Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.82

version 1.41.2.2, 2003/06/13 07:45:28 version 1.82, 2003/06/05 15:57:20
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  */
   first survey ("cross") where individuals from different ages are  /*
   interviewed on their health status or degree of disability (in the     Interpolated Markov Chain
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Short summary of the programme:
   (if any) in individual health status.  Health expectancies are    
   computed from the time spent in each health state according to a    This program computes Healthy Life Expectancies from
   model. More health states you consider, more time is necessary to reach the    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   Maximum Likelihood of the parameters involved in the model.  The    first survey ("cross") where individuals from different ages are
   simplest model is the multinomial logistic model where pij is the    interviewed on their health status or degree of disability (in the
   probability to be observed in state j at the second wave    case of a health survey which is our main interest) -2- at least a
   conditional to be observed in state i at the first wave. Therefore    second wave of interviews ("longitudinal") which measure each change
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (if any) in individual health status.  Health expectancies are
   'age' is age and 'sex' is a covariate. If you want to have a more    computed from the time spent in each health state according to a
   complex model than "constant and age", you should modify the program    model. More health states you consider, more time is necessary to reach the
   where the markup *Covariates have to be included here again* invites    Maximum Likelihood of the parameters involved in the model.  The
   you to do it.  More covariates you add, slower the    simplest model is the multinomial logistic model where pij is the
   convergence.    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
   The advantage of this computer programme, compared to a simple    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   multinomial logistic model, is clear when the delay between waves is not    'age' is age and 'sex' is a covariate. If you want to have a more
   identical for each individual. Also, if a individual missed an    complex model than "constant and age", you should modify the program
   intermediate interview, the information is lost, but taken into    where the markup *Covariates have to be included here again* invites
   account using an interpolation or extrapolation.      you to do it.  More covariates you add, slower the
     convergence.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    The advantage of this computer programme, compared to a simple
   split into an exact number (nh*stepm) of unobserved intermediate    multinomial logistic model, is clear when the delay between waves is not
   states. This elementary transition (by month or quarter trimester,    identical for each individual. Also, if a individual missed an
   semester or year) is model as a multinomial logistic.  The hPx    intermediate interview, the information is lost, but taken into
   matrix is simply the matrix product of nh*stepm elementary matrices    account using an interpolation or extrapolation.  
   and the contribution of each individual to the likelihood is simply  
   hPijx.    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
   Also this programme outputs the covariance matrix of the parameters but also    split into an exact number (nh*stepm) of unobserved intermediate
   of the life expectancies. It also computes the prevalence limits.    states. This elementary transition (by month, quarter,
      semester or year) is modelled as a multinomial logistic.  The hPx
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    matrix is simply the matrix product of nh*stepm elementary matrices
            Institut national d'études démographiques, Paris.    and the contribution of each individual to the likelihood is simply
   This software have been partly granted by Euro-REVES, a concerted action    hPijx.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Also this programme outputs the covariance matrix of the parameters but also
   software can be distributed freely for non commercial use. Latest version    of the life expectancies. It also computes the stable prevalence. 
   can be accessed at http://euroreves.ined.fr/imach .    
   **********************************************************************/    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
               Institut national d'études démographiques, Paris.
 #include <math.h>    This software have been partly granted by Euro-REVES, a concerted action
 #include <stdio.h>    from the European Union.
 #include <stdlib.h>    It is copyrighted identically to a GNU software product, ie programme and
 #include <unistd.h>    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "wgnuplot"    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define FILENAMELENGTH 80    
 /*#define DEBUG*/    **********************************************************************/
   /*
 /*#define windows*/    main
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    read parameterfile
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    read datafile
     concatwav
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    if (mle >= 1)
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */      mlikeli
     print results files
 #define NINTERVMAX 8    if mle==1 
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */       computes hessian
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define NCOVMAX 8 /* Maximum number of covariates */        begin-prev-date,...
 #define MAXN 20000    open gnuplot file
 #define YEARM 12. /* Number of months per year */    open html file
 #define AGESUP 130    stable prevalence
 #define AGEBASE 40     for age prevalim()
     h Pij x
     variance of p varprob
 int erreur; /* Error number */    forecasting if prevfcast==1 prevforecast call prevalence()
 int nvar;    health expectancies
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Variance-covariance of DFLE
 int npar=NPARMAX;    prevalence()
 int nlstate=2; /* Number of live states */     movingaverage()
 int ndeath=1; /* Number of dead states */    varevsij() 
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    if popbased==1 varevsij(,popbased)
 int popbased=0;    total life expectancies
     Variance of stable prevalence
 int *wav; /* Number of waves for this individuual 0 is possible */   end
 int maxwav; /* Maxim number of waves */  */
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */   
 double jmean; /* Mean space between 2 waves */  #include <math.h>
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #include <stdio.h>
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #include <stdlib.h>
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #include <unistd.h>
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;  #define MAXLINE 256
   char filerese[FILENAMELENGTH];  #define GNUPLOTPROGRAM "gnuplot"
  FILE  *ficresvij;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   char fileresv[FILENAMELENGTH];  #define FILENAMELENGTH 80
  FILE  *ficresvpl;  /*#define DEBUG*/
   char fileresvpl[FILENAMELENGTH];  #define windows
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define NR_END 1  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define FREE_ARG char*  
 #define FTOL 1.0e-10  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define NRANSI  
 #define ITMAX 200  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define TOL 2.0e-4  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 #define CGOLD 0.3819660  #define MAXN 20000
 #define ZEPS 1.0e-10  #define YEARM 12. /* Number of months per year */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define AGESUP 130
   #define AGEBASE 40
 #define GOLD 1.618034  #ifdef windows
 #define GLIMIT 100.0  #define DIRSEPARATOR '\\'
 #define TINY 1.0e-20  #define ODIRSEPARATOR '/'
   #else
 static double maxarg1,maxarg2;  #define DIRSEPARATOR '/'
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define ODIRSEPARATOR '\\'
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #endif
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  /* $Id$ */
 #define rint(a) floor(a+0.5)  /* $State$ */
   
 static double sqrarg;  char version[]="Imach version 0.95a1, June 2003, INED-EUROREVES ";
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char fullversion[]="$Revision$ $Date$"; 
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  int erreur; /* Error number */
   int nvar;
 int imx;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int stepm;  int npar=NPARMAX;
 /* Stepm, step in month: minimum step interpolation*/  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 int estepm;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  int popbased=0;
   
 int m,nb;  int *wav; /* Number of waves for this individuual 0 is possible */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  int maxwav; /* Maxim number of waves */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int jmin, jmax; /* min, max spacing between 2 waves */
 double **pmmij, ***probs, ***mobaverage;  int mle, weightopt;
 double dateintmean=0;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double *weight;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 int **s; /* Status */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double *agedc, **covar, idx;  double jmean; /* Mean space between 2 waves */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 double ftolhess; /* Tolerance for computing hessian */  FILE *ficlog, *ficrespow;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 /**************** split *************************/  FILE *ficresprobmorprev;
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  FILE *fichtm; /* Html File */
 {  FILE *ficreseij;
    char *s;                             /* pointer */  char filerese[FILENAMELENGTH];
    int  l1, l2;                         /* length counters */  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
    l1 = strlen( path );                 /* length of path */  FILE  *ficresvpl;
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  char fileresvpl[FILENAMELENGTH];
 #ifdef windows  char title[MAXLINE];
    s = strrchr( path, '\\' );           /* find last / */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #else  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
    s = strrchr( path, '/' );            /* find last / */  
 #endif  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    if ( s == NULL ) {                   /* no directory, so use current */  char filelog[FILENAMELENGTH]; /* Log file */
 #if     defined(__bsd__)                /* get current working directory */  char filerest[FILENAMELENGTH];
       extern char       *getwd( );  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
       if ( getwd( dirc ) == NULL ) {  
 #else  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
       extern char       *getcwd( );  
   #define NR_END 1
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define FREE_ARG char*
 #endif  #define FTOL 1.0e-10
          return( GLOCK_ERROR_GETCWD );  
       }  #define NRANSI 
       strcpy( name, path );             /* we've got it */  #define ITMAX 200 
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */  #define TOL 2.0e-4 
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define CGOLD 0.3819660 
       strcpy( name, s );                /* save file name */  #define ZEPS 1.0e-10 
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       dirc[l1-l2] = 0;                  /* add zero */  
    }  #define GOLD 1.618034 
    l1 = strlen( dirc );                 /* length of directory */  #define GLIMIT 100.0 
 #ifdef windows  #define TINY 1.0e-20 
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  static double maxarg1,maxarg2;
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 #endif  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
    s = strrchr( name, '.' );            /* find last / */    
    s++;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    strcpy(ext,s);                       /* save extension */  #define rint(a) floor(a+0.5)
    l1= strlen( name);  
    l2= strlen( s)+1;  static double sqrarg;
    strncpy( finame, name, l1-l2);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
    finame[l1-l2]= 0;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
    return( 0 );                         /* we're done */  
 }  int imx; 
   int stepm;
   /* Stepm, step in month: minimum step interpolation*/
 /******************************************/  
   int estepm;
 void replace(char *s, char*t)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   int i;  int m,nb;
   int lg=20;  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   i=0;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   lg=strlen(t);  double **pmmij, ***probs;
   for(i=0; i<= lg; i++) {  double dateintmean=0;
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  double *weight;
   }  int **s; /* Status */
 }  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 int nbocc(char *s, char occ)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   int i,j=0;  double ftolhess; /* Tolerance for computing hessian */
   int lg=20;  
   i=0;  /**************** split *************************/
   lg=strlen(s);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   for(i=0; i<= lg; i++) {  {
   if  (s[i] == occ ) j++;    char  *ss;                            /* pointer */
   }    int   l1, l2;                         /* length counters */
   return j;  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 void cutv(char *u,char *v, char*t, char occ)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so use current */
   int i,lg,j,p=0;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   i=0;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   for(j=0; j<=strlen(t)-1; j++) {      /* get current working directory */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      /*    extern  char* getcwd ( char *buf , int len);*/
   }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
   lg=strlen(t);      }
   for(j=0; j<p; j++) {      strcpy( name, path );               /* we've got it */
     (u[j] = t[j]);    } else {                              /* strip direcotry from path */
   }      ss++;                               /* after this, the filename */
      u[p]='\0';      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
    for(j=0; j<= lg; j++) {      strcpy( name, ss );         /* save file name */
     if (j>=(p+1))(v[j-p-1] = t[j]);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   }      dirc[l1-l2] = 0;                    /* add zero */
 }    }
     l1 = strlen( dirc );                  /* length of directory */
 /********************** nrerror ********************/  #ifdef windows
     if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 void nrerror(char error_text[])  #else
 {    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   fprintf(stderr,"ERREUR ...\n");  #endif
   fprintf(stderr,"%s\n",error_text);    ss = strrchr( name, '.' );            /* find last / */
   exit(1);    ss++;
 }    strcpy(ext,ss);                       /* save extension */
 /*********************** vector *******************/    l1= strlen( name);
 double *vector(int nl, int nh)    l2= strlen(ss)+1;
 {    strncpy( finame, name, l1-l2);
   double *v;    finame[l1-l2]= 0;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    return( 0 );                          /* we're done */
   if (!v) nrerror("allocation failure in vector");  }
   return v-nl+NR_END;  
 }  
   /******************************************/
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  void replace(char *s, char*t)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    int i;
 }    int lg=20;
     i=0;
 /************************ivector *******************************/    lg=strlen(t);
 int *ivector(long nl,long nh)    for(i=0; i<= lg; i++) {
 {      (s[i] = t[i]);
   int *v;      if (t[i]== '\\') s[i]='/';
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    }
   if (!v) nrerror("allocation failure in ivector");  }
   return v-nl+NR_END;  
 }  int nbocc(char *s, char occ)
   {
 /******************free ivector **************************/    int i,j=0;
 void free_ivector(int *v, long nl, long nh)    int lg=20;
 {    i=0;
   free((FREE_ARG)(v+nl-NR_END));    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /******************* imatrix *******************************/    }
 int **imatrix(long nrl, long nrh, long ncl, long nch)    return j;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  }
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  void cutv(char *u,char *v, char*t, char occ)
   int **m;  {
      /* cuts string t into u and v where u is ended by char occ excluding it
   /* allocate pointers to rows */       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));       gives u="abcedf" and v="ghi2j" */
   if (!m) nrerror("allocation failure 1 in matrix()");    int i,lg,j,p=0;
   m += NR_END;    i=0;
   m -= nrl;    for(j=0; j<=strlen(t)-1; j++) {
        if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
      }
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    lg=strlen(t);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    for(j=0; j<p; j++) {
   m[nrl] += NR_END;      (u[j] = t[j]);
   m[nrl] -= ncl;    }
         u[p]='\0';
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
       for(j=0; j<= lg; j++) {
   /* return pointer to array of pointers to rows */      if (j>=(p+1))(v[j-p-1] = t[j]);
   return m;    }
 }  }
   
 /****************** free_imatrix *************************/  /********************** nrerror ********************/
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  void nrerror(char error_text[])
       long nch,ncl,nrh,nrl;  {
      /* free an int matrix allocated by imatrix() */    fprintf(stderr,"ERREUR ...\n");
 {    fprintf(stderr,"%s\n",error_text);
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    exit(EXIT_FAILURE);
   free((FREE_ARG) (m+nrl-NR_END));  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
 /******************* matrix *******************************/  {
 double **matrix(long nrl, long nrh, long ncl, long nch)    double *v;
 {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    if (!v) nrerror("allocation failure in vector");
   double **m;    return v-nl+NR_END;
   }
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /************************ free vector ******************/
   m += NR_END;  void free_vector(double*v, int nl, int nh)
   m -= nrl;  {
     free((FREE_ARG)(v+nl-NR_END));
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /************************ivector *******************************/
   m[nrl] -= ncl;  char *cvector(long nl,long nh)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    char *v;
   return m;    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
 }    if (!v) nrerror("allocation failure in cvector");
     return v-nl+NR_END;
 /*************************free matrix ************************/  }
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  /******************free ivector **************************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  void free_cvector(char *v, long nl, long nh)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  /************************ivector *******************************/
 {  int *ivector(long nl,long nh)
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  {
   double ***m;    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if (!v) nrerror("allocation failure in ivector");
   if (!m) nrerror("allocation failure 1 in matrix()");    return v-nl+NR_END;
   m += NR_END;  }
   m -= nrl;  
   /******************free ivector **************************/
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  void free_ivector(int *v, long nl, long nh)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    free((FREE_ARG)(v+nl-NR_END));
   m[nrl] -= ncl;  }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  { 
   m[nrl][ncl] += NR_END;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   m[nrl][ncl] -= nll;    int **m; 
   for (j=ncl+1; j<=nch; j++)    
     m[nrl][j]=m[nrl][j-1]+nlay;    /* allocate pointers to rows */ 
      m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for (i=nrl+1; i<=nrh; i++) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    m += NR_END; 
     for (j=ncl+1; j<=nch; j++)    m -= nrl; 
       m[i][j]=m[i][j-1]+nlay;    
   }    
   return m;    /* allocate rows and set pointers to them */ 
 }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 /*************************free ma3x ************************/    m[nrl] += NR_END; 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    m[nrl] -= ncl; 
 {    
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    
   free((FREE_ARG)(m+nrl-NR_END));    /* return pointer to array of pointers to rows */ 
 }    return m; 
   } 
 /***************** f1dim *************************/  
 extern int ncom;  /****************** free_imatrix *************************/
 extern double *pcom,*xicom;  void free_imatrix(m,nrl,nrh,ncl,nch)
 extern double (*nrfunc)(double []);        int **m;
          long nch,ncl,nrh,nrl; 
 double f1dim(double x)       /* free an int matrix allocated by imatrix() */ 
 {  { 
   int j;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double f;    free((FREE_ARG) (m+nrl-NR_END)); 
   double *xt;  } 
    
