Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.118

version 1.41.2.2, 2003/06/13 07:45:28 version 1.118, 2006/03/14 18:20:07
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.118  2006/03/14 18:20:07  brouard
      (Module): varevsij Comments added explaining the second
   This program computes Healthy Life Expectancies from    table of variances if popbased=1 .
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   first survey ("cross") where individuals from different ages are    (Module): Function pstamp added
   interviewed on their health status or degree of disability (in the    (Module): Version 0.98d
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.117  2006/03/14 17:16:22  brouard
   (if any) in individual health status.  Health expectancies are    (Module): varevsij Comments added explaining the second
   computed from the time spent in each health state according to a    table of variances if popbased=1 .
   model. More health states you consider, more time is necessary to reach the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Maximum Likelihood of the parameters involved in the model.  The    (Module): Function pstamp added
   simplest model is the multinomial logistic model where pij is the    (Module): Version 0.98d
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.116  2006/03/06 10:29:27  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Module): Variance-covariance wrong links and
   'age' is age and 'sex' is a covariate. If you want to have a more    varian-covariance of ej. is needed (Saito).
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.115  2006/02/27 12:17:45  brouard
   you to do it.  More covariates you add, slower the    (Module): One freematrix added in mlikeli! 0.98c
   convergence.  
     Revision 1.114  2006/02/26 12:57:58  brouard
   The advantage of this computer programme, compared to a simple    (Module): Some improvements in processing parameter
   multinomial logistic model, is clear when the delay between waves is not    filename with strsep.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.113  2006/02/24 14:20:24  brouard
   account using an interpolation or extrapolation.      (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
   hPijx is the probability to be observed in state i at age x+h    allocation too.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.112  2006/01/30 09:55:26  brouard
   states. This elementary transition (by month or quarter trimester,    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.111  2006/01/25 20:38:18  brouard
   and the contribution of each individual to the likelihood is simply    (Module): Lots of cleaning and bugs added (Gompertz)
   hPijx.    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.109  2006/01/24 19:37:15  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Comments (lines starting with a #) are allowed in data.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.108  2006/01/19 18:05:42  lievre
   software can be distributed freely for non commercial use. Latest version    Gnuplot problem appeared...
   can be accessed at http://euroreves.ined.fr/imach .    To be fixed
   **********************************************************************/  
      Revision 1.107  2006/01/19 16:20:37  brouard
 #include <math.h>    Test existence of gnuplot in imach path
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.106  2006/01/19 13:24:36  brouard
 #include <unistd.h>    Some cleaning and links added in html output
   
 #define MAXLINE 256    Revision 1.105  2006/01/05 20:23:19  lievre
 #define GNUPLOTPROGRAM "wgnuplot"    *** empty log message ***
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.104  2005/09/30 16:11:43  lievre
 /*#define DEBUG*/    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 /*#define windows*/    that the person is alive, then we can code his/her status as -2
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (instead of missing=-1 in earlier versions) and his/her
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    the healthy state at last known wave). Version is 0.98
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.103  2005/09/30 15:54:49  lievre
 #define NINTERVMAX 8    (Module): sump fixed, loop imx fixed, and simplifications.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.102  2004/09/15 17:31:30  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Add the possibility to read data file including tab characters.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.101  2004/09/15 10:38:38  brouard
 #define AGESUP 130    Fix on curr_time
 #define AGEBASE 40  
     Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 int erreur; /* Error number */  
 int nvar;    Revision 1.99  2004/06/05 08:57:40  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    *** empty log message ***
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.98  2004/05/16 15:05:56  brouard
 int ndeath=1; /* Number of dead states */    New version 0.97 . First attempt to estimate force of mortality
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    directly from the data i.e. without the need of knowing the health
 int popbased=0;    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 int *wav; /* Number of waves for this individuual 0 is possible */    other analysis, in order to test if the mortality estimated from the
 int maxwav; /* Maxim number of waves */    cross-longitudinal survey is different from the mortality estimated
 int jmin, jmax; /* min, max spacing between 2 waves */    from other sources like vital statistic data.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    The same imach parameter file can be used but the option for mle should be -3.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Agnès, who wrote this part of the code, tried to keep most of the
 double **oldm, **newm, **savm; /* Working pointers to matrices */    former routines in order to include the new code within the former code.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    The output is very simple: only an estimate of the intercept and of
 FILE *ficgp,*ficresprob,*ficpop;    the slope with 95% confident intervals.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Current limitations:
  FILE  *ficresvij;    A) Even if you enter covariates, i.e. with the
   char fileresv[FILENAMELENGTH];    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
  FILE  *ficresvpl;    B) There is no computation of Life Expectancy nor Life Table.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.97  2004/02/20 13:25:42  lievre
 #define NR_END 1    Version 0.96d. Population forecasting command line is (temporarily)
 #define FREE_ARG char*    suppressed.
 #define FTOL 1.0e-10  
     Revision 1.96  2003/07/15 15:38:55  brouard
 #define NRANSI    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define ITMAX 200    rewritten within the same printf. Workaround: many printfs.
   
 #define TOL 2.0e-4    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 #define CGOLD 0.3819660    (Repository): Using imachwizard code to output a more meaningful covariance
 #define ZEPS 1.0e-10    matrix (cov(a12,c31) instead of numbers.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.94  2003/06/27 13:00:02  brouard
 #define GOLD 1.618034    Just cleaning
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 static double maxarg1,maxarg2;    exist so I changed back to asctime which exists.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Version 0.96b
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.92  2003/06/25 16:30:45  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): On windows (cygwin) function asctime_r doesn't
 #define rint(a) floor(a+0.5)    exist so I changed back to asctime which exists.
   
 static double sqrarg;    Revision 1.91  2003/06/25 15:30:29  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    * imach.c (Repository): Duplicated warning errors corrected.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 int imx;    is stamped in powell.  We created a new html file for the graphs
 int stepm;    concerning matrix of covariance. It has extension -cov.htm.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.90  2003/06/24 12:34:15  brouard
 int estepm;    (Module): Some bugs corrected for windows. Also, when
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.89  2003/06/24 12:30:52  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Some bugs corrected for windows. Also, when
 double **pmmij, ***probs, ***mobaverage;    mle=-1 a template is output in file "or"mypar.txt with the design
 double dateintmean=0;    of the covariance matrix to be input.
   
 double *weight;    Revision 1.88  2003/06/23 17:54:56  brouard
 int **s; /* Status */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 /**************** split *************************/    routine fileappend.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
    char *s;                             /* pointer */    * imach.c (Repository): Check when date of death was earlier that
    int  l1, l2;                         /* length counters */    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
    l1 = strlen( path );                 /* length of path */    was wrong (infinity). We still send an "Error" but patch by
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    assuming that the date of death was just one stepm after the
 #ifdef windows    interview.
    s = strrchr( path, '\\' );           /* find last / */    (Repository): Because some people have very long ID (first column)
 #else    we changed int to long in num[] and we added a new lvector for
    s = strrchr( path, '/' );            /* find last / */    memory allocation. But we also truncated to 8 characters (left
 #endif    truncation)
    if ( s == NULL ) {                   /* no directory, so use current */    (Repository): No more line truncation errors.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
       if ( getwd( dirc ) == NULL ) {    place. It differs from routine "prevalence" which may be called
 #else    many times. Probs is memory consuming and must be used with
       extern char       *getcwd( );    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.83  2003/06/10 13:39:11  lievre
          return( GLOCK_ERROR_GETCWD );    *** empty log message ***
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.82  2003/06/05 15:57:20  brouard
    } else {                             /* strip direcotry from path */    Add log in  imach.c and  fullversion number is now printed.
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */  */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  /*
       strcpy( name, s );                /* save file name */     Interpolated Markov Chain
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Short summary of the programme:
    }    
    l1 = strlen( dirc );                 /* length of directory */    This program computes Healthy Life Expectancies from
 #ifdef windows    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    first survey ("cross") where individuals from different ages are
 #else    interviewed on their health status or degree of disability (in the
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    case of a health survey which is our main interest) -2- at least a
 #endif    second wave of interviews ("longitudinal") which measure each change
    s = strrchr( name, '.' );            /* find last / */    (if any) in individual health status.  Health expectancies are
    s++;    computed from the time spent in each health state according to a
    strcpy(ext,s);                       /* save extension */    model. More health states you consider, more time is necessary to reach the
    l1= strlen( name);    Maximum Likelihood of the parameters involved in the model.  The
    l2= strlen( s)+1;    simplest model is the multinomial logistic model where pij is the
    strncpy( finame, name, l1-l2);    probability to be observed in state j at the second wave
    finame[l1-l2]= 0;    conditional to be observed in state i at the first wave. Therefore
    return( 0 );                         /* we're done */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 /******************************************/    you to do it.  More covariates you add, slower the
     convergence.
 void replace(char *s, char*t)  
 {    The advantage of this computer programme, compared to a simple
   int i;    multinomial logistic model, is clear when the delay between waves is not
   int lg=20;    identical for each individual. Also, if a individual missed an
   i=0;    intermediate interview, the information is lost, but taken into
   lg=strlen(t);    account using an interpolation or extrapolation.  
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    hPijx is the probability to be observed in state i at age x+h
     if (t[i]== '\\') s[i]='/';    conditional to the observed state i at age x. The delay 'h' can be
   }    split into an exact number (nh*stepm) of unobserved intermediate
 }    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 int nbocc(char *s, char occ)    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   int i,j=0;    hPijx.
   int lg=20;  
   i=0;    Also this programme outputs the covariance matrix of the parameters but also
   lg=strlen(s);    of the life expectancies. It also computes the period (stable) prevalence. 
   for(i=0; i<= lg; i++) {    
   if  (s[i] == occ ) j++;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   }             Institut national d'études démographiques, Paris.
   return j;    This software have been partly granted by Euro-REVES, a concerted action
 }    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 void cutv(char *u,char *v, char*t, char occ)    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   int i,lg,j,p=0;  
   i=0;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   for(j=0; j<=strlen(t)-1; j++) {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    
   }    **********************************************************************/
   /*
   lg=strlen(t);    main
   for(j=0; j<p; j++) {    read parameterfile
     (u[j] = t[j]);    read datafile
   }    concatwav
      u[p]='\0';    freqsummary
     if (mle >= 1)
    for(j=0; j<= lg; j++) {      mlikeli
     if (j>=(p+1))(v[j-p-1] = t[j]);    print results files
   }    if mle==1 
 }       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 /********************** nrerror ********************/        begin-prev-date,...
     open gnuplot file
 void nrerror(char error_text[])    open html file
 {    period (stable) prevalence
   fprintf(stderr,"ERREUR ...\n");     for age prevalim()
   fprintf(stderr,"%s\n",error_text);    h Pij x
   exit(1);    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
 /*********************** vector *******************/    health expectancies
 double *vector(int nl, int nh)    Variance-covariance of DFLE
 {    prevalence()
   double *v;     movingaverage()
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    varevsij() 
   if (!v) nrerror("allocation failure in vector");    if popbased==1 varevsij(,popbased)
   return v-nl+NR_END;    total life expectancies
 }    Variance of period (stable) prevalence
    end
 /************************ free vector ******************/  */
 void free_vector(double*v, int nl, int nh)  
 {  
   free((FREE_ARG)(v+nl-NR_END));  
 }   
   #include <math.h>
 /************************ivector *******************************/  #include <stdio.h>
 int *ivector(long nl,long nh)  #include <stdlib.h>
 {  #include <string.h>
   int *v;  #include <unistd.h>
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  #include <limits.h>
   return v-nl+NR_END;  #include <sys/types.h>
 }  #include <sys/stat.h>
   #include <errno.h>
 /******************free ivector **************************/  extern int errno;
 void free_ivector(int *v, long nl, long nh)  
 {  /* #include <sys/time.h> */
   free((FREE_ARG)(v+nl-NR_END));  #include <time.h>
 }  #include "timeval.h"
   
 /******************* imatrix *******************************/  /* #include <libintl.h> */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  /* #define _(String) gettext (String) */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  #define MAXLINE 256
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  #define GNUPLOTPROGRAM "gnuplot"
    /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   /* allocate pointers to rows */  #define FILENAMELENGTH 132
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m += NR_END;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   m -= nrl;  
    #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define NINTERVMAX 8
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   m[nrl] += NR_END;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m[nrl] -= ncl;  #define NCOVMAX 8 /* Maximum number of covariates */
    #define MAXN 20000
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define YEARM 12. /* Number of months per year */
    #define AGESUP 130
   /* return pointer to array of pointers to rows */  #define AGEBASE 40
   return m;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 }  #ifdef UNIX
   #define DIRSEPARATOR '/'
 /****************** free_imatrix *************************/  #define CHARSEPARATOR "/"
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define ODIRSEPARATOR '\\'
       int **m;  #else
       long nch,ncl,nrh,nrl;  #define DIRSEPARATOR '\\'
      /* free an int matrix allocated by imatrix() */  #define CHARSEPARATOR "\\"
 {  #define ODIRSEPARATOR '/'
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #endif
   free((FREE_ARG) (m+nrl-NR_END));  
 }  /* $Id$ */
   /* $State$ */
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  char version[]="Imach version 0.98d, March 2006, INED-EUROREVES-Institut de longevite ";
 {  char fullversion[]="$Revision$ $Date$"; 
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  char strstart[80];
   double **m;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int nvar;
   if (!m) nrerror("allocation failure 1 in matrix()");  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   m += NR_END;  int npar=NPARMAX;
   m -= nrl;  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int popbased=0;
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int jmin, jmax; /* min, max spacing between 2 waves */
   return m;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 }  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
 /*************************free matrix ************************/  int mle, weightopt;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   free((FREE_ARG)(m+nrl-NR_END));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 }  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 /******************* ma3x *******************************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int globpr; /* Global variable for printing or not */
   double ***m;  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double sw; /* Sum of weights */
   if (!m) nrerror("allocation failure 1 in matrix()");  char filerespow[FILENAMELENGTH];
   m += NR_END;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m -= nrl;  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  FILE *ficresprobmorprev;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *fichtm, *fichtmcov; /* Html File */
   m[nrl] += NR_END;  FILE *ficreseij;
   m[nrl] -= ncl;  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char filerescve[FILENAMELENGTH];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  FILE  *ficresvij;
   m[nrl][ncl] += NR_END;  char fileresv[FILENAMELENGTH];
   m[nrl][ncl] -= nll;  FILE  *ficresvpl;
   for (j=ncl+1; j<=nch; j++)  char fileresvpl[FILENAMELENGTH];
     m[nrl][j]=m[nrl][j-1]+nlay;  char title[MAXLINE];
    char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     for (j=ncl+1; j<=nch; j++)  char command[FILENAMELENGTH];
       m[i][j]=m[i][j-1]+nlay;  int  outcmd=0;
   }  
   return m;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 }  
   char filelog[FILENAMELENGTH]; /* Log file */
 /*************************free ma3x ************************/  char filerest[FILENAMELENGTH];
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /***************** f1dim *************************/  extern int gettimeofday();
 extern int ncom;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 extern double *pcom,*xicom;  long time_value;
 extern double (*nrfunc)(double []);  extern long time();
    char strcurr[80], strfor[80];
 double f1dim(double x)  
 {  char *endptr;
   int j;  long lval;
   double f;  
   double *xt;  #define NR_END 1
    #define FREE_ARG char*
   xt=vector(1,ncom);  #define FTOL 1.0e-10
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  #define NRANSI 
   free_vector(xt,1,ncom);  #define ITMAX 200 
   return f;  
 }  #define TOL 2.0e-4 
   
