Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.135

version 1.41.2.2, 2003/06/13 07:45:28 version 1.135, 2009/10/29 15:33:14
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.135  2009/10/29 15:33:14  brouard
      (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.134  2009/10/29 13:18:53  brouard
   first survey ("cross") where individuals from different ages are    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.133  2009/07/06 10:21:25  brouard
   second wave of interviews ("longitudinal") which measure each change    just nforces
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.132  2009/07/06 08:22:05  brouard
   model. More health states you consider, more time is necessary to reach the    Many tings
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.131  2009/06/20 16:22:47  brouard
   probability to be observed in state j at the second wave    Some dimensions resccaled
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.130  2009/05/26 06:44:34  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Max Covariate is now set to 20 instead of 8. A
   complex model than "constant and age", you should modify the program    lot of cleaning with variables initialized to 0. Trying to make
   where the markup *Covariates have to be included here again* invites    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.128  2006/06/30 13:02:05  brouard
   identical for each individual. Also, if a individual missed an    (Module): Clarifications on computing e.j
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
   hPijx is the probability to be observed in state i at age x+h    imach-114 because nhstepm was no more computed in the age
   conditional to the observed state i at age x. The delay 'h' can be    loop. Now we define nhstepma in the age loop.
   split into an exact number (nh*stepm) of unobserved intermediate    (Module): In order to speed up (in case of numerous covariates) we
   states. This elementary transition (by month or quarter trimester,    compute health expectancies (without variances) in a first step
   semester or year) is model as a multinomial logistic.  The hPx    and then all the health expectancies with variances or standard
   matrix is simply the matrix product of nh*stepm elementary matrices    deviation (needs data from the Hessian matrices) which slows the
   and the contribution of each individual to the likelihood is simply    computation.
   hPijx.    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.126  2006/04/28 17:23:28  brouard
      (Module): Yes the sum of survivors was wrong since
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    imach-114 because nhstepm was no more computed in the age
            Institut national d'études démographiques, Paris.    loop. Now we define nhstepma in the age loop.
   This software have been partly granted by Euro-REVES, a concerted action    Version 0.98h
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.125  2006/04/04 15:20:31  lievre
   software can be distributed freely for non commercial use. Latest version    Errors in calculation of health expectancies. Age was not initialized.
   can be accessed at http://euroreves.ined.fr/imach .    Forecasting file added.
   **********************************************************************/  
      Revision 1.124  2006/03/22 17:13:53  lievre
 #include <math.h>    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #include <stdio.h>    The log-likelihood is printed in the log file
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 #define MAXLINE 256    name. <head> headers where missing.
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    * imach.c (Module): Weights can have a decimal point as for
 #define FILENAMELENGTH 80    English (a comma might work with a correct LC_NUMERIC environment,
 /*#define DEBUG*/    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 /*#define windows*/    1.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Version 0.98g
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.122  2006/03/20 09:45:41  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Weights can have a decimal point as for
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 #define NINTERVMAX 8    Modification of warning when the covariates values are not 0 or
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    1.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Version 0.98g
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.121  2006/03/16 17:45:01  lievre
 #define YEARM 12. /* Number of months per year */    * imach.c (Module): Comments concerning covariates added
 #define AGESUP 130  
 #define AGEBASE 40    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 int erreur; /* Error number */  
 int nvar;    Revision 1.120  2006/03/16 15:10:38  lievre
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): refinements in the computation of lli if
 int npar=NPARMAX;    status=-2 in order to have more reliable computation if stepm is
 int nlstate=2; /* Number of live states */    not 1 month. Version 0.98f
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.119  2006/03/15 17:42:26  brouard
 int popbased=0;    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.118  2006/03/14 18:20:07  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): varevsij Comments added explaining the second
 int mle, weightopt;    table of variances if popbased=1 .
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Function pstamp added
 double jmean; /* Mean space between 2 waves */    (Module): Version 0.98d
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.117  2006/03/14 17:16:22  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): varevsij Comments added explaining the second
 FILE *ficgp,*ficresprob,*ficpop;    table of variances if popbased=1 .
 FILE *ficreseij;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   char filerese[FILENAMELENGTH];    (Module): Function pstamp added
  FILE  *ficresvij;    (Module): Version 0.98d
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.116  2006/03/06 10:29:27  brouard
   char fileresvpl[FILENAMELENGTH];    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.115  2006/02/27 12:17:45  brouard
 #define FTOL 1.0e-10    (Module): One freematrix added in mlikeli! 0.98c
   
 #define NRANSI    Revision 1.114  2006/02/26 12:57:58  brouard
 #define ITMAX 200    (Module): Some improvements in processing parameter
     filename with strsep.
 #define TOL 2.0e-4  
     Revision 1.113  2006/02/24 14:20:24  brouard
 #define CGOLD 0.3819660    (Module): Memory leaks checks with valgrind and:
 #define ZEPS 1.0e-10    datafile was not closed, some imatrix were not freed and on matrix
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    allocation too.
   
 #define GOLD 1.618034    Revision 1.112  2006/01/30 09:55:26  brouard
 #define GLIMIT 100.0    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define TINY 1.0e-20  
     Revision 1.111  2006/01/25 20:38:18  brouard
 static double maxarg1,maxarg2;    (Module): Lots of cleaning and bugs added (Gompertz)
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Comments can be added in data file. Missing date values
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    can be a simple dot '.'.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.110  2006/01/25 00:51:50  brouard
 #define rint(a) floor(a+0.5)    (Module): Lots of cleaning and bugs added (Gompertz)
   
 static double sqrarg;    Revision 1.109  2006/01/24 19:37:15  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Comments (lines starting with a #) are allowed in data.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.108  2006/01/19 18:05:42  lievre
 int imx;    Gnuplot problem appeared...
 int stepm;    To be fixed
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.107  2006/01/19 16:20:37  brouard
 int estepm;    Test existence of gnuplot in imach path
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.106  2006/01/19 13:24:36  brouard
 int m,nb;    Some cleaning and links added in html output
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.105  2006/01/05 20:23:19  lievre
 double **pmmij, ***probs, ***mobaverage;    *** empty log message ***
 double dateintmean=0;  
     Revision 1.104  2005/09/30 16:11:43  lievre
 double *weight;    (Module): sump fixed, loop imx fixed, and simplifications.
 int **s; /* Status */    (Module): If the status is missing at the last wave but we know
 double *agedc, **covar, idx;    that the person is alive, then we can code his/her status as -2
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 double ftolhess; /* Tolerance for computing hessian */    the healthy state at last known wave). Version is 0.98
   
 /**************** split *************************/    Revision 1.103  2005/09/30 15:54:49  lievre
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): sump fixed, loop imx fixed, and simplifications.
 {  
    char *s;                             /* pointer */    Revision 1.102  2004/09/15 17:31:30  brouard
    int  l1, l2;                         /* length counters */    Add the possibility to read data file including tab characters.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.101  2004/09/15 10:38:38  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Fix on curr_time
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.100  2004/07/12 18:29:06  brouard
 #else    Add version for Mac OS X. Just define UNIX in Makefile
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.99  2004/06/05 08:57:40  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    *** empty log message ***
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
       if ( getwd( dirc ) == NULL ) {    directly from the data i.e. without the need of knowing the health
 #else    state at each age, but using a Gompertz model: log u =a + b*age .
       extern char       *getcwd( );    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    cross-longitudinal survey is different from the mortality estimated
 #endif    from other sources like vital statistic data.
          return( GLOCK_ERROR_GETCWD );  
       }    The same imach parameter file can be used but the option for mle should be -3.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Agnès, who wrote this part of the code, tried to keep most of the
       s++;                              /* after this, the filename */    former routines in order to include the new code within the former code.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    The output is very simple: only an estimate of the intercept and of
       strcpy( name, s );                /* save file name */    the slope with 95% confident intervals.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Current limitations:
    }    A) Even if you enter covariates, i.e. with the
    l1 = strlen( dirc );                 /* length of directory */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #ifdef windows    B) There is no computation of Life Expectancy nor Life Table.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.97  2004/02/20 13:25:42  lievre
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Version 0.96d. Population forecasting command line is (temporarily)
 #endif    suppressed.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.96  2003/07/15 15:38:55  brouard
    strcpy(ext,s);                       /* save extension */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
    l1= strlen( name);    rewritten within the same printf. Workaround: many printfs.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.95  2003/07/08 07:54:34  brouard
    finame[l1-l2]= 0;    * imach.c (Repository):
    return( 0 );                         /* we're done */    (Repository): Using imachwizard code to output a more meaningful covariance
 }    matrix (cov(a12,c31) instead of numbers.
   
     Revision 1.94  2003/06/27 13:00:02  brouard
 /******************************************/    Just cleaning
   
 void replace(char *s, char*t)    Revision 1.93  2003/06/25 16:33:55  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   int i;    exist so I changed back to asctime which exists.
   int lg=20;    (Module): Version 0.96b
   i=0;  
   lg=strlen(t);    Revision 1.92  2003/06/25 16:30:45  brouard
   for(i=0; i<= lg; i++) {    (Module): On windows (cygwin) function asctime_r doesn't
     (s[i] = t[i]);    exist so I changed back to asctime which exists.
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.91  2003/06/25 15:30:29  brouard
 }    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 int nbocc(char *s, char occ)    helps to forecast when convergence will be reached. Elapsed time
 {    is stamped in powell.  We created a new html file for the graphs
   int i,j=0;    concerning matrix of covariance. It has extension -cov.htm.
   int lg=20;  
   i=0;    Revision 1.90  2003/06/24 12:34:15  brouard
   lg=strlen(s);    (Module): Some bugs corrected for windows. Also, when
   for(i=0; i<= lg; i++) {    mle=-1 a template is output in file "or"mypar.txt with the design
   if  (s[i] == occ ) j++;    of the covariance matrix to be input.
   }  
   return j;    Revision 1.89  2003/06/24 12:30:52  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 void cutv(char *u,char *v, char*t, char occ)    of the covariance matrix to be input.
 {  
   int i,lg,j,p=0;    Revision 1.88  2003/06/23 17:54:56  brouard
   i=0;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.87  2003/06/18 12:26:01  brouard
   }    Version 0.96
   
   lg=strlen(t);    Revision 1.86  2003/06/17 20:04:08  brouard
   for(j=0; j<p; j++) {    (Module): Change position of html and gnuplot routines and added
     (u[j] = t[j]);    routine fileappend.
   }  
      u[p]='\0';    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
    for(j=0; j<= lg; j++) {    current date of interview. It may happen when the death was just
     if (j>=(p+1))(v[j-p-1] = t[j]);    prior to the death. In this case, dh was negative and likelihood
   }    was wrong (infinity). We still send an "Error" but patch by
 }    assuming that the date of death was just one stepm after the
     interview.
 /********************** nrerror ********************/    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 void nrerror(char error_text[])    memory allocation. But we also truncated to 8 characters (left
 {    truncation)
   fprintf(stderr,"ERREUR ...\n");    (Repository): No more line truncation errors.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.84  2003/06/13 21:44:43  brouard
 }    * imach.c (Repository): Replace "freqsummary" at a correct
 /*********************** vector *******************/    place. It differs from routine "prevalence" which may be called
 double *vector(int nl, int nh)    many times. Probs is memory consuming and must be used with
 {    parcimony.
   double *v;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.83  2003/06/10 13:39:11  lievre
   return v-nl+NR_END;    *** empty log message ***
 }  
     Revision 1.82  2003/06/05 15:57:20  brouard
 /************************ free vector ******************/    Add log in  imach.c and  fullversion number is now printed.
 void free_vector(double*v, int nl, int nh)  
 {  */
   free((FREE_ARG)(v+nl-NR_END));  /*
 }     Interpolated Markov Chain
   
 /************************ivector *******************************/    Short summary of the programme:
 int *ivector(long nl,long nh)    
 {    This program computes Healthy Life Expectancies from
   int *v;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    first survey ("cross") where individuals from different ages are
   if (!v) nrerror("allocation failure in ivector");    interviewed on their health status or degree of disability (in the
   return v-nl+NR_END;    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /******************free ivector **************************/    computed from the time spent in each health state according to a
 void free_ivector(int *v, long nl, long nh)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   free((FREE_ARG)(v+nl-NR_END));    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /******************* imatrix *******************************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int **imatrix(long nrl, long nrh, long ncl, long nch)    'age' is age and 'sex' is a covariate. If you want to have a more
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    you to do it.  More covariates you add, slower the
   int **m;    convergence.
    
   /* allocate pointers to rows */    The advantage of this computer programme, compared to a simple
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    multinomial logistic model, is clear when the delay between waves is not
   if (!m) nrerror("allocation failure 1 in matrix()");    identical for each individual. Also, if a individual missed an
   m += NR_END;    intermediate interview, the information is lost, but taken into
   m -= nrl;    account using an interpolation or extrapolation.  
    
      hPijx is the probability to be observed in state i at age x+h
   /* allocate rows and set pointers to them */    conditional to the observed state i at age x. The delay 'h' can be
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    split into an exact number (nh*stepm) of unobserved intermediate
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    states. This elementary transition (by month, quarter,
   m[nrl] += NR_END;    semester or year) is modelled as a multinomial logistic.  The hPx
   m[nrl] -= ncl;    matrix is simply the matrix product of nh*stepm elementary matrices
      and the contribution of each individual to the likelihood is simply
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    hPijx.
    
   /* return pointer to array of pointers to rows */    Also this programme outputs the covariance matrix of the parameters but also
   return m;    of the life expectancies. It also computes the period (stable) prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /****************** free_imatrix *************************/             Institut national d'études démographiques, Paris.
 void free_imatrix(m,nrl,nrh,ncl,nch)    This software have been partly granted by Euro-REVES, a concerted action
       int **m;    from the European Union.
       long nch,ncl,nrh,nrl;    It is copyrighted identically to a GNU software product, ie programme and
      /* free an int matrix allocated by imatrix() */    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 /******************* matrix *******************************/    **********************************************************************/
 double **matrix(long nrl, long nrh, long ncl, long nch)  /*
 {    main
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    read parameterfile
   double **m;    read datafile
     concatwav
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    freqsummary
   if (!m) nrerror("allocation failure 1 in matrix()");    if (mle >= 1)
   m += NR_END;      mlikeli
   m -= nrl;    print results files
     if mle==1 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));       computes hessian
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    read end of parameter file: agemin, agemax, bage, fage, estepm
   m[nrl] += NR_END;        begin-prev-date,...
   m[nrl] -= ncl;    open gnuplot file
     open html file
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    period (stable) prevalence
   return m;     for age prevalim()
 }    h Pij x
     variance of p varprob
 /*************************free matrix ************************/    forecasting if prevfcast==1 prevforecast call prevalence()
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    health expectancies
 {    Variance-covariance of DFLE
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    prevalence()
   free((FREE_ARG)(m+nrl-NR_END));     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 /******************* ma3x *******************************/    total life expectancies
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Variance of period (stable) prevalence
 {   end
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  */
   double ***m;  
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");   
   m += NR_END;  #include <math.h>
   m -= nrl;  #include <stdio.h>
   #include <stdlib.h>
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include <string.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include <unistd.h>
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #include <limits.h>
   #include <sys/types.h>
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #include <sys/stat.h>
   #include <errno.h>
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  extern int errno;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /* #include <sys/time.h> */
   m[nrl][ncl] -= nll;  #include <time.h>
   for (j=ncl+1; j<=nch; j++)  #include "timeval.h"
     m[nrl][j]=m[nrl][j-1]+nlay;  
    /* #include <libintl.h> */
   for (i=nrl+1; i<=nrh; i++) {  /* #define _(String) gettext (String) */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #define MAXLINE 256
       m[i][j]=m[i][j-1]+nlay;  
   }  #define GNUPLOTPROGRAM "gnuplot"
   return m;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 }  #define FILENAMELENGTH 132
   
