Diff for /imach/src/imach.c between versions 1.50 and 1.121

version 1.50, 2002/06/26 23:25:02 version 1.121, 2006/03/16 17:45:01
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.121  2006/03/16 17:45:01  lievre
      * imach.c (Module): Comments concerning covariates added
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    * imach.c (Module): refinements in the computation of lli if
   first survey ("cross") where individuals from different ages are    status=-2 in order to have more reliable computation if stepm is
   interviewed on their health status or degree of disability (in the    not 1 month. Version 0.98f
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.120  2006/03/16 15:10:38  lievre
   (if any) in individual health status.  Health expectancies are    (Module): refinements in the computation of lli if
   computed from the time spent in each health state according to a    status=-2 in order to have more reliable computation if stepm is
   model. More health states you consider, more time is necessary to reach the    not 1 month. Version 0.98f
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.119  2006/03/15 17:42:26  brouard
   probability to be observed in state j at the second wave    (Module): Bug if status = -2, the loglikelihood was
   conditional to be observed in state i at the first wave. Therefore    computed as likelihood omitting the logarithm. Version O.98e
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.118  2006/03/14 18:20:07  brouard
   complex model than "constant and age", you should modify the program    (Module): varevsij Comments added explaining the second
   where the markup *Covariates have to be included here again* invites    table of variances if popbased=1 .
   you to do it.  More covariates you add, slower the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   convergence.    (Module): Function pstamp added
     (Module): Version 0.98d
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.117  2006/03/14 17:16:22  brouard
   identical for each individual. Also, if a individual missed an    (Module): varevsij Comments added explaining the second
   intermediate interview, the information is lost, but taken into    table of variances if popbased=1 .
   account using an interpolation or extrapolation.      (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   hPijx is the probability to be observed in state i at age x+h    (Module): Version 0.98d
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.116  2006/03/06 10:29:27  brouard
   states. This elementary transition (by month or quarter trimester,    (Module): Variance-covariance wrong links and
   semester or year) is model as a multinomial logistic.  The hPx    varian-covariance of ej. is needed (Saito).
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.115  2006/02/27 12:17:45  brouard
   hPijx.    (Module): One freematrix added in mlikeli! 0.98c
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.114  2006/02/26 12:57:58  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Some improvements in processing parameter
      filename with strsep.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.113  2006/02/24 14:20:24  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Memory leaks checks with valgrind and:
   from the European Union.    datafile was not closed, some imatrix were not freed and on matrix
   It is copyrighted identically to a GNU software product, ie programme and    allocation too.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.112  2006/01/30 09:55:26  brouard
   **********************************************************************/    (Module): Back to gnuplot.exe instead of wgnuplot.exe
    
 #include <math.h>    Revision 1.111  2006/01/25 20:38:18  brouard
 #include <stdio.h>    (Module): Lots of cleaning and bugs added (Gompertz)
 #include <stdlib.h>    (Module): Comments can be added in data file. Missing date values
 #include <unistd.h>    can be a simple dot '.'.
   
