fx;
                  /*res= (k1-2.0*fx+k2)/delt/delt; */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
         }  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficreseij,"%3.0f",age );        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     cptj=0;  #endif
     for(i=1; i<=nlstate;i++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(j=1; j<=nlstate;j++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         cptj++;          k=kmax;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        }
       }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     fprintf(ficreseij,"\n");          k=kmax; l=lmax*10.;
            }
     free_matrix(gm,0,nhstepm,1,nlstate*2);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     free_matrix(gp,0,nhstepm,1,nlstate*2);          delts=delt;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   }    delti[theta]=delts;
   free_vector(xp,1,npar);    return res; 
   free_matrix(dnewm,1,nlstate*2,1,npar);    
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  
 }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
 /************ Variance ******************/    int i;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    int l=1, l1, lmax=20;
 {    double k1,k2,k3,k4,res,fx;
   /* Variance of health expectancies */    double p2[NPARMAX+1];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int k;
   double **newm;  
   double **dnewm,**doldm;    fx=func(x);
   int i, j, nhstepm, hstepm, h, nstepm ;    for (k=1; k<=2; k++) {
   int k, cptcode;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double *xp;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double **gp, **gm;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double ***gradg, ***trgradg;      k1=func(p2)-fx;
   double ***p3mat;    
   double age,agelim, hf;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int theta;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
    fprintf(ficresvij,"# Covariances of life expectancies\n");    
   fprintf(ficresvij,"# Age");      p2[thetai]=x[thetai]-delti[thetai]/k;
   for(i=1; i<=nlstate;i++)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(j=1; j<=nlstate;j++)      k3=func(p2)-fx;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    
   fprintf(ficresvij,"\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   xp=vector(1,npar);      k4=func(p2)-fx;
   dnewm=matrix(1,nlstate,1,npar);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   doldm=matrix(1,nlstate,1,nlstate);  #ifdef DEBUG
        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if(estepm < stepm){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     printf ("Problem %d lower than %d\n",estepm, stepm);  #endif
   }    }
   else  hstepm=estepm;      return res;
   /* For example we decided to compute the life expectancy with the smallest unit */  }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim  /************** Inverse of matrix **************/
      nstepm is the number of stepm from age to agelin.  void ludcmp(double **a, int n, int *indx, double *d) 
      Look at hpijx to understand the reason of that which relies in memory size  { 
      and note for a fixed period like k years */    int i,imax,j,k; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double big,dum,sum,temp; 
      survival function given by stepm (the optimization length). Unfortunately it    double *vv; 
      means that if the survival funtion is printed only each two years of age and if   
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    vv=vector(1,n); 
      results. So we changed our mind and took the option of the best precision.    *d=1.0; 
   */    for (i=1;i<=n;i++) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      big=0.0; 
   agelim = AGESUP;      for (j=1;j<=n;j++) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if ((temp=fabs(a[i][j])) > big) big=temp; 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      vv[i]=1.0/big; 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    for (j=1;j<=n;j++) { 
     gp=matrix(0,nhstepm,1,nlstate);      for (i=1;i<j;i++) { 
     gm=matrix(0,nhstepm,1,nlstate);        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     for(theta=1; theta <=npar; theta++){        a[i][j]=sum; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      big=0.0; 
       }      for (i=j;i<=n;i++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          sum=a[i][j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
       if (popbased==1) {        a[i][j]=sum; 
         for(i=1; i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           prlim[i][i]=probs[(int)age][i][ij];          big=dum; 
       }          imax=i; 
          } 
       for(j=1; j<= nlstate; j++){      } 
         for(h=0; h<=nhstepm; h++){      if (j != imax) { 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        for (k=1;k<=n;k++) { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          dum=a[imax][k]; 
         }          a[imax][k]=a[j][k]; 
       }          a[j][k]=dum; 
            } 
       for(i=1; i<=npar; i++) /* Computes gradient */        *d = -(*d); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        vv[imax]=vv[j]; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      indx[j]=imax; 
        if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (popbased==1) {      if (j != n) { 
         for(i=1; i<=nlstate;i++)        dum=1.0/(a[j][j]); 
           prlim[i][i]=probs[(int)age][i][ij];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       }      } 
     } 
       for(j=1; j<= nlstate; j++){    free_vector(vv,1,n);  /* Doesn't work */
         for(h=0; h<=nhstepm; h++){  ;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  } 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  void lubksb(double **a, int n, int *indx, double b[]) 
       }  { 
     int i,ii=0,ip,j; 
       for(j=1; j<= nlstate; j++)    double sum; 
         for(h=0; h<=nhstepm; h++){   
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for (i=1;i<=n;i++) { 
         }      ip=indx[i]; 
     } /* End theta */      sum=b[ip]; 
       b[ip]=b[i]; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     for(h=0; h<=nhstepm; h++)      else if (sum) ii=i; 
       for(j=1; j<=nlstate;j++)      b[i]=sum; 
         for(theta=1; theta <=npar; theta++)    } 
           trgradg[h][j][theta]=gradg[h][theta][j];    for (i=n;i>=1;i--) { 
       sum=b[i]; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     for(i=1;i<=nlstate;i++)      b[i]=sum/a[i][i]; 
       for(j=1;j<=nlstate;j++)    } 
         vareij[i][j][(int)age] =0.;  } 
   
     for(h=0;h<=nhstepm;h++){  /************ Frequencies ********************/
       for(k=0;k<=nhstepm;k++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  {  /* Some frequencies */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    
         for(i=1;i<=nlstate;i++)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           for(j=1;j<=nlstate;j++)    int first;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    double ***freq; /* Frequencies */
       }    double *pp, **prop;
     }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
     fprintf(ficresvij,"%.0f ",age );    char fileresp[FILENAMELENGTH];
     for(i=1; i<=nlstate;i++)    
       for(j=1; j<=nlstate;j++){    pp=vector(1,nlstate);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    prop=matrix(1,nlstate,iagemin,iagemax+3);
       }    strcpy(fileresp,"p");
     fprintf(ficresvij,"\n");    strcat(fileresp,fileres);
     free_matrix(gp,0,nhstepm,1,nlstate);    if((ficresp=fopen(fileresp,"w"))==NULL) {
     free_matrix(gm,0,nhstepm,1,nlstate);      printf("Problem with prevalence resultfile: %s\n", fileresp);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      exit(0);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   } /* End age */    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
      j1=0;
   free_vector(xp,1,npar);    
   free_matrix(doldm,1,nlstate,1,npar);    j=cptcoveff;
   free_matrix(dnewm,1,nlstate,1,nlstate);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
 }    first=1;
   
 /************ Variance of prevlim ******************/    for(k1=1; k1<=j;k1++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for(i1=1; i1<=ncodemax[k1];i1++){
 {        j1++;
   /* Variance of prevalence limit */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          scanf("%d", i);*/
   double **newm;        for (i=-1; i<=nlstate+ndeath; i++)  
   double **dnewm,**doldm;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   int i, j, nhstepm, hstepm;            for(m=iagemin; m <= iagemax+3; m++)
   int k, cptcode;              freq[i][jk][m]=0;
   double *xp;  
   double *gp, *gm;      for (i=1; i<=nlstate; i++)  
   double **gradg, **trgradg;        for(m=iagemin; m <= iagemax+3; m++)
   double age,agelim;          prop[i][m]=0;
   int theta;        
            dateintsum=0;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        k2cpt=0;
   fprintf(ficresvpl,"# Age");        for (i=1; i<=imx; i++) {
   for(i=1; i<=nlstate;i++)          bool=1;
       fprintf(ficresvpl," %1d-%1d",i,i);          if  (cptcovn>0) {
   fprintf(ficresvpl,"\n");            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   xp=vector(1,npar);                bool=0;
   dnewm=matrix(1,nlstate,1,npar);          }
   doldm=matrix(1,nlstate,1,nlstate);          if (bool==1){
              for(m=firstpass; m<=lastpass; m++){
   hstepm=1*YEARM; /* Every year of age */              k2=anint[m][i]+(mint[m][i]/12.);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   agelim = AGESUP;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     if (stepm >= YEARM) hstepm=1;                if (m<lastpass) {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     gradg=matrix(1,npar,1,nlstate);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     gp=vector(1,nlstate);                }
     gm=vector(1,nlstate);                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     for(theta=1; theta <=npar; theta++){                  dateintsum=dateintsum+k2;
       for(i=1; i<=npar; i++){ /* Computes gradient */                  k2cpt++;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                }
       }                /*}*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
       for(i=1;i<=nlstate;i++)          }
         gp[i] = prlim[i][i];        }
             
