Diff for /imach/src/imach.c between versions 1.117 and 1.125

version 1.117, 2006/03/14 17:16:22 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): varevsij Comments added explaining the second    Errors in calculation of health expectancies. Age was not initialized.
   table of variances if popbased=1 .    Forecasting file added.
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.  
   (Module): Function pstamp added    Revision 1.124  2006/03/22 17:13:53  lievre
   (Module): Version 0.98d    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   Revision 1.116  2006/03/06 10:29:27  brouard  
   (Module): Variance-covariance wrong links and    Revision 1.123  2006/03/20 10:52:43  brouard
   varian-covariance of ej. is needed (Saito).    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
   Revision 1.115  2006/02/27 12:17:45  brouard  
   (Module): One freematrix added in mlikeli! 0.98c    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
   Revision 1.114  2006/02/26 12:57:58  brouard    otherwise the weight is truncated).
   (Module): Some improvements in processing parameter    Modification of warning when the covariates values are not 0 or
   filename with strsep.    1.
     Version 0.98g
   Revision 1.113  2006/02/24 14:20:24  brouard  
   (Module): Memory leaks checks with valgrind and:    Revision 1.122  2006/03/20 09:45:41  brouard
   datafile was not closed, some imatrix were not freed and on matrix    (Module): Weights can have a decimal point as for
   allocation too.    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.112  2006/01/30 09:55:26  brouard    Modification of warning when the covariates values are not 0 or
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    1.
     Version 0.98g
   Revision 1.111  2006/01/25 20:38:18  brouard  
   (Module): Lots of cleaning and bugs added (Gompertz)    Revision 1.121  2006/03/16 17:45:01  lievre
   (Module): Comments can be added in data file. Missing date values    * imach.c (Module): Comments concerning covariates added
   can be a simple dot '.'.  
     * imach.c (Module): refinements in the computation of lli if
   Revision 1.110  2006/01/25 00:51:50  brouard    status=-2 in order to have more reliable computation if stepm is
   (Module): Lots of cleaning and bugs added (Gompertz)    not 1 month. Version 0.98f
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Revision 1.108  2006/01/19 18:05:42  lievre    not 1 month. Version 0.98f
   Gnuplot problem appeared...  
   To be fixed    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   Revision 1.107  2006/01/19 16:20:37  brouard    computed as likelihood omitting the logarithm. Version O.98e
   Test existence of gnuplot in imach path  
     Revision 1.118  2006/03/14 18:20:07  brouard
   Revision 1.106  2006/01/19 13:24:36  brouard    (Module): varevsij Comments added explaining the second
   Some cleaning and links added in html output    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Revision 1.105  2006/01/05 20:23:19  lievre    (Module): Function pstamp added
   *** empty log message ***    (Module): Version 0.98d
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): varevsij Comments added explaining the second
   (Module): If the status is missing at the last wave but we know    table of variances if popbased=1 .
   that the person is alive, then we can code his/her status as -2    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (instead of missing=-1 in earlier versions) and his/her    (Module): Function pstamp added
   contributions to the likelihood is 1 - Prob of dying from last    (Module): Version 0.98d
   health status (= 1-p13= p11+p12 in the easiest case of somebody in  
   the healthy state at last known wave). Version is 0.98    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
   Revision 1.103  2005/09/30 15:54:49  lievre    varian-covariance of ej. is needed (Saito).
   (Module): sump fixed, loop imx fixed, and simplifications.  
     Revision 1.115  2006/02/27 12:17:45  brouard
   Revision 1.102  2004/09/15 17:31:30  brouard    (Module): One freematrix added in mlikeli! 0.98c
   Add the possibility to read data file including tab characters.  
     Revision 1.114  2006/02/26 12:57:58  brouard
   Revision 1.101  2004/09/15 10:38:38  brouard    (Module): Some improvements in processing parameter
   Fix on curr_time    filename with strsep.
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
   Revision 1.99  2004/06/05 08:57:40  brouard    allocation too.
   *** empty log message ***  
     Revision 1.112  2006/01/30 09:55:26  brouard
   Revision 1.98  2004/05/16 15:05:56  brouard    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   New version 0.97 . First attempt to estimate force of mortality  
   directly from the data i.e. without the need of knowing the health    Revision 1.111  2006/01/25 20:38:18  brouard
   state at each age, but using a Gompertz model: log u =a + b*age .    (Module): Lots of cleaning and bugs added (Gompertz)
   This is the basic analysis of mortality and should be done before any    (Module): Comments can be added in data file. Missing date values
   other analysis, in order to test if the mortality estimated from the    can be a simple dot '.'.
   cross-longitudinal survey is different from the mortality estimated  
   from other sources like vital statistic data.    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   The same imach parameter file can be used but the option for mle should be -3.  
     Revision 1.109  2006/01/24 19:37:15  brouard
   Agnès, who wrote this part of the code, tried to keep most of the    (Module): Comments (lines starting with a #) are allowed in data.
   former routines in order to include the new code within the former code.  
     Revision 1.108  2006/01/19 18:05:42  lievre
   The output is very simple: only an estimate of the intercept and of    Gnuplot problem appeared...
   the slope with 95% confident intervals.    To be fixed
   
   Current limitations:    Revision 1.107  2006/01/19 16:20:37  brouard
   A) Even if you enter covariates, i.e. with the    Test existence of gnuplot in imach path
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.  
   B) There is no computation of Life Expectancy nor Life Table.    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
   Revision 1.97  2004/02/20 13:25:42  lievre  
   Version 0.96d. Population forecasting command line is (temporarily)    Revision 1.105  2006/01/05 20:23:19  lievre
   suppressed.    *** empty log message ***
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.104  2005/09/30 16:11:43  lievre
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    (Module): sump fixed, loop imx fixed, and simplifications.
   rewritten within the same printf. Workaround: many printfs.    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   Revision 1.95  2003/07/08 07:54:34  brouard    (instead of missing=-1 in earlier versions) and his/her
   * imach.c (Repository):    contributions to the likelihood is 1 - Prob of dying from last
   (Repository): Using imachwizard code to output a more meaningful covariance    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   matrix (cov(a12,c31) instead of numbers.    the healthy state at last known wave). Version is 0.98
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.103  2005/09/30 15:54:49  lievre
   Just cleaning    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    Add the possibility to read data file including tab characters.
   exist so I changed back to asctime which exists.  
   (Module): Version 0.96b    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
   Revision 1.92  2003/06/25 16:30:45  brouard  
   (Module): On windows (cygwin) function asctime_r doesn't    Revision 1.100  2004/07/12 18:29:06  brouard
   exist so I changed back to asctime which exists.    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    *** empty log message ***
   (Repository): Elapsed time after each iteration is now output. It  
   helps to forecast when convergence will be reached. Elapsed time    Revision 1.98  2004/05/16 15:05:56  brouard
   is stamped in powell.  We created a new html file for the graphs    New version 0.97 . First attempt to estimate force of mortality
   concerning matrix of covariance. It has extension -cov.htm.    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
   Revision 1.90  2003/06/24 12:34:15  brouard    This is the basic analysis of mortality and should be done before any
   (Module): Some bugs corrected for windows. Also, when    other analysis, in order to test if the mortality estimated from the
   mle=-1 a template is output in file "or"mypar.txt with the design    cross-longitudinal survey is different from the mortality estimated
   of the covariance matrix to be input.    from other sources like vital statistic data.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    The same imach parameter file can be used but the option for mle should be -3.
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    Agnès, who wrote this part of the code, tried to keep most of the
   of the covariance matrix to be input.    former routines in order to include the new code within the former code.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    The output is very simple: only an estimate of the intercept and of
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    the slope with 95% confident intervals.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Current limitations:
   Version 0.96    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   Revision 1.86  2003/06/17 20:04:08  brouard    B) There is no computation of Life Expectancy nor Life Table.
   (Module): Change position of html and gnuplot routines and added  
   routine fileappend.    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
   Revision 1.85  2003/06/17 13:12:43  brouard    suppressed.
   * imach.c (Repository): Check when date of death was earlier that  
   current date of interview. It may happen when the death was just    Revision 1.96  2003/07/15 15:38:55  brouard
   prior to the death. In this case, dh was negative and likelihood    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   was wrong (infinity). We still send an "Error" but patch by    rewritten within the same printf. Workaround: many printfs.
   assuming that the date of death was just one stepm after the  
   interview.    Revision 1.95  2003/07/08 07:54:34  brouard
   (Repository): Because some people have very long ID (first column)    * imach.c (Repository):
   we changed int to long in num[] and we added a new lvector for    (Repository): Using imachwizard code to output a more meaningful covariance
   memory allocation. But we also truncated to 8 characters (left    matrix (cov(a12,c31) instead of numbers.
   truncation)  
   (Repository): No more line truncation errors.    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   Revision 1.84  2003/06/13 21:44:43  brouard  
   * imach.c (Repository): Replace "freqsummary" at a correct    Revision 1.93  2003/06/25 16:33:55  brouard
   place. It differs from routine "prevalence" which may be called    (Module): On windows (cygwin) function asctime_r doesn't
   many times. Probs is memory consuming and must be used with    exist so I changed back to asctime which exists.
   parcimony.    (Module): Version 0.96b
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)  
     Revision 1.92  2003/06/25 16:30:45  brouard
   Revision 1.83  2003/06/10 13:39:11  lievre    (Module): On windows (cygwin) function asctime_r doesn't
   *** empty log message ***    exist so I changed back to asctime which exists.
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   Add log in  imach.c and  fullversion number is now printed.    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 */    helps to forecast when convergence will be reached. Elapsed time
 /*    is stamped in powell.  We created a new html file for the graphs
    Interpolated Markov Chain    concerning matrix of covariance. It has extension -cov.htm.
   
   Short summary of the programme:    Revision 1.90  2003/06/24 12:34:15  brouard
       (Module): Some bugs corrected for windows. Also, when
   This program computes Healthy Life Expectancies from    mle=-1 a template is output in file "or"mypar.txt with the design
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    of the covariance matrix to be input.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.89  2003/06/24 12:30:52  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Some bugs corrected for windows. Also, when
   second wave of interviews ("longitudinal") which measure each change    mle=-1 a template is output in file "or"mypar.txt with the design
   (if any) in individual health status.  Health expectancies are    of the covariance matrix to be input.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.88  2003/06/23 17:54:56  brouard
   Maximum Likelihood of the parameters involved in the model.  The    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.87  2003/06/18 12:26:01  brouard
   conditional to be observed in state i at the first wave. Therefore    Version 0.96
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.86  2003/06/17 20:04:08  brouard
   complex model than "constant and age", you should modify the program    (Module): Change position of html and gnuplot routines and added
   where the markup *Covariates have to be included here again* invites    routine fileappend.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
   The advantage of this computer programme, compared to a simple    current date of interview. It may happen when the death was just
   multinomial logistic model, is clear when the delay between waves is not    prior to the death. In this case, dh was negative and likelihood
   identical for each individual. Also, if a individual missed an    was wrong (infinity). We still send an "Error" but patch by
   intermediate interview, the information is lost, but taken into    assuming that the date of death was just one stepm after the
   account using an interpolation or extrapolation.      interview.
     (Repository): Because some people have very long ID (first column)
   hPijx is the probability to be observed in state i at age x+h    we changed int to long in num[] and we added a new lvector for
   conditional to the observed state i at age x. The delay 'h' can be    memory allocation. But we also truncated to 8 characters (left
   split into an exact number (nh*stepm) of unobserved intermediate    truncation)
   states. This elementary transition (by month, quarter,    (Repository): No more line truncation errors.
   semester or year) is modelled as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.84  2003/06/13 21:44:43  brouard
   and the contribution of each individual to the likelihood is simply    * imach.c (Repository): Replace "freqsummary" at a correct
   hPijx.    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
   Also this programme outputs the covariance matrix of the parameters but also    parcimony.
   of the life expectancies. It also computes the period (stable) prevalence.     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.83  2003/06/10 13:39:11  lievre
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.82  2003/06/05 15:57:20  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Add log in  imach.c and  fullversion number is now printed.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .  */
   /*
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach     Interpolated Markov Chain
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so  
       Short summary of the programme:
   **********************************************************************/   
 /*    This program computes Healthy Life Expectancies from
   main    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   read parameterfile    first survey ("cross") where individuals from different ages are
   read datafile    interviewed on their health status or degree of disability (in the
   concatwav    case of a health survey which is our main interest) -2- at least a
   freqsummary    second wave of interviews ("longitudinal") which measure each change
   if (mle >= 1)    (if any) in individual health status.  Health expectancies are
     mlikeli    computed from the time spent in each health state according to a
   print results files    model. More health states you consider, more time is necessary to reach the
   if mle==1     Maximum Likelihood of the parameters involved in the model.  The
      computes hessian    simplest model is the multinomial logistic model where pij is the
   read end of parameter file: agemin, agemax, bage, fage, estepm    probability to be observed in state j at the second wave
       begin-prev-date,...    conditional to be observed in state i at the first wave. Therefore
   open gnuplot file    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   open html file    'age' is age and 'sex' is a covariate. If you want to have a more
   period (stable) prevalence    complex model than "constant and age", you should modify the program
    for age prevalim()    where the markup *Covariates have to be included here again* invites
   h Pij x    you to do it.  More covariates you add, slower the
   variance of p varprob    convergence.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    The advantage of this computer programme, compared to a simple
   Variance-covariance of DFLE    multinomial logistic model, is clear when the delay between waves is not
   prevalence()    identical for each individual. Also, if a individual missed an
    movingaverage()    intermediate interview, the information is lost, but taken into
   varevsij()     account using an interpolation or extrapolation.  
   if popbased==1 varevsij(,popbased)  
   total life expectancies    hPijx is the probability to be observed in state i at age x+h
   Variance of period (stable) prevalence    conditional to the observed state i at age x. The delay 'h' can be
  end    split into an exact number (nh*stepm) of unobserved intermediate
 */    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
      hPijx.
 #include <math.h>  
 #include <stdio.h>    Also this programme outputs the covariance matrix of the parameters but also
 #include <stdlib.h>    of the life expectancies. It also computes the period (stable) prevalence.
 #include <string.h>   
 #include <unistd.h>    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 #include <limits.h>    This software have been partly granted by Euro-REVES, a concerted action
 #include <sys/types.h>    from the European Union.
 #include <sys/stat.h>    It is copyrighted identically to a GNU software product, ie programme and
 #include <errno.h>    software can be distributed freely for non commercial use. Latest version
 extern int errno;    can be accessed at http://euroreves.ined.fr/imach .
   
 /* #include <sys/time.h> */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #include <time.h>    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #include "timeval.h"   
     **********************************************************************/
 /* #include <libintl.h> */  /*
 /* #define _(String) gettext (String) */    main
     read parameterfile
 #define MAXLINE 256    read datafile
     concatwav
 #define GNUPLOTPROGRAM "gnuplot"    freqsummary
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    if (mle >= 1)
 #define FILENAMELENGTH 132      mlikeli
     print results files
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    if mle==1
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */        begin-prev-date,...
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    open gnuplot file
     open html file
 #define NINTERVMAX 8    period (stable) prevalence
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */     for age prevalim()
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    h Pij x
 #define NCOVMAX 8 /* Maximum number of covariates */    variance of p varprob
 #define MAXN 20000    forecasting if prevfcast==1 prevforecast call prevalence()
 #define YEARM 12. /* Number of months per year */    health expectancies
 #define AGESUP 130    Variance-covariance of DFLE
 #define AGEBASE 40    prevalence()
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */     movingaverage()
 #ifdef UNIX    varevsij()
 #define DIRSEPARATOR '/'    if popbased==1 varevsij(,popbased)
 #define CHARSEPARATOR "/"    total life expectancies
 #define ODIRSEPARATOR '\\'    Variance of period (stable) prevalence
 #else   end
 #define DIRSEPARATOR '\\'  */
 #define CHARSEPARATOR "\\"  
 #define ODIRSEPARATOR '/'  
 #endif  
    
 /* $Id$ */  #include <math.h>
 /* $State$ */  #include <stdio.h>
   #include <stdlib.h>
 char version[]="Imach version 0.98d, March 2006, INED-EUROREVES-Institut de longevite ";  #include <string.h>
 char fullversion[]="$Revision$ $Date$";   #include <unistd.h>
 char strstart[80];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  #include <limits.h>
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  #include <sys/types.h>
 int nvar;  #include <sys/stat.h>
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  #include <errno.h>
 int npar=NPARMAX;  extern int errno;
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */  /* #include <sys/time.h> */
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  #include <time.h>
 int popbased=0;  #include "timeval.h"
   
 int *wav; /* Number of waves for this individuual 0 is possible */  /* #include <libintl.h> */
 int maxwav; /* Maxim number of waves */  /* #define _(String) gettext (String) */
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int ijmin, ijmax; /* Individuals having jmin and jmax */   #define MAXLINE 256
 int gipmx, gsw; /* Global variables on the number of contributions   
                    to the likelihood and the sum of weights (done by funcone)*/  #define GNUPLOTPROGRAM "gnuplot"
 int mle, weightopt;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #define FILENAMELENGTH 132
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog, *ficrespow;  #define NINTERVMAX 8
 int globpr; /* Global variable for printing or not */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double fretone; /* Only one call to likelihood */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 long ipmx; /* Number of contributions */  #define NCOVMAX 8 /* Maximum number of covariates */
 double sw; /* Sum of weights */  #define MAXN 20000
 char filerespow[FILENAMELENGTH];  #define YEARM 12. /* Number of months per year */
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  #define AGESUP 130
 FILE *ficresilk;  #define AGEBASE 40
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 FILE *ficresprobmorprev;  #ifdef UNIX
 FILE *fichtm, *fichtmcov; /* Html File */  #define DIRSEPARATOR '/'
 FILE *ficreseij;  #define CHARSEPARATOR "/"
 char filerese[FILENAMELENGTH];  #define ODIRSEPARATOR '\\'
 FILE *ficresstdeij;  #else
 char fileresstde[FILENAMELENGTH];  #define DIRSEPARATOR '\\'
 FILE *ficrescveij;  #define CHARSEPARATOR "\\"
 char filerescve[FILENAMELENGTH];  #define ODIRSEPARATOR '/'
 FILE  *ficresvij;  #endif
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;  /* $Id$ */
 char fileresvpl[FILENAMELENGTH];  /* $State$ */
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  char fullversion[]="$Revision$ $Date$";
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   char strstart[80];
 char command[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 int  outcmd=0;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 char filelog[FILENAMELENGTH]; /* Log file */  int nlstate=2; /* Number of live states */
 char filerest[FILENAMELENGTH];  int ndeath=1; /* Number of dead states */
 char fileregp[FILENAMELENGTH];  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 char popfile[FILENAMELENGTH];  int popbased=0;
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  int jmin, jmax; /* min, max spacing between 2 waves */
 struct timezone tzp;  int ijmin, ijmax; /* Individuals having jmin and jmax */
 extern int gettimeofday();  int gipmx, gsw; /* Global variables on the number of contributions
 struct tm tmg, tm, tmf, *gmtime(), *localtime();                     to the likelihood and the sum of weights (done by funcone)*/
 long time_value;  int mle, weightopt;
 extern long time();  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 char strcurr[80], strfor[80];  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 char *endptr;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 long lval;  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 #define NR_END 1  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #define FREE_ARG char*  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #define FTOL 1.0e-10  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 #define NRANSI   double fretone; /* Only one call to likelihood */
 #define ITMAX 200   long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 #define TOL 2.0e-4   char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #define CGOLD 0.3819660   FILE *ficresilk;
 #define ZEPS 1.0e-10   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 #define GOLD 1.618034   FILE *ficreseij;
 #define GLIMIT 100.0   char filerese[FILENAMELENGTH];
 #define TINY 1.0e-20   FILE *ficresstdeij;
   char fileresstde[FILENAMELENGTH];
 static double maxarg1,maxarg2;  FILE *ficrescveij;
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  char filerescve[FILENAMELENGTH];
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  FILE  *ficresvij;
     char fileresv[FILENAMELENGTH];
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  FILE  *ficresvpl;
 #define rint(a) floor(a+0.5)  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 static double sqrarg;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
 int agegomp= AGEGOMP;  char command[FILENAMELENGTH];
   int  outcmd=0;
 int imx;   
 int stepm=1;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /* Stepm, step in month: minimum step interpolation*/  
   char filelog[FILENAMELENGTH]; /* Log file */
 int estepm;  char filerest[FILENAMELENGTH];
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 int m,nb;  
 long *num;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 double **pmmij, ***probs;  struct timezone tzp;
 double *ageexmed,*agecens;  extern int gettimeofday();
 double dateintmean=0;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 double *weight;  extern long time();
 int **s; /* Status */  char strcurr[80], strfor[80];
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  char *endptr;
 double *lsurv, *lpop, *tpop;  long lval;
   double dval;
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  #define NR_END 1
   #define FREE_ARG char*
 /**************** split *************************/  #define FTOL 1.0e-10
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {  #define NRANSI
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  #define ITMAX 200
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  
   */   #define TOL 2.0e-4
   char  *ss;                            /* pointer */  
   int   l1, l2;                         /* length counters */  #define CGOLD 0.3819660
   #define ZEPS 1.0e-10
   l1 = strlen(path );                   /* length of path */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  #define GOLD 1.618034
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  #define GLIMIT 100.0
     strcpy( name, path );               /* we got the fullname name because no directory */  #define TINY 1.0e-20
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  static double maxarg1,maxarg2;
     /* get current working directory */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     /*    extern  char* getcwd ( char *buf , int len);*/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {   
       return( GLOCK_ERROR_GETCWD );  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     }  #define rint(a) floor(a+0.5)
     /* got dirc from getcwd*/  
     printf(" DIRC = %s \n",dirc);  static double sqrarg;
   } else {                              /* strip direcotry from path */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     ss++;                               /* after this, the filename */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
     l2 = strlen( ss );                  /* length of filename */  int agegomp= AGEGOMP;
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
     strcpy( name, ss );         /* save file name */  int imx;
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  int stepm=1;
     dirc[l1-l2] = 0;                    /* add zero */  /* Stepm, step in month: minimum step interpolation*/
     printf(" DIRC2 = %s \n",dirc);  
   }  int estepm;
   /* We add a separator at the end of dirc if not exists */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   l1 = strlen( dirc );                  /* length of directory */  
   if( dirc[l1-1] != DIRSEPARATOR ){  int m,nb;
     dirc[l1] =  DIRSEPARATOR;  long *num;
     dirc[l1+1] = 0;   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     printf(" DIRC3 = %s \n",dirc);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   }  double **pmmij, ***probs;
   ss = strrchr( name, '.' );            /* find last / */  double *ageexmed,*agecens;
   if (ss >0){  double dateintmean=0;
     ss++;  
     strcpy(ext,ss);                     /* save extension */  double *weight;
     l1= strlen( name);  int **s; /* Status */
     l2= strlen(ss)+1;  double *agedc, **covar, idx;
     strncpy( finame, name, l1-l2);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     finame[l1-l2]= 0;  double *lsurv, *lpop, *tpop;
   }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   return( 0 );                          /* we're done */  double ftolhess; /* Tolerance for computing hessian */
 }  
   /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /******************************************/  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 void replace_back_to_slash(char *s, char*t)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 {    */
   int i;    char  *ss;                            /* pointer */
   int lg=0;    int   l1, l2;                         /* length counters */
   i=0;  
   lg=strlen(t);    l1 = strlen(path );                   /* length of path */
   for(i=0; i<= lg; i++) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     (s[i] = t[i]);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if (t[i]== '\\') s[i]='/';    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   }      strcpy( name, path );               /* we got the fullname name because no directory */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 int nbocc(char *s, char occ)      /* get current working directory */
 {      /*    extern  char* getcwd ( char *buf , int len);*/
   int i,j=0;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   int lg=20;        return( GLOCK_ERROR_GETCWD );
   i=0;      }
   lg=strlen(s);      /* got dirc from getcwd*/
   for(i=0; i<= lg; i++) {      printf(" DIRC = %s \n",dirc);
   if  (s[i] == occ ) j++;    } else {                              /* strip direcotry from path */
   }      ss++;                               /* after this, the filename */
   return j;      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 void cutv(char *u,char *v, char*t, char occ)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {      dirc[l1-l2] = 0;                    /* add zero */
   /* cuts string t into u and v where u ends before first occurence of char 'occ'       printf(" DIRC2 = %s \n",dirc);
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')    }
      gives u="abcedf" and v="ghi2j" */    /* We add a separator at the end of dirc if not exists */
   int i,lg,j,p=0;    l1 = strlen( dirc );                  /* length of directory */
   i=0;    if( dirc[l1-1] != DIRSEPARATOR ){
   for(j=0; j<=strlen(t)-1; j++) {      dirc[l1] =  DIRSEPARATOR;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      dirc[l1+1] = 0;
   }      printf(" DIRC3 = %s \n",dirc);
     }
   lg=strlen(t);    ss = strrchr( name, '.' );            /* find last / */
   for(j=0; j<p; j++) {    if (ss >0){
     (u[j] = t[j]);      ss++;
   }      strcpy(ext,ss);                     /* save extension */
      u[p]='\0';      l1= strlen( name);
       l2= strlen(ss)+1;
    for(j=0; j<= lg; j++) {      strncpy( finame, name, l1-l2);
     if (j>=(p+1))(v[j-p-1] = t[j]);      finame[l1-l2]= 0;
   }    }
 }  
     return( 0 );                          /* we're done */
 /********************** nrerror ********************/  }
   
 void nrerror(char error_text[])  
 {  /******************************************/
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  void replace_back_to_slash(char *s, char*t)
   exit(EXIT_FAILURE);  {
 }    int i;
 /*********************** vector *******************/    int lg=0;
 double *vector(int nl, int nh)    i=0;
 {    lg=strlen(t);
   double *v;    for(i=0; i<= lg; i++) {
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      (s[i] = t[i]);
   if (!v) nrerror("allocation failure in vector");      if (t[i]== '\\') s[i]='/';
   return v-nl+NR_END;    }
 }  }
   
 /************************ free vector ******************/  int nbocc(char *s, char occ)
 void free_vector(double*v, int nl, int nh)  {
 {    int i,j=0;
   free((FREE_ARG)(v+nl-NR_END));    int lg=20;
 }    i=0;
     lg=strlen(s);
 /************************ivector *******************************/    for(i=0; i<= lg; i++) {
 int *ivector(long nl,long nh)    if  (s[i] == occ ) j++;
 {    }
   int *v;    return j;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  }
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  void cutv(char *u,char *v, char*t, char occ)
 }  {
     /* cuts string t into u and v where u ends before first occurence of char 'occ'
 /******************free ivector **************************/       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 void free_ivector(int *v, long nl, long nh)       gives u="abcedf" and v="ghi2j" */
 {    int i,lg,j,p=0;
   free((FREE_ARG)(v+nl-NR_END));    i=0;
 }    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 /************************lvector *******************************/    }
 long *lvector(long nl,long nh)  
 {    lg=strlen(t);
   long *v;    for(j=0; j<p; j++) {
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));      (u[j] = t[j]);
   if (!v) nrerror("allocation failure in ivector");    }
   return v-nl+NR_END;       u[p]='\0';
 }  
      for(j=0; j<= lg; j++) {
 /******************free lvector **************************/      if (j>=(p+1))(v[j-p-1] = t[j]);
 void free_lvector(long *v, long nl, long nh)    }
 {  }
   free((FREE_ARG)(v+nl-NR_END));  
 }  /********************** nrerror ********************/
   
 /******************* imatrix *******************************/  void nrerror(char error_text[])
 int **imatrix(long nrl, long nrh, long ncl, long nch)   {
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */     fprintf(stderr,"ERREUR ...\n");
 {     fprintf(stderr,"%s\n",error_text);
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;     exit(EXIT_FAILURE);
   int **m;   }
     /*********************** vector *******************/
   /* allocate pointers to rows */   double *vector(int nl, int nh)
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   {
   if (!m) nrerror("allocation failure 1 in matrix()");     double *v;
   m += NR_END;     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   m -= nrl;     if (!v) nrerror("allocation failure in vector");
       return v-nl+NR_END;
     }
   /* allocate rows and set pointers to them */   
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   /************************ free vector ******************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   void free_vector(double*v, int nl, int nh)
   m[nrl] += NR_END;   {
   m[nrl] -= ncl;     free((FREE_ARG)(v+nl-NR_END));
     }
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   
     /************************ivector *******************************/
   /* return pointer to array of pointers to rows */   int *ivector(long nl,long nh)
   return m;   {
 }     int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 /****************** free_imatrix *************************/    if (!v) nrerror("allocation failure in ivector");
 void free_imatrix(m,nrl,nrh,ncl,nch)    return v-nl+NR_END;
       int **m;  }
       long nch,ncl,nrh,nrl;   
      /* free an int matrix allocated by imatrix() */   /******************free ivector **************************/
 {   void free_ivector(int *v, long nl, long nh)
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   {
   free((FREE_ARG) (m+nrl-NR_END));     free((FREE_ARG)(v+nl-NR_END));
 }   }
   
 /******************* matrix *******************************/  /************************lvector *******************************/
 double **matrix(long nrl, long nrh, long ncl, long nch)  long *lvector(long nl,long nh)
 {  {
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    long *v;
   double **m;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    return v-nl+NR_END;
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    free((FREE_ARG)(v+nl-NR_END));
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   /******************* imatrix *******************************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int **imatrix(long nrl, long nrh, long ncl, long nch)
   return m;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   {
    */    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
 }    int **m;
    
 /*************************free matrix ************************/    /* allocate pointers to rows */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
 {    if (!m) nrerror("allocation failure 1 in matrix()");
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m += NR_END;
   free((FREE_ARG)(m+nrl-NR_END));    m -= nrl;
 }   
    
 /******************* ma3x *******************************/    /* allocate rows and set pointers to them */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    m[nrl] += NR_END;
   double ***m;    m[nrl] -= ncl;
    
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
   if (!m) nrerror("allocation failure 1 in matrix()");   
   m += NR_END;    /* return pointer to array of pointers to rows */
   m -= nrl;    return m;
   }
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /****************** free_imatrix *************************/
   m[nrl] += NR_END;  void free_imatrix(m,nrl,nrh,ncl,nch)
   m[nrl] -= ncl;        int **m;
         long nch,ncl,nrh,nrl;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;       /* free an int matrix allocated by imatrix() */
   {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    free((FREE_ARG) (m[nrl]+ncl-NR_END));
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    free((FREE_ARG) (m+nrl-NR_END));
   m[nrl][ncl] += NR_END;  }
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)   /******************* matrix *******************************/
     m[nrl][j]=m[nrl][j-1]+nlay;  double **matrix(long nrl, long nrh, long ncl, long nch)
     {
   for (i=nrl+1; i<=nrh; i++) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    double **m;
     for (j=ncl+1; j<=nch; j++)   
       m[i][j]=m[i][j-1]+nlay;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   }    if (!m) nrerror("allocation failure 1 in matrix()");
   return m;     m += NR_END;
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    m -= nrl;
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  
   */    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /*************************free ma3x ************************/    m[nrl] -= ncl;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    return m;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   free((FREE_ARG)(m+nrl-NR_END));     */
 }  }
   