 /*************************free ma3x ************************/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /***************** f1dim *************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 extern int ncom;  #define NCOVMAX 20 /* Maximum number of covariates */
 extern double *pcom,*xicom;  #define MAXN 20000
 extern double (*nrfunc)(double []);  #define YEARM 12. /* Number of months per year */
    #define AGESUP 130
 double f1dim(double x)  #define AGEBASE 40
 {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   int j;  #ifdef UNIX
   double f;  #define DIRSEPARATOR '/'
   double *xt;  #define CHARSEPARATOR "/"
    #define ODIRSEPARATOR '\\'
   xt=vector(1,ncom);  #else
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define DIRSEPARATOR '\\'
   f=(*nrfunc)(xt);  #define CHARSEPARATOR "\\"
   free_vector(xt,1,ncom);  #define ODIRSEPARATOR '/'
   return f;  #endif
 }  
   /* $Id$ */
 /*****************brent *************************/  /* $State$ */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  char version[]="Imach version 0.98l, October 2009, INED-EUROREVES-Institut de longevite ";
   int iter;  char fullversion[]="$Revision$ $Date$"; 
   double a,b,d,etemp;  char strstart[80];
   double fu,fv,fw,fx;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   double ftemp;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int nvar=0, nforce=0; /* Number of variables, number of forces */
   double e=0.0;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
    int npar=NPARMAX;
   a=(ax < cx ? ax : cx);  int nlstate=2; /* Number of live states */
   b=(ax > cx ? ax : cx);  int ndeath=1; /* Number of dead states */
   x=w=v=bx;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   fw=fv=fx=(*f)(x);  int popbased=0;
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  int *wav; /* Number of waves for this individuual 0 is possible */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int maxwav=0; /* Maxim number of waves */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     printf(".");fflush(stdout);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 #ifdef DEBUG  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);                     to the likelihood and the sum of weights (done by funcone)*/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int mle=1, weightopt=0;
 #endif  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       *xmin=x;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       return fx;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     }  double jmean=1; /* Mean space between 2 waves */
     ftemp=fu;  double **oldm, **newm, **savm; /* Working pointers to matrices */
     if (fabs(e) > tol1) {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       r=(x-w)*(fx-fv);  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       q=(x-v)*(fx-fw);  FILE *ficlog, *ficrespow;
       p=(x-v)*q-(x-w)*r;  int globpr=0; /* Global variable for printing or not */
       q=2.0*(q-r);  double fretone; /* Only one call to likelihood */
       if (q > 0.0) p = -p;  long ipmx=0; /* Number of contributions */
       q=fabs(q);  double sw; /* Sum of weights */
       etemp=e;  char filerespow[FILENAMELENGTH];
       e=d;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  FILE *ficresilk;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       else {  FILE *ficresprobmorprev;
         d=p/q;  FILE *fichtm, *fichtmcov; /* Html File */
         u=x+d;  FILE *ficreseij;
         if (u-a < tol2 || b-u < tol2)  char filerese[FILENAMELENGTH];
           d=SIGN(tol1,xm-x);  FILE *ficresstdeij;
       }  char fileresstde[FILENAMELENGTH];
     } else {  FILE *ficrescveij;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char filerescve[FILENAMELENGTH];
     }  FILE  *ficresvij;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char fileresv[FILENAMELENGTH];
     fu=(*f)(u);  FILE  *ficresvpl;
     if (fu <= fx) {  char fileresvpl[FILENAMELENGTH];
       if (u >= x) a=x; else b=x;  char title[MAXLINE];
       SHFT(v,w,x,u)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         SHFT(fv,fw,fx,fu)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
         } else {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
           if (u < x) a=u; else b=u;  char command[FILENAMELENGTH];
           if (fu <= fw || w == x) {  int  outcmd=0;
             v=w;  
             w=u;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
             fv=fw;  
             fw=fu;  char filelog[FILENAMELENGTH]; /* Log file */
           } else if (fu <= fv || v == x || v == w) {  char filerest[FILENAMELENGTH];
             v=u;  char fileregp[FILENAMELENGTH];
             fv=fu;  char popfile[FILENAMELENGTH];
           }  
         }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   }  
   nrerror("Too many iterations in brent");  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   *xmin=x;  struct timezone tzp;
   return fx;  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /****************** mnbrak ***********************/  extern long time();
   char strcurr[80], strfor[80];
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  char *endptr;
 {  long lval;
   double ulim,u,r,q, dum;  double dval;
   double fu;  
    #define NR_END 1
   *fa=(*func)(*ax);  #define FREE_ARG char*
   *fb=(*func)(*bx);  #define FTOL 1.0e-10
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  #define NRANSI 
       SHFT(dum,*fb,*fa,dum)  #define ITMAX 200 
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  #define TOL 2.0e-4 
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  #define CGOLD 0.3819660 
     r=(*bx-*ax)*(*fb-*fc);  #define ZEPS 1.0e-10 
     q=(*bx-*cx)*(*fb-*fa);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define GOLD 1.618034 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define GLIMIT 100.0 
     if ((*bx-u)*(u-*cx) > 0.0) {  #define TINY 1.0e-20 
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  static double maxarg1,maxarg2;
       fu=(*func)(u);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       if (fu < *fc) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    
           SHFT(*fb,*fc,fu,(*func)(u))  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
           }  #define rint(a) floor(a+0.5)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;  static double sqrarg;
       fu=(*func)(u);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     } else {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       u=(*cx)+GOLD*(*cx-*bx);  int agegomp= AGEGOMP;
       fu=(*func)(u);  
     }  int imx; 
     SHFT(*ax,*bx,*cx,u)  int stepm=1;
       SHFT(*fa,*fb,*fc,fu)  /* Stepm, step in month: minimum step interpolation*/
       }  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /*************** linmin ************************/  
   int m,nb;
 int ncom;  long *num;
 double *pcom,*xicom;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 double (*nrfunc)(double []);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    double **pmmij, ***probs;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  double *ageexmed,*agecens;
 {  double dateintmean=0;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  double *weight;
   double f1dim(double x);  int **s; /* Status */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  double *agedc, **covar, idx;
               double *fc, double (*func)(double));  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   int j;  double *lsurv, *lpop, *tpop;
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
    double ftolhess; /* Tolerance for computing hessian */
   ncom=n;  
   pcom=vector(1,n);  /**************** split *************************/
   xicom=vector(1,n);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     pcom[j]=p[j];       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     xicom[j]=xi[j];    */ 
   }    char  *ss;                            /* pointer */
   ax=0.0;    int   l1, l2;                         /* length counters */
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    l1 = strlen(path );                   /* length of path */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 #ifdef DEBUG    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 #endif      strcpy( name, path );               /* we got the fullname name because no directory */
   for (j=1;j<=n;j++) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     xi[j] *= xmin;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     p[j] += xi[j];      /* get current working directory */
   }      /*    extern  char* getcwd ( char *buf , int len);*/
   free_vector(xicom,1,n);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   free_vector(pcom,1,n);        return( GLOCK_ERROR_GETCWD );
 }      }
       /* got dirc from getcwd*/
 /*************** powell ************************/      printf(" DIRC = %s \n",dirc);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    } else {                              /* strip direcotry from path */
             double (*func)(double []))      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   void linmin(double p[], double xi[], int n, double *fret,      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
               double (*func)(double []));      strcpy( name, ss );         /* save file name */
   int i,ibig,j;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double del,t,*pt,*ptt,*xit;      dirc[l1-l2] = 0;                    /* add zero */
   double fp,fptt;      printf(" DIRC2 = %s \n",dirc);
   double *xits;    }
   pt=vector(1,n);    /* We add a separator at the end of dirc if not exists */
   ptt=vector(1,n);    l1 = strlen( dirc );                  /* length of directory */
   xit=vector(1,n);    if( dirc[l1-1] != DIRSEPARATOR ){
   xits=vector(1,n);      dirc[l1] =  DIRSEPARATOR;
   *fret=(*func)(p);      dirc[l1+1] = 0; 
   for (j=1;j<=n;j++) pt[j]=p[j];      printf(" DIRC3 = %s \n",dirc);
   for (*iter=1;;++(*iter)) {    }
     fp=(*fret);    ss = strrchr( name, '.' );            /* find last / */
     ibig=0;    if (ss >0){
     del=0.0;      ss++;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      strcpy(ext,ss);                     /* save extension */
     for (i=1;i<=n;i++)      l1= strlen( name);
       printf(" %d %.12f",i, p[i]);      l2= strlen(ss)+1;
     printf("\n");      strncpy( finame, name, l1-l2);
     for (i=1;i<=n;i++) {      finame[l1-l2]= 0;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    }
       fptt=(*fret);  
 #ifdef DEBUG    return( 0 );                          /* we're done */
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  /******************************************/
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  void replace_back_to_slash(char *s, char*t)
         ibig=i;  {
       }    int i;
 #ifdef DEBUG    int lg=0;
       printf("%d %.12e",i,(*fret));    i=0;
       for (j=1;j<=n;j++) {    lg=strlen(t);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    for(i=0; i<= lg; i++) {
         printf(" x(%d)=%.12e",j,xit[j]);      (s[i] = t[i]);
       }      if (t[i]== '\\') s[i]='/';
       for(j=1;j<=n;j++)    }
         printf(" p=%.12e",p[j]);  }
       printf("\n");  
 #endif  char *trimbb(char *out, char *in)
     }  { /* Trim multiple blanks in line */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    char *s;
 #ifdef DEBUG    s=out;
       int k[2],l;    while (*in != '\0'){
       k[0]=1;      while( *in == ' ' && *(in+1) == ' ' && *(in+1) != '\0'){
       k[1]=-1;        in++;
       printf("Max: %.12e",(*func)(p));      }
       for (j=1;j<=n;j++)      *out++ = *in++;
         printf(" %.12e",p[j]);    }
       printf("\n");    *out='\0';
       for(l=0;l<=1;l++) {    return s;
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int nbocc(char *s, char occ)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    int i,j=0;
       }    int lg=20;
 #endif    i=0;
     lg=strlen(s);
     for(i=0; i<= lg; i++) {
       free_vector(xit,1,n);    if  (s[i] == occ ) j++;
       free_vector(xits,1,n);    }
       free_vector(ptt,1,n);    return j;
       free_vector(pt,1,n);  }
       return;  
     }  void cutv(char *u,char *v, char*t, char occ)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  {
     for (j=1;j<=n;j++) {    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       ptt[j]=2.0*p[j]-pt[j];       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       xit[j]=p[j]-pt[j];       gives u="abcedf" and v="ghi2j" */
       pt[j]=p[j];    int i,lg,j,p=0;
     }    i=0;
     fptt=(*func)(ptt);    for(j=0; j<=strlen(t)-1; j++) {
     if (fptt < fp) {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);    lg=strlen(t);
         for (j=1;j<=n;j++) {    for(j=0; j<p; j++) {
           xi[j][ibig]=xi[j][n];      (u[j] = t[j]);
           xi[j][n]=xit[j];    }
         }       u[p]='\0';
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);     for(j=0; j<= lg; j++) {
         for(j=1;j<=n;j++)      if (j>=(p+1))(v[j-p-1] = t[j]);
           printf(" %.12e",xit[j]);    }
         printf("\n");  }
 #endif  
       }  /********************** nrerror ********************/
     }  
   }  void nrerror(char error_text[])
 }  {
     fprintf(stderr,"ERREUR ...\n");
 /**** Prevalence limit ****************/    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  }
 {  /*********************** vector *******************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  double *vector(int nl, int nh)
      matrix by transitions matrix until convergence is reached */  {
     double *v;
   int i, ii,j,k;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double min, max, maxmin, maxmax,sumnew=0.;    if (!v) nrerror("allocation failure in vector");
   double **matprod2();    return v-nl+NR_END;
   double **out, cov[NCOVMAX], **pmij();  }
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   for (ii=1;ii<=nlstate+ndeath;ii++)  {
     for (j=1;j<=nlstate+ndeath;j++){    free((FREE_ARG)(v+nl-NR_END));
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
     }  
   /************************ivector *******************************/
    cov[1]=1.;  int *ivector(long nl,long nh)
    {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    int *v;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     newm=savm;    if (!v) nrerror("allocation failure in ivector");
     /* Covariates have to be included here again */    return v-nl+NR_END;
      cov[2]=agefin;  }
    
       for (k=1; k<=cptcovn;k++) {  /******************free ivector **************************/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  void free_ivector(int *v, long nl, long nh)
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  {
       }    free((FREE_ARG)(v+nl-NR_END));
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /************************lvector *******************************/
   long *lvector(long nl,long nh)
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    long *v;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  /******************free lvector **************************/
     for(j=1;j<=nlstate;j++){  void free_lvector(long *v, long nl, long nh)
       min=1.;  {
       max=0.;    free((FREE_ARG)(v+nl-NR_END));
       for(i=1; i<=nlstate; i++) {  }
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /******************* imatrix *******************************/
         prlim[i][j]= newm[i][j]/(1-sumnew);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         max=FMAX(max,prlim[i][j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         min=FMIN(min,prlim[i][j]);  { 
       }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       maxmin=max-min;    int **m; 
       maxmax=FMAX(maxmax,maxmin);    
     }    /* allocate pointers to rows */ 
     if(maxmax < ftolpl){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       return prlim;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     }    m += NR_END; 
   }    m -= nrl; 
 }    
     
 /*************** transition probabilities ***************/    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 {    m[nrl] += NR_END; 
   double s1, s2;    m[nrl] -= ncl; 
   /*double t34;*/    
   int i,j,j1, nc, ii, jj;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
     for(i=1; i<= nlstate; i++){    /* return pointer to array of pointers to rows */ 
     for(j=1; j<i;j++){    return m; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  } 
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /****************** free_imatrix *************************/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  void free_imatrix(m,nrl,nrh,ncl,nch)
       }        int **m;
       ps[i][j]=s2;        long nch,ncl,nrh,nrl; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/       /* free an int matrix allocated by imatrix() */ 
     }  { 
     for(j=i+1; j<=nlstate+ndeath;j++){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free((FREE_ARG) (m+nrl-NR_END)); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  /******************* matrix *******************************/
       ps[i][j]=s2;  double **matrix(long nrl, long nrh, long ncl, long nch)
     }  {
   }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     /*ps[3][2]=1;*/    double **m;
   
   for(i=1; i<= nlstate; i++){    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      s1=0;    if (!m) nrerror("allocation failure 1 in matrix()");
     for(j=1; j<i; j++)    m += NR_END;
       s1+=exp(ps[i][j]);    m -= nrl;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     ps[i][i]=1./(s1+1.);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for(j=1; j<i; j++)    m[nrl] += NR_END;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    m[nrl] -= ncl;
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    return m;
   } /* end i */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  /*************************free matrix ************************/
       ps[ii][ii]=1;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     }  {
   }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   }
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /******************* ma3x *******************************/
      printf("%lf ",ps[ii][jj]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
    }  {
     printf("\n ");    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     }    double ***m;
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    if (!m) nrerror("allocation failure 1 in matrix()");
   goto end;*/    m += NR_END;
     return ps;    m -= nrl;
 }  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /**************** Product of 2 matrices ******************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    m[nrl] -= ncl;
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      before: only the contents of out is modified. The function returns    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
      a pointer to pointers identical to out */    m[nrl][ncl] += NR_END;
   long i, j, k;    m[nrl][ncl] -= nll;
   for(i=nrl; i<= nrh; i++)    for (j=ncl+1; j<=nch; j++) 
     for(k=ncolol; k<=ncoloh; k++)      m[nrl][j]=m[nrl][j-1]+nlay;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    
         out[i][k] +=in[i][j]*b[j][k];    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   return out;      for (j=ncl+1; j<=nch; j++) 
 }        m[i][j]=m[i][j-1]+nlay;
     }
     return m; 
 /************* Higher Matrix Product ***************/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    */
 {  }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until  /*************************free ma3x ************************/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  {
      (typically every 2 years instead of every month which is too big).    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      Model is determined by parameters x and covariates have to be    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      included manually here.    free((FREE_ARG)(m+nrl-NR_END));
   }
      */  
   /*************** function subdirf ***********/
   int i, j, d, h, k;  char *subdirf(char fileres[])
   double **out, cov[NCOVMAX];  {
   double **newm;    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   /* Hstepm could be zero and should return the unit matrix */    strcat(tmpout,"/"); /* Add to the right */
   for (i=1;i<=nlstate+ndeath;i++)    strcat(tmpout,fileres);
     for (j=1;j<=nlstate+ndeath;j++){    return tmpout;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  }
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }  /*************** function subdirf2 ***********/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char *subdirf2(char fileres[], char *preop)
   for(h=1; h <=nhstepm; h++){  {
     for(d=1; d <=hstepm; d++){    
       newm=savm;    /* Caution optionfilefiname is hidden */
       /* Covariates have to be included here again */    strcpy(tmpout,optionfilefiname);
       cov[1]=1.;    strcat(tmpout,"/");
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    strcat(tmpout,preop);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    strcat(tmpout,fileres);
       for (k=1; k<=cptcovage;k++)    return tmpout;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    /* Caution optionfilefiname is hidden */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    strcpy(tmpout,optionfilefiname);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    strcat(tmpout,"/");
       savm=oldm;    strcat(tmpout,preop);
       oldm=newm;    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
     for(i=1; i<=nlstate+ndeath; i++)    return tmpout;
       for(j=1;j<=nlstate+ndeath;j++) {  }
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /***************** f1dim *************************/
          */  extern int ncom; 
       }  extern double *pcom,*xicom;
   } /* end h */  extern double (*nrfunc)(double []); 
   return po;   
 }  double f1dim(double x) 
   { 
     int j; 
 /*************** log-likelihood *************/    double f;
 double func( double *x)    double *xt; 
 {   
   int i, ii, j, k, mi, d, kk;    xt=vector(1,ncom); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double **out;    f=(*nrfunc)(xt); 
   double sw; /* Sum of weights */    free_vector(xt,1,ncom); 
   double lli; /* Individual log likelihood */    return f; 
   int s1, s2;  } 
   long ipmx;  
   /*extern weight */  /*****************brent *************************/
   /* We are differentiating ll according to initial status */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  { 
   /*for(i=1;i<imx;i++)    int iter; 
     printf(" %d\n",s[4][i]);    double a,b,d,etemp;
   */    double fu,fv,fw,fx;
   cov[1]=1.;    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double e=0.0; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){   
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    a=(ax < cx ? ax : cx); 
     for(mi=1; mi<= wav[i]-1; mi++){    b=(ax > cx ? ax : cx); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    x=w=v=bx; 
         for (j=1;j<=nlstate+ndeath;j++){    fw=fv=fx=(*f)(x); 
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for (iter=1;iter<=ITMAX;iter++) { 
           savm[ii][j]=(ii==j ? 1.0 : 0.0);      xm=0.5*(a+b); 
         }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for(d=0; d<dh[mi][i]; d++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         newm=savm;      printf(".");fflush(stdout);
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      fprintf(ficlog,".");fflush(ficlog);
         for (kk=1; kk<=cptcovage;kk++) {  #ifdef DEBUG
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
              /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #endif
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         savm=oldm;        *xmin=x; 
         oldm=newm;        return fx; 
              } 
              ftemp=fu;
       } /* end mult */      if (fabs(e) > tol1) { 
              r=(x-w)*(fx-fv); 
       s1=s[mw[mi][i]][i];        q=(x-v)*(fx-fw); 
       s2=s[mw[mi+1][i]][i];        p=(x-v)*q-(x-w)*r; 
       if( s2 > nlstate){        q=2.0*(q-r); 
         /* i.e. if s2 is a death state and if the date of death is known then the contribution        if (q > 0.0) p = -p; 
            to the likelihood is the probability to die between last step unit time and current        q=fabs(q); 
            step unit time, which is also the differences between probability to die before dh        etemp=e; 
            and probability to die before dh-stepm .        e=d; 
            In version up to 0.92 likelihood was computed        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
            as if date of death was unknown. Death was treated as any other          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
            health state: the date of the interview describes the actual state        else { 
            and not the date of a change in health state. The former idea was          d=p/q; 
            to consider that at each interview the state was recorded          u=x+d; 
            (healthy, disable or death) and IMaCh was corrected; but when we          if (u-a < tol2 || b-u < tol2) 
            introduced the exact date of death then we should have modified            d=SIGN(tol1,xm-x); 
            the contribution of an exact death to the likelihood. This new        } 
            contribution is smaller and very dependent of the step unit      } else { 
            stepm. It is no more the probability to die between last interview        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
            and month of death but the probability to survive from last      } 
            interview up to one month before death multiplied by the      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
            probability to die within a month. Thanks to Chris      fu=(*f)(u); 
            Jackson for correcting this bug.  Former versions increased      if (fu <= fx) { 
            mortality artificially. The bad side is that we add another loop        if (u >= x) a=x; else b=x; 
            which slows down the processing. The difference can be up to 10%        SHFT(v,w,x,u) 
            lower mortality.          SHFT(fv,fw,fx,fu) 
         */          } else { 
         lli=log(out[s1][s2] - savm[s1][s2]);            if (u < x) a=u; else b=u; 
       }else{            if (fu <= fw || w == x) { 
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */              v=w; 
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/              w=u; 
       }              fv=fw; 
       ipmx +=1;              fw=fu; 
       sw += weight[i];            } else if (fu <= fv || v == x || v == w) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              v=u; 
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/              fv=fu; 
     } /* end of wave */            } 
   } /* end of individual */          } 
     } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    nrerror("Too many iterations in brent"); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    *xmin=x; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    return fx; 
   /*exit(0);*/  } 
   return -l;  
 }  /****************** mnbrak ***********************/
   