 #define MAXLINE 256    Revision 1.110  2006/01/25 00:51:50  brouard
 #define GNUPLOTPROGRAM "gnuplot"    (Module): Lots of cleaning and bugs added (Gompertz)
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.109  2006/01/24 19:37:15  brouard
 /*#define DEBUG*/    (Module): Comments (lines starting with a #) are allowed in data.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.108  2006/01/19 18:05:42  lievre
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Gnuplot problem appeared...
     To be fixed
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.106  2006/01/19 13:24:36  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Some cleaning and links added in html output
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.105  2006/01/05 20:23:19  lievre
 #define YEARM 12. /* Number of months per year */    *** empty log message ***
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.104  2005/09/30 16:11:43  lievre
 #ifdef windows    (Module): sump fixed, loop imx fixed, and simplifications.
 #define DIRSEPARATOR '\\'    (Module): If the status is missing at the last wave but we know
 #define ODIRSEPARATOR '/'    that the person is alive, then we can code his/her status as -2
 #else    (instead of missing=-1 in earlier versions) and his/her
 #define DIRSEPARATOR '/'    contributions to the likelihood is 1 - Prob of dying from last
 #define ODIRSEPARATOR '\\'    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #endif    the healthy state at last known wave). Version is 0.98
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Revision 1.103  2005/09/30 15:54:49  lievre
 int erreur; /* Error number */    (Module): sump fixed, loop imx fixed, and simplifications.
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.102  2004/09/15 17:31:30  brouard
 int npar=NPARMAX;    Add the possibility to read data file including tab characters.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.101  2004/09/15 10:38:38  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Fix on curr_time
 int popbased=0;  
     Revision 1.100  2004/07/12 18:29:06  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Add version for Mac OS X. Just define UNIX in Makefile
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.99  2004/06/05 08:57:40  brouard
 int mle, weightopt;    *** empty log message ***
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.98  2004/05/16 15:05:56  brouard
 double jmean; /* Mean space between 2 waves */    New version 0.97 . First attempt to estimate force of mortality
 double **oldm, **newm, **savm; /* Working pointers to matrices */    directly from the data i.e. without the need of knowing the health
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    state at each age, but using a Gompertz model: log u =a + b*age .
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    This is the basic analysis of mortality and should be done before any
 FILE *ficlog;    other analysis, in order to test if the mortality estimated from the
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    cross-longitudinal survey is different from the mortality estimated
 FILE *ficresprobmorprev;    from other sources like vital statistic data.
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    The same imach parameter file can be used but the option for mle should be -3.
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Agnès, who wrote this part of the code, tried to keep most of the
 char fileresv[FILENAMELENGTH];    former routines in order to include the new code within the former code.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    The output is very simple: only an estimate of the intercept and of
 char title[MAXLINE];    the slope with 95% confident intervals.
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Current limitations:
     A) Even if you enter covariates, i.e. with the
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 char filelog[FILENAMELENGTH]; /* Log file */    B) There is no computation of Life Expectancy nor Life Table.
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.97  2004/02/20 13:25:42  lievre
 char popfile[FILENAMELENGTH];    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.96  2003/07/15 15:38:55  brouard
 #define NR_END 1    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define FREE_ARG char*    rewritten within the same printf. Workaround: many printfs.
 #define FTOL 1.0e-10  
     Revision 1.95  2003/07/08 07:54:34  brouard
 #define NRANSI    * imach.c (Repository):
 #define ITMAX 200    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 #define TOL 2.0e-4  
     Revision 1.94  2003/06/27 13:00:02  brouard
 #define CGOLD 0.3819660    Just cleaning
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define GOLD 1.618034    exist so I changed back to asctime which exists.
 #define GLIMIT 100.0    (Module): Version 0.96b
 #define TINY 1.0e-20  
     Revision 1.92  2003/06/25 16:30:45  brouard
 static double maxarg1,maxarg2;    (Module): On windows (cygwin) function asctime_r doesn't
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    exist so I changed back to asctime which exists.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.91  2003/06/25 15:30:29  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    * imach.c (Repository): Duplicated warning errors corrected.
 #define rint(a) floor(a+0.5)    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 static double sqrarg;    is stamped in powell.  We created a new html file for the graphs
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    concerning matrix of covariance. It has extension -cov.htm.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.90  2003/06/24 12:34:15  brouard
 int imx;    (Module): Some bugs corrected for windows. Also, when
 int stepm;    mle=-1 a template is output in file "or"mypar.txt with the design
 /* Stepm, step in month: minimum step interpolation*/    of the covariance matrix to be input.
   