 /*************** function subdirf ***********/  /*************************free matrix ************************/
 char *subdirf(char fileres[])  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 {  {
   /* Caution optionfilefiname is hidden */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   strcpy(tmpout,optionfilefiname);    free((FREE_ARG)(m+nrl-NR_END));
   strcat(tmpout,"/"); /* Add to the right */  }
   strcat(tmpout,fileres);  
   return tmpout;  /******************* ma3x *******************************/
 }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
 /*************** function subdirf2 ***********/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 char *subdirf2(char fileres[], char *preop)    double ***m;
 {  
       m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   /* Caution optionfilefiname is hidden */    if (!m) nrerror("allocation failure 1 in matrix()");
   strcpy(tmpout,optionfilefiname);    m += NR_END;
   strcat(tmpout,"/");    m -= nrl;
   strcat(tmpout,preop);  
   strcat(tmpout,fileres);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   return tmpout;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 }    m[nrl] += NR_END;
     m[nrl] -= ncl;
 /*************** function subdirf3 ***********/  
 char *subdirf3(char fileres[], char *preop, char *preop2)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 {  
       m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   /* Caution optionfilefiname is hidden */    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   strcpy(tmpout,optionfilefiname);    m[nrl][ncl] += NR_END;
   strcat(tmpout,"/");    m[nrl][ncl] -= nll;
   strcat(tmpout,preop);    for (j=ncl+1; j<=nch; j++)
   strcat(tmpout,preop2);      m[nrl][j]=m[nrl][j-1]+nlay;
   strcat(tmpout,fileres);   
   return tmpout;    for (i=nrl+1; i<=nrh; i++) {
 }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++)
 /***************** f1dim *************************/        m[i][j]=m[i][j-1]+nlay;
 extern int ncom;     }
 extern double *pcom,*xicom;    return m;
 extern double (*nrfunc)(double []);     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
               &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 double f1dim(double x)     */
 {   }
   int j;   
   double f;  /*************************free ma3x ************************/
   double *xt;   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    {
   xt=vector(1,ncom);     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   f=(*nrfunc)(xt);     free((FREE_ARG)(m+nrl-NR_END));
   free_vector(xt,1,ncom);   }
   return f;   
 }   /*************** function subdirf ***********/
   char *subdirf(char fileres[])
 /*****************brent *************************/  {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)     /* Caution optionfilefiname is hidden */
 {     strcpy(tmpout,optionfilefiname);
   int iter;     strcat(tmpout,"/"); /* Add to the right */
   double a,b,d,etemp;    strcat(tmpout,fileres);
   double fu,fv,fw,fx;    return tmpout;
   double ftemp;  }
   double p,q,r,tol1,tol2,u,v,w,x,xm;   
   double e=0.0;   /*************** function subdirf2 ***********/
    char *subdirf2(char fileres[], char *preop)
   a=(ax < cx ? ax : cx);   {
   b=(ax > cx ? ax : cx);    
   x=w=v=bx;     /* Caution optionfilefiname is hidden */
   fw=fv=fx=(*f)(x);     strcpy(tmpout,optionfilefiname);
   for (iter=1;iter<=ITMAX;iter++) {     strcat(tmpout,"/");
     xm=0.5*(a+b);     strcat(tmpout,preop);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     strcat(tmpout,fileres);
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    return tmpout;
     printf(".");fflush(stdout);  }
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG  /*************** function subdirf3 ***********/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char *subdirf3(char fileres[], char *preop, char *preop2)
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  {
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */   
 #endif    /* Caution optionfilefiname is hidden */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     strcpy(tmpout,optionfilefiname);
       *xmin=x;     strcat(tmpout,"/");
       return fx;     strcat(tmpout,preop);
     }     strcat(tmpout,preop2);
     ftemp=fu;    strcat(tmpout,fileres);
     if (fabs(e) > tol1) {     return tmpout;
       r=(x-w)*(fx-fv);   }
       q=(x-v)*(fx-fw);   
       p=(x-v)*q-(x-w)*r;   /***************** f1dim *************************/
       q=2.0*(q-r);   extern int ncom;
       if (q > 0.0) p = -p;   extern double *pcom,*xicom;
       q=fabs(q);   extern double (*nrfunc)(double []);
       etemp=e;    
       e=d;   double f1dim(double x)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))   {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     int j;
       else {     double f;
         d=p/q;     double *xt;
         u=x+d;    
         if (u-a < tol2 || b-u < tol2)     xt=vector(1,ncom);
           d=SIGN(tol1,xm-x);     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
       }     f=(*nrfunc)(xt);
     } else {     free_vector(xt,1,ncom);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     return f;
     }   }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   
     fu=(*f)(u);   /*****************brent *************************/
     if (fu <= fx) {   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
       if (u >= x) a=x; else b=x;   {
       SHFT(v,w,x,u)     int iter;
         SHFT(fv,fw,fx,fu)     double a,b,d,etemp;
         } else {     double fu,fv,fw,fx;
           if (u < x) a=u; else b=u;     double ftemp;
           if (fu <= fw || w == x) {     double p,q,r,tol1,tol2,u,v,w,x,xm;
             v=w;     double e=0.0;
             w=u;    
             fv=fw;     a=(ax < cx ? ax : cx);
             fw=fu;     b=(ax > cx ? ax : cx);
           } else if (fu <= fv || v == x || v == w) {     x=w=v=bx;
             v=u;     fw=fv=fx=(*f)(x);
             fv=fu;     for (iter=1;iter<=ITMAX;iter++) {
           }       xm=0.5*(a+b);
         }       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
   }       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   nrerror("Too many iterations in brent");       printf(".");fflush(stdout);
   *xmin=x;       fprintf(ficlog,".");fflush(ficlog);
   return fx;   #ifdef DEBUG
 }       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 /****************** mnbrak ***********************/      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
             double (*func)(double))         *xmin=x;
 {         return fx;
   double ulim,u,r,q, dum;      }
   double fu;       ftemp=fu;
        if (fabs(e) > tol1) {
   *fa=(*func)(*ax);         r=(x-w)*(fx-fv);
   *fb=(*func)(*bx);         q=(x-v)*(fx-fw);
   if (*fb > *fa) {         p=(x-v)*q-(x-w)*r;
     SHFT(dum,*ax,*bx,dum)         q=2.0*(q-r);
       SHFT(dum,*fb,*fa,dum)         if (q > 0.0) p = -p;
       }         q=fabs(q);
   *cx=(*bx)+GOLD*(*bx-*ax);         etemp=e;
   *fc=(*func)(*cx);         e=d;
   while (*fb > *fc) {         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
     r=(*bx-*ax)*(*fb-*fc);           d=CGOLD*(e=(x >= xm ? a-x : b-x));
     q=(*bx-*cx)*(*fb-*fa);         else {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/           d=p/q;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));           u=x+d;
     ulim=(*bx)+GLIMIT*(*cx-*bx);           if (u-a < tol2 || b-u < tol2)
     if ((*bx-u)*(u-*cx) > 0.0) {             d=SIGN(tol1,xm-x);
       fu=(*func)(u);         }
     } else if ((*cx-u)*(u-ulim) > 0.0) {       } else {
       fu=(*func)(u);         d=CGOLD*(e=(x >= xm ? a-x : b-x));
       if (fu < *fc) {       }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
           SHFT(*fb,*fc,fu,(*func)(u))       fu=(*f)(u);
           }       if (fu <= fx) {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {         if (u >= x) a=x; else b=x;
       u=ulim;         SHFT(v,w,x,u)
       fu=(*func)(u);           SHFT(fv,fw,fx,fu)
     } else {           } else {
       u=(*cx)+GOLD*(*cx-*bx);             if (u < x) a=u; else b=u;
       fu=(*func)(u);             if (fu <= fw || w == x) {
     }               v=w;
     SHFT(*ax,*bx,*cx,u)               w=u;
       SHFT(*fa,*fb,*fc,fu)               fv=fw;
       }               fw=fu;
 }             } else if (fu <= fv || v == x || v == w) {
               v=u;
 /*************** linmin ************************/              fv=fu;
             }
 int ncom;           }
 double *pcom,*xicom;    }
 double (*nrfunc)(double []);     nrerror("Too many iterations in brent");
      *xmin=x;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     return fx;
 {   }
   double brent(double ax, double bx, double cx,   
                double (*f)(double), double tol, double *xmin);   /****************** mnbrak ***********************/
   double f1dim(double x);   
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
               double *fc, double (*func)(double));               double (*func)(double))
   int j;   {
   double xx,xmin,bx,ax;     double ulim,u,r,q, dum;
   double fx,fb,fa;    double fu;
     
   ncom=n;     *fa=(*func)(*ax);
   pcom=vector(1,n);     *fb=(*func)(*bx);
   xicom=vector(1,n);     if (*fb > *fa) {
   nrfunc=func;       SHFT(dum,*ax,*bx,dum)
   for (j=1;j<=n;j++) {         SHFT(dum,*fb,*fa,dum)
     pcom[j]=p[j];         }
     xicom[j]=xi[j];     *cx=(*bx)+GOLD*(*bx-*ax);
   }     *fc=(*func)(*cx);
   ax=0.0;     while (*fb > *fc) {
   xx=1.0;       r=(*bx-*ax)*(*fb-*fc);
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);       q=(*bx-*cx)*(*fb-*fa);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
 #ifdef DEBUG        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      ulim=(*bx)+GLIMIT*(*cx-*bx);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      if ((*bx-u)*(u-*cx) > 0.0) {
 #endif        fu=(*func)(u);
   for (j=1;j<=n;j++) {       } else if ((*cx-u)*(u-ulim) > 0.0) {
     xi[j] *= xmin;         fu=(*func)(u);
     p[j] += xi[j];         if (fu < *fc) {
   }           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
   free_vector(xicom,1,n);             SHFT(*fb,*fc,fu,(*func)(u))
   free_vector(pcom,1,n);             }
 }       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
         u=ulim;
 char *asc_diff_time(long time_sec, char ascdiff[])        fu=(*func)(u);
 {      } else {
   long sec_left, days, hours, minutes;        u=(*cx)+GOLD*(*cx-*bx);
   days = (time_sec) / (60*60*24);        fu=(*func)(u);
   sec_left = (time_sec) % (60*60*24);      }
   hours = (sec_left) / (60*60) ;      SHFT(*ax,*bx,*cx,u)
   sec_left = (sec_left) %(60*60);        SHFT(*fa,*fb,*fc,fu)
   minutes = (sec_left) /60;        }
   sec_left = (sec_left) % (60);  }
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);    
   return ascdiff;  /*************** linmin ************************/
 }  
   int ncom;
 /*************** powell ************************/  double *pcom,*xicom;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   double (*nrfunc)(double []);
             double (*func)(double []))    
 {   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
   void linmin(double p[], double xi[], int n, double *fret,   {
               double (*func)(double []));     double brent(double ax, double bx, double cx,
   int i,ibig,j;                  double (*f)(double), double tol, double *xmin);
   double del,t,*pt,*ptt,*xit;    double f1dim(double x);
   double fp,fptt;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
   double *xits;                double *fc, double (*func)(double));
   int niterf, itmp;    int j;
     double xx,xmin,bx,ax;
   pt=vector(1,n);     double fx,fb,fa;
   ptt=vector(1,n);    
   xit=vector(1,n);     ncom=n;
   xits=vector(1,n);     pcom=vector(1,n);
   *fret=(*func)(p);     xicom=vector(1,n);
   for (j=1;j<=n;j++) pt[j]=p[j];     nrfunc=func;
   for (*iter=1;;++(*iter)) {     for (j=1;j<=n;j++) {
     fp=(*fret);       pcom[j]=p[j];
     ibig=0;       xicom[j]=xi[j];
     del=0.0;     }
     last_time=curr_time;    ax=0.0;
     (void) gettimeofday(&curr_time,&tzp);    xx=1.0;
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);  #ifdef DEBUG
     */    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    for (i=1;i<=n;i++) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       printf(" %d %.12f",i, p[i]);  #endif
       fprintf(ficlog," %d %.12lf",i, p[i]);    for (j=1;j<=n;j++) {
       fprintf(ficrespow," %.12lf", p[i]);      xi[j] *= xmin;
     }      p[j] += xi[j];
     printf("\n");    }
     fprintf(ficlog,"\n");    free_vector(xicom,1,n);
     fprintf(ficrespow,"\n");fflush(ficrespow);    free_vector(pcom,1,n);
     if(*iter <=3){  }
       tm = *localtime(&curr_time.tv_sec);  
       strcpy(strcurr,asctime(&tm));  char *asc_diff_time(long time_sec, char ascdiff[])
 /*       asctime_r(&tm,strcurr); */  {
       forecast_time=curr_time;     long sec_left, days, hours, minutes;
       itmp = strlen(strcurr);    days = (time_sec) / (60*60*24);
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */    sec_left = (time_sec) % (60*60*24);
         strcurr[itmp-1]='\0';    hours = (sec_left) / (60*60) ;
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    sec_left = (sec_left) %(60*60);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    minutes = (sec_left) /60;
       for(niterf=10;niterf<=30;niterf+=10){    sec_left = (sec_left) % (60);
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
         tmf = *localtime(&forecast_time.tv_sec);    return ascdiff;
 /*      asctime_r(&tmf,strfor); */  }
         strcpy(strfor,asctime(&tmf));  
         itmp = strlen(strfor);  /*************** powell ************************/
         if(strfor[itmp-1]=='\n')  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
         strfor[itmp-1]='\0';              double (*func)(double []))
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  {
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    void linmin(double p[], double xi[], int n, double *fret,
       }                double (*func)(double []));
     }    int i,ibig,j;
     for (i=1;i<=n;i++) {     double del,t,*pt,*ptt,*xit;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     double fp,fptt;
       fptt=(*fret);     double *xits;
 #ifdef DEBUG    int niterf, itmp;
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);    pt=vector(1,n);
 #endif    ptt=vector(1,n);
       printf("%d",i);fflush(stdout);    xit=vector(1,n);
       fprintf(ficlog,"%d",i);fflush(ficlog);    xits=vector(1,n);
       linmin(p,xit,n,fret,func);     *fret=(*func)(p);
       if (fabs(fptt-(*fret)) > del) {     for (j=1;j<=n;j++) pt[j]=p[j];
         del=fabs(fptt-(*fret));     for (*iter=1;;++(*iter)) {
         ibig=i;       fp=(*fret);
       }       ibig=0;
 #ifdef DEBUG      del=0.0;
       printf("%d %.12e",i,(*fret));      last_time=curr_time;
       fprintf(ficlog,"%d %.12e",i,(*fret));      (void) gettimeofday(&curr_time,&tzp);
       for (j=1;j<=n;j++) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         printf(" x(%d)=%.12e",j,xit[j]);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);     for (i=1;i<=n;i++) {
       }        printf(" %d %.12f",i, p[i]);
       for(j=1;j<=n;j++) {        fprintf(ficlog," %d %.12lf",i, p[i]);
         printf(" p=%.12e",p[j]);        fprintf(ficrespow," %.12lf", p[i]);
         fprintf(ficlog," p=%.12e",p[j]);      }
       }      printf("\n");
       printf("\n");      fprintf(ficlog,"\n");
       fprintf(ficlog,"\n");      fprintf(ficrespow,"\n");fflush(ficrespow);
 #endif      if(*iter <=3){
     }         tm = *localtime(&curr_time.tv_sec);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        strcpy(strcurr,asctime(&tm));
 #ifdef DEBUG  /*       asctime_r(&tm,strcurr); */
       int k[2],l;        forecast_time=curr_time;
       k[0]=1;        itmp = strlen(strcurr);
       k[1]=-1;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       printf("Max: %.12e",(*func)(p));          strcurr[itmp-1]='\0';
       fprintf(ficlog,"Max: %.12e",(*func)(p));        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for (j=1;j<=n;j++) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         printf(" %.12e",p[j]);        for(niterf=10;niterf<=30;niterf+=10){
         fprintf(ficlog," %.12e",p[j]);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       }          tmf = *localtime(&forecast_time.tv_sec);
       printf("\n");  /*      asctime_r(&tmf,strfor); */
       fprintf(ficlog,"\n");          strcpy(strfor,asctime(&tmf));
       for(l=0;l<=1;l++) {          itmp = strlen(strfor);
         for (j=1;j<=n;j++) {          if(strfor[itmp-1]=='\n')
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];          strfor[itmp-1]='\0';
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }        }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      }
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      for (i=1;i<=n;i++) {
       }        for (j=1;j<=n;j++) xit[j]=xi[j][i];
 #endif        fptt=(*fret);
   #ifdef DEBUG
         printf("fret=%lf \n",*fret);
       free_vector(xit,1,n);         fprintf(ficlog,"fret=%lf \n",*fret);
       free_vector(xits,1,n);   #endif
       free_vector(ptt,1,n);         printf("%d",i);fflush(stdout);
       free_vector(pt,1,n);         fprintf(ficlog,"%d",i);fflush(ficlog);
       return;         linmin(p,xit,n,fret,func);
     }         if (fabs(fptt-(*fret)) > del) {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");           del=fabs(fptt-(*fret));
     for (j=1;j<=n;j++) {           ibig=i;
       ptt[j]=2.0*p[j]-pt[j];         }
       xit[j]=p[j]-pt[j];   #ifdef DEBUG
       pt[j]=p[j];         printf("%d %.12e",i,(*fret));
     }         fprintf(ficlog,"%d %.12e",i,(*fret));
     fptt=(*func)(ptt);         for (j=1;j<=n;j++) {
     if (fptt < fp) {           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);           printf(" x(%d)=%.12e",j,xit[j]);
       if (t < 0.0) {           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         linmin(p,xit,n,fret,func);         }
         for (j=1;j<=n;j++) {         for(j=1;j<=n;j++) {
           xi[j][ibig]=xi[j][n];           printf(" p=%.12e",p[j]);
           xi[j][n]=xit[j];           fprintf(ficlog," p=%.12e",p[j]);
         }        }
 #ifdef DEBUG        printf("\n");
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        fprintf(ficlog,"\n");
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #endif
         for(j=1;j<=n;j++){      }
           printf(" %.12e",xit[j]);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
           fprintf(ficlog," %.12e",xit[j]);  #ifdef DEBUG
         }        int k[2],l;
         printf("\n");        k[0]=1;
         fprintf(ficlog,"\n");        k[1]=-1;
 #endif        printf("Max: %.12e",(*func)(p));
       }        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }         for (j=1;j<=n;j++) {
   }           printf(" %.12e",p[j]);
 }           fprintf(ficlog," %.12e",p[j]);
         }
 /**** Prevalence limit (stable or period prevalence)  ****************/        printf("\n");
         fprintf(ficlog,"\n");
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        for(l=0;l<=1;l++) {
 {          for (j=1;j<=n;j++) {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
      matrix by transitions matrix until convergence is reached */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i, ii,j,k;          }
   double min, max, maxmin, maxmax,sumnew=0.;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double **matprod2();          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double **out, cov[NCOVMAX], **pmij();        }
   double **newm;  #endif
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   
   for (ii=1;ii<=nlstate+ndeath;ii++)        free_vector(xit,1,n);
     for (j=1;j<=nlstate+ndeath;j++){        free_vector(xits,1,n);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        free_vector(ptt,1,n);
     }        free_vector(pt,1,n);
         return;
    cov[1]=1.;      }
        if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      for (j=1;j<=n;j++) {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        ptt[j]=2.0*p[j]-pt[j];
     newm=savm;        xit[j]=p[j]-pt[j];
     /* Covariates have to be included here again */        pt[j]=p[j];
      cov[2]=agefin;      }
         fptt=(*func)(ptt);
       for (k=1; k<=cptcovn;k++) {      if (fptt < fp) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        if (t < 0.0) {
       }          linmin(p,xit,n,fret,func);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          for (j=1;j<=n;j++) {
       for (k=1; k<=cptcovprod;k++)            xi[j][ibig]=xi[j][n];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            xi[j][n]=xit[j];
           }
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #ifdef DEBUG
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
     savm=oldm;            fprintf(ficlog," %.12e",xit[j]);
     oldm=newm;          }
     maxmax=0.;          printf("\n");
     for(j=1;j<=nlstate;j++){          fprintf(ficlog,"\n");
       min=1.;  #endif
       max=0.;        }
       for(i=1; i<=nlstate; i++) {      }
         sumnew=0;    }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  }
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  /**** Prevalence limit (stable or period prevalence)  ****************/
         min=FMIN(min,prlim[i][j]);  
       }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       maxmin=max-min;  {
       maxmax=FMAX(maxmax,maxmin);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
     if(maxmax < ftolpl){  
       return prlim;    int i, ii,j,k;
     }    double min, max, maxmin, maxmax,sumnew=0.;
   }    double **matprod2();
 }    double **out, cov[NCOVMAX], **pmij();
     double **newm;
 /*************** transition probabilities ***************/     double agefin, delaymax=50 ; /* Max number of years to converge */
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    for (ii=1;ii<=nlstate+ndeath;ii++)
 {      for (j=1;j<=nlstate+ndeath;j++){
   double s1, s2;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*double t34;*/      }
   int i,j,j1, nc, ii, jj;  
      cov[1]=1.;
     for(i=1; i<= nlstate; i++){   
       for(j=1; j<i;j++){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           /*s2 += param[i][j][nc]*cov[nc];*/      newm=savm;
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      /* Covariates have to be included here again */
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */       cov[2]=agefin;
         }   
         ps[i][j]=s2;        for (k=1; k<=cptcovn;k++) {
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       for(j=i+1; j<=nlstate+ndeath;j++){        }
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        for (k=1; k<=cptcovprod;k++)
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         }  
         ps[i][j]=s2;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     /*ps[3][2]=1;*/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       
     for(i=1; i<= nlstate; i++){      savm=oldm;
       s1=0;      oldm=newm;
       for(j=1; j<i; j++)      maxmax=0.;
         s1+=exp(ps[i][j]);      for(j=1;j<=nlstate;j++){
       for(j=i+1; j<=nlstate+ndeath; j++)        min=1.;
         s1+=exp(ps[i][j]);        max=0.;
       ps[i][i]=1./(s1+1.);        for(i=1; i<=nlstate; i++) {
       for(j=1; j<i; j++)          sumnew=0;
         ps[i][j]= exp(ps[i][j])*ps[i][i];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for(j=i+1; j<=nlstate+ndeath; j++)          prlim[i][j]= newm[i][j]/(1-sumnew);
         ps[i][j]= exp(ps[i][j])*ps[i][i];          max=FMAX(max,prlim[i][j]);
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          min=FMIN(min,prlim[i][j]);
     } /* end i */        }
             maxmin=max-min;
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        maxmax=FMAX(maxmax,maxmin);
       for(jj=1; jj<= nlstate+ndeath; jj++){      }
         ps[ii][jj]=0;      if(maxmax < ftolpl){
         ps[ii][ii]=1;        return prlim;
       }      }
     }    }
       }
   
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */  /*************** transition probabilities ***************/
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */  
 /*         printf("ddd %lf ",ps[ii][jj]); */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 /*       } */  {
 /*       printf("\n "); */    double s1, s2;
 /*        } */    /*double t34;*/
 /*        printf("\n ");printf("%lf ",cov[2]); */    int i,j,j1, nc, ii, jj;
        /*  
       for(i=1; i<= npar; i++) printf("%f ",x[i]);      for(i=1; i<= nlstate; i++){
       goto end;*/        for(j=1; j<i;j++){
     return ps;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 }            /*s2 += param[i][j][nc]*cov[nc];*/
             s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /**************** Product of 2 matrices ******************/  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           }
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          ps[i][j]=s2;
 {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        for(j=i+1; j<=nlstate+ndeath;j++){
   /* in, b, out are matrice of pointers which should have been initialized           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
      before: only the contents of out is modified. The function returns            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
      a pointer to pointers identical to out */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   long i, j, k;          }
   for(i=nrl; i<= nrh; i++)          ps[i][j]=s2;
     for(k=ncolol; k<=ncoloh; k++)        }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      }
         out[i][k] +=in[i][j]*b[j][k];      /*ps[3][2]=1;*/
      