 /*****************brent *************************/  #define CGOLD 0.3819660 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define ZEPS 1.0e-10 
 {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   int iter;  
   double a,b,d,etemp;  #define GOLD 1.618034 
   double fu,fv,fw,fx;  #define GLIMIT 100.0 
   double ftemp;  #define TINY 1.0e-20 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  static double maxarg1,maxarg2;
    #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   a=(ax < cx ? ax : cx);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   b=(ax > cx ? ax : cx);    
   x=w=v=bx;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   fw=fv=fx=(*f)(x);  #define rint(a) floor(a+0.5)
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  static double sqrarg;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     printf(".");fflush(stdout);  int agegomp= AGEGOMP;
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int imx; 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int stepm=1;
 #endif  /* Stepm, step in month: minimum step interpolation*/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  int estepm;
       return fx;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     }  
     ftemp=fu;  int m,nb;
     if (fabs(e) > tol1) {  long *num;
       r=(x-w)*(fx-fv);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       q=(x-v)*(fx-fw);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       p=(x-v)*q-(x-w)*r;  double **pmmij, ***probs;
       q=2.0*(q-r);  double *ageexmed,*agecens;
       if (q > 0.0) p = -p;  double dateintmean=0;
       q=fabs(q);  
       etemp=e;  double *weight;
       e=d;  int **s; /* Status */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  double *agedc, **covar, idx;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       else {  double *lsurv, *lpop, *tpop;
         d=p/q;  
         u=x+d;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
         if (u-a < tol2 || b-u < tol2)  double ftolhess; /* Tolerance for computing hessian */
           d=SIGN(tol1,xm-x);  
       }  /**************** split *************************/
     } else {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
     }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     fu=(*f)(u);    */ 
     if (fu <= fx) {    char  *ss;                            /* pointer */
       if (u >= x) a=x; else b=x;    int   l1, l2;                         /* length counters */
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)    l1 = strlen(path );                   /* length of path */
         } else {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
           if (u < x) a=u; else b=u;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
           if (fu <= fw || w == x) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
             v=w;      strcpy( name, path );               /* we got the fullname name because no directory */
             w=u;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
             fv=fw;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
             fw=fu;      /* get current working directory */
           } else if (fu <= fv || v == x || v == w) {      /*    extern  char* getcwd ( char *buf , int len);*/
             v=u;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
             fv=fu;        return( GLOCK_ERROR_GETCWD );
           }      }
         }      /* got dirc from getcwd*/
   }      printf(" DIRC = %s \n",dirc);
   nrerror("Too many iterations in brent");    } else {                              /* strip direcotry from path */
   *xmin=x;      ss++;                               /* after this, the filename */
   return fx;      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /****************** mnbrak ***********************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      printf(" DIRC2 = %s \n",dirc);
             double (*func)(double))    }
 {    /* We add a separator at the end of dirc if not exists */
   double ulim,u,r,q, dum;    l1 = strlen( dirc );                  /* length of directory */
   double fu;    if( dirc[l1-1] != DIRSEPARATOR ){
        dirc[l1] =  DIRSEPARATOR;
   *fa=(*func)(*ax);      dirc[l1+1] = 0; 
   *fb=(*func)(*bx);      printf(" DIRC3 = %s \n",dirc);
   if (*fb > *fa) {    }
     SHFT(dum,*ax,*bx,dum)    ss = strrchr( name, '.' );            /* find last / */
       SHFT(dum,*fb,*fa,dum)    if (ss >0){
       }      ss++;
   *cx=(*bx)+GOLD*(*bx-*ax);      strcpy(ext,ss);                     /* save extension */
   *fc=(*func)(*cx);      l1= strlen( name);
   while (*fb > *fc) {      l2= strlen(ss)+1;
     r=(*bx-*ax)*(*fb-*fc);      strncpy( finame, name, l1-l2);
     q=(*bx-*cx)*(*fb-*fa);      finame[l1-l2]= 0;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    return( 0 );                          /* we're done */
     if ((*bx-u)*(u-*cx) > 0.0) {  }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /******************************************/
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  void replace_back_to_slash(char *s, char*t)
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    int i;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    int lg=0;
       u=ulim;    i=0;
       fu=(*func)(u);    lg=strlen(t);
     } else {    for(i=0; i<= lg; i++) {
       u=(*cx)+GOLD*(*cx-*bx);      (s[i] = t[i]);
       fu=(*func)(u);      if (t[i]== '\\') s[i]='/';
     }    }
     SHFT(*ax,*bx,*cx,u)  }
       SHFT(*fa,*fb,*fc,fu)  
       }  int nbocc(char *s, char occ)
 }  {
     int i,j=0;
 /*************** linmin ************************/    int lg=20;
     i=0;
 int ncom;    lg=strlen(s);
 double *pcom,*xicom;    for(i=0; i<= lg; i++) {
 double (*nrfunc)(double []);    if  (s[i] == occ ) j++;
      }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    return j;
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  void cutv(char *u,char *v, char*t, char occ)
   double f1dim(double x);  {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
               double *fc, double (*func)(double));       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   int j;       gives u="abcedf" and v="ghi2j" */
   double xx,xmin,bx,ax;    int i,lg,j,p=0;
   double fx,fb,fa;    i=0;
      for(j=0; j<=strlen(t)-1; j++) {
   ncom=n;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   pcom=vector(1,n);    }
   xicom=vector(1,n);  
   nrfunc=func;    lg=strlen(t);
   for (j=1;j<=n;j++) {    for(j=0; j<p; j++) {
     pcom[j]=p[j];      (u[j] = t[j]);
     xicom[j]=xi[j];    }
   }       u[p]='\0';
   ax=0.0;  
   xx=1.0;     for(j=0; j<= lg; j++) {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);      if (j>=(p+1))(v[j-p-1] = t[j]);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    }
 #ifdef DEBUG  }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  /********************** nrerror ********************/
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  void nrerror(char error_text[])
     p[j] += xi[j];  {
   }    fprintf(stderr,"ERREUR ...\n");
   free_vector(xicom,1,n);    fprintf(stderr,"%s\n",error_text);
   free_vector(pcom,1,n);    exit(EXIT_FAILURE);
 }  }
   /*********************** vector *******************/
 /*************** powell ************************/  double *vector(int nl, int nh)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    double *v;
 {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   void linmin(double p[], double xi[], int n, double *fret,    if (!v) nrerror("allocation failure in vector");
               double (*func)(double []));    return v-nl+NR_END;
   int i,ibig,j;  }
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /************************ free vector ******************/
   double *xits;  void free_vector(double*v, int nl, int nh)
   pt=vector(1,n);  {
   ptt=vector(1,n);    free((FREE_ARG)(v+nl-NR_END));
   xit=vector(1,n);  }
   xits=vector(1,n);  
   *fret=(*func)(p);  /************************ivector *******************************/
   for (j=1;j<=n;j++) pt[j]=p[j];  int *ivector(long nl,long nh)
   for (*iter=1;;++(*iter)) {  {
     fp=(*fret);    int *v;
     ibig=0;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     del=0.0;    if (!v) nrerror("allocation failure in ivector");
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    return v-nl+NR_END;
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /******************free ivector **************************/
     for (i=1;i<=n;i++) {  void free_ivector(int *v, long nl, long nh)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
       printf("fret=%lf \n",*fret);  
 #endif  /************************lvector *******************************/
       printf("%d",i);fflush(stdout);  long *lvector(long nl,long nh)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    long *v;
         del=fabs(fptt-(*fret));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         ibig=i;    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /******************free lvector **************************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  void free_lvector(long *v, long nl, long nh)
         printf(" x(%d)=%.12e",j,xit[j]);  {
       }    free((FREE_ARG)(v+nl-NR_END));
       for(j=1;j<=n;j++)  }
         printf(" p=%.12e",p[j]);  
       printf("\n");  /******************* imatrix *******************************/
 #endif  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  { 
 #ifdef DEBUG    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       int k[2],l;    int **m; 
       k[0]=1;    
       k[1]=-1;    /* allocate pointers to rows */ 
       printf("Max: %.12e",(*func)(p));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       for (j=1;j<=n;j++)    if (!m) nrerror("allocation failure 1 in matrix()"); 
         printf(" %.12e",p[j]);    m += NR_END; 
       printf("\n");    m -= nrl; 
       for(l=0;l<=1;l++) {    
         for (j=1;j<=n;j++) {    
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    /* allocate rows and set pointers to them */ 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m[nrl] += NR_END; 
       }    m[nrl] -= ncl; 
 #endif    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
       free_vector(xit,1,n);    /* return pointer to array of pointers to rows */ 
       free_vector(xits,1,n);    return m; 
       free_vector(ptt,1,n);  } 
       free_vector(pt,1,n);  
       return;  /****************** free_imatrix *************************/
     }  void free_imatrix(m,nrl,nrh,ncl,nch)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        int **m;
     for (j=1;j<=n;j++) {        long nch,ncl,nrh,nrl; 
       ptt[j]=2.0*p[j]-pt[j];       /* free an int matrix allocated by imatrix() */ 
       xit[j]=p[j]-pt[j];  { 
       pt[j]=p[j];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
     fptt=(*func)(ptt);  } 
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /******************* matrix *******************************/
       if (t < 0.0) {  double **matrix(long nrl, long nrh, long ncl, long nch)
         linmin(p,xit,n,fret,func);  {
         for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
           xi[j][ibig]=xi[j][n];    double **m;
           xi[j][n]=xit[j];  
         }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m += NR_END;
         for(j=1;j<=n;j++)    m -= nrl;
           printf(" %.12e",xit[j]);  
         printf("\n");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   }  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
 /**** Prevalence limit ****************/    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /*************************free matrix ************************/
      matrix by transitions matrix until convergence is reached */  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
   int i, ii,j,k;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double min, max, maxmin, maxmax,sumnew=0.;    free((FREE_ARG)(m+nrl-NR_END));
   double **matprod2();  }
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /******************* ma3x *******************************/
   double agefin, delaymax=50 ; /* Max number of years to converge */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
   for (ii=1;ii<=nlstate+ndeath;ii++)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for (j=1;j<=nlstate+ndeath;j++){    double ***m;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
    cov[1]=1.;    m += NR_END;
      m -= nrl;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     newm=savm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     /* Covariates have to be included here again */    m[nrl] += NR_END;
      cov[2]=agefin;    m[nrl] -= ncl;
    
       for (k=1; k<=cptcovn;k++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl][ncl] += NR_END;
       for (k=1; k<=cptcovprod;k++)    m[nrl][ncl] -= nll;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    for (i=nrl+1; i<=nrh; i++) {
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
     savm=oldm;    }
     oldm=newm;    return m; 
     maxmax=0.;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for(j=1;j<=nlstate;j++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       min=1.;    */
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /*************************free ma3x ************************/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         prlim[i][j]= newm[i][j]/(1-sumnew);  {
         max=FMAX(max,prlim[i][j]);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         min=FMIN(min,prlim[i][j]);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       maxmin=max-min;  }
       maxmax=FMAX(maxmax,maxmin);  
     }  /*************** function subdirf ***********/
     if(maxmax < ftolpl){  char *subdirf(char fileres[])
       return prlim;  {
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
 /*************** transition probabilities ***************/    return tmpout;
   }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  /*************** function subdirf2 ***********/
   double s1, s2;  char *subdirf2(char fileres[], char *preop)
   /*double t34;*/  {
   int i,j,j1, nc, ii, jj;    
     /* Caution optionfilefiname is hidden */
     for(i=1; i<= nlstate; i++){    strcpy(tmpout,optionfilefiname);
     for(j=1; j<i;j++){    strcat(tmpout,"/");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,preop);
         /*s2 += param[i][j][nc]*cov[nc];*/    strcat(tmpout,fileres);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return tmpout;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  }
       }  
       ps[i][j]=s2;  /*************** function subdirf3 ***********/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  char *subdirf3(char fileres[], char *preop, char *preop2)
     }  {
     for(j=i+1; j<=nlstate+ndeath;j++){    
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* Caution optionfilefiname is hidden */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcpy(tmpout,optionfilefiname);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
       ps[i][j]=s2;    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
   }    return tmpout;
     /*ps[3][2]=1;*/  }
   