   xt=vector(1,ncom);  /******************* matrix *******************************/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double **matrix(long nrl, long nrh, long ncl, long nch)
   f=(*nrfunc)(xt);  {
   free_vector(xt,1,ncom);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   return f;    double **m;
 }  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 /*****************brent *************************/    if (!m) nrerror("allocation failure 1 in matrix()");
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    m += NR_END;
 {    m -= nrl;
   int iter;  
   double a,b,d,etemp;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double fu,fv,fw,fx;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double ftemp;    m[nrl] += NR_END;
   double p,q,r,tol1,tol2,u,v,w,x,xm;    m[nrl] -= ncl;
   double e=0.0;  
      for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   a=(ax < cx ? ax : cx);    return m;
   b=(ax > cx ? ax : cx);    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
   x=w=v=bx;     */
   fw=fv=fx=(*f)(x);  }
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  /*************************free matrix ************************/
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  {
     printf(".");fflush(stdout);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  /******************* ma3x *******************************/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       *xmin=x;  {
       return fx;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     }    double ***m;
     ftemp=fu;  
     if (fabs(e) > tol1) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       r=(x-w)*(fx-fv);    if (!m) nrerror("allocation failure 1 in matrix()");
       q=(x-v)*(fx-fw);    m += NR_END;
       p=(x-v)*q-(x-w)*r;    m -= nrl;
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       q=fabs(q);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       etemp=e;    m[nrl] += NR_END;
       e=d;    m[nrl] -= ncl;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       else {  
         d=p/q;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         u=x+d;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         if (u-a < tol2 || b-u < tol2)    m[nrl][ncl] += NR_END;
           d=SIGN(tol1,xm-x);    m[nrl][ncl] -= nll;
       }    for (j=ncl+1; j<=nch; j++) 
     } else {      m[nrl][j]=m[nrl][j-1]+nlay;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    
     }    for (i=nrl+1; i<=nrh; i++) {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     fu=(*f)(u);      for (j=ncl+1; j<=nch; j++) 
     if (fu <= fx) {        m[i][j]=m[i][j-1]+nlay;
       if (u >= x) a=x; else b=x;    }
       SHFT(v,w,x,u)    return m; 
         SHFT(fv,fw,fx,fu)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         } else {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
           if (u < x) a=u; else b=u;    */
           if (fu <= fw || w == x) {  }
             v=w;  
             w=u;  /*************************free ma3x ************************/
             fv=fw;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
             fw=fu;  {
           } else if (fu <= fv || v == x || v == w) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
             v=u;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             fv=fu;    free((FREE_ARG)(m+nrl-NR_END));
           }  }
         }  
   }  /***************** f1dim *************************/
   nrerror("Too many iterations in brent");  extern int ncom; 
   *xmin=x;  extern double *pcom,*xicom;
   return fx;  extern double (*nrfunc)(double []); 
 }   
   double f1dim(double x) 
 /****************** mnbrak ***********************/  { 
     int j; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    double f;
             double (*func)(double))    double *xt; 
 {   
   double ulim,u,r,q, dum;    xt=vector(1,ncom); 
   double fu;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
      f=(*nrfunc)(xt); 
   *fa=(*func)(*ax);    free_vector(xt,1,ncom); 
   *fb=(*func)(*bx);    return f; 
   if (*fb > *fa) {  } 
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  /*****************brent *************************/
       }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   *cx=(*bx)+GOLD*(*bx-*ax);  { 
   *fc=(*func)(*cx);    int iter; 
   while (*fb > *fc) {    double a,b,d,etemp;
     r=(*bx-*ax)*(*fb-*fc);    double fu,fv,fw,fx;
     q=(*bx-*cx)*(*fb-*fa);    double ftemp;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    double e=0.0; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);   
     if ((*bx-u)*(u-*cx) > 0.0) {    a=(ax < cx ? ax : cx); 
       fu=(*func)(u);    b=(ax > cx ? ax : cx); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    x=w=v=bx; 
       fu=(*func)(u);    fw=fv=fx=(*f)(x); 
       if (fu < *fc) {    for (iter=1;iter<=ITMAX;iter++) { 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      xm=0.5*(a+b); 
           SHFT(*fb,*fc,fu,(*func)(u))      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
           }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      printf(".");fflush(stdout);
       u=ulim;      fprintf(ficlog,".");fflush(ficlog);
       fu=(*func)(u);  #ifdef DEBUG
     } else {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       u=(*cx)+GOLD*(*cx-*bx);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fu=(*func)(u);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     }  #endif
     SHFT(*ax,*bx,*cx,u)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       SHFT(*fa,*fb,*fc,fu)        *xmin=x; 
       }        return fx; 
 }      } 
       ftemp=fu;
 /*************** linmin ************************/      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
 int ncom;        q=(x-v)*(fx-fw); 
 double *pcom,*xicom;        p=(x-v)*q-(x-w)*r; 
 double (*nrfunc)(double []);        q=2.0*(q-r); 
          if (q > 0.0) p = -p; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))        q=fabs(q); 
 {        etemp=e; 
   double brent(double ax, double bx, double cx,        e=d; 
                double (*f)(double), double tol, double *xmin);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   double f1dim(double x);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,        else { 
               double *fc, double (*func)(double));          d=p/q; 
   int j;          u=x+d; 
   double xx,xmin,bx,ax;          if (u-a < tol2 || b-u < tol2) 
   double fx,fb,fa;            d=SIGN(tol1,xm-x); 
          } 
   ncom=n;      } else { 
   pcom=vector(1,n);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   xicom=vector(1,n);      } 
   nrfunc=func;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for (j=1;j<=n;j++) {      fu=(*f)(u); 
     pcom[j]=p[j];      if (fu <= fx) { 
     xicom[j]=xi[j];        if (u >= x) a=x; else b=x; 
   }        SHFT(v,w,x,u) 
   ax=0.0;          SHFT(fv,fw,fx,fu) 
   xx=1.0;          } else { 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);            if (u < x) a=u; else b=u; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);            if (fu <= fw || w == x) { 
 #ifdef DEBUG              v=w; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);              w=u; 
 #endif              fv=fw; 
   for (j=1;j<=n;j++) {              fw=fu; 
     xi[j] *= xmin;            } else if (fu <= fv || v == x || v == w) { 
     p[j] += xi[j];              v=u; 
   }              fv=fu; 
   free_vector(xicom,1,n);            } 
   free_vector(pcom,1,n);          } 
 }    } 
     nrerror("Too many iterations in brent"); 
 /*************** powell ************************/    *xmin=x; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    return fx; 
             double (*func)(double []))  } 
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /****************** mnbrak ***********************/
               double (*func)(double []));  
   int i,ibig,j;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   double del,t,*pt,*ptt,*xit;              double (*func)(double)) 
   double fp,fptt;  { 
   double *xits;    double ulim,u,r,q, dum;
   pt=vector(1,n);    double fu; 
   ptt=vector(1,n);   
   xit=vector(1,n);    *fa=(*func)(*ax); 
   xits=vector(1,n);    *fb=(*func)(*bx); 
   *fret=(*func)(p);    if (*fb > *fa) { 
   for (j=1;j<=n;j++) pt[j]=p[j];      SHFT(dum,*ax,*bx,dum) 
   for (*iter=1;;++(*iter)) {        SHFT(dum,*fb,*fa,dum) 
     fp=(*fret);        } 
     ibig=0;    *cx=(*bx)+GOLD*(*bx-*ax); 
     del=0.0;    *fc=(*func)(*cx); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    while (*fb > *fc) { 
     for (i=1;i<=n;i++)      r=(*bx-*ax)*(*fb-*fc); 
       printf(" %d %.12f",i, p[i]);      q=(*bx-*cx)*(*fb-*fa); 
     printf("\n");      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for (i=1;i<=n;i++) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       fptt=(*fret);      if ((*bx-u)*(u-*cx) > 0.0) { 
 #ifdef DEBUG        fu=(*func)(u); 
       printf("fret=%lf \n",*fret);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 #endif        fu=(*func)(u); 
       printf("%d",i);fflush(stdout);        if (fu < *fc) { 
       linmin(p,xit,n,fret,func);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       if (fabs(fptt-(*fret)) > del) {            SHFT(*fb,*fc,fu,(*func)(u)) 
         del=fabs(fptt-(*fret));            } 
         ibig=i;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       }        u=ulim; 
 #ifdef DEBUG        fu=(*func)(u); 
       printf("%d %.12e",i,(*fret));      } else { 
       for (j=1;j<=n;j++) {        u=(*cx)+GOLD*(*cx-*bx); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        fu=(*func)(u); 
         printf(" x(%d)=%.12e",j,xit[j]);      } 
       }      SHFT(*ax,*bx,*cx,u) 
       for(j=1;j<=n;j++)        SHFT(*fa,*fb,*fc,fu) 
         printf(" p=%.12e",p[j]);        } 
       printf("\n");  } 
 #endif  
     }  /*************** linmin ************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  int ncom; 
       int k[2],l;  double *pcom,*xicom;
       k[0]=1;  double (*nrfunc)(double []); 
       k[1]=-1;   
       printf("Max: %.12e",(*func)(p));  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for (j=1;j<=n;j++)  { 
         printf(" %.12e",p[j]);    double brent(double ax, double bx, double cx, 
       printf("\n");                 double (*f)(double), double tol, double *xmin); 
       for(l=0;l<=1;l++) {    double f1dim(double x); 
         for (j=1;j<=n;j++) {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];                double *fc, double (*func)(double)); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    int j; 
         }    double xx,xmin,bx,ax; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double fx,fb,fa;
       }   
 #endif    ncom=n; 
     pcom=vector(1,n); 
     xicom=vector(1,n); 
       free_vector(xit,1,n);    nrfunc=func; 
       free_vector(xits,1,n);    for (j=1;j<=n;j++) { 
       free_vector(ptt,1,n);      pcom[j]=p[j]; 
       free_vector(pt,1,n);      xicom[j]=xi[j]; 
       return;    } 
     }    ax=0.0; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    xx=1.0; 
     for (j=1;j<=n;j++) {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       ptt[j]=2.0*p[j]-pt[j];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       xit[j]=p[j]-pt[j];  #ifdef DEBUG
       pt[j]=p[j];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fptt=(*func)(ptt);  #endif
     if (fptt < fp) {    for (j=1;j<=n;j++) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      xi[j] *= xmin; 
       if (t < 0.0) {      p[j] += xi[j]; 
         linmin(p,xit,n,fret,func);    } 
         for (j=1;j<=n;j++) {    free_vector(xicom,1,n); 
           xi[j][ibig]=xi[j][n];    free_vector(pcom,1,n); 
           xi[j][n]=xit[j];  } 
         }  
 #ifdef DEBUG  /*************** powell ************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         for(j=1;j<=n;j++)              double (*func)(double [])) 
           printf(" %.12e",xit[j]);  { 
         printf("\n");    void linmin(double p[], double xi[], int n, double *fret, 
 #endif                double (*func)(double [])); 
       }    int i,ibig,j; 
     }    double del,t,*pt,*ptt,*xit;
   }    double fp,fptt;
 }    double *xits;
     pt=vector(1,n); 
 /**** Prevalence limit ****************/    ptt=vector(1,n); 
     xit=vector(1,n); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    xits=vector(1,n); 
 {    *fret=(*func)(p); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    for (j=1;j<=n;j++) pt[j]=p[j]; 
      matrix by transitions matrix until convergence is reached */    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
   int i, ii,j,k;      ibig=0; 
   double min, max, maxmin, maxmax,sumnew=0.;      del=0.0; 
   double **matprod2();      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   double **out, cov[NCOVMAX], **pmij();      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   double **newm;      fprintf(ficrespow,"%d %.12f",*iter,*fret);
   double agefin, delaymax=50 ; /* Max number of years to converge */      for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficlog," %d %.12lf",i, p[i]);
     for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficrespow," %.12lf", p[i]);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      }
     }      printf("\n");
       fprintf(ficlog,"\n");
    cov[1]=1.;      fprintf(ficrespow,"\n");
        for (i=1;i<=n;i++) { 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        fptt=(*fret); 
     newm=savm;  #ifdef DEBUG
     /* Covariates have to be included here again */        printf("fret=%lf \n",*fret);
      cov[2]=agefin;        fprintf(ficlog,"fret=%lf \n",*fret);
    #endif
       for (k=1; k<=cptcovn;k++) {        printf("%d",i);fflush(stdout);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        fprintf(ficlog,"%d",i);fflush(ficlog);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        linmin(p,xit,n,fret,func); 
       }        if (fabs(fptt-(*fret)) > del) { 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          del=fabs(fptt-(*fret)); 
       for (k=1; k<=cptcovprod;k++)          ibig=i; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        } 
   #ifdef DEBUG
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        printf("%d %.12e",i,(*fret));
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        fprintf(ficlog,"%d %.12e",i,(*fret));
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        for (j=1;j<=n;j++) {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
     savm=oldm;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     oldm=newm;        }
     maxmax=0.;        for(j=1;j<=n;j++) {
     for(j=1;j<=nlstate;j++){          printf(" p=%.12e",p[j]);
       min=1.;          fprintf(ficlog," p=%.12e",p[j]);
       max=0.;        }
       for(i=1; i<=nlstate; i++) {        printf("\n");
         sumnew=0;        fprintf(ficlog,"\n");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #endif
         prlim[i][j]= newm[i][j]/(1-sumnew);      } 
         max=FMAX(max,prlim[i][j]);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         min=FMIN(min,prlim[i][j]);  #ifdef DEBUG
       }        int k[2],l;
       maxmin=max-min;        k[0]=1;
       maxmax=FMAX(maxmax,maxmin);        k[1]=-1;
     }        printf("Max: %.12e",(*func)(p));
     if(maxmax < ftolpl){        fprintf(ficlog,"Max: %.12e",(*func)(p));
       return prlim;        for (j=1;j<=n;j++) {
     }          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
 }        }
         printf("\n");
 /*************** transition probabilities ***************/        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          for (j=1;j<=n;j++) {
 {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   double s1, s2;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   /*double t34;*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i,j,j1, nc, ii, jj;          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(i=1; i<= nlstate; i++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(j=1; j<i;j++){        }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #endif
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        free_vector(xit,1,n); 
       }        free_vector(xits,1,n); 
       ps[i][j]=s2;        free_vector(ptt,1,n); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        free_vector(pt,1,n); 
     }        return; 
     for(j=i+1; j<=nlstate+ndeath;j++){      } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      for (j=1;j<=n;j++) { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        ptt[j]=2.0*p[j]-pt[j]; 
       }        xit[j]=p[j]-pt[j]; 
       ps[i][j]=s2;        pt[j]=p[j]; 
     }      } 
   }      fptt=(*func)(ptt); 
     /*ps[3][2]=1;*/      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   for(i=1; i<= nlstate; i++){        if (t < 0.0) { 
      s1=0;          linmin(p,xit,n,fret,func); 
     for(j=1; j<i; j++)          for (j=1;j<=n;j++) { 
       s1+=exp(ps[i][j]);            xi[j][ibig]=xi[j][n]; 
     for(j=i+1; j<=nlstate+ndeath; j++)            xi[j][n]=xit[j]; 
       s1+=exp(ps[i][j]);          }
     ps[i][i]=1./(s1+1.);  #ifdef DEBUG
     for(j=1; j<i; j++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       ps[i][j]= exp(ps[i][j])*ps[i][i];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(j=i+1; j<=nlstate+ndeath; j++)          for(j=1;j<=n;j++){
       ps[i][j]= exp(ps[i][j])*ps[i][i];            printf(" %.12e",xit[j]);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            fprintf(ficlog," %.12e",xit[j]);
   } /* end i */          }
           printf("\n");
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          fprintf(ficlog,"\n");
     for(jj=1; jj<= nlstate+ndeath; jj++){  #endif
       ps[ii][jj]=0;        }
       ps[ii][ii]=1;      } 
     }    } 
   }  } 
   
   /**** Prevalence limit (stable prevalence)  ****************/
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
      printf("%lf ",ps[ii][jj]);  {
    }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     printf("\n ");       matrix by transitions matrix until convergence is reached */
     }  
     printf("\n ");printf("%lf ",cov[2]);*/    int i, ii,j,k;
 /*    double min, max, maxmin, maxmax,sumnew=0.;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    double **matprod2();
   goto end;*/    double **out, cov[NCOVMAX], **pmij();
     return ps;    double **newm;
 }    double agefin, delaymax=50 ; /* Max number of years to converge */
   
 /**************** Product of 2 matrices ******************/    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {      }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */     cov[1]=1.;
   /* in, b, out are matrice of pointers which should have been initialized   
      before: only the contents of out is modified. The function returns   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      a pointer to pointers identical to out */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   long i, j, k;      newm=savm;
   for(i=nrl; i<= nrh; i++)      /* Covariates have to be included here again */
     for(k=ncolol; k<=ncoloh; k++)       cov[2]=agefin;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    
         out[i][k] +=in[i][j]*b[j][k];        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   return out;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 }        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
 /************* Higher Matrix Product ***************/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
      duration (i.e. until      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      savm=oldm;
      (typically every 2 years instead of every month which is too big).      oldm=newm;
      Model is determined by parameters x and covariates have to be      maxmax=0.;
      included manually here.      for(j=1;j<=nlstate;j++){
         min=1.;
      */        max=0.;
         for(i=1; i<=nlstate; i++) {
   int i, j, d, h, k;          sumnew=0;
   double **out, cov[NCOVMAX];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double **newm;          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   /* Hstepm could be zero and should return the unit matrix */          min=FMIN(min,prlim[i][j]);
   for (i=1;i<=nlstate+ndeath;i++)        }
     for (j=1;j<=nlstate+ndeath;j++){        maxmin=max-min;
       oldm[i][j]=(i==j ? 1.0 : 0.0);        maxmax=FMAX(maxmax,maxmin);
       po[i][j][0]=(i==j ? 1.0 : 0.0);      }
     }      if(maxmax < ftolpl){
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        return prlim;
   for(h=1; h <=nhstepm; h++){      }
     for(d=1; d <=hstepm; d++){    }
       newm=savm;  }
       /* Covariates have to be included here again */  
       cov[1]=1.;  /*************** transition probabilities ***************/ 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for (k=1; k<=cptcovage;k++)  {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double s1, s2;
       for (k=1; k<=cptcovprod;k++)    /*double t34;*/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int i,j,j1, nc, ii, jj;
   