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 /*********** Maximum Likelihood Estimation ***************/              double (*func)(double)) 
   { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    double ulim,u,r,q, dum;
 {    double fu; 
   int i,j, iter;   
   double **xi,*delti;    *fa=(*func)(*ax); 
   double fret;    *fb=(*func)(*bx); 
   xi=matrix(1,npar,1,npar);    if (*fb > *fa) { 
   for (i=1;i<=npar;i++)      SHFT(dum,*ax,*bx,dum) 
     for (j=1;j<=npar;j++)        SHFT(dum,*fb,*fa,dum) 
       xi[i][j]=(i==j ? 1.0 : 0.0);        } 
   printf("Powell\n");    *cx=(*bx)+GOLD*(*bx-*ax); 
   powell(p,xi,npar,ftol,&iter,&fret,func);    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      r=(*bx-*ax)*(*fb-*fc); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
 /**** Computes Hessian and covariance matrix ***/      if ((*bx-u)*(u-*cx) > 0.0) { 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        fu=(*func)(u); 
 {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double  **a,**y,*x,pd;        fu=(*func)(u); 
   double **hess;        if (fu < *fc) { 
   int i, j,jk;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   int *indx;            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
   double hessii(double p[], double delta, int theta, double delti[]);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double hessij(double p[], double delti[], int i, int j);        u=ulim; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        fu=(*func)(u); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
   hess=matrix(1,npar,1,npar);        fu=(*func)(u); 
       } 
   printf("\nCalculation of the hessian matrix. Wait...\n");      SHFT(*ax,*bx,*cx,u) 
   for (i=1;i<=npar;i++){        SHFT(*fa,*fb,*fc,fu) 
     printf("%d",i);fflush(stdout);        } 
     hess[i][i]=hessii(p,ftolhess,i,delti);  } 
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/  /*************** linmin ************************/
   }  
    int ncom; 
   for (i=1;i<=npar;i++) {  double *pcom,*xicom;
     for (j=1;j<=npar;j++)  {  double (*nrfunc)(double []); 
       if (j>i) {   
         printf(".%d%d",i,j);fflush(stdout);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         hess[i][j]=hessij(p,delti,i,j);  { 
         hess[j][i]=hess[i][j];        double brent(double ax, double bx, double cx, 
         /*printf(" %lf ",hess[i][j]);*/                 double (*f)(double), double tol, double *xmin); 
       }    double f1dim(double x); 
     }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   }                double *fc, double (*func)(double)); 
   printf("\n");    int j; 
     double xx,xmin,bx,ax; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    double fx,fb,fa;
     
   a=matrix(1,npar,1,npar);    ncom=n; 
   y=matrix(1,npar,1,npar);    pcom=vector(1,n); 
   x=vector(1,npar);    xicom=vector(1,n); 
   indx=ivector(1,npar);    nrfunc=func; 
   for (i=1;i<=npar;i++)    for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      pcom[j]=p[j]; 
   ludcmp(a,npar,indx,&pd);      xicom[j]=xi[j]; 
     } 
   for (j=1;j<=npar;j++) {    ax=0.0; 
     for (i=1;i<=npar;i++) x[i]=0;    xx=1.0; 
     x[j]=1;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     lubksb(a,npar,indx,x);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     for (i=1;i<=npar;i++){  #ifdef DEBUG
       matcov[i][j]=x[i];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }  #endif
     for (j=1;j<=n;j++) { 
   printf("\n#Hessian matrix#\n");      xi[j] *= xmin; 
   for (i=1;i<=npar;i++) {      p[j] += xi[j]; 
     for (j=1;j<=npar;j++) {    } 
       printf("%.3e ",hess[i][j]);    free_vector(xicom,1,n); 
     }    free_vector(pcom,1,n); 
     printf("\n");  } 
   }  
   char *asc_diff_time(long time_sec, char ascdiff[])
   /* Recompute Inverse */  {
   for (i=1;i<=npar;i++)    long sec_left, days, hours, minutes;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    days = (time_sec) / (60*60*24);
   ludcmp(a,npar,indx,&pd);    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
   /*  printf("\n#Hessian matrix recomputed#\n");    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
   for (j=1;j<=npar;j++) {    sec_left = (sec_left) % (60);
     for (i=1;i<=npar;i++) x[i]=0;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     x[j]=1;    return ascdiff;
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  /*************** powell ************************/
       printf("%.3e ",y[i][j]);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     }              double (*func)(double [])) 
     printf("\n");  { 
   }    void linmin(double p[], double xi[], int n, double *fret, 
   */                double (*func)(double [])); 
     int i,ibig,j; 
   free_matrix(a,1,npar,1,npar);    double del,t,*pt,*ptt,*xit;
   free_matrix(y,1,npar,1,npar);    double fp,fptt;
   free_vector(x,1,npar);    double *xits;
   free_ivector(indx,1,npar);    int niterf, itmp;
   free_matrix(hess,1,npar,1,npar);  
     pt=vector(1,n); 
     ptt=vector(1,n); 
 }    xit=vector(1,n); 
     xits=vector(1,n); 
 /*************** hessian matrix ****************/    *fret=(*func)(p); 
 double hessii( double x[], double delta, int theta, double delti[])    for (j=1;j<=n;j++) pt[j]=p[j]; 
 {    for (*iter=1;;++(*iter)) { 
   int i;      fp=(*fret); 
   int l=1, lmax=20;      ibig=0; 
   double k1,k2;      del=0.0; 
   double p2[NPARMAX+1];      last_time=curr_time;
   double res;      (void) gettimeofday(&curr_time,&tzp);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double fx;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   int k=0,kmax=10;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   double l1;     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   fx=func(x);        fprintf(ficlog," %d %.12lf",i, p[i]);
   for (i=1;i<=npar;i++) p2[i]=x[i];        fprintf(ficrespow," %.12lf", p[i]);
   for(l=0 ; l <=lmax; l++){      }
     l1=pow(10,l);      printf("\n");
     delts=delt;      fprintf(ficlog,"\n");
     for(k=1 ; k <kmax; k=k+1){      fprintf(ficrespow,"\n");fflush(ficrespow);
       delt = delta*(l1*k);      if(*iter <=3){
       p2[theta]=x[theta] +delt;        tm = *localtime(&curr_time.tv_sec);
       k1=func(p2)-fx;        strcpy(strcurr,asctime(&tm));
       p2[theta]=x[theta]-delt;  /*       asctime_r(&tm,strcurr); */
       k2=func(p2)-fx;        forecast_time=curr_time; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        itmp = strlen(strcurr);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
                strcurr[itmp-1]='\0';
 #ifdef DEBUG        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 #endif        for(niterf=10;niterf<=30;niterf+=10){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          tmf = *localtime(&forecast_time.tv_sec);
         k=kmax;  /*      asctime_r(&tmf,strfor); */
       }          strcpy(strfor,asctime(&tmf));
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          itmp = strlen(strfor);
         k=kmax; l=lmax*10.;          if(strfor[itmp-1]=='\n')
       }          strfor[itmp-1]='\0';
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         delts=delt;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }        }
     }      }
   }      for (i=1;i<=n;i++) { 
   delti[theta]=delts;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   return res;        fptt=(*fret); 
    #ifdef DEBUG
 }        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
 double hessij( double x[], double delti[], int thetai,int thetaj)  #endif
 {        printf("%d",i);fflush(stdout);
   int i;        fprintf(ficlog,"%d",i);fflush(ficlog);
   int l=1, l1, lmax=20;        linmin(p,xit,n,fret,func); 
   double k1,k2,k3,k4,res,fx;        if (fabs(fptt-(*fret)) > del) { 
   double p2[NPARMAX+1];          del=fabs(fptt-(*fret)); 
   int k;          ibig=i; 
         } 
   fx=func(x);  #ifdef DEBUG
   for (k=1; k<=2; k++) {        printf("%d %.12e",i,(*fret));
     for (i=1;i<=npar;i++) p2[i]=x[i];        fprintf(ficlog,"%d %.12e",i,(*fret));
     p2[thetai]=x[thetai]+delti[thetai]/k;        for (j=1;j<=n;j++) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     k1=func(p2)-fx;          printf(" x(%d)=%.12e",j,xit[j]);
            fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(j=1;j<=n;j++) {
     k2=func(p2)-fx;          printf(" p=%.12e",p[j]);
            fprintf(ficlog," p=%.12e",p[j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        printf("\n");
     k3=func(p2)-fx;        fprintf(ficlog,"\n");
    #endif
     p2[thetai]=x[thetai]-delti[thetai]/k;      } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     k4=func(p2)-fx;  #ifdef DEBUG
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        int k[2],l;
 #ifdef DEBUG        k[0]=1;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        k[1]=-1;
 #endif        printf("Max: %.12e",(*func)(p));
   }        fprintf(ficlog,"Max: %.12e",(*func)(p));
   return res;        for (j=1;j<=n;j++) {
 }          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
 /************** Inverse of matrix **************/        }
 void ludcmp(double **a, int n, int *indx, double *d)        printf("\n");
 {        fprintf(ficlog,"\n");
   int i,imax,j,k;        for(l=0;l<=1;l++) {
   double big,dum,sum,temp;          for (j=1;j<=n;j++) {
   double *vv;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
              printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   vv=vector(1,n);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   *d=1.0;          }
   for (i=1;i<=n;i++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     big=0.0;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=1;j<=n;j++)        }
       if ((temp=fabs(a[i][j])) > big) big=temp;  #endif
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  
   }        free_vector(xit,1,n); 
   for (j=1;j<=n;j++) {        free_vector(xits,1,n); 
     for (i=1;i<j;i++) {        free_vector(ptt,1,n); 
       sum=a[i][j];        free_vector(pt,1,n); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        return; 
       a[i][j]=sum;      } 
     }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     big=0.0;      for (j=1;j<=n;j++) { 
     for (i=j;i<=n;i++) {        ptt[j]=2.0*p[j]-pt[j]; 
       sum=a[i][j];        xit[j]=p[j]-pt[j]; 
       for (k=1;k<j;k++)        pt[j]=p[j]; 
         sum -= a[i][k]*a[k][j];      } 
       a[i][j]=sum;      fptt=(*func)(ptt); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {      if (fptt < fp) { 
         big=dum;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         imax=i;        if (t < 0.0) { 
       }          linmin(p,xit,n,fret,func); 
     }          for (j=1;j<=n;j++) { 
     if (j != imax) {            xi[j][ibig]=xi[j][n]; 
       for (k=1;k<=n;k++) {            xi[j][n]=xit[j]; 
         dum=a[imax][k];          }
         a[imax][k]=a[j][k];  #ifdef DEBUG
         a[j][k]=dum;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       *d = -(*d);          for(j=1;j<=n;j++){
       vv[imax]=vv[j];            printf(" %.12e",xit[j]);
     }            fprintf(ficlog," %.12e",xit[j]);
     indx[j]=imax;          }
     if (a[j][j] == 0.0) a[j][j]=TINY;          printf("\n");
     if (j != n) {          fprintf(ficlog,"\n");
       dum=1.0/(a[j][j]);  #endif
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        }
     }      } 
   }    } 
   free_vector(vv,1,n);  /* Doesn't work */  } 
 ;  
 }  /**** Prevalence limit (stable or period prevalence)  ****************/
   
 void lubksb(double **a, int n, int *indx, double b[])  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   int i,ii=0,ip,j;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double sum;       matrix by transitions matrix until convergence is reached */
    
   for (i=1;i<=n;i++) {    int i, ii,j,k;
     ip=indx[i];    double min, max, maxmin, maxmax,sumnew=0.;
     sum=b[ip];    double **matprod2();
     b[ip]=b[i];    double **out, cov[NCOVMAX+1], **pmij();
     if (ii)    double **newm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    double agefin, delaymax=50 ; /* Max number of years to converge */
     else if (sum) ii=i;  
     b[i]=sum;    for (ii=1;ii<=nlstate+ndeath;ii++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   for (i=n;i>=1;i--) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     sum=b[i];      }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];     cov[1]=1.;
   }   
 }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 /************ Frequencies ********************/      newm=savm;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      /* Covariates have to be included here again */
 {  /* Some frequencies */       cov[2]=agefin;
      
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        for (k=1; k<=cptcovn;k++) {
   double ***freq; /* Frequencies */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   double *pp;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   double pos, k2, dateintsum=0,k2cpt=0;        }
   FILE *ficresp;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   char fileresp[FILENAMELENGTH];        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   strcpy(fileresp,"p");        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   strcat(fileresp,fileres);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   if((ficresp=fopen(fileresp,"w"))==NULL) {      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);      savm=oldm;
   }      oldm=newm;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      maxmax=0.;
   j1=0;      for(j=1;j<=nlstate;j++){
          min=1.;
   j=cptcoveff;        max=0.;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for(i=1; i<=nlstate; i++) {
            sumnew=0;
   for(k1=1; k1<=j;k1++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     for(i1=1; i1<=ncodemax[k1];i1++){          prlim[i][j]= newm[i][j]/(1-sumnew);
       j1++;          max=FMAX(max,prlim[i][j]);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          min=FMIN(min,prlim[i][j]);
         scanf("%d", i);*/        }
       for (i=-1; i<=nlstate+ndeath; i++)          maxmin=max-min;
         for (jk=-1; jk<=nlstate+ndeath; jk++)          maxmax=FMAX(maxmax,maxmin);
           for(m=agemin; m <= agemax+3; m++)      }
             freq[i][jk][m]=0;      if(maxmax < ftolpl){
              return prlim;
       dateintsum=0;      }
       k2cpt=0;    }
       for (i=1; i<=imx; i++) {  }
         bool=1;  
         if  (cptcovn>0) {  /*************** transition probabilities ***************/ 
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
               bool=0;  {
         }    double s1, s2;
         if (bool==1) {    /*double t34;*/
           for(m=firstpass; m<=lastpass; m++){    int i,j,j1, nc, ii, jj;
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      for(i=1; i<= nlstate; i++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for(j=1; j<i;j++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
               if (m<lastpass) {            /*s2 += param[i][j][nc]*cov[nc];*/
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
               }          }
                        ps[i][j]=s2;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
                 dateintsum=dateintsum+k2;        }
                 k2cpt++;        for(j=i+1; j<=nlstate+ndeath;j++){
               }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           }  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         }          }
       }          ps[i][j]=s2;
                }
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      }
       /*ps[3][2]=1;*/
       if  (cptcovn>0) {      
         fprintf(ficresp, "\n#********** Variable ");      for(i=1; i<= nlstate; i++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        s1=0;
         fprintf(ficresp, "**********\n#");        for(j=1; j<i; j++){
       }          s1+=exp(ps[i][j]);
       for(i=1; i<=nlstate;i++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        }
       fprintf(ficresp, "\n");        for(j=i+1; j<=nlstate+ndeath; j++){
                s1+=exp(ps[i][j]);
       for(i=(int)agemin; i <= (int)agemax+3; i++){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         if(i==(int)agemax+3)        }
           printf("Total");        ps[i][i]=1./(s1+1.);
         else        for(j=1; j<i; j++)
           printf("Age %d", i);          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(jk=1; jk <=nlstate ; jk++){        for(j=i+1; j<=nlstate+ndeath; j++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
             pp[jk] += freq[jk][m][i];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         }      } /* end i */
         for(jk=1; jk <=nlstate ; jk++){      
           for(m=-1, pos=0; m <=0 ; m++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
             pos += freq[jk][m][i];        for(jj=1; jj<= nlstate+ndeath; jj++){
           if(pp[jk]>=1.e-10)          ps[ii][jj]=0;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          ps[ii][ii]=1;
           else        }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      }
         }      
   