   for(i=1; i<= nlstate; i++){  /***************** f1dim *************************/
      s1=0;  extern int ncom; 
     for(j=1; j<i; j++)  extern double *pcom,*xicom;
       s1+=exp(ps[i][j]);  extern double (*nrfunc)(double []); 
     for(j=i+1; j<=nlstate+ndeath; j++)   
       s1+=exp(ps[i][j]);  double f1dim(double x) 
     ps[i][i]=1./(s1+1.);  { 
     for(j=1; j<i; j++)    int j; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double f;
     for(j=i+1; j<=nlstate+ndeath; j++)    double *xt; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];   
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    xt=vector(1,ncom); 
   } /* end i */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    free_vector(xt,1,ncom); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    return f; 
       ps[ii][jj]=0;  } 
       ps[ii][ii]=1;  
     }  /*****************brent *************************/
   }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
     int iter; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double a,b,d,etemp;
     for(jj=1; jj<= nlstate+ndeath; jj++){    double fu,fv,fw,fx;
      printf("%lf ",ps[ii][jj]);    double ftemp;
    }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     printf("\n ");    double e=0.0; 
     }   
     printf("\n ");printf("%lf ",cov[2]);*/    a=(ax < cx ? ax : cx); 
 /*    b=(ax > cx ? ax : cx); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    x=w=v=bx; 
   goto end;*/    fw=fv=fx=(*f)(x); 
     return ps;    for (iter=1;iter<=ITMAX;iter++) { 
 }      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 /**************** Product of 2 matrices ******************/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      fprintf(ficlog,".");fflush(ficlog);
 {  #ifdef DEBUG
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /* in, b, out are matrice of pointers which should have been initialized      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      before: only the contents of out is modified. The function returns  #endif
      a pointer to pointers identical to out */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   long i, j, k;        *xmin=x; 
   for(i=nrl; i<= nrh; i++)        return fx; 
     for(k=ncolol; k<=ncoloh; k++)      } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      ftemp=fu;
         out[i][k] +=in[i][j]*b[j][k];      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
   return out;        q=(x-v)*(fx-fw); 
 }        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
 /************* Higher Matrix Product ***************/        q=fabs(q); 
         etemp=e; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        e=d; 
 {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      duration (i.e. until        else { 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          d=p/q; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          u=x+d; 
      (typically every 2 years instead of every month which is too big).          if (u-a < tol2 || b-u < tol2) 
      Model is determined by parameters x and covariates have to be            d=SIGN(tol1,xm-x); 
      included manually here.        } 
       } else { 
      */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
   int i, j, d, h, k;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   double **out, cov[NCOVMAX];      fu=(*f)(u); 
   double **newm;      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
   /* Hstepm could be zero and should return the unit matrix */        SHFT(v,w,x,u) 
   for (i=1;i<=nlstate+ndeath;i++)          SHFT(fv,fw,fx,fu) 
     for (j=1;j<=nlstate+ndeath;j++){          } else { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);            if (u < x) a=u; else b=u; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);            if (fu <= fw || w == x) { 
     }              v=w; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */              w=u; 
   for(h=1; h <=nhstepm; h++){              fv=fw; 
     for(d=1; d <=hstepm; d++){              fw=fu; 
       newm=savm;            } else if (fu <= fv || v == x || v == w) { 
       /* Covariates have to be included here again */              v=u; 
       cov[1]=1.;              fv=fu; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;            } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          } 
       for (k=1; k<=cptcovage;k++)    } 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    nrerror("Too many iterations in brent"); 
       for (k=1; k<=cptcovprod;k++)    *xmin=x; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    return fx; 
   } 
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /****************** mnbrak ***********************/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));              double (*func)(double)) 
       savm=oldm;  { 
       oldm=newm;    double ulim,u,r,q, dum;
     }    double fu; 
     for(i=1; i<=nlstate+ndeath; i++)   
       for(j=1;j<=nlstate+ndeath;j++) {    *fa=(*func)(*ax); 
         po[i][j][h]=newm[i][j];    *fb=(*func)(*bx); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    if (*fb > *fa) { 
          */      SHFT(dum,*ax,*bx,dum) 
       }        SHFT(dum,*fb,*fa,dum) 
   } /* end h */        } 
   return po;    *cx=(*bx)+GOLD*(*bx-*ax); 
 }    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 /*************** log-likelihood *************/      q=(*bx-*cx)*(*fb-*fa); 
 double func( double *x)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   int i, ii, j, k, mi, d, kk;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      if ((*bx-u)*(u-*cx) > 0.0) { 
   double **out;        fu=(*func)(u); 
   double sw; /* Sum of weights */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double lli; /* Individual log likelihood */        fu=(*func)(u); 
   int s1, s2;        if (fu < *fc) { 
   long ipmx;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   /*extern weight */            SHFT(*fb,*fc,fu,(*func)(u)) 
   /* We are differentiating ll according to initial status */            } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /*for(i=1;i<imx;i++)        u=ulim; 
     printf(" %d\n",s[4][i]);        fu=(*func)(u); 
   */      } else { 
   cov[1]=1.;        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;      } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      SHFT(*ax,*bx,*cx,u) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        SHFT(*fa,*fb,*fc,fu) 
     for(mi=1; mi<= wav[i]-1; mi++){        } 
       for (ii=1;ii<=nlstate+ndeath;ii++)  } 
         for (j=1;j<=nlstate+ndeath;j++){  
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*************** linmin ************************/
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  
         }  int ncom; 
       for(d=0; d<dh[mi][i]; d++){  double *pcom,*xicom;
         newm=savm;  double (*nrfunc)(double []); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;   
         for (kk=1; kk<=cptcovage;kk++) {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  { 
         }    double brent(double ax, double bx, double cx, 
                         double (*f)(double), double tol, double *xmin); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double f1dim(double x); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         savm=oldm;                double *fc, double (*func)(double)); 
         oldm=newm;    int j; 
            double xx,xmin,bx,ax; 
            double fx,fb,fa;
       } /* end mult */   
          ncom=n; 
       s1=s[mw[mi][i]][i];    pcom=vector(1,n); 
       s2=s[mw[mi+1][i]][i];    xicom=vector(1,n); 
       if( s2 > nlstate){    nrfunc=func; 
         /* i.e. if s2 is a death state and if the date of death is known then the contribution    for (j=1;j<=n;j++) { 
            to the likelihood is the probability to die between last step unit time and current      pcom[j]=p[j]; 
            step unit time, which is also the differences between probability to die before dh      xicom[j]=xi[j]; 
            and probability to die before dh-stepm .    } 
            In version up to 0.92 likelihood was computed    ax=0.0; 
            as if date of death was unknown. Death was treated as any other    xx=1.0; 
            health state: the date of the interview describes the actual state    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
            and not the date of a change in health state. The former idea was    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
            to consider that at each interview the state was recorded  #ifdef DEBUG
            (healthy, disable or death) and IMaCh was corrected; but when we    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
            introduced the exact date of death then we should have modified    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
            the contribution of an exact death to the likelihood. This new  #endif
            contribution is smaller and very dependent of the step unit    for (j=1;j<=n;j++) { 
            stepm. It is no more the probability to die between last interview      xi[j] *= xmin; 
            and month of death but the probability to survive from last      p[j] += xi[j]; 
            interview up to one month before death multiplied by the    } 
            probability to die within a month. Thanks to Chris    free_vector(xicom,1,n); 
            Jackson for correcting this bug.  Former versions increased    free_vector(pcom,1,n); 
            mortality artificially. The bad side is that we add another loop  } 
            which slows down the processing. The difference can be up to 10%  
            lower mortality.  char *asc_diff_time(long time_sec, char ascdiff[])
         */  {
         lli=log(out[s1][s2] - savm[s1][s2]);    long sec_left, days, hours, minutes;
       }else{    days = (time_sec) / (60*60*24);
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */    sec_left = (time_sec) % (60*60*24);
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    hours = (sec_left) / (60*60) ;
       }    sec_left = (sec_left) %(60*60);
       ipmx +=1;    minutes = (sec_left) /60;
       sw += weight[i];    sec_left = (sec_left) % (60);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/    return ascdiff;
     } /* end of wave */  }
   } /* end of individual */  
   /*************** powell ************************/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */              double (*func)(double [])) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  { 
   /*exit(0);*/    void linmin(double p[], double xi[], int n, double *fret, 
   return -l;                double (*func)(double [])); 
 }    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
     double fp,fptt;
 /*********** Maximum Likelihood Estimation ***************/    double *xits;
     int niterf, itmp;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {    pt=vector(1,n); 
   int i,j, iter;    ptt=vector(1,n); 
   double **xi,*delti;    xit=vector(1,n); 
   double fret;    xits=vector(1,n); 
   xi=matrix(1,npar,1,npar);    *fret=(*func)(p); 
   for (i=1;i<=npar;i++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (j=1;j<=npar;j++)    for (*iter=1;;++(*iter)) { 
       xi[i][j]=(i==j ? 1.0 : 0.0);      fp=(*fret); 
   printf("Powell\n");      ibig=0; 
   powell(p,xi,npar,ftol,&iter,&fret,func);      del=0.0; 
       last_time=curr_time;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      (void) gettimeofday(&curr_time,&tzp);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
 }      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
 /**** Computes Hessian and covariance matrix ***/     for (i=1;i<=n;i++) {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        printf(" %d %.12f",i, p[i]);
 {        fprintf(ficlog," %d %.12lf",i, p[i]);
   double  **a,**y,*x,pd;        fprintf(ficrespow," %.12lf", p[i]);
   double **hess;      }
   int i, j,jk;      printf("\n");
   int *indx;      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   double hessii(double p[], double delta, int theta, double delti[]);      if(*iter <=3){
   double hessij(double p[], double delti[], int i, int j);        tm = *localtime(&curr_time.tv_sec);
   void lubksb(double **a, int npar, int *indx, double b[]) ;        strcpy(strcurr,asctime(&tm));
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
   hess=matrix(1,npar,1,npar);        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   printf("\nCalculation of the hessian matrix. Wait...\n");          strcurr[itmp-1]='\0';
   for (i=1;i<=npar;i++){        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     printf("%d",i);fflush(stdout);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     hess[i][i]=hessii(p,ftolhess,i,delti);        for(niterf=10;niterf<=30;niterf+=10){
     /*printf(" %f ",p[i]);*/          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     /*printf(" %lf ",hess[i][i]);*/          tmf = *localtime(&forecast_time.tv_sec);
   }  /*      asctime_r(&tmf,strfor); */
            strcpy(strfor,asctime(&tmf));
   for (i=1;i<=npar;i++) {          itmp = strlen(strfor);
     for (j=1;j<=npar;j++)  {          if(strfor[itmp-1]=='\n')
       if (j>i) {          strfor[itmp-1]='\0';
         printf(".%d%d",i,j);fflush(stdout);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         hess[i][j]=hessij(p,delti,i,j);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         hess[j][i]=hess[i][j];            }
         /*printf(" %lf ",hess[i][j]);*/      }
       }      for (i=1;i<=n;i++) { 
     }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   }        fptt=(*fret); 
   printf("\n");  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        fprintf(ficlog,"fret=%lf \n",*fret);
    #endif
   a=matrix(1,npar,1,npar);        printf("%d",i);fflush(stdout);
   y=matrix(1,npar,1,npar);        fprintf(ficlog,"%d",i);fflush(ficlog);
   x=vector(1,npar);        linmin(p,xit,n,fret,func); 
   indx=ivector(1,npar);        if (fabs(fptt-(*fret)) > del) { 
   for (i=1;i<=npar;i++)          del=fabs(fptt-(*fret)); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          ibig=i; 
   ludcmp(a,npar,indx,&pd);        } 
   #ifdef DEBUG
   for (j=1;j<=npar;j++) {        printf("%d %.12e",i,(*fret));
     for (i=1;i<=npar;i++) x[i]=0;        fprintf(ficlog,"%d %.12e",i,(*fret));
     x[j]=1;        for (j=1;j<=n;j++) {
     lubksb(a,npar,indx,x);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (i=1;i<=npar;i++){          printf(" x(%d)=%.12e",j,xit[j]);
       matcov[i][j]=x[i];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     }        }
   }        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
   printf("\n#Hessian matrix#\n");          fprintf(ficlog," p=%.12e",p[j]);
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++) {        printf("\n");
       printf("%.3e ",hess[i][j]);        fprintf(ficlog,"\n");
     }  #endif
     printf("\n");      } 
   }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
   /* Recompute Inverse */        int k[2],l;
   for (i=1;i<=npar;i++)        k[0]=1;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        k[1]=-1;
   ludcmp(a,npar,indx,&pd);        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
   /*  printf("\n#Hessian matrix recomputed#\n");        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
   for (j=1;j<=npar;j++) {          fprintf(ficlog," %.12e",p[j]);
     for (i=1;i<=npar;i++) x[i]=0;        }
     x[j]=1;        printf("\n");
     lubksb(a,npar,indx,x);        fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++){        for(l=0;l<=1;l++) {
       y[i][j]=x[i];          for (j=1;j<=n;j++) {
       printf("%.3e ",y[i][j]);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     printf("\n");            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   }          }
   */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   free_matrix(a,1,npar,1,npar);        }
   free_matrix(y,1,npar,1,npar);  #endif
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
 }        free_vector(pt,1,n); 
         return; 
 /*************** hessian matrix ****************/      } 
 double hessii( double x[], double delta, int theta, double delti[])      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 {      for (j=1;j<=n;j++) { 
   int i;        ptt[j]=2.0*p[j]-pt[j]; 
   int l=1, lmax=20;        xit[j]=p[j]-pt[j]; 
   double k1,k2;        pt[j]=p[j]; 
   double p2[NPARMAX+1];      } 
   double res;      fptt=(*func)(ptt); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      if (fptt < fp) { 
   double fx;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   int k=0,kmax=10;        if (t < 0.0) { 
   double l1;          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
   fx=func(x);            xi[j][ibig]=xi[j][n]; 
   for (i=1;i<=npar;i++) p2[i]=x[i];            xi[j][n]=xit[j]; 
   for(l=0 ; l <=lmax; l++){          }
     l1=pow(10,l);  #ifdef DEBUG
     delts=delt;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(k=1 ; k <kmax; k=k+1){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       delt = delta*(l1*k);          for(j=1;j<=n;j++){
       p2[theta]=x[theta] +delt;            printf(" %.12e",xit[j]);
       k1=func(p2)-fx;            fprintf(ficlog," %.12e",xit[j]);
       p2[theta]=x[theta]-delt;          }
       k2=func(p2)-fx;          printf("\n");
       /*res= (k1-2.0*fx+k2)/delt/delt; */          fprintf(ficlog,"\n");
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  #endif
              }
 #ifdef DEBUG      } 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    } 
 #endif  } 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  /**** Prevalence limit (stable or period prevalence)  ****************/
         k=kmax;  
       }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  {
         k=kmax; l=lmax*10.;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       }       matrix by transitions matrix until convergence is reached */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;    int i, ii,j,k;
       }    double min, max, maxmin, maxmax,sumnew=0.;
     }    double **matprod2();
   }    double **out, cov[NCOVMAX], **pmij();
   delti[theta]=delts;    double **newm;
   return res;    double agefin, delaymax=50 ; /* Max number of years to converge */
    
 }    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
 double hessij( double x[], double delti[], int thetai,int thetaj)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {      }
   int i;  
   int l=1, l1, lmax=20;     cov[1]=1.;
   double k1,k2,k3,k4,res,fx;   
   double p2[NPARMAX+1];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int k;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
   fx=func(x);      /* Covariates have to be included here again */
   for (k=1; k<=2; k++) {       cov[2]=agefin;
     for (i=1;i<=npar;i++) p2[i]=x[i];    
     p2[thetai]=x[thetai]+delti[thetai]/k;        for (k=1; k<=cptcovn;k++) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     k1=func(p2)-fx;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
          }
     p2[thetai]=x[thetai]+delti[thetai]/k;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for (k=1; k<=cptcovprod;k++)
     k2=func(p2)-fx;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
     p2[thetai]=x[thetai]-delti[thetai]/k;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     k3=func(p2)-fx;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      savm=oldm;
     k4=func(p2)-fx;      oldm=newm;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      maxmax=0.;
 #ifdef DEBUG      for(j=1;j<=nlstate;j++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        min=1.;
 #endif        max=0.;
   }        for(i=1; i<=nlstate; i++) {
   return res;          sumnew=0;
 }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
 /************** Inverse of matrix **************/          max=FMAX(max,prlim[i][j]);
 void ludcmp(double **a, int n, int *indx, double *d)          min=FMIN(min,prlim[i][j]);
 {        }
   int i,imax,j,k;        maxmin=max-min;
   double big,dum,sum,temp;        maxmax=FMAX(maxmax,maxmin);
   double *vv;      }
        if(maxmax < ftolpl){
   vv=vector(1,n);        return prlim;
   *d=1.0;      }
   for (i=1;i<=n;i++) {    }
     big=0.0;  }
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*************** transition probabilities ***************/ 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   }  {
   for (j=1;j<=n;j++) {    double s1, s2;
     for (i=1;i<j;i++) {    /*double t34;*/
       sum=a[i][j];    int i,j,j1, nc, ii, jj;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;      for(i=1; i<= nlstate; i++){
     }        for(j=1; j<i;j++){
     big=0.0;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for (i=j;i<=n;i++) {            /*s2 += param[i][j][nc]*cov[nc];*/
       sum=a[i][j];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for (k=1;k<j;k++)  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         sum -= a[i][k]*a[k][j];          }
       a[i][j]=sum;          ps[i][j]=s2;
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
         big=dum;        }
         imax=i;        for(j=i+1; j<=nlstate+ndeath;j++){
       }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     if (j != imax) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       for (k=1;k<=n;k++) {          }
         dum=a[imax][k];          ps[i][j]=s2;
         a[imax][k]=a[j][k];        }
         a[j][k]=dum;      }
       }      /*ps[3][2]=1;*/
       *d = -(*d);      
       vv[imax]=vv[j];      for(i=1; i<= nlstate; i++){
     }        s1=0;
     indx[j]=imax;        for(j=1; j<i; j++)
     if (a[j][j] == 0.0) a[j][j]=TINY;          s1+=exp(ps[i][j]);
     if (j != n) {        for(j=i+1; j<=nlstate+ndeath; j++)
       dum=1.0/(a[j][j]);          s1+=exp(ps[i][j]);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        ps[i][i]=1./(s1+1.);
     }        for(j=1; j<i; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   free_vector(vv,1,n);  /* Doesn't work */        for(j=i+1; j<=nlstate+ndeath; j++)
 ;          ps[i][j]= exp(ps[i][j])*ps[i][i];
 }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       } /* end i */
 void lubksb(double **a, int n, int *indx, double b[])      
 {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   int i,ii=0,ip,j;        for(jj=1; jj<= nlstate+ndeath; jj++){
   double sum;          ps[ii][jj]=0;
            ps[ii][ii]=1;
   for (i=1;i<=n;i++) {        }
     ip=indx[i];      }
     sum=b[ip];      
     b[ip]=b[i];  
     if (ii)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     else if (sum) ii=i;  /*         printf("ddd %lf ",ps[ii][jj]); */
     b[i]=sum;  /*       } */
   }  /*       printf("\n "); */
   for (i=n;i>=1;i--) {  /*        } */
     sum=b[i];  /*        printf("\n ");printf("%lf ",cov[2]); */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];         /*
     b[i]=sum/a[i][i];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   }        goto end;*/
 }      return ps;
   }
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  /**************** Product of 2 matrices ******************/
 {  /* Some frequencies */  
    double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  {
   double ***freq; /* Frequencies */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double *pp;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   double pos, k2, dateintsum=0,k2cpt=0;    /* in, b, out are matrice of pointers which should have been initialized 
   FILE *ficresp;       before: only the contents of out is modified. The function returns
   char fileresp[FILENAMELENGTH];       a pointer to pointers identical to out */
      long i, j, k;
   pp=vector(1,nlstate);    for(i=nrl; i<= nrh; i++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(k=ncolol; k<=ncoloh; k++)
   strcpy(fileresp,"p");        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   strcat(fileresp,fileres);          out[i][k] +=in[i][j]*b[j][k];
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);    return out;
     exit(0);  }
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  /************* Higher Matrix Product ***************/
    