   return out;      for(i=1; i<= nlstate; i++){
 }        s1=0;
         for(j=1; j<i; j++)
           s1+=exp(ps[i][j]);
 /************* Higher Matrix Product ***************/        for(j=i+1; j<=nlstate+ndeath; j++)
           s1+=exp(ps[i][j]);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        ps[i][i]=1./(s1+1.);
 {        for(j=1; j<i; j++)
   /* Computes the transition matrix starting at age 'age' over           ps[i][j]= exp(ps[i][j])*ps[i][i];
      'nhstepm*hstepm*stepm' months (i.e. until        for(j=i+1; j<=nlstate+ndeath; j++)
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying           ps[i][j]= exp(ps[i][j])*ps[i][i];
      nhstepm*hstepm matrices.         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step       } /* end i */
      (typically every 2 years instead of every month which is too big      
      for the memory).      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
      Model is determined by parameters x and covariates have to be         for(jj=1; jj<= nlstate+ndeath; jj++){
      included manually here.           ps[ii][jj]=0;
           ps[ii][ii]=1;
      */        }
       }
   int i, j, d, h, k;     
   double **out, cov[NCOVMAX];  
   double **newm;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /* Hstepm could be zero and should return the unit matrix */  /*         printf("ddd %lf ",ps[ii][jj]); */
   for (i=1;i<=nlstate+ndeath;i++)  /*       } */
     for (j=1;j<=nlstate+ndeath;j++){  /*       printf("\n "); */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /*        } */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /*        printf("\n ");printf("%lf ",cov[2]); */
     }         /*
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   for(h=1; h <=nhstepm; h++){        goto end;*/
     for(d=1; d <=hstepm; d++){      return ps;
       newm=savm;  }
       /* Covariates have to be included here again */  
       cov[1]=1.;  /**************** Product of 2 matrices ******************/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       for (k=1; k<=cptcovage;k++)  {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for (k=1; k<=cptcovprod;k++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /* in, b, out are matrice of pointers which should have been initialized
        before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    long i, j, k;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    for(i=nrl; i<= nrh; i++)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,       for(k=ncolol; k<=ncoloh; k++)
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       savm=oldm;          out[i][k] +=in[i][j]*b[j][k];
       oldm=newm;  
     }    return out;
     for(i=1; i<=nlstate+ndeath; i++)  }
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /************* Higher Matrix Product ***************/
          */  
       }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   } /* end h */  {
   return po;    /* Computes the transition matrix starting at age 'age' over
 }       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
        nhstepm*hstepm matrices.
 /*************** log-likelihood *************/       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
 double func( double *x)       (typically every 2 years instead of every month which is too big
 {       for the memory).
   int i, ii, j, k, mi, d, kk;       Model is determined by parameters x and covariates have to be
   double l, ll[NLSTATEMAX], cov[NCOVMAX];       included manually here.
   double **out;  
   double sw; /* Sum of weights */       */
   double lli; /* Individual log likelihood */  
   int s1, s2;    int i, j, d, h, k;
   double bbh, survp;    double **out, cov[NCOVMAX];
   long ipmx;    double **newm;
   /*extern weight */  
   /* We are differentiating ll according to initial status */    /* Hstepm could be zero and should return the unit matrix */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    for (i=1;i<=nlstate+ndeath;i++)
   /*for(i=1;i<imx;i++)       for (j=1;j<=nlstate+ndeath;j++){
     printf(" %d\n",s[4][i]);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   */        po[i][j][0]=(i==j ? 1.0 : 0.0);
   cov[1]=1.;      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
   if(mle==1){        newm=savm;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        /* Covariates have to be included here again */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        cov[1]=1.;
       for(mi=1; mi<= wav[i]-1; mi++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (ii=1;ii<=nlstate+ndeath;ii++)        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           for (j=1;j<=nlstate+ndeath;j++){        for (k=1; k<=cptcovage;k++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovprod;k++)
           }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           for (kk=1; kk<=cptcovage;kk++) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
           }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        savm=oldm;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        oldm=newm;
           savm=oldm;      }
           oldm=newm;      for(i=1; i<=nlstate+ndeath; i++)
         } /* end mult */        for(j=1;j<=nlstate+ndeath;j++) {
                 po[i][j][h]=newm[i][j];
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         /* But now since version 0.9 we anticipate for bias at large stepm.           */
          * If stepm is larger than one month (smallest stepm) and if the exact delay         }
          * (in months) between two waves is not a multiple of stepm, we rounded to     } /* end h */
          * the nearest (and in case of equal distance, to the lowest) interval but now    return po;
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  }
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the  
          * probability in order to take into account the bias as a fraction of the way  
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies  /*************** log-likelihood *************/
          * -stepm/2 to stepm/2 .  double func( double *x)
          * For stepm=1 the results are the same as for previous versions of Imach.  {
          * For stepm > 1 the results are less biased than in previous versions.     int i, ii, j, k, mi, d, kk;
          */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         s1=s[mw[mi][i]][i];    double **out;
         s2=s[mw[mi+1][i]][i];    double sw; /* Sum of weights */
         bbh=(double)bh[mi][i]/(double)stepm;     double lli; /* Individual log likelihood */
         /* bias bh is positive if real duration    int s1, s2;
          * is higher than the multiple of stepm and negative otherwise.    double bbh, survp;
          */    long ipmx;
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/    /*extern weight */
         if( s2 > nlstate){     /* We are differentiating ll according to initial status */
           /* i.e. if s2 is a death state and if the date of death is known     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
              then the contribution to the likelihood is the probability to     /*for(i=1;i<imx;i++)
              die between last step unit time and current  step unit time,       printf(" %d\n",s[4][i]);
              which is also equal to probability to die before dh     */
              minus probability to die before dh-stepm .     cov[1]=1.;
              In version up to 0.92 likelihood was computed  
         as if date of death was unknown. Death was treated as any other    for(k=1; k<=nlstate; k++) ll[k]=0.;
         health state: the date of the interview describes the actual state  
         and not the date of a change in health state. The former idea was    if(mle==1){
         to consider that at each interview the state was recorded      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         (healthy, disable or death) and IMaCh was corrected; but when we        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         introduced the exact date of death then we should have modified        for(mi=1; mi<= wav[i]-1; mi++){
         the contribution of an exact death to the likelihood. This new          for (ii=1;ii<=nlstate+ndeath;ii++)
         contribution is smaller and very dependent of the step unit            for (j=1;j<=nlstate+ndeath;j++){
         stepm. It is no more the probability to die between last interview              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         and month of death but the probability to survive from last              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         interview up to one month before death multiplied by the            }
         probability to die within a month. Thanks to Chris          for(d=0; d<dh[mi][i]; d++){
         Jackson for correcting this bug.  Former versions increased            newm=savm;
         mortality artificially. The bad side is that we add another loop            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         which slows down the processing. The difference can be up to 10%            for (kk=1; kk<=cptcovage;kk++) {
         lower mortality.              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           */            }
           lli=log(out[s1][s2] - savm[s1][s2]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
         } else if  (s2==-2) {            oldm=newm;
           for (j=1,survp=0. ; j<=nlstate; j++)           } /* end mult */
             survp += out[s1][j];       
           lli= survp;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         }          /* But now since version 0.9 we anticipate for bias at large stepm.
                    * If stepm is larger than one month (smallest stepm) and if the exact delay
         else if  (s2==-4) {           * (in months) between two waves is not a multiple of stepm, we rounded to
           for (j=3,survp=0. ; j<=nlstate; j++)            * the nearest (and in case of equal distance, to the lowest) interval but now
             survp += out[s1][j];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           lli= survp;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         }           * probability in order to take into account the bias as a fraction of the way
                    * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         else if  (s2==-5) {           * -stepm/2 to stepm/2 .
           for (j=1,survp=0. ; j<=2; j++)            * For stepm=1 the results are the same as for previous versions of Imach.
             survp += out[s1][j];           * For stepm > 1 the results are less biased than in previous versions.
           lli= survp;           */
         }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm;
         else{          /* bias bh is positive if real duration
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */           * is higher than the multiple of stepm and negative otherwise.
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */           */
         }           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          if( s2 > nlstate){
         /*if(lli ==000.0)*/            /* i.e. if s2 is a death state and if the date of death is known
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */               then the contribution to the likelihood is the probability to
         ipmx +=1;               die between last step unit time and current  step unit time,
         sw += weight[i];               which is also equal to probability to die before dh
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;               minus probability to die before dh-stepm .
       } /* end of wave */               In version up to 0.92 likelihood was computed
     } /* end of individual */          as if date of death was unknown. Death was treated as any other
   }  else if(mle==2){          health state: the date of the interview describes the actual state
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          and not the date of a change in health state. The former idea was
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          to consider that at each interview the state was recorded
       for(mi=1; mi<= wav[i]-1; mi++){          (healthy, disable or death) and IMaCh was corrected; but when we
         for (ii=1;ii<=nlstate+ndeath;ii++)          introduced the exact date of death then we should have modified
           for (j=1;j<=nlstate+ndeath;j++){          the contribution of an exact death to the likelihood. This new
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          contribution is smaller and very dependent of the step unit
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          stepm. It is no more the probability to die between last interview
           }          and month of death but the probability to survive from last
         for(d=0; d<=dh[mi][i]; d++){          interview up to one month before death multiplied by the
           newm=savm;          probability to die within a month. Thanks to Chris
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          Jackson for correcting this bug.  Former versions increased
           for (kk=1; kk<=cptcovage;kk++) {          mortality artificially. The bad side is that we add another loop
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          which slows down the processing. The difference can be up to 10%
           }          lower mortality.
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            lli=log(out[s1][s2] - savm[s1][s2]);
           savm=oldm;  
           oldm=newm;  
         } /* end mult */          } else if  (s2==-2) {
                   for (j=1,survp=0. ; j<=nlstate; j++)
         s1=s[mw[mi][i]][i];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         s2=s[mw[mi+1][i]][i];            /*survp += out[s1][j]; */
         bbh=(double)bh[mi][i]/(double)stepm;             lli= log(survp);
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          }
         ipmx +=1;         
         sw += weight[i];          else if  (s2==-4) {
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            for (j=3,survp=0. ; j<=nlstate; j++)  
       } /* end of wave */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     } /* end of individual */            lli= log(survp);
   }  else if(mle==3){  /* exponential inter-extrapolation */          }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          else if  (s2==-5) {
       for(mi=1; mi<= wav[i]-1; mi++){            for (j=1,survp=0. ; j<=2; j++)  
         for (ii=1;ii<=nlstate+ndeath;ii++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for (j=1;j<=nlstate+ndeath;j++){            lli= log(survp);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);         
           }          else{
         for(d=0; d<dh[mi][i]; d++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           newm=savm;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          }
           for (kk=1; kk<=cptcovage;kk++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          /*if(lli ==000.0)*/
           }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          ipmx +=1;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          sw += weight[i];
           savm=oldm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           oldm=newm;        } /* end of wave */
         } /* end mult */      } /* end of individual */
           }  else if(mle==2){
         s1=s[mw[mi][i]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         s2=s[mw[mi+1][i]][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         bbh=(double)bh[mi][i]/(double)stepm;         for(mi=1; mi<= wav[i]-1; mi++){
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          for (ii=1;ii<=nlstate+ndeath;ii++)
         ipmx +=1;            for (j=1;j<=nlstate+ndeath;j++){
         sw += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       } /* end of wave */            }
     } /* end of individual */          for(d=0; d<=dh[mi][i]; d++){
   }else if (mle==4){  /* ml=4 no inter-extrapolation */            newm=savm;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            for (kk=1; kk<=cptcovage;kk++) {
       for(mi=1; mi<= wav[i]-1; mi++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for (ii=1;ii<=nlstate+ndeath;ii++)            }
           for (j=1;j<=nlstate+ndeath;j++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            savm=oldm;
           }            oldm=newm;
         for(d=0; d<dh[mi][i]; d++){          } /* end mult */
           newm=savm;       
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          s1=s[mw[mi][i]][i];
           for (kk=1; kk<=cptcovage;kk++) {          s2=s[mw[mi+1][i]][i];
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          bbh=(double)bh[mi][i]/(double)stepm;
           }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   ipmx +=1;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          sw += weight[i];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           savm=oldm;        } /* end of wave */
           oldm=newm;      } /* end of individual */
         } /* end mult */    }  else if(mle==3){  /* exponential inter-extrapolation */
             for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         s1=s[mw[mi][i]][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         s2=s[mw[mi+1][i]][i];        for(mi=1; mi<= wav[i]-1; mi++){
         if( s2 > nlstate){           for (ii=1;ii<=nlstate+ndeath;ii++)
           lli=log(out[s1][s2] - savm[s1][s2]);            for (j=1;j<=nlstate+ndeath;j++){
         }else{              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         ipmx +=1;          for(d=0; d<dh[mi][i]; d++){
         sw += weight[i];            newm=savm;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            for (kk=1; kk<=cptcovage;kk++) {
       } /* end of wave */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     } /* end of individual */            }
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            savm=oldm;
       for(mi=1; mi<= wav[i]-1; mi++){            oldm=newm;
         for (ii=1;ii<=nlstate+ndeath;ii++)          } /* end mult */
           for (j=1;j<=nlstate+ndeath;j++){       
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          s1=s[mw[mi][i]][i];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          s2=s[mw[mi+1][i]][i];
           }          bbh=(double)bh[mi][i]/(double)stepm;
         for(d=0; d<dh[mi][i]; d++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           newm=savm;          ipmx +=1;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          sw += weight[i];
           for (kk=1; kk<=cptcovage;kk++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        } /* end of wave */
           }      } /* end of individual */
             }else if (mle==4){  /* ml=4 no inter-extrapolation */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           savm=oldm;        for(mi=1; mi<= wav[i]-1; mi++){
           oldm=newm;          for (ii=1;ii<=nlstate+ndeath;ii++)
         } /* end mult */            for (j=1;j<=nlstate+ndeath;j++){
                     oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         s1=s[mw[mi][i]][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         s2=s[mw[mi+1][i]][i];            }
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          for(d=0; d<dh[mi][i]; d++){
         ipmx +=1;            newm=savm;
         sw += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            for (kk=1; kk<=cptcovage;kk++) {
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       } /* end of wave */            }
     } /* end of individual */         
   } /* End of if */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            savm=oldm;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            oldm=newm;
   return -l;          } /* end mult */
 }       
           s1=s[mw[mi][i]][i];
 /*************** log-likelihood *************/          s2=s[mw[mi+1][i]][i];
 double funcone( double *x)          if( s2 > nlstate){
 {            lli=log(out[s1][s2] - savm[s1][s2]);
   /* Same as likeli but slower because of a lot of printf and if */          }else{
   int i, ii, j, k, mi, d, kk;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          }
   double **out;          ipmx +=1;
   double lli; /* Individual log likelihood */          sw += weight[i];
   double llt;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int s1, s2;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double bbh, survp;        } /* end of wave */
   /*extern weight */      } /* end of individual */
   /* We are differentiating ll according to initial status */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /*for(i=1;i<imx;i++)         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     printf(" %d\n",s[4][i]);        for(mi=1; mi<= wav[i]-1; mi++){
   */          for (ii=1;ii<=nlstate+ndeath;ii++)
   cov[1]=1.;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(k=1; k<=nlstate; k++) ll[k]=0.;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          for(d=0; d<dh[mi][i]; d++){
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            newm=savm;
     for(mi=1; mi<= wav[i]-1; mi++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for (ii=1;ii<=nlstate+ndeath;ii++)            for (kk=1; kk<=cptcovage;kk++) {
         for (j=1;j<=nlstate+ndeath;j++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);            }
           savm[ii][j]=(ii==j ? 1.0 : 0.0);         
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(d=0; d<dh[mi][i]; d++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         newm=savm;            savm=oldm;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            oldm=newm;
         for (kk=1; kk<=cptcovage;kk++) {          } /* end mult */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       
         }          s1=s[mw[mi][i]][i];
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          s2=s[mw[mi+1][i]][i];
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         savm=oldm;          ipmx +=1;
         oldm=newm;          sw += weight[i];
       } /* end mult */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       s1=s[mw[mi][i]][i];        } /* end of wave */
       s2=s[mw[mi+1][i]][i];      } /* end of individual */
       bbh=(double)bh[mi][i]/(double)stepm;     } /* End of if */
       /* bias is positive if real duration    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
        * is higher than the multiple of stepm and negative otherwise.    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
        */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       if( s2 > nlstate && (mle <5) ){  /* Jackson */    return -l;
         lli=log(out[s1][s2] - savm[s1][s2]);  }
       } else if (mle==1){  
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  /*************** log-likelihood *************/
       } else if(mle==2){  double funcone( double *x)
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  {
       } else if(mle==3){  /* exponential inter-extrapolation */    /* Same as likeli but slower because of a lot of printf and if */
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    int i, ii, j, k, mi, d, kk;
       } else if (mle==4){  /* mle=4 no inter-extrapolation */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         lli=log(out[s1][s2]); /* Original formula */    double **out;
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */    double lli; /* Individual log likelihood */
         lli=log(out[s1][s2]); /* Original formula */    double llt;
       } /* End of if */    int s1, s2;
       ipmx +=1;    double bbh, survp;
       sw += weight[i];    /*extern weight */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /* We are differentiating ll according to initial status */
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if(globpr){    /*for(i=1;i<imx;i++)
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\      printf(" %d\n",s[4][i]);
  %10.6f %10.6f %10.6f ", \    */
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],    cov[1]=1.;
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);  
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
           llt +=ll[k]*gipmx/gsw;  
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficresilk," %10.6f\n", -llt);      for(mi=1; mi<= wav[i]-1; mi++){
       }        for (ii=1;ii<=nlstate+ndeath;ii++)
     } /* end of wave */          for (j=1;j<=nlstate+ndeath;j++){
   } /* end of individual */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        for(d=0; d<dh[mi][i]; d++){
   if(globpr==0){ /* First time we count the contributions and weights */          newm=savm;
     gipmx=ipmx;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gsw=sw;          for (kk=1; kk<=cptcovage;kk++) {
   }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   return -l;          }
 }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
 /*************** function likelione ***********/          oldm=newm;
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))        } /* end mult */
 {       
   /* This routine should help understanding what is done with         s1=s[mw[mi][i]][i];
      the selection of individuals/waves and        s2=s[mw[mi+1][i]][i];
      to check the exact contribution to the likelihood.        bbh=(double)bh[mi][i]/(double)stepm;
      Plotting could be done.        /* bias is positive if real duration
    */         * is higher than the multiple of stepm and negative otherwise.
   int k;         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
   if(*globpri !=0){ /* Just counts and sums, no printings */          lli=log(out[s1][s2] - savm[s1][s2]);
     strcpy(fileresilk,"ilk");         } else if  (s2==-2) {
     strcat(fileresilk,fileres);          for (j=1,survp=0. ; j<=nlstate; j++)
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       printf("Problem with resultfile: %s\n", fileresilk);          lli= log(survp);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);        }else if (mle==1){
     }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");        } else if(mle==2){
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */        } else if(mle==3){  /* exponential inter-extrapolation */
     for(k=1; k<=nlstate; k++)           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");          lli=log(out[s1][s2]); /* Original formula */
   }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
   *fretone=(*funcone)(p);        } /* End of if */
   if(*globpri !=0){        ipmx +=1;
     fclose(ficresilk);        sw += weight[i];
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fflush(fichtm);   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   }         if(globpr){
   return;          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
 }   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 /*********** Maximum Likelihood Estimation ***************/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 {          }
   int i,j, iter;          fprintf(ficresilk," %10.6f\n", -llt);
   double **xi;        }
   double fret;      } /* end of wave */
   double fretone; /* Only one call to likelihood */    } /* end of individual */
   /*  char filerespow[FILENAMELENGTH];*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   xi=matrix(1,npar,1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for (i=1;i<=npar;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for (j=1;j<=npar;j++)    if(globpr==0){ /* First time we count the contributions and weights */
       xi[i][j]=(i==j ? 1.0 : 0.0);      gipmx=ipmx;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      gsw=sw;
   strcpy(filerespow,"pow");     }
   strcat(filerespow,fileres);    return -l;
   if((ficrespow=fopen(filerespow,"w"))==NULL) {  }
     printf("Problem with resultfile: %s\n", filerespow);  
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);  
   }  /*************** function likelione ***********/
   fprintf(ficrespow,"# Powell\n# iter -2*LL");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   for (i=1;i<=nlstate;i++)  {
     for(j=1;j<=nlstate+ndeath;j++)    /* This routine should help understanding what is done with
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);       the selection of individuals/waves and
   fprintf(ficrespow,"\n");       to check the exact contribution to the likelihood.
        Plotting could be done.
   powell(p,xi,npar,ftol,&iter,&fret,func);     */
     int k;
   free_matrix(xi,1,npar,1,npar);  
   fclose(ficrespow);    if(*globpri !=0){ /* Just counts and sums, no printings */
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      strcpy(fileresilk,"ilk");
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      strcat(fileresilk,fileres);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
 }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
 /**** Computes Hessian and covariance matrix ***/      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 {      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double  **a,**y,*x,pd;      for(k=1; k<=nlstate; k++)
   double **hess;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   int i, j,jk;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   int *indx;    }
   
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    *fretone=(*funcone)(p);
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);    if(*globpri !=0){
   void lubksb(double **a, int npar, int *indx, double b[]) ;      fclose(ficresilk);
   void ludcmp(double **a, int npar, int *indx, double *d) ;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   double gompertz(double p[]);      fflush(fichtm);
   hess=matrix(1,npar,1,npar);    }
     return;
   printf("\nCalculation of the hessian matrix. Wait...\n");  }
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  /*********** Maximum Likelihood Estimation ***************/
     fprintf(ficlog,"%d",i);fflush(ficlog);  
      void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);  {
         int i,j, iter;
     /*  printf(" %f ",p[i]);    double **xi;
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/    double fret;
   }    double fretone; /* Only one call to likelihood */
       /*  char filerespow[FILENAMELENGTH];*/
   for (i=1;i<=npar;i++) {    xi=matrix(1,npar,1,npar);
     for (j=1;j<=npar;j++)  {    for (i=1;i<=npar;i++)
       if (j>i) {       for (j=1;j<=npar;j++)
         printf(".%d%d",i,j);fflush(stdout);        xi[i][j]=(i==j ? 1.0 : 0.0);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         hess[i][j]=hessij(p,delti,i,j,func,npar);    strcpy(filerespow,"pow");
             strcat(filerespow,fileres);
         hess[j][i]=hess[i][j];        if((ficrespow=fopen(filerespow,"w"))==NULL) {
         /*printf(" %lf ",hess[i][j]);*/      printf("Problem with resultfile: %s\n", filerespow);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }    }
   }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   printf("\n");    for (i=1;i<=nlstate;i++)
   fprintf(ficlog,"\n");      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    fprintf(ficrespow,"\n");
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  
       powell(p,xi,npar,ftol,&iter,&fret,func);
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);    free_matrix(xi,1,npar,1,npar);
   x=vector(1,npar);    fclose(ficrespow);
   indx=ivector(1,npar);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   for (i=1;i<=npar;i++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   ludcmp(a,npar,indx,&pd);  
   }
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /**** Computes Hessian and covariance matrix ***/
     x[j]=1;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){     double  **a,**y,*x,pd;
       matcov[i][j]=x[i];    double **hess;
     }    int i, j,jk;
   }    int *indx;
   
   printf("\n#Hessian matrix#\n");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   fprintf(ficlog,"\n#Hessian matrix#\n");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   for (i=1;i<=npar;i++) {     void lubksb(double **a, int npar, int *indx, double b[]) ;
     for (j=1;j<=npar;j++) {     void ludcmp(double **a, int npar, int *indx, double *d) ;
       printf("%.3e ",hess[i][j]);    double gompertz(double p[]);
       fprintf(ficlog,"%.3e ",hess[i][j]);    hess=matrix(1,npar,1,npar);
     }  
     printf("\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   }    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   /* Recompute Inverse */      fprintf(ficlog,"%d",i);fflush(ficlog);
   for (i=1;i<=npar;i++)     
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   ludcmp(a,npar,indx,&pd);     
       /*  printf(" %f ",p[i]);
   /*  printf("\n#Hessian matrix recomputed#\n");          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
   for (j=1;j<=npar;j++) {   
     for (i=1;i<=npar;i++) x[i]=0;    for (i=1;i<=npar;i++) {
     x[j]=1;      for (j=1;j<=npar;j++)  {
     lubksb(a,npar,indx,x);        if (j>i) {
     for (i=1;i<=npar;i++){           printf(".%d%d",i,j);fflush(stdout);
       y[i][j]=x[i];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       printf("%.3e ",y[i][j]);          hess[i][j]=hessij(p,delti,i,j,func,npar);
       fprintf(ficlog,"%.3e ",y[i][j]);         
     }          hess[j][i]=hess[i][j];    
     printf("\n");          /*printf(" %lf ",hess[i][j]);*/
     fprintf(ficlog,"\n");        }
   }      }
   */    }
     printf("\n");
   free_matrix(a,1,npar,1,npar);    fprintf(ficlog,"\n");
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_ivector(indx,1,npar);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_matrix(hess,1,npar,1,npar);   
     a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
 }    x=vector(1,npar);
     indx=ivector(1,npar);
 /*************** hessian matrix ****************/    for (i=1;i<=npar;i++)
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 {    ludcmp(a,npar,indx,&pd);
   int i;  
   int l=1, lmax=20;    for (j=1;j<=npar;j++) {
   double k1,k2;      for (i=1;i<=npar;i++) x[i]=0;
   double p2[NPARMAX+1];      x[j]=1;
   double res;      lubksb(a,npar,indx,x);
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;      for (i=1;i<=npar;i++){
   double fx;        matcov[i][j]=x[i];
   int k=0,kmax=10;      }
   double l1;    }
   
   fx=func(x);    printf("\n#Hessian matrix#\n");
   for (i=1;i<=npar;i++) p2[i]=x[i];    fprintf(ficlog,"\n#Hessian matrix#\n");
   for(l=0 ; l <=lmax; l++){    for (i=1;i<=npar;i++) {
     l1=pow(10,l);      for (j=1;j<=npar;j++) {
     delts=delt;        printf("%.3e ",hess[i][j]);
     for(k=1 ; k <kmax; k=k+1){        fprintf(ficlog,"%.3e ",hess[i][j]);
       delt = delta*(l1*k);      }
       p2[theta]=x[theta] +delt;      printf("\n");
       k1=func(p2)-fx;      fprintf(ficlog,"\n");
       p2[theta]=x[theta]-delt;    }
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */    /* Recompute Inverse */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    for (i=1;i<=npar;i++)
             for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 #ifdef DEBUG    ludcmp(a,npar,indx,&pd);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    /*  printf("\n#Hessian matrix recomputed#\n");
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    for (j=1;j<=npar;j++) {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      for (i=1;i<=npar;i++) x[i]=0;
         k=kmax;      x[j]=1;
       }      lubksb(a,npar,indx,x);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for (i=1;i<=npar;i++){
         k=kmax; l=lmax*10.;        y[i][j]=x[i];
       }        printf("%.3e ",y[i][j]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){         fprintf(ficlog,"%.3e ",y[i][j]);
         delts=delt;      }
       }      printf("\n");
     }      fprintf(ficlog,"\n");
   }    }
   delti[theta]=delts;    */
   return res;   
       free_matrix(a,1,npar,1,npar);
 }    free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)    free_ivector(indx,1,npar);
 {    free_matrix(hess,1,npar,1,npar);
   int i;  
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  }
   double p2[NPARMAX+1];  
   int k;  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   fx=func(x);  {
   for (k=1; k<=2; k++) {    int i;
     for (i=1;i<=npar;i++) p2[i]=x[i];    int l=1, lmax=20;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double k1,k2;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double p2[NPARMAX+1];
     k1=func(p2)-fx;    double res;
       double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double fx;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    int k=0,kmax=10;
     k2=func(p2)-fx;    double l1;
     
     p2[thetai]=x[thetai]-delti[thetai]/k;    fx=func(x);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (i=1;i<=npar;i++) p2[i]=x[i];
     k3=func(p2)-fx;    for(l=0 ; l <=lmax; l++){
         l1=pow(10,l);
     p2[thetai]=x[thetai]-delti[thetai]/k;      delts=delt;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for(k=1 ; k <kmax; k=k+1){
     k4=func(p2)-fx;        delt = delta*(l1*k);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        p2[theta]=x[theta] +delt;
 #ifdef DEBUG        k1=func(p2)-fx;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        p2[theta]=x[theta]-delt;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        k2=func(p2)-fx;
 #endif        /*res= (k1-2.0*fx+k2)/delt/delt; */
   }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   return res;       
 }  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 /************** Inverse of matrix **************/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 void ludcmp(double **a, int n, int *indx, double *d)   #endif
 {         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   int i,imax,j,k;         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double big,dum,sum,temp;           k=kmax;
   double *vv;         }
          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   vv=vector(1,n);           k=kmax; l=lmax*10.;
   *d=1.0;         }
   for (i=1;i<=n;i++) {         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
     big=0.0;           delts=delt;
     for (j=1;j<=n;j++)         }
       if ((temp=fabs(a[i][j])) > big) big=temp;       }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");     }
     vv[i]=1.0/big;     delti[theta]=delts;
   }     return res;
   for (j=1;j<=n;j++) {    
     for (i=1;i<j;i++) {   }
       sum=a[i][j];   
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       a[i][j]=sum;   {
     }     int i;
     big=0.0;     int l=1, l1, lmax=20;
     for (i=j;i<=n;i++) {     double k1,k2,k3,k4,res,fx;
       sum=a[i][j];     double p2[NPARMAX+1];
       for (k=1;k<j;k++)     int k;
         sum -= a[i][k]*a[k][j];   
       a[i][j]=sum;     fx=func(x);
       if ( (dum=vv[i]*fabs(sum)) >= big) {     for (k=1; k<=2; k++) {
         big=dum;       for (i=1;i<=npar;i++) p2[i]=x[i];
         imax=i;       p2[thetai]=x[thetai]+delti[thetai]/k;
       }       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     }       k1=func(p2)-fx;
     if (j != imax) {    
       for (k=1;k<=n;k++) {       p2[thetai]=x[thetai]+delti[thetai]/k;
         dum=a[imax][k];       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         a[imax][k]=a[j][k];       k2=func(p2)-fx;
         a[j][k]=dum;    
       }       p2[thetai]=x[thetai]-delti[thetai]/k;
       *d = -(*d);       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       vv[imax]=vv[j];       k3=func(p2)-fx;
     }    
     indx[j]=imax;       p2[thetai]=x[thetai]-delti[thetai]/k;
     if (a[j][j] == 0.0) a[j][j]=TINY;       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     if (j != n) {       k4=func(p2)-fx;
       dum=1.0/(a[j][j]);       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;   #ifdef DEBUG
     }       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   free_vector(vv,1,n);  /* Doesn't work */  #endif
 ;    }
 }     return res;
   }
 void lubksb(double **a, int n, int *indx, double b[])   
 {   /************** Inverse of matrix **************/
   int i,ii=0,ip,j;   void ludcmp(double **a, int n, int *indx, double *d)
   double sum;   {
      int i,imax,j,k;
   for (i=1;i<=n;i++) {     double big,dum,sum,temp;
     ip=indx[i];     double *vv;
     sum=b[ip];    
     b[ip]=b[i];     vv=vector(1,n);
     if (ii)     *d=1.0;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     for (i=1;i<=n;i++) {
     else if (sum) ii=i;       big=0.0;
     b[i]=sum;       for (j=1;j<=n;j++)
   }         if ((temp=fabs(a[i][j])) > big) big=temp;
   for (i=n;i>=1;i--) {       if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
     sum=b[i];       vv[i]=1.0/big;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];     }
     b[i]=sum/a[i][i];     for (j=1;j<=n;j++) {
   }       for (i=1;i<j;i++) {
 }         sum=a[i][j];
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
 void pstamp(FILE *fichier)        a[i][j]=sum;
 {      }
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);      big=0.0;
 }      for (i=j;i<=n;i++) {
         sum=a[i][j];
 /************ Frequencies ********************/        for (k=1;k<j;k++)
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])          sum -= a[i][k]*a[k][j];
 {  /* Some frequencies */        a[i][j]=sum;
           if ( (dum=vv[i]*fabs(sum)) >= big) {
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          big=dum;
   int first;          imax=i;
   double ***freq; /* Frequencies */        }
   double *pp, **prop;      }
   double pos,posprop, k2, dateintsum=0,k2cpt=0;      if (j != imax) {
   char fileresp[FILENAMELENGTH];        for (k=1;k<=n;k++) {
             dum=a[imax][k];
   pp=vector(1,nlstate);          a[imax][k]=a[j][k];
   prop=matrix(1,nlstate,iagemin,iagemax+3);          a[j][k]=dum;
   strcpy(fileresp,"p");        }
   strcat(fileresp,fileres);        *d = -(*d);
   if((ficresp=fopen(fileresp,"w"))==NULL) {        vv[imax]=vv[j];
     printf("Problem with prevalence resultfile: %s\n", fileresp);      }
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      indx[j]=imax;
     exit(0);      if (a[j][j] == 0.0) a[j][j]=TINY;
   }      if (j != n) {
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);        dum=1.0/(a[j][j]);
   j1=0;        for (i=j+1;i<=n;i++) a[i][j] *= dum;
         }
   j=cptcoveff;    }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    free_vector(vv,1,n);  /* Doesn't work */
   ;
   first=1;  }
   
   for(k1=1; k1<=j;k1++){  void lubksb(double **a, int n, int *indx, double b[])
     for(i1=1; i1<=ncodemax[k1];i1++){  {
       j1++;    int i,ii=0,ip,j;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    double sum;
         scanf("%d", i);*/   
       for (i=-5; i<=nlstate+ndeath; i++)      for (i=1;i<=n;i++) {
         for (jk=-5; jk<=nlstate+ndeath; jk++)        ip=indx[i];
           for(m=iagemin; m <= iagemax+3; m++)      sum=b[ip];
             freq[i][jk][m]=0;      b[ip]=b[i];
       if (ii)
     for (i=1; i<=nlstate; i++)          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
       for(m=iagemin; m <= iagemax+3; m++)      else if (sum) ii=i;
         prop[i][m]=0;      b[i]=sum;
           }
       dateintsum=0;    for (i=n;i>=1;i--) {
       k2cpt=0;      sum=b[i];
       for (i=1; i<=imx; i++) {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
         bool=1;      b[i]=sum/a[i][i];
         if  (cptcovn>0) {    }
           for (z1=1; z1<=cptcoveff; z1++)   }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   
               bool=0;  void pstamp(FILE *fichier)
         }  {
         if (bool==1){    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           for(m=firstpass; m<=lastpass; m++){  }
             k2=anint[m][i]+(mint[m][i]/12.);  
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/  /************ Frequencies ********************/
               if(agev[m][i]==0) agev[m][i]=iagemax+1;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  {  /* Some frequencies */
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];   
               if (m<lastpass) {    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    int first;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    double ***freq; /* Frequencies */
               }    double *pp, **prop;
                   double pos,posprop, k2, dateintsum=0,k2cpt=0;
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    char fileresp[FILENAMELENGTH];
                 dateintsum=dateintsum+k2;   
                 k2cpt++;    pp=vector(1,nlstate);
               }    prop=matrix(1,nlstate,iagemin,iagemax+3);
               /*}*/    strcpy(fileresp,"p");
           }    strcat(fileresp,fileres);
         }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       }      printf("Problem with prevalence resultfile: %s\n", fileresp);
              fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      exit(0);
       pstamp(ficresp);    }
       if  (cptcovn>0) {    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         fprintf(ficresp, "\n#********** Variable ");     j1=0;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   
         fprintf(ficresp, "**********\n#");    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(i=1; i<=nlstate;i++)   
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    first=1;
       fprintf(ficresp, "\n");  
           for(k1=1; k1<=j;k1++){
       for(i=iagemin; i <= iagemax+3; i++){      for(i1=1; i1<=ncodemax[k1];i1++){
         if(i==iagemax+3){        j1++;
           fprintf(ficlog,"Total");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         }else{          scanf("%d", i);*/
           if(first==1){        for (i=-5; i<=nlstate+ndeath; i++)  
             first=0;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             printf("See log file for details...\n");            for(m=iagemin; m <= iagemax+3; m++)
           }              freq[i][jk][m]=0;
           fprintf(ficlog,"Age %d", i);  
         }      for (i=1; i<=nlstate; i++)  
         for(jk=1; jk <=nlstate ; jk++){        for(m=iagemin; m <= iagemax+3; m++)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          prop[i][m]=0;
             pp[jk] += freq[jk][m][i];        
         }        dateintsum=0;
         for(jk=1; jk <=nlstate ; jk++){        k2cpt=0;
           for(m=-1, pos=0; m <=0 ; m++)        for (i=1; i<=imx; i++) {
             pos += freq[jk][m][i];          bool=1;
           if(pp[jk]>=1.e-10){          if  (cptcovn>0) {
             if(first==1){            for (z1=1; z1<=cptcoveff; z1++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
             }                bool=0;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          }
           }else{          if (bool==1){
             if(first==1)            for(m=firstpass; m<=lastpass; m++){
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              k2=anint[m][i]+(mint[m][i]/12.);
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         for(jk=1; jk <=nlstate ; jk++){                if (m<lastpass) {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             pp[jk] += freq[jk][m][i];                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         }                       }
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){               
           pos += pp[jk];                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           posprop += prop[jk][i];                  dateintsum=dateintsum+k2;
         }                  k2cpt++;
         for(jk=1; jk <=nlstate ; jk++){                }
           if(pos>=1.e-5){                /*}*/
             if(first==1)            }
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          }
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        }
           }else{         
             if(first==1)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        pstamp(ficresp);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        if  (cptcovn>0) {
           }          fprintf(ficresp, "\n#********** Variable ");
           if( i <= iagemax){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             if(pos>=1.e-5){          fprintf(ficresp, "**********\n#");
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);        }
               /*probs[i][jk][j1]= pp[jk]/pos;*/        for(i=1; i<=nlstate;i++)
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             }        fprintf(ficresp, "\n");
             else       
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);        for(i=iagemin; i <= iagemax+3; i++){
           }          if(i==iagemax+3){
         }            fprintf(ficlog,"Total");
                   }else{
         for(jk=-1; jk <=nlstate+ndeath; jk++)            if(first==1){
           for(m=-1; m <=nlstate+ndeath; m++)              first=0;
             if(freq[jk][m][i] !=0 ) {              printf("See log file for details...\n");
             if(first==1)            }
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            fprintf(ficlog,"Age %d", i);
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          }
             }          for(jk=1; jk <=nlstate ; jk++){
         if(i <= iagemax)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           fprintf(ficresp,"\n");              pp[jk] += freq[jk][m][i];
         if(first==1)          }
           printf("Others in log...\n");          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficlog,"\n");            for(m=-1, pos=0; m <=0 ; m++)
       }              pos += freq[jk][m][i];
     }            if(pp[jk]>=1.e-10){
   }              if(first==1){
   dateintmean=dateintsum/k2cpt;               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }
   fclose(ficresp);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);            }else{
   free_vector(pp,1,nlstate);              if(first==1)
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   /* End of Freq */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 }            }
           }
 /************ Prevalence ********************/  
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)          for(jk=1; jk <=nlstate ; jk++){
 {              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people              pp[jk] += freq[jk][m][i];
      in each health status at the date of interview (if between dateprev1 and dateprev2).          }      
      We still use firstpass and lastpass as another selection.          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   */            pos += pp[jk];
              posprop += prop[jk][i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          }
   double ***freq; /* Frequencies */          for(jk=1; jk <=nlstate ; jk++){
   double *pp, **prop;            if(pos>=1.e-5){
   double pos,posprop;               if(first==1)
   double  y2; /* in fractional years */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   int iagemin, iagemax;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
   iagemin= (int) agemin;              if(first==1)
   iagemax= (int) agemax;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /*pp=vector(1,nlstate);*/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   prop=matrix(1,nlstate,iagemin,iagemax+3);             }
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/            if( i <= iagemax){
   j1=0;              if(pos>=1.e-5){
                   fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   j=cptcoveff;                /*probs[i][jk][j1]= pp[jk]/pos;*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                 }
   for(k1=1; k1<=j;k1++){              else
     for(i1=1; i1<=ncodemax[k1];i1++){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       j1++;            }
                 }
       for (i=1; i<=nlstate; i++)           
         for(m=iagemin; m <= iagemax+3; m++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
           prop[i][m]=0.0;            for(m=-1; m <=nlstate+ndeath; m++)
                    if(freq[jk][m][i] !=0 ) {
       for (i=1; i<=imx; i++) { /* Each individual */              if(first==1)
         bool=1;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         if  (cptcovn>0) {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           for (z1=1; z1<=cptcoveff; z1++)               }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           if(i <= iagemax)
               bool=0;            fprintf(ficresp,"\n");
         }           if(first==1)
         if (bool==1) {             printf("Others in log...\n");
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/          fprintf(ficlog,"\n");
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */        }
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */      }
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    }
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    dateintmean=dateintsum/k2cpt;
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);    
               if (s[m][i]>0 && s[m][i]<=nlstate) {     fclose(ficresp);
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];    free_vector(pp,1,nlstate);
                 prop[s[m][i]][iagemax+3] += weight[i];     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
               }     /* End of Freq */
             }  }
           } /* end selection of waves */  
         }  /************ Prevalence ********************/
       }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       for(i=iagemin; i <= iagemax+3; i++){    {  
             /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {        in each health status at the date of interview (if between dateprev1 and dateprev2).
           posprop += prop[jk][i];        We still use firstpass and lastpass as another selection.
         }     */
    