       for(i=1; i<=npar; i++) /* Computes gradient */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if  (cptcovn>0) {
       for(i=1;i<=nlstate;i++)          fprintf(ficresp, "\n#********** Variable "); 
         gm[i] = prlim[i][i];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
       for(i=1;i<=nlstate;i++)        }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        for(i=1; i<=nlstate;i++) 
     } /* End theta */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
     trgradg =matrix(1,nlstate,1,npar);        
         for(i=iagemin; i <= iagemax+3; i++){
     for(j=1; j<=nlstate;j++)          if(i==iagemax+3){
       for(theta=1; theta <=npar; theta++)            fprintf(ficlog,"Total");
         trgradg[j][theta]=gradg[theta][j];          }else{
             if(first==1){
     for(i=1;i<=nlstate;i++)              first=0;
       varpl[i][(int)age] =0.;              printf("See log file for details...\n");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            fprintf(ficlog,"Age %d", i);
     for(i=1;i<=nlstate;i++)          }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     fprintf(ficresvpl,"%.0f ",age );              pp[jk] += freq[jk][m][i]; 
     for(i=1; i<=nlstate;i++)          }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficresvpl,"\n");            for(m=-1, pos=0; m <=0 ; m++)
     free_vector(gp,1,nlstate);              pos += freq[jk][m][i];
     free_vector(gm,1,nlstate);            if(pp[jk]>=1.e-10){
     free_matrix(gradg,1,npar,1,nlstate);              if(first==1){
     free_matrix(trgradg,1,nlstate,1,npar);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   } /* End age */              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   free_vector(xp,1,npar);            }else{
   free_matrix(doldm,1,nlstate,1,npar);              if(first==1)
   free_matrix(dnewm,1,nlstate,1,nlstate);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 }            }
           }
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          for(jk=1; jk <=nlstate ; jk++){
 {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   int i, j, i1, k1, j1, z1;              pp[jk] += freq[jk][m][i];
   int k=0, cptcode;          }       
   double **dnewm,**doldm;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double *xp;            pos += pp[jk];
   double *gp, *gm;            posprop += prop[jk][i];
   double **gradg, **trgradg;          }
   double age,agelim, cov[NCOVMAX];          for(jk=1; jk <=nlstate ; jk++){
   int theta;            if(pos>=1.e-5){
   char fileresprob[FILENAMELENGTH];              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   strcpy(fileresprob,"prob");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   strcat(fileresprob,fileres);            }else{
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {              if(first==1)
     printf("Problem with resultfile: %s\n", fileresprob);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            }
              if( i <= iagemax){
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");              if(pos>=1.e-5){
   fprintf(ficresprob,"# Age");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   for(i=1; i<=nlstate;i++)                /*probs[i][jk][j1]= pp[jk]/pos;*/
     for(j=1; j<=(nlstate+ndeath);j++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);              }
               else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   fprintf(ficresprob,"\n");            }
           }
           
   xp=vector(1,npar);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            for(m=-1; m <=nlstate+ndeath; m++)
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));              if(freq[jk][m][i] !=0 ) {
                if(first==1)
   cov[1]=1;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   j=cptcoveff;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              }
   j1=0;          if(i <= iagemax)
   for(k1=1; k1<=1;k1++){            fprintf(ficresp,"\n");
     for(i1=1; i1<=ncodemax[k1];i1++){          if(first==1)
     j1++;            printf("Others in log...\n");
           fprintf(ficlog,"\n");
     if  (cptcovn>0) {        }
       fprintf(ficresprob, "\n#********** Variable ");      }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
       fprintf(ficresprob, "**********\n#");    dateintmean=dateintsum/k2cpt; 
     }   
        fclose(ficresp);
       for (age=bage; age<=fage; age ++){    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
         cov[2]=age;    free_vector(pp,1,nlstate);
         for (k=1; k<=cptcovn;k++) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    /* End of Freq */
            }
         }  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /************ Prevalence ********************/
         for (k=1; k<=cptcovprod;k++)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {  
            /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         gradg=matrix(1,npar,1,9);       in each health status at the date of interview (if between dateprev1 and dateprev2).
         trgradg=matrix(1,9,1,npar);       We still use firstpass and lastpass as another selection.
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    */
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));   
        int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         for(theta=1; theta <=npar; theta++){    double ***freq; /* Frequencies */
           for(i=1; i<=npar; i++)    double *pp, **prop;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    double pos,posprop; 
              double  y2; /* in fractional years */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    int iagemin, iagemax;
            
           k=0;    iagemin= (int) agemin;
           for(i=1; i<= (nlstate+ndeath); i++){    iagemax= (int) agemax;
             for(j=1; j<=(nlstate+ndeath);j++){    /*pp=vector(1,nlstate);*/
               k=k+1;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
               gp[k]=pmmij[i][j];    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
             }    j1=0;
           }    
              j=cptcoveff;
           for(i=1; i<=npar; i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    
        for(k1=1; k1<=j;k1++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(i1=1; i1<=ncodemax[k1];i1++){
           k=0;        j1++;
           for(i=1; i<=(nlstate+ndeath); i++){        
             for(j=1; j<=(nlstate+ndeath);j++){        for (i=1; i<=nlstate; i++)  
               k=k+1;          for(m=iagemin; m <= iagemax+3; m++)
               gm[k]=pmmij[i][j];            prop[i][m]=0.0;
             }       
           }        for (i=1; i<=imx; i++) { /* Each individual */
                bool=1;
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          if  (cptcovn>0) {
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              for (z1=1; z1<=cptcoveff; z1++) 
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          } 
           for(theta=1; theta <=npar; theta++)          if (bool==1) { 
             trgradg[j][theta]=gradg[theta][j];            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                      y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                        if(agev[m][i]==1) agev[m][i]=iagemax+2;
         pmij(pmmij,cov,ncovmodel,x,nlstate);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                        if (s[m][i]>0 && s[m][i]<=nlstate) { 
         k=0;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         for(i=1; i<=(nlstate+ndeath); i++){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           for(j=1; j<=(nlstate+ndeath);j++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
             k=k+1;                } 
             gm[k]=pmmij[i][j];              }
           }            } /* end selection of waves */
         }          }
              }
      /*printf("\n%d ",(int)age);        for(i=iagemin; i <= iagemax+3; i++){  
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
      }*/            posprop += prop[jk][i]; 
           } 
         fprintf(ficresprob,"\n%d ",(int)age);  
           for(jk=1; jk <=nlstate ; jk++){     
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)            if( i <=  iagemax){ 
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));              if(posprop>=1.e-5){ 
                  probs[i][jk][j1]= prop[jk][i]/posprop;
       }              } 
     }            } 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          }/* end jk */ 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        }/* end i */ 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      } /* end i1 */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    } /* end k1 */
   }    
   free_vector(xp,1,npar);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   fclose(ficresprob);    /*free_vector(pp,1,nlstate);*/
      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 }  }  /* End of prevalence */
   