   j=cptcoveff;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  {
      /* Computes the transition matrix starting at age 'age' over 
   for(k1=1; k1<=j;k1++){       'nhstepm*hstepm*stepm' months (i.e. until
     for(i1=1; i1<=ncodemax[k1];i1++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       j1++;       nhstepm*hstepm matrices. 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         scanf("%d", i);*/       (typically every 2 years instead of every month which is too big 
       for (i=-1; i<=nlstate+ndeath; i++)         for the memory).
         for (jk=-1; jk<=nlstate+ndeath; jk++)         Model is determined by parameters x and covariates have to be 
           for(m=agemin; m <= agemax+3; m++)       included manually here. 
             freq[i][jk][m]=0;  
             */
       dateintsum=0;  
       k2cpt=0;    int i, j, d, h, k;
       for (i=1; i<=imx; i++) {    double **out, cov[NCOVMAX];
         bool=1;    double **newm;
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)    /* Hstepm could be zero and should return the unit matrix */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    for (i=1;i<=nlstate+ndeath;i++)
               bool=0;      for (j=1;j<=nlstate+ndeath;j++){
         }        oldm[i][j]=(i==j ? 1.0 : 0.0);
         if (bool==1) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
           for(m=firstpass; m<=lastpass; m++){      }
             k2=anint[m][i]+(mint[m][i]/12.);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    for(h=1; h <=nhstepm; h++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for(d=1; d <=hstepm; d++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;        newm=savm;
               if (m<lastpass) {        /* Covariates have to be included here again */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        cov[1]=1.;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
               }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                      for (k=1; k<=cptcovage;k++)
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                 dateintsum=dateintsum+k2;        for (k=1; k<=cptcovprod;k++)
                 k2cpt++;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
               }  
             }  
           }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                             pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        savm=oldm;
         oldm=newm;
       if  (cptcovn>0) {      }
         fprintf(ficresp, "\n#********** Variable ");      for(i=1; i<=nlstate+ndeath; i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1;j<=nlstate+ndeath;j++) {
         fprintf(ficresp, "**********\n#");          po[i][j][h]=newm[i][j];
       }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       for(i=1; i<=nlstate;i++)           */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        }
       fprintf(ficresp, "\n");    } /* end h */
          return po;
       for(i=(int)agemin; i <= (int)agemax+3; i++){  }
         if(i==(int)agemax+3)  
           printf("Total");  
         else  /*************** log-likelihood *************/
           printf("Age %d", i);  double func( double *x)
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    int i, ii, j, k, mi, d, kk;
             pp[jk] += freq[jk][m][i];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
         for(jk=1; jk <=nlstate ; jk++){    double sw; /* Sum of weights */
           for(m=-1, pos=0; m <=0 ; m++)    double lli; /* Individual log likelihood */
             pos += freq[jk][m][i];    int s1, s2;
           if(pp[jk]>=1.e-10)    double bbh, survp;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    long ipmx;
           else    /*extern weight */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    /* We are differentiating ll according to initial status */
         }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
         for(jk=1; jk <=nlstate ; jk++){      printf(" %d\n",s[4][i]);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    */
             pp[jk] += freq[jk][m][i];    cov[1]=1.;
         }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];    if(mle==1){
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if(pos>=1.e-5)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(mi=1; mi<= wav[i]-1; mi++){
           else          for (ii=1;ii<=nlstate+ndeath;ii++)
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            for (j=1;j<=nlstate+ndeath;j++){
           if( i <= (int) agemax){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if(pos>=1.e-5){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            }
               probs[i][jk][j1]= pp[jk]/pos;          for(d=0; d<dh[mi][i]; d++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             else            for (kk=1; kk<=cptcovage;kk++) {
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=-1; jk <=nlstate+ndeath; jk++)            savm=oldm;
           for(m=-1; m <=nlstate+ndeath; m++)            oldm=newm;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          } /* end mult */
         if(i <= (int) agemax)        
           fprintf(ficresp,"\n");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         printf("\n");          /* But now since version 0.9 we anticipate for bias at large stepm.
       }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   }           * the nearest (and in case of equal distance, to the lowest) interval but now
   dateintmean=dateintsum/k2cpt;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   fclose(ficresp);           * probability in order to take into account the bias as a fraction of the way
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   free_vector(pp,1,nlstate);           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
   /* End of Freq */           * For stepm > 1 the results are less biased than in previous versions. 
 }           */
           s1=s[mw[mi][i]][i];
 /************ Prevalence ********************/          s2=s[mw[mi+1][i]][i];
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          bbh=(double)bh[mi][i]/(double)stepm; 
 {  /* Some frequencies */          /* bias bh is positive if real duration
             * is higher than the multiple of stepm and negative otherwise.
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;           */
   double ***freq; /* Frequencies */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double *pp;          if( s2 > nlstate){ 
   double pos, k2;            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
   pp=vector(1,nlstate);               die between last step unit time and current  step unit time, 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);               which is also equal to probability to die before dh 
                 minus probability to die before dh-stepm . 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);               In version up to 0.92 likelihood was computed
   j1=0;          as if date of death was unknown. Death was treated as any other
            health state: the date of the interview describes the actual state
   j=cptcoveff;          and not the date of a change in health state. The former idea was
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          to consider that at each interview the state was recorded
            (healthy, disable or death) and IMaCh was corrected; but when we
  for(k1=1; k1<=j;k1++){          introduced the exact date of death then we should have modified
     for(i1=1; i1<=ncodemax[k1];i1++){          the contribution of an exact death to the likelihood. This new
       j1++;          contribution is smaller and very dependent of the step unit
            stepm. It is no more the probability to die between last interview
       for (i=-1; i<=nlstate+ndeath; i++)            and month of death but the probability to survive from last
         for (jk=-1; jk<=nlstate+ndeath; jk++)            interview up to one month before death multiplied by the
           for(m=agemin; m <= agemax+3; m++)          probability to die within a month. Thanks to Chris
             freq[i][jk][m]=0;          Jackson for correcting this bug.  Former versions increased
                mortality artificially. The bad side is that we add another loop
       for (i=1; i<=imx; i++) {          which slows down the processing. The difference can be up to 10%
         bool=1;          lower mortality.
         if  (cptcovn>0) {            */
           for (z1=1; z1<=cptcoveff; z1++)            lli=log(out[s1][s2] - savm[s1][s2]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;  
         }          } else if  (s2==-2) {
         if (bool==1) {            for (j=1,survp=0. ; j<=nlstate; j++) 
           for(m=firstpass; m<=lastpass; m++){              survp += out[s1][j];
             k2=anint[m][i]+(mint[m][i]/12.);            lli= survp;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          }
               if(agev[m][i]==0) agev[m][i]=agemax+1;          
               if(agev[m][i]==1) agev[m][i]=agemax+2;          else if  (s2==-4) {
               if (m<lastpass)            for (j=3,survp=0. ; j<=nlstate; j++) 
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];              survp += out[s1][j];
               else            lli= survp;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          
             }          else if  (s2==-5) {
           }            for (j=1,survp=0. ; j<=2; j++) 
         }              survp += out[s1][j];
       }            lli= survp;
         for(i=(int)agemin; i <= (int)agemax+3; i++){          }
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
               pp[jk] += freq[jk][m][i];          else{
           }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           for(jk=1; jk <=nlstate ; jk++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             for(m=-1, pos=0; m <=0 ; m++)          } 
             pos += freq[jk][m][i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
                  /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
          for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          sw += weight[i];
              pp[jk] += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          }        } /* end of wave */
                } /* end of individual */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for(jk=1; jk <=nlstate ; jk++){                  for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            if( i <= (int) agemax){        for(mi=1; mi<= wav[i]-1; mi++){
              if(pos>=1.e-5){          for (ii=1;ii<=nlstate+ndeath;ii++)
                probs[i][jk][j1]= pp[jk]/pos;            for (j=1;j<=nlstate+ndeath;j++){
              }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          }            }
                    for(d=0; d<=dh[mi][i]; d++){
         }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_vector(pp,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
 }  /* End of Freq */            oldm=newm;
           } /* end mult */
 /************* Waves Concatenation ***************/        
           s1=s[mw[mi][i]][i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          s2=s[mw[mi+1][i]][i];
 {          bbh=(double)bh[mi][i]/(double)stepm; 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      Death is a valid wave (if date is known).          ipmx +=1;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          sw += weight[i];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      and mw[mi+1][i]. dh depends on stepm.        } /* end of wave */
      */      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
   int i, mi, m;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      double sum=0., jmean=0.;*/        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   int j, k=0,jk, ju, jl;            for (j=1;j<=nlstate+ndeath;j++){
   double sum=0.;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmin=1e+5;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmax=-1;            }
   jmean=0.;          for(d=0; d<dh[mi][i]; d++){
   for(i=1; i<=imx; i++){            newm=savm;
     mi=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     m=firstpass;            for (kk=1; kk<=cptcovage;kk++) {
     while(s[m][i] <= nlstate){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(s[m][i]>=1)            }
         mw[++mi][i]=m;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if(m >=lastpass)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         break;            savm=oldm;
       else            oldm=newm;
         m++;          } /* end mult */
     }/* end while */        
     if (s[m][i] > nlstate){          s1=s[mw[mi][i]][i];
       mi++;     /* Death is another wave */          s2=s[mw[mi+1][i]][i];
       /* if(mi==0)  never been interviewed correctly before death */          bbh=(double)bh[mi][i]/(double)stepm; 
          /* Only death is a correct wave */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       mw[mi][i]=m;          ipmx +=1;
     }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     wav[i]=mi;        } /* end of wave */
     if(mi==0)      } /* end of individual */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=imx; i++){        for(mi=1; mi<= wav[i]-1; mi++){
     for(mi=1; mi<wav[i];mi++){          for (ii=1;ii<=nlstate+ndeath;ii++)
       if (stepm <=0)            for (j=1;j<=nlstate+ndeath;j++){
         dh[mi][i]=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else{              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (s[mw[mi+1][i]][i] > nlstate) {            }
           if (agedc[i] < 2*AGESUP) {          for(d=0; d<dh[mi][i]; d++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            newm=savm;
           if(j==0) j=1;  /* Survives at least one month after exam */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           k=k+1;            for (kk=1; kk<=cptcovage;kk++) {
           if (j >= jmax) jmax=j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if (j <= jmin) jmin=j;            }
           sum=sum+j;          
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
         else{            oldm=newm;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          } /* end mult */
           k=k+1;        
           if (j >= jmax) jmax=j;          s1=s[mw[mi][i]][i];
           else if (j <= jmin)jmin=j;          s2=s[mw[mi+1][i]][i];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          if( s2 > nlstate){ 
           sum=sum+j;            lli=log(out[s1][s2] - savm[s1][s2]);
         }          }else{
         jk= j/stepm;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         jl= j -jk*stepm;          }
         ju= j -(jk+1)*stepm;          ipmx +=1;
         if(jl <= -ju)          sw += weight[i];
           dh[mi][i]=jk;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         else  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           dh[mi][i]=jk+1;        } /* end of wave */
         if(dh[mi][i]==0)      } /* end of individual */
           dh[mi][i]=1; /* At least one step */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   jmean=sum/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            for (j=1;j<=nlstate+ndeath;j++){
  }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Tricode ****************************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 void tricode(int *Tvar, int **nbcode, int imx)            }
 {          for(d=0; d<dh[mi][i]; d++){
   int Ndum[20],ij=1, k, j, i;            newm=savm;
   int cptcode=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   cptcoveff=0;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (k=0; k<19; k++) Ndum[k]=0;            }
   for (k=1; k<=7; k++) ncodemax[k]=0;          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1; i<=imx; i++) {            savm=oldm;
       ij=(int)(covar[Tvar[j]][i]);            oldm=newm;
       Ndum[ij]++;          } /* end mult */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        
       if (ij > cptcode) cptcode=ij;          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (i=0; i<=cptcode; i++) {          ipmx +=1;
       if(Ndum[i]!=0) ncodemax[j]++;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     ij=1;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
       } /* end of individual */
     for (i=1; i<=ncodemax[j]; i++) {    } /* End of if */
       for (k=0; k<=19; k++) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         if (Ndum[k] != 0) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           nbcode[Tvar[j]][ij]=k;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
              return -l;
           ij++;  }
         }  
         if (ij > ncodemax[j]) break;  /*************** log-likelihood *************/
       }    double funcone( double *x)
     }  {
   }      /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
  for (k=0; k<19; k++) Ndum[k]=0;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
  for (i=1; i<=ncovmodel-2; i++) {    double lli; /* Individual log likelihood */
       ij=Tvar[i];    double llt;
       Ndum[ij]++;    int s1, s2;
     }    double bbh, survp;
     /*extern weight */
  ij=1;    /* We are differentiating ll according to initial status */
  for (i=1; i<=10; i++) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
    if((Ndum[i]!=0) && (i<=ncovcol)){    /*for(i=1;i<imx;i++) 
      Tvaraff[ij]=i;      printf(" %d\n",s[4][i]);
      ij++;    */
    }    cov[1]=1.;
  }  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
     cptcoveff=ij-1;  
 }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*********** Health Expectancies ****************/      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Health expectancies */          }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        for(d=0; d<dh[mi][i]; d++){
   double age, agelim, hf;          newm=savm;
   double ***p3mat,***varhe;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **dnewm,**doldm;          for (kk=1; kk<=cptcovage;kk++) {
   double *xp;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **gp, **gm;          }
   double ***gradg, ***trgradg;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int theta;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          oldm=newm;
   xp=vector(1,npar);        } /* end mult */
   dnewm=matrix(1,nlstate*2,1,npar);        
   doldm=matrix(1,nlstate*2,1,nlstate*2);        s1=s[mw[mi][i]][i];
          s2=s[mw[mi+1][i]][i];
   fprintf(ficreseij,"# Health expectancies\n");        bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficreseij,"# Age");        /* bias is positive if real duration
   for(i=1; i<=nlstate;i++)         * is higher than the multiple of stepm and negative otherwise.
     for(j=1; j<=nlstate;j++)         */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   fprintf(ficreseij,"\n");          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if (mle==1){
   if(estepm < stepm){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     printf ("Problem %d lower than %d\n",estepm, stepm);        } else if(mle==2){
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   else  hstepm=estepm;          } else if(mle==3){  /* exponential inter-extrapolation */
   /* We compute the life expectancy from trapezoids spaced every estepm months          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
    * This is mainly to measure the difference between two models: for example        } else if (mle==4){  /* mle=4 no inter-extrapolation */
    * if stepm=24 months pijx are given only every 2 years and by summing them          lli=log(out[s1][s2]); /* Original formula */
    * we are calculating an estimate of the Life Expectancy assuming a linear        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
    * progression inbetween and thus overestimating or underestimating according          lli=log(out[s1][s2]); /* Original formula */
    * to the curvature of the survival function. If, for the same date, we        } /* End of if */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        ipmx +=1;
    * to compare the new estimate of Life expectancy with the same linear        sw += weight[i];
    * hypothesis. A more precise result, taking into account a more precise        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    * curvature will be obtained if estepm is as small as stepm. */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
   /* For example we decided to compute the life expectancy with the smallest unit */          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.   %10.6f %10.6f %10.6f ", \
      nhstepm is the number of hstepm from age to agelim                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
      nstepm is the number of stepm from age to agelin.                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
      Look at hpijx to understand the reason of that which relies in memory size          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
      and note for a fixed period like estepm months */            llt +=ll[k]*gipmx/gsw;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
      survival function given by stepm (the optimization length). Unfortunately it          }
      means that if the survival funtion is printed only each two years of age and if          fprintf(ficresilk," %10.6f\n", -llt);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        }
      results. So we changed our mind and took the option of the best precision.      } /* end of wave */
   */    } /* end of individual */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   agelim=AGESUP;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    if(globpr==0){ /* First time we count the contributions and weights */
     /* nhstepm age range expressed in number of stepm */      gipmx=ipmx;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      gsw=sw;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    }
     /* if (stepm >= YEARM) hstepm=1;*/    return -l;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  
     gp=matrix(0,nhstepm,1,nlstate*2);  /*************** function likelione ***********/
     gm=matrix(0,nhstepm,1,nlstate*2);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* This routine should help understanding what is done with 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */       the selection of individuals/waves and
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);         to check the exact contribution to the likelihood.
         Plotting could be done.
      */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    int k;
   
     /* Computing Variances of health expectancies */    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
      for(theta=1; theta <=npar; theta++){      strcat(fileresilk,fileres);
       for(i=1; i<=npar; i++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        printf("Problem with resultfile: %s\n", fileresilk);
       }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       cptj=0;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       for(j=1; j<= nlstate; j++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         for(i=1; i<=nlstate; i++){      for(k=1; k<=nlstate; k++) 
           cptj=cptj+1;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    }
           }  
         }    *fretone=(*funcone)(p);
       }    if(*globpri !=0){
            fclose(ficresilk);
            fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       for(i=1; i<=npar; i++)      fflush(fichtm); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      return;
        }
       cptj=0;  
       for(j=1; j<= nlstate; j++){  
         for(i=1;i<=nlstate;i++){  /*********** Maximum Likelihood Estimation ***************/
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  {
           }    int i,j, iter;
         }    double **xi;
       }    double fret;
          double fretone; /* Only one call to likelihood */
        /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
       for(j=1; j<= nlstate*2; j++)    for (i=1;i<=npar;i++)
         for(h=0; h<=nhstepm-1; h++){      for (j=1;j<=npar;j++)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        xi[i][j]=(i==j ? 1.0 : 0.0);
         }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
      }    strcat(filerespow,fileres);
        if((ficrespow=fopen(filerespow,"w"))==NULL) {
 /* End theta */      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
      for(h=0; h<=nhstepm-1; h++)    for (i=1;i<=nlstate;i++)
       for(j=1; j<=nlstate*2;j++)      for(j=1;j<=nlstate+ndeath;j++)
         for(theta=1; theta <=npar; theta++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         trgradg[h][j][theta]=gradg[h][theta][j];    fprintf(ficrespow,"\n");
   