         for(jk=1; jk <=nlstate ; jk++){         int i, m, jk, k1, i1, j1, bool, z1,z2,j;
           if( i <=  iagemax){     double ***freq; /* Frequencies */
             if(posprop>=1.e-5){     double *pp, **prop;
               probs[i][jk][j1]= prop[jk][i]/posprop;    double pos,posprop;
             }     double  y2; /* in fractional years */
           }     int iagemin, iagemax;
         }/* end jk */   
       }/* end i */     iagemin= (int) agemin;
     } /* end i1 */    iagemax= (int) agemax;
   } /* end k1 */    /*pp=vector(1,nlstate);*/
       prop=matrix(1,nlstate,iagemin,iagemax+3);
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   /*free_vector(pp,1,nlstate);*/    j1=0;
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);   
 }  /* End of prevalence */    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 /************* Waves Concatenation ***************/   
     for(k1=1; k1<=j;k1++){
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      for(i1=1; i1<=ncodemax[k1];i1++){
 {        j1++;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.       
      Death is a valid wave (if date is known).        for (i=1; i<=nlstate; i++)  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          for(m=iagemin; m <= iagemax+3; m++)
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]            prop[i][m]=0.0;
      and mw[mi+1][i]. dh depends on stepm.       
      */        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
   int i, mi, m;          if  (cptcovn>0) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            for (z1=1; z1<=cptcoveff; z1++)
      double sum=0., jmean=0.;*/              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
   int first;                bool=0;
   int j, k=0,jk, ju, jl;          }
   double sum=0.;          if (bool==1) {
   first=0;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   jmin=1e+5;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   jmax=-1;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   jmean=0.;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   for(i=1; i<=imx; i++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     mi=0;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
     m=firstpass;                if (s[m][i]>0 && s[m][i]<=nlstate) {
     while(s[m][i] <= nlstate){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         mw[++mi][i]=m;                  prop[s[m][i]][iagemax+3] += weight[i];
       if(m >=lastpass)                }
         break;              }
       else            } /* end selection of waves */
         m++;          }
     }/* end while */        }
     if (s[m][i] > nlstate){        for(i=iagemin; i <= iagemax+3; i++){  
       mi++;     /* Death is another wave */         
       /* if(mi==0)  never been interviewed correctly before death */          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
          /* Only death is a correct wave */            posprop += prop[jk][i];
       mw[mi][i]=m;          }
     }  
           for(jk=1; jk <=nlstate ; jk++){    
     wav[i]=mi;            if( i <=  iagemax){
     if(mi==0){              if(posprop>=1.e-5){
       nbwarn++;                probs[i][jk][j1]= prop[jk][i]/posprop;
       if(first==0){              }
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);            }
         first=1;          }/* end jk */
       }        }/* end i */
       if(first==1){      } /* end i1 */
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);    } /* end k1 */
       }   
     } /* end mi==0 */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   } /* End individuals */    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   for(i=1; i<=imx; i++){  }  /* End of prevalence */
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)  /************* Waves Concatenation ***************/
         dh[mi][i]=1;  
       else{  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */  {
           if (agedc[i] < 2*AGESUP) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        Death is a valid wave (if date is known).
             if(j==0) j=1;  /* Survives at least one month after exam */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             else if(j<0){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
               nberr++;       and mw[mi+1][i]. dh depends on stepm.
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);       */
               j=1; /* Temporary Dangerous patch */  
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);    int i, mi, m;
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);       double sum=0., jmean=0.;*/
             }    int first;
             k=k+1;    int j, k=0,jk, ju, jl;
             if (j >= jmax){    double sum=0.;
               jmax=j;    first=0;
               ijmax=i;    jmin=1e+5;
             }    jmax=-1;
             if (j <= jmin){    jmean=0.;
               jmin=j;    for(i=1; i<=imx; i++){
               ijmin=i;      mi=0;
             }      m=firstpass;
             sum=sum+j;      while(s[m][i] <= nlstate){
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/          mw[++mi][i]=m;
           }        if(m >=lastpass)
         }          break;
         else{        else
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          m++;
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */      }/* end while */
       if (s[m][i] > nlstate){
           k=k+1;        mi++;     /* Death is another wave */
           if (j >= jmax) {        /* if(mi==0)  never been interviewed correctly before death */
             jmax=j;           /* Only death is a correct wave */
             ijmax=i;        mw[mi][i]=m;
           }      }
           else if (j <= jmin){  
             jmin=j;      wav[i]=mi;
             ijmin=i;      if(mi==0){
           }        nbwarn++;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        if(first==0){
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           if(j<0){          first=1;
             nberr++;        }
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        if(first==1){
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           }        }
           sum=sum+j;      } /* end mi==0 */
         }    } /* End individuals */
         jk= j/stepm;  
         jl= j -jk*stepm;    for(i=1; i<=imx; i++){
         ju= j -(jk+1)*stepm;      for(mi=1; mi<wav[i];mi++){
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */        if (stepm <=0)
           if(jl==0){          dh[mi][i]=1;
             dh[mi][i]=jk;        else{
             bh[mi][i]=0;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           }else{ /* We want a negative bias in order to only have interpolation ie            if (agedc[i] < 2*AGESUP) {
                   * at the price of an extra matrix product in likelihood */              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
             dh[mi][i]=jk+1;              if(j==0) j=1;  /* Survives at least one month after exam */
             bh[mi][i]=ju;              else if(j<0){
           }                nberr++;
         }else{                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           if(jl <= -ju){                j=1; /* Temporary Dangerous patch */
             dh[mi][i]=jk;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             bh[mi][i]=jl;       /* bias is positive if real duration                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                                  * is higher than the multiple of stepm and negative otherwise.                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                                  */              }
           }              k=k+1;
           else{              if (j >= jmax){
             dh[mi][i]=jk+1;                jmax=j;
             bh[mi][i]=ju;                ijmax=i;
           }              }
           if(dh[mi][i]==0){              if (j <= jmin){
             dh[mi][i]=1; /* At least one step */                jmin=j;
             bh[mi][i]=ju; /* At least one step */                ijmin=i;
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/              }
           }              sum=sum+j;
         } /* end if mle */              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     } /* end wave */            }
   }          }
   jmean=sum/k;          else{
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
  }  
             k=k+1;
 /*********** Tricode ****************************/            if (j >= jmax) {
 void tricode(int *Tvar, int **nbcode, int imx)              jmax=j;
 {              ijmax=i;
               }
   int Ndum[20],ij=1, k, j, i, maxncov=19;            else if (j <= jmin){
   int cptcode=0;              jmin=j;
   cptcoveff=0;               ijmin=i;
              }
   for (k=0; k<maxncov; k++) Ndum[k]=0;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   for (k=1; k<=7; k++) ncodemax[k]=0;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              nberr++;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                                modality*/               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/            }
       Ndum[ij]++; /*store the modality */            sum=sum+j;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          }
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable           jk= j/stepm;
                                        Tvar[j]. If V=sex and male is 0 and           jl= j -jk*stepm;
                                        female is 1, then  cptcode=1.*/          ju= j -(jk+1)*stepm;
     }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
     for (i=0; i<=cptcode; i++) {              dh[mi][i]=jk;
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */              bh[mi][i]=0;
     }            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
     ij=1;               dh[mi][i]=jk+1;
     for (i=1; i<=ncodemax[j]; i++) {              bh[mi][i]=ju;
       for (k=0; k<= maxncov; k++) {            }
         if (Ndum[k] != 0) {          }else{
           nbcode[Tvar[j]][ij]=k;             if(jl <= -ju){
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */              dh[mi][i]=jk;
                         bh[mi][i]=jl;       /* bias is positive if real duration
           ij++;                                   * is higher than the multiple of stepm and negative otherwise.
         }                                   */
         if (ij > ncodemax[j]) break;             }
       }              else{
     }               dh[mi][i]=jk+1;
   }                bh[mi][i]=ju;
             }
  for (k=0; k< maxncov; k++) Ndum[k]=0;            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
  for (i=1; i<=ncovmodel-2; i++) {               bh[mi][i]=ju; /* At least one step */
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
    ij=Tvar[i];            }
    Ndum[ij]++;          } /* end if mle */
  }        }
       } /* end wave */
  ij=1;    }
  for (i=1; i<= maxncov; i++) {    jmean=sum/k;
    if((Ndum[i]!=0) && (i<=ncovcol)){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
      Tvaraff[ij]=i; /*For printing */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
      ij++;   }
    }  
  }  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx)
  cptcoveff=ij-1; /*Number of simple covariates*/  {
 }   
     int Ndum[20],ij=1, k, j, i, maxncov=19;
 /*********** Health Expectancies ****************/    int cptcode=0;
     cptcoveff=0;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
 {    for (k=1; k<=7; k++) ncodemax[k]=0;
   /* Health expectancies, no variances */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   double age, agelim, hf;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
   double ***p3mat;                                 modality*/
   double eip;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
   pstamp(ficreseij);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
   fprintf(ficreseij,"# Age");                                         Tvar[j]. If V=sex and male is 0 and
   for(i=1; i<=nlstate;i++){                                         female is 1, then  cptcode=1.*/
     for(j=1; j<=nlstate;j++){      }
       fprintf(ficreseij," e%1d%1d ",i,j);  
     }      for (i=0; i<=cptcode; i++) {
     fprintf(ficreseij," e%1d. ",i);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   }      }
   fprintf(ficreseij,"\n");  
       ij=1;
         for (i=1; i<=ncodemax[j]; i++) {
   if(estepm < stepm){        for (k=0; k<= maxncov; k++) {
     printf ("Problem %d lower than %d\n",estepm, stepm);          if (Ndum[k] != 0) {
   }            nbcode[Tvar[j]][ij]=k;
   else  hstepm=estepm;               /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   /* We compute the life expectancy from trapezoids spaced every estepm months           
    * This is mainly to measure the difference between two models: for example            ij++;
    * if stepm=24 months pijx are given only every 2 years and by summing them          }
    * we are calculating an estimate of the Life Expectancy assuming a linear           if (ij > ncodemax[j]) break;
    * progression in between and thus overestimating or underestimating according        }  
    * to the curvature of the survival function. If, for the same date, we       }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    }  
    * to compare the new estimate of Life expectancy with the same linear   
    * hypothesis. A more precise result, taking into account a more precise   for (k=0; k< maxncov; k++) Ndum[k]=0;
    * curvature will be obtained if estepm is as small as stepm. */  
    for (i=1; i<=ncovmodel-2; i++) {
   /* For example we decided to compute the life expectancy with the smallest unit */     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      ij=Tvar[i];
      nhstepm is the number of hstepm from age to agelim      Ndum[ij]++;
      nstepm is the number of stepm from age to agelin.    }
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */   ij=1;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the   for (i=1; i<= maxncov; i++) {
      survival function given by stepm (the optimization length). Unfortunately it     if((Ndum[i]!=0) && (i<=ncovcol)){
      means that if the survival funtion is printed only each two years of age and if       Tvaraff[ij]=i; /*For printing */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        ij++;
      results. So we changed our mind and took the option of the best precision.     }
   */   }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    
    cptcoveff=ij-1; /*Number of simple covariates*/
   agelim=AGESUP;  }
   /* nhstepm age range expressed in number of stepm */  
   nstepm=(int) rint((agelim-age)*YEARM/stepm);   /*********** Health Expectancies ****************/
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */   
   /* if (stepm >= YEARM) hstepm=1;*/  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     /* Health expectancies, no variances */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double age, agelim, hf;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    double ***p3mat;
     double eip;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);    
      pstamp(ficreseij);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     /* Computing  Variances of health expectancies */    for(i=1; i<=nlstate;i++){
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to      for(j=1; j<=nlstate;j++){
        decrease memory allocation */        fprintf(ficreseij," e%1d%1d ",i,j);
      printf("%d|",(int)age);fflush(stdout);      }
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      fprintf(ficreseij," e%1d. ",i);
     /* Computing expectancies */    }
     for(i=1; i<=nlstate;i++)    fprintf(ficreseij,"\n");
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){   
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    if(estepm < stepm){
                 printf ("Problem %d lower than %d\n",estepm, stepm);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    }
     else  hstepm=estepm;  
         }    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
     fprintf(ficreseij,"%3.0f",age );     * if stepm=24 months pijx are given only every 2 years and by summing them
     for(i=1; i<=nlstate;i++){     * we are calculating an estimate of the Life Expectancy assuming a linear
       eip=0;     * progression in between and thus overestimating or underestimating according
       for(j=1; j<=nlstate;j++){     * to the curvature of the survival function. If, for the same date, we
         eip +=eij[i][j][(int)age];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );     * to compare the new estimate of Life expectancy with the same linear
       }     * hypothesis. A more precise result, taking into account a more precise
       fprintf(ficreseij,"%9.4f", eip );     * curvature will be obtained if estepm is as small as stepm. */
     }  
     fprintf(ficreseij,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   }       nhstepm is the number of hstepm from age to agelim
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       nstepm is the number of stepm from age to agelin.
   printf("\n");       Look at hpijx to understand the reason of that which relies in memory size
   fprintf(ficlog,"\n");       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 }       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )       you sum them up and add 1 year (area under the trapezoids) you won't get the same
        results. So we changed our mind and took the option of the best precision.
 {    */
   /* Covariances of health expectancies eij and of total life expectancies according    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
    to initial status i, ei. .  
   */    agelim=AGESUP;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;    /* If stepm=6 months */
   double age, agelim, hf;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   double ***p3matp, ***p3matm, ***varhe;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   double **dnewm,**doldm;     
   double *xp, *xm;  /* nhstepm age range expressed in number of stepm */
   double **gp, **gm;    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   double ***gradg, ***trgradg;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   int theta;    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double eip, vip;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);    for (age=bage; age<=fage; age ++){
   xp=vector(1,npar);  
   xm=vector(1,npar);  
   dnewm=matrix(1,nlstate*nlstate,1,npar);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);     
         hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   pstamp(ficresstdeij);     
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");      printf("%d|",(int)age);fflush(stdout);
   fprintf(ficresstdeij,"# Age");      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   for(i=1; i<=nlstate;i++){     
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);      /* Computing expectancies */
     fprintf(ficresstdeij," e%1d. ",i);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
   fprintf(ficresstdeij,"\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   pstamp(ficrescveij);           
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   fprintf(ficrescveij,"# Age");  
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=nlstate;j++){     
       cptj= (j-1)*nlstate+i;      fprintf(ficreseij,"%3.0f",age );
       for(i2=1; i2<=nlstate;i2++)      for(i=1; i<=nlstate;i++){
         for(j2=1; j2<=nlstate;j2++){        eip=0;
           cptj2= (j2-1)*nlstate+i2;        for(j=1; j<=nlstate;j++){
           if(cptj2 <= cptj)          eip +=eij[i][j][(int)age];
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }        }
     }        fprintf(ficreseij,"%9.4f", eip );
   fprintf(ficrescveij,"\n");      }
         fprintf(ficreseij,"\n");
   if(estepm < stepm){     
     printf ("Problem %d lower than %d\n",estepm, stepm);    }
   }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   else  hstepm=estepm;       printf("\n");
   /* We compute the life expectancy from trapezoids spaced every estepm months    fprintf(ficlog,"\n");
    * This is mainly to measure the difference between two models: for example   
    * if stepm=24 months pijx are given only every 2 years and by summing them  }
    * we are calculating an estimate of the Life Expectancy assuming a linear   
    * progression in between and thus overestimating or underestimating according  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
    * to the curvature of the survival function. If, for the same date, we   
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  {
    * to compare the new estimate of Life expectancy with the same linear     /* Covariances of health expectancies eij and of total life expectancies according
    * hypothesis. A more precise result, taking into account a more precise     to initial status i, ei. .
    * curvature will be obtained if estepm is as small as stepm. */    */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   /* For example we decided to compute the life expectancy with the smallest unit */    double age, agelim, hf;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     double ***p3matp, ***p3matm, ***varhe;
      nhstepm is the number of hstepm from age to agelim     double **dnewm,**doldm;
      nstepm is the number of stepm from age to agelin.     double *xp, *xm;
      Look at hpijx to understand the reason of that which relies in memory size    double **gp, **gm;
      and note for a fixed period like estepm months */    double ***gradg, ***trgradg;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    int theta;
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if    double eip, vip;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   
      results. So we changed our mind and took the option of the best precision.    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   */    xp=vector(1,npar);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   /* If stepm=6 months */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   /* nhstepm age range expressed in number of stepm */   
   agelim=AGESUP;    pstamp(ficresstdeij);
   nstepm=(int) rint((agelim-age)*YEARM/stepm);     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */     fprintf(ficresstdeij,"# Age");
   /* if (stepm >= YEARM) hstepm=1;*/    for(i=1; i<=nlstate;i++){
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      for(j=1; j<=nlstate;j++)
           fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresstdeij," e%1d. ",i);
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);    fprintf(ficresstdeij,"\n");
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);  
   gp=matrix(0,nhstepm,1,nlstate*nlstate);    pstamp(ficrescveij);
   gm=matrix(0,nhstepm,1,nlstate*nlstate);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
   for (age=bage; age<=fage; age ++){     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        cptj= (j-1)*nlstate+i;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        for(i2=1; i2<=nlstate;i2++)
            for(j2=1; j2<=nlstate;j2++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
     /* Computing  Variances of health expectancies */              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to          }
        decrease memory allocation */      }
     for(theta=1; theta <=npar; theta++){    fprintf(ficrescveij,"\n");
       for(i=1; i<=npar; i++){    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    if(estepm < stepm){
         xm[i] = x[i] - (i==theta ?delti[theta]:0);      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);      else  hstepm=estepm;  
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);      /* We compute the life expectancy from trapezoids spaced every estepm months
        * This is mainly to measure the difference between two models: for example
       for(j=1; j<= nlstate; j++){     * if stepm=24 months pijx are given only every 2 years and by summing them
         for(i=1; i<=nlstate; i++){     * we are calculating an estimate of the Life Expectancy assuming a linear
           for(h=0; h<=nhstepm-1; h++){     * progression in between and thus overestimating or underestimating according
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;     * to the curvature of the survival function. If, for the same date, we
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           }     * to compare the new estimate of Life expectancy with the same linear
         }     * hypothesis. A more precise result, taking into account a more precise
       }     * curvature will be obtained if estepm is as small as stepm. */
        
       for(ij=1; ij<= nlstate*nlstate; ij++)    /* For example we decided to compute the life expectancy with the smallest unit */
         for(h=0; h<=nhstepm-1; h++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];       nhstepm is the number of hstepm from age to agelim
         }       nstepm is the number of stepm from age to agelin.
     }/* End theta */       Look at hpijx to understand the reason of that which relies in memory size
            and note for a fixed period like estepm months */
         /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for(h=0; h<=nhstepm-1; h++)       survival function given by stepm (the optimization length). Unfortunately it
       for(j=1; j<=nlstate*nlstate;j++)       means that if the survival funtion is printed only each two years of age and if
         for(theta=1; theta <=npar; theta++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same
           trgradg[h][j][theta]=gradg[h][theta][j];       results. So we changed our mind and took the option of the best precision.
         */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
      for(ij=1;ij<=nlstate*nlstate;ij++)  
       for(ji=1;ji<=nlstate*nlstate;ji++)    /* If stepm=6 months */
         varhe[ij][ji][(int)age] =0.;    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
      printf("%d|",(int)age);fflush(stdout);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
      for(h=0;h<=nhstepm-1;h++){    /* if (stepm >= YEARM) hstepm=1;*/
       for(k=0;k<=nhstepm-1;k++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(ij=1;ij<=nlstate*nlstate;ij++)    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(ji=1;ji<=nlstate*nlstate;ji++)    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     /* Computing expectancies */  
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);      for (age=bage; age<=fage; age ++){
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;   
                 hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
       /* Computing  Variances of health expectancies */
         }      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
     fprintf(ficresstdeij,"%3.0f",age );      for(theta=1; theta <=npar; theta++){
     for(i=1; i<=nlstate;i++){        for(i=1; i<=npar; i++){
       eip=0.;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       vip=0.;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       for(j=1; j<=nlstate;j++){        }
         eip += eij[i][j][(int)age];        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];   
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );        for(j=1; j<= nlstate; j++){
       }          for(i=1; i<=nlstate; i++){
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));            for(h=0; h<=nhstepm-1; h++){
     }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     fprintf(ficresstdeij,"\n");              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
     fprintf(ficrescveij,"%3.0f",age );          }
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++){       
         cptj= (j-1)*nlstate+i;        for(ij=1; ij<= nlstate*nlstate; ij++)
         for(i2=1; i2<=nlstate;i2++)          for(h=0; h<=nhstepm-1; h++){
           for(j2=1; j2<=nlstate;j2++){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
             cptj2= (j2-1)*nlstate+i2;          }
             if(cptj2 <= cptj)      }/* End theta */
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);     
           }     
       }      for(h=0; h<=nhstepm-1; h++)
     fprintf(ficrescveij,"\n");        for(j=1; j<=nlstate*nlstate;j++)
              for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);     
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);  
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);       for(ij=1;ij<=nlstate*nlstate;ij++)
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);        for(ji=1;ji<=nlstate*nlstate;ji++)
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          varhe[ij][ji][(int)age] =0.;
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   printf("\n");       printf("%d|",(int)age);fflush(stdout);
   fprintf(ficlog,"\n");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
   free_vector(xm,1,npar);        for(k=0;k<=nhstepm-1;k++){
   free_vector(xp,1,npar);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);          for(ij=1;ij<=nlstate*nlstate;ij++)
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);            for(ji=1;ji<=nlstate*nlstate;ji++)
 }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
 /************ Variance ******************/      }
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])  
 {      /* Computing expectancies */
   /* Variance of health expectancies */      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(i=1; i<=nlstate;i++)
   /* double **newm;*/        for(j=1; j<=nlstate;j++)
   double **dnewm,**doldm;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double **dnewmp,**doldmp;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   int i, j, nhstepm, hstepm, h, nstepm ;           
   int k, cptcode;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double *xp;  
   double **gp, **gm;  /* for var eij */          }
   double ***gradg, ***trgradg; /*for var eij */  
   double **gradgp, **trgradgp; /* for var p point j */      fprintf(ficresstdeij,"%3.0f",age );
   double *gpp, *gmp; /* for var p point j */      for(i=1; i<=nlstate;i++){
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        eip=0.;
   double ***p3mat;        vip=0.;
   double age,agelim, hf;        for(j=1; j<=nlstate;j++){
   double ***mobaverage;          eip += eij[i][j][(int)age];
   int theta;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   char digit[4];            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   char digitp[25];          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
   char fileresprobmorprev[FILENAMELENGTH];        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
   if(popbased==1){      fprintf(ficresstdeij,"\n");
     if(mobilav!=0)  
       strcpy(digitp,"-populbased-mobilav-");      fprintf(ficrescveij,"%3.0f",age );
     else strcpy(digitp,"-populbased-nomobil-");      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   else           cptj= (j-1)*nlstate+i;
     strcpy(digitp,"-stablbased-");          for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
   if (mobilav!=0) {              cptj2= (j2-1)*nlstate+i2;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              if(cptj2 <= cptj)
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);            }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        }
     }      fprintf(ficrescveij,"\n");
   }     
     }
   strcpy(fileresprobmorprev,"prmorprev");     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   sprintf(digit,"%-d",ij);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileresprobmorprev,fileres);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    printf("\n");
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    fprintf(ficlog,"\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  
   }    free_vector(xm,1,npar);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    free_vector(xp,1,npar);
      free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   pstamp(ficresprobmorprev);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);  }
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  /************ Variance ******************/
     fprintf(ficresprobmorprev," p.%-d SE",j);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     for(i=1; i<=nlstate;i++)  {
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    /* Variance of health expectancies */
   }      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   fprintf(ficresprobmorprev,"\n");    /* double **newm;*/
   fprintf(ficgp,"\n# Routine varevsij");    double **dnewm,**doldm;
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/    double **dnewmp,**doldmp;
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    int i, j, nhstepm, hstepm, h, nstepm ;
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    int k, cptcode;
 /*   } */    double *xp;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    double **gp, **gm;  /* for var eij */
   pstamp(ficresvij);    double ***gradg, ***trgradg; /*for var eij */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");    double **gradgp, **trgradgp; /* for var p point j */
   if(popbased==1)    double *gpp, *gmp; /* for var p point j */
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   else    double ***p3mat;
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");    double age,agelim, hf;
   fprintf(ficresvij,"# Age");    double ***mobaverage;
   for(i=1; i<=nlstate;i++)    int theta;
     for(j=1; j<=nlstate;j++)    char digit[4];
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);    char digitp[25];
   fprintf(ficresvij,"\n");  
     char fileresprobmorprev[FILENAMELENGTH];
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    if(popbased==1){
   doldm=matrix(1,nlstate,1,nlstate);      if(mobilav!=0)
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        strcpy(digitp,"-populbased-mobilav-");
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      else strcpy(digitp,"-populbased-nomobil-");
     }
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    else
   gpp=vector(nlstate+1,nlstate+ndeath);      strcpy(digitp,"-stablbased-");
   gmp=vector(nlstate+1,nlstate+ndeath);  
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if(estepm < stepm){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     printf ("Problem %d lower than %d\n",estepm, stepm);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   else  hstepm=estepm;         }
   /* For example we decided to compute the life expectancy with the smallest unit */    }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.   
      nhstepm is the number of hstepm from age to agelim     strcpy(fileresprobmorprev,"prmorprev");
      nstepm is the number of stepm from age to agelin.     sprintf(digit,"%-d",ij);
      Look at hpijx to understand the reason of that which relies in memory size    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      and note for a fixed period like k years */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      survival function given by stepm (the optimization length). Unfortunately it    strcat(fileresprobmorprev,fileres);
      means that if the survival funtion is printed every two years of age and if    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       printf("Problem with resultfile: %s\n", fileresprobmorprev);
      results. So we changed our mind and took the option of the best precision.      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   agelim = AGESUP;   
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     pstamp(ficresprobmorprev);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     gp=matrix(0,nhstepm,1,nlstate);      fprintf(ficresprobmorprev," p.%-d SE",j);
     gm=matrix(0,nhstepm,1,nlstate);      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     for(theta=1; theta <=npar; theta++){    fprintf(ficresprobmorprev,"\n");
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    fprintf(ficgp,"\n# Routine varevsij");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       if (popbased==1) {    pstamp(ficresvij);
         if(mobilav ==0){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
           for(i=1; i<=nlstate;i++)    if(popbased==1)
             prlim[i][i]=probs[(int)age][i][ij];      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
         }else{ /* mobilav */     else
           for(i=1; i<=nlstate;i++)      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
             prlim[i][i]=mobaverage[(int)age][i][ij];    fprintf(ficresvij,"# Age");
         }    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=nlstate;j++)
           fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       for(j=1; j<= nlstate; j++){    fprintf(ficresvij,"\n");
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    xp=vector(1,npar);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    dnewm=matrix(1,nlstate,1,npar);
         }    doldm=matrix(1,nlstate,1,nlstate);
       }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       /* This for computing probability of death (h=1 means    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       */    gpp=vector(nlstate+1,nlstate+ndeath);
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    gmp=vector(nlstate+1,nlstate+ndeath);
         for(i=1,gpp[j]=0.; i<= nlstate; i++)    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           gpp[j] += prlim[i][i]*p3mat[i][j][1];   
       }        if(estepm < stepm){
       /* end probability of death */      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */    else  hstepm=estepm;  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* For example we decided to compute the life expectancy with the smallest unit */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       nhstepm is the number of hstepm from age to agelim
         nstepm is the number of stepm from age to agelin.
       if (popbased==1) {       Look at hpijx to understand the reason of that which relies in memory size
         if(mobilav ==0){       and note for a fixed period like k years */
           for(i=1; i<=nlstate;i++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             prlim[i][i]=probs[(int)age][i][ij];       survival function given by stepm (the optimization length). Unfortunately it
         }else{ /* mobilav */        means that if the survival funtion is printed every two years of age and if
           for(i=1; i<=nlstate;i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same
             prlim[i][i]=mobaverage[(int)age][i][ij];       results. So we changed our mind and took the option of the best precision.
         }    */
       }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     agelim = AGESUP;
       for(j=1; j<= nlstate; j++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for(h=0; h<=nhstepm; h++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       }      gp=matrix(0,nhstepm,1,nlstate);
       /* This for computing probability of death (h=1 means      gm=matrix(0,nhstepm,1,nlstate);
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.  
       */      for(theta=1; theta <=npar; theta++){
       for(j=nlstate+1;j<=nlstate+ndeath;j++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         for(i=1,gmp[j]=0.; i<= nlstate; i++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          gmp[j] += prlim[i][i]*p3mat[i][j][1];        }
       }            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       /* end probability of death */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
       for(j=1; j<= nlstate; j++) /* vareij */        if (popbased==1) {
         for(h=0; h<=nhstepm; h++){          if(mobilav ==0){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */            for(i=1; i<=nlstate;i++)
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
         }
     } /* End theta */   
         for(j=1; j<= nlstate; j++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     for(h=0; h<=nhstepm; h++) /* veij */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       for(j=1; j<=nlstate;j++)          }
         for(theta=1; theta <=npar; theta++)        }
           trgradg[h][j][theta]=gradg[h][theta][j];        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months)
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */           as a weighted average of prlim.
       for(theta=1; theta <=npar; theta++)        */
         trgradgp[j][theta]=gradgp[theta][j];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        }    
     for(i=1;i<=nlstate;i++)        /* end probability of death */
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
     for(h=0;h<=nhstepm;h++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(k=0;k<=nhstepm;k++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        if (popbased==1) {
         for(i=1;i<=nlstate;i++)          if(mobilav ==0){
           for(j=1;j<=nlstate;j++)            for(i=1; i<=nlstate;i++)
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;              prlim[i][i]=probs[(int)age][i][ij];
       }          }else{ /* mobilav */
     }            for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][ij];
     /* pptj */          }
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        }
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        for(j=1; j<= nlstate; j++){
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          for(h=0; h<=nhstepm; h++){
         varppt[j][i]=doldmp[j][i];            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     /* end ppptj */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     /*  x centered again */          }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          }
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months)
     if (popbased==1) {           as a weighted average of prlim.
       if(mobilav ==0){        */
         for(i=1; i<=nlstate;i++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           prlim[i][i]=probs[(int)age][i][ij];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       }else{ /* mobilav */            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         for(i=1; i<=nlstate;i++)        }    
           prlim[i][i]=mobaverage[(int)age][i][ij];        /* end probability of death */
       }  
     }        for(j=1; j<= nlstate; j++) /* vareij */
                        for(h=0; h<=nhstepm; h++){
     /* This for computing probability of death (h=1 means            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
        computed over hstepm (estepm) matrices product = hstepm*stepm months)           }
        as a weighted average of prlim.  
     */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     for(j=nlstate+1;j<=nlstate+ndeath;j++){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       for(i=1,gmp[j]=0.;i<= nlstate; i++)         }
         gmp[j] += prlim[i][i]*p3mat[i][j][1];   
     }          } /* End theta */
     /* end probability of death */  
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);  
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      for(h=0; h<=nhstepm; h++) /* veij */
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        for(j=1; j<=nlstate;j++)
       for(i=1; i<=nlstate;i++){          for(theta=1; theta <=npar; theta++)
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            trgradg[h][j][theta]=gradg[h][theta][j];
       }  
     }       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     fprintf(ficresprobmorprev,"\n");        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     fprintf(ficresvij,"%.0f ",age );   
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      for(i=1;i<=nlstate;i++)
       }        for(j=1;j<=nlstate;j++)
     fprintf(ficresvij,"\n");          vareij[i][j][(int)age] =0.;
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);      for(h=0;h<=nhstepm;h++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        for(k=0;k<=nhstepm;k++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   } /* End age */          for(i=1;i<=nlstate;i++)
   free_vector(gpp,nlstate+1,nlstate+ndeath);            for(j=1;j<=nlstate;j++)
   free_vector(gmp,nlstate+1,nlstate+ndeath);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        }
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      }
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");   
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      /* pptj */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));          varppt[j][i]=doldmp[j][i];
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));      /* end ppptj */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));      /*  x centered again */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);   
 */      if (popbased==1) {
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */        if(mobilav ==0){
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);          for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
   free_vector(xp,1,npar);        }else{ /* mobilav */
   free_matrix(doldm,1,nlstate,1,nlstate);          for(i=1; i<=nlstate;i++)
   free_matrix(dnewm,1,nlstate,1,npar);            prlim[i][i]=mobaverage[(int)age][i][ij];
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        }
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);               
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* This for computing probability of death (h=1 means
   fclose(ficresprobmorprev);         computed over hstepm (estepm) matrices product = hstepm*stepm months)
   fflush(ficgp);         as a weighted average of prlim.
   fflush(fichtm);       */
 }  /* end varevsij */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++)
 /************ Variance of prevlim ******************/          gmp[j] += prlim[i][i]*p3mat[i][j][1];
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])      }    
 {      /* end probability of death */
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   double **newm;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   double **dnewm,**doldm;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   int i, j, nhstepm, hstepm;        for(i=1; i<=nlstate;i++){
   int k, cptcode;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   double *xp;        }
   double *gp, *gm;      }
   double **gradg, **trgradg;      fprintf(ficresprobmorprev,"\n");
   double age,agelim;  
   int theta;      fprintf(ficresvij,"%.0f ",age );
         for(i=1; i<=nlstate;i++)
   pstamp(ficresvpl);        for(j=1; j<=nlstate;j++){
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   fprintf(ficresvpl,"# Age");        }
   for(i=1; i<=nlstate;i++)      fprintf(ficresvij,"\n");
       fprintf(ficresvpl," %1d-%1d",i,i);      free_matrix(gp,0,nhstepm,1,nlstate);
   fprintf(ficresvpl,"\n");      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   xp=vector(1,npar);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   dnewm=matrix(1,nlstate,1,npar);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   doldm=matrix(1,nlstate,1,nlstate);    } /* End age */
       free_vector(gpp,nlstate+1,nlstate+ndeath);
   hstepm=1*YEARM; /* Every year of age */    free_vector(gmp,nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   agelim = AGESUP;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     if (stepm >= YEARM) hstepm=1;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     gradg=matrix(1,npar,1,nlstate);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     gp=vector(1,nlstate);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     gm=vector(1,nlstate);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     for(theta=1; theta <=npar; theta++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       for(i=1; i<=npar; i++){ /* Computes gradient */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  */
       for(i=1;i<=nlstate;i++)  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         gp[i] = prlim[i][i];    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       
       for(i=1; i<=npar; i++) /* Computes gradient */    free_vector(xp,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_matrix(doldm,1,nlstate,1,nlstate);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_matrix(dnewm,1,nlstate,1,npar);
       for(i=1;i<=nlstate;i++)    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         gm[i] = prlim[i][i];    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(i=1;i<=nlstate;i++)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    fclose(ficresprobmorprev);
     } /* End theta */    fflush(ficgp);
     fflush(fichtm);
     trgradg =matrix(1,nlstate,1,npar);  }  /* end varevsij */
   