 int estepm;    Revision 1.89  2003/06/24 12:30:52  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 int m,nb;    of the covariance matrix to be input.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.88  2003/06/23 17:54:56  brouard
 double **pmmij, ***probs, ***mobaverage;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 double dateintmean=0;  
     Revision 1.87  2003/06/18 12:26:01  brouard
 double *weight;    Version 0.96
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.86  2003/06/17 20:04:08  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 /**************** split *************************/    current date of interview. It may happen when the death was just
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    prior to the death. In this case, dh was negative and likelihood
 {    was wrong (infinity). We still send an "Error" but patch by
    char *s;                             /* pointer */    assuming that the date of death was just one stepm after the
    int  l1, l2;                         /* length counters */    interview.
     (Repository): Because some people have very long ID (first column)
    l1 = strlen( path );                 /* length of path */    we changed int to long in num[] and we added a new lvector for
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    memory allocation. But we also truncated to 8 characters (left
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    truncation)
    if ( s == NULL ) {                   /* no directory, so use current */    (Repository): No more line truncation errors.
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Revision 1.84  2003/06/13 21:44:43  brouard
 #if     defined(__bsd__)                /* get current working directory */    * imach.c (Repository): Replace "freqsummary" at a correct
       extern char       *getwd( );    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
       if ( getwd( dirc ) == NULL ) {    parcimony.
 #else    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       extern char       *getcwd( );  
     Revision 1.83  2003/06/10 13:39:11  lievre
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    *** empty log message ***
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.82  2003/06/05 15:57:20  brouard
       }    Add log in  imach.c and  fullversion number is now printed.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */  */
       s++;                              /* after this, the filename */  /*
       l2 = strlen( s );                 /* length of filename */     Interpolated Markov Chain
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Short summary of the programme:
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    
       dirc[l1-l2] = 0;                  /* add zero */    This program computes Healthy Life Expectancies from
    }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    l1 = strlen( dirc );                 /* length of directory */    first survey ("cross") where individuals from different ages are
 #ifdef windows    interviewed on their health status or degree of disability (in the
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    case of a health survey which is our main interest) -2- at least a
 #else    second wave of interviews ("longitudinal") which measure each change
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (if any) in individual health status.  Health expectancies are
 #endif    computed from the time spent in each health state according to a
    s = strrchr( name, '.' );            /* find last / */    model. More health states you consider, more time is necessary to reach the
    s++;    Maximum Likelihood of the parameters involved in the model.  The
    strcpy(ext,s);                       /* save extension */    simplest model is the multinomial logistic model where pij is the
    l1= strlen( name);    probability to be observed in state j at the second wave
    l2= strlen( s)+1;    conditional to be observed in state i at the first wave. Therefore
    strncpy( finame, name, l1-l2);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
    finame[l1-l2]= 0;    'age' is age and 'sex' is a covariate. If you want to have a more
    return( 0 );                         /* we're done */    complex model than "constant and age", you should modify the program
 }    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
     convergence.
 /******************************************/  
     The advantage of this computer programme, compared to a simple
 void replace(char *s, char*t)    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
   int i;    intermediate interview, the information is lost, but taken into
   int lg=20;    account using an interpolation or extrapolation.  
   i=0;  
   lg=strlen(t);    hPijx is the probability to be observed in state i at age x+h
   for(i=0; i<= lg; i++) {    conditional to the observed state i at age x. The delay 'h' can be
     (s[i] = t[i]);    split into an exact number (nh*stepm) of unobserved intermediate
     if (t[i]== '\\') s[i]='/';    states. This elementary transition (by month, quarter,
   }    semester or year) is modelled as a multinomial logistic.  The hPx
 }    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 int nbocc(char *s, char occ)    hPijx.
 {  
   int i,j=0;    Also this programme outputs the covariance matrix of the parameters but also
   int lg=20;    of the life expectancies. It also computes the period (stable) prevalence. 
   i=0;    
   lg=strlen(s);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   for(i=0; i<= lg; i++) {             Institut national d'études démographiques, Paris.
   if  (s[i] == occ ) j++;    This software have been partly granted by Euro-REVES, a concerted action
   }    from the European Union.
   return j;    It is copyrighted identically to a GNU software product, ie programme and
 }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 void cutv(char *u,char *v, char*t, char occ)  
 {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   /* cuts string t into u and v where u is ended by char occ excluding it    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    
      gives u="abcedf" and v="ghi2j" */    **********************************************************************/
   int i,lg,j,p=0;  /*
   i=0;    main
   for(j=0; j<=strlen(t)-1; j++) {    read parameterfile
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    read datafile
   }    concatwav
     freqsummary
   lg=strlen(t);    if (mle >= 1)
   for(j=0; j<p; j++) {      mlikeli
     (u[j] = t[j]);    print results files
   }    if mle==1 
      u[p]='\0';       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
    for(j=0; j<= lg; j++) {        begin-prev-date,...
     if (j>=(p+1))(v[j-p-1] = t[j]);    open gnuplot file
   }    open html file
 }    period (stable) prevalence
      for age prevalim()
 /********************** nrerror ********************/    h Pij x
     variance of p varprob
 void nrerror(char error_text[])    forecasting if prevfcast==1 prevforecast call prevalence()
 {    health expectancies
   fprintf(stderr,"ERREUR ...\n");    Variance-covariance of DFLE
   fprintf(stderr,"%s\n",error_text);    prevalence()
   exit(1);     movingaverage()
 }    varevsij() 
 /*********************** vector *******************/    if popbased==1 varevsij(,popbased)
 double *vector(int nl, int nh)    total life expectancies
 {    Variance of period (stable) prevalence
   double *v;   end
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  */
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  
 }  
    
 /************************ free vector ******************/  #include <math.h>
 void free_vector(double*v, int nl, int nh)  #include <stdio.h>
 {  #include <stdlib.h>
   free((FREE_ARG)(v+nl-NR_END));  #include <string.h>
 }  #include <unistd.h>
   