         for(jk=1; jk <=nlstate ; jk++){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
             pp[jk] += freq[jk][m][i];  /*         printf("ddd %lf ",ps[ii][jj]); */
         }  /*       } */
   /*       printf("\n "); */
         for(jk=1,pos=0; jk <=nlstate ; jk++)  /*        } */
           pos += pp[jk];  /*        printf("\n ");printf("%lf ",cov[2]); */
         for(jk=1; jk <=nlstate ; jk++){         /*
           if(pos>=1.e-5)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        goto end;*/
           else      return ps;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  }
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  /**************** Product of 2 matrices ******************/
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  {
             }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             else       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    /* in, b, out are matrice of pointers which should have been initialized 
           }       before: only the contents of out is modified. The function returns
         }       a pointer to pointers identical to out */
            long i, j, k;
         for(jk=-1; jk <=nlstate+ndeath; jk++)    for(i=nrl; i<= nrh; i++)
           for(m=-1; m <=nlstate+ndeath; m++)      for(k=ncolol; k<=ncoloh; k++)
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         if(i <= (int) agemax)          out[i][k] +=in[i][j]*b[j][k];
           fprintf(ficresp,"\n");  
         printf("\n");    return out;
       }  }
     }  
   }  
   dateintmean=dateintsum/k2cpt;  /************* Higher Matrix Product ***************/
    
   fclose(ficresp);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  {
   free_vector(pp,1,nlstate);    /* Computes the transition matrix starting at age 'age' over 
         'nhstepm*hstepm*stepm' months (i.e. until
   /* End of Freq */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 }       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 /************ Prevalence ********************/       (typically every 2 years instead of every month which is too big 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)       for the memory).
 {  /* Some frequencies */       Model is determined by parameters x and covariates have to be 
         included manually here. 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */       */
   double *pp;  
   double pos, k2;    int i, j, d, h, k;
     double **out, cov[NCOVMAX+1];
   pp=vector(1,nlstate);    double **newm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
      /* Hstepm could be zero and should return the unit matrix */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    for (i=1;i<=nlstate+ndeath;i++)
   j1=0;      for (j=1;j<=nlstate+ndeath;j++){
          oldm[i][j]=(i==j ? 1.0 : 0.0);
   j=cptcoveff;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
  for(k1=1; k1<=j;k1++){    for(h=1; h <=nhstepm; h++){
     for(i1=1; i1<=ncodemax[k1];i1++){      for(d=1; d <=hstepm; d++){
       j1++;        newm=savm;
          /* Covariates have to be included here again */
       for (i=-1; i<=nlstate+ndeath; i++)          cov[1]=1.;
         for (jk=-1; jk<=nlstate+ndeath; jk++)          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           for(m=agemin; m <= agemax+3; m++)        for (k=1; k<=cptcovn;k++) 
             freq[i][jk][m]=0;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
              for (k=1; k<=cptcovage;k++)
       for (i=1; i<=imx; i++) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         bool=1;        for (k=1; k<=cptcovprod;k++)
         if  (cptcovn>0) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         if (bool==1) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           for(m=firstpass; m<=lastpass; m++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             k2=anint[m][i]+(mint[m][i]/12.);        savm=oldm;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        oldm=newm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;      }
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for(i=1; i<=nlstate+ndeath; i++)
               if (m<lastpass)        for(j=1;j<=nlstate+ndeath;j++) {
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          po[i][j][h]=newm[i][j];
               else          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        }
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      /*printf("h=%d ",h);*/
             }    } /* end h */
           }  /*     printf("\n H=%d \n",h); */
         }    return po;
       }  }
         for(i=(int)agemin; i <= (int)agemax+3; i++){  
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*************** log-likelihood *************/
               pp[jk] += freq[jk][m][i];  double func( double *x)
           }  {
           for(jk=1; jk <=nlstate ; jk++){    int i, ii, j, k, mi, d, kk;
             for(m=-1, pos=0; m <=0 ; m++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
             pos += freq[jk][m][i];    double **out;
         }    double sw; /* Sum of weights */
            double lli; /* Individual log likelihood */
          for(jk=1; jk <=nlstate ; jk++){    int s1, s2;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double bbh, survp;
              pp[jk] += freq[jk][m][i];    long ipmx;
          }    /*extern weight */
              /* We are differentiating ll according to initial status */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
          for(jk=1; jk <=nlstate ; jk++){                printf(" %d\n",s[4][i]);
            if( i <= (int) agemax){    */
              if(pos>=1.e-5){    cov[1]=1.;
                probs[i][jk][j1]= pp[jk]/pos;  
              }    for(k=1; k<=nlstate; k++) ll[k]=0.;
            }  
          }    if(mle==1){
                for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);            }
            for(d=0; d<dh[mi][i]; d++){
 }  /* End of Freq */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /************* Waves Concatenation ***************/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            }
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      Death is a valid wave (if date is known).            savm=oldm;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            oldm=newm;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          } /* end mult */
      and mw[mi+1][i]. dh depends on stepm.        
      */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
   int i, mi, m;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;           * (in months) between two waves is not a multiple of stepm, we rounded to 
      double sum=0., jmean=0.;*/           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
   int j, k=0,jk, ju, jl;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   double sum=0.;           * probability in order to take into account the bias as a fraction of the way
   jmin=1e+5;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   jmax=-1;           * -stepm/2 to stepm/2 .
   jmean=0.;           * For stepm=1 the results are the same as for previous versions of Imach.
   for(i=1; i<=imx; i++){           * For stepm > 1 the results are less biased than in previous versions. 
     mi=0;           */
     m=firstpass;          s1=s[mw[mi][i]][i];
     while(s[m][i] <= nlstate){          s2=s[mw[mi+1][i]][i];
       if(s[m][i]>=1)          bbh=(double)bh[mi][i]/(double)stepm; 
         mw[++mi][i]=m;          /* bias bh is positive if real duration
       if(m >=lastpass)           * is higher than the multiple of stepm and negative otherwise.
         break;           */
       else          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         m++;          if( s2 > nlstate){ 
     }/* end while */            /* i.e. if s2 is a death state and if the date of death is known 
     if (s[m][i] > nlstate){               then the contribution to the likelihood is the probability to 
       mi++;     /* Death is another wave */               die between last step unit time and current  step unit time, 
       /* if(mi==0)  never been interviewed correctly before death */               which is also equal to probability to die before dh 
          /* Only death is a correct wave */               minus probability to die before dh-stepm . 
       mw[mi][i]=m;               In version up to 0.92 likelihood was computed
     }          as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
     wav[i]=mi;          and not the date of a change in health state. The former idea was
     if(mi==0)          to consider that at each interview the state was recorded
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          (healthy, disable or death) and IMaCh was corrected; but when we
   }          introduced the exact date of death then we should have modified
           the contribution of an exact death to the likelihood. This new
   for(i=1; i<=imx; i++){          contribution is smaller and very dependent of the step unit
     for(mi=1; mi<wav[i];mi++){          stepm. It is no more the probability to die between last interview
       if (stepm <=0)          and month of death but the probability to survive from last
         dh[mi][i]=1;          interview up to one month before death multiplied by the
       else{          probability to die within a month. Thanks to Chris
         if (s[mw[mi+1][i]][i] > nlstate) {          Jackson for correcting this bug.  Former versions increased
           if (agedc[i] < 2*AGESUP) {          mortality artificially. The bad side is that we add another loop
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          which slows down the processing. The difference can be up to 10%
           if(j==0) j=1;  /* Survives at least one month after exam */          lower mortality.
           k=k+1;            */
           if (j >= jmax) jmax=j;            lli=log(out[s1][s2] - savm[s1][s2]);
           if (j <= jmin) jmin=j;  
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          } else if  (s2==-2) {
           }            for (j=1,survp=0. ; j<=nlstate; j++) 
         }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         else{            /*survp += out[s1][j]; */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            lli= log(survp);
           k=k+1;          }
           if (j >= jmax) jmax=j;          
           else if (j <= jmin)jmin=j;          else if  (s2==-4) { 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            for (j=3,survp=0. ; j<=nlstate; j++)  
           sum=sum+j;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
         jk= j/stepm;          } 
         jl= j -jk*stepm;  
         ju= j -(jk+1)*stepm;          else if  (s2==-5) { 
         if(jl <= -ju)            for (j=1,survp=0. ; j<=2; j++)  
           dh[mi][i]=jk;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         else            lli= log(survp); 
           dh[mi][i]=jk+1;          } 
         if(dh[mi][i]==0)          
           dh[mi][i]=1; /* At least one step */          else{
       }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   }          } 
   jmean=sum/k;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          /*if(lli ==000.0)*/
  }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 /*********** Tricode ****************************/          ipmx +=1;
 void tricode(int *Tvar, int **nbcode, int imx)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int Ndum[20],ij=1, k, j, i;        } /* end of wave */
   int cptcode=0;      } /* end of individual */
   cptcoveff=0;    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (k=0; k<19; k++) Ndum[k]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (k=1; k<=7; k++) ncodemax[k]=0;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            for (j=1;j<=nlstate+ndeath;j++){
     for (i=1; i<=imx; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       ij=(int)(covar[Tvar[j]][i]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       Ndum[ij]++;            }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          for(d=0; d<=dh[mi][i]; d++){
       if (ij > cptcode) cptcode=ij;            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     for (i=0; i<=cptcode; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(Ndum[i]!=0) ncodemax[j]++;            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     ij=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
     for (i=1; i<=ncodemax[j]; i++) {          } /* end mult */
       for (k=0; k<=19; k++) {        
         if (Ndum[k] != 0) {          s1=s[mw[mi][i]][i];
           nbcode[Tvar[j]][ij]=k;          s2=s[mw[mi+1][i]][i];
                    bbh=(double)bh[mi][i]/(double)stepm; 
           ij++;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         }          ipmx +=1;
         if (ij > ncodemax[j]) break;          sw += weight[i];
       }            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
   }        } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
  for (k=0; k<19; k++) Ndum[k]=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  for (i=1; i<=ncovmodel-2; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       ij=Tvar[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
       Ndum[ij]++;            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
  ij=1;            }
  for (i=1; i<=10; i++) {          for(d=0; d<dh[mi][i]; d++){
    if((Ndum[i]!=0) && (i<=ncovcol)){            newm=savm;
      Tvaraff[ij]=i;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      ij++;            for (kk=1; kk<=cptcovage;kk++) {
    }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  }            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     cptcoveff=ij-1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
 /*********** Health Expectancies ****************/          } /* end mult */
         
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 {          bbh=(double)bh[mi][i]/(double)stepm; 
   /* Health expectancies */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          ipmx +=1;
   double age, agelim, hf;          sw += weight[i];
   double ***p3mat,***varhe;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **dnewm,**doldm;        } /* end of wave */
   double *xp;      } /* end of individual */
   double **gp, **gm;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   double ***gradg, ***trgradg;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int theta;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          for (ii=1;ii<=nlstate+ndeath;ii++)
   xp=vector(1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   dnewm=matrix(1,nlstate*2,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate*2,1,nlstate*2);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   fprintf(ficreseij,"# Health expectancies\n");          for(d=0; d<dh[mi][i]; d++){
   fprintf(ficreseij,"# Age");            newm=savm;
   for(i=1; i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(j=1; j<=nlstate;j++)            for (kk=1; kk<=cptcovage;kk++) {
       fprintf(ficreseij," %1d-%1d (SE)",i,j);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficreseij,"\n");            }
           
   if(estepm < stepm){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf ("Problem %d lower than %d\n",estepm, stepm);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   else  hstepm=estepm;              oldm=newm;
   /* We compute the life expectancy from trapezoids spaced every estepm months          } /* end mult */
    * This is mainly to measure the difference between two models: for example        
    * if stepm=24 months pijx are given only every 2 years and by summing them          s1=s[mw[mi][i]][i];
    * we are calculating an estimate of the Life Expectancy assuming a linear          s2=s[mw[mi+1][i]][i];
    * progression inbetween and thus overestimating or underestimating according          if( s2 > nlstate){ 
    * to the curvature of the survival function. If, for the same date, we            lli=log(out[s1][s2] - savm[s1][s2]);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          }else{
    * to compare the new estimate of Life expectancy with the same linear            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
    * hypothesis. A more precise result, taking into account a more precise          }
    * curvature will be obtained if estepm is as small as stepm. */          ipmx +=1;
           sw += weight[i];
   /* For example we decided to compute the life expectancy with the smallest unit */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
      nhstepm is the number of hstepm from age to agelim        } /* end of wave */
      nstepm is the number of stepm from age to agelin.      } /* end of individual */
      Look at hpijx to understand the reason of that which relies in memory size    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
      and note for a fixed period like estepm months */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      survival function given by stepm (the optimization length). Unfortunately it        for(mi=1; mi<= wav[i]-1; mi++){
      means that if the survival funtion is printed only each two years of age and if          for (ii=1;ii<=nlstate+ndeath;ii++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            for (j=1;j<=nlstate+ndeath;j++){
      results. So we changed our mind and took the option of the best precision.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            }
           for(d=0; d<dh[mi][i]; d++){
   agelim=AGESUP;            newm=savm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* nhstepm age range expressed in number of stepm */            for (kk=1; kk<=cptcovage;kk++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            }
     /* if (stepm >= YEARM) hstepm=1;*/          
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            savm=oldm;
     gp=matrix(0,nhstepm,1,nlstate*2);            oldm=newm;
     gm=matrix(0,nhstepm,1,nlstate*2);          } /* end mult */
         
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          s1=s[mw[mi][i]][i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          s2=s[mw[mi+1][i]][i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            ipmx +=1;
           sw += weight[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     /* Computing Variances of health expectancies */        } /* end of wave */
       } /* end of individual */
      for(theta=1; theta <=npar; theta++){    } /* End of if */
       for(i=1; i<=npar; i++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      return -l;
    }
       cptj=0;  
       for(j=1; j<= nlstate; j++){  /*************** log-likelihood *************/
         for(i=1; i<=nlstate; i++){  double funcone( double *x)
           cptj=cptj+1;  {
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    /* Same as likeli but slower because of a lot of printf and if */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    int i, ii, j, k, mi, d, kk;
           }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         }    double **out;
       }    double lli; /* Individual log likelihood */
          double llt;
          int s1, s2;
       for(i=1; i<=npar; i++)    double bbh, survp;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /*extern weight */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* We are differentiating ll according to initial status */
          /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       cptj=0;    /*for(i=1;i<imx;i++) 
       for(j=1; j<= nlstate; j++){      printf(" %d\n",s[4][i]);
         for(i=1;i<=nlstate;i++){    */
           cptj=cptj+1;    cov[1]=1.;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for(k=1; k<=nlstate; k++) ll[k]=0.;
           }  
         }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<= nlstate*2; j++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(h=0; h<=nhstepm-1; h++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          }
         }        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
      }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
 /* End theta */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      for(h=0; h<=nhstepm-1; h++)          savm=oldm;
       for(j=1; j<=nlstate*2;j++)          oldm=newm;
         for(theta=1; theta <=npar; theta++)        } /* end mult */
         trgradg[h][j][theta]=gradg[h][theta][j];        
         s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
      for(i=1;i<=nlstate*2;i++)        bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1;j<=nlstate*2;j++)        /* bias is positive if real duration
         varhe[i][j][(int)age] =0.;         * is higher than the multiple of stepm and negative otherwise.
          */
     for(h=0;h<=nhstepm-1;h++){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       for(k=0;k<=nhstepm-1;k++){          lli=log(out[s1][s2] - savm[s1][s2]);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        } else if  (s2==-2) {
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          for (j=1,survp=0. ; j<=nlstate; j++) 
         for(i=1;i<=nlstate*2;i++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for(j=1;j<=nlstate*2;j++)          lli= log(survp);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        }else if (mle==1){
       }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
              } else if(mle==3){  /* exponential inter-extrapolation */
     /* Computing expectancies */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for(i=1; i<=nlstate;i++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for(j=1; j<=nlstate;j++)          lli=log(out[s1][s2]); /* Original formula */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          lli=log(out[s1][s2]); /* Original formula */
                  } /* End of if */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        ipmx +=1;
         sw += weight[i];
         }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     fprintf(ficreseij,"%3.0f",age );        if(globpr){
     cptj=0;          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     for(i=1; i<=nlstate;i++)   %11.6f %11.6f %11.6f ", \
       for(j=1; j<=nlstate;j++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         cptj++;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       }            llt +=ll[k]*gipmx/gsw;
     fprintf(ficreseij,"\n");            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
              }
     free_matrix(gm,0,nhstepm,1,nlstate*2);          fprintf(ficresilk," %10.6f\n", -llt);
     free_matrix(gp,0,nhstepm,1,nlstate*2);        }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      } /* end of wave */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    } /* end of individual */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   free_vector(xp,1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   free_matrix(dnewm,1,nlstate*2,1,npar);    if(globpr==0){ /* First time we count the contributions and weights */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      gipmx=ipmx;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      gsw=sw;
 }    }
     return -l;
 /************ Variance ******************/  }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  
 {  
   /* Variance of health expectancies */  /*************** function likelione ***********/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   double **newm;  {
   double **dnewm,**doldm;    /* This routine should help understanding what is done with 
   int i, j, nhstepm, hstepm, h, nstepm ;       the selection of individuals/waves and
   int k, cptcode;       to check the exact contribution to the likelihood.
   double *xp;       Plotting could be done.
   double **gp, **gm;     */
   double ***gradg, ***trgradg;    int k;
   double ***p3mat;  
   double age,agelim, hf;    if(*globpri !=0){ /* Just counts and sums, no printings */
   int theta;      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
    fprintf(ficresvij,"# Covariances of life expectancies\n");      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   fprintf(ficresvij,"# Age");        printf("Problem with resultfile: %s\n", fileresilk);
   for(i=1; i<=nlstate;i++)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for(j=1; j<=nlstate;j++)      }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   fprintf(ficresvij,"\n");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   xp=vector(1,npar);      for(k=1; k<=nlstate; k++) 
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   doldm=matrix(1,nlstate,1,nlstate);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      }
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);    *fretone=(*funcone)(p);
   }    if(*globpri !=0){
   else  hstepm=estepm;        fclose(ficresilk);
   /* For example we decided to compute the life expectancy with the smallest unit */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      fflush(fichtm); 
      nhstepm is the number of hstepm from age to agelim    } 
      nstepm is the number of stepm from age to agelin.    return;
      Look at hpijx to understand the reason of that which relies in memory size  }
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it  /*********** Maximum Likelihood Estimation ***************/
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      results. So we changed our mind and took the option of the best precision.  {
   */    int i,j, iter;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double **xi;
   agelim = AGESUP;    double fret;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double fretone; /* Only one call to likelihood */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /*  char filerespow[FILENAMELENGTH];*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    xi=matrix(1,npar,1,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      for (j=1;j<=npar;j++)
     gp=matrix(0,nhstepm,1,nlstate);        xi[i][j]=(i==j ? 1.0 : 0.0);
     gm=matrix(0,nhstepm,1,nlstate);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
     for(theta=1; theta <=npar; theta++){    strcat(filerespow,fileres);
       for(i=1; i<=npar; i++){ /* Computes gradient */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf("Problem with resultfile: %s\n", filerespow);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
       if (popbased==1) {      for(j=1;j<=nlstate+ndeath;j++)
         for(i=1; i<=nlstate;i++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficrespow,"\n");
       }  
      powell(p,xi,npar,ftol,&iter,&fret,func);
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    free_matrix(xi,1,npar,1,npar);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    fclose(ficrespow);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      
       for(i=1; i<=npar; i++) /* Computes gradient */  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /**** Computes Hessian and covariance matrix ***/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    {
       if (popbased==1) {    double  **a,**y,*x,pd;
         for(i=1; i<=nlstate;i++)    double **hess;
           prlim[i][i]=probs[(int)age][i][ij];    int i, j,jk;
       }    int *indx;
   