     for(j=1; j<=nlstate;j++)  /************ Variance of prevlim ******************/
       for(theta=1; theta <=npar; theta++)  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         trgradg[j][theta]=gradg[theta][j];  {
     /* Variance of prevalence limit */
     for(i=1;i<=nlstate;i++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       varpl[i][(int)age] =0.;    double **newm;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double **dnewm,**doldm;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    int i, j, nhstepm, hstepm;
     for(i=1;i<=nlstate;i++)    int k, cptcode;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    double *xp;
     double *gp, *gm;
     fprintf(ficresvpl,"%.0f ",age );    double **gradg, **trgradg;
     for(i=1; i<=nlstate;i++)    double age,agelim;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int theta;
     fprintf(ficresvpl,"\n");   
     free_vector(gp,1,nlstate);    pstamp(ficresvpl);
     free_vector(gm,1,nlstate);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     free_matrix(gradg,1,npar,1,nlstate);    fprintf(ficresvpl,"# Age");
     free_matrix(trgradg,1,nlstate,1,npar);    for(i=1; i<=nlstate;i++)
   } /* End age */        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    xp=vector(1,npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
 }   
     hstepm=1*YEARM; /* Every year of age */
 /************ Variance of one-step probabilities  ******************/    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])    agelim = AGESUP;
 {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   int i, j=0,  i1, k1, l1, t, tj;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   int k2, l2, j1,  z1;      if (stepm >= YEARM) hstepm=1;
   int k=0,l, cptcode;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   int first=1, first1;      gradg=matrix(1,npar,1,nlstate);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;      gp=vector(1,nlstate);
   double **dnewm,**doldm;      gm=vector(1,nlstate);
   double *xp;  
   double *gp, *gm;      for(theta=1; theta <=npar; theta++){
   double **gradg, **trgradg;        for(i=1; i<=npar; i++){ /* Computes gradient */
   double **mu;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double age,agelim, cov[NCOVMAX];        }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int theta;        for(i=1;i<=nlstate;i++)
   char fileresprob[FILENAMELENGTH];          gp[i] = prlim[i][i];
   char fileresprobcov[FILENAMELENGTH];     
   char fileresprobcor[FILENAMELENGTH];        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double ***varpij;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   strcpy(fileresprob,"prob");           gm[i] = prlim[i][i];
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        for(i=1;i<=nlstate;i++)
     printf("Problem with resultfile: %s\n", fileresprob);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      } /* End theta */
   }  
   strcpy(fileresprobcov,"probcov");       trgradg =matrix(1,nlstate,1,npar);
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      for(j=1; j<=nlstate;j++)
     printf("Problem with resultfile: %s\n", fileresprobcov);        for(theta=1; theta <=npar; theta++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          trgradg[j][theta]=gradg[theta][j];
   }  
   strcpy(fileresprobcor,"probcor");       for(i=1;i<=nlstate;i++)
   strcat(fileresprobcor,fileres);        varpl[i][(int)age] =0.;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     printf("Problem with resultfile: %s\n", fileresprobcor);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      fprintf(ficresvpl,"%.0f ",age );
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for(i=1; i<=nlstate;i++)
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      fprintf(ficresvpl,"\n");
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      free_vector(gp,1,nlstate);
   pstamp(ficresprob);      free_vector(gm,1,nlstate);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      free_matrix(gradg,1,npar,1,nlstate);
   fprintf(ficresprob,"# Age");      free_matrix(trgradg,1,nlstate,1,npar);
   pstamp(ficresprobcov);    } /* End age */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  
   fprintf(ficresprobcov,"# Age");    free_vector(xp,1,npar);
   pstamp(ficresprobcor);    free_matrix(doldm,1,nlstate,1,npar);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    free_matrix(dnewm,1,nlstate,1,nlstate);
   fprintf(ficresprobcor,"# Age");  
   }
   
   for(i=1; i<=nlstate;i++)  /************ Variance of one-step probabilities  ******************/
     for(j=1; j<=(nlstate+ndeath);j++){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  {
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    int i, j=0,  i1, k1, l1, t, tj;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    int k2, l2, j1,  z1;
     }      int k=0,l, cptcode;
  /* fprintf(ficresprob,"\n");    int first=1, first1;
   fprintf(ficresprobcov,"\n");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   fprintf(ficresprobcor,"\n");    double **dnewm,**doldm;
  */    double *xp;
  xp=vector(1,npar);    double *gp, *gm;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    double **gradg, **trgradg;
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    double **mu;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    double age,agelim, cov[NCOVMAX];
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   first=1;    int theta;
   fprintf(ficgp,"\n# Routine varprob");    char fileresprob[FILENAMELENGTH];
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    char fileresprobcov[FILENAMELENGTH];
   fprintf(fichtm,"\n");    char fileresprobcor[FILENAMELENGTH];
   
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);    double ***varpij;
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\  
   file %s<br>\n",optionfilehtmcov);    strcpy(fileresprob,"prob");
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\    strcat(fileresprob,fileres);
 and drawn. It helps understanding how is the covariance between two incidences.\    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      printf("Problem with resultfile: %s\n", fileresprob);
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \    }
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    strcpy(fileresprobcov,"probcov");
 standard deviations wide on each axis. <br>\    strcat(fileresprobcov,fileres);
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\      printf("Problem with resultfile: %s\n", fileresprobcov);
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
   cov[1]=1;    strcpy(fileresprobcor,"probcor");
   tj=cptcoveff;    strcat(fileresprobcor,fileres);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   j1=0;      printf("Problem with resultfile: %s\n", fileresprobcor);
   for(t=1; t<=tj;t++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     for(i1=1; i1<=ncodemax[t];i1++){     }
       j1++;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       if  (cptcovn>0) {    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         fprintf(ficresprob, "\n#********** Variable ");     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         fprintf(ficresprob, "**********\n#\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficresprobcov, "\n#********** Variable ");     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    pstamp(ficresprob);
         fprintf(ficresprobcov, "**********\n#\n");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
             fprintf(ficresprob,"# Age");
         fprintf(ficgp, "\n#********** Variable ");     pstamp(ficresprobcov);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         fprintf(ficgp, "**********\n#\n");    fprintf(ficresprobcov,"# Age");
             pstamp(ficresprobcor);
             fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     fprintf(ficresprobcor,"# Age");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  
             for(i=1; i<=nlstate;i++)
         fprintf(ficresprobcor, "\n#********** Variable ");          for(j=1; j<=(nlstate+ndeath);j++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcor, "**********\n#");            fprintf(ficresprobcov," p%1d-%1d ",i,j);
       }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
             }  
       for (age=bage; age<=fage; age ++){    /* fprintf(ficresprob,"\n");
         cov[2]=age;    fprintf(ficresprobcov,"\n");
         for (k=1; k<=cptcovn;k++) {    fprintf(ficresprobcor,"\n");
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];   */
         }   xp=vector(1,npar);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         for (k=1; k<=cptcovprod;k++)    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
             varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    first=1;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    fprintf(ficgp,"\n# Routine varprob");
         gp=vector(1,(nlstate)*(nlstate+ndeath));    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         gm=vector(1,(nlstate)*(nlstate+ndeath));    fprintf(fichtm,"\n");
       
         for(theta=1; theta <=npar; theta++){    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           for(i=1; i<=npar; i++)    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    file %s<br>\n",optionfilehtmcov);
               fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  and drawn. It helps understanding how is the covariance between two incidences.\
              They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           k=0;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           for(i=1; i<= (nlstate); i++){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
             for(j=1; j<=(nlstate+ndeath);j++){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
               k=k+1;  standard deviations wide on each axis. <br>\
               gp[k]=pmmij[i][j];   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
             }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
             
           for(i=1; i<=npar; i++)    cov[1]=1;
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    tj=cptcoveff;
         if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    j1=0;
           k=0;    for(t=1; t<=tj;t++){
           for(i=1; i<=(nlstate); i++){      for(i1=1; i1<=ncodemax[t];i1++){
             for(j=1; j<=(nlstate+ndeath);j++){        j1++;
               k=k+1;        if  (cptcovn>0) {
               gm[k]=pmmij[i][j];          fprintf(ficresprob, "\n#********** Variable ");
             }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           }          fprintf(ficresprob, "**********\n#\n");
                fprintf(ficresprobcov, "\n#********** Variable ");
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];            fprintf(ficresprobcov, "**********\n#\n");
         }         
           fprintf(ficgp, "\n#********** Variable ");
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(theta=1; theta <=npar; theta++)          fprintf(ficgp, "**********\n#\n");
             trgradg[j][theta]=gradg[theta][j];         
                  
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));         
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          fprintf(ficresprobcor, "\n#********** Variable ");    
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         pmij(pmmij,cov,ncovmodel,x,nlstate);        }
                
         k=0;        for (age=bage; age<=fage; age ++){
         for(i=1; i<=(nlstate); i++){          cov[2]=age;
           for(j=1; j<=(nlstate+ndeath);j++){          for (k=1; k<=cptcovn;k++) {
             k=k+1;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
             mu[k][(int) age]=pmmij[i][j];          }
           }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }          for (k=1; k<=cptcovprod;k++)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)         
             varpij[i][j][(int)age] = doldm[i][j];          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         /*printf("\n%d ",(int)age);          gp=vector(1,(nlstate)*(nlstate+ndeath));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          gm=vector(1,(nlstate)*(nlstate+ndeath));
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));     
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(theta=1; theta <=npar; theta++){
           }*/            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         fprintf(ficresprob,"\n%d ",(int)age);           
         fprintf(ficresprobcov,"\n%d ",(int)age);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         fprintf(ficresprobcor,"\n%d ",(int)age);           
             k=0;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            for(i=1; i<= (nlstate); i++){
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              for(j=1; j<=(nlstate+ndeath);j++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                k=k+1;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);                gp[k]=pmmij[i][j];
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);              }
         }            }
         i=0;           
         for (k=1; k<=(nlstate);k++){            for(i=1; i<=npar; i++)
           for (l=1; l<=(nlstate+ndeath);l++){               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
             i=i++;     
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            k=0;
             for (j=1; j<=i;j++){            for(i=1; i<=(nlstate); i++){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);              for(j=1; j<=(nlstate+ndeath);j++){
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));                k=k+1;
             }                gm[k]=pmmij[i][j];
           }              }
         }/* end of loop for state */            }
       } /* end of loop for age */       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
       /* Confidence intervalle of pij  */              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       /*          }
         fprintf(ficgp,"\nset noparametric;unset label");  
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            for(theta=1; theta <=npar; theta++)
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);              trgradg[j][theta]=gradg[theta][j];
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);         
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       first1=1;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for (k2=1; k2<=(nlstate);k2++){  
         for (l2=1; l2<=(nlstate+ndeath);l2++){           pmij(pmmij,cov,ncovmodel,x,nlstate);
           if(l2==k2) continue;         
           j=(k2-1)*(nlstate+ndeath)+l2;          k=0;
           for (k1=1; k1<=(nlstate);k1++){          for(i=1; i<=(nlstate); i++){
             for (l1=1; l1<=(nlstate+ndeath);l1++){             for(j=1; j<=(nlstate+ndeath);j++){
               if(l1==k1) continue;              k=k+1;
               i=(k1-1)*(nlstate+ndeath)+l1;              mu[k][(int) age]=pmmij[i][j];
               if(i<=j) continue;            }
               for (age=bage; age<=fage; age ++){           }
                 if ((int)age %5==0){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              varpij[i][j][(int)age] = doldm[i][j];
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;          /*printf("\n%d ",(int)age);
                   mu2=mu[j][(int) age]/stepm*YEARM;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   c12=cv12/sqrt(v1*v2);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   /* Computing eigen value of matrix of covariance */            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            }*/
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   /* Eigen vectors */          fprintf(ficresprob,"\n%d ",(int)age);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          fprintf(ficresprobcov,"\n%d ",(int)age);
                   /*v21=sqrt(1.-v11*v11); *//* error */          fprintf(ficresprobcor,"\n%d ",(int)age);
                   v21=(lc1-v1)/cv12*v11;  
                   v12=-v21;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   v22=v11;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   tnalp=v21/v11;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   if(first1==1){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                     first1=0;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          }
                   }          i=0;
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          for (k=1; k<=(nlstate);k++){
                   /*printf(fignu*/            for (l=1; l<=(nlstate+ndeath);l++){
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              i=i++;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   if(first==1){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                     first=0;              for (j=1; j<=i;j++){
                     fprintf(ficgp,"\nset parametric;unset label");                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              }
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\            }
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\          }/* end of loop for state */
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\        } /* end of loop for age */
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\  
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        /* Confidence intervalle of pij  */
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        /*
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);          fprintf(ficgp,"\nset noparametric;unset label");
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                   }else{        */
                     first=0;  
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        first1=1;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        for (k2=1; k2<=(nlstate);k2++){
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          for (l2=1; l2<=(nlstate+ndeath);l2++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            if(l2==k2) continue;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));            j=(k2-1)*(nlstate+ndeath)+l2;
                   }/* if first */            for (k1=1; k1<=(nlstate);k1++){
                 } /* age mod 5 */              for (l1=1; l1<=(nlstate+ndeath);l1++){
               } /* end loop age */                if(l1==k1) continue;
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                i=(k1-1)*(nlstate+ndeath)+l1;
               first=1;                if(i<=j) continue;
             } /*l12 */                for (age=bage; age<=fage; age ++){
           } /* k12 */                  if ((int)age %5==0){
         } /*l1 */                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       }/* k1 */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     } /* loop covariates */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    mu1=mu[i][(int) age]/stepm*YEARM ;
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                    mu2=mu[j][(int) age]/stepm*YEARM;
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);                    c12=cv12/sqrt(v1*v2);
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));                    /* Computing eigen value of matrix of covariance */
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   free_vector(xp,1,npar);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   fclose(ficresprob);                    /* Eigen vectors */
   fclose(ficresprobcov);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   fclose(ficresprobcor);                    /*v21=sqrt(1.-v11*v11); *//* error */
   fflush(ficgp);                    v21=(lc1-v1)/cv12*v11;
   fflush(fichtmcov);                    v12=-v21;
 }                    v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
 /******************* Printing html file ***********/                      first1=0;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   int lastpass, int stepm, int weightopt, char model[],\                    }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   int popforecast, int estepm ,\                    /*printf(fignu*/
                   double jprev1, double mprev1,double anprev1, \                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                   double jprev2, double mprev2,double anprev2){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   int jj1, k1, i1, cpt;                    if(first==1){
                       first=0;
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \                      fprintf(ficgp,"\nset parametric;unset label");
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 </ul>");                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
    fprintf(fichtm,"\                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    fprintf(fichtm,"\                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    fprintf(fichtm,"\                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
    <a href=\"%s\">%s</a> <br>\n</li>",                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
  m=cptcoveff;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
  jj1=0;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
  for(k1=1; k1<=m;k1++){                    }/* if first */
    for(i1=1; i1<=ncodemax[k1];i1++){                  } /* age mod 5 */
      jj1++;                } /* end loop age */
      if (cptcovn > 0) {                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                first=1;
        for (cpt=1; cpt<=cptcoveff;cpt++)               } /*l12 */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            } /* k12 */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          } /*l1 */
      }        }/* k1 */
      /* Pij */      } /* loop covariates */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \    }
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);         free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      /* Quasi-incidences */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     free_vector(xp,1,npar);
        /* Period (stable) prevalence in each health state */    fclose(ficresprob);
        for(cpt=1; cpt<nlstate;cpt++){    fclose(ficresprobcov);
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \    fclose(ficresprobcor);
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    fflush(ficgp);
        }    fflush(fichtmcov);
      for(cpt=1; cpt<=nlstate;cpt++) {  }
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \  
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);  
      }  /******************* Printing html file ***********/
    } /* end i1 */  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
  }/* End k1 */                    int lastpass, int stepm, int weightopt, char model[],\
  fprintf(fichtm,"</ul>");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
  fprintf(fichtm,"\                    double jprev2, double mprev2,double anprev2){
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\    int jj1, k1, i1, cpt;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);  
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));  </ul>");
  fprintf(fichtm,"\     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
  fprintf(fichtm,"\   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));     fprintf(fichtm,"\
  fprintf(fichtm,"\   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
    <a href=\"%s\">%s</a> <br>\n</li>",     fprintf(fichtm,"\
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
  fprintf(fichtm,"\     <a href=\"%s\">%s</a> <br>\n",
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
    <a href=\"%s\">%s</a> <br>\n</li>",     fprintf(fichtm,"\
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));   - Population projections by age and states: \
  fprintf(fichtm,"\     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",  
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
  fprintf(fichtm,"\  
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",   m=cptcoveff;
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
  fprintf(fichtm,"\  
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\   jj1=0;
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
 /*  if(popforecast==1) fprintf(fichtm,"\n */       jj1++;
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */       if (cptcovn > 0) {
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 /*      <br>",fileres,fileres,fileres,fileres); */         for (cpt=1; cpt<=cptcoveff;cpt++)
 /*  else  */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
  fflush(fichtm);       }
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");       /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
  m=cptcoveff;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
  jj1=0;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
  for(k1=1; k1<=m;k1++){  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
    for(i1=1; i1<=ncodemax[k1];i1++){         /* Period (stable) prevalence in each health state */
      jj1++;         for(cpt=1; cpt<nlstate;cpt++){
      if (cptcovn > 0) {           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
        for (cpt=1; cpt<=cptcoveff;cpt++)          }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       for(cpt=1; cpt<=nlstate;cpt++) {
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
      }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
      for(cpt=1; cpt<=nlstate;cpt++) {       }
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \     } /* end i1 */
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\   }/* End k1 */
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);     fprintf(fichtm,"</ul>");
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \  
 health expectancies in states (1) and (2): %s%d.png<br>\   fprintf(fichtm,"\
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    } /* end i1 */   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
  }/* End k1 */  
  fprintf(fichtm,"</ul>");   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  fflush(fichtm);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
 }   fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
 /******************* Gnuplot file **************/           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
    fprintf(fichtm,"\
   char dirfileres[132],optfileres[132];   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   int ng;   fprintf(fichtm,"\
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 /*     printf("Problem with file %s",optionfilegnuplot); */     <a href=\"%s\">%s</a> <br>\n</li>",
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 /*   } */   fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   /*#ifdef windows */     <a href=\"%s\">%s</a> <br>\n</li>",
   fprintf(ficgp,"cd \"%s\" \n",pathc);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
     /*#endif */   fprintf(fichtm,"\
   m=pow(2,cptcoveff);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   strcpy(dirfileres,optionfilefiname);   fprintf(fichtm,"\
   strcpy(optfileres,"vpl");   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
  /* 1eme*/           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   for (cpt=1; cpt<= nlstate ; cpt ++) {   fprintf(fichtm,"\
    for (k1=1; k1<= m ; k1 ++) {   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \n\  /*  if(popforecast==1) fprintf(fichtm,"\n */
 set ylabel \"Probability\" \n\  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 set ter png small\n\  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 set size 0.65,0.65\n\  /*      <br>",fileres,fileres,fileres,fileres); */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      for (i=1; i<= nlstate ; i ++) {   fflush(fichtm);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }   m=cptcoveff;
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      for (i=1; i<= nlstate ; i ++) {  
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   jj1=0;
        else fprintf(ficgp," \%%*lf (\%%*lf)");   for(k1=1; k1<=m;k1++){
      }      for(i1=1; i1<=ncodemax[k1];i1++){
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);        jj1++;
      for (i=1; i<= nlstate ; i ++) {       if (cptcovn > 0) {
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        else fprintf(ficgp," \%%*lf (\%%*lf)");         for (cpt=1; cpt<=cptcoveff;cpt++)
      }             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    }       }
   }       for(cpt=1; cpt<=nlstate;cpt++) {
   /*2 eme*/         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   for (k1=1; k1<= m ; k1 ++) {   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);       }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       health expectancies in states (1) and (2): %s%d.png<br>\
     for (i=1; i<= nlstate+1 ; i ++) {  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       k=2*i;     } /* end i1 */
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);   }/* End k1 */
       for (j=1; j<= nlstate+1 ; j ++) {   fprintf(fichtm,"</ul>");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");   fflush(fichtm);
         else fprintf(ficgp," \%%*lf (\%%*lf)");  }
       }     
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  /******************* Gnuplot file **************/
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    char dirfileres[132],optfileres[132];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    int ng;
       }     /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       fprintf(ficgp,"\" t\"\" w l 0,");  /*     printf("Problem with file %s",optionfilegnuplot); */
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       for (j=1; j<= nlstate+1 ; j ++) {  /*   } */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    /*#ifdef windows */
       }       fprintf(ficgp,"cd \"%s\" \n",pathc);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      /*#endif */
       else fprintf(ficgp,"\" t\"\" w l 0,");    m=pow(2,cptcoveff);
     }  
   }    strcpy(dirfileres,optionfilefiname);
       strcpy(optfileres,"vpl");
   /*3eme*/   /* 1eme*/
       for (cpt=1; cpt<= nlstate ; cpt ++) {
   for (k1=1; k1<= m ; k1 ++) {      for (k1=1; k1<= m ; k1 ++) {
     for (cpt=1; cpt<= nlstate ; cpt ++) {       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       /*       k=2+nlstate*(2*cpt-2); */       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       k=2+(nlstate+1)*(cpt-1);       fprintf(ficgp,"set xlabel \"Age\" \n\
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);  set ylabel \"Probability\" \n\
       fprintf(ficgp,"set ter png small\n\  set ter png small\n\
 set size 0.65,0.65\n\  set size 0.65,0.65\n\
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       }
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
                for (i=1; i<= nlstate ; i ++) {
       */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       for (i=1; i< nlstate ; i ++) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);       }
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
                for (i=1; i<= nlstate ; i ++) {
       }          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     }       }  
   }       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
        }
   /* CV preval stable (period) */    }
   for (k1=1; k1<= m ; k1 ++) {     /*2 eme*/
     for (cpt=1; cpt<=nlstate ; cpt ++) {   
       k=3;    for (k1=1; k1<= m ; k1 ++) {
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
 set ter png small\nset size 0.65,0.65\n\     
 unset log y\n\      for (i=1; i<= nlstate+1 ; i ++) {
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);        k=2*i;
               fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for (i=1; i< nlstate ; i ++)        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficgp,"+$%d",k+i+1);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          else fprintf(ficgp," \%%*lf (\%%*lf)");
               }  
       l=3+(nlstate+ndeath)*cpt;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       for (i=1; i< nlstate ; i ++) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         l=3+(nlstate+ndeath)*cpt;        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficgp,"+$%d",l+i+1);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       }          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);           }  
     }         fprintf(ficgp,"\" t\"\" w l 0,");
   }          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           for (j=1; j<= nlstate+1 ; j ++) {
   /* proba elementaires */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   for(i=1,jk=1; i <=nlstate; i++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(k=1; k <=(nlstate+ndeath); k++){        }  
       if (k != i) {        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         for(j=1; j <=ncovmodel; j++){        else fprintf(ficgp,"\" t\"\" w l 0,");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      }
           jk++;     }
           fprintf(ficgp,"\n");   
         }    /*3eme*/
       }   
     }    for (k1=1; k1<= m ; k1 ++) {
    }      for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        k=2+(nlstate+1)*(cpt-1);
      for(jk=1; jk <=m; jk++) {        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);         fprintf(ficgp,"set ter png small\n\
        if (ng==2)  set size 0.65,0.65\n\
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
        else        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
          fprintf(ficgp,"\nset title \"Probability\"\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
        i=1;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
        for(k2=1; k2<=nlstate; k2++) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
          k3=i;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
          for(k=1; k<=(nlstate+ndeath); k++) {         
            if (k != k2){        */
              if(ng==2)        for (i=1; i< nlstate ; i ++) {
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
              else          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);         
              ij=1;        }
              for(j=3; j <=ncovmodel; j++) {        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    }
                  ij++;   
                }    /* CV preval stable (period) */
                else    for (k1=1; k1<= m ; k1 ++) {
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for (cpt=1; cpt<=nlstate ; cpt ++) {
              }        k=3;
              fprintf(ficgp,")/(1");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
                      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
              for(k1=1; k1 <=nlstate; k1++){     set ter png small\nset size 0.65,0.65\n\
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  unset log y\n\
                ij=1;  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
                for(j=3; j <=ncovmodel; j++){       
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for (i=1; i< nlstate ; i ++)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          fprintf(ficgp,"+$%d",k+i+1);
                    ij++;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
                  }       
                  else        l=3+(nlstate+ndeath)*cpt;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
                }        for (i=1; i< nlstate ; i ++) {
                fprintf(ficgp,")");          l=3+(nlstate+ndeath)*cpt;
              }          fprintf(ficgp,"+$%d",l+i+1);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        }
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
              i=i+ncovmodel;      }
            }    }  
          } /* end k */   
        } /* end k2 */    /* proba elementaires */
      } /* end jk */    for(i=1,jk=1; i <=nlstate; i++){
    } /* end ng */      for(k=1; k <=(nlstate+ndeath); k++){
    fflush(ficgp);         if (k != i) {
 }  /* end gnuplot */          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++;
 /*************** Moving average **************/            fprintf(ficgp,"\n");
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){          }
         }
   int i, cpt, cptcod;      }
   int modcovmax =1;     }
   int mobilavrange, mob;  
   double age;     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
                            a covariate has 2 modalities */         if (ng==2)
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){           fprintf(ficgp,"\nset title \"Probability\"\n");
     if(mobilav==1) mobilavrange=5; /* default */         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     else mobilavrange=mobilav;         i=1;
     for (age=bage; age<=fage; age++)         for(k2=1; k2<=nlstate; k2++) {
       for (i=1; i<=nlstate;i++)           k3=i;
         for (cptcod=1;cptcod<=modcovmax;cptcod++)           for(k=1; k<=(nlstate+ndeath); k++) {
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];             if (k != k2){
     /* We keep the original values on the extreme ages bage, fage and for                if(ng==2)
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
        we use a 5 terms etc. until the borders are no more concerned.                else
     */                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     for (mob=3;mob <=mobilavrange;mob=mob+2){               ij=1;
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){               for(j=3; j <=ncovmodel; j++) {
         for (i=1; i<=nlstate;i++){                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           for (cptcod=1;cptcod<=modcovmax;cptcod++){                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];                   ij++;
               for (cpt=1;cpt<=(mob-1)/2;cpt++){                 }
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];                 else
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
               }               }
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;               fprintf(ficgp,")/(1");
           }               
         }               for(k1=1; k1 <=nlstate; k1++){  
       }/* end age */                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     }/* end mob */                 ij=1;
   }else return -1;                 for(j=3; j <=ncovmodel; j++){
   return 0;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 }/* End movingaverage */                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
 /************** Forecasting ******************/                   else
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   /* proj1, year, month, day of starting projection                  }
      agemin, agemax range of age                 fprintf(ficgp,")");
      dateprev1 dateprev2 range of dates during which prevalence is computed               }
      anproj2 year of en of projection (same day and month as proj1).               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   */               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;               i=i+ncovmodel;
   int *popage;             }
   double agec; /* generic age */           } /* end k */
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;         } /* end k2 */
   double *popeffectif,*popcount;       } /* end jk */
   double ***p3mat;     } /* end ng */
   double ***mobaverage;     fflush(ficgp);
   char fileresf[FILENAMELENGTH];  }  /* end gnuplot */
   
   agelim=AGESUP;  
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  /*************** Moving average **************/
    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   strcpy(fileresf,"f");   
   strcat(fileresf,fileres);    int i, cpt, cptcod;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    int modcovmax =1;
     printf("Problem with forecast resultfile: %s\n", fileresf);    int mobilavrange, mob;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    double age;
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);                             a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   if (mobilav!=0) {      if(mobilav==1) mobilavrange=5; /* default */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      else mobilavrange=mobilav;
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){      for (age=bage; age<=fage; age++)
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        for (i=1; i<=nlstate;i++)
       printf(" Error in movingaverage mobilav=%d\n",mobilav);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
     }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   }      /* We keep the original values on the extreme ages bage, fage and for
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   stepsize=(int) (stepm+YEARM-1)/YEARM;         we use a 5 terms etc. until the borders are no more concerned.
   if (stepm<=12) stepsize=1;      */
   if(estepm < stepm){      for (mob=3;mob <=mobilavrange;mob=mob+2){
     printf ("Problem %d lower than %d\n",estepm, stepm);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   }          for (i=1; i<=nlstate;i++){
   else  hstepm=estepm;               for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   hstepm=hstepm/stepm;                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                                fractional in yp1 */                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   anprojmean=yp;                }
   yp2=modf((yp1*12),&yp);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   mprojmean=yp;            }
   yp1=modf((yp2*30.5),&yp);          }
   jprojmean=yp;        }/* end age */
   if(jprojmean==0) jprojmean=1;      }/* end mob */
   if(mprojmean==0) jprojmean=1;    }else return -1;
     return 0;
   i1=cptcoveff;  }/* End movingaverage */
   if (cptcovn < 1){i1=1;}  
     