 /************************ivector *******************************/  #include <limits.h>
 int *ivector(long nl,long nh)  #include <sys/types.h>
 {  #include <sys/stat.h>
   int *v;  #include <errno.h>
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  extern int errno;
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  /* #include <sys/time.h> */
 }  #include <time.h>
   #include "timeval.h"
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  /* #include <libintl.h> */
 {  /* #define _(String) gettext (String) */
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define MAXLINE 256
   
 /******************* imatrix *******************************/  #define GNUPLOTPROGRAM "gnuplot"
 int **imatrix(long nrl, long nrh, long ncl, long nch)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define FILENAMELENGTH 132
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   int **m;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    
   /* allocate pointers to rows */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define NINTERVMAX 8
   m -= nrl;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    #define NCOVMAX 8 /* Maximum number of covariates */
   /* allocate rows and set pointers to them */  #define MAXN 20000
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define YEARM 12. /* Number of months per year */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define AGESUP 130
   m[nrl] += NR_END;  #define AGEBASE 40
   m[nrl] -= ncl;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
    #ifdef UNIX
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #define DIRSEPARATOR '/'
    #define CHARSEPARATOR "/"
   /* return pointer to array of pointers to rows */  #define ODIRSEPARATOR '\\'
   return m;  #else
 }  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
 /****************** free_imatrix *************************/  #define ODIRSEPARATOR '/'
 void free_imatrix(m,nrl,nrh,ncl,nch)  #endif
       int **m;  
       long nch,ncl,nrh,nrl;  /* $Id$ */
      /* free an int matrix allocated by imatrix() */  /* $State$ */
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  char version[]="Imach version 0.98f, March 2006, INED-EUROREVES-Institut de longevite ";
   free((FREE_ARG) (m+nrl-NR_END));  char fullversion[]="$Revision$ $Date$"; 
 }  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 /******************* matrix *******************************/  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 double **matrix(long nrl, long nrh, long ncl, long nch)  int nvar;
 {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int npar=NPARMAX;
   double **m;  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   if (!m) nrerror("allocation failure 1 in matrix()");  int popbased=0;
   m += NR_END;  
   m -= nrl;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int jmin, jmax; /* min, max spacing between 2 waves */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   m[nrl] += NR_END;  int gipmx, gsw; /* Global variables on the number of contributions 
   m[nrl] -= ncl;                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   return m;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /*************************free matrix ************************/  double jmean; /* Mean space between 2 waves */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   free((FREE_ARG)(m+nrl-NR_END));  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /******************* ma3x *******************************/  long ipmx; /* Number of contributions */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   double ***m;  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *ficresprobmorprev;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *fichtm, *fichtmcov; /* Html File */
   m += NR_END;  FILE *ficreseij;
   m -= nrl;  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char fileresstde[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  FILE *ficrescveij;
   m[nrl] += NR_END;  char filerescve[FILENAMELENGTH];
   m[nrl] -= ncl;  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char title[MAXLINE];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m[nrl][ncl] += NR_END;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   m[nrl][ncl] -= nll;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   for (j=ncl+1; j<=nch; j++)  char command[FILENAMELENGTH];
     m[nrl][j]=m[nrl][j-1]+nlay;  int  outcmd=0;
    
   for (i=nrl+1; i<=nrh; i++) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  char filelog[FILENAMELENGTH]; /* Log file */
       m[i][j]=m[i][j-1]+nlay;  char filerest[FILENAMELENGTH];
   }  char fileregp[FILENAMELENGTH];
   return m;  char popfile[FILENAMELENGTH];
 }  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 {  struct timezone tzp;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  extern int gettimeofday();
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   free((FREE_ARG)(m+nrl-NR_END));  long time_value;
 }  extern long time();
   char strcurr[80], strfor[80];
 /***************** f1dim *************************/  
 extern int ncom;  char *endptr;
 extern double *pcom,*xicom;  long lval;
 extern double (*nrfunc)(double []);  
    #define NR_END 1
 double f1dim(double x)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   int j;  
   double f;  #define NRANSI 
   double *xt;  #define ITMAX 200 
    
   xt=vector(1,ncom);  #define TOL 2.0e-4 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  #define CGOLD 0.3819660 
   free_vector(xt,1,ncom);  #define ZEPS 1.0e-10 
   return f;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 }  
   #define GOLD 1.618034 
 /*****************brent *************************/  #define GLIMIT 100.0 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define TINY 1.0e-20 
 {  
   int iter;  static double maxarg1,maxarg2;
   double a,b,d,etemp;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   double fu,fv,fw,fx;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   double ftemp;    
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double e=0.0;  #define rint(a) floor(a+0.5)
    