 /******************* Printing html file ***********/  /************* Waves Concatenation ***************/
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
  int lastpass, int stepm, int weightopt, char model[],\  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  {
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  char version[], int popforecast, int estepm ){       Death is a valid wave (if date is known).
   int jj1, k1, i1, cpt;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   FILE *fichtm;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   /*char optionfilehtm[FILENAMELENGTH];*/       and mw[mi+1][i]. dh depends on stepm.
        */
   strcpy(optionfilehtm,optionfile);  
   strcat(optionfilehtm,".htm");    int i, mi, m;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     printf("Problem with %s \n",optionfilehtm), exit(0);       double sum=0., jmean=0.;*/
   }    int first;
     int j, k=0,jk, ju, jl;
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    double sum=0.;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    first=0;
 \n    jmin=1e+5;
 Total number of observations=%d <br>\n    jmax=-1;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    jmean=0.;
 <hr  size=\"2\" color=\"#EC5E5E\">    for(i=1; i<=imx; i++){
  <ul><li>Outputs files<br>\n      mi=0;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      m=firstpass;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      while(s[m][i] <= nlstate){
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        if(s[m][i]>=1)
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n          mw[++mi][i]=m;
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n        if(m >=lastpass)
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          break;
         else
  fprintf(fichtm,"\n          m++;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n      }/* end while */
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      if (s[m][i] > nlstate){
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        mi++;     /* Death is another wave */
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n        /* if(mi==0)  never been interviewed correctly before death */
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);           /* Only death is a correct wave */
         mw[mi][i]=m;
  if(popforecast==1) fprintf(fichtm,"\n      }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      wav[i]=mi;
         <br>",fileres,fileres,fileres,fileres);      if(mi==0){
  else        nbwarn++;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        if(first==0){
 fprintf(fichtm," <li>Graphs</li><p>");          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
  m=cptcoveff;        }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        if(first==1){
           fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
  jj1=0;        }
  for(k1=1; k1<=m;k1++){      } /* end mi==0 */
    for(i1=1; i1<=ncodemax[k1];i1++){    } /* End individuals */
        jj1++;  
        if (cptcovn > 0) {    for(i=1; i<=imx; i++){
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      for(mi=1; mi<wav[i];mi++){
          for (cpt=1; cpt<=cptcoveff;cpt++)        if (stepm <=0)
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          dh[mi][i]=1;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        else{
        }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            if (agedc[i] < 2*AGESUP) {
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
        for(cpt=1; cpt<nlstate;cpt++){              if(j==0) j=1;  /* Survives at least one month after exam */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              else if(j<0){
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                nberr++;
        }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(cpt=1; cpt<=nlstate;cpt++) {                j=1; /* Temporary Dangerous patch */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
 interval) in state (%d): v%s%d%d.gif <br>                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
      }              }
      for(cpt=1; cpt<=nlstate;cpt++) {              k=k+1;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              if (j >= jmax) jmax=j;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              if (j <= jmin) jmin=j;
      }              sum=sum+j;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 health expectancies in states (1) and (2): e%s%d.gif<br>              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            }
 fprintf(fichtm,"\n</body>");          }
    }          else{
    }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 fclose(fichtm);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 }            k=k+1;
             if (j >= jmax) jmax=j;
 /******************* Gnuplot file **************/            else if (j <= jmin)jmin=j;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            if(j<0){
               nberr++;
   strcpy(optionfilegnuplot,optionfilefiname);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   strcat(optionfilegnuplot,".gp.txt");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            }
     printf("Problem with file %s",optionfilegnuplot);            sum=sum+j;
   }          }
           jk= j/stepm;
 #ifdef windows          jl= j -jk*stepm;
     fprintf(ficgp,"cd \"%s\" \n",pathc);          ju= j -(jk+1)*stepm;
 #endif          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 m=pow(2,cptcoveff);            if(jl==0){
                dh[mi][i]=jk;
  /* 1eme*/              bh[mi][i]=0;
   for (cpt=1; cpt<= nlstate ; cpt ++) {            }else{ /* We want a negative bias in order to only have interpolation ie
    for (k1=1; k1<= m ; k1 ++) {                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              bh[mi][i]=ju;
             }
 for (i=1; i<= nlstate ; i ++) {          }else{
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if(jl <= -ju){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              dh[mi][i]=jk;
 }              bh[mi][i]=jl;       /* bias is positive if real duration
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                                   * is higher than the multiple of stepm and negative otherwise.
     for (i=1; i<= nlstate ; i ++) {                                   */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            else{
 }              dh[mi][i]=jk+1;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              bh[mi][i]=ju;
      for (i=1; i<= nlstate ; i ++) {            }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if(dh[mi][i]==0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              dh[mi][i]=1; /* At least one step */
 }                bh[mi][i]=ju; /* At least one step */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          } /* end if mle */
    }        }
   }      } /* end wave */
   /*2 eme*/    }
     jmean=sum/k;
   for (k1=1; k1<= m ; k1 ++) {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       }
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;  /*********** Tricode ****************************/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  void tricode(int *Tvar, int **nbcode, int imx)
       for (j=1; j<= nlstate+1 ; j ++) {  {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int Ndum[20],ij=1, k, j, i, maxncov=19;
 }      int cptcode=0;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    cptcoveff=0; 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);   
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    for (k=0; k<maxncov; k++) Ndum[k]=0;
       for (j=1; j<= nlstate+1 ; j ++) {    for (k=1; k<=7; k++) ncodemax[k]=0;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 }        for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       fprintf(ficgp,"\" t\"\" w l 0,");                                 modality*/ 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       for (j=1; j<= nlstate+1 ; j ++) {        Ndum[ij]++; /*store the modality */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 }                                           Tvar[j]. If V=sex and male is 0 and 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                                         female is 1, then  cptcode=1.*/
       else fprintf(ficgp,"\" t\"\" w l 0,");      }
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      for (i=0; i<=cptcode; i++) {
   }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
        }
   /*3eme*/  
       ij=1; 
   for (k1=1; k1<= m ; k1 ++) {      for (i=1; i<=ncodemax[j]; i++) {
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for (k=0; k<= maxncov; k++) {
       k=2+nlstate*(2*cpt-2);          if (Ndum[k] != 0) {
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            nbcode[Tvar[j]][ij]=k; 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            ij++;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          if (ij > ncodemax[j]) break; 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        }  
       } 
 */    }  
       for (i=1; i< nlstate ; i ++) {  
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
       }   for (i=1; i<=ncovmodel-2; i++) { 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     }     ij=Tvar[i];
     }     Ndum[ij]++;
     }
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {   ij=1;
     for (cpt=1; cpt<nlstate ; cpt ++) {   for (i=1; i<= maxncov; i++) {
       k=3;     if((Ndum[i]!=0) && (i<=ncovcol)){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);       Tvaraff[ij]=i; /*For printing */
        ij++;
       for (i=1; i< nlstate ; i ++)     }
         fprintf(ficgp,"+$%d",k+i+1);   }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);   
         cptcoveff=ij-1; /*Number of simple covariates*/
       l=3+(nlstate+ndeath)*cpt;  }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {  /*********** Health Expectancies ****************/
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    {
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /* Health expectancies */
     }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   }      double age, agelim, hf;
      double ***p3mat,***varhe;
   /* proba elementaires */    double **dnewm,**doldm;
    for(i=1,jk=1; i <=nlstate; i++){    double *xp;
     for(k=1; k <=(nlstate+ndeath); k++){    double **gp, **gm;
       if (k != i) {    double ***gradg, ***trgradg;
         for(j=1; j <=ncovmodel; j++){    int theta;
          
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           jk++;    xp=vector(1,npar);
           fprintf(ficgp,"\n");    dnewm=matrix(1,nlstate*nlstate,1,npar);
         }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       }    
     }    fprintf(ficreseij,"# Health expectancies\n");
     }    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
     for(jk=1; jk <=m; jk++) {      for(j=1; j<=nlstate;j++)
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
    i=1;    fprintf(ficreseij,"\n");
    for(k2=1; k2<=nlstate; k2++) {  
      k3=i;    if(estepm < stepm){
      for(k=1; k<=(nlstate+ndeath); k++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
        if (k != k2){    }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    else  hstepm=estepm;   
 ij=1;    /* We compute the life expectancy from trapezoids spaced every estepm months
         for(j=3; j <=ncovmodel; j++) {     * This is mainly to measure the difference between two models: for example
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {     * if stepm=24 months pijx are given only every 2 years and by summing them
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);     * we are calculating an estimate of the Life Expectancy assuming a linear 
             ij++;     * progression in between and thus overestimating or underestimating according
           }     * to the curvature of the survival function. If, for the same date, we 
           else     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     * to compare the new estimate of Life expectancy with the same linear 
         }     * hypothesis. A more precise result, taking into account a more precise
           fprintf(ficgp,")/(1");     * curvature will be obtained if estepm is as small as stepm. */
          
         for(k1=1; k1 <=nlstate; k1++){      /* For example we decided to compute the life expectancy with the smallest unit */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 ij=1;       nhstepm is the number of hstepm from age to agelim 
           for(j=3; j <=ncovmodel; j++){       nstepm is the number of stepm from age to agelin. 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       Look at hpijx to understand the reason of that which relies in memory size
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       and note for a fixed period like estepm months */
             ij++;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           }       survival function given by stepm (the optimization length). Unfortunately it
           else       means that if the survival funtion is printed only each two years of age and if
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           }       results. So we changed our mind and took the option of the best precision.
           fprintf(ficgp,")");    */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    agelim=AGESUP;
         i=i+ncovmodel;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        }      /* nhstepm age range expressed in number of stepm */
      }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
    }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      /* if (stepm >= YEARM) hstepm=1;*/
    }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficgp);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 }  /* end gnuplot */      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
 /*************** Moving average **************/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   int i, cpt, cptcod;   
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;      /* Computing  Variances of health expectancies */
      
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){       for(theta=1; theta <=npar; theta++){
       for (i=1; i<=nlstate;i++){        for(i=1; i<=npar; i++){ 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for (cpt=0;cpt<=4;cpt++){        }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           }    
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        cptj=0;
         }        for(j=1; j<= nlstate; j++){
       }          for(i=1; i<=nlstate; i++){
     }            cptj=cptj+1;
                for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
           }
 /************** Forecasting ******************/        }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){       
         
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for(i=1; i<=npar; i++) 
   int *popage;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   double *popeffectif,*popcount;        
   double ***p3mat;        cptj=0;
   char fileresf[FILENAMELENGTH];        for(j=1; j<= nlstate; j++){
           for(i=1;i<=nlstate;i++){
  agelim=AGESUP;            cptj=cptj+1;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              }
            }
   strcpy(fileresf,"f");        }
   strcat(fileresf,fileres);        for(j=1; j<= nlstate*nlstate; j++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {          for(h=0; h<=nhstepm-1; h++){
     printf("Problem with forecast resultfile: %s\n", fileresf);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   }          }
   printf("Computing forecasting: result on file '%s' \n", fileresf);       } 
      