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);   /************** Forecasting ******************/
     prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   fprintf(ficresf,"#****** Routine prevforecast **\n");    /* proj1, year, month, day of starting projection
        agemin, agemax range of age
 /*            if (h==(int)(YEARM*yearp)){ */       dateprev1 dateprev2 range of dates during which prevalence is computed
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){       anproj2 year of en of projection (same day and month as proj1).
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    */
       k=k+1;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
       fprintf(ficresf,"\n#******");    int *popage;
       for(j=1;j<=cptcoveff;j++) {    double agec; /* generic age */
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       }    double *popeffectif,*popcount;
       fprintf(ficresf,"******\n");    double ***p3mat;
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");    double ***mobaverage;
       for(j=1; j<=nlstate+ndeath;j++){     char fileresf[FILENAMELENGTH];
         for(i=1; i<=nlstate;i++)                
           fprintf(ficresf," p%d%d",i,j);    agelim=AGESUP;
         fprintf(ficresf," p.%d",j);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       }   
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {     strcpy(fileresf,"f");
         fprintf(ficresf,"\n");    strcat(fileresf,fileres);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);       if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
         for (agec=fage; agec>=(ageminpar-1); agec--){       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);     }
           nhstepm = nhstepm/hstepm;     printf("Computing forecasting: result on file '%s' \n", fileresf);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);      if (cptcoveff==0) ncodemax[cptcoveff]=1;
           
           for (h=0; h<=nhstepm; h++){    if (mobilav!=0) {
             if (h*hstepm/YEARM*stepm ==yearp) {      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               fprintf(ficresf,"\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
               for(j=1;j<=cptcoveff;j++)         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);      }
             }     }
             for(j=1; j<=nlstate+ndeath;j++) {  
               ppij=0.;    stepsize=(int) (stepm+YEARM-1)/YEARM;
               for(i=1; i<=nlstate;i++) {    if (stepm<=12) stepsize=1;
                 if (mobilav==1)     if(estepm < stepm){
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];      printf ("Problem %d lower than %d\n",estepm, stepm);
                 else {    }
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];    else  hstepm=estepm;  
                 }  
                 if (h*hstepm/YEARM*stepm== yearp) {    hstepm=hstepm/stepm;
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                 }                                 fractional in yp1 */
               } /* end i */    anprojmean=yp;
               if (h*hstepm/YEARM*stepm==yearp) {    yp2=modf((yp1*12),&yp);
                 fprintf(ficresf," %.3f", ppij);    mprojmean=yp;
               }    yp1=modf((yp2*30.5),&yp);
             }/* end j */    jprojmean=yp;
           } /* end h */    if(jprojmean==0) jprojmean=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(mprojmean==0) jprojmean=1;
         } /* end agec */  
       } /* end yearp */    i1=cptcoveff;
     } /* end cptcod */    if (cptcovn < 1){i1=1;}
   } /* end  cptcov */   
            fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   fclose(ficresf);  
 }  /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
 /************** Forecasting *****not tested NB*************/      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        k=k+1;
           fprintf(ficresf,"\n#******");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for(j=1;j<=cptcoveff;j++) {
   int *popage;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   double calagedatem, agelim, kk1, kk2;        }
   double *popeffectif,*popcount;        fprintf(ficresf,"******\n");
   double ***p3mat,***tabpop,***tabpopprev;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   double ***mobaverage;        for(j=1; j<=nlstate+ndeath;j++){
   char filerespop[FILENAMELENGTH];          for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresf," p.%d",j);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   agelim=AGESUP;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          fprintf(ficresf,"\n");
             fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  
             for (agec=fage; agec>=(ageminpar-1); agec--){
               nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   strcpy(filerespop,"pop");             nhstepm = nhstepm/hstepm;
   strcat(filerespop,fileres);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            oldm=oldms;savm=savms;
     printf("Problem with forecast resultfile: %s\n", filerespop);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);         
   }            for (h=0; h<=nhstepm; h++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);              if (h*hstepm/YEARM*stepm ==yearp) {
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);                fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   if (mobilav!=0) {              }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              for(j=1; j<=nlstate+ndeath;j++) {
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){                ppij=0.;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                for(i=1; i<=nlstate;i++) {
       printf(" Error in movingaverage mobilav=%d\n",mobilav);                  if (mobilav==1)
     }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   }                  else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   stepsize=(int) (stepm+YEARM-1)/YEARM;                  }
   if (stepm<=12) stepsize=1;                  if (h*hstepm/YEARM*stepm== yearp) {
                       fprintf(ficresf," %.3f", p3mat[i][j][h]);
   agelim=AGESUP;                  }
                   } /* end i */
   hstepm=1;                if (h*hstepm/YEARM*stepm==yearp) {
   hstepm=hstepm/stepm;                   fprintf(ficresf," %.3f", ppij);
                   }
   if (popforecast==1) {              }/* end j */
     if((ficpop=fopen(popfile,"r"))==NULL) {            } /* end h */
       printf("Problem with population file : %s\n",popfile);exit(0);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          } /* end agec */
     }         } /* end yearp */
     popage=ivector(0,AGESUP);      } /* end cptcod */
     popeffectif=vector(0,AGESUP);    } /* end  cptcov */
     popcount=vector(0,AGESUP);         
         if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     i=1;     
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    fclose(ficresf);
      }
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  /************** Forecasting *****not tested NB*************/
   }  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
    
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int *popage;
       k=k+1;    double calagedatem, agelim, kk1, kk2;
       fprintf(ficrespop,"\n#******");    double *popeffectif,*popcount;
       for(j=1;j<=cptcoveff;j++) {    double ***p3mat,***tabpop,***tabpopprev;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***mobaverage;
       }    char filerespop[FILENAMELENGTH];
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (popforecast==1)  fprintf(ficrespop," [Population]");    agelim=AGESUP;
           calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       for (cpt=0; cpt<=0;cpt++) {    
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
            
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     strcpy(filerespop,"pop");
           nhstepm = nhstepm/hstepm;     strcat(filerespop,fileres);
               if((ficrespop=fopen(filerespop,"w"))==NULL) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with forecast resultfile: %s\n", filerespop);
           oldm=oldms;savm=savms;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
             printf("Computing forecasting: result on file '%s' \n", filerespop);
           for (h=0; h<=nhstepm; h++){    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
             if (h==(int) (calagedatem+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             }   
             for(j=1; j<=nlstate+ndeath;j++) {    if (mobilav!=0) {
               kk1=0.;kk2=0;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               for(i=1; i<=nlstate;i++) {                    if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                 if (mobilav==1)         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                 else {      }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    }
                 }  
               }    stepsize=(int) (stepm+YEARM-1)/YEARM;
               if (h==(int)(calagedatem+12*cpt)){    if (stepm<=12) stepsize=1;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;   
                   /*fprintf(ficrespop," %.3f", kk1);    agelim=AGESUP;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/   
               }    hstepm=1;
             }    hstepm=hstepm/stepm;
             for(i=1; i<=nlstate;i++){   
               kk1=0.;    if (popforecast==1) {
                 for(j=1; j<=nlstate;j++){      if((ficpop=fopen(popfile,"r"))==NULL) {
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];         printf("Problem with population file : %s\n",popfile);exit(0);
                 }        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];      }
             }      popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)       popcount=vector(0,AGESUP);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);     
           }      i=1;  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
         }     
       }      imx=i;
        for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   /******/    }
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){         k=k+1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         fprintf(ficrespop,"\n#******");
           nhstepm = nhstepm/hstepm;         for(j=1;j<=cptcoveff;j++) {
                     fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        fprintf(ficrespop,"******\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficrespop,"# Age");
           for (h=0; h<=nhstepm; h++){        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
             if (h==(int) (calagedatem+YEARM*cpt)) {        if (popforecast==1)  fprintf(ficrespop," [Population]");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       
             }         for (cpt=0; cpt<=0;cpt++) {
             for(j=1; j<=nlstate+ndeath;j++) {          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
               kk1=0.;kk2=0;         
               for(i=1; i<=nlstate;i++) {                        for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
               }            nhstepm = nhstepm/hstepm;
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                   
             }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }            oldm=oldms;savm=savms;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
         }         
       }            for (h=0; h<=nhstepm; h++){
    }               if (h==(int) (calagedatem+YEARM*cpt)) {
   }                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                }
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
   if (popforecast==1) {                for(i=1; i<=nlstate;i++) {              
     free_ivector(popage,0,AGESUP);                  if (mobilav==1)
     free_vector(popeffectif,0,AGESUP);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     free_vector(popcount,0,AGESUP);                  else {
   }                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                }
   fclose(ficrespop);                if (h==(int)(calagedatem+12*cpt)){
 } /* End of popforecast */                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
 int fileappend(FILE *fichier, char *optionfich)                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
 {                }
   if((fichier=fopen(optionfich,"a"))==NULL) {              }
     printf("Problem with file: %s\n", optionfich);              for(i=1; i<=nlstate;i++){
     fprintf(ficlog,"Problem with file: %s\n", optionfich);                kk1=0.;
     return (0);                  for(j=1; j<=nlstate;j++){
   }                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
   fflush(fichier);                  }
   return (1);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
 }              }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
 /**************** function prwizard **********************/                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)            }
 {            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
   /* Wizard to print covariance matrix template */        }
    
   char ca[32], cb[32], cc[32];    /******/
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;  
   int numlinepar;        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   for(i=1; i <=nlstate; i++){            nhstepm = nhstepm/hstepm;
     jj=0;           
     for(j=1; j <=nlstate+ndeath; j++){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if(j==i) continue;            oldm=oldms;savm=savms;
       jj++;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       /*ca[0]= k+'a'-1;ca[1]='\0';*/            for (h=0; h<=nhstepm; h++){
       printf("%1d%1d",i,j);              if (h==(int) (calagedatem+YEARM*cpt)) {
       fprintf(ficparo,"%1d%1d",i,j);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       for(k=1; k<=ncovmodel;k++){              }
         /*        printf(" %lf",param[i][j][k]); */              for(j=1; j<=nlstate+ndeath;j++) {
         /*        fprintf(ficparo," %lf",param[i][j][k]); */                kk1=0.;kk2=0;
         printf(" 0.");                for(i=1; i<=nlstate;i++) {              
         fprintf(ficparo," 0.");                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
       }                }
       printf("\n");                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
       fprintf(ficparo,"\n");              }
     }            }
   }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("# Scales (for hessian or gradient estimation)\n");          }
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");        }
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/      }
   for(i=1; i <=nlstate; i++){    }
     jj=0;   
     for(j=1; j <=nlstate+ndeath; j++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if(j==i) continue;  
       jj++;    if (popforecast==1) {
       fprintf(ficparo,"%1d%1d",i,j);      free_ivector(popage,0,AGESUP);
       printf("%1d%1d",i,j);      free_vector(popeffectif,0,AGESUP);
       fflush(stdout);      free_vector(popcount,0,AGESUP);
       for(k=1; k<=ncovmodel;k++){    }
         /*      printf(" %le",delti3[i][j][k]); */    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         printf(" 0.");    fclose(ficrespop);
         fprintf(ficparo," 0.");  } /* End of popforecast */
       }  
       numlinepar++;  int fileappend(FILE *fichier, char *optionfich)
       printf("\n");  {
       fprintf(ficparo,"\n");    if((fichier=fopen(optionfich,"a"))==NULL) {
     }      printf("Problem with file: %s\n", optionfich);
   }      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   printf("# Covariance matrix\n");      return (0);
 /* # 121 Var(a12)\n\ */    }
 /* # 122 Cov(b12,a12) Var(b12)\n\ */    fflush(fichier);
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    return (1);
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */  }
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */  
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */  
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */  /**************** function prwizard **********************/
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   fflush(stdout);  {
   fprintf(ficparo,"# Covariance matrix\n");  
   /* # 121 Var(a12)\n\ */    /* Wizard to print covariance matrix template */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */  
   /* #   ...\n\ */    char ca[32], cb[32], cc[32];
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
       int numlinepar;
   for(itimes=1;itimes<=2;itimes++){  
     jj=0;    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(j=1; j <=nlstate+ndeath; j++){    for(i=1; i <=nlstate; i++){
         if(j==i) continue;      jj=0;
         for(k=1; k<=ncovmodel;k++){      for(j=1; j <=nlstate+ndeath; j++){
           jj++;        if(j==i) continue;
           ca[0]= k+'a'-1;ca[1]='\0';        jj++;
           if(itimes==1){        /*ca[0]= k+'a'-1;ca[1]='\0';*/
             printf("#%1d%1d%d",i,j,k);        printf("%1d%1d",i,j);
             fprintf(ficparo,"#%1d%1d%d",i,j,k);        fprintf(ficparo,"%1d%1d",i,j);
           }else{        for(k=1; k<=ncovmodel;k++){
             printf("%1d%1d%d",i,j,k);          /*        printf(" %lf",param[i][j][k]); */
             fprintf(ficparo,"%1d%1d%d",i,j,k);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
             /*  printf(" %.5le",matcov[i][j]); */          printf(" 0.");
           }          fprintf(ficparo," 0.");
           ll=0;        }
           for(li=1;li <=nlstate; li++){        printf("\n");
             for(lj=1;lj <=nlstate+ndeath; lj++){        fprintf(ficparo,"\n");
               if(lj==li) continue;      }
               for(lk=1;lk<=ncovmodel;lk++){    }
                 ll++;    printf("# Scales (for hessian or gradient estimation)\n");
                 if(ll<=jj){    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
                   cb[0]= lk +'a'-1;cb[1]='\0';    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
                   if(ll<jj){    for(i=1; i <=nlstate; i++){
                     if(itimes==1){      jj=0;
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      for(j=1; j <=nlstate+ndeath; j++){
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        if(j==i) continue;
                     }else{        jj++;
                       printf(" 0.");        fprintf(ficparo,"%1d%1d",i,j);
                       fprintf(ficparo," 0.");        printf("%1d%1d",i,j);
                     }        fflush(stdout);
                   }else{        for(k=1; k<=ncovmodel;k++){
                     if(itimes==1){          /*      printf(" %le",delti3[i][j][k]); */
                       printf(" Var(%s%1d%1d)",ca,i,j);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);          printf(" 0.");
                     }else{          fprintf(ficparo," 0.");
                       printf(" 0.");        }
                       fprintf(ficparo," 0.");        numlinepar++;
                     }        printf("\n");
                   }        fprintf(ficparo,"\n");
                 }      }
               } /* end lk */    }
             } /* end lj */    printf("# Covariance matrix\n");
           } /* end li */  /* # 121 Var(a12)\n\ */
           printf("\n");  /* # 122 Cov(b12,a12) Var(b12)\n\ */
           fprintf(ficparo,"\n");  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
           numlinepar++;  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
         } /* end k*/  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       } /*end j */  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
     } /* end i */  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   } /* end itimes */  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
 } /* end of prwizard */    fprintf(ficparo,"# Covariance matrix\n");
 /******************* Gompertz Likelihood ******************************/    /* # 121 Var(a12)\n\ */
 double gompertz(double x[])    /* # 122 Cov(b12,a12) Var(b12)\n\ */
 {     /* #   ...\n\ */
   double A,B,L=0.0,sump=0.,num=0.;    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   int i,n=0; /* n is the size of the sample */   
     for(itimes=1;itimes<=2;itimes++){
   for (i=0;i<=imx-1 ; i++) {      jj=0;
     sump=sump+weight[i];      for(i=1; i <=nlstate; i++){
     /*    sump=sump+1;*/        for(j=1; j <=nlstate+ndeath; j++){
     num=num+1;          if(j==i) continue;
   }          for(k=1; k<=ncovmodel;k++){
              jj++;
              ca[0]= k+'a'-1;ca[1]='\0';
   /* for (i=0; i<=imx; i++)             if(itimes==1){
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/              printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
   for (i=1;i<=imx ; i++)            }else{
     {              printf("%1d%1d%d",i,j,k);
       if (cens[i] == 1 && wav[i]>1)              fprintf(ficparo,"%1d%1d%d",i,j,k);
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));              /*  printf(" %.5le",matcov[i][j]); */
                   }
       if (cens[i] == 0 && wav[i]>1)            ll=0;
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))            for(li=1;li <=nlstate; li++){
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);                for(lj=1;lj <=nlstate+ndeath; lj++){
                       if(lj==li) continue;
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */                for(lk=1;lk<=ncovmodel;lk++){
       if (wav[i] > 1 ) { /* ??? */                  ll++;
         L=L+A*weight[i];                  if(ll<=jj){
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/                    cb[0]= lk +'a'-1;cb[1]='\0';
       }                    if(ll<jj){
     }                      if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                        }else{
   return -2*L*num/sump;                        printf(" 0.");
 }                        fprintf(ficparo," 0.");
                       }
 /******************* Printing html file ***********/                    }else{
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \                      if(itimes==1){
                   int lastpass, int stepm, int weightopt, char model[],\                        printf(" Var(%s%1d%1d)",ca,i,j);
                   int imx,  double p[],double **matcov,double agemortsup){                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   int i,k;                      }else{
                         printf(" 0.");
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");                        fprintf(ficparo," 0.");
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);                      }
   for (i=1;i<=2;i++)                     }
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));                  }
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");                } /* end lk */
   fprintf(fichtm,"</ul>");              } /* end lj */
             } /* end li */
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");            printf("\n");
             fprintf(ficparo,"\n");
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");            numlinepar++;
           } /* end k*/
  for (k=agegomp;k<(agemortsup-2);k++)         } /*end j */
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);      } /* end i */
     } /* end itimes */
    
   fflush(fichtm);  } /* end of prwizard */
 }  /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
 /******************* Gnuplot file **************/  {
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   char dirfileres[132],optfileres[132];  
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    for (i=0;i<=imx-1 ; i++) {
   int ng;      sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
   /*#ifdef windows */    }
   fprintf(ficgp,"cd \"%s\" \n",pathc);   
     /*#endif */   
     /* for (i=0; i<=imx; i++)
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   strcpy(dirfileres,optionfilefiname);  
   strcpy(optfileres,"vpl");    for (i=1;i<=imx ; i++)
   fprintf(ficgp,"set out \"graphmort.png\"\n ");       {
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");         if (cens[i] == 1 && wav[i]>1)
   fprintf(ficgp, "set ter png small\n set log y\n");           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
   fprintf(ficgp, "set size 0.65,0.65\n");       
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);        if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
 }                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
        
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
 /***********************************************/        }
 /**************** Main Program *****************/      }
 /***********************************************/  
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
 int main(int argc, char *argv[])   
 {    return -2*L*num/sump;
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  }
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;  
   int linei, month, year,iout;  /******************* Printing html file ***********/
   int jj, ll, li, lj, lk, imk;  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   int numlinepar=0; /* Current linenumber of parameter file */                    int lastpass, int stepm, int weightopt, char model[],\
   int itimes;                    int imx,  double p[],double **matcov,double agemortsup){
   int NDIM=2;    int i,k;
   
   char ca[32], cb[32], cc[32];    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   char dummy[]="                         ";    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   /*  FILE *fichtm; *//* Html File */    for (i=1;i<=2;i++)
   /* FILE *ficgp;*/ /*Gnuplot File */      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   struct stat info;    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   double agedeb, agefin,hf;    fprintf(fichtm,"</ul>");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   double fret;  
   double **xi,tmp,delta;   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
   double dum; /* Dummy variable */   for (k=agegomp;k<(agemortsup-2);k++)
   double ***p3mat;     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   double ***mobaverage;  
   int *indx;   
   char line[MAXLINE], linepar[MAXLINE];    fflush(fichtm);
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];  }
   char pathr[MAXLINE], pathimach[MAXLINE];   
   char **bp, *tok, *val; /* pathtot */  /******************* Gnuplot file **************/
   int firstobs=1, lastobs=10;  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;    char dirfileres[132],optfileres[132];
   int ju,jl, mi;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    int ng;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;   
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */  
   int mobilav=0,popforecast=0;    /*#ifdef windows */
   int hstepm, nhstepm;    fprintf(ficgp,"cd \"%s\" \n",pathc);
   int agemortsup;      /*#endif */
   float  sumlpop=0.;  
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;  
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
   double bage, fage, age, agelim, agebase;    fprintf(ficgp,"set out \"graphmort.png\"\n ");
   double ftolpl=FTOL;    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
   double **prlim;    fprintf(ficgp, "set ter png small\n set log y\n");
   double *severity;    fprintf(ficgp, "set size 0.65,0.65\n");
   double ***param; /* Matrix of parameters */    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   double  *p;  
   double **matcov; /* Matrix of covariance */  }
   double ***delti3; /* Scale */  
   double *delti; /* Scale */  
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;  
   double kk1, kk2;  /***********************************************/
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;  /**************** Main Program *****************/
   double **ximort;  /***********************************************/
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
   int *dcwave;  int main(int argc, char *argv[])
   {
   char z[1]="c", occ;    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    int linei, month, year,iout;
   char  *strt, strtend[80];    int jj, ll, li, lj, lk, imk;
   char *stratrunc;    int numlinepar=0; /* Current linenumber of parameter file */
   int lstra;    int itimes;
     int NDIM=2;
   long total_usecs;  
      char ca[32], cb[32], cc[32];
 /*   setlocale (LC_ALL, ""); */    char dummy[]="                         ";
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */    /*  FILE *fichtm; *//* Html File */
 /*   textdomain (PACKAGE); */    /* FILE *ficgp;*/ /*Gnuplot File */
 /*   setlocale (LC_CTYPE, ""); */    struct stat info;
 /*   setlocale (LC_MESSAGES, ""); */    double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   (void) gettimeofday(&start_time,&tzp);    double fret;
   curr_time=start_time;    double **xi,tmp,delta;
   tm = *localtime(&start_time.tv_sec);  
   tmg = *gmtime(&start_time.tv_sec);    double dum; /* Dummy variable */
   strcpy(strstart,asctime(&tm));    double ***p3mat;
     double ***mobaverage;
 /*  printf("Localtime (at start)=%s",strstart); */    int *indx;
 /*  tp.tv_sec = tp.tv_sec +86400; */    char line[MAXLINE], linepar[MAXLINE];
 /*  tm = *localtime(&start_time.tv_sec); */    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */    char pathr[MAXLINE], pathimach[MAXLINE];
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */    char **bp, *tok, *val; /* pathtot */
 /*   tmg.tm_hour=tmg.tm_hour + 1; */    int firstobs=1, lastobs=10;
 /*   tp.tv_sec = mktime(&tmg); */    int sdeb, sfin; /* Status at beginning and end */
 /*   strt=asctime(&tmg); */    int c,  h , cpt,l;
 /*   printf("Time(after) =%s",strstart);  */    int ju,jl, mi;
 /*  (void) time (&time_value);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
 *  tm = *localtime(&time_value);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
 *  strstart=asctime(&tm);    int mobilav=0,popforecast=0;
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);     int hstepm, nhstepm;
 */    int agemortsup;
     float  sumlpop=0.;
   nberr=0; /* Number of errors and warnings */    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   nbwarn=0;    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   getcwd(pathcd, size);  
     double bage, fage, age, agelim, agebase;
   printf("\n%s\n%s",version,fullversion);    double ftolpl=FTOL;
   if(argc <=1){    double **prlim;
     printf("\nEnter the parameter file name: ");    double *severity;
     fgets(pathr,FILENAMELENGTH,stdin);    double ***param; /* Matrix of parameters */
     i=strlen(pathr);    double  *p;
     if(pathr[i-1]=='\n')    double **matcov; /* Matrix of covariance */
       pathr[i-1]='\0';    double ***delti3; /* Scale */
    for (tok = pathr; tok != NULL; ){    double *delti; /* Scale */
       printf("Pathr |%s|\n",pathr);    double ***eij, ***vareij;
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');    double **varpl; /* Variances of prevalence limits by age */
       printf("val= |%s| pathr=%s\n",val,pathr);    double *epj, vepp;
       strcpy (pathtot, val);    double kk1, kk2;
       if(pathr[0] == '\0') break; /* Un peu sale */    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     }    double **ximort;
   }    char *alph[]={"a","a","b","c","d","e"}, str[4];
   else{    int *dcwave;
     strcpy(pathtot,argv[1]);  
   }    char z[1]="c", occ;
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    char  *strt, strtend[80];
   /* cutv(path,optionfile,pathtot,'\\');*/    char *stratrunc;
     int lstra;
   /* Split argv[0], imach program to get pathimach */  
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);    long total_usecs;
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);   
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);  /*   setlocale (LC_ALL, ""); */
  /*   strcpy(pathimach,argv[0]); */  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */  /*   textdomain (PACKAGE); */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  /*   setlocale (LC_CTYPE, ""); */
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /*   setlocale (LC_MESSAGES, ""); */
   chdir(path);  
   strcpy(command,"mkdir ");    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   strcat(command,optionfilefiname);    (void) gettimeofday(&start_time,&tzp);
   if((outcmd=system(command)) != 0){    curr_time=start_time;
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);    tm = *localtime(&start_time.tv_sec);
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    tmg = *gmtime(&start_time.tv_sec);
     /* fclose(ficlog); */    strcpy(strstart,asctime(&tm));
 /*     exit(1); */  
   }  /*  printf("Localtime (at start)=%s",strstart); */
 /*   if((imk=mkdir(optionfilefiname))<0){ */  /*  tp.tv_sec = tp.tv_sec +86400; */
 /*     perror("mkdir"); */  /*  tm = *localtime(&start_time.tv_sec); */
 /*   } */  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*-------- arguments in the command line --------*/  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /* Log file */  /*   strt=asctime(&tmg); */
   strcat(filelog, optionfilefiname);  /*   printf("Time(after) =%s",strstart);  */
   strcat(filelog,".log");    /* */  /*  (void) time (&time_value);
   if((ficlog=fopen(filelog,"w"))==NULL)    {  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
     printf("Problem with logfile %s\n",filelog);  *  tm = *localtime(&time_value);
     goto end;  *  strstart=asctime(&tm);
   }  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
   fprintf(ficlog,"Log filename:%s\n",filelog);  */
   fprintf(ficlog,"\n%s\n%s",version,fullversion);  
   fprintf(ficlog,"\nEnter the parameter file name: \n");    nberr=0; /* Number of errors and warnings */
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\    nbwarn=0;
  path=%s \n\    getcwd(pathcd, size);
  optionfile=%s\n\  
  optionfilext=%s\n\    printf("\n%s\n%s",version,fullversion);
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);    if(argc <=1){
       printf("\nEnter the parameter file name: ");
   printf("Local time (at start):%s",strstart);      fgets(pathr,FILENAMELENGTH,stdin);
   fprintf(ficlog,"Local time (at start): %s",strstart);      i=strlen(pathr);
   fflush(ficlog);      if(pathr[i-1]=='\n')
 /*   (void) gettimeofday(&curr_time,&tzp); */        pathr[i-1]='\0';
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */     for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
   /* */        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   strcpy(fileres,"r");        printf("val= |%s| pathr=%s\n",val,pathr);
   strcat(fileres, optionfilefiname);        strcpy (pathtot, val);
   strcat(fileres,".txt");    /* Other files have txt extension */        if(pathr[0] == '\0') break; /* Dirty */
       }
   /*---------arguments file --------*/    }
     else{
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      strcpy(pathtot,argv[1]);
     printf("Problem with optionfile %s\n",optionfile);    }
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     fflush(ficlog);    /*cygwin_split_path(pathtot,path,optionfile);
     goto end;      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   }    /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   strcpy(filereso,"o");    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   strcat(filereso,fileres);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */   /*   strcpy(pathimach,argv[0]); */
     printf("Problem with Output resultfile: %s\n", filereso);    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     goto end;    chdir(path); /* Can be a relative path */
   }    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
   /* Reads comments: lines beginning with '#' */    strcpy(command,"mkdir ");
   numlinepar=0;    strcat(command,optionfilefiname);
   while((c=getc(ficpar))=='#' && c!= EOF){    if((outcmd=system(command)) != 0){
     ungetc(c,ficpar);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
     fgets(line, MAXLINE, ficpar);      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
     numlinepar++;      /* fclose(ficlog); */
     puts(line);  /*     exit(1); */
     fputs(line,ficparo);    }
     fputs(line,ficlog);  /*   if((imk=mkdir(optionfilefiname))<0){ */
   }  /*     perror("mkdir"); */
   ungetc(c,ficpar);  /*   } */
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /*-------- arguments in the command line --------*/
   numlinepar++;  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    /* Log file */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    strcat(filelog, optionfilefiname);
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    strcat(filelog,".log");    /* */
   fflush(ficlog);    if((ficlog=fopen(filelog,"w"))==NULL)    {
   while((c=getc(ficpar))=='#' && c!= EOF){      printf("Problem with logfile %s\n",filelog);
     ungetc(c,ficpar);      goto end;
     fgets(line, MAXLINE, ficpar);    }
     numlinepar++;    fprintf(ficlog,"Log filename:%s\n",filelog);
     puts(line);    fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fputs(line,ficparo);    fprintf(ficlog,"\nEnter the parameter file name: \n");
     fputs(line,ficlog);    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
   }   path=%s \n\
   ungetc(c,ficpar);   optionfile=%s\n\
    optionfilext=%s\n\
       optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   covar=matrix(0,NCOVMAX,1,n);   
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    printf("Local time (at start):%s",strstart);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */  /*   (void) gettimeofday(&curr_time,&tzp); */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  
     /* */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    strcpy(fileres,"r");
   delti=delti3[1][1];    strcat(fileres, optionfilefiname);
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    strcat(fileres,".txt");    /* Other files have txt extension */
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    /*---------arguments file --------*/
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);  
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       printf("Problem with optionfile %s\n",optionfile);
     fclose (ficparo);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     fclose (ficlog);      fflush(ficlog);
     exit(0);      goto end;
   }    }
   else if(mle==-3) {  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);  
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);  
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    strcpy(filereso,"o");
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    strcat(filereso,fileres);
     matcov=matrix(1,npar,1,npar);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   }      printf("Problem with Output resultfile: %s\n", filereso);
   else{      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
     /* Read guess parameters */      fflush(ficlog);
     /* Reads comments: lines beginning with '#' */      goto end;
     while((c=getc(ficpar))=='#' && c!= EOF){    }
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);    /* Reads comments: lines beginning with '#' */
       numlinepar++;    numlinepar=0;
       puts(line);    while((c=getc(ficpar))=='#' && c!= EOF){
       fputs(line,ficparo);      ungetc(c,ficpar);
       fputs(line,ficlog);      fgets(line, MAXLINE, ficpar);
     }      numlinepar++;
     ungetc(c,ficpar);      puts(line);
           fputs(line,ficparo);
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fputs(line,ficlog);
     for(i=1; i <=nlstate; i++){    }
       j=0;    ungetc(c,ficpar);
       for(jj=1; jj <=nlstate+ndeath; jj++){  
         if(jj==i) continue;    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
         j++;    numlinepar++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
         if ((i1 != i) && (j1 != j)){    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
           exit(1);    fflush(ficlog);
         }    while((c=getc(ficpar))=='#' && c!= EOF){
         fprintf(ficparo,"%1d%1d",i1,j1);      ungetc(c,ficpar);
         if(mle==1)      fgets(line, MAXLINE, ficpar);
           printf("%1d%1d",i,j);      numlinepar++;
         fprintf(ficlog,"%1d%1d",i,j);      puts(line);
         for(k=1; k<=ncovmodel;k++){      fputs(line,ficparo);
           fscanf(ficpar," %lf",&param[i][j][k]);      fputs(line,ficlog);
           if(mle==1){    }
             printf(" %lf",param[i][j][k]);    ungetc(c,ficpar);
             fprintf(ficlog," %lf",param[i][j][k]);  
           }     
           else    covar=matrix(0,NCOVMAX,1,n);
             fprintf(ficlog," %lf",param[i][j][k]);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
           fprintf(ficparo," %lf",param[i][j][k]);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
         }  
         fscanf(ficpar,"\n");    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
         numlinepar++;    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
         if(mle==1)    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
           printf("\n");  
         fprintf(ficlog,"\n");    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         fprintf(ficparo,"\n");    delti=delti3[1][1];
       }    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     }      if(mle==-1){ /* Print a wizard for help writing covariance matrix */
     fflush(ficlog);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     p=param[1][1];      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
           free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     /* Reads comments: lines beginning with '#' */      fclose (ficparo);
     while((c=getc(ficpar))=='#' && c!= EOF){      fclose (ficlog);
       ungetc(c,ficpar);      goto end;
       fgets(line, MAXLINE, ficpar);      exit(0);
       numlinepar++;    }
       puts(line);    else if(mle==-3) {
       fputs(line,ficparo);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       fputs(line,ficlog);      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     }      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     ungetc(c,ficpar);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     for(i=1; i <=nlstate; i++){    }
       for(j=1; j <=nlstate+ndeath-1; j++){    else{
         fscanf(ficpar,"%1d%1d",&i1,&j1);      /* Read guess parameters */
         if ((i1-i)*(j1-j)!=0){      /* Reads comments: lines beginning with '#' */
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);      while((c=getc(ficpar))=='#' && c!= EOF){
           exit(1);        ungetc(c,ficpar);
         }        fgets(line, MAXLINE, ficpar);
         printf("%1d%1d",i,j);        numlinepar++;
         fprintf(ficparo,"%1d%1d",i1,j1);        puts(line);
         fprintf(ficlog,"%1d%1d",i1,j1);        fputs(line,ficparo);
         for(k=1; k<=ncovmodel;k++){        fputs(line,ficlog);
           fscanf(ficpar,"%le",&delti3[i][j][k]);      }
           printf(" %le",delti3[i][j][k]);      ungetc(c,ficpar);
           fprintf(ficparo," %le",delti3[i][j][k]);     
           fprintf(ficlog," %le",delti3[i][j][k]);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         }      for(i=1; i <=nlstate; i++){
         fscanf(ficpar,"\n");        j=0;
         numlinepar++;        for(jj=1; jj <=nlstate+ndeath; jj++){
         printf("\n");          if(jj==i) continue;
         fprintf(ficparo,"\n");          j++;
         fprintf(ficlog,"\n");          fscanf(ficpar,"%1d%1d",&i1,&j1);
       }          if ((i1 != i) && (j1 != j)){
     }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
     fflush(ficlog);  It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
     delti=delti3[1][1];            exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */          if(mle==1)
               printf("%1d%1d",i,j);
     /* Reads comments: lines beginning with '#' */          fprintf(ficlog,"%1d%1d",i,j);
     while((c=getc(ficpar))=='#' && c!= EOF){          for(k=1; k<=ncovmodel;k++){
       ungetc(c,ficpar);            fscanf(ficpar," %lf",&param[i][j][k]);
       fgets(line, MAXLINE, ficpar);            if(mle==1){
       numlinepar++;              printf(" %lf",param[i][j][k]);
       puts(line);              fprintf(ficlog," %lf",param[i][j][k]);
       fputs(line,ficparo);            }
       fputs(line,ficlog);            else
     }              fprintf(ficlog," %lf",param[i][j][k]);
     ungetc(c,ficpar);            fprintf(ficparo," %lf",param[i][j][k]);
             }
     matcov=matrix(1,npar,1,npar);          fscanf(ficpar,"\n");
     for(i=1; i <=npar; i++){          numlinepar++;
       fscanf(ficpar,"%s",&str);          if(mle==1)
       if(mle==1)            printf("\n");
         printf("%s",str);          fprintf(ficlog,"\n");
       fprintf(ficlog,"%s",str);          fprintf(ficparo,"\n");
       fprintf(ficparo,"%s",str);        }
       for(j=1; j <=i; j++){      }  
         fscanf(ficpar," %le",&matcov[i][j]);      fflush(ficlog);
         if(mle==1){  
           printf(" %.5le",matcov[i][j]);      p=param[1][1];
         }     
         fprintf(ficlog," %.5le",matcov[i][j]);      /* Reads comments: lines beginning with '#' */
         fprintf(ficparo," %.5le",matcov[i][j]);      while((c=getc(ficpar))=='#' && c!= EOF){
       }        ungetc(c,ficpar);
       fscanf(ficpar,"\n");        fgets(line, MAXLINE, ficpar);
       numlinepar++;        numlinepar++;
       if(mle==1)        puts(line);
         printf("\n");        fputs(line,ficparo);
       fprintf(ficlog,"\n");        fputs(line,ficlog);
       fprintf(ficparo,"\n");      }
     }      ungetc(c,ficpar);
     for(i=1; i <=npar; i++)  
       for(j=i+1;j<=npar;j++)      for(i=1; i <=nlstate; i++){
         matcov[i][j]=matcov[j][i];        for(j=1; j <=nlstate+ndeath-1; j++){
               fscanf(ficpar,"%1d%1d",&i1,&j1);
     if(mle==1)          if ((i1-i)*(j1-j)!=0){
       printf("\n");            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
     fprintf(ficlog,"\n");            exit(1);
               }
     fflush(ficlog);          printf("%1d%1d",i,j);
               fprintf(ficparo,"%1d%1d",i1,j1);
     /*-------- Rewriting parameter file ----------*/          fprintf(ficlog,"%1d%1d",i1,j1);
     strcpy(rfileres,"r");    /* "Rparameterfile */          for(k=1; k<=ncovmodel;k++){
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            fscanf(ficpar,"%le",&delti3[i][j][k]);
     strcat(rfileres,".");    /* */            printf(" %le",delti3[i][j][k]);
     strcat(rfileres,optionfilext);    /* Other files have txt extension */            fprintf(ficparo," %le",delti3[i][j][k]);
     if((ficres =fopen(rfileres,"w"))==NULL) {            fprintf(ficlog," %le",delti3[i][j][k]);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          }
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          fscanf(ficpar,"\n");
     }          numlinepar++;
     fprintf(ficres,"#%s\n",version);          printf("\n");
   }    /* End of mle != -3 */          fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
   /*-------- data file ----------*/        }
   if((fic=fopen(datafile,"r"))==NULL)    {      }
     printf("Problem with datafile: %s\n", datafile);goto end;      fflush(ficlog);
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  
   }      delti=delti3[1][1];
   