       for(i=1; i<= nlstate; i++){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      for(j=1; j<i;j++){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          /*s2 += param[i][j][nc]*cov[nc];*/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       savm=oldm;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       oldm=newm;        }
     }        ps[i][j]=s2;
     for(i=1; i<=nlstate+ndeath; i++)        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       for(j=1;j<=nlstate+ndeath;j++) {      }
         po[i][j][h]=newm[i][j];      for(j=i+1; j<=nlstate+ndeath;j++){
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
          */          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       }          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   } /* end h */        }
   return po;        ps[i][j]=s2;
 }      }
     }
       /*ps[3][2]=1;*/
 /*************** log-likelihood *************/  
 double func( double *x)    for(i=1; i<= nlstate; i++){
 {       s1=0;
   int i, ii, j, k, mi, d, kk;      for(j=1; j<i; j++)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        s1+=exp(ps[i][j]);
   double **out;      for(j=i+1; j<=nlstate+ndeath; j++)
   double sw; /* Sum of weights */        s1+=exp(ps[i][j]);
   double lli; /* Individual log likelihood */      ps[i][i]=1./(s1+1.);
   int s1, s2;      for(j=1; j<i; j++)
   long ipmx;        ps[i][j]= exp(ps[i][j])*ps[i][i];
   /*extern weight */      for(j=i+1; j<=nlstate+ndeath; j++)
   /* We are differentiating ll according to initial status */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   /*for(i=1;i<imx;i++)    } /* end i */
     printf(" %d\n",s[4][i]);  
   */    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   cov[1]=1.;      for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
   for(k=1; k<=nlstate; k++) ll[k]=0.;        ps[ii][ii]=1;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    }
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++){    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for(jj=1; jj<= nlstate+ndeath; jj++){
           savm[ii][j]=(ii==j ? 1.0 : 0.0);       printf("%lf ",ps[ii][jj]);
         }     }
       for(d=0; d<dh[mi][i]; d++){      printf("\n ");
         newm=savm;      }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      printf("\n ");printf("%lf ",cov[2]);*/
         for (kk=1; kk<=cptcovage;kk++) {  /*
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    for(i=1; i<= npar; i++) printf("%f ",x[i]);
         }    goto end;*/
              return ps;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;  /**************** Product of 2 matrices ******************/
         oldm=newm;  
          double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
          {
       } /* end mult */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       s1=s[mw[mi][i]][i];    /* in, b, out are matrice of pointers which should have been initialized 
       s2=s[mw[mi+1][i]][i];       before: only the contents of out is modified. The function returns
       if( s2 > nlstate){       a pointer to pointers identical to out */
         /* i.e. if s2 is a death state and if the date of death is known then the contribution    long i, j, k;
            to the likelihood is the probability to die between last step unit time and current    for(i=nrl; i<= nrh; i++)
            step unit time, which is also the differences between probability to die before dh      for(k=ncolol; k<=ncoloh; k++)
            and probability to die before dh-stepm .        for(j=ncl,out[i][k]=0.; j<=nch; j++)
            In version up to 0.92 likelihood was computed          out[i][k] +=in[i][j]*b[j][k];
            as if date of death was unknown. Death was treated as any other  
            health state: the date of the interview describes the actual state    return out;
            and not the date of a change in health state. The former idea was  }
            to consider that at each interview the state was recorded  
            (healthy, disable or death) and IMaCh was corrected; but when we  
            introduced the exact date of death then we should have modified  /************* Higher Matrix Product ***************/
            the contribution of an exact death to the likelihood. This new  
            contribution is smaller and very dependent of the step unit  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
            stepm. It is no more the probability to die between last interview  {
            and month of death but the probability to survive from last    /* Computes the transition matrix starting at age 'age' over 
            interview up to one month before death multiplied by the       'nhstepm*hstepm*stepm' months (i.e. until
            probability to die within a month. Thanks to Chris       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
            Jackson for correcting this bug.  Former versions increased       nhstepm*hstepm matrices. 
            mortality artificially. The bad side is that we add another loop       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
            which slows down the processing. The difference can be up to 10%       (typically every 2 years instead of every month which is too big 
            lower mortality.       for the memory).
         */       Model is determined by parameters x and covariates have to be 
         lli=log(out[s1][s2] - savm[s1][s2]);       included manually here. 
       }else{  
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */       */
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       }    int i, j, d, h, k;
       ipmx +=1;    double **out, cov[NCOVMAX];
       sw += weight[i];    double **newm;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/    /* Hstepm could be zero and should return the unit matrix */
     } /* end of wave */    for (i=1;i<=nlstate+ndeath;i++)
   } /* end of individual */      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        po[i][j][0]=(i==j ? 1.0 : 0.0);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /*exit(0);*/    for(h=1; h <=nhstepm; h++){
   return -l;      for(d=1; d <=hstepm; d++){
 }        newm=savm;
         /* Covariates have to be included here again */
         cov[1]=1.;
 /*********** Maximum Likelihood Estimation ***************/        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        for (k=1; k<=cptcovage;k++)
 {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   int i,j, iter;        for (k=1; k<=cptcovprod;k++)
   double **xi,*delti;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double fret;  
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     for (j=1;j<=npar;j++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       xi[i][j]=(i==j ? 1.0 : 0.0);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   printf("Powell\n");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   powell(p,xi,npar,ftol,&iter,&fret,func);        savm=oldm;
         oldm=newm;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
 }          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 /**** Computes Hessian and covariance matrix ***/           */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        }
 {    } /* end h */
   double  **a,**y,*x,pd;    return po;
   double **hess;  }
   int i, j,jk;  
   int *indx;  
   /*************** log-likelihood *************/
   double hessii(double p[], double delta, int theta, double delti[]);  double func( double *x)
   double hessij(double p[], double delti[], int i, int j);  {
   void lubksb(double **a, int npar, int *indx, double b[]) ;    int i, ii, j, k, mi, d, kk;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   hess=matrix(1,npar,1,npar);    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
   printf("\nCalculation of the hessian matrix. Wait...\n");    int s1, s2;
   for (i=1;i<=npar;i++){    double bbh, survp;
     printf("%d",i);fflush(stdout);    long ipmx;
     hess[i][i]=hessii(p,ftolhess,i,delti);    /*extern weight */
     /*printf(" %f ",p[i]);*/    /* We are differentiating ll according to initial status */
     /*printf(" %lf ",hess[i][i]);*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   for (i=1;i<=npar;i++) {    */
     for (j=1;j<=npar;j++)  {    cov[1]=1.;
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);    for(k=1; k<=nlstate; k++) ll[k]=0.;
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];        if(mle==1){
         /*printf(" %lf ",hess[i][j]);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("\n");            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   a=matrix(1,npar,1,npar);          for(d=0; d<dh[mi][i]; d++){
   y=matrix(1,npar,1,npar);            newm=savm;
   x=vector(1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   indx=ivector(1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   for (i=1;i<=npar;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];            }
   ludcmp(a,npar,indx,&pd);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (j=1;j<=npar;j++) {            savm=oldm;
     for (i=1;i<=npar;i++) x[i]=0;            oldm=newm;
     x[j]=1;          } /* end mult */
     lubksb(a,npar,indx,x);        
     for (i=1;i<=npar;i++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       matcov[i][j]=x[i];          /* But now since version 0.9 we anticipate for bias and large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
   printf("\n#Hessian matrix#\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for (i=1;i<=npar;i++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     for (j=1;j<=npar;j++) {           * probability in order to take into account the bias as a fraction of the way
       printf("%.3e ",hess[i][j]);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
     printf("\n");           * For stepm=1 the results are the same as for previous versions of Imach.
   }           * For stepm > 1 the results are less biased than in previous versions. 
            */
   /* Recompute Inverse */          s1=s[mw[mi][i]][i];
   for (i=1;i<=npar;i++)          s2=s[mw[mi+1][i]][i];
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          bbh=(double)bh[mi][i]/(double)stepm; 
   ludcmp(a,npar,indx,&pd);          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   /*  printf("\n#Hessian matrix recomputed#\n");           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   for (j=1;j<=npar;j++) {          if( s2 > nlstate){ 
     for (i=1;i<=npar;i++) x[i]=0;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     x[j]=1;               to the likelihood is the probability to die between last step unit time and current 
     lubksb(a,npar,indx,x);               step unit time, which is also the differences between probability to die before dh 
     for (i=1;i<=npar;i++){               and probability to die before dh-stepm . 
       y[i][j]=x[i];               In version up to 0.92 likelihood was computed
       printf("%.3e ",y[i][j]);          as if date of death was unknown. Death was treated as any other
     }          health state: the date of the interview describes the actual state
     printf("\n");          and not the date of a change in health state. The former idea was
   }          to consider that at each interview the state was recorded
   */          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
   free_matrix(a,1,npar,1,npar);          the contribution of an exact death to the likelihood. This new
   free_matrix(y,1,npar,1,npar);          contribution is smaller and very dependent of the step unit
   free_vector(x,1,npar);          stepm. It is no more the probability to die between last interview
   free_ivector(indx,1,npar);          and month of death but the probability to survive from last
   free_matrix(hess,1,npar,1,npar);          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
 }          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
 /*************** hessian matrix ****************/          lower mortality.
 double hessii( double x[], double delta, int theta, double delti[])            */
 {            lli=log(out[s1][s2] - savm[s1][s2]);
   int i;          }else{
   int l=1, lmax=20;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double k1,k2;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   double p2[NPARMAX+1];          } 
   double res;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          /*if(lli ==000.0)*/
   double fx;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int k=0,kmax=10;          ipmx +=1;
   double l1;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fx=func(x);        } /* end of wave */
   for (i=1;i<=npar;i++) p2[i]=x[i];      } /* end of individual */
   for(l=0 ; l <=lmax; l++){    }  else if(mle==2){
     l1=pow(10,l);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     delts=delt;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(k=1 ; k <kmax; k=k+1){        for(mi=1; mi<= wav[i]-1; mi++){
       delt = delta*(l1*k);          for (ii=1;ii<=nlstate+ndeath;ii++)
       p2[theta]=x[theta] +delt;            for (j=1;j<=nlstate+ndeath;j++){
       k1=func(p2)-fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       p2[theta]=x[theta]-delt;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       k2=func(p2)-fx;            }
       /*res= (k1-2.0*fx+k2)/delt/delt; */          for(d=0; d<=dh[mi][i]; d++){
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            newm=savm;
                  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 #ifdef DEBUG            for (kk=1; kk<=cptcovage;kk++) {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 #endif            }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         k=kmax;            savm=oldm;
       }            oldm=newm;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          } /* end mult */
         k=kmax; l=lmax*10.;        
       }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          /* But now since version 0.9 we anticipate for bias and large stepm.
         delts=delt;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       }           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
   }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   delti[theta]=delts;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   return res;           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
 double hessij( double x[], double delti[], int thetai,int thetaj)           * For stepm > 1 the results are less biased than in previous versions. 
 {           */
   int i;          s1=s[mw[mi][i]][i];
   int l=1, l1, lmax=20;          s2=s[mw[mi+1][i]][i];
   double k1,k2,k3,k4,res,fx;          bbh=(double)bh[mi][i]/(double)stepm; 
   double p2[NPARMAX+1];          /* bias is positive if real duration
   int k;           * is higher than the multiple of stepm and negative otherwise.
            */
   fx=func(x);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for (k=1; k<=2; k++) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     for (i=1;i<=npar;i++) p2[i]=x[i];          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     p2[thetai]=x[thetai]+delti[thetai]/k;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /*if(lli ==000.0)*/
     k1=func(p2)-fx;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
     p2[thetai]=x[thetai]+delti[thetai]/k;          sw += weight[i];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     k2=func(p2)-fx;        } /* end of wave */
        } /* end of individual */
     p2[thetai]=x[thetai]-delti[thetai]/k;    }  else if(mle==3){  /* exponential inter-extrapolation */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     k3=func(p2)-fx;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
     p2[thetai]=x[thetai]-delti[thetai]/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            for (j=1;j<=nlstate+ndeath;j++){
     k4=func(p2)-fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 #ifdef DEBUG            }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          for(d=0; d<dh[mi][i]; d++){
 #endif            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   return res;            for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /************** Inverse of matrix **************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void ludcmp(double **a, int n, int *indx, double *d)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   int i,imax,j,k;            oldm=newm;
   double big,dum,sum,temp;          } /* end mult */
   double *vv;        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   vv=vector(1,n);          /* But now since version 0.9 we anticipate for bias and large stepm.
   *d=1.0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   for (i=1;i<=n;i++) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
     big=0.0;           * the nearest (and in case of equal distance, to the lowest) interval but now
     for (j=1;j<=n;j++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       if ((temp=fabs(a[i][j])) > big) big=temp;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           * probability in order to take into account the bias as a fraction of the way
     vv[i]=1.0/big;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
   for (j=1;j<=n;j++) {           * For stepm=1 the results are the same as for previous versions of Imach.
     for (i=1;i<j;i++) {           * For stepm > 1 the results are less biased than in previous versions. 
       sum=a[i][j];           */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          s1=s[mw[mi][i]][i];
       a[i][j]=sum;          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     big=0.0;          /* bias is positive if real duration
     for (i=j;i<=n;i++) {           * is higher than the multiple of stepm and negative otherwise.
       sum=a[i][j];           */
       for (k=1;k<j;k++)          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         sum -= a[i][k]*a[k][j];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       a[i][j]=sum;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       if ( (dum=vv[i]*fabs(sum)) >= big) {          /*if(lli ==000.0)*/
         big=dum;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         imax=i;          ipmx +=1;
       }          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (j != imax) {        } /* end of wave */
       for (k=1;k<=n;k++) {      } /* end of individual */
         dum=a[imax][k];    }else{  /* ml=4 no inter-extrapolation */
         a[imax][k]=a[j][k];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         a[j][k]=dum;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
       *d = -(*d);          for (ii=1;ii<=nlstate+ndeath;ii++)
       vv[imax]=vv[j];            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     indx[j]=imax;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (a[j][j] == 0.0) a[j][j]=TINY;            }
     if (j != n) {          for(d=0; d<dh[mi][i]; d++){
       dum=1.0/(a[j][j]);            newm=savm;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_vector(vv,1,n);  /* Doesn't work */            }
 ;          
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void lubksb(double **a, int n, int *indx, double b[])            savm=oldm;
 {            oldm=newm;
   int i,ii=0,ip,j;          } /* end mult */
   double sum;        
            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for (i=1;i<=n;i++) {          ipmx +=1;
     ip=indx[i];          sw += weight[i];
     sum=b[ip];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     b[ip]=b[i];        } /* end of wave */
     if (ii)      } /* end of individual */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    } /* End of if */
     else if (sum) ii=i;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     b[i]=sum;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for (i=n;i>=1;i--) {    return -l;
     sum=b[i];  }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  
   }  /*********** Maximum Likelihood Estimation ***************/
 }  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 /************ Frequencies ********************/  {
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    int i,j, iter;
 {  /* Some frequencies */    double **xi;
      double fret;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    char filerespow[FILENAMELENGTH];
   double ***freq; /* Frequencies */    xi=matrix(1,npar,1,npar);
   double *pp;    for (i=1;i<=npar;i++)
   double pos, k2, dateintsum=0,k2cpt=0;      for (j=1;j<=npar;j++)
   FILE *ficresp;        xi[i][j]=(i==j ? 1.0 : 0.0);
   char fileresp[FILENAMELENGTH];    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      strcpy(filerespow,"pow"); 
   pp=vector(1,nlstate);    strcat(filerespow,fileres);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   strcpy(fileresp,"p");      printf("Problem with resultfile: %s\n", filerespow);
   strcat(fileresp,fileres);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   if((ficresp=fopen(fileresp,"w"))==NULL) {    }
     printf("Problem with prevalence resultfile: %s\n", fileresp);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     exit(0);    for (i=1;i<=nlstate;i++)
   }      for(j=1;j<=nlstate+ndeath;j++)
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   j1=0;    fprintf(ficrespow,"\n");
      powell(p,xi,npar,ftol,&iter,&fret,func);
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    fclose(ficrespow);
      printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   for(k1=1; k1<=j;k1++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(i1=1; i1<=ncodemax[k1];i1++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  }
         scanf("%d", i);*/  
       for (i=-1; i<=nlstate+ndeath; i++)    /**** Computes Hessian and covariance matrix ***/
         for (jk=-1; jk<=nlstate+ndeath; jk++)    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           for(m=agemin; m <= agemax+3; m++)  {
             freq[i][jk][m]=0;    double  **a,**y,*x,pd;
          double **hess;
       dateintsum=0;    int i, j,jk;
       k2cpt=0;    int *indx;
       for (i=1; i<=imx; i++) {  
         bool=1;    double hessii(double p[], double delta, int theta, double delti[]);
         if  (cptcovn>0) {    double hessij(double p[], double delti[], int i, int j);
           for (z1=1; z1<=cptcoveff; z1++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    void ludcmp(double **a, int npar, int *indx, double *d) ;
               bool=0;  
         }    hess=matrix(1,npar,1,npar);
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){    printf("\nCalculation of the hessian matrix. Wait...\n");
             k2=anint[m][i]+(mint[m][i]/12.);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    for (i=1;i<=npar;i++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;      printf("%d",i);fflush(stdout);
               if(agev[m][i]==1) agev[m][i]=agemax+2;      fprintf(ficlog,"%d",i);fflush(ficlog);
               if (m<lastpass) {      hess[i][i]=hessii(p,ftolhess,i,delti);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      /*printf(" %f ",p[i]);*/
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      /*printf(" %lf ",hess[i][i]);*/
               }    }
                  