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  /* End theta */
   
   if (mobilav==1) {       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);       for(h=0; h<=nhstepm-1; h++)
   }        for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;            trgradg[h][j][theta]=gradg[h][theta][j];
   if (stepm<=12) stepsize=1;       
    
   agelim=AGESUP;       for(i=1;i<=nlstate*nlstate;i++)
          for(j=1;j<=nlstate*nlstate;j++)
   hstepm=1;          varhe[i][j][(int)age] =0.;
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);       printf("%d|",(int)age);fflush(stdout);
   anprojmean=yp;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   yp2=modf((yp1*12),&yp);       for(h=0;h<=nhstepm-1;h++){
   mprojmean=yp;        for(k=0;k<=nhstepm-1;k++){
   yp1=modf((yp2*30.5),&yp);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   jprojmean=yp;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   if(jprojmean==0) jprojmean=1;          for(i=1;i<=nlstate*nlstate;i++)
   if(mprojmean==0) jprojmean=1;            for(j=1;j<=nlstate*nlstate;j++)
                varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        }
        }
   for(cptcov=1;cptcov<=i2;cptcov++){      /* Computing expectancies */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(i=1; i<=nlstate;i++)
       k=k+1;        for(j=1; j<=nlstate;j++)
       fprintf(ficresf,"\n#******");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for(j=1;j<=cptcoveff;j++) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            
       }  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");          }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
            fprintf(ficreseij,"%3.0f",age );
            cptj=0;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      for(i=1; i<=nlstate;i++)
         fprintf(ficresf,"\n");        for(j=1; j<=nlstate;j++){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      fprintf(ficreseij,"\n");
           nhstepm = nhstepm/hstepm;     
                free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           oldm=oldms;savm=savms;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    printf("\n");
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    fprintf(ficlog,"\n");
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    free_vector(xp,1,npar);
               kk1=0.;kk2=0;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
               for(i=1; i<=nlstate;i++) {                  free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                 if (mobilav==1)    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  }
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  /************ Variance ******************/
                 }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
                  {
               }    /* Variance of health expectancies */
               if (h==(int)(calagedate+12*cpt)){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                 fprintf(ficresf," %.3f", kk1);    /* double **newm;*/
                            double **dnewm,**doldm;
               }    double **dnewmp,**doldmp;
             }    int i, j, nhstepm, hstepm, h, nstepm ;
           }    int k, cptcode;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *xp;
         }    double **gp, **gm;  /* for var eij */
       }    double ***gradg, ***trgradg; /*for var eij */
     }    double **gradgp, **trgradgp; /* for var p point j */
   }    double *gpp, *gmp; /* for var p point j */
            double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ***p3mat;
     double age,agelim, hf;
   fclose(ficresf);    double ***mobaverage;
 }    int theta;
 /************** Forecasting ******************/    char digit[4];
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    char digitp[25];
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    char fileresprobmorprev[FILENAMELENGTH];
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    if(popbased==1){
   double *popeffectif,*popcount;      if(mobilav!=0)
   double ***p3mat,***tabpop,***tabpopprev;        strcpy(digitp,"-populbased-mobilav-");
   char filerespop[FILENAMELENGTH];      else strcpy(digitp,"-populbased-nomobil-");
     }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      strcpy(digitp,"-stablbased-");
   agelim=AGESUP;  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcpy(filerespop,"pop");      }
   strcat(filerespop,fileres);    }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);    strcpy(fileresprobmorprev,"prmorprev"); 
   }    sprintf(digit,"%-d",ij);
   printf("Computing forecasting: result on file '%s' \n", filerespop);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   if (mobilav==1) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   }    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (stepm<=12) stepsize=1;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   agelim=AGESUP;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
   hstepm=1;      for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
   if (popforecast==1) {    fprintf(ficresprobmorprev,"\n");
     if((ficpop=fopen(popfile,"r"))==NULL) {    fprintf(ficgp,"\n# Routine varevsij");
       printf("Problem with population file : %s\n",popfile);exit(0);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     popage=ivector(0,AGESUP);  /*   } */
     popeffectif=vector(0,AGESUP);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     popcount=vector(0,AGESUP);  
        fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     i=1;      fprintf(ficresvij,"# Age");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
     imx=i;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    fprintf(ficresvij,"\n");
   }  
     xp=vector(1,npar);
   for(cptcov=1;cptcov<=i2;cptcov++){    dnewm=matrix(1,nlstate,1,npar);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    doldm=matrix(1,nlstate,1,nlstate);
       k=k+1;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       fprintf(ficrespop,"\n#******");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       }    gpp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficrespop,"******\n");    gmp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficrespop,"# Age");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    
       if (popforecast==1)  fprintf(ficrespop," [Population]");    if(estepm < stepm){
            printf ("Problem %d lower than %d\n",estepm, stepm);
       for (cpt=0; cpt<=0;cpt++) {    }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      else  hstepm=estepm;   
            /* For example we decided to compute the life expectancy with the smallest unit */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       nhstepm is the number of hstepm from age to agelim 
           nhstepm = nhstepm/hstepm;       nstepm is the number of stepm from age to agelin. 
                 Look at hpijx to understand the reason of that which relies in memory size
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and note for a fixed period like k years */
           oldm=oldms;savm=savms;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         survival function given by stepm (the optimization length). Unfortunately it
               means that if the survival funtion is printed every two years of age and if
           for (h=0; h<=nhstepm; h++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             if (h==(int) (calagedate+YEARM*cpt)) {       results. So we changed our mind and took the option of the best precision.
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    */
             }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             for(j=1; j<=nlstate+ndeath;j++) {    agelim = AGESUP;
               kk1=0.;kk2=0;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               for(i=1; i<=nlstate;i++) {                    nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                 if (mobilav==1)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 else {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      gp=matrix(0,nhstepm,1,nlstate);
                 }      gm=matrix(0,nhstepm,1,nlstate);
               }  
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      for(theta=1; theta <=npar; theta++){
                   /*fprintf(ficrespop," %.3f", kk1);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               }        }
             }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             for(i=1; i<=nlstate;i++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){        if (popbased==1) {
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          if(mobilav ==0){
                 }            for(i=1; i<=nlstate;i++)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];              prlim[i][i]=probs[(int)age][i][ij];
             }          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          }
           }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }        for(j=1; j<= nlstate; j++){
       }          for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   /******/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          /* This for computing probability of death (h=1 means
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){           computed over hstepm matrices product = hstepm*stepm months) 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           as a weighted average of prlim.
           nhstepm = nhstepm/hstepm;        */
                  for(j=nlstate+1;j<=nlstate+ndeath;j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           oldm=oldms;savm=savms;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          }    
           for (h=0; h<=nhstepm; h++){        /* end probability of death */
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
             }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             for(j=1; j<=nlstate+ndeath;j++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               kk1=0.;kk2=0;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               for(i=1; i<=nlstate;i++) {                 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            if (popbased==1) {
               }          if(mobilav ==0){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=probs[(int)age][i][ij];
           }          }else{ /* mobilav */ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
    }        }
   }  
          for(j=1; j<= nlstate; j++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   if (popforecast==1) {              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     free_ivector(popage,0,AGESUP);          }
     free_vector(popeffectif,0,AGESUP);        }
     free_vector(popcount,0,AGESUP);        /* This for computing probability of death (h=1 means
   }           computed over hstepm matrices product = hstepm*stepm months) 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           as a weighted average of prlim.
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        */
   fclose(ficrespop);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
 /***********************************************/        }    
 /**************** Main Program *****************/        /* end probability of death */
 /***********************************************/  
         for(j=1; j<= nlstate; j++) /* vareij */
 int main(int argc, char *argv[])          for(h=0; h<=nhstepm; h++){
 {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   double fret;  
   double **xi,tmp,delta;      } /* End theta */
   