   n= lastobs;  
   severity = vector(1,maxwav);      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
   outcome=imatrix(1,maxwav+1,1,n);   
   num=lvector(1,n);      /* Reads comments: lines beginning with '#' */
   moisnais=vector(1,n);      while((c=getc(ficpar))=='#' && c!= EOF){
   annais=vector(1,n);        ungetc(c,ficpar);
   moisdc=vector(1,n);        fgets(line, MAXLINE, ficpar);
   andc=vector(1,n);        numlinepar++;
   agedc=vector(1,n);        puts(line);
   cod=ivector(1,n);        fputs(line,ficparo);
   weight=vector(1,n);        fputs(line,ficlog);
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      }
   mint=matrix(1,maxwav,1,n);      ungetc(c,ficpar);
   anint=matrix(1,maxwav,1,n);   
   s=imatrix(1,maxwav+1,1,n);      matcov=matrix(1,npar,1,npar);
   tab=ivector(1,NCOVMAX);      for(i=1; i <=npar; i++){
   ncodemax=ivector(1,8);        fscanf(ficpar,"%s",&str);
         if(mle==1)
   i=1;          printf("%s",str);
   linei=0;        fprintf(ficlog,"%s",str);
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {        fprintf(ficparo,"%s",str);
     linei=linei+1;        for(j=1; j <=i; j++){
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */          fscanf(ficpar," %le",&matcov[i][j]);
       if(line[j] == '\t')          if(mle==1){
         line[j] = ' ';            printf(" %.5le",matcov[i][j]);
     }          }
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){          fprintf(ficlog," %.5le",matcov[i][j]);
       ;          fprintf(ficparo," %.5le",matcov[i][j]);
     };        }
     line[j+1]=0;  /* Trims blanks at end of line */        fscanf(ficpar,"\n");
     if(line[0]=='#'){        numlinepar++;
       fprintf(ficlog,"Comment line\n%s\n",line);        if(mle==1)
       printf("Comment line\n%s\n",line);          printf("\n");
       continue;        fprintf(ficlog,"\n");
     }        fprintf(ficparo,"\n");
       }
     for (j=maxwav;j>=1;j--){      for(i=1; i <=npar; i++)
       cutv(stra, strb,line,' ');         for(j=i+1;j<=npar;j++)
       errno=0;          matcov[i][j]=matcov[j][i];
       lval=strtol(strb,&endptr,10);      
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/      if(mle==1)
       if( strb[0]=='\0' || (*endptr != '\0')){        printf("\n");
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);      fprintf(ficlog,"\n");
         exit(1);     
       }      fflush(ficlog);
       s[j][i]=lval;     
             /*-------- Rewriting parameter file ----------*/
       strcpy(line,stra);      strcpy(rfileres,"r");    /* "Rparameterfile */
       cutv(stra, strb,line,' ');      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      strcat(rfileres,".");    /* */
       }      strcat(rfileres,optionfilext);    /* Other files have txt extension */
       else  if(iout=sscanf(strb,"%s.") != 0){      if((ficres =fopen(rfileres,"w"))==NULL) {
         month=99;        printf("Problem writing new parameter file: %s\n", fileres);goto end;
         year=9999;        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }else{      }
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);      fprintf(ficres,"#%s\n",version);
         exit(1);    }    /* End of mle != -3 */
       }  
       anint[j][i]= (double) year;     /*-------- data file ----------*/
       mint[j][i]= (double)month;     if((fic=fopen(datafile,"r"))==NULL)    {
       strcpy(line,stra);      printf("Problem while opening datafile: %s\n", datafile);goto end;
     } /* ENd Waves */      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
         }
     cutv(stra, strb,line,' ');   
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    n= lastobs;
     }    severity = vector(1,maxwav);
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){    outcome=imatrix(1,maxwav+1,1,n);
       month=99;    num=lvector(1,n);
       year=9999;    moisnais=vector(1,n);
     }else{    annais=vector(1,n);
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);    moisdc=vector(1,n);
       exit(1);    andc=vector(1,n);
     }    agedc=vector(1,n);
     andc[i]=(double) year;     cod=ivector(1,n);
     moisdc[i]=(double) month;     weight=vector(1,n);
     strcpy(line,stra);    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
         mint=matrix(1,maxwav,1,n);
     cutv(stra, strb,line,' ');     anint=matrix(1,maxwav,1,n);
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    s=imatrix(1,maxwav+1,1,n);
     }    tab=ivector(1,NCOVMAX);
     else  if(iout=sscanf(strb,"%s.") != 0){    ncodemax=ivector(1,8);
       month=99;  
       year=9999;    i=1;
     }else{    linei=0;
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       exit(1);      linei=linei+1;
     }      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
     annais[i]=(double)(year);        if(line[j] == '\t')
     moisnais[i]=(double)(month);           line[j] = ' ';
     strcpy(line,stra);      }
           for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
     cutv(stra, strb,line,' ');         ;
     errno=0;      };
     lval=strtol(strb,&endptr,10);       line[j+1]=0;  /* Trims blanks at end of line */
     if( strb[0]=='\0' || (*endptr != '\0')){      if(line[0]=='#'){
       printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);        fprintf(ficlog,"Comment line\n%s\n",line);
       exit(1);        printf("Comment line\n%s\n",line);
     }        continue;
     weight[i]=(double)(lval);       }
     strcpy(line,stra);  
           for (j=maxwav;j>=1;j--){
     for (j=ncovcol;j>=1;j--){        cutv(stra, strb,line,' ');
       cutv(stra, strb,line,' ');         errno=0;
       errno=0;        lval=strtol(strb,&endptr,10);
       lval=strtol(strb,&endptr,10);         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
       if( strb[0]=='\0' || (*endptr != '\0')){        if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
         exit(1);          exit(1);
       }        }
       if(lval <-1 || lval >1){        s[j][i]=lval;
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);       
         exit(1);        strcpy(line,stra);
       }        cutv(stra, strb,line,' ');
       covar[j][i]=(double)(lval);        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       strcpy(line,stra);        }
     }         else  if(iout=sscanf(strb,"%s.") != 0){
     lstra=strlen(stra);          month=99;
               year=9999;
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */        }else{
       stratrunc = &(stra[lstra-9]);          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
       num[i]=atol(stratrunc);          exit(1);
     }        }
     else        anint[j][i]= (double) year;
       num[i]=atol(stra);        mint[j][i]= (double)month;
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        strcpy(line,stra);
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      } /* ENd Waves */
          
     i=i+1;      cutv(stra, strb,line,' ');
   } /* End loop reading  data */      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   fclose(fic);      }
   /* printf("ii=%d", ij);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
      scanf("%d",i);*/        month=99;
   imx=i-1; /* Number of individuals */        year=9999;
       }else{
   /* for (i=1; i<=imx; i++){        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        exit(1);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      andc[i]=(double) year;
     }*/      moisdc[i]=(double) month;
    /*  for (i=1; i<=imx; i++){      strcpy(line,stra);
      if (s[4][i]==9)  s[4][i]=-1;      
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   /* for (i=1; i<=imx; i++) */      }
        else  if(iout=sscanf(strb,"%s.") != 0){
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;        month=99;
      else weight[i]=1;*/        year=9999;
       }else{
   /* Calculation of the number of parameters from char model */        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        exit(1);
   Tprod=ivector(1,15);       }
   Tvaraff=ivector(1,15);       annais[i]=(double)(year);
   Tvard=imatrix(1,15,1,2);      moisnais[i]=(double)(month);
   Tage=ivector(1,15);            strcpy(line,stra);
         
   if (strlen(model) >1){ /* If there is at least 1 covariate */      cutv(stra, strb,line,' ');
     j=0, j1=0, k1=1, k2=1;      errno=0;
     j=nbocc(model,'+'); /* j=Number of '+' */      dval=strtod(strb,&endptr);
     j1=nbocc(model,'*'); /* j1=Number of '*' */      if( strb[0]=='\0' || (*endptr != '\0')){
     cptcovn=j+1;         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
     cptcovprod=j1; /*Number of products */        exit(1);
           }
     strcpy(modelsav,model);       weight[i]=dval;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      strcpy(line,stra);
       printf("Error. Non available option model=%s ",model);     
       fprintf(ficlog,"Error. Non available option model=%s ",model);      for (j=ncovcol;j>=1;j--){
       goto end;        cutv(stra, strb,line,' ');
     }        errno=0;
             lval=strtol(strb,&endptr,10);
     /* This loop fills the array Tvar from the string 'model'.*/        if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
     for(i=(j+1); i>=1;i--){          exit(1);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */         }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */        if(lval <-1 || lval >1){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
       /*scanf("%d",i);*/   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
       if (strchr(strb,'*')) {  /* Model includes a product */   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/   For example, for multinomial values like 1, 2 and 3,\n \
         if (strcmp(strc,"age")==0) { /* Vn*age */   build V1=0 V2=0 for the reference value (1),\n \
           cptcovprod--;          V1=1 V2=0 for (2) \n \
           cutv(strb,stre,strd,'V');   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/   output of IMaCh is often meaningless.\n \
           cptcovage++;   Exiting.\n",lval,linei, i,line,j);
             Tage[cptcovage]=i;          exit(1);
             /*printf("stre=%s ", stre);*/        }
         }        covar[j][i]=(double)(lval);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        strcpy(line,stra);
           cptcovprod--;      }
           cutv(strb,stre,strc,'V');      lstra=strlen(stra);
           Tvar[i]=atoi(stre);     
           cptcovage++;      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           Tage[cptcovage]=i;        stratrunc = &(stra[lstra-9]);
         }        num[i]=atol(stratrunc);
         else {  /* Age is not in the model */      }
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/      else
           Tvar[i]=ncovcol+k1;        num[i]=atol(stra);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           Tprod[k1]=i;        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
           Tvard[k1][1]=atoi(strc); /* m*/     
           Tvard[k1][2]=atoi(stre); /* n */      i=i+1;
           Tvar[cptcovn+k2]=Tvard[k1][1];    } /* End loop reading  data */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];     fclose(fic);
           for (k=1; k<=lastobs;k++)     /* printf("ii=%d", ij);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       scanf("%d",i);*/
           k1++;    imx=i-1; /* Number of individuals */
           k2=k2+2;  
         }    /* for (i=1; i<=imx; i++){
       }      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       else { /* no more sum */      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
        /*  scanf("%d",i);*/      }*/
       cutv(strd,strc,strb,'V');     /*  for (i=1; i<=imx; i++){
       Tvar[i]=atoi(strc);       if (s[4][i]==9)  s[4][i]=-1;
       }       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
       strcpy(modelsav,stra);     
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    /* for (i=1; i<=imx; i++) */
         scanf("%d",i);*/   
     } /* end of loop + */     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
   } /* end model */       else weight[i]=1;*/
     
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    /* Calculation of the number of parameters from char model */
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    Tvaraff=ivector(1,15);
   printf("cptcovprod=%d ", cptcovprod);    Tvard=imatrix(1,15,1,2);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    Tage=ivector(1,15);      
      
   scanf("%d ",i);*/    if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
     /*  if(mle==1){*/      j=nbocc(model,'+'); /* j=Number of '+' */
   if (weightopt != 1) { /* Maximisation without weights*/      j1=nbocc(model,'*'); /* j1=Number of '*' */
     for(i=1;i<=n;i++) weight[i]=1.0;      cptcovn=j+1;
   }      cptcovprod=j1; /*Number of products */
     /*-calculation of age at interview from date of interview and age at death -*/     
   agev=matrix(1,maxwav,1,imx);      strcpy(modelsav,model);
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
   for (i=1; i<=imx; i++) {        printf("Error. Non available option model=%s ",model);
     for(m=2; (m<= maxwav); m++) {        fprintf(ficlog,"Error. Non available option model=%s ",model);
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){        goto end;
         anint[m][i]=9999;      }
         s[m][i]=-1;     
       }      /* This loop fills the array Tvar from the string 'model'.*/
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){  
         nberr++;      for(i=(j+1); i>=1;i--){
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         s[m][i]=-1;        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
       }        /*scanf("%d",i);*/
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){        if (strchr(strb,'*')) {  /* Model includes a product */
         nberr++;          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);           if (strcmp(strc,"age")==0) { /* Vn*age */
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);             cptcovprod--;
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */            cutv(strb,stre,strd,'V');
       }            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
     }            cptcovage++;
   }              Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
   for (i=1; i<=imx; i++)  {          }
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          else if (strcmp(strd,"age")==0) { /* or age*Vn */
     for(m=firstpass; (m<= lastpass); m++){            cptcovprod--;
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){            cutv(strb,stre,strc,'V');
         if (s[m][i] >= nlstate+1) {            Tvar[i]=atoi(stre);
           if(agedc[i]>0)            cptcovage++;
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)            Tage[cptcovage]=i;
               agev[m][i]=agedc[i];          }
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          else {  /* Age is not in the model */
             else {            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
               if ((int)andc[i]!=9999){            Tvar[i]=ncovcol+k1;
                 nbwarn++;            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);            Tprod[k1]=i;
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);            Tvard[k1][1]=atoi(strc); /* m*/
                 agev[m][i]=-1;            Tvard[k1][2]=atoi(stre); /* n */
               }            Tvar[cptcovn+k2]=Tvard[k1][1];
             }            Tvar[cptcovn+k2+1]=Tvard[k1][2];
         }            for (k=1; k<=lastobs;k++)
         else if(s[m][i] !=9){ /* Standard case, age in fractional              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
                                  years but with the precision of a month */            k1++;
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            k2=k2+2;
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)          }
             agev[m][i]=1;        }
           else if(agev[m][i] <agemin){         else { /* no more sum */
             agemin=agev[m][i];          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/         /*  scanf("%d",i);*/
           }        cutv(strd,strc,strb,'V');
           else if(agev[m][i] >agemax){        Tvar[i]=atoi(strc);
             agemax=agev[m][i];        }
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        strcpy(modelsav,stra);  
           }        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           /*agev[m][i]=anint[m][i]-annais[i];*/          scanf("%d",i);*/
           /*     agev[m][i] = age[i]+2*m;*/      } /* end of loop + */
         }    } /* end model */
         else { /* =9 */   
           agev[m][i]=1;    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
           s[m][i]=-1;      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
         }  
       }    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
       else /*= 0 Unknown */    printf("cptcovprod=%d ", cptcovprod);
         agev[m][i]=1;    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
     }  
         scanf("%d ",i);*/
   }  
   for (i=1; i<=imx; i++)  {      /*  if(mle==1){*/
     for(m=firstpass; (m<=lastpass); m++){    if (weightopt != 1) { /* Maximisation without weights*/
       if (s[m][i] > (nlstate+ndeath)) {      for(i=1;i<=n;i++) weight[i]=1.0;
         nberr++;    }
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           /*-calculation of age at interview from date of interview and age at death -*/
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         agev=matrix(1,maxwav,1,imx);
         goto end;  
       }    for (i=1; i<=imx; i++) {
     }      for(m=2; (m<= maxwav); m++) {
   }        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
   /*for (i=1; i<=imx; i++){          s[m][i]=-1;
   for (m=firstpass; (m<lastpass); m++){        }
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
 }          nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
 }*/          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
   agegomp=(int)agemin;          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
   free_vector(severity,1,maxwav);          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
   free_imatrix(outcome,1,maxwav+1,1,n);        }
   free_vector(moisnais,1,n);      }
   free_vector(annais,1,n);    }
   /* free_matrix(mint,1,maxwav,1,n);  
      free_matrix(anint,1,maxwav,1,n);*/    for (i=1; i<=imx; i++)  {
   free_vector(moisdc,1,n);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
   free_vector(andc,1,n);      for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
              if (s[m][i] >= nlstate+1) {
   wav=ivector(1,imx);            if(agedc[i]>0)
   dh=imatrix(1,lastpass-firstpass+1,1,imx);              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
   bh=imatrix(1,lastpass-firstpass+1,1,imx);                agev[m][i]=agedc[i];
   mw=imatrix(1,lastpass-firstpass+1,1,imx);            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
                  else {
   /* Concatenates waves */                if ((int)andc[i]!=9999){
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                  nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
   Tcode=ivector(1,100);                }
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);               }
   ncodemax[1]=1;          }
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);          else if(s[m][i] !=9){ /* Standard case, age in fractional
                                          years but with the precision of a month */
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
                                  the estimations*/            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
   h=0;              agev[m][i]=1;
   m=pow(2,cptcoveff);            else if(agev[m][i] <agemin){
                agemin=agev[m][i];
   for(k=1;k<=cptcoveff; k++){              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
     for(i=1; i <=(m/pow(2,k));i++){            }
       for(j=1; j <= ncodemax[k]; j++){            else if(agev[m][i] >agemax){
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){              agemax=agev[m][i];
           h++;              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            }
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            /*agev[m][i]=anint[m][i]-annais[i];*/
         }             /*     agev[m][i] = age[i]+2*m;*/
       }          }
     }          else { /* =9 */
   }             agev[m][i]=1;
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);             s[m][i]=-1;
      codtab[1][2]=1;codtab[2][2]=2; */          }
   /* for(i=1; i <=m ;i++){         }
      for(k=1; k <=cptcovn; k++){        else /*= 0 Unknown */
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          agev[m][i]=1;
      }      }
      printf("\n");     
      }    }
      scanf("%d",i);*/    for (i=1; i<=imx; i++)  {
           for(m=firstpass; (m<=lastpass); m++){
   /*------------ gnuplot -------------*/        if (s[m][i] > (nlstate+ndeath)) {
   strcpy(optionfilegnuplot,optionfilefiname);          nberr++;
   if(mle==-3)          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     strcat(optionfilegnuplot,"-mort");          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
   strcat(optionfilegnuplot,".gp");          goto end;
         }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      }
     printf("Problem with file %s",optionfilegnuplot);    }
   }  
   else{    /*for (i=1; i<=imx; i++){
     fprintf(ficgp,"\n# %s\n", version);     for (m=firstpass; (m<lastpass); m++){
     fprintf(ficgp,"# %s\n", optionfilegnuplot);        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     fprintf(ficgp,"set missing 'NaNq'\n");  }
   }  
   /*  fclose(ficgp);*/  }*/
   /*--------- index.htm --------*/  
   
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   if(mle==-3)    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     strcat(optionfilehtm,"-mort");  
   strcat(optionfilehtm,".htm");    agegomp=(int)agemin;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    free_vector(severity,1,maxwav);
     printf("Problem with %s \n",optionfilehtm), exit(0);    free_imatrix(outcome,1,maxwav+1,1,n);
   }    free_vector(moisnais,1,n);
     free_vector(annais,1,n);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    /* free_matrix(mint,1,maxwav,1,n);
   strcat(optionfilehtmcov,"-cov.htm");       free_matrix(anint,1,maxwav,1,n);*/
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    free_vector(moisdc,1,n);
     printf("Problem with %s \n",optionfilehtmcov), exit(0);    free_vector(andc,1,n);
   }  
   else{     
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \    wav=ivector(1,imx);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    dh=imatrix(1,lastpass-firstpass+1,1,imx);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\    bh=imatrix(1,lastpass-firstpass+1,1,imx);
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);    mw=imatrix(1,lastpass-firstpass+1,1,imx);
   }     
     /* Concatenates waves */
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
 \n\  
 <hr  size=\"2\" color=\"#EC5E5E\">\    Tcode=ivector(1,100);
  <ul><li><h4>Parameter files</h4>\n\    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\    ncodemax[1]=1;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\       
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
  - Date and time at start: %s</ul>\n",\                                   the estimations*/
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\    h=0;
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\    m=pow(2,cptcoveff);
           fileres,fileres,\   
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);    for(k=1;k<=cptcoveff; k++){
   fflush(fichtm);      for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
   strcpy(pathr,path);          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
   strcat(pathr,optionfilefiname);            h++;
   chdir(optionfilefiname); /* Move to directory named optionfile */            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
               /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
   /* Calculates basic frequencies. Computes observed prevalence at single age          }
      and prints on file fileres'p'. */        }
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);      }
     }
   fprintf(fichtm,"\n");    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\       codtab[1][2]=1;codtab[2][2]=2; */
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\    /* for(i=1; i <=m ;i++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\       for(k=1; k <=cptcovn; k++){
           imx,agemin,agemax,jmin,jmax,jmean);       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       printf("\n");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       scanf("%d",i);*/
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     
         /*------------ gnuplot -------------*/
        strcpy(optionfilegnuplot,optionfilefiname);
   /* For Powell, parameters are in a vector p[] starting at p[1]    if(mle==-3)
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      strcat(optionfilegnuplot,"-mort");
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    strcat(optionfilegnuplot,".gp");
   
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
   if (mle==-3){    }
     ximort=matrix(1,NDIM,1,NDIM);    else{
     cens=ivector(1,n);      fprintf(ficgp,"\n# %s\n", version);
     ageexmed=vector(1,n);      fprintf(ficgp,"# %s\n", optionfilegnuplot);
     agecens=vector(1,n);      fprintf(ficgp,"set missing 'NaNq'\n");
     dcwave=ivector(1,n);    }
      /*  fclose(ficgp);*/
     for (i=1; i<=imx; i++){    /*--------- index.htm --------*/
       dcwave[i]=-1;  
       for (m=firstpass; m<=lastpass; m++)    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
         if (s[m][i]>nlstate) {    if(mle==-3)
           dcwave[i]=m;      strcat(optionfilehtm,"-mort");
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/    strcat(optionfilehtm,".htm");
           break;    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
         }      printf("Problem with %s \n",optionfilehtm), exit(0);
     }    }
   
     for (i=1; i<=imx; i++) {    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
       if (wav[i]>0){    strcat(optionfilehtmcov,"-cov.htm");
         ageexmed[i]=agev[mw[1][i]][i];    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
         j=wav[i];      printf("Problem with %s \n",optionfilehtmcov), exit(0);
         agecens[i]=1.;     }
     else{
         if (ageexmed[i]> 1 && wav[i] > 0){    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
           agecens[i]=agev[mw[j][i]][i];  <hr size=\"2\" color=\"#EC5E5E\"> \n\
           cens[i]= 1;  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
         }else if (ageexmed[i]< 1)             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
           cens[i]= -1;    }
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)  
           cens[i]=0 ;    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
       }  <hr size=\"2\" color=\"#EC5E5E\"> \n\
       else cens[i]=-1;  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
     }  \n\
       <hr  size=\"2\" color=\"#EC5E5E\">\
     for (i=1;i<=NDIM;i++) {   <ul><li><h4>Parameter files</h4>\n\
       for (j=1;j<=NDIM;j++)   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
         ximort[i][j]=(i == j ? 1.0 : 0.0);   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
     }   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
        - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
     p[1]=0.0268; p[NDIM]=0.083;   - Date and time at start: %s</ul>\n",\
     /*printf("%lf %lf", p[1], p[2]);*/            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
                 optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
                 fileres,fileres,\
     printf("Powell\n");  fprintf(ficlog,"Powell\n");            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     strcpy(filerespow,"pow-mort");     fflush(fichtm);
     strcat(filerespow,fileres);  
     if((ficrespow=fopen(filerespow,"w"))==NULL) {    strcpy(pathr,path);
       printf("Problem with resultfile: %s\n", filerespow);    strcat(pathr,optionfilefiname);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);    chdir(optionfilefiname); /* Move to directory named optionfile */
     }   
     fprintf(ficrespow,"# Powell\n# iter -2*LL");    /* Calculates basic frequencies. Computes observed prevalence at single age
     /*  for (i=1;i<=nlstate;i++)       and prints on file fileres'p'. */
         for(j=1;j<=nlstate+ndeath;j++)    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);  
     */    fprintf(fichtm,"\n");
     fprintf(ficrespow,"\n");    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
       Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
     fclose(ficrespow);            imx,agemin,agemax,jmin,jmax,jmean);
         pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     for(i=1; i <=NDIM; i++)      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       for(j=i+1;j<=NDIM;j++)      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
         matcov[i][j]=matcov[j][i];     
          
     printf("\nCovariance matrix\n ");    /* For Powell, parameters are in a vector p[] starting at p[1]
     for(i=1; i <=NDIM; i++) {       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
       for(j=1;j<=NDIM;j++){     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
         printf("%f ",matcov[i][j]);  
       }    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
       printf("\n ");  
     }    if (mle==-3){
           ximort=matrix(1,NDIM,1,NDIM);
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);      cens=ivector(1,n);
     for (i=1;i<=NDIM;i++)       ageexmed=vector(1,n);
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));      agecens=vector(1,n);
       dcwave=ivector(1,n);
     lsurv=vector(1,AGESUP);   
     lpop=vector(1,AGESUP);      for (i=1; i<=imx; i++){
     tpop=vector(1,AGESUP);        dcwave[i]=-1;
     lsurv[agegomp]=100000;        for (m=firstpass; m<=lastpass; m++)
               if (s[m][i]>nlstate) {
     for (k=agegomp;k<=AGESUP;k++) {            dcwave[i]=m;
       agemortsup=k;            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;            break;
     }          }
           }
     for (k=agegomp;k<agemortsup;k++)  
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));      for (i=1; i<=imx; i++) {
             if (wav[i]>0){
     for (k=agegomp;k<agemortsup;k++){          ageexmed[i]=agev[mw[1][i]][i];
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;          j=wav[i];
       sumlpop=sumlpop+lpop[k];          agecens[i]=1.;
     }  
               if (ageexmed[i]> 1 && wav[i] > 0){
     tpop[agegomp]=sumlpop;            agecens[i]=agev[mw[j][i]][i];
     for (k=agegomp;k<(agemortsup-3);k++){            cens[i]= 1;
       /*  tpop[k+1]=2;*/          }else if (ageexmed[i]< 1)
       tpop[k+1]=tpop[k]-lpop[k];            cens[i]= -1;
     }          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
                 cens[i]=0 ;
             }
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");        else cens[i]=-1;
     for (k=agegomp;k<(agemortsup-2);k++)       }
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);     
           for (i=1;i<=NDIM;i++) {
             for (j=1;j<=NDIM;j++)
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */          ximort[i][j]=(i == j ? 1.0 : 0.0);
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      }
          