     powell(p,xi,npar,ftol,&iter,&fret,func);
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)    free_matrix(xi,1,npar,1,npar);
         varhe[i][j][(int)age] =0.;    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     for(h=0;h<=nhstepm-1;h++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(k=0;k<=nhstepm-1;k++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  }
         for(i=1;i<=nlstate*2;i++)  
           for(j=1;j<=nlstate*2;j++)  /**** Computes Hessian and covariance matrix ***/
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
     }    double  **a,**y,*x,pd;
     double **hess;
          int i, j,jk;
     /* Computing expectancies */    int *indx;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    void lubksb(double **a, int npar, int *indx, double b[]) ;
              void ludcmp(double **a, int npar, int *indx, double *d) ;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
         }  
     printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficreseij,"%3.0f",age );    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     cptj=0;    for (i=1;i<=npar;i++){
     for(i=1; i<=nlstate;i++)      printf("%d",i);fflush(stdout);
       for(j=1; j<=nlstate;j++){      fprintf(ficlog,"%d",i);fflush(ficlog);
         cptj++;     
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       }      
     fprintf(ficreseij,"\n");      /*  printf(" %f ",p[i]);
              printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     free_matrix(gm,0,nhstepm,1,nlstate*2);    }
     free_matrix(gp,0,nhstepm,1,nlstate*2);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    for (i=1;i<=npar;i++) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      for (j=1;j<=npar;j++)  {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (j>i) { 
   }          printf(".%d%d",i,j);fflush(stdout);
   free_vector(xp,1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   free_matrix(dnewm,1,nlstate*2,1,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          hess[j][i]=hess[i][j];    
 }          /*printf(" %lf ",hess[i][j]);*/
         }
 /************ Variance ******************/      }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    }
 {    printf("\n");
   /* Variance of health expectancies */    fprintf(ficlog,"\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   double **dnewm,**doldm;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   int i, j, nhstepm, hstepm, h, nstepm ;    
   int k, cptcode;    a=matrix(1,npar,1,npar);
   double *xp;    y=matrix(1,npar,1,npar);
   double **gp, **gm;    x=vector(1,npar);
   double ***gradg, ***trgradg;    indx=ivector(1,npar);
   double ***p3mat;    for (i=1;i<=npar;i++)
   double age,agelim, hf;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   int theta;    ludcmp(a,npar,indx,&pd);
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");    for (j=1;j<=npar;j++) {
   fprintf(ficresvij,"# Age");      for (i=1;i<=npar;i++) x[i]=0;
   for(i=1; i<=nlstate;i++)      x[j]=1;
     for(j=1; j<=nlstate;j++)      lubksb(a,npar,indx,x);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for (i=1;i<=npar;i++){ 
   fprintf(ficresvij,"\n");        matcov[i][j]=x[i];
       }
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    printf("\n#Hessian matrix#\n");
      fprintf(ficlog,"\n#Hessian matrix#\n");
   if(estepm < stepm){    for (i=1;i<=npar;i++) { 
     printf ("Problem %d lower than %d\n",estepm, stepm);      for (j=1;j<=npar;j++) { 
   }        printf("%.3e ",hess[i][j]);
   else  hstepm=estepm;          fprintf(ficlog,"%.3e ",hess[i][j]);
   /* For example we decided to compute the life expectancy with the smallest unit */      }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      printf("\n");
      nhstepm is the number of hstepm from age to agelim      fprintf(ficlog,"\n");
      nstepm is the number of stepm from age to agelin.    }
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */    /* Recompute Inverse */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    for (i=1;i<=npar;i++)
      survival function given by stepm (the optimization length). Unfortunately it      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      means that if the survival funtion is printed only each two years of age and if    ludcmp(a,npar,indx,&pd);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.    /*  printf("\n#Hessian matrix recomputed#\n");
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (j=1;j<=npar;j++) {
   agelim = AGESUP;      for (i=1;i<=npar;i++) x[i]=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      x[j]=1;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      lubksb(a,npar,indx,x);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      for (i=1;i<=npar;i++){ 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        y[i][j]=x[i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        printf("%.3e ",y[i][j]);
     gp=matrix(0,nhstepm,1,nlstate);        fprintf(ficlog,"%.3e ",y[i][j]);
     gm=matrix(0,nhstepm,1,nlstate);      }
       printf("\n");
     for(theta=1; theta <=npar; theta++){      fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    */
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_matrix(a,1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
       if (popbased==1) {    free_ivector(indx,1,npar);
         for(i=1; i<=nlstate;i++)    free_matrix(hess,1,npar,1,npar);
           prlim[i][i]=probs[(int)age][i][ij];  
       }  
    }
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){  /*************** hessian matrix ****************/
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  {
         }    int i;
       }    int l=1, lmax=20;
        double k1,k2;
       for(i=1; i<=npar; i++) /* Computes gradient */    double p2[NPARMAX+1];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double res;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double fx;
      int k=0,kmax=10;
       if (popbased==1) {    double l1;
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    fx=func(x);
       }    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
       for(j=1; j<= nlstate; j++){      l1=pow(10,l);
         for(h=0; h<=nhstepm; h++){      delts=delt;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for(k=1 ; k <kmax; k=k+1){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        delt = delta*(l1*k);
         }        p2[theta]=x[theta] +delt;
       }        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
       for(j=1; j<= nlstate; j++)        k2=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         }        
     } /* End theta */  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
     for(h=0; h<=nhstepm; h++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(j=1; j<=nlstate;j++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         for(theta=1; theta <=npar; theta++)          k=kmax;
           trgradg[h][j][theta]=gradg[h][theta][j];        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          k=kmax; l=lmax*10.;
     for(i=1;i<=nlstate;i++)        }
       for(j=1;j<=nlstate;j++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         vareij[i][j][(int)age] =0.;          delts=delt;
         }
     for(h=0;h<=nhstepm;h++){      }
       for(k=0;k<=nhstepm;k++){    }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    delti[theta]=delts;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    return res; 
         for(i=1;i<=nlstate;i++)    
           for(j=1;j<=nlstate;j++)  }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     }  {
     int i;
     fprintf(ficresvij,"%.0f ",age );    int l=1, l1, lmax=20;
     for(i=1; i<=nlstate;i++)    double k1,k2,k3,k4,res,fx;
       for(j=1; j<=nlstate;j++){    double p2[NPARMAX+1];
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    int k;
       }  
     fprintf(ficresvij,"\n");    fx=func(x);
     free_matrix(gp,0,nhstepm,1,nlstate);    for (k=1; k<=2; k++) {
     free_matrix(gm,0,nhstepm,1,nlstate);      for (i=1;i<=npar;i++) p2[i]=x[i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      k1=func(p2)-fx;
   } /* End age */    
        p2[thetai]=x[thetai]+delti[thetai]/k;
   free_vector(xp,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   free_matrix(doldm,1,nlstate,1,npar);      k2=func(p2)-fx;
   free_matrix(dnewm,1,nlstate,1,nlstate);    
       p2[thetai]=x[thetai]-delti[thetai]/k;
 }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
 /************ Variance of prevlim ******************/    
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      p2[thetai]=x[thetai]-delti[thetai]/k;
 {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /* Variance of prevalence limit */      k4=func(p2)-fx;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   double **newm;  #ifdef DEBUG
   double **dnewm,**doldm;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int i, j, nhstepm, hstepm;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   int k, cptcode;  #endif
   double *xp;    }
   double *gp, *gm;    return res;
   double **gradg, **trgradg;  }
   double age,agelim;  
   int theta;  /************** Inverse of matrix **************/
      void ludcmp(double **a, int n, int *indx, double *d) 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  { 
   fprintf(ficresvpl,"# Age");    int i,imax,j,k; 
   for(i=1; i<=nlstate;i++)    double big,dum,sum,temp; 
       fprintf(ficresvpl," %1d-%1d",i,i);    double *vv; 
   fprintf(ficresvpl,"\n");   
     vv=vector(1,n); 
   xp=vector(1,npar);    *d=1.0; 
   dnewm=matrix(1,nlstate,1,npar);    for (i=1;i<=n;i++) { 
   doldm=matrix(1,nlstate,1,nlstate);      big=0.0; 
        for (j=1;j<=n;j++) 
   hstepm=1*YEARM; /* Every year of age */        if ((temp=fabs(a[i][j])) > big) big=temp; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   agelim = AGESUP;      vv[i]=1.0/big; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    } 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (j=1;j<=n;j++) { 
     if (stepm >= YEARM) hstepm=1;      for (i=1;i<j;i++) { 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        sum=a[i][j]; 
     gradg=matrix(1,npar,1,nlstate);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     gp=vector(1,nlstate);        a[i][j]=sum; 
     gm=vector(1,nlstate);      } 
       big=0.0; 
     for(theta=1; theta <=npar; theta++){      for (i=j;i<=n;i++) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */        sum=a[i][j]; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for (k=1;k<j;k++) 
       }          sum -= a[i][k]*a[k][j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        a[i][j]=sum; 
       for(i=1;i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
         gp[i] = prlim[i][i];          big=dum; 
              imax=i; 
       for(i=1; i<=npar; i++) /* Computes gradient */        } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      if (j != imax) { 
       for(i=1;i<=nlstate;i++)        for (k=1;k<=n;k++) { 
         gm[i] = prlim[i][i];          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
       for(i=1;i<=nlstate;i++)          a[j][k]=dum; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        } 
     } /* End theta */        *d = -(*d); 
         vv[imax]=vv[j]; 
     trgradg =matrix(1,nlstate,1,npar);      } 
       indx[j]=imax; 
     for(j=1; j<=nlstate;j++)      if (a[j][j] == 0.0) a[j][j]=TINY; 
       for(theta=1; theta <=npar; theta++)      if (j != n) { 
         trgradg[j][theta]=gradg[theta][j];        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for(i=1;i<=nlstate;i++)      } 
       varpl[i][(int)age] =0.;    } 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    free_vector(vv,1,n);  /* Doesn't work */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  ;
     for(i=1;i<=nlstate;i++)  } 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
   void lubksb(double **a, int n, int *indx, double b[]) 
     fprintf(ficresvpl,"%.0f ",age );  { 
     for(i=1; i<=nlstate;i++)    int i,ii=0,ip,j; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double sum; 
     fprintf(ficresvpl,"\n");   
     free_vector(gp,1,nlstate);    for (i=1;i<=n;i++) { 
     free_vector(gm,1,nlstate);      ip=indx[i]; 
     free_matrix(gradg,1,npar,1,nlstate);      sum=b[ip]; 
     free_matrix(trgradg,1,nlstate,1,npar);      b[ip]=b[i]; 
   } /* End age */      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   free_vector(xp,1,npar);      else if (sum) ii=i; 
   free_matrix(doldm,1,nlstate,1,npar);      b[i]=sum; 
   free_matrix(dnewm,1,nlstate,1,nlstate);    } 
     for (i=n;i>=1;i--) { 
 }      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 /************ Variance of one-step probabilities  ******************/      b[i]=sum/a[i][i]; 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    } 
 {  } 
   int i, j, i1, k1, j1, z1;  
   int k=0, cptcode;  void pstamp(FILE *fichier)
   double **dnewm,**doldm;  {
   double *xp;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   double *gp, *gm;  }
   double **gradg, **trgradg;  
   double age,agelim, cov[NCOVMAX];  /************ Frequencies ********************/
   int theta;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   char fileresprob[FILENAMELENGTH];  {  /* Some frequencies */
     
   strcpy(fileresprob,"prob");    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   strcat(fileresprob,fileres);    int first;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double ***freq; /* Frequencies */
     printf("Problem with resultfile: %s\n", fileresprob);    double *pp, **prop;
   }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    char fileresp[FILENAMELENGTH];
      
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    pp=vector(1,nlstate);
   fprintf(ficresprob,"# Age");    prop=matrix(1,nlstate,iagemin,iagemax+3);
   for(i=1; i<=nlstate;i++)    strcpy(fileresp,"p");
     for(j=1; j<=(nlstate+ndeath);j++)    strcat(fileresp,fileres);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   fprintf(ficresprob,"\n");      exit(0);
     }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   xp=vector(1,npar);    j1=0;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    j=cptcoveff;
      if (cptcovn<1) {j=1;ncodemax[1]=1;}
   cov[1]=1;  
   j=cptcoveff;    first=1;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
   j1=0;    for(k1=1; k1<=j;k1++){
   for(k1=1; k1<=1;k1++){      for(i1=1; i1<=ncodemax[k1];i1++){
     for(i1=1; i1<=ncodemax[k1];i1++){        j1++;
     j1++;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
     if  (cptcovn>0) {        for (i=-5; i<=nlstate+ndeath; i++)  
       fprintf(ficresprob, "\n#********** Variable ");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficresprob, "**********\n#");              freq[i][jk][m]=0;
     }  
          for (i=1; i<=nlstate; i++)  
       for (age=bage; age<=fage; age ++){        for(m=iagemin; m <= iagemax+3; m++)
         cov[2]=age;          prop[i][m]=0;
         for (k=1; k<=cptcovn;k++) {        
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        dateintsum=0;
                  k2cpt=0;
         }        for (i=1; i<=imx; i++) {
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          bool=1;
         for (k=1; k<=cptcovprod;k++)          if  (cptcovn>0) {
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            for (z1=1; z1<=cptcoveff; z1++) 
                      if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         gradg=matrix(1,npar,1,9);                bool=0;
         trgradg=matrix(1,9,1,npar);          }
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          if (bool==1){
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            for(m=firstpass; m<=lastpass; m++){
                  k2=anint[m][i]+(mint[m][i]/12.);
         for(theta=1; theta <=npar; theta++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           for(i=1; i<=npar; i++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                          if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                if (m<lastpass) {
                            freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           k=0;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           for(i=1; i<= (nlstate+ndeath); i++){                }
             for(j=1; j<=(nlstate+ndeath);j++){                
               k=k+1;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
               gp[k]=pmmij[i][j];                  dateintsum=dateintsum+k2;
             }                  k2cpt++;
           }                }
                          /*}*/
           for(i=1; i<=npar; i++)            }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
            }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);         
           k=0;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           for(i=1; i<=(nlstate+ndeath); i++){        pstamp(ficresp);
             for(j=1; j<=(nlstate+ndeath);j++){        if  (cptcovn>0) {
               k=k+1;          fprintf(ficresp, "\n#********** Variable "); 
               gm[k]=pmmij[i][j];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             }          fprintf(ficresp, "**********\n#");
           }        }
              for(i=1; i<=nlstate;i++) 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          fprintf(ficresp, "\n");
         }        
         for(i=iagemin; i <= iagemax+3; i++){
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          if(i==iagemax+3){
           for(theta=1; theta <=npar; theta++)            fprintf(ficlog,"Total");
             trgradg[j][theta]=gradg[theta][j];          }else{
                    if(first==1){
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              first=0;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);              printf("See log file for details...\n");
                    }
         pmij(pmmij,cov,ncovmodel,x,nlstate);            fprintf(ficlog,"Age %d", i);
                  }
         k=0;          for(jk=1; jk <=nlstate ; jk++){
         for(i=1; i<=(nlstate+ndeath); i++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           for(j=1; j<=(nlstate+ndeath);j++){              pp[jk] += freq[jk][m][i]; 
             k=k+1;          }
             gm[k]=pmmij[i][j];          for(jk=1; jk <=nlstate ; jk++){
           }            for(m=-1, pos=0; m <=0 ; m++)
         }              pos += freq[jk][m][i];
                  if(pp[jk]>=1.e-10){
      /*printf("\n%d ",(int)age);              if(first==1){
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              }
      }*/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
         fprintf(ficresprob,"\n%d ",(int)age);              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));            }
            }
       }  
     }          for(jk=1; jk <=nlstate ; jk++){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              pp[jk] += freq[jk][m][i];
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }       
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   }            pos += pp[jk];
   free_vector(xp,1,npar);            posprop += prop[jk][i];
   fclose(ficresprob);          }
            for(jk=1; jk <=nlstate ; jk++){
 }            if(pos>=1.e-5){
               if(first==1)
 /******************* Printing html file ***********/                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
  int lastpass, int stepm, int weightopt, char model[],\            }else{
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \              if(first==1)
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  char version[], int popforecast, int estepm ){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int jj1, k1, i1, cpt;            }
   FILE *fichtm;            if( i <= iagemax){
   /*char optionfilehtm[FILENAMELENGTH];*/              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   strcpy(optionfilehtm,optionfile);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   strcat(optionfilehtm,".htm");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              }
     printf("Problem with %s \n",optionfilehtm), exit(0);              else
   }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          
 \n          for(jk=-1; jk <=nlstate+ndeath; jk++)
 Total number of observations=%d <br>\n            for(m=-1; m <=nlstate+ndeath; m++)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n              if(freq[jk][m][i] !=0 ) {
 <hr  size=\"2\" color=\"#EC5E5E\">              if(first==1)
  <ul><li>Outputs files<br>\n                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n              }
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          if(i <= iagemax)
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n            fprintf(ficresp,"\n");
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n          if(first==1)
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            printf("Others in log...\n");
           fprintf(ficlog,"\n");
  fprintf(fichtm,"\n        }
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n      }
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    }
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    dateintmean=dateintsum/k2cpt; 
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n   
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
  if(popforecast==1) fprintf(fichtm,"\n    free_vector(pp,1,nlstate);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    /* End of Freq */
         <br>",fileres,fileres,fileres,fileres);  }
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  /************ Prevalence ********************/
 fprintf(fichtm," <li>Graphs</li><p>");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
  m=cptcoveff;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
  jj1=0;    */
  for(k1=1; k1<=m;k1++){   
    for(i1=1; i1<=ncodemax[k1];i1++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
        jj1++;    double ***freq; /* Frequencies */
        if (cptcovn > 0) {    double *pp, **prop;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double pos,posprop; 
          for (cpt=1; cpt<=cptcoveff;cpt++)    double  y2; /* in fractional years */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    int iagemin, iagemax;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
        }    iagemin= (int) agemin;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    iagemax= (int) agemax;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        /*pp=vector(1,nlstate);*/
        for(cpt=1; cpt<nlstate;cpt++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    j1=0;
        }    
     for(cpt=1; cpt<=nlstate;cpt++) {    j=cptcoveff;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 interval) in state (%d): v%s%d%d.gif <br>    
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for(k1=1; k1<=j;k1++){
      }      for(i1=1; i1<=ncodemax[k1];i1++){
      for(cpt=1; cpt<=nlstate;cpt++) {        j1++;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for (i=1; i<=nlstate; i++)  
      }          for(m=iagemin; m <= iagemax+3; m++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            prop[i][m]=0.0;
 health expectancies in states (1) and (2): e%s%d.gif<br>       
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for (i=1; i<=imx; i++) { /* Each individual */
 fprintf(fichtm,"\n</body>");          bool=1;
    }          if  (cptcovn>0) {
    }            for (z1=1; z1<=cptcoveff; z1++) 
 fclose(fichtm);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 }                bool=0;
           } 
 /******************* Gnuplot file **************/          if (bool==1) { 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   strcpy(optionfilegnuplot,optionfilefiname);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   strcat(optionfilegnuplot,".gp.txt");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     printf("Problem with file %s",optionfilegnuplot);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
 #ifdef windows                } 
     fprintf(ficgp,"cd \"%s\" \n",pathc);              }
 #endif            } /* end selection of waves */
 m=pow(2,cptcoveff);          }
          }
  /* 1eme*/        for(i=iagemin; i <= iagemax+3; i++){  
   for (cpt=1; cpt<= nlstate ; cpt ++) {          
    for (k1=1; k1<= m ; k1 ++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          } 
   
 for (i=1; i<= nlstate ; i ++) {          for(jk=1; jk <=nlstate ; jk++){     
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if( i <=  iagemax){ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if(posprop>=1.e-5){ 
 }                probs[i][jk][j1]= prop[jk][i]/posprop;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              } 
     for (i=1; i<= nlstate ; i ++) {            } 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }/* end jk */ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }/* end i */ 
 }      } /* end i1 */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    } /* end k1 */
      for (i=1; i<= nlstate ; i ++) {    
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /*free_vector(pp,1,nlstate);*/
 }      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  }  /* End of prevalence */
   