   double dum; /* Dummy variable */      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   double ***p3mat;  
   int *indx;      for(h=0; h<=nhstepm; h++) /* veij */
   char line[MAXLINE], linepar[MAXLINE];        for(j=1; j<=nlstate;j++)
   char title[MAXLINE];          for(theta=1; theta <=npar; theta++)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];            trgradg[h][j][theta]=gradg[h][theta][j];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
   char filerest[FILENAMELENGTH];    
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      for(i=1;i<=nlstate;i++)
   int firstobs=1, lastobs=10;        for(j=1;j<=nlstate;j++)
   int sdeb, sfin; /* Status at beginning and end */          vareij[i][j][(int)age] =0.;
   int c,  h , cpt,l;  
   int ju,jl, mi;      for(h=0;h<=nhstepm;h++){
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        for(k=0;k<=nhstepm;k++){
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   int mobilav=0,popforecast=0;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   int hstepm, nhstepm;          for(i=1;i<=nlstate;i++)
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   double bage, fage, age, agelim, agebase;        }
   double ftolpl=FTOL;      }
   double **prlim;    
   double *severity;      /* pptj */
   double ***param; /* Matrix of parameters */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   double  *p;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   double **matcov; /* Matrix of covariance */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   double ***delti3; /* Scale */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   double *delti; /* Scale */          varppt[j][i]=doldmp[j][i];
   double ***eij, ***vareij;      /* end ppptj */
   double **varpl; /* Variances of prevalence limits by age */      /*  x centered again */
   double *epj, vepp;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   double kk1, kk2;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;   
        if (popbased==1) {
         if(mobilav ==0){
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";          for(i=1; i<=nlstate;i++)
   char *alph[]={"a","a","b","c","d","e"}, str[4];            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
   char z[1]="c", occ;            prlim[i][i]=mobaverage[(int)age][i][ij];
 #include <sys/time.h>        }
 #include <time.h>      }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];               
        /* This for computing probability of death (h=1 means
   /* long total_usecs;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   struct timeval start_time, end_time;         as a weighted average of prlim.
        */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   getcwd(pathcd, size);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   printf("\n%s",version);      }    
   if(argc <=1){      /* end probability of death */
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   else{        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     strcpy(pathtot,argv[1]);        for(i=1; i<=nlstate;i++){
   }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        }
   /*cygwin_split_path(pathtot,path,optionfile);      } 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      fprintf(ficresprobmorprev,"\n");
   /* cutv(path,optionfile,pathtot,'\\');*/  
       fprintf(ficresvij,"%.0f ",age );
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      for(i=1; i<=nlstate;i++)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        for(j=1; j<=nlstate;j++){
   chdir(path);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   replace(pathc,path);        }
       fprintf(ficresvij,"\n");
 /*-------- arguments in the command line --------*/      free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
   strcpy(fileres,"r");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   strcat(fileres, optionfilefiname);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   strcat(fileres,".txt");    /* Other files have txt extension */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
   /*---------arguments file --------*/    free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     printf("Problem with optionfile %s\n",optionfile);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     goto end;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   strcpy(filereso,"o");  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   strcat(filereso,fileres);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   if((ficparo=fopen(filereso,"w"))==NULL) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   /* Reads comments: lines beginning with '#' */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     ungetc(c,ficpar);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     fgets(line, MAXLINE, ficpar);  */
     puts(line);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fputs(line,ficparo);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   }  
   ungetc(c,ficpar);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    free_matrix(dnewm,1,nlstate,1,npar);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fgets(line, MAXLINE, ficpar);    fclose(ficresprobmorprev);
     puts(line);    fflush(ficgp);
     fputs(line,ficparo);    fflush(fichtm); 
   }  }  /* end varevsij */
   ungetc(c,ficpar);  
    /************ Variance of prevlim ******************/
      void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   covar=matrix(0,NCOVMAX,1,n);  {
   cptcovn=0;    /* Variance of prevalence limit */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
   ncovmodel=2+cptcovn;    double **dnewm,**doldm;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    int i, j, nhstepm, hstepm;
      int k, cptcode;
   /* Read guess parameters */    double *xp;
   /* Reads comments: lines beginning with '#' */    double *gp, *gm;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **gradg, **trgradg;
     ungetc(c,ficpar);    double age,agelim;
     fgets(line, MAXLINE, ficpar);    int theta;
     puts(line);     
     fputs(line,ficparo);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   }    fprintf(ficresvpl,"# Age");
   ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %1d-%1d",i,i);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficresvpl,"\n");
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){    xp=vector(1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    dnewm=matrix(1,nlstate,1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    doldm=matrix(1,nlstate,1,nlstate);
       printf("%1d%1d",i,j);    
       for(k=1; k<=ncovmodel;k++){    hstepm=1*YEARM; /* Every year of age */
         fscanf(ficpar," %lf",&param[i][j][k]);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         printf(" %lf",param[i][j][k]);    agelim = AGESUP;
         fprintf(ficparo," %lf",param[i][j][k]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fscanf(ficpar,"\n");      if (stepm >= YEARM) hstepm=1;
       printf("\n");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       fprintf(ficparo,"\n");      gradg=matrix(1,npar,1,nlstate);
     }      gp=vector(1,nlstate);
        gm=vector(1,nlstate);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
       for(theta=1; theta <=npar; theta++){
   p=param[1][1];        for(i=1; i<=npar; i++){ /* Computes gradient */
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);          gp[i] = prlim[i][i];
     puts(line);      
     fputs(line,ficparo);        for(i=1; i<=npar; i++) /* Computes gradient */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          gm[i] = prlim[i][i];
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){        for(i=1;i<=nlstate;i++)
     for(j=1; j <=nlstate+ndeath-1; j++){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       fscanf(ficpar,"%1d%1d",&i1,&j1);      } /* End theta */
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);      trgradg =matrix(1,nlstate,1,npar);
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);      for(j=1; j<=nlstate;j++)
         printf(" %le",delti3[i][j][k]);        for(theta=1; theta <=npar; theta++)
         fprintf(ficparo," %le",delti3[i][j][k]);          trgradg[j][theta]=gradg[theta][j];
       }  
       fscanf(ficpar,"\n");      for(i=1;i<=nlstate;i++)
       printf("\n");        varpl[i][(int)age] =0.;
       fprintf(ficparo,"\n");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   }      for(i=1;i<=nlstate;i++)
   delti=delti3[1][1];        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
   /* Reads comments: lines beginning with '#' */      fprintf(ficresvpl,"%.0f ",age );
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     fgets(line, MAXLINE, ficpar);      fprintf(ficresvpl,"\n");
     puts(line);      free_vector(gp,1,nlstate);
     fputs(line,ficparo);      free_vector(gm,1,nlstate);
   }      free_matrix(gradg,1,npar,1,nlstate);
   ungetc(c,ficpar);      free_matrix(trgradg,1,nlstate,1,npar);
      } /* End age */
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){    free_vector(xp,1,npar);
     fscanf(ficpar,"%s",&str);    free_matrix(doldm,1,nlstate,1,npar);
     printf("%s",str);    free_matrix(dnewm,1,nlstate,1,nlstate);
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){  }
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);  /************ Variance of one-step probabilities  ******************/
       fprintf(ficparo," %.5le",matcov[i][j]);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     }  {
     fscanf(ficpar,"\n");    int i, j=0,  i1, k1, l1, t, tj;
     printf("\n");    int k2, l2, j1,  z1;
     fprintf(ficparo,"\n");    int k=0,l, cptcode;
   }    int first=1, first1;
   for(i=1; i <=npar; i++)    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     for(j=i+1;j<=npar;j++)    double **dnewm,**doldm;
       matcov[i][j]=matcov[j][i];    double *xp;
        double *gp, *gm;
   printf("\n");    double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     /*-------- Rewriting paramater file ----------*/    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      strcpy(rfileres,"r");    /* "Rparameterfile */    int theta;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    char fileresprob[FILENAMELENGTH];
      strcat(rfileres,".");    /* */    char fileresprobcov[FILENAMELENGTH];
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    char fileresprobcor[FILENAMELENGTH];
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    double ***varpij;
     }  
     fprintf(ficres,"#%s\n",version);    strcpy(fileresprob,"prob"); 
        strcat(fileresprob,fileres);
     /*-------- data file ----------*/    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     if((fic=fopen(datafile,"r"))==NULL)    {      printf("Problem with resultfile: %s\n", fileresprob);
       printf("Problem with datafile: %s\n", datafile);goto end;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }    }
     strcpy(fileresprobcov,"probcov"); 
     n= lastobs;    strcat(fileresprobcov,fileres);
     severity = vector(1,maxwav);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     outcome=imatrix(1,maxwav+1,1,n);      printf("Problem with resultfile: %s\n", fileresprobcov);
     num=ivector(1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     moisnais=vector(1,n);    }
     annais=vector(1,n);    strcpy(fileresprobcor,"probcor"); 
     moisdc=vector(1,n);    strcat(fileresprobcor,fileres);
     andc=vector(1,n);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     agedc=vector(1,n);      printf("Problem with resultfile: %s\n", fileresprobcor);
     cod=ivector(1,n);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     weight=vector(1,n);    }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     mint=matrix(1,maxwav,1,n);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     anint=matrix(1,maxwav,1,n);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     s=imatrix(1,maxwav+1,1,n);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     adl=imatrix(1,maxwav+1,1,n);        printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     tab=ivector(1,NCOVMAX);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     ncodemax=ivector(1,8);    
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     i=1;    fprintf(ficresprob,"# Age");
     while (fgets(line, MAXLINE, fic) != NULL)    {    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       if ((i >= firstobs) && (i <=lastobs)) {    fprintf(ficresprobcov,"# Age");
            fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         for (j=maxwav;j>=1;j--){    fprintf(ficresprobcov,"# Age");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=1; j<=(nlstate+ndeath);j++){
         }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                fprintf(ficresprobcov," p%1d-%1d ",i,j);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      }  
    /* fprintf(ficresprob,"\n");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobcov,"\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresprobcor,"\n");
    */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);   xp=vector(1,npar);
         for (j=ncovcol;j>=1;j--){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
         num[i]=atol(stra);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
            first=1;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    fprintf(ficgp,"\n# Routine varprob");
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
         i=i+1;  
       }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     /* printf("ii=%d", ij);    file %s<br>\n",optionfilehtmcov);
        scanf("%d",i);*/    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   imx=i-1; /* Number of individuals */  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   /* for (i=1; i<=imx; i++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  standard deviations wide on each axis. <br>\
     }*/   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    /*  for (i=1; i<=imx; i++){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      if (s[4][i]==9)  s[4][i]=-1;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  
      cov[1]=1;
      tj=cptcoveff;
   /* Calculation of the number of parameter from char model*/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   Tvar=ivector(1,15);    j1=0;
   Tprod=ivector(1,15);    for(t=1; t<=tj;t++){
   Tvaraff=ivector(1,15);      for(i1=1; i1<=ncodemax[t];i1++){ 
   Tvard=imatrix(1,15,1,2);        j1++;
   Tage=ivector(1,15);              if  (cptcovn>0) {
              fprintf(ficresprob, "\n#********** Variable "); 
   if (strlen(model) >1){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     j=0, j1=0, k1=1, k2=1;          fprintf(ficresprob, "**********\n#\n");
     j=nbocc(model,'+');          fprintf(ficresprobcov, "\n#********** Variable "); 
     j1=nbocc(model,'*');          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     cptcovn=j+1;          fprintf(ficresprobcov, "**********\n#\n");
     cptcovprod=j1;          
              fprintf(ficgp, "\n#********** Variable "); 
     strcpy(modelsav,model);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          fprintf(ficgp, "**********\n#\n");
       printf("Error. Non available option model=%s ",model);          
       goto end;          
     }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(i=(j+1); i>=1;i--){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       cutv(stra,strb,modelsav,'+');          
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          fprintf(ficresprobcor, "\n#********** Variable ");    
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       /*scanf("%d",i);*/          fprintf(ficresprobcor, "**********\n#");    
       if (strchr(strb,'*')) {        }
         cutv(strd,strc,strb,'*');        
         if (strcmp(strc,"age")==0) {        for (age=bage; age<=fage; age ++){ 
           cptcovprod--;          cov[2]=age;
           cutv(strb,stre,strd,'V');          for (k=1; k<=cptcovn;k++) {
           Tvar[i]=atoi(stre);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           cptcovage++;          }
             Tage[cptcovage]=i;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             /*printf("stre=%s ", stre);*/          for (k=1; k<=cptcovprod;k++)
         }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         else if (strcmp(strd,"age")==0) {          
           cptcovprod--;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           cutv(strb,stre,strc,'V');          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           Tvar[i]=atoi(stre);          gp=vector(1,(nlstate)*(nlstate+ndeath));