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    for (i=1;i<=npar;i++) {
                 dateintsum=dateintsum+k2;      for (j=1;j<=npar;j++)  {
                 k2cpt++;        if (j>i) { 
               }          printf(".%d%d",i,j);fflush(stdout);
             }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           }          hess[i][j]=hessij(p,delti,i,j);
         }          hess[j][i]=hess[i][j];    
       }          /*printf(" %lf ",hess[i][j]);*/
                }
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      }
     }
       if  (cptcovn>0) {    printf("\n");
         fprintf(ficresp, "\n#********** Variable ");    fprintf(ficlog,"\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresp, "**********\n#");    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(i=1; i<=nlstate;i++)    
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    a=matrix(1,npar,1,npar);
       fprintf(ficresp, "\n");    y=matrix(1,npar,1,npar);
          x=vector(1,npar);
       for(i=(int)agemin; i <= (int)agemax+3; i++){    indx=ivector(1,npar);
         if(i==(int)agemax+3)    for (i=1;i<=npar;i++)
           printf("Total");      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         else    ludcmp(a,npar,indx,&pd);
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){    for (j=1;j<=npar;j++) {
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for (i=1;i<=npar;i++) x[i]=0;
             pp[jk] += freq[jk][m][i];      x[j]=1;
         }      lubksb(a,npar,indx,x);
         for(jk=1; jk <=nlstate ; jk++){      for (i=1;i<=npar;i++){ 
           for(m=-1, pos=0; m <=0 ; m++)        matcov[i][j]=x[i];
             pos += freq[jk][m][i];      }
           if(pp[jk]>=1.e-10)    }
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           else    printf("\n#Hessian matrix#\n");
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    fprintf(ficlog,"\n#Hessian matrix#\n");
         }    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
         for(jk=1; jk <=nlstate ; jk++){        printf("%.3e ",hess[i][j]);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        fprintf(ficlog,"%.3e ",hess[i][j]);
             pp[jk] += freq[jk][m][i];      }
         }      printf("\n");
       fprintf(ficlog,"\n");
         for(jk=1,pos=0; jk <=nlstate ; jk++)    }
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){    /* Recompute Inverse */
           if(pos>=1.e-5)    for (i=1;i<=npar;i++)
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           else    ludcmp(a,npar,indx,&pd);
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           if( i <= (int) agemax){    /*  printf("\n#Hessian matrix recomputed#\n");
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    for (j=1;j<=npar;j++) {
               probs[i][jk][j1]= pp[jk]/pos;      for (i=1;i<=npar;i++) x[i]=0;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      x[j]=1;
             }      lubksb(a,npar,indx,x);
             else      for (i=1;i<=npar;i++){ 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        y[i][j]=x[i];
           }        printf("%.3e ",y[i][j]);
         }        fprintf(ficlog,"%.3e ",y[i][j]);
              }
         for(jk=-1; jk <=nlstate+ndeath; jk++)      printf("\n");
           for(m=-1; m <=nlstate+ndeath; m++)      fprintf(ficlog,"\n");
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    }
         if(i <= (int) agemax)    */
           fprintf(ficresp,"\n");  
         printf("\n");    free_matrix(a,1,npar,1,npar);
       }    free_matrix(y,1,npar,1,npar);
     }    free_vector(x,1,npar);
   }    free_ivector(indx,1,npar);
   dateintmean=dateintsum/k2cpt;    free_matrix(hess,1,npar,1,npar);
    
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  }
   free_vector(pp,1,nlstate);  
    /*************** hessian matrix ****************/
   /* End of Freq */  double hessii( double x[], double delta, int theta, double delti[])
 }  {
     int i;
 /************ Prevalence ********************/    int l=1, lmax=20;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    double k1,k2;
 {  /* Some frequencies */    double p2[NPARMAX+1];
      double res;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   double ***freq; /* Frequencies */    double fx;
   double *pp;    int k=0,kmax=10;
   double pos, k2;    double l1;
   
   pp=vector(1,nlstate);    fx=func(x);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      l1=pow(10,l);
   j1=0;      delts=delt;
        for(k=1 ; k <kmax; k=k+1){
   j=cptcoveff;        delt = delta*(l1*k);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;
  for(k1=1; k1<=j;k1++){        p2[theta]=x[theta]-delt;
     for(i1=1; i1<=ncodemax[k1];i1++){        k2=func(p2)-fx;
       j1++;        /*res= (k1-2.0*fx+k2)/delt/delt; */
          res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       for (i=-1; i<=nlstate+ndeath; i++)          
         for (jk=-1; jk<=nlstate+ndeath; jk++)    #ifdef DEBUG
           for(m=agemin; m <= agemax+3; m++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             freq[i][jk][m]=0;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        #endif
       for (i=1; i<=imx; i++) {        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         bool=1;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         if  (cptcovn>0) {          k=kmax;
           for (z1=1; z1<=cptcoveff; z1++)        }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
               bool=0;          k=kmax; l=lmax*10.;
         }        }
         if (bool==1) {        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           for(m=firstpass; m<=lastpass; m++){          delts=delt;
             k2=anint[m][i]+(mint[m][i]/12.);        }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      }
               if(agev[m][i]==0) agev[m][i]=agemax+1;    }
               if(agev[m][i]==1) agev[m][i]=agemax+2;    delti[theta]=delts;
               if (m<lastpass)    return res; 
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    
               else  }
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  double hessij( double x[], double delti[], int thetai,int thetaj)
             }  {
           }    int i;
         }    int l=1, l1, lmax=20;
       }    double k1,k2,k3,k4,res,fx;
         for(i=(int)agemin; i <= (int)agemax+3; i++){    double p2[NPARMAX+1];
           for(jk=1; jk <=nlstate ; jk++){    int k;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
               pp[jk] += freq[jk][m][i];    fx=func(x);
           }    for (k=1; k<=2; k++) {
           for(jk=1; jk <=nlstate ; jk++){      for (i=1;i<=npar;i++) p2[i]=x[i];
             for(m=-1, pos=0; m <=0 ; m++)      p2[thetai]=x[thetai]+delti[thetai]/k;
             pos += freq[jk][m][i];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         }      k1=func(p2)-fx;
            
          for(jk=1; jk <=nlstate ; jk++){      p2[thetai]=x[thetai]+delti[thetai]/k;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
              pp[jk] += freq[jk][m][i];      k2=func(p2)-fx;
          }    
                p2[thetai]=x[thetai]-delti[thetai]/k;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
          for(jk=1; jk <=nlstate ; jk++){              
            if( i <= (int) agemax){      p2[thetai]=x[thetai]-delti[thetai]/k;
              if(pos>=1.e-5){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                probs[i][jk][j1]= pp[jk]/pos;      k4=func(p2)-fx;
              }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
            }  #ifdef DEBUG
          }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         }  #endif
     }    }
   }    return res;
   }
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /************** Inverse of matrix **************/
   free_vector(pp,1,nlstate);  void ludcmp(double **a, int n, int *indx, double *d) 
    { 
 }  /* End of Freq */    int i,imax,j,k; 
     double big,dum,sum,temp; 
 /************* Waves Concatenation ***************/    double *vv; 
    
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    vv=vector(1,n); 
 {    *d=1.0; 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    for (i=1;i<=n;i++) { 
      Death is a valid wave (if date is known).      big=0.0; 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for (j=1;j<=n;j++) 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        if ((temp=fabs(a[i][j])) > big) big=temp; 
      and mw[mi+1][i]. dh depends on stepm.      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
      */      vv[i]=1.0/big; 
     } 
   int i, mi, m;    for (j=1;j<=n;j++) { 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      for (i=1;i<j;i++) { 
      double sum=0., jmean=0.;*/        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   int j, k=0,jk, ju, jl;        a[i][j]=sum; 
   double sum=0.;      } 
   jmin=1e+5;      big=0.0; 
   jmax=-1;      for (i=j;i<=n;i++) { 
   jmean=0.;        sum=a[i][j]; 
   for(i=1; i<=imx; i++){        for (k=1;k<j;k++) 
     mi=0;          sum -= a[i][k]*a[k][j]; 
     m=firstpass;        a[i][j]=sum; 
     while(s[m][i] <= nlstate){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       if(s[m][i]>=1)          big=dum; 
         mw[++mi][i]=m;          imax=i; 
       if(m >=lastpass)        } 
         break;      } 
       else      if (j != imax) { 
         m++;        for (k=1;k<=n;k++) { 
     }/* end while */          dum=a[imax][k]; 
     if (s[m][i] > nlstate){          a[imax][k]=a[j][k]; 
       mi++;     /* Death is another wave */          a[j][k]=dum; 
       /* if(mi==0)  never been interviewed correctly before death */        } 
          /* Only death is a correct wave */        *d = -(*d); 
       mw[mi][i]=m;        vv[imax]=vv[j]; 
     }      } 
       indx[j]=imax; 
     wav[i]=mi;      if (a[j][j] == 0.0) a[j][j]=TINY; 
     if(mi==0)      if (j != n) { 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        dum=1.0/(a[j][j]); 
   }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
   for(i=1; i<=imx; i++){    } 
     for(mi=1; mi<wav[i];mi++){    free_vector(vv,1,n);  /* Doesn't work */
       if (stepm <=0)  ;
         dh[mi][i]=1;  } 
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {  void lubksb(double **a, int n, int *indx, double b[]) 
           if (agedc[i] < 2*AGESUP) {  { 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    int i,ii=0,ip,j; 
           if(j==0) j=1;  /* Survives at least one month after exam */    double sum; 
           k=k+1;   
           if (j >= jmax) jmax=j;    for (i=1;i<=n;i++) { 
           if (j <= jmin) jmin=j;      ip=indx[i]; 
           sum=sum+j;      sum=b[ip]; 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      b[ip]=b[i]; 
           }      if (ii) 
         }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         else{      else if (sum) ii=i; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      b[i]=sum; 
           k=k+1;    } 
           if (j >= jmax) jmax=j;    for (i=n;i>=1;i--) { 
           else if (j <= jmin)jmin=j;      sum=b[i]; 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           sum=sum+j;      b[i]=sum/a[i][i]; 
         }    } 
         jk= j/stepm;  } 
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;  /************ Frequencies ********************/
         if(jl <= -ju)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
           dh[mi][i]=jk;  {  /* Some frequencies */
         else    
           dh[mi][i]=jk+1;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         if(dh[mi][i]==0)    int first;
           dh[mi][i]=1; /* At least one step */    double ***freq; /* Frequencies */
       }    double *pp, **prop;
     }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   }    FILE *ficresp;
   jmean=sum/k;    char fileresp[FILENAMELENGTH];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    
  }    pp=vector(1,nlstate);
 /*********** Tricode ****************************/    prop=matrix(1,nlstate,iagemin,iagemax+3);
 void tricode(int *Tvar, int **nbcode, int imx)    strcpy(fileresp,"p");
 {    strcat(fileresp,fileres);
   int Ndum[20],ij=1, k, j, i;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   int cptcode=0;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   cptcoveff=0;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        exit(0);
   for (k=0; k<19; k++) Ndum[k]=0;    }
   for (k=1; k<=7; k++) ncodemax[k]=0;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    
     for (i=1; i<=imx; i++) {    j=cptcoveff;
       ij=(int)(covar[Tvar[j]][i]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    first=1;
       if (ij > cptcode) cptcode=ij;  
     }    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
     for (i=0; i<=cptcode; i++) {        j1++;
       if(Ndum[i]!=0) ncodemax[j]++;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     }          scanf("%d", i);*/
     ij=1;        for (i=-1; i<=nlstate+ndeath; i++)  
           for (jk=-1; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
     for (i=1; i<=ncodemax[j]; i++) {              freq[i][jk][m]=0;
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {      for (i=1; i<=nlstate; i++)  
           nbcode[Tvar[j]][ij]=k;        for(m=iagemin; m <= iagemax+3; m++)
                    prop[i][m]=0;
           ij++;        
         }        dateintsum=0;
         if (ij > ncodemax[j]) break;        k2cpt=0;
       }          for (i=1; i<=imx; i++) {
     }          bool=1;
   }            if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
  for (k=0; k<19; k++) Ndum[k]=0;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
  for (i=1; i<=ncovmodel-2; i++) {          }
       ij=Tvar[i];          if (bool==1){
       Ndum[ij]++;            for(m=firstpass; m<=lastpass; m++){
     }              k2=anint[m][i]+(mint[m][i]/12.);
               if ((k2>=dateprev1) && (k2<=dateprev2)) {
  ij=1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
  for (i=1; i<=10; i++) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    if((Ndum[i]!=0) && (i<=ncovcol)){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
      Tvaraff[ij]=i;                if (m<lastpass) {
      ij++;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
    }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
  }                }
                  
     cptcoveff=ij-1;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 }                  dateintsum=dateintsum+k2;
                   k2cpt++;
 /*********** Health Expectancies ****************/                }
               }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            }
           }
 {        }
   /* Health expectancies */         
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   double age, agelim, hf;  
   double ***p3mat,***varhe;        if  (cptcovn>0) {
   double **dnewm,**doldm;          fprintf(ficresp, "\n#********** Variable "); 
   double *xp;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double **gp, **gm;          fprintf(ficresp, "**********\n#");
   double ***gradg, ***trgradg;        }
   int theta;        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        fprintf(ficresp, "\n");
   xp=vector(1,npar);        
   dnewm=matrix(1,nlstate*2,1,npar);        for(i=iagemin; i <= iagemax+3; i++){
   doldm=matrix(1,nlstate*2,1,nlstate*2);          if(i==iagemax+3){
              fprintf(ficlog,"Total");
   fprintf(ficreseij,"# Health expectancies\n");          }else{
   fprintf(ficreseij,"# Age");            if(first==1){
   for(i=1; i<=nlstate;i++)              first=0;
     for(j=1; j<=nlstate;j++)              printf("See log file for details...\n");
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            }
   fprintf(ficreseij,"\n");            fprintf(ficlog,"Age %d", i);
           }
   if(estepm < stepm){          for(jk=1; jk <=nlstate ; jk++){
     printf ("Problem %d lower than %d\n",estepm, stepm);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   }              pp[jk] += freq[jk][m][i]; 
   else  hstepm=estepm;            }
   /* We compute the life expectancy from trapezoids spaced every estepm months          for(jk=1; jk <=nlstate ; jk++){
    * This is mainly to measure the difference between two models: for example            for(m=-1, pos=0; m <=0 ; m++)
    * if stepm=24 months pijx are given only every 2 years and by summing them              pos += freq[jk][m][i];
    * we are calculating an estimate of the Life Expectancy assuming a linear            if(pp[jk]>=1.e-10){
    * progression inbetween and thus overestimating or underestimating according              if(first==1){
    * to the curvature of the survival function. If, for the same date, we              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months              }
    * to compare the new estimate of Life expectancy with the same linear              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    * hypothesis. A more precise result, taking into account a more precise            }else{
    * curvature will be obtained if estepm is as small as stepm. */              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   /* For example we decided to compute the life expectancy with the smallest unit */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            }
      nhstepm is the number of hstepm from age to agelim          }
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size          for(jk=1; jk <=nlstate ; jk++){
      and note for a fixed period like estepm months */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the              pp[jk] += freq[jk][m][i];
      survival function given by stepm (the optimization length). Unfortunately it          }       
      means that if the survival funtion is printed only each two years of age and if          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            pos += pp[jk];
      results. So we changed our mind and took the option of the best precision.            posprop += prop[jk][i];
   */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
   agelim=AGESUP;              if(first==1)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     /* nhstepm age range expressed in number of stepm */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            }else{
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */              if(first==1)
     /* if (stepm >= YEARM) hstepm=1;*/                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            if( i <= iagemax){
     gp=matrix(0,nhstepm,1,nlstate*2);              if(pos>=1.e-5){
     gm=matrix(0,nhstepm,1,nlstate*2);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 probs[i][jk][j1]= pp[jk]/pos;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */              }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                else
                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          }
           