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  /************* Waves Concatenation ***************/
    }  
   }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   /*2 eme*/  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   for (k1=1; k1<= m ; k1 ++) {       Death is a valid wave (if date is known).
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     for (i=1; i<= nlstate+1 ; i ++) {       and mw[mi+1][i]. dh depends on stepm.
       k=2*i;       */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    int i, mi, m;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");       double sum=0., jmean=0.;*/
 }      int first;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    int j, k=0,jk, ju, jl;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    double sum=0.;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    first=0;
       for (j=1; j<= nlstate+1 ; j ++) {    jmin=1e+5;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    jmax=-1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    jmean=0.;
 }      for(i=1; i<=imx; i++){
       fprintf(ficgp,"\" t\"\" w l 0,");      mi=0;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      m=firstpass;
       for (j=1; j<= nlstate+1 ; j ++) {      while(s[m][i] <= nlstate){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          mw[++mi][i]=m;
 }          if(m >=lastpass)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          break;
       else fprintf(ficgp,"\" t\"\" w l 0,");        else
     }          m++;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      }/* end while */
   }      if (s[m][i] > nlstate){
          mi++;     /* Death is another wave */
   /*3eme*/        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   for (k1=1; k1<= m ; k1 ++) {        mw[mi][i]=m;
     for (cpt=1; cpt<= nlstate ; cpt ++) {      }
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      wav[i]=mi;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      if(mi==0){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        nbwarn++;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        if(first==0){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          first=1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        }
         if(first==1){
 */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       for (i=1; i< nlstate ; i ++) {        }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      } /* end mi==0 */
     } /* End individuals */
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    for(i=1; i<=imx; i++){
     }      for(mi=1; mi<wav[i];mi++){
     }        if (stepm <=0)
            dh[mi][i]=1;
   /* CV preval stat */        else{
     for (k1=1; k1<= m ; k1 ++) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     for (cpt=1; cpt<nlstate ; cpt ++) {            if (agedc[i] < 2*AGESUP) {
       k=3;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
       for (i=1; i< nlstate ; i ++)                nberr++;
         fprintf(ficgp,"+$%d",k+i+1);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                j=1; /* Temporary Dangerous patch */
                      printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       l=3+(nlstate+ndeath)*cpt;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for (i=1; i< nlstate ; i ++) {              }
         l=3+(nlstate+ndeath)*cpt;              k=k+1;
         fprintf(ficgp,"+$%d",l+i+1);              if (j >= jmax){
       }                jmax=j;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  ijmax=i;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              }
     }              if (j <= jmin){
   }                  jmin=j;
                  ijmin=i;
   /* proba elementaires */              }
    for(i=1,jk=1; i <=nlstate; i++){              sum=sum+j;
     for(k=1; k <=(nlstate+ndeath); k++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       if (k != i) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         for(j=1; j <=ncovmodel; j++){            }
                  }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          else{
           jk++;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           fprintf(ficgp,"\n");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         }  
       }            k=k+1;
     }            if (j >= jmax) {
     }              jmax=j;
               ijmax=i;
     for(jk=1; jk <=m; jk++) {            }
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            else if (j <= jmin){
    i=1;              jmin=j;
    for(k2=1; k2<=nlstate; k2++) {              ijmin=i;
      k3=i;            }
      for(k=1; k<=(nlstate+ndeath); k++) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
        if (k != k2){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            if(j<0){
 ij=1;              nberr++;
         for(j=3; j <=ncovmodel; j++) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }
             ij++;            sum=sum+j;
           }          }
           else          jk= j/stepm;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          jl= j -jk*stepm;
         }          ju= j -(jk+1)*stepm;
           fprintf(ficgp,")/(1");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                    if(jl==0){
         for(k1=1; k1 <=nlstate; k1++){                dh[mi][i]=jk;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              bh[mi][i]=0;
 ij=1;            }else{ /* We want a negative bias in order to only have interpolation ie
           for(j=3; j <=ncovmodel; j++){                    * at the price of an extra matrix product in likelihood */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              dh[mi][i]=jk+1;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              bh[mi][i]=ju;
             ij++;            }
           }          }else{
           else            if(jl <= -ju){
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              dh[mi][i]=jk;
           }              bh[mi][i]=jl;       /* bias is positive if real duration
           fprintf(ficgp,")");                                   * is higher than the multiple of stepm and negative otherwise.
         }                                   */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            else{
         i=i+ncovmodel;              dh[mi][i]=jk+1;
        }              bh[mi][i]=ju;
      }            }
    }            if(dh[mi][i]==0){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              dh[mi][i]=1; /* At least one step */
    }              bh[mi][i]=ju; /* At least one step */
                  /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   fclose(ficgp);            }
 }  /* end gnuplot */          } /* end if mle */
         }
       } /* end wave */
 /*************** Moving average **************/    }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   int i, cpt, cptcod;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)   }
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  /*********** Tricode ****************************/
           mobaverage[(int)agedeb][i][cptcod]=0.;  void tricode(int *Tvar, int **nbcode, int imx)
      {
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    
       for (i=1; i<=nlstate;i++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int cptcode=0;
           for (cpt=0;cpt<=4;cpt++){    cptcoveff=0; 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];   
           }    for (k=0; k<maxncov; k++) Ndum[k]=0;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    for (k=1; k<=7; k++) ncodemax[k]=0;
         }  
       }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                     modality*/ 
 }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 /************** Forecasting ******************/        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){                                         Tvar[j]. If V=sex and male is 0 and 
                                           female is 1, then  cptcode=1.*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      }
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      for (i=0; i<=cptcode; i++) {
   double *popeffectif,*popcount;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   double ***p3mat;      }
   char fileresf[FILENAMELENGTH];  
       ij=1; 
  agelim=AGESUP;      for (i=1; i<=ncodemax[j]; i++) {
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            nbcode[Tvar[j]][ij]=k; 
              /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
              
   strcpy(fileresf,"f");            ij++;
   strcat(fileresf,fileres);          }
   if((ficresf=fopen(fileresf,"w"))==NULL) {          if (ij > ncodemax[j]) break; 
     printf("Problem with forecast resultfile: %s\n", fileresf);        }  
   }      } 
   printf("Computing forecasting: result on file '%s' \n", fileresf);    }  
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
   if (mobilav==1) {   for (i=1; i<=ncovmodel-2; i++) { 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);     ij=Tvar[i];
   }     Ndum[ij]++;
    }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;   ij=1;
     for (i=1; i<= maxncov; i++) {
   agelim=AGESUP;     if((Ndum[i]!=0) && (i<=ncovcol)){
         Tvaraff[ij]=i; /*For printing */
   hstepm=1;       ij++;
   hstepm=hstepm/stepm;     }
   yp1=modf(dateintmean,&yp);   }
   anprojmean=yp;   
   yp2=modf((yp1*12),&yp);   cptcoveff=ij-1; /*Number of simple covariates*/
   mprojmean=yp;  }
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;  /*********** Health Expectancies ****************/
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  {
      /* Health expectancies, no variances */
   for(cptcov=1;cptcov<=i2;cptcov++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double age, agelim, hf;
       k=k+1;    double ***p3mat;
       fprintf(ficresf,"\n#******");    double eip;
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    pstamp(ficreseij);
       }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       fprintf(ficresf,"******\n");    fprintf(ficreseij,"# Age");
       fprintf(ficresf,"# StartingAge FinalAge");    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      for(j=1; j<=nlstate;j++){
              fprintf(ficreseij," e%1d%1d ",i,j);
            }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      fprintf(ficreseij," e%1d. ",i);
         fprintf(ficresf,"\n");    }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fprintf(ficreseij,"\n");
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    if(estepm < stepm){
           nhstepm = nhstepm/hstepm;      printf ("Problem %d lower than %d\n",estepm, stepm);
              }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    else  hstepm=estepm;   
           oldm=oldms;savm=savms;    /* We compute the life expectancy from trapezoids spaced every estepm months
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * This is mainly to measure the difference between two models: for example
             * if stepm=24 months pijx are given only every 2 years and by summing them
           for (h=0; h<=nhstepm; h++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
             if (h==(int) (calagedate+YEARM*cpt)) {     * progression in between and thus overestimating or underestimating according
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);     * to the curvature of the survival function. If, for the same date, we 
             }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             for(j=1; j<=nlstate+ndeath;j++) {     * to compare the new estimate of Life expectancy with the same linear 
               kk1=0.;kk2=0;     * hypothesis. A more precise result, taking into account a more precise
               for(i=1; i<=nlstate;i++) {                   * curvature will be obtained if estepm is as small as stepm. */
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /* For example we decided to compute the life expectancy with the smallest unit */
                 else {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       nhstepm is the number of hstepm from age to agelim 
                 }       nstepm is the number of stepm from age to agelin. 
                       Look at hpijx to understand the reason of that which relies in memory size
               }       and note for a fixed period like estepm months */
               if (h==(int)(calagedate+12*cpt)){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 fprintf(ficresf," %.3f", kk1);       survival function given by stepm (the optimization length). Unfortunately it
                               means that if the survival funtion is printed only each two years of age and if
               }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             }       results. So we changed our mind and took the option of the best precision.
           }    */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         }  
       }    agelim=AGESUP;
     }    /* nhstepm age range expressed in number of stepm */
   }    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
            /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fclose(ficresf);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }  
 /************** Forecasting ******************/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   
   double *popeffectif,*popcount;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         decrease memory allocation */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       printf("%d|",(int)age);fflush(stdout);
   agelim=AGESUP;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      /* Computing expectancies */
        for(i=1; i<=nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   strcpy(filerespop,"pop");            
   strcat(filerespop,fileres);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);          }
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        eip=0;
         for(j=1; j<=nlstate;j++){
   if (mobilav==1) {          eip +=eij[i][j][(int)age];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     movingaverage(agedeb, fage, ageminpar, mobaverage);        }
   }        fprintf(ficreseij,"%9.4f", eip );
       }
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficreseij,"\n");
   if (stepm<=12) stepsize=1;  
      }
   agelim=AGESUP;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
   hstepm=1;    fprintf(ficlog,"\n");
   hstepm=hstepm/stepm;  
    }
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }  {
     popage=ivector(0,AGESUP);    /* Covariances of health expectancies eij and of total life expectancies according
     popeffectif=vector(0,AGESUP);     to initial status i, ei. .
     popcount=vector(0,AGESUP);    */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     i=1;      double age, agelim, hf;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    double ***p3matp, ***p3matm, ***varhe;
        double **dnewm,**doldm;
     imx=i;    double *xp, *xm;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    double **gp, **gm;
   }    double ***gradg, ***trgradg;
     int theta;
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double eip, vip;
       k=k+1;  
       fprintf(ficrespop,"\n#******");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       for(j=1;j<=cptcoveff;j++) {    xp=vector(1,npar);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    xm=vector(1,npar);
       }    dnewm=matrix(1,nlstate*nlstate,1,npar);
       fprintf(ficrespop,"******\n");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficrespop,"# Age");    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    pstamp(ficresstdeij);
       if (popforecast==1)  fprintf(ficrespop," [Population]");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
          fprintf(ficresstdeij,"# Age");
       for (cpt=0; cpt<=0;cpt++) {    for(i=1; i<=nlstate;i++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for(j=1; j<=nlstate;j++)
                fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      fprintf(ficresstdeij," e%1d. ",i);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;    fprintf(ficresstdeij,"\n");
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    pstamp(ficrescveij);
           oldm=oldms;savm=savms;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficrescveij,"# Age");
            for(i=1; i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){      for(j=1; j<=nlstate;j++){
             if (h==(int) (calagedate+YEARM*cpt)) {        cptj= (j-1)*nlstate+i;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(i2=1; i2<=nlstate;i2++)
             }          for(j2=1; j2<=nlstate;j2++){
             for(j=1; j<=nlstate+ndeath;j++) {            cptj2= (j2-1)*nlstate+i2;
               kk1=0.;kk2=0;            if(cptj2 <= cptj)
               for(i=1; i<=nlstate;i++) {                            fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
                 if (mobilav==1)          }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      }
                 else {    fprintf(ficrescveij,"\n");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    
                 }    if(estepm < stepm){
               }      printf ("Problem %d lower than %d\n",estepm, stepm);
               if (h==(int)(calagedate+12*cpt)){    }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    else  hstepm=estepm;   
                   /*fprintf(ficrespop," %.3f", kk1);    /* We compute the life expectancy from trapezoids spaced every estepm months
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/     * This is mainly to measure the difference between two models: for example
               }     * if stepm=24 months pijx are given only every 2 years and by summing them
             }     * we are calculating an estimate of the Life Expectancy assuming a linear 
             for(i=1; i<=nlstate;i++){     * progression in between and thus overestimating or underestimating according
               kk1=0.;     * to the curvature of the survival function. If, for the same date, we 
                 for(j=1; j<=nlstate;j++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];     * to compare the new estimate of Life expectancy with the same linear 
                 }     * hypothesis. A more precise result, taking into account a more precise
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];     * curvature will be obtained if estepm is as small as stepm. */
             }  
     /* For example we decided to compute the life expectancy with the smallest unit */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);       nhstepm is the number of hstepm from age to agelim 
           }       nstepm is the number of stepm from age to agelin. 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       Look at hpijx to understand the reason of that which relies in memory size
         }       and note for a fixed period like estepm months */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   /******/       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {       results. So we changed our mind and took the option of the best precision.
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    /* If stepm=6 months */
              /* nhstepm age range expressed in number of stepm */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    agelim=AGESUP;
           oldm=oldms;savm=savms;    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           for (h=0; h<=nhstepm; h++){    /* if (stepm >= YEARM) hstepm=1;*/
             if (h==(int) (calagedate+YEARM*cpt)) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    
             }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             for(j=1; j<=nlstate+ndeath;j++) {    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               kk1=0.;kk2=0;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
               for(i=1; i<=nlstate;i++) {                  trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        gp=matrix(0,nhstepm,1,nlstate*nlstate);
               }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }    for (age=bage; age<=fage; age ++){ 
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       }   
    }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }  
        /* Computing  Variances of health expectancies */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
   if (popforecast==1) {      for(theta=1; theta <=npar; theta++){
     free_ivector(popage,0,AGESUP);        for(i=1; i<=npar; i++){ 
     free_vector(popeffectif,0,AGESUP);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     free_vector(popcount,0,AGESUP);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   }        }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   fclose(ficrespop);    
 }        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
 /***********************************************/            for(h=0; h<=nhstepm-1; h++){
 /**************** Main Program *****************/              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 /***********************************************/              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
 int main(int argc, char *argv[])          }
 {        }
        