           cptcovage++;          gm=vector(1,(nlstate)*(nlstate+ndeath));
           Tage[cptcovage]=i;      
         }          for(theta=1; theta <=npar; theta++){
         else {            for(i=1; i<=npar; i++)
           cutv(strb,stre,strc,'V');              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           Tvar[i]=ncovcol+k1;            
           cutv(strb,strc,strd,'V');            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           Tprod[k1]=i;            
           Tvard[k1][1]=atoi(strc);            k=0;
           Tvard[k1][2]=atoi(stre);            for(i=1; i<= (nlstate); i++){
           Tvar[cptcovn+k2]=Tvard[k1][1];              for(j=1; j<=(nlstate+ndeath);j++){
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                k=k+1;
           for (k=1; k<=lastobs;k++)                gp[k]=pmmij[i][j];
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];              }
           k1++;            }
           k2=k2+2;            
         }            for(i=1; i<=npar; i++)
       }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       else {      
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
        /*  scanf("%d",i);*/            k=0;
       cutv(strd,strc,strb,'V');            for(i=1; i<=(nlstate); i++){
       Tvar[i]=atoi(strc);              for(j=1; j<=(nlstate+ndeath);j++){
       }                k=k+1;
       strcpy(modelsav,stra);                  gm[k]=pmmij[i][j];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);              }
         scanf("%d",i);*/            }
     }       
 }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          }
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     fclose(fic);            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
     /*  if(mle==1){*/          
     if (weightopt != 1) { /* Maximisation without weights*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       for(i=1;i<=n;i++) weight[i]=1.0;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     /*-calculation of age at interview from date of interview and age at death -*/          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     agev=matrix(1,maxwav,1,imx);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {          pmij(pmmij,cov,ncovmodel,x,nlstate);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          
          anint[m][i]=9999;          k=0;
          s[m][i]=-1;          for(i=1; i<=(nlstate); i++){
        }            for(j=1; j<=(nlstate+ndeath);j++){
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;              k=k+1;
       }              mu[k][(int) age]=pmmij[i][j];
     }            }
           }
     for (i=1; i<=imx; i++)  {          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       for(m=1; (m<= maxwav); m++){              varpij[i][j][(int)age] = doldm[i][j];
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {          /*printf("\n%d ",(int)age);
             if(agedc[i]>0)            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               if(moisdc[i]!=99 && andc[i]!=9999)            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                 agev[m][i]=agedc[i];            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            }*/
            else {  
               if (andc[i]!=9999){          fprintf(ficresprob,"\n%d ",(int)age);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          fprintf(ficresprobcov,"\n%d ",(int)age);
               agev[m][i]=-1;          fprintf(ficresprobcor,"\n%d ",(int)age);
               }  
             }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           else if(s[m][i] !=9){ /* Should no more exist */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             if(mint[m][i]==99 || anint[m][i]==9999)            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
               agev[m][i]=1;          }
             else if(agev[m][i] <agemin){          i=0;
               agemin=agev[m][i];          for (k=1; k<=(nlstate);k++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            for (l=1; l<=(nlstate+ndeath);l++){ 
             }              i=i++;
             else if(agev[m][i] >agemax){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               agemax=agev[m][i];              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              for (j=1; j<=i;j++){
             }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
             /*agev[m][i]=anint[m][i]-annais[i];*/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
             /*   agev[m][i] = age[i]+2*m;*/              }
           }            }
           else { /* =9 */          }/* end of loop for state */
             agev[m][i]=1;        } /* end of loop for age */
             s[m][i]=-1;  
           }        /* Confidence intervalle of pij  */
         }        /*
         else /*= 0 Unknown */          fprintf(ficgp,"\nset noparametric;unset label");
           agev[m][i]=1;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
              fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     for (i=1; i<=imx; i++)  {          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       for(m=1; (m<= maxwav); m++){          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         if (s[m][i] > (nlstate+ndeath)) {        */
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         }        first1=1;
       }        for (k2=1; k2<=(nlstate);k2++){
     }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
     free_vector(severity,1,maxwav);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     free_imatrix(outcome,1,maxwav+1,1,n);                if(l1==k1) continue;
     free_vector(moisnais,1,n);                i=(k1-1)*(nlstate+ndeath)+l1;
     free_vector(annais,1,n);                if(i<=j) continue;
     /* free_matrix(mint,1,maxwav,1,n);                for (age=bage; age<=fage; age ++){ 
        free_matrix(anint,1,maxwav,1,n);*/                  if ((int)age %5==0){
     free_vector(moisdc,1,n);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     free_vector(andc,1,n);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                        mu1=mu[i][(int) age]/stepm*YEARM ;
     wav=ivector(1,imx);                    mu2=mu[j][(int) age]/stepm*YEARM;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                    c12=cv12/sqrt(v1*v2);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                    /* Computing eigen value of matrix of covariance */
                        lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     /* Concatenates waves */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                    /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
       Tcode=ivector(1,100);                    v21=(lc1-v1)/cv12*v11;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                    v12=-v21;
       ncodemax[1]=1;                    v22=v11;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                    tnalp=v21/v11;
                          if(first1==1){
    codtab=imatrix(1,100,1,10);                      first1=0;
    h=0;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
    m=pow(2,cptcoveff);                    }
                      fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
    for(k=1;k<=cptcoveff; k++){                    /*printf(fignu*/
      for(i=1; i <=(m/pow(2,k));i++){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
        for(j=1; j <= ncodemax[k]; j++){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                    if(first==1){
            h++;                      first=0;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                      fprintf(ficgp,"\nset parametric;unset label");
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
          }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
        }                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
      }   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
    }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       codtab[1][2]=1;codtab[2][2]=2; */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    /* for(i=1; i <=m ;i++){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for(k=1; k <=cptcovn; k++){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       printf("\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       scanf("%d",i);*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                  mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    /* Calculates basic frequencies. Computes observed prevalence at single age                    }else{
        and prints on file fileres'p'. */                      first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                          fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                          fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    }/* if first */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                  } /* age mod 5 */
                      } /* end loop age */
     /* For Powell, parameters are in a vector p[] starting at p[1]                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                first=1;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              } /*l12 */
             } /* k12 */
     if(mle==1){          } /*l1 */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        }/* k1 */
     }      } /* loop covariates */
        }
     /*--------- results files --------------*/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_vector(xp,1,npar);
     fclose(ficresprob);
    jk=1;    fclose(ficresprobcov);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fclose(ficresprobcor);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fflush(ficgp);
    for(i=1,jk=1; i <=nlstate; i++){    fflush(fichtmcov);
      for(k=1; k <=(nlstate+ndeath); k++){  }
        if (k != i)  
          {  
            printf("%d%d ",i,k);  /******************* Printing html file ***********/
            fprintf(ficres,"%1d%1d ",i,k);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
            for(j=1; j <=ncovmodel; j++){                    int lastpass, int stepm, int weightopt, char model[],\
              printf("%f ",p[jk]);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
              fprintf(ficres,"%f ",p[jk]);                    int popforecast, int estepm ,\
              jk++;                    double jprev1, double mprev1,double anprev1, \
            }                    double jprev2, double mprev2,double anprev2){
            printf("\n");    int jj1, k1, i1, cpt;
            fprintf(ficres,"\n");  
          }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
      }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
    }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
  if(mle==1){     fprintf(fichtm,"\
     /* Computing hessian and covariance matrix */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     ftolhess=ftol; /* Usually correct */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     hesscov(matcov, p, npar, delti, ftolhess, func);     fprintf(fichtm,"\
  }   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     printf("# Scales (for hessian or gradient estimation)\n");     fprintf(fichtm,"\
      for(i=1,jk=1; i <=nlstate; i++){   - Life expectancies by age and initial health status (estepm=%2d months): \
       for(j=1; j <=nlstate+ndeath; j++){     <a href=\"%s\">%s</a> <br>\n</li>",
         if (j!=i) {             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);   m=cptcoveff;
             fprintf(ficres," %.5e",delti[jk]);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
             jk++;  
           }   jj1=0;
           printf("\n");   for(k1=1; k1<=m;k1++){
           fprintf(ficres,"\n");     for(i1=1; i1<=ncodemax[k1];i1++){
         }       jj1++;
       }       if (cptcovn > 0) {
      }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             for (cpt=1; cpt<=cptcoveff;cpt++) 
     k=1;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       }
     for(i=1;i<=npar;i++){       /* Pij */
       /*  if (k>nlstate) k=1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
       i1=(i-1)/(ncovmodel*nlstate)+1;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       /* Quasi-incidences */
       printf("%s%d%d",alph[k],i1,tab[i]);*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       fprintf(ficres,"%3d",i);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
       printf("%3d",i);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       for(j=1; j<=i;j++){         /* Stable prevalence in each health state */
         fprintf(ficres," %.5e",matcov[i][j]);         for(cpt=1; cpt<nlstate;cpt++){
         printf(" %.5e",matcov[i][j]);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
       }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       fprintf(ficres,"\n");         }
       printf("\n");       for(cpt=1; cpt<=nlstate;cpt++) {
       k++;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
     }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
           }
     while((c=getc(ficpar))=='#' && c!= EOF){     } /* end i1 */
       ungetc(c,ficpar);   }/* End k1 */
       fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"</ul>");
       puts(line);  
       fputs(line,ficparo);  
     }   fprintf(fichtm,"\
     ungetc(c,ficpar);  \n<br><li><h4> Result files (second order: variances)</h4>\n\
     estepm=0;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
     if (estepm==0 || estepm < stepm) estepm=stepm;   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     if (fage <= 2) {           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       bage = ageminpar;   fprintf(fichtm,"\
       fage = agemaxpar;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   fprintf(fichtm,"\
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     fprintf(fichtm,"\
     while((c=getc(ficpar))=='#' && c!= EOF){   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     ungetc(c,ficpar);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"\
     puts(line);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
     fputs(line,ficparo);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   }   fprintf(fichtm,"\
   ungetc(c,ficpar);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
             subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*  if(popforecast==1) fprintf(fichtm,"\n */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
        /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   while((c=getc(ficpar))=='#' && c!= EOF){  /*      <br>",fileres,fileres,fileres,fileres); */
     ungetc(c,ficpar);  /*  else  */
     fgets(line, MAXLINE, ficpar);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     puts(line);   fflush(fichtm);
     fputs(line,ficparo);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   }  
   ungetc(c,ficpar);   m=cptcoveff;
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;   jj1=0;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);       jj1++;
   fprintf(ficparo,"pop_based=%d\n",popbased);         if (cptcovn > 0) {
   fprintf(ficres,"pop_based=%d\n",popbased);           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
   while((c=getc(ficpar))=='#' && c!= EOF){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     ungetc(c,ficpar);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     fgets(line, MAXLINE, ficpar);       }
     puts(line);       for(cpt=1; cpt<=nlstate;cpt++) {
     fputs(line,ficparo);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   ungetc(c,ficpar);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  health expectancies in states (1) and (2): %s%d.png<br>\
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
 while((c=getc(ficpar))=='#' && c!= EOF){   fprintf(fichtm,"</ul>");
     ungetc(c,ficpar);   fflush(fichtm);
     fgets(line, MAXLINE, ficpar);  }
     puts(line);  
     fputs(line,ficparo);  /******************* Gnuplot file **************/
   }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   ungetc(c,ficpar);  
     char dirfileres[132],optfileres[132];
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    int ng;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
 /*------------ gnuplot -------------*/  
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    /*#ifdef windows */
      fprintf(ficgp,"cd \"%s\" \n",pathc);
 /*------------ free_vector  -------------*/      /*#endif */
  chdir(path);    m=pow(2,cptcoveff);
    