   a=(ax < cx ? ax : cx);  static double sqrarg;
   b=(ax > cx ? ax : cx);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   x=w=v=bx;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   fw=fv=fx=(*f)(x);  int agegomp= AGEGOMP;
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  int imx; 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  int stepm=1;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /* Stepm, step in month: minimum step interpolation*/
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  int estepm;
 #ifdef DEBUG  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int m,nb;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  long *num;
 #endif  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       *xmin=x;  double **pmmij, ***probs;
       return fx;  double *ageexmed,*agecens;
     }  double dateintmean=0;
     ftemp=fu;  
     if (fabs(e) > tol1) {  double *weight;
       r=(x-w)*(fx-fv);  int **s; /* Status */
       q=(x-v)*(fx-fw);  double *agedc, **covar, idx;
       p=(x-v)*q-(x-w)*r;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       q=2.0*(q-r);  double *lsurv, *lpop, *tpop;
       if (q > 0.0) p = -p;  
       q=fabs(q);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       etemp=e;  double ftolhess; /* Tolerance for computing hessian */
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /**************** split *************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       else {  {
         d=p/q;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         u=x+d;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         if (u-a < tol2 || b-u < tol2)    */ 
           d=SIGN(tol1,xm-x);    char  *ss;                            /* pointer */
       }    int   l1, l2;                         /* length counters */
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    l1 = strlen(path );                   /* length of path */
     }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     fu=(*f)(u);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     if (fu <= fx) {      strcpy( name, path );               /* we got the fullname name because no directory */
       if (u >= x) a=x; else b=x;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       SHFT(v,w,x,u)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         SHFT(fv,fw,fx,fu)      /* get current working directory */
         } else {      /*    extern  char* getcwd ( char *buf , int len);*/
           if (u < x) a=u; else b=u;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
           if (fu <= fw || w == x) {        return( GLOCK_ERROR_GETCWD );
             v=w;      }
             w=u;      /* got dirc from getcwd*/
             fv=fw;      printf(" DIRC = %s \n",dirc);
             fw=fu;    } else {                              /* strip direcotry from path */
           } else if (fu <= fv || v == x || v == w) {      ss++;                               /* after this, the filename */
             v=u;      l2 = strlen( ss );                  /* length of filename */
             fv=fu;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
           }      strcpy( name, ss );         /* save file name */
         }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   }      dirc[l1-l2] = 0;                    /* add zero */
   nrerror("Too many iterations in brent");      printf(" DIRC2 = %s \n",dirc);
   *xmin=x;    }
   return fx;    /* We add a separator at the end of dirc if not exists */
 }    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
 /****************** mnbrak ***********************/      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      printf(" DIRC3 = %s \n",dirc);
             double (*func)(double))    }
 {    ss = strrchr( name, '.' );            /* find last / */
   double ulim,u,r,q, dum;    if (ss >0){
   double fu;      ss++;
        strcpy(ext,ss);                     /* save extension */
   *fa=(*func)(*ax);      l1= strlen( name);
   *fb=(*func)(*bx);      l2= strlen(ss)+1;
   if (*fb > *fa) {      strncpy( finame, name, l1-l2);
     SHFT(dum,*ax,*bx,dum)      finame[l1-l2]= 0;
       SHFT(dum,*fb,*fa,dum)    }
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    return( 0 );                          /* we're done */
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  /******************************************/
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  void replace_back_to_slash(char *s, char*t)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    int i;
       fu=(*func)(u);    int lg=0;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    i=0;
       fu=(*func)(u);    lg=strlen(t);
       if (fu < *fc) {    for(i=0; i<= lg; i++) {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      (s[i] = t[i]);
           SHFT(*fb,*fc,fu,(*func)(u))      if (t[i]== '\\') s[i]='/';
           }    }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  }
       u=ulim;  
       fu=(*func)(u);  int nbocc(char *s, char occ)
     } else {  {
       u=(*cx)+GOLD*(*cx-*bx);    int i,j=0;
       fu=(*func)(u);    int lg=20;
     }    i=0;
     SHFT(*ax,*bx,*cx,u)    lg=strlen(s);
       SHFT(*fa,*fb,*fc,fu)    for(i=0; i<= lg; i++) {
       }    if  (s[i] == occ ) j++;
 }    }
     return j;
 /*************** linmin ************************/  }
   