     /* Computing Variances of health expectancies */          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
      for(theta=1; theta <=npar; theta++){              if(freq[jk][m][i] !=0 ) {
       for(i=1; i<=npar; i++){              if(first==1)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                }
            if(i <= iagemax)
       cptj=0;            fprintf(ficresp,"\n");
       for(j=1; j<= nlstate; j++){          if(first==1)
         for(i=1; i<=nlstate; i++){            printf("Others in log...\n");
           cptj=cptj+1;          fprintf(ficlog,"\n");
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      }
           }    }
         }    dateintmean=dateintsum/k2cpt; 
       }   
          fclose(ficresp);
          free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
       for(i=1; i<=npar; i++)    free_vector(pp,1,nlstate);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* End of Freq */
        }
       cptj=0;  
       for(j=1; j<= nlstate; j++){  /************ Prevalence ********************/
         for(i=1;i<=nlstate;i++){  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           cptj=cptj+1;  {  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;       in each health status at the date of interview (if between dateprev1 and dateprev2).
           }       We still use firstpass and lastpass as another selection.
         }    */
       }   
          int i, m, jk, k1, i1, j1, bool, z1,z2,j;
        double ***freq; /* Frequencies */
     double *pp, **prop;
       for(j=1; j<= nlstate*2; j++)    double pos,posprop; 
         for(h=0; h<=nhstepm-1; h++){    double  y2; /* in fractional years */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    int iagemin, iagemax;
         }  
     iagemin= (int) agemin;
      }    iagemax= (int) agemax;
        /*pp=vector(1,nlstate);*/
 /* End theta */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    j1=0;
     
      for(h=0; h<=nhstepm-1; h++)    j=cptcoveff;
       for(j=1; j<=nlstate*2;j++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(theta=1; theta <=npar; theta++)    
         trgradg[h][j][theta]=gradg[h][theta][j];    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
      for(i=1;i<=nlstate*2;i++)        
       for(j=1;j<=nlstate*2;j++)        for (i=1; i<=nlstate; i++)  
         varhe[i][j][(int)age] =0.;          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
     for(h=0;h<=nhstepm-1;h++){       
       for(k=0;k<=nhstepm-1;k++){        for (i=1; i<=imx; i++) { /* Each individual */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          bool=1;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          if  (cptcovn>0) {
         for(i=1;i<=nlstate*2;i++)            for (z1=1; z1<=cptcoveff; z1++) 
           for(j=1;j<=nlstate*2;j++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;                bool=0;
       }          } 
     }          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                    y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     /* Computing expectancies */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     for(i=1; i<=nlstate;i++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(j=1; j<=nlstate;j++)                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                            /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
         }                } 
               }
     fprintf(ficreseij,"%3.0f",age );            } /* end selection of waves */
     cptj=0;          }
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++){        for(i=iagemin; i <= iagemax+3; i++){  
         cptj++;          
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       }            posprop += prop[jk][i]; 
     fprintf(ficreseij,"\n");          } 
      
     free_matrix(gm,0,nhstepm,1,nlstate*2);          for(jk=1; jk <=nlstate ; jk++){     
     free_matrix(gp,0,nhstepm,1,nlstate*2);            if( i <=  iagemax){ 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);              if(posprop>=1.e-5){ 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);                probs[i][jk][j1]= prop[jk][i]/posprop;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              } 
   }            } 
   free_vector(xp,1,npar);          }/* end jk */ 
   free_matrix(dnewm,1,nlstate*2,1,npar);        }/* end i */ 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      } /* end i1 */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    } /* end k1 */
 }    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 /************ Variance ******************/    /*free_vector(pp,1,nlstate);*/
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 {  }  /* End of prevalence */
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  /************* Waves Concatenation ***************/
   double **newm;  
   double **dnewm,**doldm;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   int i, j, nhstepm, hstepm, h, nstepm ;  {
   int k, cptcode;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   double *xp;       Death is a valid wave (if date is known).
   double **gp, **gm;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   double ***gradg, ***trgradg;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   double ***p3mat;       and mw[mi+1][i]. dh depends on stepm.
   double age,agelim, hf;       */
   int theta;  
     int i, mi, m;
    fprintf(ficresvij,"# Covariances of life expectancies\n");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   fprintf(ficresvij,"# Age");       double sum=0., jmean=0.;*/
   for(i=1; i<=nlstate;i++)    int first;
     for(j=1; j<=nlstate;j++)    int j, k=0,jk, ju, jl;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double sum=0.;
   fprintf(ficresvij,"\n");    first=0;
     jmin=1e+5;
   xp=vector(1,npar);    jmax=-1;
   dnewm=matrix(1,nlstate,1,npar);    jmean=0.;
   doldm=matrix(1,nlstate,1,nlstate);    for(i=1; i<=imx; i++){
        mi=0;
   if(estepm < stepm){      m=firstpass;
     printf ("Problem %d lower than %d\n",estepm, stepm);      while(s[m][i] <= nlstate){
   }        if(s[m][i]>=1)
   else  hstepm=estepm;            mw[++mi][i]=m;
   /* For example we decided to compute the life expectancy with the smallest unit */        if(m >=lastpass)
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          break;
      nhstepm is the number of hstepm from age to agelim        else
      nstepm is the number of stepm from age to agelin.          m++;
      Look at hpijx to understand the reason of that which relies in memory size      }/* end while */
      and note for a fixed period like k years */      if (s[m][i] > nlstate){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        mi++;     /* Death is another wave */
      survival function given by stepm (the optimization length). Unfortunately it        /* if(mi==0)  never been interviewed correctly before death */
      means that if the survival funtion is printed only each two years of age and if           /* Only death is a correct wave */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        mw[mi][i]=m;
      results. So we changed our mind and took the option of the best precision.      }
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      wav[i]=mi;
   agelim = AGESUP;      if(mi==0){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if(first==0){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          first=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        if(first==1){
     gp=matrix(0,nhstepm,1,nlstate);          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
     gm=matrix(0,nhstepm,1,nlstate);        }
       } /* end mi==0 */
     for(theta=1; theta <=npar; theta++){    } /* End individuals */
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for(i=1; i<=imx; i++){
       }      for(mi=1; mi<wav[i];mi++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          if (stepm <=0)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          dh[mi][i]=1;
         else{
       if (popbased==1) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         for(i=1; i<=nlstate;i++)            if (agedc[i] < 2*AGESUP) {
           prlim[i][i]=probs[(int)age][i][ij];            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       }            if(j==0) j=1;  /* Survives at least one month after exam */
              k=k+1;
       for(j=1; j<= nlstate; j++){            if (j >= jmax) jmax=j;
         for(h=0; h<=nhstepm; h++){            if (j <= jmin) jmin=j;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            sum=sum+j;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       }            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                }
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          else{
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
              k=k+1;
       if (popbased==1) {            if (j >= jmax) jmax=j;
         for(i=1; i<=nlstate;i++)            else if (j <= jmin)jmin=j;
           prlim[i][i]=probs[(int)age][i][ij];            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(j=1; j<= nlstate; j++){            sum=sum+j;
         for(h=0; h<=nhstepm; h++){          }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          jk= j/stepm;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          jl= j -jk*stepm;
         }          ju= j -(jk+1)*stepm;
       }          if(mle <=1){ 
             if(jl==0){
       for(j=1; j<= nlstate; j++)              dh[mi][i]=jk;
         for(h=0; h<=nhstepm; h++){              bh[mi][i]=0;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            }else{ /* We want a negative bias in order to only have interpolation ie
         }                    * at the price of an extra matrix product in likelihood */
     } /* End theta */              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            }
           }else{
     for(h=0; h<=nhstepm; h++)            if(jl <= -ju){
       for(j=1; j<=nlstate;j++)              dh[mi][i]=jk;
         for(theta=1; theta <=npar; theta++)              bh[mi][i]=jl;       /* bias is positive if real duration
           trgradg[h][j][theta]=gradg[h][theta][j];                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            }
     for(i=1;i<=nlstate;i++)            else{
       for(j=1;j<=nlstate;j++)              dh[mi][i]=jk+1;
         vareij[i][j][(int)age] =0.;              bh[mi][i]=ju;
             }
     for(h=0;h<=nhstepm;h++){            if(dh[mi][i]==0){
       for(k=0;k<=nhstepm;k++){              dh[mi][i]=1; /* At least one step */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);              bh[mi][i]=ju; /* At least one step */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         for(i=1;i<=nlstate;i++)            }
           for(j=1;j<=nlstate;j++)          }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        } /* end if mle */
       }      } /* end wave */
     }    }
     jmean=sum/k;
     fprintf(ficresvij,"%.0f ",age );    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       for(j=1; j<=nlstate;j++){   }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }  /*********** Tricode ****************************/
     fprintf(ficresvij,"\n");  void tricode(int *Tvar, int **nbcode, int imx)
     free_matrix(gp,0,nhstepm,1,nlstate);  {
     free_matrix(gm,0,nhstepm,1,nlstate);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    int cptcode=0;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    cptcoveff=0; 
   } /* End age */   
      for (k=0; k<maxncov; k++) Ndum[k]=0;
   free_vector(xp,1,npar);    for (k=1; k<=7; k++) ncodemax[k]=0;
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
 }                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 /************ Variance of prevlim ******************/        Ndum[ij]++; /*store the modality */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   /* Variance of prevalence limit */                                         Tvar[j]. If V=sex and male is 0 and 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                                         female is 1, then  cptcode=1.*/
   double **newm;      }
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;      for (i=0; i<=cptcode; i++) {
   int k, cptcode;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   double *xp;      }
   double *gp, *gm;  
   double **gradg, **trgradg;      ij=1; 
   double age,agelim;      for (i=1; i<=ncodemax[j]; i++) {
   int theta;        for (k=0; k<= maxncov; k++) {
              if (Ndum[k] != 0) {
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            nbcode[Tvar[j]][ij]=k; 
   fprintf(ficresvpl,"# Age");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   for(i=1; i<=nlstate;i++)            
       fprintf(ficresvpl," %1d-%1d",i,i);            ij++;
   fprintf(ficresvpl,"\n");          }
           if (ij > ncodemax[j]) break; 
   xp=vector(1,npar);        }  
   dnewm=matrix(1,nlstate,1,npar);      } 
   doldm=matrix(1,nlstate,1,nlstate);    }  
    
   hstepm=1*YEARM; /* Every year of age */   for (k=0; k< maxncov; k++) Ndum[k]=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;   for (i=1; i<=ncovmodel-2; i++) { 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     ij=Tvar[i];
     if (stepm >= YEARM) hstepm=1;     Ndum[ij]++;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */   }
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);   ij=1;
     gm=vector(1,nlstate);   for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
     for(theta=1; theta <=npar; theta++){       Tvaraff[ij]=i; /*For printing */
       for(i=1; i<=npar; i++){ /* Computes gradient */       ij++;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);     }
       }   }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   
       for(i=1;i<=nlstate;i++)   cptcoveff=ij-1; /*Number of simple covariates*/
         gp[i] = prlim[i][i];  }
      
       for(i=1; i<=npar; i++) /* Computes gradient */  /*********** Health Expectancies ****************/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];  {
     /* Health expectancies */
       for(i=1;i<=nlstate;i++)    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double age, agelim, hf;
     } /* End theta */    double ***p3mat,***varhe;
     double **dnewm,**doldm;
     trgradg =matrix(1,nlstate,1,npar);    double *xp;
     double **gp, **gm;
     for(j=1; j<=nlstate;j++)    double ***gradg, ***trgradg;
       for(theta=1; theta <=npar; theta++)    int theta;
         trgradg[j][theta]=gradg[theta][j];  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     for(i=1;i<=nlstate;i++)    xp=vector(1,npar);
       varpl[i][(int)age] =0.;    dnewm=matrix(1,nlstate*nlstate,1,npar);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    
     for(i=1;i<=nlstate;i++)    fprintf(ficreseij,"# Health expectancies\n");
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
     fprintf(ficresvpl,"%.0f ",age );      for(j=1; j<=nlstate;j++)
     for(i=1; i<=nlstate;i++)        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    fprintf(ficreseij,"\n");
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    if(estepm < stepm){
     free_vector(gm,1,nlstate);      printf ("Problem %d lower than %d\n",estepm, stepm);
     free_matrix(gradg,1,npar,1,nlstate);    }
     free_matrix(trgradg,1,nlstate,1,npar);    else  hstepm=estepm;   
   } /* End age */    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   free_vector(xp,1,npar);     * if stepm=24 months pijx are given only every 2 years and by summing them
   free_matrix(doldm,1,nlstate,1,npar);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   free_matrix(dnewm,1,nlstate,1,nlstate);     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
 }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
 /************ Variance of one-step probabilities  ******************/     * hypothesis. A more precise result, taking into account a more precise
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)     * curvature will be obtained if estepm is as small as stepm. */
 {  
   int i, j, i1, k1, j1, z1;    /* For example we decided to compute the life expectancy with the smallest unit */
   int k=0, cptcode;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double **dnewm,**doldm;       nhstepm is the number of hstepm from age to agelim 
   double *xp;       nstepm is the number of stepm from age to agelin. 
   double *gp, *gm;       Look at hpijx to understand the reason of that which relies in memory size
   double **gradg, **trgradg;       and note for a fixed period like estepm months */
   double age,agelim, cov[NCOVMAX];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   int theta;       survival function given by stepm (the optimization length). Unfortunately it
   char fileresprob[FILENAMELENGTH];       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   strcpy(fileresprob,"prob");       results. So we changed our mind and took the option of the best precision.
   strcat(fileresprob,fileres);    */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     printf("Problem with resultfile: %s\n", fileresprob);  
   }    agelim=AGESUP;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        /* nhstepm age range expressed in number of stepm */
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   fprintf(ficresprob,"# Age");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   for(i=1; i<=nlstate;i++)      /* if (stepm >= YEARM) hstepm=1;*/
     for(j=1; j<=(nlstate+ndeath);j++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
   fprintf(ficresprob,"\n");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   xp=vector(1,npar);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));   
    
   cov[1]=1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      /* Computing Variances of health expectancies */
   j1=0;  
   for(k1=1; k1<=1;k1++){       for(theta=1; theta <=npar; theta++){
     for(i1=1; i1<=ncodemax[k1];i1++){        for(i=1; i<=npar; i++){ 
     j1++;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
     if  (cptcovn>0) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficresprob, "\n#********** Variable ");    
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        cptj=0;
       fprintf(ficresprob, "**********\n#");        for(j=1; j<= nlstate; j++){
     }          for(i=1; i<=nlstate; i++){
                cptj=cptj+1;
       for (age=bage; age<=fage; age ++){            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
         cov[2]=age;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         for (k=1; k<=cptcovn;k++) {            }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          }
                  }
         }       
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];       
         for (k=1; k<=cptcovprod;k++)        for(i=1; i<=npar; i++) 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         gradg=matrix(1,npar,1,9);        
         trgradg=matrix(1,9,1,npar);        cptj=0;
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        for(j=1; j<= nlstate; j++){
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          for(i=1;i<=nlstate;i++){
                cptj=cptj+1;
         for(theta=1; theta <=npar; theta++){            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                      }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          }
                  }
           k=0;        for(j=1; j<= nlstate*nlstate; j++)
           for(i=1; i<= (nlstate+ndeath); i++){          for(h=0; h<=nhstepm-1; h++){
             for(j=1; j<=(nlstate+ndeath);j++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
               k=k+1;          }
               gp[k]=pmmij[i][j];       } 
             }     
           }  /* End theta */
            
           for(i=1; i<=npar; i++)       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  
           for(h=0; h<=nhstepm-1; h++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        for(j=1; j<=nlstate*nlstate;j++)
           k=0;          for(theta=1; theta <=npar; theta++)
           for(i=1; i<=(nlstate+ndeath); i++){            trgradg[h][j][theta]=gradg[h][theta][j];
             for(j=1; j<=(nlstate+ndeath);j++){       
               k=k+1;  
               gm[k]=pmmij[i][j];       for(i=1;i<=nlstate*nlstate;i++)
             }        for(j=1;j<=nlstate*nlstate;j++)
           }          varhe[i][j][(int)age] =0.;
        
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)       printf("%d|",(int)age);fflush(stdout);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         }       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           for(theta=1; theta <=npar; theta++)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
             trgradg[j][theta]=gradg[theta][j];          for(i=1;i<=nlstate*nlstate;i++)
                    for(j=1;j<=nlstate*nlstate;j++)
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        }
              }
         pmij(pmmij,cov,ncovmodel,x,nlstate);      /* Computing expectancies */
              for(i=1; i<=nlstate;i++)
         k=0;        for(j=1; j<=nlstate;j++)
         for(i=1; i<=(nlstate+ndeath); i++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           for(j=1; j<=(nlstate+ndeath);j++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             k=k+1;            
             gm[k]=pmmij[i][j];  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           }  
         }          }
        