  free_ivector(wav,1,imx);    strcpy(dirfileres,optionfilefiname);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    strcpy(optfileres,"vpl");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     /* 1eme*/
  free_ivector(num,1,n);    for (cpt=1; cpt<= nlstate ; cpt ++) {
  free_vector(agedc,1,n);     for (k1=1; k1<= m ; k1 ++) {
  /*free_matrix(covar,1,NCOVMAX,1,n);*/       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
  fclose(ficparo);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
  fclose(ficres);       fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
 /*--------- index.htm --------*/  set ter png small\n\
   set size 0.65,0.65\n\
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
         for (i=1; i<= nlstate ; i ++) {
   /*--------------- Prevalence limit --------------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcpy(filerespl,"pl");       }
   strcat(filerespl,fileres);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       for (i=1; i<= nlstate ; i ++) {
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   }         else fprintf(ficgp," \%%*lf (\%%*lf)");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);       } 
   fprintf(ficrespl,"#Prevalence limit\n");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   fprintf(ficrespl,"#Age ");       for (i=1; i<= nlstate ; i ++) {
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fprintf(ficrespl,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
         }  
   prlim=matrix(1,nlstate,1,nlstate);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*2 eme*/
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    for (k1=1; k1<= m ; k1 ++) { 
   k=0;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   agebase=ageminpar;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   agelim=agemaxpar;      
   ftolpl=1.e-10;      for (i=1; i<= nlstate+1 ; i ++) {
   i1=cptcoveff;        k=2*i;
   if (cptcovn < 1){i1=1;}        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   for(cptcov=1;cptcov<=i1;cptcov++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
         k=k+1;        }   
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         fprintf(ficrespl,"\n#******");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficrespl,"******\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                  else fprintf(ficgp," \%%*lf (\%%*lf)");
         for (age=agebase; age<=agelim; age++){        }   
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficgp,"\" t\"\" w l 0,");
           fprintf(ficrespl,"%.0f",age );        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           for(i=1; i<=nlstate;i++)        for (j=1; j<= nlstate+1 ; j ++) {
           fprintf(ficrespl," %.5f", prlim[i][i]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrespl,"\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }        }   
       }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     }        else fprintf(ficgp,"\" t\"\" w l 0,");
   fclose(ficrespl);      }
     }
   /*------------- h Pij x at various ages ------------*/    
      /*3eme*/
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    for (k1=1; k1<= m ; k1 ++) { 
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      for (cpt=1; cpt<= nlstate ; cpt ++) {
   }        k=2+nlstate*(2*cpt-2);
   printf("Computing pij: result on file '%s' \n", filerespij);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
          fprintf(ficgp,"set ter png small\n\
   stepsize=(int) (stepm+YEARM-1)/YEARM;  set size 0.65,0.65\n\
   /*if (stepm<=24) stepsize=2;*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   agelim=AGESUP;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   hstepm=stepsize*YEARM; /* Every year of age */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
            for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   k=0;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   for(cptcov=1;cptcov<=i1;cptcov++){          
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        */
       k=k+1;        for (i=1; i< nlstate ; i ++) {
         fprintf(ficrespij,"\n#****** ");          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
         for(j=1;j<=cptcoveff;j++)          
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        } 
         fprintf(ficrespij,"******\n");      }
            }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* CV preval stable (period) */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    for (k1=1; k1<= m ; k1 ++) { 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (cpt=1; cpt<=nlstate ; cpt ++) {
           oldm=oldms;savm=savms;        k=3;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
           fprintf(ficrespij,"# Age");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
           for(i=1; i<=nlstate;i++)  set ter png small\nset size 0.65,0.65\n\
             for(j=1; j<=nlstate+ndeath;j++)  unset log y\n\
               fprintf(ficrespij," %1d-%1d",i,j);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
           fprintf(ficrespij,"\n");        
            for (h=0; h<=nhstepm; h++){        for (i=1; i< nlstate ; i ++)
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          fprintf(ficgp,"+$%d",k+i+1);
             for(i=1; i<=nlstate;i++)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
               for(j=1; j<=nlstate+ndeath;j++)        
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        l=3+(nlstate+ndeath)*cpt;
             fprintf(ficrespij,"\n");        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
              }        for (i=1; i< nlstate ; i ++) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficrespij,"\n");          fprintf(ficgp,"+$%d",l+i+1);
         }        }
     }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   }      } 
     }  
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    
     /* proba elementaires */
   fclose(ficrespij);    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
   /*---------- Forecasting ------------------*/          for(j=1; j <=ncovmodel; j++){
   if((stepm == 1) && (strcmp(model,".")==0)){            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);            jk++; 
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            fprintf(ficgp,"\n");
   }          }
   else{        }
     erreur=108;      }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);     }
   }  
       for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
   /*---------- Health expectancies and variances ------------*/         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
   strcpy(filerest,"t");           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   strcat(filerest,fileres);         else
   if((ficrest=fopen(filerest,"w"))==NULL) {           fprintf(ficgp,"\nset title \"Probability\"\n");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   }         i=1;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
   strcpy(filerese,"e");             if (k != k2){
   strcat(filerese,fileres);               if(ng==2)
   if((ficreseij=fopen(filerese,"w"))==NULL) {                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);               else
   }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);               ij=1;
                for(j=3; j <=ncovmodel; j++) {
  strcpy(fileresv,"v");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   strcat(fileresv,fileres);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                   ij++;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                 }
   }                 else
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   calagedate=-1;               }
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);               fprintf(ficgp,")/(1");
                