       for(j=1; j<= nlstate; j++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         for(h=0; h<=nhstepm; h++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    void ludcmp(double **a, int npar, int *indx, double *d) ;
         }    double gompertz(double p[]);
       }    hess=matrix(1,npar,1,npar);
   
       for(j=1; j<= nlstate; j++)    printf("\nCalculation of the hessian matrix. Wait...\n");
         for(h=0; h<=nhstepm; h++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for (i=1;i<=npar;i++){
         }      printf("%d",i);fflush(stdout);
     } /* End theta */      fprintf(ficlog,"%d",i);fflush(ficlog);
      
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
     for(h=0; h<=nhstepm; h++)      /*  printf(" %f ",p[i]);
       for(j=1; j<=nlstate;j++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         for(theta=1; theta <=npar; theta++)    }
           trgradg[h][j][theta]=gradg[h][theta][j];    
     for (i=1;i<=npar;i++) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (j=1;j<=npar;j++)  {
     for(i=1;i<=nlstate;i++)        if (j>i) { 
       for(j=1;j<=nlstate;j++)          printf(".%d%d",i,j);fflush(stdout);
         vareij[i][j][(int)age] =0.;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
     for(h=0;h<=nhstepm;h++){          
       for(k=0;k<=nhstepm;k++){          hess[j][i]=hess[i][j];    
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          /*printf(" %lf ",hess[i][j]);*/
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        }
         for(i=1;i<=nlstate;i++)      }
           for(j=1;j<=nlstate;j++)    }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    printf("\n");
       }    fprintf(ficlog,"\n");
     }  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficresvij,"%.0f ",age );    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(i=1; i<=nlstate;i++)    
       for(j=1; j<=nlstate;j++){    a=matrix(1,npar,1,npar);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    y=matrix(1,npar,1,npar);
       }    x=vector(1,npar);
     fprintf(ficresvij,"\n");    indx=ivector(1,npar);
     free_matrix(gp,0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++)
     free_matrix(gm,0,nhstepm,1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    ludcmp(a,npar,indx,&pd);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (j=1;j<=npar;j++) {
   } /* End age */      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
   free_vector(xp,1,npar);      lubksb(a,npar,indx,x);
   free_matrix(doldm,1,nlstate,1,npar);      for (i=1;i<=npar;i++){ 
   free_matrix(dnewm,1,nlstate,1,nlstate);        matcov[i][j]=x[i];
       }
 }    }
   
 /************ Variance of prevlim ******************/    printf("\n#Hessian matrix#\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    fprintf(ficlog,"\n#Hessian matrix#\n");
 {    for (i=1;i<=npar;i++) { 
   /* Variance of prevalence limit */      for (j=1;j<=npar;j++) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        printf("%.3e ",hess[i][j]);
   double **newm;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double **dnewm,**doldm;      }
   int i, j, nhstepm, hstepm;      printf("\n");
   int k, cptcode;      fprintf(ficlog,"\n");
   double *xp;    }
   double *gp, *gm;  
   double **gradg, **trgradg;    /* Recompute Inverse */
   double age,agelim;    for (i=1;i<=npar;i++)
   int theta;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
        ludcmp(a,npar,indx,&pd);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  
   fprintf(ficresvpl,"# Age");    /*  printf("\n#Hessian matrix recomputed#\n");
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);    for (j=1;j<=npar;j++) {
   fprintf(ficresvpl,"\n");      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
   xp=vector(1,npar);      lubksb(a,npar,indx,x);
   dnewm=matrix(1,nlstate,1,npar);      for (i=1;i<=npar;i++){ 
   doldm=matrix(1,nlstate,1,nlstate);        y[i][j]=x[i];
          printf("%.3e ",y[i][j]);
   hstepm=1*YEARM; /* Every year of age */        fprintf(ficlog,"%.3e ",y[i][j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      }
   agelim = AGESUP;      printf("\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficlog,"\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     if (stepm >= YEARM) hstepm=1;    */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);    free_matrix(a,1,npar,1,npar);
     gp=vector(1,nlstate);    free_matrix(y,1,npar,1,npar);
     gm=vector(1,nlstate);    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
     for(theta=1; theta <=npar; theta++){    free_matrix(hess,1,npar,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  /*************** hessian matrix ****************/
         gp[i] = prlim[i][i];  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
      {
       for(i=1; i<=npar; i++) /* Computes gradient */    int i;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int l=1, lmax=20;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double k1,k2;
       for(i=1;i<=nlstate;i++)    double p2[MAXPARM+1]; /* identical to x */
         gm[i] = prlim[i][i];    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(i=1;i<=nlstate;i++)    double fx;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    int k=0,kmax=10;
     } /* End theta */    double l1;
   
     trgradg =matrix(1,nlstate,1,npar);    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
     for(j=1; j<=nlstate;j++)    for(l=0 ; l <=lmax; l++){
       for(theta=1; theta <=npar; theta++)      l1=pow(10,l);
         trgradg[j][theta]=gradg[theta][j];      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
     for(i=1;i<=nlstate;i++)        delt = delta*(l1*k);
       varpl[i][(int)age] =0.;        p2[theta]=x[theta] +delt;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        k1=func(p2)-fx;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        p2[theta]=x[theta]-delt;
     for(i=1;i<=nlstate;i++)        k2=func(p2)-fx;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     fprintf(ficresvpl,"%.0f ",age );        
     for(i=1; i<=nlstate;i++)  #ifdef DEBUGHESS
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     fprintf(ficresvpl,"\n");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_vector(gp,1,nlstate);  #endif
     free_vector(gm,1,nlstate);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     free_matrix(gradg,1,npar,1,nlstate);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     free_matrix(trgradg,1,nlstate,1,npar);          k=kmax;
   } /* End age */        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   free_vector(xp,1,npar);          k=kmax; l=lmax*10.;
   free_matrix(doldm,1,nlstate,1,npar);        }
   free_matrix(dnewm,1,nlstate,1,nlstate);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
 }        }
       }
 /************ Variance of one-step probabilities  ******************/    }
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    delti[theta]=delts;
 {    return res; 
   int i, j, i1, k1, j1, z1;    
   int k=0, cptcode;  }
   double **dnewm,**doldm;  
   double *xp;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   double *gp, *gm;  {
   double **gradg, **trgradg;    int i;
   double age,agelim, cov[NCOVMAX];    int l=1, l1, lmax=20;
   int theta;    double k1,k2,k3,k4,res,fx;
   char fileresprob[FILENAMELENGTH];    double p2[MAXPARM+1];
     int k;
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);    fx=func(x);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    for (k=1; k<=2; k++) {
     printf("Problem with resultfile: %s\n", fileresprob);      for (i=1;i<=npar;i++) p2[i]=x[i];
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k1=func(p2)-fx;
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    
   fprintf(ficresprob,"# Age");      p2[thetai]=x[thetai]+delti[thetai]/k;
   for(i=1; i<=nlstate;i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(j=1; j<=(nlstate+ndeath);j++)      k2=func(p2)-fx;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    
       p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficresprob,"\n");      k3=func(p2)-fx;
     
       p2[thetai]=x[thetai]-delti[thetai]/k;
   xp=vector(1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      k4=func(p2)-fx;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
    #ifdef DEBUG
   cov[1]=1;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   j=cptcoveff;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  #endif
   j1=0;    }
   for(k1=1; k1<=1;k1++){    return res;
     for(i1=1; i1<=ncodemax[k1];i1++){  }
     j1++;  
   /************** Inverse of matrix **************/
     if  (cptcovn>0) {  void ludcmp(double **a, int n, int *indx, double *d) 
       fprintf(ficresprob, "\n#********** Variable ");  { 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int i,imax,j,k; 
       fprintf(ficresprob, "**********\n#");    double big,dum,sum,temp; 
     }    double *vv; 
       
       for (age=bage; age<=fage; age ++){    vv=vector(1,n); 
         cov[2]=age;    *d=1.0; 
         for (k=1; k<=cptcovn;k++) {    for (i=1;i<=n;i++) { 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      big=0.0; 
                for (j=1;j<=n;j++) 
         }        if ((temp=fabs(a[i][j])) > big) big=temp; 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         for (k=1; k<=cptcovprod;k++)      vv[i]=1.0/big; 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    } 
            for (j=1;j<=n;j++) { 
         gradg=matrix(1,npar,1,9);      for (i=1;i<j;i++) { 
         trgradg=matrix(1,9,1,npar);        sum=a[i][j]; 
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        a[i][j]=sum; 
          } 
         for(theta=1; theta <=npar; theta++){      big=0.0; 
           for(i=1; i<=npar; i++)      for (i=j;i<=n;i++) { 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        sum=a[i][j]; 
                  for (k=1;k<j;k++) 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          sum -= a[i][k]*a[k][j]; 
                  a[i][j]=sum; 
           k=0;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           for(i=1; i<= (nlstate+ndeath); i++){          big=dum; 
             for(j=1; j<=(nlstate+ndeath);j++){          imax=i; 
               k=k+1;        } 
               gp[k]=pmmij[i][j];      } 
             }      if (j != imax) { 
           }        for (k=1;k<=n;k++) { 
                    dum=a[imax][k]; 
           for(i=1; i<=npar; i++)          a[imax][k]=a[j][k]; 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          a[j][k]=dum; 
            } 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        *d = -(*d); 
           k=0;        vv[imax]=vv[j]; 
           for(i=1; i<=(nlstate+ndeath); i++){      } 
             for(j=1; j<=(nlstate+ndeath);j++){      indx[j]=imax; 
               k=k+1;      if (a[j][j] == 0.0) a[j][j]=TINY; 
               gm[k]=pmmij[i][j];      if (j != n) { 
             }        dum=1.0/(a[j][j]); 
           }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
            } 
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    } 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      free_vector(vv,1,n);  /* Doesn't work */
         }  ;
   } 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)  void lubksb(double **a, int n, int *indx, double b[]) 
             trgradg[j][theta]=gradg[theta][j];  { 
            int i,ii=0,ip,j; 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    double sum; 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);   
            for (i=1;i<=n;i++) { 
         pmij(pmmij,cov,ncovmodel,x,nlstate);      ip=indx[i]; 
              sum=b[ip]; 
         k=0;      b[ip]=b[i]; 
         for(i=1; i<=(nlstate+ndeath); i++){      if (ii) 
           for(j=1; j<=(nlstate+ndeath);j++){        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
             k=k+1;      else if (sum) ii=i; 
             gm[k]=pmmij[i][j];      b[i]=sum; 
           }    } 
         }    for (i=n;i>=1;i--) { 
            sum=b[i]; 
      /*printf("\n%d ",(int)age);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      b[i]=sum/a[i][i]; 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    } 
      }*/  } 
   
         fprintf(ficresprob,"\n%d ",(int)age);  void pstamp(FILE *fichier)
   {
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));  }
    
       }  /************ Frequencies ********************/
     }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  {  /* Some frequencies */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int i, m, jk, k1,i1, j1, bool, z1,j;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int first;
   }    double ***freq; /* Frequencies */
   free_vector(xp,1,npar);    double *pp, **prop;
   fclose(ficresprob);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      char fileresp[FILENAMELENGTH];
 }    
     pp=vector(1,nlstate);
 /******************* Printing html file ***********/    prop=matrix(1,nlstate,iagemin,iagemax+3);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    strcpy(fileresp,"p");
  int lastpass, int stepm, int weightopt, char model[],\    strcat(fileresp,fileres);
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    if((ficresp=fopen(fileresp,"w"))==NULL) {
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\      printf("Problem with prevalence resultfile: %s\n", fileresp);
  char version[], int popforecast, int estepm ){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   int jj1, k1, i1, cpt;      exit(0);
   FILE *fichtm;    }
   /*char optionfilehtm[FILENAMELENGTH];*/    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
   strcpy(optionfilehtm,optionfile);    
   strcat(optionfilehtm,".htm");    j=cptcoveff;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }    first=1;
   
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    for(k1=1; k1<=j;k1++){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      for(i1=1; i1<=ncodemax[k1];i1++){
 \n        j1++;
 Total number of observations=%d <br>\n        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          scanf("%d", i);*/
 <hr  size=\"2\" color=\"#EC5E5E\">        for (i=-5; i<=nlstate+ndeath; i++)  
  <ul><li>Outputs files<br>\n          for (jk=-5; jk<=nlstate+ndeath; jk++)  
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            for(m=iagemin; m <= iagemax+3; m++)
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n              freq[i][jk][m]=0;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n      for (i=1; i<=nlstate; i++)  
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n        for(m=iagemin; m <= iagemax+3; m++)
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          prop[i][m]=0;
         