 int ncom;  void cutv(char *u,char *v, char*t, char occ)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
         and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))       gives u="abcedf" and v="ghi2j" */
 {    int i,lg,j,p=0;
   double brent(double ax, double bx, double cx,    i=0;
                double (*f)(double), double tol, double *xmin);    for(j=0; j<=strlen(t)-1; j++) {
   double f1dim(double x);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    }
               double *fc, double (*func)(double));  
   int j;    lg=strlen(t);
   double xx,xmin,bx,ax;    for(j=0; j<p; j++) {
   double fx,fb,fa;      (u[j] = t[j]);
      }
   ncom=n;       u[p]='\0';
   pcom=vector(1,n);  
   xicom=vector(1,n);     for(j=0; j<= lg; j++) {
   nrfunc=func;      if (j>=(p+1))(v[j-p-1] = t[j]);
   for (j=1;j<=n;j++) {    }
     pcom[j]=p[j];  }
     xicom[j]=xi[j];  
   }  /********************** nrerror ********************/
   ax=0.0;  
   xx=1.0;  void nrerror(char error_text[])
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    fprintf(stderr,"ERREUR ...\n");
 #ifdef DEBUG    fprintf(stderr,"%s\n",error_text);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    exit(EXIT_FAILURE);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  /*********************** vector *******************/
   for (j=1;j<=n;j++) {  double *vector(int nl, int nh)
     xi[j] *= xmin;  {
     p[j] += xi[j];    double *v;
   }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   free_vector(xicom,1,n);    if (!v) nrerror("allocation failure in vector");
   free_vector(pcom,1,n);    return v-nl+NR_END;
 }  }
   
 /*************** powell ************************/  /************************ free vector ******************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  void free_vector(double*v, int nl, int nh)
             double (*func)(double []))  {
 {    free((FREE_ARG)(v+nl-NR_END));
   void linmin(double p[], double xi[], int n, double *fret,  }
               double (*func)(double []));  
   int i,ibig,j;  /************************ivector *******************************/
   double del,t,*pt,*ptt,*xit;  int *ivector(long nl,long nh)
   double fp,fptt;  {
   double *xits;    int *v;
   pt=vector(1,n);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   ptt=vector(1,n);    if (!v) nrerror("allocation failure in ivector");
   xit=vector(1,n);    return v-nl+NR_END;
   xits=vector(1,n);  }
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /******************free ivector **************************/
   for (*iter=1;;++(*iter)) {  void free_ivector(int *v, long nl, long nh)
     fp=(*fret);  {
     ibig=0;    free((FREE_ARG)(v+nl-NR_END));
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /************************lvector *******************************/
     for (i=1;i<=n;i++)  long *lvector(long nl,long nh)
       printf(" %d %.12f",i, p[i]);  {
     fprintf(ficlog," %d %.12f",i, p[i]);    long *v;
     printf("\n");    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     fprintf(ficlog,"\n");    if (!v) nrerror("allocation failure in ivector");
     for (i=1;i<=n;i++) {    return v-nl+NR_END;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  }
       fptt=(*fret);  
 #ifdef DEBUG  /******************free lvector **************************/
       printf("fret=%lf \n",*fret);  void free_lvector(long *v, long nl, long nh)
       fprintf(ficlog,"fret=%lf \n",*fret);  {
 #endif    free((FREE_ARG)(v+nl-NR_END));
       printf("%d",i);fflush(stdout);  }
       fprintf(ficlog,"%d",i);fflush(ficlog);  
       linmin(p,xit,n,fret,func);  /******************* imatrix *******************************/
       if (fabs(fptt-(*fret)) > del) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         del=fabs(fptt-(*fret));       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         ibig=i;  { 
       }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 #ifdef DEBUG    int **m; 
       printf("%d %.12e",i,(*fret));    
       fprintf(ficlog,"%d %.12e",i,(*fret));    /* allocate pointers to rows */ 
       for (j=1;j<=n;j++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    if (!m) nrerror("allocation failure 1 in matrix()"); 
         printf(" x(%d)=%.12e",j,xit[j]);    m += NR_END; 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    m -= nrl; 
       }    
       for(j=1;j<=n;j++) {    
         printf(" p=%.12e",p[j]);    /* allocate rows and set pointers to them */ 
         fprintf(ficlog," p=%.12e",p[j]);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       printf("\n");    m[nrl] += NR_END; 
       fprintf(ficlog,"\n");    m[nrl] -= ncl; 
 #endif    
     }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    
 #ifdef DEBUG    /* return pointer to array of pointers to rows */ 
       int k[2],l;    return m; 
       k[0]=1;  } 
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /****************** free_imatrix *************************/
       fprintf(ficlog,"Max: %.12e",(*func)(p));  void free_imatrix(m,nrl,nrh,ncl,nch)
       for (j=1;j<=n;j++) {        int **m;
         printf(" %.12e",p[j]);        long nch,ncl,nrh,nrl; 
         fprintf(ficlog," %.12e",p[j]);       /* free an int matrix allocated by imatrix() */ 
       }  { 
       printf("\n");    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       fprintf(ficlog,"\n");    free((FREE_ARG) (m+nrl-NR_END)); 
       for(l=0;l<=1;l++) {  } 
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /******************* matrix *******************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  double **matrix(long nrl, long nrh, long ncl, long nch)
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  {
         }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double **m;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #endif    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
     m -= nrl;
       free_vector(xit,1,n);  
       free_vector(xits,1,n);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       free_vector(ptt,1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       free_vector(pt,1,n);    m[nrl] += NR_END;
       return;    m[nrl] -= ncl;
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for (j=1;j<=n;j++) {    return m;
       ptt[j]=2.0*p[j]-pt[j];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       xit[j]=p[j]-pt[j];     */
       pt[j]=p[j];  }
     }  
     fptt=(*func)(ptt);  /*************************free matrix ************************/
     if (fptt < fp) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  {
       if (t < 0.0) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         linmin(p,xit,n,fret,func);    free((FREE_ARG)(m+nrl-NR_END));
         for (j=1;j<=n;j++) {  }
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /******************* ma3x *******************************/
         }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 #ifdef DEBUG  {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double ***m;
         for(j=1;j<=n;j++){  
           printf(" %.12e",xit[j]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           fprintf(ficlog," %.12e",xit[j]);    if (!m) nrerror("allocation failure 1 in matrix()");
         }    m += NR_END;
         printf("\n");    m -= nrl;
         fprintf(ficlog,"\n");  
 #endif    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 /**** Prevalence limit ****************/  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 {    m[nrl][ncl] += NR_END;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    m[nrl][ncl] -= nll;
      matrix by transitions matrix until convergence is reached */    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
   int i, ii,j,k;    
   double min, max, maxmin, maxmax,sumnew=0.;    for (i=nrl+1; i<=nrh; i++) {
   double **matprod2();      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double **out, cov[NCOVMAX], **pmij();      for (j=ncl+1; j<=nch; j++) 
   double **newm;        m[i][j]=m[i][j-1]+nlay;
   double agefin, delaymax=50 ; /* Max number of years to converge */    }
     return m; 
   for (ii=1;ii<=nlstate+ndeath;ii++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for (j=1;j<=nlstate+ndeath;j++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    */
     }  }
   