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        for(ij=1; ij<= nlstate*nlstate; ij++)
   double agedeb, agefin,hf;          for(h=0; h<=nhstepm-1; h++){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
   double fret;      }/* End theta */
   double **xi,tmp,delta;      
       
   double dum; /* Dummy variable */      for(h=0; h<=nhstepm-1; h++)
   double ***p3mat;        for(j=1; j<=nlstate*nlstate;j++)
   int *indx;          for(theta=1; theta <=npar; theta++)
   char line[MAXLINE], linepar[MAXLINE];            trgradg[h][j][theta]=gradg[h][theta][j];
   char title[MAXLINE];      
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];       for(ij=1;ij<=nlstate*nlstate;ij++)
          for(ji=1;ji<=nlstate*nlstate;ji++)
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          varhe[ij][ji][(int)age] =0.;
   
   char filerest[FILENAMELENGTH];       printf("%d|",(int)age);fflush(stdout);
   char fileregp[FILENAMELENGTH];       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   char popfile[FILENAMELENGTH];       for(h=0;h<=nhstepm-1;h++){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        for(k=0;k<=nhstepm-1;k++){
   int firstobs=1, lastobs=10;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   int sdeb, sfin; /* Status at beginning and end */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   int c,  h , cpt,l;          for(ij=1;ij<=nlstate*nlstate;ij++)
   int ju,jl, mi;            for(ji=1;ji<=nlstate*nlstate;ji++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        }
   int mobilav=0,popforecast=0;      }
   int hstepm, nhstepm;      /* Computing expectancies */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
   double bage, fage, age, agelim, agebase;        for(j=1; j<=nlstate;j++)
   double ftolpl=FTOL;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double **prlim;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   double *severity;            
   double ***param; /* Matrix of parameters */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double  *p;  
   double **matcov; /* Matrix of covariance */          }
   double ***delti3; /* Scale */  
   double *delti; /* Scale */      fprintf(ficresstdeij,"%3.0f",age );
   double ***eij, ***vareij;      for(i=1; i<=nlstate;i++){
   double **varpl; /* Variances of prevalence limits by age */        eip=0.;
   double *epj, vepp;        vip=0.;
   double kk1, kk2;        for(j=1; j<=nlstate;j++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          eip += eij[i][j][(int)age];
            for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
   char z[1]="c", occ;      fprintf(ficresstdeij,"\n");
 #include <sys/time.h>  
 #include <time.h>      fprintf(ficrescveij,"%3.0f",age );
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
   /* long total_usecs;          cptj= (j-1)*nlstate+i;
   struct timeval start_time, end_time;          for(i2=1; i2<=nlstate;i2++)
              for(j2=1; j2<=nlstate;j2++){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              cptj2= (j2-1)*nlstate+i2;
   getcwd(pathcd, size);              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   printf("\n%s",version);            }
   if(argc <=1){        }
     printf("\nEnter the parameter file name: ");      fprintf(ficrescveij,"\n");
     scanf("%s",pathtot);     
   }    }
   else{    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     strcpy(pathtot,argv[1]);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   /*cygwin_split_path(pathtot,path,optionfile);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* cutv(path,optionfile,pathtot,'\\');*/    printf("\n");
     fprintf(ficlog,"\n");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    free_vector(xm,1,npar);
   chdir(path);    free_vector(xp,1,npar);
   replace(pathc,path);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 /*-------- arguments in the command line --------*/    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   strcpy(fileres,"r");  
   strcat(fileres, optionfilefiname);  /************ Variance ******************/
   strcat(fileres,".txt");    /* Other files have txt extension */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
   /*---------arguments file --------*/    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    /* double **newm;*/
     printf("Problem with optionfile %s\n",optionfile);    double **dnewm,**doldm;
     goto end;    double **dnewmp,**doldmp;
   }    int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
   strcpy(filereso,"o");    double *xp;
   strcat(filereso,fileres);    double **gp, **gm;  /* for var eij */
   if((ficparo=fopen(filereso,"w"))==NULL) {    double ***gradg, ***trgradg; /*for var eij */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    double **gradgp, **trgradgp; /* for var p point j */
   }    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   /* Reads comments: lines beginning with '#' */    double ***p3mat;
   while((c=getc(ficpar))=='#' && c!= EOF){    double age,agelim, hf;
     ungetc(c,ficpar);    double ***mobaverage;
     fgets(line, MAXLINE, ficpar);    int theta;
     puts(line);    char digit[4];
     fputs(line,ficparo);    char digitp[25];
   }  
   ungetc(c,ficpar);    char fileresprobmorprev[FILENAMELENGTH];
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    if(popbased==1){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      if(mobilav!=0)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        strcpy(digitp,"-populbased-mobilav-");
 while((c=getc(ficpar))=='#' && c!= EOF){      else strcpy(digitp,"-populbased-nomobil-");
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    else 
     puts(line);      strcpy(digitp,"-stablbased-");
     fputs(line,ficparo);  
   }    if (mobilav!=0) {
   ungetc(c,ficpar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
            fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   covar=matrix(0,NCOVMAX,1,n);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   cptcovn=0;      }
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    }
   
   ncovmodel=2+cptcovn;    strcpy(fileresprobmorprev,"prmorprev"); 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    sprintf(digit,"%-d",ij);
      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   /* Read guess parameters */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   /* Reads comments: lines beginning with '#' */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileresprobmorprev,fileres);
     ungetc(c,ficpar);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     puts(line);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     fputs(line,ficparo);    }
   }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   ungetc(c,ficpar);   
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    pstamp(ficresprobmorprev);
     for(i=1; i <=nlstate; i++)    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficparo,"%1d%1d",i1,j1);      fprintf(ficresprobmorprev," p.%-d SE",j);
       printf("%1d%1d",i,j);      for(i=1; i<=nlstate;i++)
       for(k=1; k<=ncovmodel;k++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         fscanf(ficpar," %lf",&param[i][j][k]);    }  
         printf(" %lf",param[i][j][k]);    fprintf(ficresprobmorprev,"\n");
         fprintf(ficparo," %lf",param[i][j][k]);    fprintf(ficgp,"\n# Routine varevsij");
       }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       fscanf(ficpar,"\n");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       printf("\n");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       fprintf(ficparo,"\n");  /*   } */
     }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
   p=param[1][1];      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
      else
   /* Reads comments: lines beginning with '#' */      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresvij,"# Age");
     ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);      for(j=1; j<=nlstate;j++)
     puts(line);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fputs(line,ficparo);    fprintf(ficresvij,"\n");
   }  
   ungetc(c,ficpar);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    doldm=matrix(1,nlstate,1,nlstate);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   for(i=1; i <=nlstate; i++){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       printf("%1d%1d",i,j);    gpp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficparo,"%1d%1d",i1,j1);    gmp=vector(nlstate+1,nlstate+ndeath);
       for(k=1; k<=ncovmodel;k++){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         fscanf(ficpar,"%le",&delti3[i][j][k]);    
         printf(" %le",delti3[i][j][k]);    if(estepm < stepm){
         fprintf(ficparo," %le",delti3[i][j][k]);      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
       fscanf(ficpar,"\n");    else  hstepm=estepm;   
       printf("\n");    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficparo,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     }       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
   delti=delti3[1][1];       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like k years */
   /* Reads comments: lines beginning with '#' */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   while((c=getc(ficpar))=='#' && c!= EOF){       survival function given by stepm (the optimization length). Unfortunately it
     ungetc(c,ficpar);       means that if the survival funtion is printed every two years of age and if
     fgets(line, MAXLINE, ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     puts(line);       results. So we changed our mind and took the option of the best precision.
     fputs(line,ficparo);    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   ungetc(c,ficpar);    agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   matcov=matrix(1,npar,1,npar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   for(i=1; i <=npar; i++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fscanf(ficpar,"%s",&str);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("%s",str);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     fprintf(ficparo,"%s",str);      gp=matrix(0,nhstepm,1,nlstate);
     for(j=1; j <=i; j++){      gm=matrix(0,nhstepm,1,nlstate);
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);      for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     fscanf(ficpar,"\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     printf("\n");        }
     fprintf(ficparo,"\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)        if (popbased==1) {
       matcov[i][j]=matcov[j][i];          if(mobilav ==0){
                for(i=1; i<=nlstate;i++)
   printf("\n");              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
     /*-------- Rewriting paramater file ----------*/              prlim[i][i]=mobaverage[(int)age][i][ij];
      strcpy(rfileres,"r");    /* "Rparameterfile */          }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        }
      strcat(rfileres,".");    /* */    
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        for(j=1; j<= nlstate; j++){
     if((ficres =fopen(rfileres,"w"))==NULL) {          for(h=0; h<=nhstepm; h++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     fprintf(ficres,"#%s\n",version);          }
            }
     /*-------- data file ----------*/        /* This for computing probability of death (h=1 means
     if((fic=fopen(datafile,"r"))==NULL)    {           computed over hstepm matrices product = hstepm*stepm months) 
       printf("Problem with datafile: %s\n", datafile);goto end;           as a weighted average of prlim.
     }        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
     n= lastobs;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     severity = vector(1,maxwav);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     outcome=imatrix(1,maxwav+1,1,n);        }    
     num=ivector(1,n);        /* end probability of death */
     moisnais=vector(1,n);  
     annais=vector(1,n);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     moisdc=vector(1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     andc=vector(1,n);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     agedc=vector(1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     cod=ivector(1,n);   
     weight=vector(1,n);        if (popbased==1) {
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          if(mobilav ==0){
     mint=matrix(1,maxwav,1,n);            for(i=1; i<=nlstate;i++)
     anint=matrix(1,maxwav,1,n);              prlim[i][i]=probs[(int)age][i][ij];
     s=imatrix(1,maxwav+1,1,n);          }else{ /* mobilav */ 
     adl=imatrix(1,maxwav+1,1,n);                for(i=1; i<=nlstate;i++)
     tab=ivector(1,NCOVMAX);              prlim[i][i]=mobaverage[(int)age][i][ij];
     ncodemax=ivector(1,8);          }
         }
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {        for(j=1; j<= nlstate; j++){
       if ((i >= firstobs) && (i <=lastobs)) {          for(h=0; h<=nhstepm; h++){
                    for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         for (j=maxwav;j>=1;j--){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          }
           strcpy(line,stra);        }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        /* This for computing probability of death (h=1 means
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           computed over hstepm matrices product = hstepm*stepm months) 
         }           as a weighted average of prlim.
                */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        }    
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        /* end probability of death */
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<= nlstate; j++) /* vareij */
         for (j=ncovcol;j>=1;j--){          for(h=0; h<=nhstepm; h++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         }          }
         num[i]=atol(stra);  
                for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        }
   
         i=i+1;      } /* End theta */
       }  
     }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/      for(h=0; h<=nhstepm; h++) /* veij */
   imx=i-1; /* Number of individuals */        for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
   /* for (i=1; i<=imx; i++){            trgradg[h][j][theta]=gradg[h][theta][j];
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        for(theta=1; theta <=npar; theta++)
     }*/          trgradgp[j][theta]=gradgp[theta][j];
    /*  for (i=1; i<=imx; i++){    
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
   /* Calculation of the number of parameter from char model*/          vareij[i][j][(int)age] =0.;
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);      for(h=0;h<=nhstepm;h++){
   Tvaraff=ivector(1,15);        for(k=0;k<=nhstepm;k++){
   Tvard=imatrix(1,15,1,2);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   Tage=ivector(1,15);                matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
              for(i=1;i<=nlstate;i++)
   if (strlen(model) >1){            for(j=1;j<=nlstate;j++)
     j=0, j1=0, k1=1, k2=1;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     j=nbocc(model,'+');        }
     j1=nbocc(model,'*');      }
     cptcovn=j+1;    
     cptcovprod=j1;      /* pptj */
          matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     strcpy(modelsav,model);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       printf("Error. Non available option model=%s ",model);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       goto end;          varppt[j][i]=doldmp[j][i];
     }      /* end ppptj */
          /*  x centered again */
     for(i=(j+1); i>=1;i--){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       cutv(stra,strb,modelsav,'+');      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);   
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      if (popbased==1) {
       /*scanf("%d",i);*/        if(mobilav ==0){
       if (strchr(strb,'*')) {          for(i=1; i<=nlstate;i++)
         cutv(strd,strc,strb,'*');            prlim[i][i]=probs[(int)age][i][ij];
         if (strcmp(strc,"age")==0) {        }else{ /* mobilav */ 
           cptcovprod--;          for(i=1; i<=nlstate;i++)
           cutv(strb,stre,strd,'V');            prlim[i][i]=mobaverage[(int)age][i][ij];
           Tvar[i]=atoi(stre);        }
           cptcovage++;      }
             Tage[cptcovage]=i;               
             /*printf("stre=%s ", stre);*/      /* This for computing probability of death (h=1 means
         }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         else if (strcmp(strd,"age")==0) {         as a weighted average of prlim.
           cptcovprod--;      */
           cutv(strb,stre,strc,'V');      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           Tvar[i]=atoi(stre);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           cptcovage++;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           Tage[cptcovage]=i;      }    
         }      /* end probability of death */
         else {  
           cutv(strb,stre,strc,'V');      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           Tvar[i]=ncovcol+k1;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           cutv(strb,strc,strd,'V');        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           Tprod[k1]=i;        for(i=1; i<=nlstate;i++){
           Tvard[k1][1]=atoi(strc);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           Tvard[k1][2]=atoi(stre);        }
           Tvar[cptcovn+k2]=Tvard[k1][1];      } 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      fprintf(ficresprobmorprev,"\n");
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      fprintf(ficresvij,"%.0f ",age );
           k1++;      for(i=1; i<=nlstate;i++)
           k2=k2+2;        for(j=1; j<=nlstate;j++){
         }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       }        }
       else {      fprintf(ficresvij,"\n");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      free_matrix(gp,0,nhstepm,1,nlstate);
        /*  scanf("%d",i);*/      free_matrix(gm,0,nhstepm,1,nlstate);
       cutv(strd,strc,strb,'V');      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       Tvar[i]=atoi(strc);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       strcpy(modelsav,stra);      } /* End age */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    free_vector(gpp,nlstate+1,nlstate+ndeath);
         scanf("%d",i);*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
     }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   printf("cptcovprod=%d ", cptcovprod);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   scanf("%d ",i);*/  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     fclose(fic);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     /*  if(mle==1){*/    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     if (weightopt != 1) { /* Maximisation without weights*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       for(i=1;i<=n;i++) weight[i]=1.0;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     /*-calculation of age at interview from date of interview and age at death -*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     agev=matrix(1,maxwav,1,imx);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
     for (i=1; i<=imx; i++) {  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       for(m=2; (m<= maxwav); m++) {    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;    free_vector(xp,1,npar);
          s[m][i]=-1;    free_matrix(doldm,1,nlstate,1,nlstate);
        }    free_matrix(dnewm,1,nlstate,1,npar);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for (i=1; i<=imx; i++)  {    fclose(ficresprobmorprev);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fflush(ficgp);
       for(m=1; (m<= maxwav); m++){    fflush(fichtm); 
         if(s[m][i] >0){  }  /* end varevsij */
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)  /************ Variance of prevlim ******************/
               if(moisdc[i]!=99 && andc[i]!=9999)  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
                 agev[m][i]=agedc[i];  {
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    /* Variance of prevalence limit */
            else {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
               if (andc[i]!=9999){    double **newm;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    double **dnewm,**doldm;
               agev[m][i]=-1;    int i, j, nhstepm, hstepm;
               }    int k, cptcode;
             }    double *xp;
           }    double *gp, *gm;
           else if(s[m][i] !=9){ /* Should no more exist */    double **gradg, **trgradg;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    double age,agelim;
             if(mint[m][i]==99 || anint[m][i]==9999)    int theta;
               agev[m][i]=1;    
             else if(agev[m][i] <agemin){    pstamp(ficresvpl);
               agemin=agev[m][i];    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    fprintf(ficresvpl,"# Age");
             }    for(i=1; i<=nlstate;i++)
             else if(agev[m][i] >agemax){        fprintf(ficresvpl," %1d-%1d",i,i);
               agemax=agev[m][i];    fprintf(ficresvpl,"\n");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }    xp=vector(1,npar);
             /*agev[m][i]=anint[m][i]-annais[i];*/    dnewm=matrix(1,nlstate,1,npar);
             /*   agev[m][i] = age[i]+2*m;*/    doldm=matrix(1,nlstate,1,nlstate);
           }    
           else { /* =9 */    hstepm=1*YEARM; /* Every year of age */
             agev[m][i]=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
             s[m][i]=-1;    agelim = AGESUP;
           }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         else /*= 0 Unknown */      if (stepm >= YEARM) hstepm=1;
           agev[m][i]=1;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       }      gradg=matrix(1,npar,1,nlstate);
          gp=vector(1,nlstate);
     }      gm=vector(1,nlstate);
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){      for(theta=1; theta <=npar; theta++){
         if (s[m][i] > (nlstate+ndeath)) {        for(i=1; i<=npar; i++){ /* Computes gradient */
           printf("Error: Wrong value in nlstate or ndeath\n");            xp[i] = x[i] + (i==theta ?delti[theta]:0);
           goto end;        }
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }        for(i=1;i<=nlstate;i++)
     }          gp[i] = prlim[i][i];
       
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
     free_vector(severity,1,maxwav);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     free_imatrix(outcome,1,maxwav+1,1,n);        for(i=1;i<=nlstate;i++)
     free_vector(moisnais,1,n);          gm[i] = prlim[i][i];
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);        for(i=1;i<=nlstate;i++)
        free_matrix(anint,1,maxwav,1,n);*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     free_vector(moisdc,1,n);      } /* End theta */
     free_vector(andc,1,n);  
       trgradg =matrix(1,nlstate,1,npar);
      
     wav=ivector(1,imx);      for(j=1; j<=nlstate;j++)
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        for(theta=1; theta <=npar; theta++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          trgradg[j][theta]=gradg[theta][j];
      