  fprintf(fichtm,"\n        dateintsum=0;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n        k2cpt=0;
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        for (i=1; i<=imx; i++) {
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          bool=1;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          if  (cptcovn>0) {
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  if(popforecast==1) fprintf(fichtm,"\n                bool=0;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          if (bool==1){
         <br>",fileres,fileres,fileres,fileres);            for(m=firstpass; m<=lastpass; m++){
  else              k2=anint[m][i]+(mint[m][i]/12.);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 fprintf(fichtm," <li>Graphs</li><p>");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
  m=cptcoveff;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
  jj1=0;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
  for(k1=1; k1<=m;k1++){                }
    for(i1=1; i1<=ncodemax[k1];i1++){                
        jj1++;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
        if (cptcovn > 0) {                  dateintsum=dateintsum+k2;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                  k2cpt++;
          for (cpt=1; cpt<=cptcoveff;cpt++)                }
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                /*}*/
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            }
        }          }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);             
        for(cpt=1; cpt<nlstate;cpt++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        pstamp(ficresp);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        if  (cptcovn>0) {
        }          fprintf(ficresp, "\n#********** Variable "); 
     for(cpt=1; cpt<=nlstate;cpt++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          fprintf(ficresp, "**********\n#");
 interval) in state (%d): v%s%d%d.gif <br>        }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for(i=1; i<=nlstate;i++) 
      }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      for(cpt=1; cpt<=nlstate;cpt++) {        fprintf(ficresp, "\n");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(i=iagemin; i <= iagemax+3; i++){
      }          if(i==iagemax+3){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            fprintf(ficlog,"Total");
 health expectancies in states (1) and (2): e%s%d.gif<br>          }else{
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            if(first==1){
 fprintf(fichtm,"\n</body>");              first=0;
    }              printf("See log file for details...\n");
    }            }
 fclose(fichtm);            fprintf(ficlog,"Age %d", i);
 }          }
           for(jk=1; jk <=nlstate ; jk++){
 /******************* Gnuplot file **************/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              pp[jk] += freq[jk][m][i]; 
           }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   strcpy(optionfilegnuplot,optionfilefiname);              pos += freq[jk][m][i];
   strcat(optionfilegnuplot,".gp.txt");            if(pp[jk]>=1.e-10){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              if(first==1){
     printf("Problem with file %s",optionfilegnuplot);                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   }              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 #ifdef windows            }else{
     fprintf(ficgp,"cd \"%s\" \n",pathc);              if(first==1)
 #endif                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 m=pow(2,cptcoveff);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
              }
  /* 1eme*/          }
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              pp[jk] += freq[jk][m][i];
           }       
 for (i=1; i<= nlstate ; i ++) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            pos += pp[jk];
   else fprintf(ficgp," \%%*lf (\%%*lf)");            posprop += prop[jk][i];
 }          }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){
     for (i=1; i<= nlstate ; i ++) {            if(pos>=1.e-5){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(first==1)
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            }else{
      for (i=1; i<= nlstate ; i ++) {              if(first==1)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 }              }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            if( i <= iagemax){
               if(pos>=1.e-5){
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
    }                /*probs[i][jk][j1]= pp[jk]/pos;*/
   }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   /*2 eme*/              }
               else
   for (k1=1; k1<= m ; k1 ++) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);            }
              }
     for (i=1; i<= nlstate+1 ; i ++) {          
       k=2*i;          for(jk=-1; jk <=nlstate+ndeath; jk++)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            for(m=-1; m <=nlstate+ndeath; m++)
       for (j=1; j<= nlstate+1 ; j ++) {              if(freq[jk][m][i] !=0 ) {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              if(first==1)
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 }                  fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          if(i <= iagemax)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            fprintf(ficresp,"\n");
       for (j=1; j<= nlstate+1 ; j ++) {          if(first==1)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            printf("Others in log...\n");
         else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficlog,"\n");
 }          }
       fprintf(ficgp,"\" t\"\" w l 0,");      }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    dateintmean=dateintsum/k2cpt; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fclose(ficresp);
 }      free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    free_vector(pp,1,nlstate);
       else fprintf(ficgp,"\" t\"\" w l 0,");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     }    /* End of Freq */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  }
   }  
    /************ Prevalence ********************/
   /*3eme*/  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
   for (k1=1; k1<= m ; k1 ++) {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     for (cpt=1; cpt<= nlstate ; cpt ++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
       k=2+nlstate*(2*cpt-2);       We still use firstpass and lastpass as another selection.
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    int i, m, jk, k1, i1, j1, bool, z1,j;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double ***freq; /* Frequencies */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    double *pp, **prop;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    double pos,posprop; 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double  y2; /* in fractional years */
     int iagemin, iagemax;
 */  
       for (i=1; i< nlstate ; i ++) {    iagemin= (int) agemin;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
       }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     }    j1=0;
     }    
      j=cptcoveff;
   /* CV preval stat */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for (k1=1; k1<= m ; k1 ++) {    
     for (cpt=1; cpt<nlstate ; cpt ++) {    for(k1=1; k1<=j;k1++){
       k=3;      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        j1++;
         
       for (i=1; i< nlstate ; i ++)        for (i=1; i<=nlstate; i++)  
         fprintf(ficgp,"+$%d",k+i+1);          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            prop[i][m]=0.0;
             
       l=3+(nlstate+ndeath)*cpt;        for (i=1; i<=imx; i++) { /* Each individual */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          bool=1;
       for (i=1; i< nlstate ; i ++) {          if  (cptcovn>0) {
         l=3+(nlstate+ndeath)*cpt;            for (z1=1; z1<=cptcoveff; z1++) 
         fprintf(ficgp,"+$%d",l+i+1);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            } 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          if (bool==1) { 
     }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   }                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   /* proba elementaires */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    for(i=1,jk=1; i <=nlstate; i++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for(k=1; k <=(nlstate+ndeath); k++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       if (k != i) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         for(j=1; j <=ncovmodel; j++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                          prop[s[m][i]][(int)agev[m][i]] += weight[i];
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                  prop[s[m][i]][iagemax+3] += weight[i]; 
           jk++;                } 
           fprintf(ficgp,"\n");              }
         }            } /* end selection of waves */
       }          }
     }        }
     }        for(i=iagemin; i <= iagemax+3; i++){  
           
     for(jk=1; jk <=m; jk++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            posprop += prop[jk][i]; 
    i=1;          } 
    for(k2=1; k2<=nlstate; k2++) {  
      k3=i;          for(jk=1; jk <=nlstate ; jk++){     
      for(k=1; k<=(nlstate+ndeath); k++) {            if( i <=  iagemax){ 
        if (k != k2){              if(posprop>=1.e-5){ 
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                probs[i][jk][j1]= prop[jk][i]/posprop;
 ij=1;              } else
         for(j=3; j <=ncovmodel; j++) {                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            } 
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }/* end jk */ 
             ij++;        }/* end i */ 
           }      } /* end i1 */
           else    } /* end k1 */
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    
         }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           fprintf(ficgp,")/(1");    /*free_vector(pp,1,nlstate);*/
            free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         for(k1=1; k1 <=nlstate; k1++){    }  /* End of prevalence */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
 ij=1;  /************* Waves Concatenation ***************/
           for(j=3; j <=ncovmodel; j++){  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  {
             ij++;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           }       Death is a valid wave (if date is known).
           else       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           }       and mw[mi+1][i]. dh depends on stepm.
           fprintf(ficgp,")");       */
         }  
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    int i, mi, m;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         i=i+ncovmodel;       double sum=0., jmean=0.;*/
        }    int first;
      }    int j, k=0,jk, ju, jl;
    }    double sum=0.;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    first=0;
    }    jmin=1e+5;
        jmax=-1;
   fclose(ficgp);    jmean=0.;
 }  /* end gnuplot */    for(i=1; i<=imx; i++){
       mi=0;
       m=firstpass;
 /*************** Moving average **************/      while(s[m][i] <= nlstate){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
   int i, cpt, cptcod;        if(m >=lastpass)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          break;
       for (i=1; i<=nlstate;i++)        else
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          m++;
           mobaverage[(int)agedeb][i][cptcod]=0.;      }/* end while */
          if (s[m][i] > nlstate){
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        mi++;     /* Death is another wave */
       for (i=1; i<=nlstate;i++){        /* if(mi==0)  never been interviewed correctly before death */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){           /* Only death is a correct wave */
           for (cpt=0;cpt<=4;cpt++){        mw[mi][i]=m;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      }
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      wav[i]=mi;
         }      if(mi==0){
       }        nbwarn++;
     }        if(first==0){
              printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 }          first=1;
         }
         if(first==1){
 /************** Forecasting ******************/          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        }
        } /* end mi==0 */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    } /* End individuals */
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    for(i=1; i<=imx; i++){
   double *popeffectif,*popcount;      for(mi=1; mi<wav[i];mi++){
   double ***p3mat;        if (stepm <=0)
   char fileresf[FILENAMELENGTH];          dh[mi][i]=1;
         else{
  agelim=AGESUP;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              if(j==0) j=1;  /* Survives at least one month after exam */
                else if(j<0){
                  nberr++;
   strcpy(fileresf,"f");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   strcat(fileresf,fileres);                j=1; /* Temporary Dangerous patch */
   if((ficresf=fopen(fileresf,"w"))==NULL) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     printf("Problem with forecast resultfile: %s\n", fileresf);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   printf("Computing forecasting: result on file '%s' \n", fileresf);              }
               k=k+1;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              if (j >= jmax){
                 jmax=j;
   if (mobilav==1) {                ijmax=i;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              }
     movingaverage(agedeb, fage, ageminpar, mobaverage);              if (j <= jmin){
   }                jmin=j;
                 ijmin=i;
   stepsize=(int) (stepm+YEARM-1)/YEARM;              }
   if (stepm<=12) stepsize=1;              sum=sum+j;
                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   agelim=AGESUP;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
              }
   hstepm=1;          }
   hstepm=hstepm/stepm;          else{
   yp1=modf(dateintmean,&yp);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   anprojmean=yp;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;            k=k+1;
   yp1=modf((yp2*30.5),&yp);            if (j >= jmax) {
   jprojmean=yp;              jmax=j;
   if(jprojmean==0) jprojmean=1;              ijmax=i;
   if(mprojmean==0) jprojmean=1;            }
              else if (j <= jmin){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              jmin=j;
                ijmin=i;
   for(cptcov=1;cptcov<=i2;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       k=k+1;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       fprintf(ficresf,"\n#******");            if(j<0){
       for(j=1;j<=cptcoveff;j++) {              nberr++;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficresf,"******\n");            }
       fprintf(ficresf,"# StartingAge FinalAge");            sum=sum+j;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          }
                jk= j/stepm;
                jl= j -jk*stepm;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          ju= j -(jk+1)*stepm;
         fprintf(ficresf,"\n");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              if(jl==0){
               dh[mi][i]=jk;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              bh[mi][i]=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            }else{ /* We want a negative bias in order to only have interpolation ie
           nhstepm = nhstepm/hstepm;                    * at the price of an extra matrix product in likelihood */
                        dh[mi][i]=jk+1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              bh[mi][i]=ju;
           oldm=oldms;savm=savms;            }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }else{
                    if(jl <= -ju){
           for (h=0; h<=nhstepm; h++){              dh[mi][i]=jk;
             if (h==(int) (calagedate+YEARM*cpt)) {              bh[mi][i]=jl;       /* bias is positive if real duration
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);                                   * is higher than the multiple of stepm and negative otherwise.
             }                                   */
             for(j=1; j<=nlstate+ndeath;j++) {            }
               kk1=0.;kk2=0;            else{
               for(i=1; i<=nlstate;i++) {                            dh[mi][i]=jk+1;
                 if (mobilav==1)              bh[mi][i]=ju;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            }
                 else {            if(dh[mi][i]==0){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              dh[mi][i]=1; /* At least one step */
                 }              bh[mi][i]=ju; /* At least one step */
                              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
               }            }
               if (h==(int)(calagedate+12*cpt)){          } /* end if mle */
                 fprintf(ficresf," %.3f", kk1);        }
                              } /* end wave */
               }    }
             }    jmean=sum/k;
           }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         }   }
       }  
     }  /*********** Tricode ****************************/
   }  void tricode(int *Tvar, int **nbcode, int imx)
          {
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
     /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
   fclose(ficresf);  
 }    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 /************** Forecasting ******************/    int cptcode=0;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    cptcoveff=0; 
     
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   int *popage;    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate */
   double ***p3mat,***tabpop,***tabpopprev;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   char filerespop[FILENAMELENGTH];                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual, might be -1*/
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        Ndum[ij]++; /*counts the occurence of this modality */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   agelim=AGESUP;        if (ij > cptcode) cptcode=ij; /* getting the maximum value of the modality of the covariate  (should be 0 or 1 now) 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;                                         Tvar[j]. If V=sex and male is 0 and 
                                           female is 1, then  cptcode=1.*/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      }
    