    cov[1]=1.;  /*************************free ma3x ************************/
    void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     newm=savm;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     /* Covariates have to be included here again */    free((FREE_ARG)(m+nrl-NR_END));
      cov[2]=agefin;  }
    
       for (k=1; k<=cptcovn;k++) {  /*************** function subdirf ***********/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char *subdirf(char fileres[])
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  {
       }    /* Caution optionfilefiname is hidden */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcpy(tmpout,optionfilefiname);
       for (k=1; k<=cptcovprod;k++)    strcat(tmpout,"/"); /* Add to the right */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(tmpout,fileres);
     return tmpout;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  }
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /*************** function subdirf2 ***********/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  char *subdirf2(char fileres[], char *preop)
   {
     savm=oldm;    
     oldm=newm;    /* Caution optionfilefiname is hidden */
     maxmax=0.;    strcpy(tmpout,optionfilefiname);
     for(j=1;j<=nlstate;j++){    strcat(tmpout,"/");
       min=1.;    strcat(tmpout,preop);
       max=0.;    strcat(tmpout,fileres);
       for(i=1; i<=nlstate; i++) {    return tmpout;
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  /*************** function subdirf3 ***********/
         max=FMAX(max,prlim[i][j]);  char *subdirf3(char fileres[], char *preop, char *preop2)
         min=FMIN(min,prlim[i][j]);  {
       }    
       maxmin=max-min;    /* Caution optionfilefiname is hidden */
       maxmax=FMAX(maxmax,maxmin);    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
     if(maxmax < ftolpl){    strcat(tmpout,preop);
       return prlim;    strcat(tmpout,preop2);
     }    strcat(tmpout,fileres);
   }    return tmpout;
 }  }
   