     /* Concatenates waves */      for(i=1;i<=nlstate;i++)
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       Tcode=ivector(1,100);      for(i=1;i<=nlstate;i++)
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      fprintf(ficresvpl,"%.0f ",age );
            for(i=1; i<=nlstate;i++)
    codtab=imatrix(1,100,1,10);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
    h=0;      fprintf(ficresvpl,"\n");
    m=pow(2,cptcoveff);      free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
    for(k=1;k<=cptcoveff; k++){      free_matrix(gradg,1,npar,1,nlstate);
      for(i=1; i <=(m/pow(2,k));i++){      free_matrix(trgradg,1,nlstate,1,npar);
        for(j=1; j <= ncodemax[k]; j++){    } /* End age */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;    free_vector(xp,1,npar);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    free_matrix(doldm,1,nlstate,1,npar);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    free_matrix(dnewm,1,nlstate,1,nlstate);
          }  
        }  }
      }  
    }  /************ Variance of one-step probabilities  ******************/
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       codtab[1][2]=1;codtab[2][2]=2; */  {
    /* for(i=1; i <=m ;i++){    int i, j=0,  i1, k1, l1, t, tj;
       for(k=1; k <=cptcovn; k++){    int k2, l2, j1,  z1;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    int k=0,l, cptcode;
       }    int first=1, first1;
       printf("\n");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       }    double **dnewm,**doldm;
       scanf("%d",i);*/    double *xp;
        double *gp, *gm;
    /* Calculates basic frequencies. Computes observed prevalence at single age    double **gradg, **trgradg;
        and prints on file fileres'p'. */    double **mu;
     double age,agelim, cov[NCOVMAX];
        double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
        int theta;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char fileresprob[FILENAMELENGTH];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char fileresprobcov[FILENAMELENGTH];
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char fileresprobcor[FILENAMELENGTH];
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double ***varpij;
        
     /* For Powell, parameters are in a vector p[] starting at p[1]    strcpy(fileresprob,"prob"); 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    strcat(fileresprob,fileres);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
     if(mle==1){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    }
     }    strcpy(fileresprobcov,"probcov"); 
        strcat(fileresprobcov,fileres);
     /*--------- results files --------------*/    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      printf("Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
    jk=1;    strcpy(fileresprobcor,"probcor"); 
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    strcat(fileresprobcor,fileres);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
    for(i=1,jk=1; i <=nlstate; i++){      printf("Problem with resultfile: %s\n", fileresprobcor);
      for(k=1; k <=(nlstate+ndeath); k++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
        if (k != i)    }
          {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
            printf("%d%d ",i,k);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
            fprintf(ficres,"%1d%1d ",i,k);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
            for(j=1; j <=ncovmodel; j++){    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
              printf("%f ",p[jk]);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
              fprintf(ficres,"%f ",p[jk]);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
              jk++;    pstamp(ficresprob);
            }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
            printf("\n");    fprintf(ficresprob,"# Age");
            fprintf(ficres,"\n");    pstamp(ficresprobcov);
          }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      }    fprintf(ficresprobcov,"# Age");
    }    pstamp(ficresprobcor);
  if(mle==1){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     /* Computing hessian and covariance matrix */    fprintf(ficresprobcor,"# Age");
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }    for(i=1; i<=nlstate;i++)
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      for(j=1; j<=(nlstate+ndeath);j++){
     printf("# Scales (for hessian or gradient estimation)\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
      for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       for(j=1; j <=nlstate+ndeath; j++){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         if (j!=i) {      }  
           fprintf(ficres,"%1d%1d",i,j);   /* fprintf(ficresprob,"\n");
           printf("%1d%1d",i,j);    fprintf(ficresprobcov,"\n");
           for(k=1; k<=ncovmodel;k++){    fprintf(ficresprobcor,"\n");
             printf(" %.5e",delti[jk]);   */
             fprintf(ficres," %.5e",delti[jk]);   xp=vector(1,npar);
             jk++;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           printf("\n");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           fprintf(ficres,"\n");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         }    first=1;
       }    fprintf(ficgp,"\n# Routine varprob");
      }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
        fprintf(fichtm,"\n");
     k=1;  
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     for(i=1;i<=npar;i++){    file %s<br>\n",optionfilehtmcov);
       /*  if (k>nlstate) k=1;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       i1=(i-1)/(ncovmodel*nlstate)+1;  and drawn. It helps understanding how is the covariance between two incidences.\
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       printf("%s%d%d",alph[k],i1,tab[i]);*/    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       fprintf(ficres,"%3d",i);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       printf("%3d",i);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       for(j=1; j<=i;j++){  standard deviations wide on each axis. <br>\
         fprintf(ficres," %.5e",matcov[i][j]);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         printf(" %.5e",matcov[i][j]);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       fprintf(ficres,"\n");  
       printf("\n");    cov[1]=1;
       k++;    tj=cptcoveff;
     }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
        j1=0;
     while((c=getc(ficpar))=='#' && c!= EOF){    for(t=1; t<=tj;t++){
       ungetc(c,ficpar);      for(i1=1; i1<=ncodemax[t];i1++){ 
       fgets(line, MAXLINE, ficpar);        j1++;
       puts(line);        if  (cptcovn>0) {
       fputs(line,ficparo);          fprintf(ficresprob, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(ficresprob, "**********\n#\n");
     estepm=0;          fprintf(ficresprobcov, "\n#********** Variable "); 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     if (estepm==0 || estepm < stepm) estepm=stepm;          fprintf(ficresprobcov, "**********\n#\n");
     if (fage <= 2) {          
       bage = ageminpar;          fprintf(ficgp, "\n#********** Variable "); 
       fage = agemaxpar;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficgp, "**********\n#\n");
              
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     while((c=getc(ficpar))=='#' && c!= EOF){          
     ungetc(c,ficpar);          fprintf(ficresprobcor, "\n#********** Variable ");    
     fgets(line, MAXLINE, ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     puts(line);          fprintf(ficresprobcor, "**********\n#");    
     fputs(line,ficparo);        }
   }        
   ungetc(c,ficpar);        for (age=bage; age<=fage; age ++){ 
            cov[2]=age;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          for (k=1; k<=cptcovn;k++) {
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          }
                for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   while((c=getc(ficpar))=='#' && c!= EOF){          for (k=1; k<=cptcovprod;k++)
     ungetc(c,ficpar);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     fgets(line, MAXLINE, ficpar);          
     puts(line);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     fputs(line,ficparo);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   }          gp=vector(1,(nlstate)*(nlstate+ndeath));
   ungetc(c,ficpar);          gm=vector(1,(nlstate)*(nlstate+ndeath));
        
           for(theta=1; theta <=npar; theta++){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            for(i=1; i<=npar; i++)
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
   fscanf(ficpar,"pop_based=%d\n",&popbased);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   fprintf(ficparo,"pop_based=%d\n",popbased);              
   fprintf(ficres,"pop_based=%d\n",popbased);              k=0;
              for(i=1; i<= (nlstate); i++){
   while((c=getc(ficpar))=='#' && c!= EOF){              for(j=1; j<=(nlstate+ndeath);j++){
     ungetc(c,ficpar);                k=k+1;
     fgets(line, MAXLINE, ficpar);                gp[k]=pmmij[i][j];
     puts(line);              }
     fputs(line,ficparo);            }
   }            
   ungetc(c,ficpar);            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
 while((c=getc(ficpar))=='#' && c!= EOF){                k=k+1;
     ungetc(c,ficpar);                gm[k]=pmmij[i][j];
     fgets(line, MAXLINE, ficpar);              }
     puts(line);            }
     fputs(line,ficparo);       
   }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   ungetc(c,ficpar);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 /*------------ gnuplot -------------*/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 /*------------ free_vector  -------------*/          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  chdir(path);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    
  free_ivector(wav,1,imx);          pmij(pmmij,cov,ncovmodel,x,nlstate);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            k=0;
  free_ivector(num,1,n);          for(i=1; i<=(nlstate); i++){
  free_vector(agedc,1,n);            for(j=1; j<=(nlstate+ndeath);j++){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/              k=k+1;
  fclose(ficparo);              mu[k][(int) age]=pmmij[i][j];
  fclose(ficres);            }
           }
 /*--------- index.htm --------*/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);              varpij[i][j][(int)age] = doldm[i][j];
   
            /*printf("\n%d ",(int)age);
   /*--------------- Prevalence limit --------------*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcpy(filerespl,"pl");            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcat(filerespl,fileres);            }*/
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          fprintf(ficresprob,"\n%d ",(int)age);
   }          fprintf(ficresprobcov,"\n%d ",(int)age);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          fprintf(ficresprobcor,"\n%d ",(int)age);
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   fprintf(ficrespl,"\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   prlim=matrix(1,nlstate,1,nlstate);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          i=0;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for (k=1; k<=(nlstate);k++){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for (l=1; l<=(nlstate+ndeath);l++){ 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              i=i++;
   k=0;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   agebase=ageminpar;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   agelim=agemaxpar;              for (j=1; j<=i;j++){
   ftolpl=1.e-10;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   i1=cptcoveff;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   if (cptcovn < 1){i1=1;}              }
             }
   for(cptcov=1;cptcov<=i1;cptcov++){          }/* end of loop for state */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        } /* end of loop for age */
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        /* Confidence intervalle of pij  */
         fprintf(ficrespl,"\n#******");        /*
         for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         fprintf(ficrespl,"******\n");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                  fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         for (age=agebase; age<=agelim; age++){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficrespl,"%.0f",age );          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           for(i=1; i<=nlstate;i++)        */
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         }        first1=1;
       }        for (k2=1; k2<=(nlstate);k2++){
     }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   fclose(ficrespl);            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
   /*------------- h Pij x at various ages ------------*/            for (k1=1; k1<=(nlstate);k1++){
                for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                if(l1==k1) continue;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                i=(k1-1)*(nlstate+ndeath)+l1;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                if(i<=j) continue;
   }                for (age=bage; age<=fage; age ++){ 
   printf("Computing pij: result on file '%s' \n", filerespij);                  if ((int)age %5==0){
                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   /*if (stepm<=24) stepsize=2;*/                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
   agelim=AGESUP;                    mu2=mu[j][(int) age]/stepm*YEARM;
   hstepm=stepsize*YEARM; /* Every year of age */                    c12=cv12/sqrt(v1*v2);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                    /* Computing eigen value of matrix of covariance */
                      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   k=0;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   for(cptcov=1;cptcov<=i1;cptcov++){                    /* Eigen vectors */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       k=k+1;                    /*v21=sqrt(1.-v11*v11); *//* error */
         fprintf(ficrespij,"\n#****** ");                    v21=(lc1-v1)/cv12*v11;
         for(j=1;j<=cptcoveff;j++)                    v12=-v21;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    v22=v11;
         fprintf(ficrespij,"******\n");                    tnalp=v21/v11;
                            if(first1==1){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                      first1=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           oldm=oldms;savm=savms;                    /*printf(fignu*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           fprintf(ficrespij,"# Age");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           for(i=1; i<=nlstate;i++)                    if(first==1){
             for(j=1; j<=nlstate+ndeath;j++)                      first=0;
               fprintf(ficrespij," %1d-%1d",i,j);                      fprintf(ficgp,"\nset parametric;unset label");
           fprintf(ficrespij,"\n");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
            for (h=0; h<=nhstepm; h++){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
             for(i=1; i<=nlstate;i++)   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
               for(j=1; j<=nlstate+ndeath;j++)  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
             fprintf(ficrespij,"\n");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
              }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
           fprintf(ficrespij,"\n");                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
   fclose(ficrespij);                      first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   /*---------- Forecasting ------------------*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if((stepm == 1) && (strcmp(model,".")==0)){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   }                    }/* if first */
   else{                  } /* age mod 5 */
     erreur=108;                } /* end loop age */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   }                first=1;
                } /*l12 */
             } /* k12 */
   /*---------- Health expectancies and variances ------------*/          } /*l1 */
         }/* k1 */
   strcpy(filerest,"t");      } /* loop covariates */
   strcat(filerest,fileres);    }
   if((ficrest=fopen(filerest,"w"))==NULL) {    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
   strcpy(filerese,"e");    fclose(ficresprobcov);
   strcat(filerese,fileres);    fclose(ficresprobcor);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fflush(ficgp);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fflush(fichtmcov);
   }  }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   
  strcpy(fileresv,"v");  /******************* Printing html file ***********/
   strcat(fileresv,fileres);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                    int lastpass, int stepm, int weightopt, char model[],\
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   }                    int popforecast, int estepm ,\
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                    double jprev1, double mprev1,double anprev1, \
   calagedate=-1;                    double jprev2, double mprev2,double anprev2){
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int jj1, k1, i1, cpt;
   
   k=0;     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   for(cptcov=1;cptcov<=i1;cptcov++){     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  </ul>");
       k=k+1;     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
       fprintf(ficrest,"\n#****** ");   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       for(j=1;j<=cptcoveff;j++)             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     fprintf(fichtm,"\
       fprintf(ficrest,"******\n");   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       fprintf(ficreseij,"\n#****** ");     fprintf(fichtm,"\
       for(j=1;j<=cptcoveff;j++)   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       fprintf(ficreseij,"******\n");     fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
       fprintf(ficresvij,"\n#****** ");     <a href=\"%s\">%s</a> <br>\n</li>",
       for(j=1;j<=cptcoveff;j++)             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;   m=cptcoveff;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   jj1=0;
       oldm=oldms;savm=savms;   for(k1=1; k1<=m;k1++){
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);     for(i1=1; i1<=ncodemax[k1];i1++){
           jj1++;
        if (cptcovn > 0) {
           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");         for (cpt=1; cpt<=cptcoveff;cpt++) 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fprintf(ficrest,"\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
       epj=vector(1,nlstate+1);       /* Pij */
       for(age=bage; age <=fage ;age++){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         if (popbased==1) {       /* Quasi-incidences */
           for(i=1; i<=nlstate;i++)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
             prlim[i][i]=probs[(int)age][i][k];   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
         }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
                 /* Period (stable) prevalence in each health state */
         fprintf(ficrest," %4.0f",age);         for(cpt=1; cpt<nlstate;cpt++){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];         }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/       for(cpt=1; cpt<=nlstate;cpt++) {
           }          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
           epj[nlstate+1] +=epj[j];  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         }       }
      } /* end i1 */
         for(i=1, vepp=0.;i <=nlstate;i++)   }/* End k1 */
           for(j=1;j <=nlstate;j++)   fprintf(fichtm,"</ul>");
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){   fprintf(fichtm,"\
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
         }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
         fprintf(ficrest,"\n");  
       }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   }   fprintf(fichtm,"\
 free_matrix(mint,1,maxwav,1,n);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     free_vector(weight,1,n);  
   fclose(ficreseij);   fprintf(fichtm,"\
   fclose(ficresvij);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fclose(ficrest);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   fclose(ficpar);   fprintf(fichtm,"\
   free_vector(epj,1,nlstate+1);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
       <a href=\"%s\">%s</a> <br>\n</li>",
   /*------- Variance limit prevalence------*/               estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
   strcpy(fileresvpl,"vpl");   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   strcat(fileresvpl,fileres);     <a href=\"%s\">%s</a> <br>\n</li>",
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   fprintf(fichtm,"\
     exit(0);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);   fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
   k=0;           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   for(cptcov=1;cptcov<=i1;cptcov++){   fprintf(fichtm,"\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       k=k+1;           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       fprintf(ficresvpl,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  /*  if(popforecast==1) fprintf(fichtm,"\n */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       fprintf(ficresvpl,"******\n");  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
        /*      <br>",fileres,fileres,fileres,fileres); */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  /*  else  */
       oldm=oldms;savm=savms;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);   fflush(fichtm);
     }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
  }  
    m=cptcoveff;
   fclose(ficresvpl);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   /*---------- End : free ----------------*/   jj1=0;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);   for(k1=1; k1<=m;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       jj1++;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       if (cptcovn > 0) {
           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);       }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   free_matrix(matcov,1,npar,1,npar);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   free_vector(delti,1,npar);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   free_matrix(agev,1,maxwav,1,imx);       }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   if(erreur >0)  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     printf("End of Imach with error or warning %d\n",erreur);     } /* end i1 */
   else   printf("End of Imach\n");   }/* End k1 */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   fprintf(fichtm,"</ul>");
     fflush(fichtm);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  }
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/  /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
  end:    char dirfileres[132],optfileres[132];
   /* chdir(pathcd);*/    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
  /*system("wgnuplot graph.plt");*/    int ng;
  /*system("../gp37mgw/wgnuplot graph.plt");*/  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
  /*system("cd ../gp37mgw");*/  /*     printf("Problem with file %s",optionfilegnuplot); */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
  strcpy(plotcmd,GNUPLOTPROGRAM);  /*   } */
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);    /*#ifdef windows */
  system(plotcmd);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
  /*#ifdef windows*/    m=pow(2,cptcoveff);
   while (z[0] != 'q') {  
     /* chdir(path); */    strcpy(dirfileres,optionfilefiname);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    strcpy(optfileres,"vpl");
     scanf("%s",z);   /* 1eme*/
     if (z[0] == 'c') system("./imach");    for (cpt=1; cpt<= nlstate ; cpt ++) {
     else if (z[0] == 'e') system(optionfilehtm);     for (k1=1; k1<= m ; k1 ++) {
     else if (z[0] == 'g') system(plotcmd);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     else if (z[0] == 'q') exit(0);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   }       fprintf(ficgp,"set xlabel \"Age\" \n\
   /*#endif */  set ylabel \"Probability\" \n\
 }  set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.118


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>