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \      p[1]=0.0268; p[NDIM]=0.083;
                      stepm, weightopt,\      /*printf("%lf %lf", p[1], p[2]);*/
                      model,imx,p,matcov,agemortsup);     
          
     free_vector(lsurv,1,AGESUP);      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     free_vector(lpop,1,AGESUP);      strcpy(filerespow,"pow-mort");
     free_vector(tpop,1,AGESUP);      strcat(filerespow,fileres);
   } /* Endof if mle==-3 */      if((ficrespow=fopen(filerespow,"w"))==NULL) {
           printf("Problem with resultfile: %s\n", filerespow);
   else{ /* For mle >=1 */        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         }
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      fprintf(ficrespow,"# Powell\n# iter -2*LL");
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      /*  for (i=1;i<=nlstate;i++)
     for (k=1; k<=npar;k++)          for(j=1;j<=nlstate+ndeath;j++)
       printf(" %d %8.5f",k,p[k]);          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     printf("\n");      */
     globpr=1; /* to print the contributions */      fprintf(ficrespow,"\n");
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */     
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
     for (k=1; k<=npar;k++)      fclose(ficrespow);
       printf(" %d %8.5f",k,p[k]);     
     printf("\n");      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
     if(mle>=1){ /* Could be 1 or 2 */  
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      for(i=1; i <=NDIM; i++)
     }        for(j=i+1;j<=NDIM;j++)
               matcov[i][j]=matcov[j][i];
     /*--------- results files --------------*/     
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      printf("\nCovariance matrix\n ");
           for(i=1; i <=NDIM; i++) {
             for(j=1;j<=NDIM;j++){
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          printf("%f ",matcov[i][j]);
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        }
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        printf("\n ");
     for(i=1,jk=1; i <=nlstate; i++){      }
       for(k=1; k <=(nlstate+ndeath); k++){     
         if (k != i) {      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
           printf("%d%d ",i,k);      for (i=1;i<=NDIM;i++)
           fprintf(ficlog,"%d%d ",i,k);        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
           fprintf(ficres,"%1d%1d ",i,k);  
           for(j=1; j <=ncovmodel; j++){      lsurv=vector(1,AGESUP);
             printf("%f ",p[jk]);      lpop=vector(1,AGESUP);
             fprintf(ficlog,"%f ",p[jk]);      tpop=vector(1,AGESUP);
             fprintf(ficres,"%f ",p[jk]);      lsurv[agegomp]=100000;
             jk++;      
           }      for (k=agegomp;k<=AGESUP;k++) {
           printf("\n");        agemortsup=k;
           fprintf(ficlog,"\n");        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
           fprintf(ficres,"\n");      }
         }     
       }      for (k=agegomp;k<agemortsup;k++)
     }        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
     if(mle!=0){     
       /* Computing hessian and covariance matrix */      for (k=agegomp;k<agemortsup;k++){
       ftolhess=ftol; /* Usually correct */        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
       hesscov(matcov, p, npar, delti, ftolhess, func);        sumlpop=sumlpop+lpop[k];
     }      }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");     
     printf("# Scales (for hessian or gradient estimation)\n");      tpop[agegomp]=sumlpop;
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      for (k=agegomp;k<(agemortsup-3);k++){
     for(i=1,jk=1; i <=nlstate; i++){        /*  tpop[k+1]=2;*/
       for(j=1; j <=nlstate+ndeath; j++){        tpop[k+1]=tpop[k]-lpop[k];
         if (j!=i) {      }
           fprintf(ficres,"%1d%1d",i,j);     
           printf("%1d%1d",i,j);     
           fprintf(ficlog,"%1d%1d",i,j);      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
           for(k=1; k<=ncovmodel;k++){      for (k=agegomp;k<(agemortsup-2);k++)
             printf(" %.5e",delti[jk]);        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
             fprintf(ficlog," %.5e",delti[jk]);     
             fprintf(ficres," %.5e",delti[jk]);     
             jk++;      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
           }      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
           printf("\n");     
           fprintf(ficlog,"\n");      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
           fprintf(ficres,"\n");                       stepm, weightopt,\
         }                       model,imx,p,matcov,agemortsup);
       }     
     }      free_vector(lsurv,1,AGESUP);
           free_vector(lpop,1,AGESUP);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      free_vector(tpop,1,AGESUP);
     if(mle>=1)    } /* Endof if mle==-3 */
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    else{ /* For mle >=1 */
     /* # 121 Var(a12)\n\ */   
     /* # 122 Cov(b12,a12) Var(b12)\n\ */      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */      for (k=1; k<=npar;k++)
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */        printf(" %d %8.5f",k,p[k]);
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */      printf("\n");
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */      globpr=1; /* to print the contributions */
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
           printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
           for (k=1; k<=npar;k++)
     /* Just to have a covariance matrix which will be more understandable        printf(" %d %8.5f",k,p[k]);
        even is we still don't want to manage dictionary of variables      printf("\n");
     */      if(mle>=1){ /* Could be 1 or 2 */
     for(itimes=1;itimes<=2;itimes++){        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       jj=0;      }
       for(i=1; i <=nlstate; i++){     
         for(j=1; j <=nlstate+ndeath; j++){      /*--------- results files --------------*/
           if(j==i) continue;      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
           for(k=1; k<=ncovmodel;k++){     
             jj++;     
             ca[0]= k+'a'-1;ca[1]='\0';      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
             if(itimes==1){      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
               if(mle>=1)      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                 printf("#%1d%1d%d",i,j,k);      for(i=1,jk=1; i <=nlstate; i++){
               fprintf(ficlog,"#%1d%1d%d",i,j,k);        for(k=1; k <=(nlstate+ndeath); k++){
               fprintf(ficres,"#%1d%1d%d",i,j,k);          if (k != i) {
             }else{            printf("%d%d ",i,k);
               if(mle>=1)            fprintf(ficlog,"%d%d ",i,k);
                 printf("%1d%1d%d",i,j,k);            fprintf(ficres,"%1d%1d ",i,k);
               fprintf(ficlog,"%1d%1d%d",i,j,k);            for(j=1; j <=ncovmodel; j++){
               fprintf(ficres,"%1d%1d%d",i,j,k);              printf("%lf ",p[jk]);
             }              fprintf(ficlog,"%lf ",p[jk]);
             ll=0;              fprintf(ficres,"%lf ",p[jk]);
             for(li=1;li <=nlstate; li++){              jk++;
               for(lj=1;lj <=nlstate+ndeath; lj++){            }
                 if(lj==li) continue;            printf("\n");
                 for(lk=1;lk<=ncovmodel;lk++){            fprintf(ficlog,"\n");
                   ll++;            fprintf(ficres,"\n");
                   if(ll<=jj){          }
                     cb[0]= lk +'a'-1;cb[1]='\0';        }
                     if(ll<jj){      }
                       if(itimes==1){      if(mle!=0){
                         if(mle>=1)        /* Computing hessian and covariance matrix */
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        ftolhess=ftol; /* Usually correct */
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        hesscov(matcov, p, npar, delti, ftolhess, func);
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      }
                       }else{      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
                         if(mle>=1)      printf("# Scales (for hessian or gradient estimation)\n");
                           printf(" %.5e",matcov[jj][ll]);       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
                         fprintf(ficlog," %.5e",matcov[jj][ll]);       for(i=1,jk=1; i <=nlstate; i++){
                         fprintf(ficres," %.5e",matcov[jj][ll]);         for(j=1; j <=nlstate+ndeath; j++){
                       }          if (j!=i) {
                     }else{            fprintf(ficres,"%1d%1d",i,j);
                       if(itimes==1){            printf("%1d%1d",i,j);
                         if(mle>=1)            fprintf(ficlog,"%1d%1d",i,j);
                           printf(" Var(%s%1d%1d)",ca,i,j);            for(k=1; k<=ncovmodel;k++){
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);              printf(" %.5e",delti[jk]);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);              fprintf(ficlog," %.5e",delti[jk]);
                       }else{              fprintf(ficres," %.5e",delti[jk]);
                         if(mle>=1)              jk++;
                           printf(" %.5e",matcov[jj][ll]);             }
                         fprintf(ficlog," %.5e",matcov[jj][ll]);             printf("\n");
                         fprintf(ficres," %.5e",matcov[jj][ll]);             fprintf(ficlog,"\n");
                       }            fprintf(ficres,"\n");
                     }          }
                   }        }
                 } /* end lk */      }
               } /* end lj */     
             } /* end li */      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
             if(mle>=1)      if(mle>=1)
               printf("\n");        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
             fprintf(ficlog,"\n");      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
             fprintf(ficres,"\n");      /* # 121 Var(a12)\n\ */
             numlinepar++;      /* # 122 Cov(b12,a12) Var(b12)\n\ */
           } /* end k*/      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
         } /*end j */      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       } /* end i */      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
     } /* end itimes */      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
           /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     fflush(ficlog);      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(ficres);     
          
     while((c=getc(ficpar))=='#' && c!= EOF){      /* Just to have a covariance matrix which will be more understandable
       ungetc(c,ficpar);         even is we still don't want to manage dictionary of variables
       fgets(line, MAXLINE, ficpar);      */
       puts(line);      for(itimes=1;itimes<=2;itimes++){
       fputs(line,ficparo);        jj=0;
     }        for(i=1; i <=nlstate; i++){
     ungetc(c,ficpar);          for(j=1; j <=nlstate+ndeath; j++){
                 if(j==i) continue;
     estepm=0;            for(k=1; k<=ncovmodel;k++){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);              jj++;
     if (estepm==0 || estepm < stepm) estepm=stepm;              ca[0]= k+'a'-1;ca[1]='\0';
     if (fage <= 2) {              if(itimes==1){
       bage = ageminpar;                if(mle>=1)
       fage = agemaxpar;                  printf("#%1d%1d%d",i,j,k);
     }                fprintf(ficlog,"#%1d%1d%d",i,j,k);
                     fprintf(ficres,"#%1d%1d%d",i,j,k);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              }else{
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                if(mle>=1)
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                  printf("%1d%1d%d",i,j,k);
                     fprintf(ficlog,"%1d%1d%d",i,j,k);
     while((c=getc(ficpar))=='#' && c!= EOF){                fprintf(ficres,"%1d%1d%d",i,j,k);
       ungetc(c,ficpar);              }
       fgets(line, MAXLINE, ficpar);              ll=0;
       puts(line);              for(li=1;li <=nlstate; li++){
       fputs(line,ficparo);                for(lj=1;lj <=nlstate+ndeath; lj++){
     }                  if(lj==li) continue;
     ungetc(c,ficpar);                  for(lk=1;lk<=ncovmodel;lk++){
                         ll++;
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);                    if(ll<=jj){
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                      cb[0]= lk +'a'-1;cb[1]='\0';
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                      if(ll<jj){
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                        if(itimes==1){
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                          if(mle>=1)
                                 printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     while((c=getc(ficpar))=='#' && c!= EOF){                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       ungetc(c,ficpar);                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
       fgets(line, MAXLINE, ficpar);                        }else{
       puts(line);                          if(mle>=1)
       fputs(line,ficparo);                            printf(" %.5e",matcov[jj][ll]);
     }                          fprintf(ficlog," %.5e",matcov[jj][ll]);
     ungetc(c,ficpar);                          fprintf(ficres," %.5e",matcov[jj][ll]);
                             }
                           }else{
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;                        if(itimes==1){
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;                          if(mle>=1)
                                 printf(" Var(%s%1d%1d)",ca,i,j);
     fscanf(ficpar,"pop_based=%d\n",&popbased);                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
     fprintf(ficparo,"pop_based=%d\n",popbased);                             fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
     fprintf(ficres,"pop_based=%d\n",popbased);                           }else{
                               if(mle>=1)
     while((c=getc(ficpar))=='#' && c!= EOF){                            printf(" %.5e",matcov[jj][ll]);
       ungetc(c,ficpar);                          fprintf(ficlog," %.5e",matcov[jj][ll]);
       fgets(line, MAXLINE, ficpar);                          fprintf(ficres," %.5e",matcov[jj][ll]);
       puts(line);                        }
       fputs(line,ficparo);                      }
     }                    }
     ungetc(c,ficpar);                  } /* end lk */
                     } /* end lj */
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);              } /* end li */
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);              if(mle>=1)
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);                printf("\n");
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);              fprintf(ficlog,"\n");
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);              fprintf(ficres,"\n");
     /* day and month of proj2 are not used but only year anproj2.*/              numlinepar++;
                 } /* end k*/
               } /*end j */
             } /* end i */
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/      } /* end itimes */
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/     
           fflush(ficlog);
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      fflush(ficres);
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);     
           while((c=getc(ficpar))=='#' && c!= EOF){
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\        ungetc(c,ficpar);
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\        fgets(line, MAXLINE, ficpar);
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        puts(line);
               fputs(line,ficparo);
    /*------------ free_vector  -------------*/      }
    /*  chdir(path); */      ungetc(c,ficpar);
       
     free_ivector(wav,1,imx);      estepm=0;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      if (estepm==0 || estepm < stepm) estepm=stepm;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         if (fage <= 2) {
     free_lvector(num,1,n);        bage = ageminpar;
     free_vector(agedc,1,n);        fage = agemaxpar;
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/     
     fclose(ficparo);      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fclose(ficres);      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/      while((c=getc(ficpar))=='#' && c!= EOF){
           ungetc(c,ficpar);
     strcpy(filerespl,"pl");        fgets(line, MAXLINE, ficpar);
     strcat(filerespl,fileres);        puts(line);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {        fputs(line,ficparo);
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;      }
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;      ungetc(c,ficpar);
     }     
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     pstamp(ficrespl);      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficrespl,"# Period (stable) prevalence \n");      printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficrespl,"#Age ");      fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     
     fprintf(ficrespl,"\n");      while((c=getc(ficpar))=='#' && c!= EOF){
           ungetc(c,ficpar);
     prlim=matrix(1,nlstate,1,nlstate);        fgets(line, MAXLINE, ficpar);
         puts(line);
     agebase=ageminpar;        fputs(line,ficparo);
     agelim=agemaxpar;      }
     ftolpl=1.e-10;      ungetc(c,ficpar);
     i1=cptcoveff;     
     if (cptcovn < 1){i1=1;}     
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
         k=k+1;      fscanf(ficpar,"pop_based=%d\n",&popbased);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      fprintf(ficparo,"pop_based=%d\n",popbased);  
         fprintf(ficrespl,"\n#******");      fprintf(ficres,"pop_based=%d\n",popbased);  
         printf("\n#******");     
         fprintf(ficlog,"\n#******");      while((c=getc(ficpar))=='#' && c!= EOF){
         for(j=1;j<=cptcoveff;j++) {        ungetc(c,ficpar);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fgets(line, MAXLINE, ficpar);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        puts(line);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fputs(line,ficparo);
         }      }
         fprintf(ficrespl,"******\n");      ungetc(c,ficpar);
         printf("******\n");     
         fprintf(ficlog,"******\n");      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
               fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
         for (age=agebase; age<=agelim; age++){      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           fprintf(ficrespl,"%.0f ",age );      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           for(j=1;j<=cptcoveff;j++)      /* day and month of proj2 are not used but only year anproj2.*/
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
           for(i=1; i<=nlstate;i++)     
             fprintf(ficrespl," %.5f", prlim[i][i]);     
           fprintf(ficrespl,"\n");      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
         }      /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       }     
     }      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     fclose(ficrespl);      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
     /*------------- h Pij x at various ages ------------*/      printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                      model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {       
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     /*------------ free_vector  -------------*/
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;     /*  chdir(path); */
     }   
     printf("Computing pij: result on file '%s' \n", filerespij);      free_ivector(wav,1,imx);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
         free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     stepsize=(int) (stepm+YEARM-1)/YEARM;      free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
     /*if (stepm<=24) stepsize=2;*/      free_lvector(num,1,n);
       free_vector(agedc,1,n);
     agelim=AGESUP;      /*free_matrix(covar,0,NCOVMAX,1,n);*/
     hstepm=stepsize*YEARM; /* Every year of age */      /*free_matrix(covar,1,NCOVMAX,1,n);*/
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       fclose(ficparo);
       fclose(ficres);
     /* hstepm=1;   aff par mois*/  
     pstamp(ficrespij);  
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){   
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      strcpy(filerespl,"pl");
         k=k+1;      strcat(filerespl,fileres);
         fprintf(ficrespij,"\n#****** ");      if((ficrespl=fopen(filerespl,"w"))==NULL) {
         for(j=1;j<=cptcoveff;j++)         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficrespij,"******\n");      }
               printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       pstamp(ficrespl);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
           oldm=oldms;savm=savms;      prlim=matrix(1,nlstate,1,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");      agebase=ageminpar;
           for(i=1; i<=nlstate;i++)      agelim=agemaxpar;
             for(j=1; j<=nlstate+ndeath;j++)      ftolpl=1.e-10;
               fprintf(ficrespij," %1d-%1d",i,j);      i1=cptcoveff;
           fprintf(ficrespij,"\n");      if (cptcovn < 1){i1=1;}
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
             for(i=1; i<=nlstate;i++)        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
               for(j=1; j<=nlstate+ndeath;j++)          k=k+1;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
             fprintf(ficrespij,"\n");          fprintf(ficrespl,"\n#******");
           }          printf("\n#******");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficlog,"\n#******");
           fprintf(ficrespij,"\n");          for(j=1;j<=cptcoveff;j++) {
         }            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       }            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     }            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);          fprintf(ficrespl,"******\n");
           printf("******\n");
     fclose(ficrespij);          fprintf(ficlog,"******\n");
          
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (age=agebase; age<=agelim; age++){
     for(i=1;i<=AGESUP;i++)            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
       for(j=1;j<=NCOVMAX;j++)            fprintf(ficrespl,"%.0f ",age );
         for(k=1;k<=NCOVMAX;k++)            for(j=1;j<=cptcoveff;j++)
           probs[i][j][k]=0.;              fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
     /*---------- Forecasting ------------------*/              fprintf(ficrespl," %.5f", prlim[i][i]);
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/            fprintf(ficrespl,"\n");
     if(prevfcast==1){          }
       /*    if(stepm ==1){*/        }
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);      }
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      fclose(ficrespl);
       /*      }  */  
       /*      else{ */      /*------------- h Pij x at various ages ------------*/
       /*        erreur=108; */   
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      if((ficrespij=fopen(filerespij,"w"))==NULL) {
       /*      } */        printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
     }        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
         }
       printf("Computing pij: result on file '%s' \n", filerespij);
     /*---------- Health expectancies and variances ------------*/      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
     strcpy(filerest,"t");      stepsize=(int) (stepm+YEARM-1)/YEARM;
     strcat(filerest,fileres);      /*if (stepm<=24) stepsize=2;*/
     if((ficrest=fopen(filerest,"w"))==NULL) {  
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;      agelim=AGESUP;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      hstepm=stepsize*YEARM; /* Every year of age */
     }      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);   
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     strcpy(filerese,"e");      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
     strcat(filerese,fileres);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     if((ficreseij=fopen(filerese,"w"))==NULL) {          k=k+1;
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          fprintf(ficrespij,"\n#****** ");
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          for(j=1;j<=cptcoveff;j++)
     }            fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);          fprintf(ficrespij,"******\n");
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);         
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
     strcpy(fileresstde,"stde");            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
     strcat(fileresstde,fileres);            nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {  
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);            /*      nhstepm=nhstepm*YEARM; aff par mois*/
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);  
     }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);            oldm=oldms;savm=savms;
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
     strcpy(filerescve,"cve");            for(i=1; i<=nlstate;i++)
     strcat(filerescve,fileres);              for(j=1; j<=nlstate+ndeath;j++)
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {                fprintf(ficrespij," %1d-%1d",i,j);
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);            fprintf(ficrespij,"\n");
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);            for (h=0; h<=nhstepm; h++){
     }              fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);              for(i=1; i<=nlstate;i++)
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);                for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
     strcpy(fileresv,"v");              fprintf(ficrespij,"\n");
     strcat(fileresv,fileres);            }
     if((ficresvij=fopen(fileresv,"w"))==NULL) {            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            fprintf(ficrespij,"\n");
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);          }
     }        }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      }
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */  
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      fclose(ficrespij);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\  
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);      probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     */      for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
     if (mobilav!=0) {          for(k=1;k<=NCOVMAX;k++)
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            probs[i][j][k]=0.;
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){  
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      /*---------- Forecasting ------------------*/
         printf(" Error in movingaverage mobilav=%d\n",mobilav);      /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       }      if(prevfcast==1){
     }        /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){        /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /*      }  */
         k=k+1;         /*      else{ */
         fprintf(ficrest,"\n#****** ");        /*        erreur=108; */
         for(j=1;j<=cptcoveff;j++)         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         fprintf(ficrest,"******\n");        /*      } */
       }
         fprintf(ficreseij,"\n#****** ");   
         fprintf(ficresstdeij,"\n#****** ");  
         fprintf(ficrescveij,"\n#****** ");      /*---------- Health expectancies and variances ------------*/
         for(j=1;j<=cptcoveff;j++) {  
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcpy(filerest,"t");
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcat(filerest,fileres);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if((ficrest=fopen(filerest,"w"))==NULL) {
         }        printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficreseij,"******\n");        fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficresstdeij,"******\n");      }
         fprintf(ficrescveij,"******\n");      printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
         fprintf(ficresvij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)   
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcpy(filerese,"e");
         fprintf(ficresvij,"******\n");      strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         oldm=oldms;savm=savms;        fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);        }
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);        printf("Computing Health Expectancies: result on file '%s' \n", filerese);
        fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
         oldm=oldms;savm=savms;      strcpy(fileresstde,"stde");
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);      strcat(fileresstde,fileres);
         if(popbased==1){      if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);        printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         }        fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
         pstamp(ficrest);      printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state ( e.. (std) ");      fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
         fprintf(ficrest,"\n");      strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
         epj=vector(1,nlstate+1);      if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         for(age=bage; age <=fage ;age++){        printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
           if (popbased==1) {      }
             if(mobilav ==0){      printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
               for(i=1; i<=nlstate;i++)      fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
                 prlim[i][i]=probs[(int)age][i][k];  
             }else{ /* mobilav */       strcpy(fileresv,"v");
               for(i=1; i<=nlstate;i++)      strcat(fileresv,fileres);
                 prlim[i][i]=mobaverage[(int)age][i][k];      if((ficresvij=fopen(fileresv,"w"))==NULL) {
             }        printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
           }        fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
               }
           fprintf(ficrest," %4.0f",age);      printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
             for(i=1, epj[j]=0.;i <=nlstate;i++) {  
               epj[j] += prlim[i][i]*eij[i][j][(int)age];      /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
             }      /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
             epj[nlstate+1] +=epj[j];          ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
           }      */
   
           for(i=1, vepp=0.;i <=nlstate;i++)      if (mobilav!=0) {
             for(j=1;j <=nlstate;j++)        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               vepp += vareij[i][j][(int)age];        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           for(j=1;j <=nlstate;j++){          printf(" Error in movingaverage mobilav=%d\n",mobilav);
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        }
           }      }
           fprintf(ficrest,"\n");  
         }      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          k=k+1;
         free_vector(epj,1,nlstate+1);          fprintf(ficrest,"\n#****** ");
       }          for(j=1;j<=cptcoveff;j++)
     }            fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     free_vector(weight,1,n);          fprintf(ficrest,"******\n");
     free_imatrix(Tvard,1,15,1,2);  
     free_imatrix(s,1,maxwav+1,1,n);          fprintf(ficreseij,"\n#****** ");
     free_matrix(anint,1,maxwav,1,n);           fprintf(ficresstdeij,"\n#****** ");
     free_matrix(mint,1,maxwav,1,n);          fprintf(ficrescveij,"\n#****** ");
     free_ivector(cod,1,n);          for(j=1;j<=cptcoveff;j++) {
     free_ivector(tab,1,NCOVMAX);            fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fclose(ficreseij);            fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fclose(ficresstdeij);            fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fclose(ficrescveij);          }
     fclose(ficresvij);          fprintf(ficreseij,"******\n");
     fclose(ficrest);          fprintf(ficresstdeij,"******\n");
     fclose(ficpar);          fprintf(ficrescveij,"******\n");
     
     /*------- Variance of period (stable) prevalence------*/             fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
     strcpy(fileresvpl,"vpl");            fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     strcat(fileresvpl,fileres);          fprintf(ficresvij,"******\n");
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);          eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
       exit(0);          oldm=oldms;savm=savms;
     }          evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);          cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){          vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          oldm=oldms;savm=savms;
         k=k+1;          varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
         fprintf(ficresvpl,"\n#****** ");          if(popbased==1){
         for(j=1;j<=cptcoveff;j++)             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
         fprintf(ficresvpl,"******\n");  
                 pstamp(ficrest);
         varpl=matrix(1,nlstate,(int) bage, (int) fage);          fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
         oldm=oldms;savm=savms;          for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);          fprintf(ficrest,"\n");
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
       }          epj=vector(1,nlstate+1);
     }          for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
     fclose(ficresvpl);            if (popbased==1) {
               if(mobilav ==0){
     /*---------- End : free ----------------*/                for(i=1; i<=nlstate;i++)
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  prlim[i][i]=probs[(int)age][i][k];
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
   }  /* mle==-3 arrives here for freeing */                  prlim[i][i]=mobaverage[(int)age][i][k];
   free_matrix(prlim,1,nlstate,1,nlstate);              }
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            }
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);         
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            fprintf(ficrest," %4.0f",age);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
     free_matrix(covar,0,NCOVMAX,1,n);              for(i=1, epj[j]=0.;i <=nlstate;i++) {
     free_matrix(matcov,1,npar,1,npar);                epj[j] += prlim[i][i]*eij[i][j][(int)age];
     /*free_vector(delti,1,npar);*/                /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);               }
     free_matrix(agev,1,maxwav,1,imx);              epj[nlstate+1] +=epj[j];
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            }
   
     free_ivector(ncodemax,1,8);            for(i=1, vepp=0.;i <=nlstate;i++)
     free_ivector(Tvar,1,15);              for(j=1;j <=nlstate;j++)
     free_ivector(Tprod,1,15);                vepp += vareij[i][j][(int)age];
     free_ivector(Tvaraff,1,15);            fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
     free_ivector(Tage,1,15);            for(j=1;j <=nlstate;j++){
     free_ivector(Tcode,1,100);              fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);            fprintf(ficrest,"\n");
     free_imatrix(codtab,1,100,1,10);          }
   fflush(fichtm);          free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
   fflush(ficgp);          free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
             free_vector(epj,1,nlstate+1);
         }
   if((nberr >0) || (nbwarn>0)){      }
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);      free_vector(weight,1,n);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);      free_imatrix(Tvard,1,15,1,2);
   }else{      free_imatrix(s,1,maxwav+1,1,n);
     printf("End of Imach\n");      free_matrix(anint,1,maxwav,1,n);
     fprintf(ficlog,"End of Imach\n");      free_matrix(mint,1,maxwav,1,n);
   }      free_ivector(cod,1,n);
   printf("See log file on %s\n",filelog);      free_ivector(tab,1,NCOVMAX);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      fclose(ficreseij);
   (void) gettimeofday(&end_time,&tzp);      fclose(ficresstdeij);
   tm = *localtime(&end_time.tv_sec);      fclose(ficrescveij);
   tmg = *gmtime(&end_time.tv_sec);      fclose(ficresvij);
   strcpy(strtend,asctime(&tm));      fclose(ficrest);
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);       fclose(ficpar);
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);    
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      /*------- Variance of period (stable) prevalence------*/  
   
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      strcpy(fileresvpl,"vpl");
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      strcat(fileresvpl,fileres);
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
   /*  printf("Total time was %d uSec.\n", total_usecs);*/        printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
 /*   if(fileappend(fichtm,optionfilehtm)){ */        exit(0);
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);      }
   fclose(fichtm);      printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   fclose(fichtmcov);  
   fclose(ficgp);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
   fclose(ficlog);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
   /*------ End -----------*/          k=k+1;
           fprintf(ficresvpl,"\n#****** ");
   chdir(path);          for(j=1;j<=cptcoveff;j++)
   /*strcat(plotcmd,CHARSEPARATOR);*/            fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   sprintf(plotcmd,"gnuplot");          fprintf(ficresvpl,"******\n");
 #ifndef UNIX       
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);          varpl=matrix(1,nlstate,(int) bage, (int) fage);
 #endif          oldm=oldms;savm=savms;
   if(!stat(plotcmd,&info)){          varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);          free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
     if(!stat(getenv("GNUPLOTBIN"),&info)){        }
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);      }
     }else  
       strcpy(pplotcmd,plotcmd);      fclose(ficresvpl);
 #ifdef UNIX  
     strcpy(plotcmd,GNUPLOTPROGRAM);      /*---------- End : free ----------------*/
     if(!stat(plotcmd,&info)){      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }else  
       strcpy(pplotcmd,plotcmd);    }  /* mle==-3 arrives here for freeing */
 #endif    free_matrix(prlim,1,nlstate,1,nlstate);
   }else      free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     strcpy(pplotcmd,plotcmd);      free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
         free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);      free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);      free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
   if((outcmd=system(plotcmd)) != 0){      /*free_vector(delti,1,npar);*/
     printf("\n Problem with gnuplot\n");      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   }      free_matrix(agev,1,maxwav,1,imx);
   printf(" Wait...");      free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   while (z[0] != 'q') {  
     /* chdir(path); */      free_ivector(ncodemax,1,8);
     printf("\nType e to edit output files, g to graph again and q for exiting: ");      free_ivector(Tvar,1,15);
     scanf("%s",z);      free_ivector(Tprod,1,15);
 /*     if (z[0] == 'c') system("./imach"); */      free_ivector(Tvaraff,1,15);
     if (z[0] == 'e') {      free_ivector(Tage,1,15);
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);      free_ivector(Tcode,1,100);
       system(optionfilehtm);  
     }      free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
     else if (z[0] == 'g') system(plotcmd);      free_imatrix(codtab,1,100,1,10);
     else if (z[0] == 'q') exit(0);    fflush(fichtm);
   }    fflush(ficgp);
   end:   
   while (z[0] != 'q') {  
     printf("\nType  q for exiting: ");    if((nberr >0) || (nbwarn>0)){
     scanf("%s",z);      printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
   }      fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
 }    }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.117  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>