        for (i=0; i<=cptcode; i++) { /* i=-1 ?*/
   strcpy(filerespop,"pop");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j
   strcat(filerespop,fileres);                                         th covariate. In fact
   if((ficrespop=fopen(filerespop,"w"))==NULL) {                                         ncodemax[j]=2
     printf("Problem with forecast resultfile: %s\n", filerespop);                                         (dichotom. variables only) but
   }                                         it can be more */
   printf("Computing forecasting: result on file '%s' \n", filerespop);      } /* Ndum[-1] number of undefined modalities */
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      ij=1; 
       for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 */
   if (mobilav==1) {        for (k=0; k<= maxncov; k++) { /* k=-1 ?*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
     movingaverage(agedeb, fage, ageminpar, mobaverage);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   }                                       k is a modality. If we have model=V1+V1*sex 
                                        then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   stepsize=(int) (stepm+YEARM-1)/YEARM;            ij++;
   if (stepm<=12) stepsize=1;          }
            if (ij > ncodemax[j]) break; 
   agelim=AGESUP;        }  
        } 
   hstepm=1;    }  
   hstepm=hstepm/stepm;  
     for (k=0; k< maxncov; k++) Ndum[k]=0;
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
       printf("Problem with population file : %s\n",popfile);exit(0);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     }     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
     popage=ivector(0,AGESUP);     Ndum[ij]++;
     popeffectif=vector(0,AGESUP);   }
     popcount=vector(0,AGESUP);  
       ij=1;
     i=1;     for (i=1; i<= maxncov; i++) {
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;     if((Ndum[i]!=0) && (i<=ncovcol)){
           Tvaraff[ij]=i; /*For printing */
     imx=i;       ij++;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];     }
   }   }
    ij--;
   for(cptcov=1;cptcov<=i2;cptcov++){   cptcoveff=ij; /*Number of simple covariates*/
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  }
       k=k+1;  
       fprintf(ficrespop,"\n#******");  /*********** Health Expectancies ****************/
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       }  
       fprintf(ficrespop,"******\n");  {
       fprintf(ficrespop,"# Age");    /* Health expectancies, no variances */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
       if (popforecast==1)  fprintf(ficrespop," [Population]");    int nhstepma, nstepma; /* Decreasing with age */
          double age, agelim, hf;
       for (cpt=0; cpt<=0;cpt++) {    double ***p3mat;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double eip;
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    pstamp(ficreseij);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           nhstepm = nhstepm/hstepm;    fprintf(ficreseij,"# Age");
              for(i=1; i<=nlstate;i++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=1; j<=nlstate;j++){
           oldm=oldms;savm=savms;        fprintf(ficreseij," e%1d%1d ",i,j);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }
              fprintf(ficreseij," e%1d. ",i);
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficreseij,"\n");
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    
             for(j=1; j<=nlstate+ndeath;j++) {    if(estepm < stepm){
               kk1=0.;kk2=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
               for(i=1; i<=nlstate;i++) {                  }
                 if (mobilav==1)    else  hstepm=estepm;   
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /* We compute the life expectancy from trapezoids spaced every estepm months
                 else {     * This is mainly to measure the difference between two models: for example
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     * if stepm=24 months pijx are given only every 2 years and by summing them
                 }     * we are calculating an estimate of the Life Expectancy assuming a linear 
               }     * progression in between and thus overestimating or underestimating according
               if (h==(int)(calagedate+12*cpt)){     * to the curvature of the survival function. If, for the same date, we 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   /*fprintf(ficrespop," %.3f", kk1);     * to compare the new estimate of Life expectancy with the same linear 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/     * hypothesis. A more precise result, taking into account a more precise
               }     * curvature will be obtained if estepm is as small as stepm. */
             }  
             for(i=1; i<=nlstate;i++){    /* For example we decided to compute the life expectancy with the smallest unit */
               kk1=0.;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 for(j=1; j<=nlstate;j++){       nhstepm is the number of hstepm from age to agelim 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];       nstepm is the number of stepm from age to agelin. 
                 }       Look at hpijx to understand the reason of that which relies in memory size
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];       and note for a fixed period like estepm months */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)       means that if the survival funtion is printed only each two years of age and if
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           }       results. So we changed our mind and took the option of the best precision.
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
         }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }  
      agelim=AGESUP;
   /******/    /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /* nhstepm age range expressed in number of stepm */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           nhstepm = nhstepm/hstepm;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
              /* if (stepm >= YEARM) hstepm=1;*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           oldm=oldms;savm=savms;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){    for (age=bage; age<=fage; age ++){ 
             if (h==(int) (calagedate+YEARM*cpt)) {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             }      /* if (stepm >= YEARM) hstepm=1;*/
             for(j=1; j<=nlstate+ndeath;j++) {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                    /* If stepm=6 months */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          /* Computed by stepm unit matrices, product of hstepma matrices, stored
               }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      
             }      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           }      
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         }      
       }      printf("%d|",(int)age);fflush(stdout);
    }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   }      
        /* Computing expectancies */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   if (popforecast==1) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     free_ivector(popage,0,AGESUP);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     free_vector(popeffectif,0,AGESUP);            
     free_vector(popcount,0,AGESUP);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficrespop);      fprintf(ficreseij,"%3.0f",age );
 }      for(i=1; i<=nlstate;i++){
         eip=0;
 /***********************************************/        for(j=1; j<=nlstate;j++){
 /**************** Main Program *****************/          eip +=eij[i][j][(int)age];
 /***********************************************/          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
 int main(int argc, char *argv[])        fprintf(ficreseij,"%9.4f", eip );
 {      }
       fprintf(ficreseij,"\n");
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;      
   double agedeb, agefin,hf;    }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
   double fret;    fprintf(ficlog,"\n");
   double **xi,tmp,delta;    
   }
   double dum; /* Dummy variable */  
   double ***p3mat;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];  {
   char title[MAXLINE];    /* Covariances of health expectancies eij and of total life expectancies according
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];     to initial status i, ei. .
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
   char filerest[FILENAMELENGTH];    double ***p3matp, ***p3matm, ***varhe;
   char fileregp[FILENAMELENGTH];    double **dnewm,**doldm;
   char popfile[FILENAMELENGTH];    double *xp, *xm;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    double **gp, **gm;
   int firstobs=1, lastobs=10;    double ***gradg, ***trgradg;
   int sdeb, sfin; /* Status at beginning and end */    int theta;
   int c,  h , cpt,l;  
   int ju,jl, mi;    double eip, vip;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   int mobilav=0,popforecast=0;    xp=vector(1,npar);
   int hstepm, nhstepm;    xm=vector(1,npar);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   double bage, fage, age, agelim, agebase;    
   double ftolpl=FTOL;    pstamp(ficresstdeij);
   double **prlim;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   double *severity;    fprintf(ficresstdeij,"# Age");
   double ***param; /* Matrix of parameters */    for(i=1; i<=nlstate;i++){
   double  *p;      for(j=1; j<=nlstate;j++)
   double **matcov; /* Matrix of covariance */        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   double ***delti3; /* Scale */      fprintf(ficresstdeij," e%1d. ",i);
   double *delti; /* Scale */    }
   double ***eij, ***vareij;    fprintf(ficresstdeij,"\n");
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;    pstamp(ficrescveij);
   double kk1, kk2;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    fprintf(ficrescveij,"# Age");
      for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";        cptj= (j-1)*nlstate+i;
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
   char z[1]="c", occ;            if(cptj2 <= cptj)
 #include <sys/time.h>              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
 #include <time.h>          }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      }
      fprintf(ficrescveij,"\n");
   /* long total_usecs;    
   struct timeval start_time, end_time;    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    }
   getcwd(pathcd, size);    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
   printf("\n%s",version);     * This is mainly to measure the difference between two models: for example
   if(argc <=1){     * if stepm=24 months pijx are given only every 2 years and by summing them
     printf("\nEnter the parameter file name: ");     * we are calculating an estimate of the Life Expectancy assuming a linear 
     scanf("%s",pathtot);     * progression in between and thus overestimating or underestimating according
   }     * to the curvature of the survival function. If, for the same date, we 
   else{     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     strcpy(pathtot,argv[1]);     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/     * curvature will be obtained if estepm is as small as stepm. */
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    /* For example we decided to compute the life expectancy with the smallest unit */
   /* cutv(path,optionfile,pathtot,'\\');*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);       nstepm is the number of stepm from age to agelin. 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);       Look at hpijx to understand the reason of that which relies in memory size
   chdir(path);       and note for a fixed period like estepm months */
   replace(pathc,path);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
 /*-------- arguments in the command line --------*/       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   strcpy(fileres,"r");       results. So we changed our mind and took the option of the best precision.
   strcat(fileres, optionfilefiname);    */
   strcat(fileres,".txt");    /* Other files have txt extension */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   /*---------arguments file --------*/    /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    agelim=AGESUP;
     printf("Problem with optionfile %s\n",optionfile);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     goto end;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcpy(filereso,"o");    
   strcat(filereso,fileres);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficparo=fopen(filereso,"w"))==NULL) {    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
   /* Reads comments: lines beginning with '#' */    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    for (age=bage; age<=fage; age ++){ 
     fgets(line, MAXLINE, ficpar);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     puts(line);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fputs(line,ficparo);      /* if (stepm >= YEARM) hstepm=1;*/
   }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   ungetc(c,ficpar);  
       /* If stepm=6 months */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      
 while((c=getc(ficpar))=='#' && c!= EOF){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      /* Computing  Variances of health expectancies */
     puts(line);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     fputs(line,ficparo);         decrease memory allocation */
   }      for(theta=1; theta <=npar; theta++){
   ungetc(c,ficpar);        for(i=1; i<=npar; i++){ 
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
              xm[i] = x[i] - (i==theta ?delti[theta]:0);
   covar=matrix(0,NCOVMAX,1,n);        }
   cptcovn=0;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
   ncovmodel=2+cptcovn;        for(j=1; j<= nlstate; j++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          for(i=1; i<=nlstate; i++){
              for(h=0; h<=nhstepm-1; h++){
   /* Read guess parameters */              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   /* Reads comments: lines beginning with '#' */              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);       
     fputs(line,ficparo);        for(ij=1; ij<= nlstate*nlstate; ij++)
   }          for(h=0; h<=nhstepm-1; h++){
   ungetc(c,ficpar);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
            }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      }/* End theta */
     for(i=1; i <=nlstate; i++)      
     for(j=1; j <=nlstate+ndeath-1; j++){      
       fscanf(ficpar,"%1d%1d",&i1,&j1);      for(h=0; h<=nhstepm-1; h++)
       fprintf(ficparo,"%1d%1d",i1,j1);        for(j=1; j<=nlstate*nlstate;j++)
       printf("%1d%1d",i,j);          for(theta=1; theta <=npar; theta++)
       for(k=1; k<=ncovmodel;k++){            trgradg[h][j][theta]=gradg[h][theta][j];
         fscanf(ficpar," %lf",&param[i][j][k]);      
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);       for(ij=1;ij<=nlstate*nlstate;ij++)
       }        for(ji=1;ji<=nlstate*nlstate;ji++)
       fscanf(ficpar,"\n");          varhe[ij][ji][(int)age] =0.;
       printf("\n");  
       fprintf(ficparo,"\n");       printf("%d|",(int)age);fflush(stdout);
     }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for(h=0;h<=nhstepm-1;h++){
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   p=param[1][1];          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
            for(ij=1;ij<=nlstate*nlstate;ij++)
   /* Reads comments: lines beginning with '#' */            for(ji=1;ji<=nlstate*nlstate;ji++)
   while((c=getc(ficpar))=='#' && c!= EOF){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      }
     puts(line);  
     fputs(line,ficparo);      /* Computing expectancies */
   }      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   for(i=1; i <=nlstate; i++){            
     for(j=1; j <=nlstate+ndeath-1; j++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);          }
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){      fprintf(ficresstdeij,"%3.0f",age );
         fscanf(ficpar,"%le",&delti3[i][j][k]);      for(i=1; i<=nlstate;i++){
         printf(" %le",delti3[i][j][k]);        eip=0.;
         fprintf(ficparo," %le",delti3[i][j][k]);        vip=0.;
       }        for(j=1; j<=nlstate;j++){
       fscanf(ficpar,"\n");          eip += eij[i][j][(int)age];
       printf("\n");          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       fprintf(ficparo,"\n");            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   }        }
   delti=delti3[1][1];        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
        }
   /* Reads comments: lines beginning with '#' */      fprintf(ficresstdeij,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      fprintf(ficrescveij,"%3.0f",age );
     fgets(line, MAXLINE, ficpar);      for(i=1; i<=nlstate;i++)
     puts(line);        for(j=1; j<=nlstate;j++){
     fputs(line,ficparo);          cptj= (j-1)*nlstate+i;
   }          for(i2=1; i2<=nlstate;i2++)
   ungetc(c,ficpar);            for(j2=1; j2<=nlstate;j2++){
                cptj2= (j2-1)*nlstate+i2;
   matcov=matrix(1,npar,1,npar);              if(cptj2 <= cptj)
   for(i=1; i <=npar; i++){                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     fscanf(ficpar,"%s",&str);            }
     printf("%s",str);        }
     fprintf(ficparo,"%s",str);      fprintf(ficrescveij,"\n");
     for(j=1; j <=i; j++){     
       fscanf(ficpar," %le",&matcov[i][j]);    }
       printf(" %.5le",matcov[i][j]);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficparo," %.5le",matcov[i][j]);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     fscanf(ficpar,"\n");    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     printf("\n");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficparo,"\n");    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    printf("\n");
   for(i=1; i <=npar; i++)    fprintf(ficlog,"\n");
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];    free_vector(xm,1,npar);
        free_vector(xp,1,npar);
   printf("\n");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     /*-------- Rewriting paramater file ----------*/  }
      strcpy(rfileres,"r");    /* "Rparameterfile */  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  /************ Variance ******************/
      strcat(rfileres,".");    /* */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  {
     if((ficres =fopen(rfileres,"w"))==NULL) {    /* Variance of health expectancies */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     }    /* double **newm;*/
     fprintf(ficres,"#%s\n",version);    double **dnewm,**doldm;
        double **dnewmp,**doldmp;
     /*-------- data file ----------*/    int i, j, nhstepm, hstepm, h, nstepm ;
     if((fic=fopen(datafile,"r"))==NULL)    {    int k, cptcode;
       printf("Problem with datafile: %s\n", datafile);goto end;    double *xp;
     }    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     n= lastobs;    double **gradgp, **trgradgp; /* for var p point j */
     severity = vector(1,maxwav);    double *gpp, *gmp; /* for var p point j */
     outcome=imatrix(1,maxwav+1,1,n);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     num=ivector(1,n);    double ***p3mat;
     moisnais=vector(1,n);    double age,agelim, hf;
     annais=vector(1,n);    double ***mobaverage;
     moisdc=vector(1,n);    int theta;
     andc=vector(1,n);    char digit[4];
     agedc=vector(1,n);    char digitp[25];
     cod=ivector(1,n);  
     weight=vector(1,n);    char fileresprobmorprev[FILENAMELENGTH];
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);    if(popbased==1){
     anint=matrix(1,maxwav,1,n);      if(mobilav!=0)
     s=imatrix(1,maxwav+1,1,n);        strcpy(digitp,"-populbased-mobilav-");
     adl=imatrix(1,maxwav+1,1,n);          else strcpy(digitp,"-populbased-nomobil-");
     tab=ivector(1,NCOVMAX);    }
     ncodemax=ivector(1,8);    else 
       strcpy(digitp,"-stablbased-");
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {    if (mobilav!=0) {
       if ((i >= firstobs) && (i <=lastobs)) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
              if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         for (j=maxwav;j>=1;j--){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           strcpy(line,stra);      }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    strcpy(fileresprobmorprev,"prmorprev"); 
            sprintf(digit,"%-d",ij);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    strcat(fileresprobmorprev,fileres);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         for (j=ncovcol;j>=1;j--){    }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         }   
         num[i]=atol(stra);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
            pstamp(ficresprobmorprev);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         i=i+1;      fprintf(ficresprobmorprev," p.%-d SE",j);
       }      for(i=1; i<=nlstate;i++)
     }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     /* printf("ii=%d", ij);    }  
        scanf("%d",i);*/    fprintf(ficresprobmorprev,"\n");
   imx=i-1; /* Number of individuals */    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   /* for (i=1; i<=imx; i++){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  /*   } */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }*/    pstamp(ficresvij);
    /*  for (i=1; i<=imx; i++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
      if (s[4][i]==9)  s[4][i]=-1;    if(popbased==1)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
      else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   /* Calculation of the number of parameter from char model*/    fprintf(ficresvij,"# Age");
   Tvar=ivector(1,15);    for(i=1; i<=nlstate;i++)
   Tprod=ivector(1,15);      for(j=1; j<=nlstate;j++)
   Tvaraff=ivector(1,15);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   Tvard=imatrix(1,15,1,2);    fprintf(ficresvij,"\n");
   Tage=ivector(1,15);        
        xp=vector(1,npar);
   if (strlen(model) >1){    dnewm=matrix(1,nlstate,1,npar);
     j=0, j1=0, k1=1, k2=1;    doldm=matrix(1,nlstate,1,nlstate);
     j=nbocc(model,'+');    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     j1=nbocc(model,'*');    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     cptcovn=j+1;  
     cptcovprod=j1;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
        gpp=vector(nlstate+1,nlstate+ndeath);
     strcpy(modelsav,model);    gmp=vector(nlstate+1,nlstate+ndeath);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       printf("Error. Non available option model=%s ",model);    
       goto end;    if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
        }
     for(i=(j+1); i>=1;i--){    else  hstepm=estepm;   
       cutv(stra,strb,modelsav,'+');    /* For example we decided to compute the life expectancy with the smallest unit */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/       nhstepm is the number of hstepm from age to agelim 
       /*scanf("%d",i);*/       nstepm is the number of stepm from age to agelin. 
       if (strchr(strb,'*')) {       Look at function hpijx to understand why (it is linked to memory size questions) */
         cutv(strd,strc,strb,'*');    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         if (strcmp(strc,"age")==0) {       survival function given by stepm (the optimization length). Unfortunately it
           cptcovprod--;       means that if the survival funtion is printed every two years of age and if
           cutv(strb,stre,strd,'V');       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           Tvar[i]=atoi(stre);       results. So we changed our mind and took the option of the best precision.
           cptcovage++;    */
             Tage[cptcovage]=i;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             /*printf("stre=%s ", stre);*/    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         else if (strcmp(strd,"age")==0) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           cptcovprod--;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           cutv(strb,stre,strc,'V');      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tvar[i]=atoi(stre);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           cptcovage++;      gp=matrix(0,nhstepm,1,nlstate);
           Tage[cptcovage]=i;      gm=matrix(0,nhstepm,1,nlstate);
         }  
         else {  
           cutv(strb,stre,strc,'V');      for(theta=1; theta <=npar; theta++){
           Tvar[i]=ncovcol+k1;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           cutv(strb,strc,strd,'V');          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           Tprod[k1]=i;        }
           Tvard[k1][1]=atoi(strc);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           Tvard[k1][2]=atoi(stre);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        if (popbased==1) {
           for (k=1; k<=lastobs;k++)          if(mobilav ==0){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            for(i=1; i<=nlstate;i++)
           k1++;              prlim[i][i]=probs[(int)age][i][ij];
           k2=k2+2;          }else{ /* mobilav */ 
         }            for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=mobaverage[(int)age][i][ij];
       else {          }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        }
        /*  scanf("%d",i);*/    
       cutv(strd,strc,strb,'V');        for(j=1; j<= nlstate; j++){
       Tvar[i]=atoi(strc);          for(h=0; h<=nhstepm; h++){
       }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       strcpy(modelsav,stra);                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          }
         scanf("%d",i);*/        }
     }        /* This for computing probability of death (h=1 means
 }           computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        */
   printf("cptcovprod=%d ", cptcovprod);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   scanf("%d ",i);*/          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     fclose(fic);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
     /*  if(mle==1){*/        /* end probability of death */
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     /*-calculation of age at interview from date of interview and age at death -*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     agev=matrix(1,maxwav,1,imx);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
     for (i=1; i<=imx; i++) {        if (popbased==1) {
       for(m=2; (m<= maxwav); m++) {          if(mobilav ==0){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            for(i=1; i<=nlstate;i++)
          anint[m][i]=9999;              prlim[i][i]=probs[(int)age][i][ij];
          s[m][i]=-1;          }else{ /* mobilav */ 
        }            for(i=1; i<=nlstate;i++)
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
     }        }
   
     for (i=1; i<=imx; i++)  {        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for(h=0; h<=nhstepm; h++){
       for(m=1; (m<= maxwav); m++){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         if(s[m][i] >0){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           if (s[m][i] >= nlstate+1) {          }
             if(agedc[i]>0)        }
               if(moisdc[i]!=99 && andc[i]!=9999)        /* This for computing probability of death (h=1 means
                 agev[m][i]=agedc[i];           computed over hstepm matrices product = hstepm*stepm months) 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/           as a weighted average of prlim.
            else {        */
               if (andc[i]!=9999){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
               agev[m][i]=-1;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
               }        }    
             }        /* end probability of death */
           }  
           else if(s[m][i] !=9){ /* Should no more exist */        for(j=1; j<= nlstate; j++) /* vareij */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          for(h=0; h<=nhstepm; h++){
             if(mint[m][i]==99 || anint[m][i]==9999)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
               agev[m][i]=1;          }
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             }        }
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];      } /* End theta */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/      for(h=0; h<=nhstepm; h++) /* veij */
           }        for(j=1; j<=nlstate;j++)
           else { /* =9 */          for(theta=1; theta <=npar; theta++)
             agev[m][i]=1;            trgradg[h][j][theta]=gradg[h][theta][j];
             s[m][i]=-1;  
           }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         }        for(theta=1; theta <=npar; theta++)
         else /*= 0 Unknown */          trgradgp[j][theta]=gradgp[theta][j];
           agev[m][i]=1;    
       }  
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     }      for(i=1;i<=nlstate;i++)
     for (i=1; i<=imx; i++)  {        for(j=1;j<=nlstate;j++)
       for(m=1; (m<= maxwav); m++){          vareij[i][j][(int)age] =0.;
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: Wrong value in nlstate or ndeath\n");        for(h=0;h<=nhstepm;h++){
           goto end;        for(k=0;k<=nhstepm;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     }          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
     free_vector(severity,1,maxwav);      }
     free_imatrix(outcome,1,maxwav+1,1,n);    
     free_vector(moisnais,1,n);      /* pptj */
     free_vector(annais,1,n);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     /* free_matrix(mint,1,maxwav,1,n);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        free_matrix(anint,1,maxwav,1,n);*/      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     free_vector(moisdc,1,n);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     free_vector(andc,1,n);          varppt[j][i]=doldmp[j][i];
       /* end ppptj */
          /*  x centered again */
     wav=ivector(1,imx);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   
          if (popbased==1) {
     /* Concatenates waves */        if(mobilav ==0){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
       Tcode=ivector(1,100);          for(i=1; i<=nlstate;i++)
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            prlim[i][i]=mobaverage[(int)age][i][ij];
       ncodemax[1]=1;        }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      }
                     