      /*printf("\n%d ",(int)age);      fprintf(ficreseij,"%3.0f",age );
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      cptj=0;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      for(i=1; i<=nlstate;i++)
      }*/        for(j=1; j<=nlstate;j++){
           cptj++;
         fprintf(ficresprob,"\n%d ",(int)age);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         }
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)      fprintf(ficreseij,"\n");
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));     
        free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       }      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    printf("\n");
   }    fprintf(ficlog,"\n");
   free_vector(xp,1,npar);  
   fclose(ficresprob);    free_vector(xp,1,npar);
      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 /******************* Printing html file ***********/  }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
  int lastpass, int stepm, int weightopt, char model[],\  /************ Variance ******************/
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\  {
  char version[], int popforecast, int estepm ){    /* Variance of health expectancies */
   int jj1, k1, i1, cpt;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   FILE *fichtm;    /* double **newm;*/
   /*char optionfilehtm[FILENAMELENGTH];*/    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
   strcpy(optionfilehtm,optionfile);    int i, j, nhstepm, hstepm, h, nstepm ;
   strcat(optionfilehtm,".htm");    int k, cptcode;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    double *xp;
     printf("Problem with %s \n",optionfilehtm), exit(0);    double **gp, **gm;  /* for var eij */
   }    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    double *gpp, *gmp; /* for var p point j */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
 \n    double ***p3mat;
 Total number of observations=%d <br>\n    double age,agelim, hf;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    double ***mobaverage;
 <hr  size=\"2\" color=\"#EC5E5E\">    int theta;
  <ul><li>Outputs files<br>\n    char digit[4];
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    char digitp[25];
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n  
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    char fileresprobmorprev[FILENAMELENGTH];
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    if(popbased==1){
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
  fprintf(fichtm,"\n      else strcpy(digitp,"-populbased-nomobil-");
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    }
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    else 
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      strcpy(digitp,"-stablbased-");
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  if(popforecast==1) fprintf(fichtm,"\n      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         <br>",fileres,fileres,fileres,fileres);      }
  else    }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  
 fprintf(fichtm," <li>Graphs</li><p>");    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
  m=cptcoveff;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  jj1=0;    strcat(fileresprobmorprev,fileres);
  for(k1=1; k1<=m;k1++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
    for(i1=1; i1<=ncodemax[k1];i1++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
        jj1++;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
        if (cptcovn > 0) {    }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
          for (cpt=1; cpt<=cptcoveff;cpt++)    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
        }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      fprintf(ficresprobmorprev," p.%-d SE",j);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          for(i=1; i<=nlstate;i++)
        for(cpt=1; cpt<nlstate;cpt++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    }  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    fprintf(ficresprobmorprev,"\n");
        }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     for(cpt=1; cpt<=nlstate;cpt++) {      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
 interval) in state (%d): v%s%d%d.gif <br>      exit(0);
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      }
      }    else{
      for(cpt=1; cpt<=nlstate;cpt++) {      fprintf(ficgp,"\n# Routine varevsij");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
      }      printf("Problem with html file: %s\n", optionfilehtm);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
 health expectancies in states (1) and (2): e%s%d.gif<br>      exit(0);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    }
 fprintf(fichtm,"\n</body>");    else{
    }      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
    }      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 fclose(fichtm);    }
 }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
 /******************* Gnuplot file **************/    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   strcpy(optionfilegnuplot,optionfilefiname);    fprintf(ficresvij,"\n");
   strcat(optionfilegnuplot,".gp.txt");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    xp=vector(1,npar);
     printf("Problem with file %s",optionfilegnuplot);    dnewm=matrix(1,nlstate,1,npar);
   }    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
 #ifdef windows    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 m=pow(2,cptcoveff);    gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
  /* 1eme*/    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {    
    for (k1=1; k1<= m ; k1 ++) {    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    }
     else  hstepm=estepm;   
 for (i=1; i<= nlstate ; i ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       nhstepm is the number of hstepm from age to agelim 
 }       nstepm is the number of stepm from age to agelin. 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);       Look at hpijx to understand the reason of that which relies in memory size
     for (i=1; i<= nlstate ; i ++) {       and note for a fixed period like k years */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   else fprintf(ficgp," \%%*lf (\%%*lf)");       survival function given by stepm (the optimization length). Unfortunately it
 }       means that if the survival funtion is printed every two years of age and if
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      for (i=1; i<= nlstate ; i ++) {       results. So we changed our mind and took the option of the best precision.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 }      agelim = AGESUP;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   /*2 eme*/      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);  
          for(theta=1; theta <=npar; theta++){
     for (i=1; i<= nlstate+1 ; i ++) {        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       k=2*i;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        }
       for (j=1; j<= nlstate+1 ; j ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }          if (popbased==1) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          if(mobilav ==0){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            for(i=1; i<=nlstate;i++)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              prlim[i][i]=probs[(int)age][i][ij];
       for (j=1; j<= nlstate+1 ; j ++) {          }else{ /* mobilav */ 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(i=1; i<=nlstate;i++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");              prlim[i][i]=mobaverage[(int)age][i][ij];
 }            }
       fprintf(ficgp,"\" t\"\" w l 0,");        }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    
       for (j=1; j<= nlstate+1 ; j ++) {        for(j=1; j<= nlstate; j++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for(h=0; h<=nhstepm; h++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 }                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          }
       else fprintf(ficgp,"\" t\"\" w l 0,");        }
     }        /* This for computing probability of death (h=1 means
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
          */
   /*3eme*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   for (k1=1; k1<= m ; k1 ++) {            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     for (cpt=1; cpt<= nlstate ; cpt ++) {        }    
       k=2+nlstate*(2*cpt-2);        /* end probability of death */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");   
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        if (popbased==1) {
           if(mobilav ==0){
 */            for(i=1; i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++) {              prlim[i][i]=probs[(int)age][i][ij];
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          }
     }        }
     }  
          for(j=1; j<= nlstate; j++){
   /* CV preval stat */          for(h=0; h<=nhstepm; h++){
     for (k1=1; k1<= m ; k1 ++) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     for (cpt=1; cpt<nlstate ; cpt ++) {              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       k=3;          }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        }
         /* This for computing probability of death (h=1 means
       for (i=1; i< nlstate ; i ++)           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficgp,"+$%d",k+i+1);           as a weighted average of prlim.
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        */
              for(j=nlstate+1;j<=nlstate+ndeath;j++){
       l=3+(nlstate+ndeath)*cpt;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       for (i=1; i< nlstate ; i ++) {        }    
         l=3+(nlstate+ndeath)*cpt;        /* end probability of death */
         fprintf(ficgp,"+$%d",l+i+1);  
       }        for(j=1; j<= nlstate; j++) /* vareij */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            for(h=0; h<=nhstepm; h++){
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     }          }
   }    
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   /* proba elementaires */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
    for(i=1,jk=1; i <=nlstate; i++){        }
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {      } /* End theta */
         for(j=1; j <=ncovmodel; j++){  
              trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;      for(h=0; h<=nhstepm; h++) /* veij */
           fprintf(ficgp,"\n");        for(j=1; j<=nlstate;j++)
         }          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
     }  
     }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
     for(jk=1; jk <=m; jk++) {          trgradgp[j][theta]=gradgp[theta][j];
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    
    i=1;  
    for(k2=1; k2<=nlstate; k2++) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      k3=i;      for(i=1;i<=nlstate;i++)
      for(k=1; k<=(nlstate+ndeath); k++) {        for(j=1;j<=nlstate;j++)
        if (k != k2){          vareij[i][j][(int)age] =0.;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
 ij=1;      for(h=0;h<=nhstepm;h++){
         for(j=3; j <=ncovmodel; j++) {        for(k=0;k<=nhstepm;k++){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
             ij++;          for(i=1;i<=nlstate;i++)
           }            for(j=1;j<=nlstate;j++)
           else              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
         }      }
           fprintf(ficgp,")/(1");    
              /* pptj */
         for(k1=1; k1 <=nlstate; k1++){        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 ij=1;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           for(j=3; j <=ncovmodel; j++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          varppt[j][i]=doldmp[j][i];
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      /* end ppptj */
             ij++;      /*  x centered again */
           }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           else      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   
           }      if (popbased==1) {
           fprintf(ficgp,")");        if(mobilav ==0){
         }          for(i=1; i<=nlstate;i++)
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            prlim[i][i]=probs[(int)age][i][ij];
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        }else{ /* mobilav */ 
         i=i+ncovmodel;          for(i=1; i<=nlstate;i++)
        }            prlim[i][i]=mobaverage[(int)age][i][ij];
      }        }
    }      }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);               
    }      /* This for computing probability of death (h=1 means
             computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   fclose(ficgp);         as a weighted average of prlim.
 }  /* end gnuplot */      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
 /*************** Moving average **************/          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      }    
       /* end probability of death */
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for (i=1; i<=nlstate;i++)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           mobaverage[(int)agedeb][i][cptcod]=0.;        for(i=1; i<=nlstate;i++){
              fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        }
       for (i=1; i<=nlstate;i++){      } 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      fprintf(ficresprobmorprev,"\n");
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      fprintf(ficresvij,"%.0f ",age );
           }      for(i=1; i<=nlstate;i++)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        for(j=1; j<=nlstate;j++){
         }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       }        }
     }      fprintf(ficresvij,"\n");
          free_matrix(gp,0,nhstepm,1,nlstate);
 }      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 /************** Forecasting ******************/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    } /* End age */
      free_vector(gpp,nlstate+1,nlstate+ndeath);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   int *popage;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double *popeffectif,*popcount;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   double ***p3mat;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   char fileresf[FILENAMELENGTH];    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
  agelim=AGESUP;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
   strcpy(fileresf,"f");    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
   strcat(fileresf,fileres);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   if((ficresf=fopen(fileresf,"w"))==NULL) {  */
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if (mobilav==1) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    fclose(ficresprobmorprev);
     fclose(ficgp);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fclose(fichtm);
   if (stepm<=12) stepsize=1;  }  
    
   agelim=AGESUP;  /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   hstepm=1;  {
   hstepm=hstepm/stepm;    /* Variance of prevalence limit */
   yp1=modf(dateintmean,&yp);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   anprojmean=yp;    double **newm;
   yp2=modf((yp1*12),&yp);    double **dnewm,**doldm;
   mprojmean=yp;    int i, j, nhstepm, hstepm;
   yp1=modf((yp2*30.5),&yp);    int k, cptcode;
   jprojmean=yp;    double *xp;
   if(jprojmean==0) jprojmean=1;    double *gp, *gm;
   if(mprojmean==0) jprojmean=1;    double **gradg, **trgradg;
      double age,agelim;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    int theta;
       
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficresvpl,"# Age");
       k=k+1;    for(i=1; i<=nlstate;i++)
       fprintf(ficresf,"\n#******");        fprintf(ficresvpl," %1d-%1d",i,i);
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficresvpl,"\n");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    xp=vector(1,npar);
       fprintf(ficresf,"******\n");    dnewm=matrix(1,nlstate,1,npar);
       fprintf(ficresf,"# StartingAge FinalAge");    doldm=matrix(1,nlstate,1,nlstate);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    
          hstepm=1*YEARM; /* Every year of age */
          hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    agelim = AGESUP;
         fprintf(ficresf,"\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      gradg=matrix(1,npar,1,nlstate);
           nhstepm = nhstepm/hstepm;      gp=vector(1,nlstate);
                gm=vector(1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;      for(theta=1; theta <=npar; theta++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(i=1; i<=npar; i++){ /* Computes gradient */
                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedate+YEARM*cpt)) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        for(i=1;i<=nlstate;i++)
             }          gp[i] = prlim[i][i];
             for(j=1; j<=nlstate+ndeath;j++) {      
               kk1=0.;kk2=0;        for(i=1; i<=npar; i++) /* Computes gradient */
               for(i=1; i<=nlstate;i++) {                        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                 if (mobilav==1)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for(i=1;i<=nlstate;i++)
                 else {          gm[i] = prlim[i][i];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }        for(i=1;i<=nlstate;i++)
                          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
               }      } /* End theta */
               if (h==(int)(calagedate+12*cpt)){  
                 fprintf(ficresf," %.3f", kk1);      trgradg =matrix(1,nlstate,1,npar);
                          
               }      for(j=1; j<=nlstate;j++)
             }        for(theta=1; theta <=npar; theta++)
           }          trgradg[j][theta]=gradg[theta][j];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      for(i=1;i<=nlstate;i++)
       }        varpl[i][(int)age] =0.;
     }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
              for(i=1;i<=nlstate;i++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
   fclose(ficresf);      fprintf(ficresvpl,"%.0f ",age );
 }      for(i=1; i<=nlstate;i++)
 /************** Forecasting ******************/        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      fprintf(ficresvpl,"\n");
        free_vector(gp,1,nlstate);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      free_vector(gm,1,nlstate);
   int *popage;      free_matrix(gradg,1,npar,1,nlstate);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      free_matrix(trgradg,1,nlstate,1,npar);
   double *popeffectif,*popcount;    } /* End age */
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(dnewm,1,nlstate,1,nlstate);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;  }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
    /************ Variance of one-step probabilities  ******************/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
    {
      int i, j=0,  i1, k1, l1, t, tj;
   strcpy(filerespop,"pop");    int k2, l2, j1,  z1;
   strcat(filerespop,fileres);    int k=0,l, cptcode;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    int first=1, first1;
     printf("Problem with forecast resultfile: %s\n", filerespop);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   }    double **dnewm,**doldm;
   printf("Computing forecasting: result on file '%s' \n", filerespop);    double *xp;
     double *gp, *gm;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double **gradg, **trgradg;
     double **mu;
   if (mobilav==1) {    double age,agelim, cov[NCOVMAX];
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    int theta;
   }    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
   stepsize=(int) (stepm+YEARM-1)/YEARM;    char fileresprobcor[FILENAMELENGTH];
   if (stepm<=12) stepsize=1;  
      double ***varpij;
   agelim=AGESUP;  
      strcpy(fileresprob,"prob"); 
   hstepm=1;    strcat(fileresprob,fileres);
   hstepm=hstepm/stepm;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprob);
   if (popforecast==1) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     if((ficpop=fopen(popfile,"r"))==NULL) {    }
       printf("Problem with population file : %s\n",popfile);exit(0);    strcpy(fileresprobcov,"probcov"); 
     }    strcat(fileresprobcov,fileres);
     popage=ivector(0,AGESUP);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     popeffectif=vector(0,AGESUP);      printf("Problem with resultfile: %s\n", fileresprobcov);
     popcount=vector(0,AGESUP);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
        }
     i=1;      strcpy(fileresprobcor,"probcor"); 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    strcat(fileresprobcor,fileres);
        if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     imx=i;      printf("Problem with resultfile: %s\n", fileresprobcor);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   }    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       k=k+1;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficrespop,"\n#******");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       fprintf(ficrespop,"******\n");    fprintf(ficresprob,"# Age");
       fprintf(ficrespop,"# Age");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    fprintf(ficresprobcov,"# Age");
       if (popforecast==1)  fprintf(ficrespop," [Population]");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
          fprintf(ficresprobcov,"# Age");
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
            for(i=1; i<=nlstate;i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(j=1; j<=(nlstate+ndeath);j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           nhstepm = nhstepm/hstepm;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                  fprintf(ficresprobcor," p%1d-%1d ",i,j);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }  
           oldm=oldms;savm=savms;   /* fprintf(ficresprob,"\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresprobcov,"\n");
            fprintf(ficresprobcor,"\n");
           for (h=0; h<=nhstepm; h++){   */
             if (h==(int) (calagedate+YEARM*cpt)) {   xp=vector(1,npar);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             for(j=1; j<=nlstate+ndeath;j++) {    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
               kk1=0.;kk2=0;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
               for(i=1; i<=nlstate;i++) {                  first=1;
                 if (mobilav==1)    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
                 else {      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      exit(0);
                 }    }
               }    else{
               if (h==(int)(calagedate+12*cpt)){      fprintf(ficgp,"\n# Routine varprob");
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    }
                   /*fprintf(ficrespop," %.3f", kk1);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      printf("Problem with html file: %s\n", optionfilehtm);
               }      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
             }      exit(0);
             for(i=1; i<=nlstate;i++){    }
               kk1=0.;    else{
                 for(j=1; j<=nlstate;j++){      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      fprintf(fichtm,"\n");
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
             }      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    cov[1]=1;
         }    tj=cptcoveff;
       }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      j1=0;
   /******/    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        j1++;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          if  (cptcovn>0) {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          fprintf(ficresprob, "\n#********** Variable "); 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           nhstepm = nhstepm/hstepm;          fprintf(ficresprob, "**********\n#\n");
                    fprintf(ficresprobcov, "\n#********** Variable "); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           oldm=oldms;savm=savms;          fprintf(ficresprobcov, "**********\n#\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            
           for (h=0; h<=nhstepm; h++){          fprintf(ficgp, "\n#********** Variable "); 
             if (h==(int) (calagedate+YEARM*cpt)) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficgp, "**********\n#\n");
             }          
             for(j=1; j<=nlstate+ndeath;j++) {          
               kk1=0.;kk2=0;          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
               for(i=1; i<=nlstate;i++) {                        for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
               }          
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          fprintf(ficresprobcor, "\n#********** Variable ");    
             }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           }          fprintf(ficresprobcor, "**********\n#");    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }        
       }        for (age=bage; age<=fage; age ++){ 
    }          cov[2]=age;
   }          for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   if (popforecast==1) {          for (k=1; k<=cptcovprod;k++)
     free_ivector(popage,0,AGESUP);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     free_vector(popeffectif,0,AGESUP);          
     free_vector(popcount,0,AGESUP);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          gp=vector(1,(nlstate)*(nlstate+ndeath));
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   fclose(ficrespop);      
 }          for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
 /***********************************************/              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 /**************** Main Program *****************/            
 /***********************************************/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
 int main(int argc, char *argv[])            k=0;
 {            for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                k=k+1;
   double agedeb, agefin,hf;                gp[k]=pmmij[i][j];
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;              }
             }
   double fret;            
   double **xi,tmp,delta;            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   double dum; /* Dummy variable */      
   double ***p3mat;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   int *indx;            k=0;
   char line[MAXLINE], linepar[MAXLINE];            for(i=1; i<=(nlstate); i++){
   char title[MAXLINE];              for(j=1; j<=(nlstate+ndeath);j++){
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];                k=k+1;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];                gm[k]=pmmij[i][j];
                }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];            }
        
   char filerest[FILENAMELENGTH];            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   char fileregp[FILENAMELENGTH];              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   char popfile[FILENAMELENGTH];          }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   int sdeb, sfin; /* Status at beginning and end */            for(theta=1; theta <=npar; theta++)
   int c,  h , cpt,l;              trgradg[j][theta]=gradg[theta][j];
   int ju,jl, mi;          
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   int mobilav=0,popforecast=0;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   int hstepm, nhstepm;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;          pmij(pmmij,cov,ncovmodel,x,nlstate);
   double **prlim;          
   double *severity;          k=0;
   double ***param; /* Matrix of parameters */          for(i=1; i<=(nlstate); i++){
   double  *p;            for(j=1; j<=(nlstate+ndeath);j++){
   double **matcov; /* Matrix of covariance */              k=k+1;
   double ***delti3; /* Scale */              mu[k][(int) age]=pmmij[i][j];
   double *delti; /* Scale */            }
   double ***eij, ***vareij;          }
   double **varpl; /* Variances of prevalence limits by age */          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   double *epj, vepp;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   double kk1, kk2;              varpij[i][j][(int)age] = doldm[i][j];
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  
            /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   char *alph[]={"a","a","b","c","d","e"}, str[4];            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
   char z[1]="c", occ;          fprintf(ficresprob,"\n%d ",(int)age);
 #include <sys/time.h>          fprintf(ficresprobcov,"\n%d ",(int)age);
 #include <time.h>          fprintf(ficresprobcor,"\n%d ",(int)age);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   /* long total_usecs;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   struct timeval start_time, end_time;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   getcwd(pathcd, size);          }
           i=0;
   printf("\n%s",version);          for (k=1; k<=(nlstate);k++){
   if(argc <=1){            for (l=1; l<=(nlstate+ndeath);l++){ 
     printf("\nEnter the parameter file name: ");              i=i++;
     scanf("%s",pathtot);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   else{              for (j=1; j<=i;j++){
     strcpy(pathtot,argv[1]);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/              }
   /*cygwin_split_path(pathtot,path,optionfile);            }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          }/* end of loop for state */
   /* cutv(path,optionfile,pathtot,'\\');*/        } /* end of loop for age */
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        /* Confidence intervalle of pij  */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        /*
   chdir(path);          fprintf(ficgp,"\nset noparametric;unset label");
   replace(pathc,path);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 /*-------- arguments in the command line --------*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   strcpy(fileres,"r");          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   strcat(fileres, optionfilefiname);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   strcat(fileres,".txt");    /* Other files have txt extension */        */
   