   k=0;               for(k1=1; k1 <=nlstate; k1++){   
   for(cptcov=1;cptcov<=i1;cptcov++){                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                 ij=1;
       k=k+1;                 for(j=3; j <=ncovmodel; j++){
       fprintf(ficrest,"\n#****** ");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       for(j=1;j<=cptcoveff;j++)                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                     ij++;
       fprintf(ficrest,"******\n");                   }
                    else
       fprintf(ficreseij,"\n#****** ");                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       for(j=1;j<=cptcoveff;j++)                 }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                 fprintf(ficgp,")");
       fprintf(ficreseij,"******\n");               }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       fprintf(ficresvij,"\n#****** ");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       for(j=1;j<=cptcoveff;j++)               i=i+ncovmodel;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);             }
       fprintf(ficresvij,"******\n");           } /* end k */
          } /* end k2 */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       } /* end jk */
       oldm=oldms;savm=savms;     } /* end ng */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);       fflush(ficgp); 
    }  /* end gnuplot */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  /*************** Moving average **************/
      int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
      int i, cpt, cptcod;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    int modcovmax =1;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    int mobilavrange, mob;
       fprintf(ficrest,"\n");    double age;
   
       epj=vector(1,nlstate+1);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
       for(age=bage; age <=fage ;age++){                             a covariate has 2 modalities */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             prlim[i][i]=probs[(int)age][i][k];      if(mobilav==1) mobilavrange=5; /* default */
         }      else mobilavrange=mobilav;
              for (age=bage; age<=fage; age++)
         fprintf(ficrest," %4.0f",age);        for (i=1; i<=nlstate;i++)
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      /* We keep the original values on the extreme ages bage, fage and for 
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           }         we use a 5 terms etc. until the borders are no more concerned. 
           epj[nlstate+1] +=epj[j];      */ 
         }      for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
         for(i=1, vepp=0.;i <=nlstate;i++)          for (i=1; i<=nlstate;i++){
           for(j=1;j <=nlstate;j++)            for (cptcod=1;cptcod<=modcovmax;cptcod++){
             vepp += vareij[i][j][(int)age];              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                for (cpt=1;cpt<=(mob-1)/2;cpt++){
         for(j=1;j <=nlstate;j++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         }                }
         fprintf(ficrest,"\n");              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       }            }
     }          }
   }        }/* end age */
 free_matrix(mint,1,maxwav,1,n);      }/* end mob */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    }else return -1;
     free_vector(weight,1,n);    return 0;
   fclose(ficreseij);  }/* End movingaverage */
   fclose(ficresvij);  
   fclose(ficrest);  
   fclose(ficpar);  /************** Forecasting ******************/
   free_vector(epj,1,nlstate+1);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
      /* proj1, year, month, day of starting projection 
   /*------- Variance limit prevalence------*/         agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
   strcpy(fileresvpl,"vpl");       anproj2 year of en of projection (same day and month as proj1).
   strcat(fileresvpl,fileres);    */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    int *popage;
     exit(0);    double agec; /* generic age */
   }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    double *popeffectif,*popcount;
     double ***p3mat;
   k=0;    double ***mobaverage;
   for(cptcov=1;cptcov<=i1;cptcov++){    char fileresf[FILENAMELENGTH];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    agelim=AGESUP;
       fprintf(ficresvpl,"\n#****** ");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       for(j=1;j<=cptcoveff;j++)   
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(fileresf,"f"); 
       fprintf(ficresvpl,"******\n");    strcat(fileresf,fileres);
          if((ficresf=fopen(fileresf,"w"))==NULL) {
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      printf("Problem with forecast resultfile: %s\n", fileresf);
       oldm=oldms;savm=savms;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    }
     }    printf("Computing forecasting: result on file '%s' \n", fileresf);
  }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
   fclose(ficresvpl);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   /*---------- End : free ----------------*/    if (mobilav!=0) {
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
      }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    if (stepm<=12) stepsize=1;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   free_matrix(matcov,1,npar,1,npar);    }
   free_vector(delti,1,npar);    else  hstepm=estepm;   
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   if(erreur >0)                                 fractional in yp1 */
     printf("End of Imach with error or warning %d\n",erreur);    anprojmean=yp;
   else   printf("End of Imach\n");    yp2=modf((yp1*12),&yp);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    mprojmean=yp;
      yp1=modf((yp2*30.5),&yp);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    jprojmean=yp;
   /*printf("Total time was %d uSec.\n", total_usecs);*/    if(jprojmean==0) jprojmean=1;
   /*------ End -----------*/    if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
  end:    if (cptcovn < 1){i1=1;}
   /* chdir(pathcd);*/    
  /*system("wgnuplot graph.plt");*/    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
  /*system("../gp37mgw/wgnuplot graph.plt");*/    
  /*system("cd ../gp37mgw");*/    fprintf(ficresf,"#****** Routine prevforecast **\n");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);  /*            if (h==(int)(YEARM*yearp)){ */
  strcat(plotcmd," ");    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
  strcat(plotcmd,optionfilegnuplot);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
  system(plotcmd);        k=k+1;
         fprintf(ficresf,"\n#******");
  /*#ifdef windows*/        for(j=1;j<=cptcoveff;j++) {
   while (z[0] != 'q') {          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     /* chdir(path); */        }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        fprintf(ficresf,"******\n");
     scanf("%s",z);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     if (z[0] == 'c') system("./imach");        for(j=1; j<=nlstate+ndeath;j++){ 
     else if (z[0] == 'e') system(optionfilehtm);          for(i=1; i<=nlstate;i++)              
     else if (z[0] == 'g') system(plotcmd);            fprintf(ficresf," p%d%d",i,j);
     else if (z[0] == 'q') exit(0);          fprintf(ficresf," p.%d",j);
   }        }
   /*#endif */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
 }          fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
         for(j=0; line[j] != '\n';j++){  /* Untabifies line */
           if(line[j] == '\t')
             line[j] = ' ';
         }
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.102


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>