    codtab=imatrix(1,100,1,10);      /* This for computing probability of death (h=1 means
    h=0;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
    m=pow(2,cptcoveff);         as a weighted average of prlim.
        */
    for(k=1;k<=cptcoveff; k++){      for(j=nlstate+1;j<=nlstate+ndeath;j++){
      for(i=1; i <=(m/pow(2,k));i++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
        for(j=1; j <= ncodemax[k]; j++){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      }    
            h++;      /* end probability of death */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
          }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
      }        for(i=1; i<=nlstate;i++){
    }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        }
       codtab[1][2]=1;codtab[2][2]=2; */      } 
    /* for(i=1; i <=m ;i++){      fprintf(ficresprobmorprev,"\n");
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      fprintf(ficresvij,"%.0f ",age );
       }      for(i=1; i<=nlstate;i++)
       printf("\n");        for(j=1; j<=nlstate;j++){
       }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       scanf("%d",i);*/        }
          fprintf(ficresvij,"\n");
    /* Calculates basic frequencies. Computes observed prevalence at single age      free_matrix(gp,0,nhstepm,1,nlstate);
        and prints on file fileres'p'. */      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
          free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    } /* End age */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(gpp,nlstate+1,nlstate+ndeath);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(gmp,nlstate+1,nlstate+ndeath);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
          fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
     /* For Powell, parameters are in a vector p[] starting at p[1]    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     if(mle==1){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
        fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     /*--------- results files --------------*/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
    jk=1;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){    free_vector(xp,1,npar);
      for(k=1; k <=(nlstate+ndeath); k++){    free_matrix(doldm,1,nlstate,1,nlstate);
        if (k != i)    free_matrix(dnewm,1,nlstate,1,npar);
          {    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            printf("%d%d ",i,k);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
            fprintf(ficres,"%1d%1d ",i,k);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            for(j=1; j <=ncovmodel; j++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
              printf("%f ",p[jk]);    fclose(ficresprobmorprev);
              fprintf(ficres,"%f ",p[jk]);    fflush(ficgp);
              jk++;    fflush(fichtm); 
            }  }  /* end varevsij */
            printf("\n");  
            fprintf(ficres,"\n");  /************ Variance of prevlim ******************/
          }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
      }  {
    }    /* Variance of prevalence limit */
  if(mle==1){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     /* Computing hessian and covariance matrix */    double **newm;
     ftolhess=ftol; /* Usually correct */    double **dnewm,**doldm;
     hesscov(matcov, p, npar, delti, ftolhess, func);    int i, j, nhstepm, hstepm;
  }    int k, cptcode;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    double *xp;
     printf("# Scales (for hessian or gradient estimation)\n");    double *gp, *gm;
      for(i=1,jk=1; i <=nlstate; i++){    double **gradg, **trgradg;
       for(j=1; j <=nlstate+ndeath; j++){    double age,agelim;
         if (j!=i) {    int theta;
           fprintf(ficres,"%1d%1d",i,j);    
           printf("%1d%1d",i,j);    pstamp(ficresvpl);
           for(k=1; k<=ncovmodel;k++){    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
             printf(" %.5e",delti[jk]);    fprintf(ficresvpl,"# Age");
             fprintf(ficres," %.5e",delti[jk]);    for(i=1; i<=nlstate;i++)
             jk++;        fprintf(ficresvpl," %1d-%1d",i,i);
           }    fprintf(ficresvpl,"\n");
           printf("\n");  
           fprintf(ficres,"\n");    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
      }    
        hstepm=1*YEARM; /* Every year of age */
     k=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    agelim = AGESUP;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for(i=1;i<=npar;i++){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       /*  if (k>nlstate) k=1;      if (stepm >= YEARM) hstepm=1;
       i1=(i-1)/(ncovmodel*nlstate)+1;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      gradg=matrix(1,npar,1,nlstate);
       printf("%s%d%d",alph[k],i1,tab[i]);*/      gp=vector(1,nlstate);
       fprintf(ficres,"%3d",i);      gm=vector(1,nlstate);
       printf("%3d",i);  
       for(j=1; j<=i;j++){      for(theta=1; theta <=npar; theta++){
         fprintf(ficres," %.5e",matcov[i][j]);        for(i=1; i<=npar; i++){ /* Computes gradient */
         printf(" %.5e",matcov[i][j]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
       fprintf(ficres,"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("\n");        for(i=1;i<=nlstate;i++)
       k++;          gp[i] = prlim[i][i];
     }      
            for(i=1; i<=npar; i++) /* Computes gradient */
     while((c=getc(ficpar))=='#' && c!= EOF){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fgets(line, MAXLINE, ficpar);        for(i=1;i<=nlstate;i++)
       puts(line);          gm[i] = prlim[i][i];
       fputs(line,ficparo);  
     }        for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     estepm=0;      } /* End theta */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
     if (estepm==0 || estepm < stepm) estepm=stepm;      trgradg =matrix(1,nlstate,1,npar);
     if (fage <= 2) {  
       bage = ageminpar;      for(j=1; j<=nlstate;j++)
       fage = agemaxpar;        for(theta=1; theta <=npar; theta++)
     }          trgradg[j][theta]=gradg[theta][j];
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      for(i=1;i<=nlstate;i++)
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        varpl[i][(int)age] =0.;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     fgets(line, MAXLINE, ficpar);  
     puts(line);      fprintf(ficresvpl,"%.0f ",age );
     fputs(line,ficparo);      for(i=1; i<=nlstate;i++)
   }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   ungetc(c,ficpar);      fprintf(ficresvpl,"\n");
        free_vector(gp,1,nlstate);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      free_vector(gm,1,nlstate);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      free_matrix(gradg,1,npar,1,nlstate);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      free_matrix(trgradg,1,nlstate,1,npar);
          } /* End age */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    free_vector(xp,1,npar);
     fgets(line, MAXLINE, ficpar);    free_matrix(doldm,1,nlstate,1,npar);
     puts(line);    free_matrix(dnewm,1,nlstate,1,nlstate);
     fputs(line,ficparo);  
   }  }
   ungetc(c,ficpar);  
    /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  {
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
   fscanf(ficpar,"pop_based=%d\n",&popbased);    int k=0,l, cptcode;
   fprintf(ficparo,"pop_based=%d\n",popbased);      int first=1, first1;
   fprintf(ficres,"pop_based=%d\n",popbased);      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
   while((c=getc(ficpar))=='#' && c!= EOF){    double *xp;
     ungetc(c,ficpar);    double *gp, *gm;
     fgets(line, MAXLINE, ficpar);    double **gradg, **trgradg;
     puts(line);    double **mu;
     fputs(line,ficparo);    double age,agelim, cov[NCOVMAX];
   }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   ungetc(c,ficpar);    int theta;
     char fileresprob[FILENAMELENGTH];
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    char fileresprobcov[FILENAMELENGTH];
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    char fileresprobcor[FILENAMELENGTH];
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
     double ***varpij;
   
 while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(fileresprob,"prob"); 
     ungetc(c,ficpar);    strcat(fileresprob,fileres);
     fgets(line, MAXLINE, ficpar);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     puts(line);      printf("Problem with resultfile: %s\n", fileresprob);
     fputs(line,ficparo);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   }    }
   ungetc(c,ficpar);    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      printf("Problem with resultfile: %s\n", fileresprobcov);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
 /*------------ gnuplot -------------*/    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);      printf("Problem with resultfile: %s\n", fileresprobcor);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 /*------------ free_vector  -------------*/    }
  chdir(path);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  free_ivector(wav,1,imx);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  free_ivector(num,1,n);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  free_vector(agedc,1,n);    pstamp(ficresprob);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
  fclose(ficparo);    fprintf(ficresprob,"# Age");
  fclose(ficres);    pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 /*--------- index.htm --------*/    fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
    
   /*--------------- Prevalence limit --------------*/  
      for(i=1; i<=nlstate;i++)
   strcpy(filerespl,"pl");      for(j=1; j<=(nlstate+ndeath);j++){
   strcat(filerespl,fileres);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   }      }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);   /* fprintf(ficresprob,"\n");
   fprintf(ficrespl,"#Prevalence limit\n");    fprintf(ficresprobcov,"\n");
   fprintf(ficrespl,"#Age ");    fprintf(ficresprobcor,"\n");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);   */
   fprintf(ficrespl,"\n");    xp=vector(1,npar);
      dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   prlim=matrix(1,nlstate,1,nlstate);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    first=1;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"\n# Routine varprob");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   k=0;    fprintf(fichtm,"\n");
   agebase=ageminpar;  
   agelim=agemaxpar;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   ftolpl=1.e-10;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   i1=cptcoveff;    file %s<br>\n",optionfilehtmcov);
   if (cptcovn < 1){i1=1;}    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
   for(cptcov=1;cptcov<=i1;cptcov++){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         k=k+1;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         fprintf(ficrespl,"\n#******");  standard deviations wide on each axis. <br>\
         for(j=1;j<=cptcoveff;j++)   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         fprintf(ficrespl,"******\n");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
          
         for (age=agebase; age<=agelim; age++){    cov[1]=1;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    tj=cptcoveff;
           fprintf(ficrespl,"%.0f",age );    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           for(i=1; i<=nlstate;i++)    j1=0;
           fprintf(ficrespl," %.5f", prlim[i][i]);    for(t=1; t<=tj;t++){
           fprintf(ficrespl,"\n");      for(i1=1; i1<=ncodemax[t];i1++){ 
         }        j1++;
       }        if  (cptcovn>0) {
     }          fprintf(ficresprob, "\n#********** Variable "); 
   fclose(ficrespl);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
   /*------------- h Pij x at various ages ------------*/          fprintf(ficresprobcov, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          fprintf(ficresprobcov, "**********\n#\n");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          fprintf(ficgp, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   printf("Computing pij: result on file '%s' \n", filerespij);          fprintf(ficgp, "**********\n#\n");
            
   stepsize=(int) (stepm+YEARM-1)/YEARM;          
   /*if (stepm<=24) stepsize=2;*/          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   agelim=AGESUP;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   hstepm=stepsize*YEARM; /* Every year of age */          
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          fprintf(ficresprobcor, "\n#********** Variable ");    
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   k=0;          fprintf(ficresprobcor, "**********\n#");    
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        
       k=k+1;        for (age=bage; age<=fage; age ++){ 
         fprintf(ficrespij,"\n#****** ");          cov[2]=age;
         for(j=1;j<=cptcoveff;j++)          for (k=1; k<=cptcovn;k++) {
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         fprintf(ficrespij,"******\n");          }
                  for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          for (k=1; k<=cptcovprod;k++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           oldm=oldms;savm=savms;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            gp=vector(1,(nlstate)*(nlstate+ndeath));
           fprintf(ficrespij,"# Age");          gm=vector(1,(nlstate)*(nlstate+ndeath));
           for(i=1; i<=nlstate;i++)      
             for(j=1; j<=nlstate+ndeath;j++)          for(theta=1; theta <=npar; theta++){
               fprintf(ficrespij," %1d-%1d",i,j);            for(i=1; i<=npar; i++)
           fprintf(ficrespij,"\n");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
            for (h=0; h<=nhstepm; h++){            
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             for(i=1; i<=nlstate;i++)            
               for(j=1; j<=nlstate+ndeath;j++)            k=0;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            for(i=1; i<= (nlstate); i++){
             fprintf(ficrespij,"\n");              for(j=1; j<=(nlstate+ndeath);j++){
              }                k=k+1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                gp[k]=pmmij[i][j];
           fprintf(ficrespij,"\n");              }
         }            }
     }            
   }            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   fclose(ficrespij);            k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   /*---------- Forecasting ------------------*/                k=k+1;
   if((stepm == 1) && (strcmp(model,".")==0)){                gm[k]=pmmij[i][j];
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);              }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);            }
   }       
   else{            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     erreur=108;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          }
   }  
            for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
   /*---------- Health expectancies and variances ------------*/              trgradg[j][theta]=gradg[theta][j];
           
   strcpy(filerest,"t");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   strcat(filerest,fileres);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   if((ficrest=fopen(filerest,"w"))==NULL) {          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
   strcpy(filerese,"e");          
   strcat(filerese,fileres);          k=0;
   if((ficreseij=fopen(filerese,"w"))==NULL) {          for(i=1; i<=(nlstate); i++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            for(j=1; j<=(nlstate+ndeath);j++){
   }              k=k+1;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);              mu[k][(int) age]=pmmij[i][j];
             }
  strcpy(fileresv,"v");          }
   strcat(fileresv,fileres);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);              varpij[i][j][(int)age] = doldm[i][j];
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          /*printf("\n%d ",(int)age);
   calagedate=-1;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   k=0;            }*/
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficresprob,"\n%d ",(int)age);
       k=k+1;          fprintf(ficresprobcov,"\n%d ",(int)age);
       fprintf(ficrest,"\n#****** ");          fprintf(ficresprobcor,"\n%d ",(int)age);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       fprintf(ficrest,"******\n");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       fprintf(ficreseij,"\n#****** ");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       for(j=1;j<=cptcoveff;j++)            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       fprintf(ficreseij,"******\n");          i=0;
           for (k=1; k<=(nlstate);k++){
       fprintf(ficresvij,"\n#****** ");            for (l=1; l<=(nlstate+ndeath);l++){ 
       for(j=1;j<=cptcoveff;j++)              i=i++;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       fprintf(ficresvij,"******\n");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       oldm=oldms;savm=savms;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                }
              }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          }/* end of loop for state */
       oldm=oldms;savm=savms;        } /* end of loop for age */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  
            /* Confidence intervalle of pij  */
         /*
            fprintf(ficgp,"\nunset parametric;unset label");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       fprintf(ficrest,"\n");          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       epj=vector(1,nlstate+1);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       for(age=bage; age <=fage ;age++){          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        */
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
             prlim[i][i]=probs[(int)age][i][k];        first1=1;
         }        for (k2=1; k2<=(nlstate);k2++){
                  for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         fprintf(ficrest," %4.0f",age);            if(l2==k2) continue;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            j=(k2-1)*(nlstate+ndeath)+l2;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            for (k1=1; k1<=(nlstate);k1++){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                if(l1==k1) continue;
           }                i=(k1-1)*(nlstate+ndeath)+l1;
           epj[nlstate+1] +=epj[j];                if(i<=j) continue;
         }                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
         for(i=1, vepp=0.;i <=nlstate;i++)                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           for(j=1;j <=nlstate;j++)                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
             vepp += vareij[i][j][(int)age];                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                    mu1=mu[i][(int) age]/stepm*YEARM ;
         for(j=1;j <=nlstate;j++){                    mu2=mu[j][(int) age]/stepm*YEARM;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                    c12=cv12/sqrt(v1*v2);
         }                    /* Computing eigen value of matrix of covariance */
         fprintf(ficrest,"\n");                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     }                    if ((lc2 <0) || (lc1 <0) ){
   }                      printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 free_matrix(mint,1,maxwav,1,n);                      fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                      lc1=fabs(lc1);
     free_vector(weight,1,n);                      lc2=fabs(lc2);
   fclose(ficreseij);                    }
   fclose(ficresvij);  
   fclose(ficrest);                    /* Eigen vectors */
   fclose(ficpar);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   free_vector(epj,1,nlstate+1);                    /*v21=sqrt(1.-v11*v11); *//* error */
                      v21=(lc1-v1)/cv12*v11;
   /*------- Variance limit prevalence------*/                      v12=-v21;
                     v22=v11;
   strcpy(fileresvpl,"vpl");                    tnalp=v21/v11;
   strcat(fileresvpl,fileres);                    if(first1==1){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                      first1=0;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     exit(0);                    }
   }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   k=0;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   for(cptcov=1;cptcov<=i1;cptcov++){                    if(first==1){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      first=0;
       k=k+1;                      fprintf(ficgp,"\nset parametric;unset label");
       fprintf(ficresvpl,"\n#****** ");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       fprintf(ficresvpl,"******\n");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
        %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       oldm=oldms;savm=savms;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
  }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fclose(ficresvpl);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /*---------- End : free ----------------*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }else{
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                      first=0;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                    }/* if first */
                    } /* age mod 5 */
   free_matrix(matcov,1,npar,1,npar);                } /* end loop age */
   free_vector(delti,1,npar);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   free_matrix(agev,1,maxwav,1,imx);                first=1;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);              } /*l12 */
             } /* k12 */
   if(erreur >0)          } /*l1 */
     printf("End of Imach with error or warning %d\n",erreur);        }/* k1 */
   else   printf("End of Imach\n");      } /* loop covariates */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    }
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   /*------ End -----------*/    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
  end:    fclose(ficresprobcov);
   /* chdir(pathcd);*/    fclose(ficresprobcor);
  /*system("wgnuplot graph.plt");*/    fflush(ficgp);
  /*system("../gp37mgw/wgnuplot graph.plt");*/    fflush(fichtmcov);
  /*system("cd ../gp37mgw");*/  }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);  
  strcat(plotcmd," ");  /******************* Printing html file ***********/
  strcat(plotcmd,optionfilegnuplot);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
  system(plotcmd);                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
  /*#ifdef windows*/                    int popforecast, int estepm ,\
   while (z[0] != 'q') {                    double jprev1, double mprev1,double anprev1, \
     /* chdir(path); */                    double jprev2, double mprev2,double anprev2){
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    int jj1, k1, i1, cpt;
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     else if (z[0] == 'e') system(optionfilehtm);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     else if (z[0] == 'g') system(plotcmd);  </ul>");
     else if (z[0] == 'q') exit(0);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   /*#endif */             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 }     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char linetmp[MAXLINE];
       char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
     /* where is ncovprod ?*/
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             goto end;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           goto end;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           goto end;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         goto end;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             goto end;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           goto end;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. Stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2+V3 =>2+1=3 */
       cptcovprod=j1; /*Number of products  V1*V2 =1 */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);fflush(ficlog);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 
                                        stra=V2
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V1+V3*age+V2 strb=V3*age*/
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre);  /* V1+V3*age+V2 Tvar[2]=3 */
             cptcovage++; /* Sums the number of covariates including age as a product */
             Tage[cptcovage]=i;  /* Tage[1] =2 */
             /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model V1+V3*V2+V2  strb=V3*V2*/
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[i]=ncovcol+k1;  /* find 'n' in Vn and stores in Tvar. 
                                     If already ncovcol=2 and model=V2*V1 Tvar[1]=2+1 and Tvar[2]=2+2 etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;  /* Tprod[1]  */
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V3*age+V1+V4 strb=V3*age+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.135


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>