   /*---------arguments file --------*/        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for (k2=1; k2<=(nlstate);k2++){
     printf("Problem with optionfile %s\n",optionfile);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     goto end;            if(l2==k2) continue;
   }            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
   strcpy(filereso,"o");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   strcat(filereso,fileres);                if(l1==k1) continue;
   if((ficparo=fopen(filereso,"w"))==NULL) {                i=(k1-1)*(nlstate+ndeath)+l1;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;                if(i<=j) continue;
   }                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
   /* Reads comments: lines beginning with '#' */                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   while((c=getc(ficpar))=='#' && c!= EOF){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     ungetc(c,ficpar);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     fgets(line, MAXLINE, ficpar);                    mu1=mu[i][(int) age]/stepm*YEARM ;
     puts(line);                    mu2=mu[j][(int) age]/stepm*YEARM;
     fputs(line,ficparo);                    c12=cv12/sqrt(v1*v2);
   }                    /* Computing eigen value of matrix of covariance */
   ungetc(c,ficpar);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                    /* Eigen vectors */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                    /*v21=sqrt(1.-v11*v11); *//* error */
 while((c=getc(ficpar))=='#' && c!= EOF){                    v21=(lc1-v1)/cv12*v11;
     ungetc(c,ficpar);                    v12=-v21;
     fgets(line, MAXLINE, ficpar);                    v22=v11;
     puts(line);                    tnalp=v21/v11;
     fputs(line,ficparo);                    if(first1==1){
   }                      first1=0;
   ungetc(c,ficpar);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      }
                        fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   covar=matrix(0,NCOVMAX,1,n);                    /*printf(fignu*/
   cptcovn=0;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
   ncovmodel=2+cptcovn;                      first=0;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                      fprintf(ficgp,"\nset parametric;unset label");
                        fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   /* Read guess parameters */                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   /* Reads comments: lines beginning with '#' */                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
   while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
     ungetc(c,ficpar);                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     fgets(line, MAXLINE, ficpar);                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
     puts(line);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     fputs(line,ficparo);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   ungetc(c,ficpar);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                    }else{
     for(i=1; i <=nlstate; i++)                      first=0;
     for(j=1; j <=nlstate+ndeath-1; j++){                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
       fscanf(ficpar,"%1d%1d",&i1,&j1);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fprintf(ficparo,"%1d%1d",i1,j1);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       printf("%1d%1d",i,j);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       for(k=1; k<=ncovmodel;k++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         fscanf(ficpar," %lf",&param[i][j][k]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         printf(" %lf",param[i][j][k]);                    }/* if first */
         fprintf(ficparo," %lf",param[i][j][k]);                  } /* age mod 5 */
       }                } /* end loop age */
       fscanf(ficpar,"\n");                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
       printf("\n");                first=1;
       fprintf(ficparo,"\n");              } /*l12 */
     }            } /* k12 */
            } /*l1 */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        }/* k1 */
       } /* loop covariates */
   p=param[1][1];    }
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   /* Reads comments: lines beginning with '#' */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(xp,1,npar);
     ungetc(c,ficpar);    fclose(ficresprob);
     fgets(line, MAXLINE, ficpar);    fclose(ficresprobcov);
     puts(line);    fclose(ficresprobcor);
     fputs(line,ficparo);    fclose(ficgp);
   }    fclose(fichtm);
   ungetc(c,ficpar);  }
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  /******************* Printing html file ***********/
   for(i=1; i <=nlstate; i++){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     for(j=1; j <=nlstate+ndeath-1; j++){                    int lastpass, int stepm, int weightopt, char model[],\
       fscanf(ficpar,"%1d%1d",&i1,&j1);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       printf("%1d%1d",i,j);                    int popforecast, int estepm ,\
       fprintf(ficparo,"%1d%1d",i1,j1);                    double jprev1, double mprev1,double anprev1, \
       for(k=1; k<=ncovmodel;k++){                    double jprev2, double mprev2,double anprev2){
         fscanf(ficpar,"%le",&delti3[i][j][k]);    int jj1, k1, i1, cpt;
         printf(" %le",delti3[i][j][k]);    /*char optionfilehtm[FILENAMELENGTH];*/
         fprintf(ficparo," %le",delti3[i][j][k]);    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       }      printf("Problem with %s \n",optionfilehtm), exit(0);
       fscanf(ficpar,"\n");      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
       printf("\n");    }
       fprintf(ficparo,"\n");  
     }     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
   }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
   delti=delti3[1][1];   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
     - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
   /* Reads comments: lines beginning with '#' */   - Life expectancies by age and initial health status (estepm=%2d months): 
   while((c=getc(ficpar))=='#' && c!= EOF){     <a href=\"e%s\">e%s</a> <br>\n</li>", \
     ungetc(c,ficpar);    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
     fgets(line, MAXLINE, ficpar);  
     puts(line);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     fputs(line,ficparo);  
   }   m=cptcoveff;
   ungetc(c,ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
   matcov=matrix(1,npar,1,npar);   jj1=0;
   for(i=1; i <=npar; i++){   for(k1=1; k1<=m;k1++){
     fscanf(ficpar,"%s",&str);     for(i1=1; i1<=ncodemax[k1];i1++){
     printf("%s",str);       jj1++;
     fprintf(ficparo,"%s",str);       if (cptcovn > 0) {
     for(j=1; j <=i; j++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       fscanf(ficpar," %le",&matcov[i][j]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
       printf(" %.5le",matcov[i][j]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fprintf(ficparo," %.5le",matcov[i][j]);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     }       }
     fscanf(ficpar,"\n");       /* Pij */
     printf("\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
     fprintf(ficparo,"\n");  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
   }       /* Quasi-incidences */
   for(i=1; i <=npar; i++)       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
     for(j=i+1;j<=npar;j++)  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
       matcov[i][j]=matcov[j][i];         /* Stable prevalence in each health state */
             for(cpt=1; cpt<nlstate;cpt++){
   printf("\n");           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
   <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
     /*-------- Rewriting paramater file ----------*/       for(cpt=1; cpt<=nlstate;cpt++) {
      strcpy(rfileres,"r");    /* "Rparameterfile */          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
      strcat(rfileres,".");    /* */       }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */       fprintf(fichtm,"\n<br>- Total life expectancy by age and
     if((ficres =fopen(rfileres,"w"))==NULL) {  health expectancies in states (1) and (2): e%s%d.png<br>
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
     }     } /* end i1 */
     fprintf(ficres,"#%s\n",version);   }/* End k1 */
       fprintf(fichtm,"</ul>");
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
     }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
     n= lastobs;   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
     severity = vector(1,maxwav);   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
     outcome=imatrix(1,maxwav+1,1,n);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
     num=ivector(1,n);   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
     moisnais=vector(1,n);   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
     annais=vector(1,n);  
     moisdc=vector(1,n);  /*  if(popforecast==1) fprintf(fichtm,"\n */
     andc=vector(1,n);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     agedc=vector(1,n);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     cod=ivector(1,n);  /*      <br>",fileres,fileres,fileres,fileres); */
     weight=vector(1,n);  /*  else  */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     mint=matrix(1,maxwav,1,n);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);   m=cptcoveff;
     adl=imatrix(1,maxwav+1,1,n);       if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);   jj1=0;
    for(k1=1; k1<=m;k1++){
     i=1;     for(i1=1; i1<=ncodemax[k1];i1++){
     while (fgets(line, MAXLINE, fic) != NULL)    {       jj1++;
       if ((i >= firstobs) && (i <=lastobs)) {       if (cptcovn > 0) {
                 fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         for (j=maxwav;j>=1;j--){         for (cpt=1; cpt<=cptcoveff;cpt++) 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           strcpy(line,stra);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);       }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);       for(cpt=1; cpt<=nlstate;cpt++) {
         }         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
          interval) in state (%d): v%s%d%d.png <br>
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);       }
      } /* end i1 */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);   }/* End k1 */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);   fprintf(fichtm,"</ul>");
   fclose(fichtm);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  }
         for (j=ncovcol;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /******************* Gnuplot file **************/
         }  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         num[i]=atol(stra);  
            int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    int ng;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
         i=i+1;      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
       }    }
     }  
     /* printf("ii=%d", ij);    /*#ifdef windows */
        scanf("%d",i);*/      fprintf(ficgp,"cd \"%s\" \n",pathc);
   imx=i-1; /* Number of individuals */      /*#endif */
   m=pow(2,cptcoveff);
   /* for (i=1; i<=imx; i++){    
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;   /* 1eme*/
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    for (cpt=1; cpt<= nlstate ; cpt ++) {
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;     for (k1=1; k1<= m ; k1 ++) {
     }*/       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
    /*  for (i=1; i<=imx; i++){       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* Calculation of the number of parameter from char model*/       }
   Tvar=ivector(1,15);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
   Tprod=ivector(1,15);       for (i=1; i<= nlstate ; i ++) {
   Tvaraff=ivector(1,15);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   Tvard=imatrix(1,15,1,2);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   Tage=ivector(1,15);             } 
           fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
   if (strlen(model) >1){       for (i=1; i<= nlstate ; i ++) {
     j=0, j1=0, k1=1, k2=1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     j=nbocc(model,'+');         else fprintf(ficgp," \%%*lf (\%%*lf)");
     j1=nbocc(model,'*');       }  
     cptcovn=j+1;       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
     cptcovprod=j1;     }
        }
     strcpy(modelsav,model);    /*2 eme*/
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    
       printf("Error. Non available option model=%s ",model);    for (k1=1; k1<= m ; k1 ++) { 
       goto end;      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
     }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
          
     for(i=(j+1); i>=1;i--){      for (i=1; i<= nlstate+1 ; i ++) {
       cutv(stra,strb,modelsav,'+');        k=2*i;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        for (j=1; j<= nlstate+1 ; j ++) {
       /*scanf("%d",i);*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       if (strchr(strb,'*')) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
         cutv(strd,strc,strb,'*');        }   
         if (strcmp(strc,"age")==0) {        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           cptcovprod--;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
           cutv(strb,stre,strd,'V');        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
           Tvar[i]=atoi(stre);        for (j=1; j<= nlstate+1 ; j ++) {
           cptcovage++;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             Tage[cptcovage]=i;          else fprintf(ficgp," \%%*lf (\%%*lf)");
             /*printf("stre=%s ", stre);*/        }   
         }        fprintf(ficgp,"\" t\"\" w l 0,");
         else if (strcmp(strd,"age")==0) {        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
           cptcovprod--;        for (j=1; j<= nlstate+1 ; j ++) {
           cutv(strb,stre,strc,'V');          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           Tvar[i]=atoi(stre);          else fprintf(ficgp," \%%*lf (\%%*lf)");
           cptcovage++;        }   
           Tage[cptcovage]=i;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         }        else fprintf(ficgp,"\" t\"\" w l 0,");
         else {      }
           cutv(strb,stre,strc,'V');    }
           Tvar[i]=ncovcol+k1;    
           cutv(strb,strc,strd,'V');    /*3eme*/
           Tprod[k1]=i;    
           Tvard[k1][1]=atoi(strc);    for (k1=1; k1<= m ; k1 ++) { 
           Tvard[k1][2]=atoi(stre);      for (cpt=1; cpt<= nlstate ; cpt ++) {
           Tvar[cptcovn+k2]=Tvard[k1][1];        k=2+nlstate*(2*cpt-2);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           for (k=1; k<=lastobs;k++)        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           k1++;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           k2=k2+2;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
       }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       else {          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          
        /*  scanf("%d",i);*/        */
       cutv(strd,strc,strb,'V');        for (i=1; i< nlstate ; i ++) {
       Tvar[i]=atoi(strc);          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
       }          
       strcpy(modelsav,stra);          } 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      }
         scanf("%d",i);*/    }
     }    
 }    /* CV preval stable (period) */
      for (k1=1; k1<= m ; k1 ++) { 
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      for (cpt=1; cpt<=nlstate ; cpt ++) {
   printf("cptcovprod=%d ", cptcovprod);        k=3;
   scanf("%d ",i);*/        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     fclose(fic);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
     /*  if(mle==1){*/        for (i=1; i<= nlstate ; i ++)
     if (weightopt != 1) { /* Maximisation without weights*/          fprintf(ficgp,"+$%d",k+i+1);
       for(i=1;i<=n;i++) weight[i]=1.0;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     }        
     /*-calculation of age at interview from date of interview and age at death -*/        l=3+(nlstate+ndeath)*cpt;
     agev=matrix(1,maxwav,1,imx);        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
     for (i=1; i<=imx; i++) {          l=3+(nlstate+ndeath)*cpt;
       for(m=2; (m<= maxwav); m++) {          fprintf(ficgp,"+$%d",l+i+1);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        }
          anint[m][i]=9999;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
          s[m][i]=-1;      } 
        }    }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    
       }    /* proba elementaires */
     }    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
     for (i=1; i<=imx; i++)  {        if (k != i) {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for(j=1; j <=ncovmodel; j++){
       for(m=1; (m<= maxwav); m++){            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         if(s[m][i] >0){            jk++; 
           if (s[m][i] >= nlstate+1) {            fprintf(ficgp,"\n");
             if(agedc[i]>0)          }
               if(moisdc[i]!=99 && andc[i]!=9999)        }
                 agev[m][i]=agedc[i];      }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/     }
            else {  
               if (andc[i]!=9999){     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
               printf("Warning negative age at death: %d line:%d\n",num[i],i);       for(jk=1; jk <=m; jk++) {
               agev[m][i]=-1;         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
               }         if (ng==2)
             }           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           }         else
           else if(s[m][i] !=9){ /* Should no more exist */           fprintf(ficgp,"\nset title \"Probability\"\n");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
             if(mint[m][i]==99 || anint[m][i]==9999)         i=1;
               agev[m][i]=1;         for(k2=1; k2<=nlstate; k2++) {
             else if(agev[m][i] <agemin){           k3=i;
               agemin=agev[m][i];           for(k=1; k<=(nlstate+ndeath); k++) {
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/             if (k != k2){
             }               if(ng==2)
             else if(agev[m][i] >agemax){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
               agemax=agev[m][i];               else
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
             }               ij=1;
             /*agev[m][i]=anint[m][i]-annais[i];*/               for(j=3; j <=ncovmodel; j++) {
             /*   agev[m][i] = age[i]+2*m;*/                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           else { /* =9 */                   ij++;
             agev[m][i]=1;                 }
             s[m][i]=-1;                 else
           }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         }               }
         else /*= 0 Unknown */               fprintf(ficgp,")/(1");
           agev[m][i]=1;               
       }               for(k1=1; k1 <=nlstate; k1++){   
                     fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     }                 ij=1;
     for (i=1; i<=imx; i++)  {                 for(j=3; j <=ncovmodel; j++){
       for(m=1; (m<= maxwav); m++){                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         if (s[m][i] > (nlstate+ndeath)) {                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           printf("Error: Wrong value in nlstate or ndeath\n");                       ij++;
           goto end;                   }
         }                   else
       }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     }                 }
                  fprintf(ficgp,")");
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);               }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     free_vector(severity,1,maxwav);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     free_imatrix(outcome,1,maxwav+1,1,n);               i=i+ncovmodel;
     free_vector(moisnais,1,n);             }
     free_vector(annais,1,n);           } /* end k */
     /* free_matrix(mint,1,maxwav,1,n);         } /* end k2 */
        free_matrix(anint,1,maxwav,1,n);*/       } /* end jk */
     free_vector(moisdc,1,n);     } /* end ng */
     free_vector(andc,1,n);     fclose(ficgp); 
   }  /* end gnuplot */
      
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  /*************** Moving average **************/
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
      
     /* Concatenates waves */    int i, cpt, cptcod;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    int modcovmax =1;
     int mobilavrange, mob;
     double age;
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
       ncodemax[1]=1;                             a covariate has 2 modalities */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
        
    codtab=imatrix(1,100,1,10);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
    h=0;      if(mobilav==1) mobilavrange=5; /* default */
    m=pow(2,cptcoveff);      else mobilavrange=mobilav;
        for (age=bage; age<=fage; age++)
    for(k=1;k<=cptcoveff; k++){        for (i=1; i<=nlstate;i++)
      for(i=1; i <=(m/pow(2,k));i++){          for (cptcod=1;cptcod<=modcovmax;cptcod++)
        for(j=1; j <= ncodemax[k]; j++){            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      /* We keep the original values on the extreme ages bage, fage and for 
            h++;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;         we use a 5 terms etc. until the borders are no more concerned. 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      */ 
          }      for (mob=3;mob <=mobilavrange;mob=mob+2){
        }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
      }          for (i=1; i<=nlstate;i++){
    }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       codtab[1][2]=1;codtab[2][2]=2; */                for (cpt=1;cpt<=(mob-1)/2;cpt++){
    /* for(i=1; i <=m ;i++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
       for(k=1; k <=cptcovn; k++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                }
       }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       printf("\n");            }
       }          }
       scanf("%d",i);*/        }/* end age */
          }/* end mob */
    /* Calculates basic frequencies. Computes observed prevalence at single age    }else return -1;
        and prints on file fileres'p'. */    return 0;
   }/* End movingaverage */
      
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /************** Forecasting ******************/
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* proj1, year, month, day of starting projection 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       agemin, agemax range of age
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       dateprev1 dateprev2 range of dates during which prevalence is computed
             anproj2 year of en of projection (same day and month as proj1).
     /* For Powell, parameters are in a vector p[] starting at p[1]    */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    int *popage;
     double agec; /* generic age */
     if(mle==1){    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double *popeffectif,*popcount;
     }    double ***p3mat;
        double ***mobaverage;
     /*--------- results files --------------*/    char fileresf[FILENAMELENGTH];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
      agelim=AGESUP;
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    jk=1;   
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    strcpy(fileresf,"f"); 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    strcat(fileresf,fileres);
    for(i=1,jk=1; i <=nlstate; i++){    if((ficresf=fopen(fileresf,"w"))==NULL) {
      for(k=1; k <=(nlstate+ndeath); k++){      printf("Problem with forecast resultfile: %s\n", fileresf);
        if (k != i)      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
          {    }
            printf("%d%d ",i,k);    printf("Computing forecasting: result on file '%s' \n", fileresf);
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
              fprintf(ficres,"%f ",p[jk]);  
              jk++;    if (mobilav!=0) {
            }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            printf("\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
            fprintf(ficres,"\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
      }      }
    }    }
  if(mle==1){  
     /* Computing hessian and covariance matrix */    stepsize=(int) (stepm+YEARM-1)/YEARM;
     ftolhess=ftol; /* Usually correct */    if (stepm<=12) stepsize=1;
     hesscov(matcov, p, npar, delti, ftolhess, func);    if(estepm < stepm){
  }      printf ("Problem %d lower than %d\n",estepm, stepm);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    }
     printf("# Scales (for hessian or gradient estimation)\n");    else  hstepm=estepm;   
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){    hstepm=hstepm/stepm; 
         if (j!=i) {    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
           fprintf(ficres,"%1d%1d",i,j);                                 fractional in yp1 */
           printf("%1d%1d",i,j);    anprojmean=yp;
           for(k=1; k<=ncovmodel;k++){    yp2=modf((yp1*12),&yp);
             printf(" %.5e",delti[jk]);    mprojmean=yp;
             fprintf(ficres," %.5e",delti[jk]);    yp1=modf((yp2*30.5),&yp);
             jk++;    jprojmean=yp;
           }    if(jprojmean==0) jprojmean=1;
           printf("\n");    if(mprojmean==0) jprojmean=1;
           fprintf(ficres,"\n");  
         }    i1=cptcoveff;
       }    if (cptcovn < 1){i1=1;}
      }    
        fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     k=1;    
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     for(i=1;i<=npar;i++){  /*            if (h==(int)(YEARM*yearp)){ */
       /*  if (k>nlstate) k=1;    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       i1=(i-1)/(ncovmodel*nlstate)+1;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        k=k+1;
       printf("%s%d%d",alph[k],i1,tab[i]);*/        fprintf(ficresf,"\n#******");
       fprintf(ficres,"%3d",i);        for(j=1;j<=cptcoveff;j++) {
       printf("%3d",i);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       for(j=1; j<=i;j++){        }
         fprintf(ficres," %.5e",matcov[i][j]);        fprintf(ficresf,"******\n");
         printf(" %.5e",matcov[i][j]);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
       }        for(j=1; j<=nlstate+ndeath;j++){ 
       fprintf(ficres,"\n");          for(i=1; i<=nlstate;i++)              
       printf("\n");            fprintf(ficresf," p%d%d",i,j);
       k++;          fprintf(ficresf," p.%d",j);
     }        }
            for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
     while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresf,"\n");
       ungetc(c,ficpar);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
       fgets(line, MAXLINE, ficpar);  
       puts(line);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
       fputs(line,ficparo);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
     }            nhstepm = nhstepm/hstepm; 
     ungetc(c,ficpar);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     estepm=0;            oldm=oldms;savm=savms;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     if (estepm==0 || estepm < stepm) estepm=stepm;          
     if (fage <= 2) {            for (h=0; h<=nhstepm; h++){
       bage = ageminpar;              if (h*hstepm/YEARM*stepm ==yearp) {
       fage = agemaxpar;                fprintf(ficresf,"\n");
     }                for(j=1;j<=cptcoveff;j++) 
                      fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              } 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              for(j=1; j<=nlstate+ndeath;j++) {
                  ppij=0.;
     while((c=getc(ficpar))=='#' && c!= EOF){                for(i=1; i<=nlstate;i++) {
     ungetc(c,ficpar);                  if (mobilav==1) 
     fgets(line, MAXLINE, ficpar);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     puts(line);                  else {
     fputs(line,ficparo);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   }                  }
   ungetc(c,ficpar);                  if (h*hstepm/YEARM*stepm== yearp) {
                      fprintf(ficresf," %.3f", p3mat[i][j][h]);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                  }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                } /* end i */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                if (h*hstepm/YEARM*stepm==yearp) {
                        fprintf(ficresf," %.3f", ppij);
   while((c=getc(ficpar))=='#' && c!= EOF){                }
     ungetc(c,ficpar);              }/* end j */
     fgets(line, MAXLINE, ficpar);            } /* end h */
     puts(line);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);          } /* end agec */
   }        } /* end yearp */
   ungetc(c,ficpar);      } /* end cptcod */
      } /* end  cptcov */
          
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
     fclose(ficresf);
   fscanf(ficpar,"pop_based=%d\n",&popbased);  }
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);    /************** Forecasting *****not tested NB*************/
    populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     fgets(line, MAXLINE, ficpar);    int *popage;
     puts(line);    double calagedatem, agelim, kk1, kk2;
     fputs(line,ficparo);    double *popeffectif,*popcount;
   }    double ***p3mat,***tabpop,***tabpopprev;
   ungetc(c,ficpar);    double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     fgets(line, MAXLINE, ficpar);    
     puts(line);    
     fputs(line,ficparo);    strcpy(filerespop,"pop"); 
   }    strcat(filerespop,fileres);
   ungetc(c,ficpar);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
 /*------------ gnuplot -------------*/  
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*------------ free_vector  -------------*/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
  chdir(path);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
          printf(" Error in movingaverage mobilav=%d\n",mobilav);
  free_ivector(wav,1,imx);      }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);    stepsize=(int) (stepm+YEARM-1)/YEARM;
  free_vector(agedc,1,n);    if (stepm<=12) stepsize=1;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    
  fclose(ficparo);    agelim=AGESUP;
  fclose(ficres);    
     hstepm=1;
 /*--------- index.htm --------*/    hstepm=hstepm/stepm; 
     
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
          printf("Problem with population file : %s\n",popfile);exit(0);
   /*--------------- Prevalence limit --------------*/        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
        } 
   strcpy(filerespl,"pl");      popage=ivector(0,AGESUP);
   strcat(filerespl,fileres);      popeffectif=vector(0,AGESUP);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      popcount=vector(0,AGESUP);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      
   }      i=1;   
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   fprintf(ficrespl,"#Prevalence limit\n");     
   fprintf(ficrespl,"#Age ");      imx=i;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   fprintf(ficrespl,"\n");    }
    
   prlim=matrix(1,nlstate,1,nlstate);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        k=k+1;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficrespop,"\n#******");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1;j<=cptcoveff;j++) {
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   k=0;        }
   agebase=ageminpar;        fprintf(ficrespop,"******\n");
   agelim=agemaxpar;        fprintf(ficrespop,"# Age");
   ftolpl=1.e-10;        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   i1=cptcoveff;        if (popforecast==1)  fprintf(ficrespop," [Population]");
   if (cptcovn < 1){i1=1;}        
         for (cpt=0; cpt<=0;cpt++) { 
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          
         k=k+1;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
         fprintf(ficrespl,"\n#******");            nhstepm = nhstepm/hstepm; 
         for(j=1;j<=cptcoveff;j++)            
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespl,"******\n");            oldm=oldms;savm=savms;
                    hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         for (age=agebase; age<=agelim; age++){          
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            for (h=0; h<=nhstepm; h++){
           fprintf(ficrespl,"%.0f",age );              if (h==(int) (calagedatem+YEARM*cpt)) {
           for(i=1; i<=nlstate;i++)                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           fprintf(ficrespl," %.5f", prlim[i][i]);              } 
           fprintf(ficrespl,"\n");              for(j=1; j<=nlstate+ndeath;j++) {
         }                kk1=0.;kk2=0;
       }                for(i=1; i<=nlstate;i++) {              
     }                  if (mobilav==1) 
   fclose(ficrespl);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
   /*------------- h Pij x at various ages ------------*/                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                    }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                if (h==(int)(calagedatem+12*cpt)){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   }                    /*fprintf(ficrespop," %.3f", kk1);
   printf("Computing pij: result on file '%s' \n", filerespij);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                  }
   stepsize=(int) (stepm+YEARM-1)/YEARM;              }
   /*if (stepm<=24) stepsize=2;*/              for(i=1; i<=nlstate;i++){
                 kk1=0.;
   agelim=AGESUP;                  for(j=1; j<=nlstate;j++){
   hstepm=stepsize*YEARM; /* Every year of age */                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                  }
                      tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   k=0;              }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
       k=k+1;                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
         fprintf(ficrespij,"\n#****** ");            }
         for(j=1;j<=cptcoveff;j++)            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
         fprintf(ficrespij,"******\n");        }
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    /******/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           oldm=oldms;savm=savms;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
           fprintf(ficrespij,"# Age");            nhstepm = nhstepm/hstepm; 
           for(i=1; i<=nlstate;i++)            
             for(j=1; j<=nlstate+ndeath;j++)            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               fprintf(ficrespij," %1d-%1d",i,j);            oldm=oldms;savm=savms;
           fprintf(ficrespij,"\n");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
            for (h=0; h<=nhstepm; h++){            for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );              if (h==(int) (calagedatem+YEARM*cpt)) {
             for(i=1; i<=nlstate;i++)                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               for(j=1; j<=nlstate+ndeath;j++)              } 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              for(j=1; j<=nlstate+ndeath;j++) {
             fprintf(ficrespij,"\n");                kk1=0.;kk2=0;
              }                for(i=1; i<=nlstate;i++) {              
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
           fprintf(ficrespij,"\n");                }
         }                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     }              }
   }            }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          }
         }
   fclose(ficrespij);     } 
     }
    
   /*---------- Forecasting ------------------*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    if (popforecast==1) {
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      free_ivector(popage,0,AGESUP);
   }      free_vector(popeffectif,0,AGESUP);
   else{      free_vector(popcount,0,AGESUP);
     erreur=108;    }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fclose(ficrespop);
   }
   /*---------- Health expectancies and variances ------------*/  
   /***********************************************/
   strcpy(filerest,"t");  /**************** Main Program *****************/
   strcat(filerest,fileres);  /***********************************************/
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  int main(int argc, char *argv[])
   }  {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     double agedeb, agefin,hf;
   strcpy(filerese,"e");    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {    double fret;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double **xi,tmp,delta;
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double dum; /* Dummy variable */
     double ***p3mat;
  strcpy(fileresv,"v");    double ***mobaverage;
   strcat(fileresv,fileres);    int *indx;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    char line[MAXLINE], linepar[MAXLINE];
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
   }    int firstobs=1, lastobs=10;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    int sdeb, sfin; /* Status at beginning and end */
   calagedate=-1;    int c,  h , cpt,l;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   k=0;    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
   for(cptcov=1;cptcov<=i1;cptcov++){    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int mobilav=0,popforecast=0;
       k=k+1;    int hstepm, nhstepm;
       fprintf(ficrest,"\n#****** ");    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
       for(j=1;j<=cptcoveff;j++)    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
       fprintf(ficreseij,"\n#****** ");    double **prlim;
       for(j=1;j<=cptcoveff;j++)    double *severity;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***param; /* Matrix of parameters */
       fprintf(ficreseij,"******\n");    double  *p;
     double **matcov; /* Matrix of covariance */
       fprintf(ficresvij,"\n#****** ");    double ***delti3; /* Scale */
       for(j=1;j<=cptcoveff;j++)    double *delti; /* Scale */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***eij, ***vareij;
       fprintf(ficresvij,"******\n");    double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double kk1, kk2;
       oldm=oldms;savm=savms;    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
      char *alph[]={"a","a","b","c","d","e"}, str[4];
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    char z[1]="c", occ;
      #include <sys/time.h>
   #include <time.h>
      char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /* long total_usecs;
       fprintf(ficrest,"\n");       struct timeval start_time, end_time;
     
       epj=vector(1,nlstate+1);       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       for(age=bage; age <=fage ;age++){    getcwd(pathcd, size);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {    printf("\n%s\n%s",version,fullversion);
           for(i=1; i<=nlstate;i++)    if(argc <=1){
             prlim[i][i]=probs[(int)age][i][k];      printf("\nEnter the parameter file name: ");
         }      scanf("%s",pathtot);
            }
         fprintf(ficrest," %4.0f",age);    else{
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      strcpy(pathtot,argv[1]);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    /*cygwin_split_path(pathtot,path,optionfile);
           }      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
           epj[nlstate+1] +=epj[j];    /* cutv(path,optionfile,pathtot,'\\');*/
         }  
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
         for(i=1, vepp=0.;i <=nlstate;i++)    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
           for(j=1;j <=nlstate;j++)    chdir(path);
             vepp += vareij[i][j][(int)age];    replace(pathc,path);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){    /*-------- arguments in the command line --------*/
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }    /* Log file */
         fprintf(ficrest,"\n");    strcat(filelog, optionfilefiname);
       }    strcat(filelog,".log");    /* */
     }    if((ficlog=fopen(filelog,"w"))==NULL)    {
   }      printf("Problem with logfile %s\n",filelog);
 free_matrix(mint,1,maxwav,1,n);      goto end;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    }
     free_vector(weight,1,n);    fprintf(ficlog,"Log filename:%s\n",filelog);
   fclose(ficreseij);    fprintf(ficlog,"\n%s",version);
   fclose(ficresvij);    fprintf(ficlog,"\nEnter the parameter file name: ");
   fclose(ficrest);    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   fclose(ficpar);    fflush(ficlog);
   free_vector(epj,1,nlstate+1);  
      /* */
   /*------- Variance limit prevalence------*/      strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
   strcpy(fileresvpl,"vpl");    strcat(fileres,".txt");    /* Other files have txt extension */
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    /*---------arguments file --------*/
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   }      printf("Problem with optionfile %s\n",optionfile);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    strcpy(filereso,"o");
       k=k+1;    strcat(filereso,fileres);
       fprintf(ficresvpl,"\n#****** ");    if((ficparo=fopen(filereso,"w"))==NULL) {
       for(j=1;j<=cptcoveff;j++)      printf("Problem with Output resultfile: %s\n", filereso);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fprintf(ficresvpl,"******\n");      goto end;
          }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    /* Reads comments: lines beginning with '#' */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    while((c=getc(ficpar))=='#' && c!= EOF){
     }      ungetc(c,ficpar);
  }      fgets(line, MAXLINE, ficpar);
       puts(line);
   fclose(ficresvpl);      fputs(line,ficparo);
     }
   /*---------- End : free ----------------*/    ungetc(c,ficpar);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
      fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
      while((c=getc(ficpar))=='#' && c!= EOF){
        ungetc(c,ficpar);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      fgets(line, MAXLINE, ficpar);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      puts(line);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      fputs(line,ficparo);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
      ungetc(c,ficpar);
   free_matrix(matcov,1,npar,1,npar);    
   free_vector(delti,1,npar);     
   free_matrix(agev,1,maxwav,1,imx);    covar=matrix(0,NCOVMAX,1,n); 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
   else   printf("End of Imach\n");    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    
      /* Read guess parameters */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    /* Reads comments: lines beginning with '#' */
   /*printf("Total time was %d uSec.\n", total_usecs);*/    while((c=getc(ficpar))=='#' && c!= EOF){
   /*------ End -----------*/      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
  end:      fputs(line,ficparo);
   /* chdir(pathcd);*/    }
  /*system("wgnuplot graph.plt");*/    ungetc(c,ficpar);
  /*system("../gp37mgw/wgnuplot graph.plt");*/    
  /*system("cd ../gp37mgw");*/    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    for(i=1; i <=nlstate; i++)
  strcpy(plotcmd,GNUPLOTPROGRAM);      for(j=1; j <=nlstate+ndeath-1; j++){
  strcat(plotcmd," ");        fscanf(ficpar,"%1d%1d",&i1,&j1);
  strcat(plotcmd,optionfilegnuplot);        fprintf(ficparo,"%1d%1d",i1,j1);
  system(plotcmd);        if(mle==1)
           printf("%1d%1d",i,j);
  /*#ifdef windows*/        fprintf(ficlog,"%1d%1d",i,j);
   while (z[0] != 'q') {        for(k=1; k<=ncovmodel;k++){
     /* chdir(path); */          fscanf(ficpar," %lf",&param[i][j][k]);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          if(mle==1){
     scanf("%s",z);            printf(" %lf",param[i][j][k]);
     if (z[0] == 'c') system("./imach");            fprintf(ficlog," %lf",param[i][j][k]);
     else if (z[0] == 'e') system(optionfilehtm);          }
     else if (z[0] == 'g') system(plotcmd);          else
     else if (z[0] == 'q') exit(0);            fprintf(ficlog," %lf",param[i][j][k]);
   }          fprintf(ficparo," %lf",param[i][j][k]);
   /*#endif */        }
 }        fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1;
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.82


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>