 /*************** transition probabilities ***************/  /***************** f1dim *************************/
   extern int ncom; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  extern double *pcom,*xicom;
 {  extern double (*nrfunc)(double []); 
   double s1, s2;   
   /*double t34;*/  double f1dim(double x) 
   int i,j,j1, nc, ii, jj;  { 
     int j; 
     for(i=1; i<= nlstate; i++){    double f;
     for(j=1; j<i;j++){    double *xt; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){   
         /*s2 += param[i][j][nc]*cov[nc];*/    xt=vector(1,ncom); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    f=(*nrfunc)(xt); 
       }    free_vector(xt,1,ncom); 
       ps[i][j]=s2;    return f; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  } 
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){  /*****************brent *************************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  { 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    int iter; 
       }    double a,b,d,etemp;
       ps[i][j]=s2;    double fu,fv,fw,fx;
     }    double ftemp;
   }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     /*ps[3][2]=1;*/    double e=0.0; 
    
   for(i=1; i<= nlstate; i++){    a=(ax < cx ? ax : cx); 
      s1=0;    b=(ax > cx ? ax : cx); 
     for(j=1; j<i; j++)    x=w=v=bx; 
       s1+=exp(ps[i][j]);    fw=fv=fx=(*f)(x); 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (iter=1;iter<=ITMAX;iter++) { 
       s1+=exp(ps[i][j]);      xm=0.5*(a+b); 
     ps[i][i]=1./(s1+1.);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for(j=1; j<i; j++)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       ps[i][j]= exp(ps[i][j])*ps[i][i];      printf(".");fflush(stdout);
     for(j=i+1; j<=nlstate+ndeath; j++)      fprintf(ficlog,".");fflush(ficlog);
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #ifdef DEBUG
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   } /* end i */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #endif
     for(jj=1; jj<= nlstate+ndeath; jj++){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       ps[ii][jj]=0;        *xmin=x; 
       ps[ii][ii]=1;        return fx; 
     }      } 
   }      ftemp=fu;
       if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        q=(x-v)*(fx-fw); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        p=(x-v)*q-(x-w)*r; 
      printf("%lf ",ps[ii][jj]);        q=2.0*(q-r); 
    }        if (q > 0.0) p = -p; 
     printf("\n ");        q=fabs(q); 
     }        etemp=e; 
     printf("\n ");printf("%lf ",cov[2]);*/        e=d; 
 /*        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   goto end;*/        else { 
     return ps;          d=p/q; 
 }          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
 /**************** Product of 2 matrices ******************/            d=SIGN(tol1,xm-x); 
         } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      } else { 
 {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      } 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   /* in, b, out are matrice of pointers which should have been initialized      fu=(*f)(u); 
      before: only the contents of out is modified. The function returns      if (fu <= fx) { 
      a pointer to pointers identical to out */        if (u >= x) a=x; else b=x; 
   long i, j, k;        SHFT(v,w,x,u) 
   for(i=nrl; i<= nrh; i++)          SHFT(fv,fw,fx,fu) 
     for(k=ncolol; k<=ncoloh; k++)          } else { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)            if (u < x) a=u; else b=u; 
         out[i][k] +=in[i][j]*b[j][k];            if (fu <= fw || w == x) { 
               v=w; 
   return out;              w=u; 
 }              fv=fw; 
               fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
 /************* Higher Matrix Product ***************/              v=u; 
               fv=fu; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )            } 
 {          } 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    } 
      duration (i.e. until    nrerror("Too many iterations in brent"); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    *xmin=x; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    return fx; 
      (typically every 2 years instead of every month which is too big).  } 
      Model is determined by parameters x and covariates have to be  
      included manually here.  /****************** mnbrak ***********************/
   
      */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
   int i, j, d, h, k;  { 
   double **out, cov[NCOVMAX];    double ulim,u,r,q, dum;
   double **newm;    double fu; 
    
   /* Hstepm could be zero and should return the unit matrix */    *fa=(*func)(*ax); 
   for (i=1;i<=nlstate+ndeath;i++)    *fb=(*func)(*bx); 
     for (j=1;j<=nlstate+ndeath;j++){    if (*fb > *fa) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      SHFT(dum,*ax,*bx,dum) 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        SHFT(dum,*fb,*fa,dum) 
     }        } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    *cx=(*bx)+GOLD*(*bx-*ax); 
   for(h=1; h <=nhstepm; h++){    *fc=(*func)(*cx); 
     for(d=1; d <=hstepm; d++){    while (*fb > *fc) { 
       newm=savm;      r=(*bx-*ax)*(*fb-*fc); 
       /* Covariates have to be included here again */      q=(*bx-*cx)*(*fb-*fa); 
       cov[1]=1.;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       for (k=1; k<=cptcovage;k++)      if ((*bx-u)*(u-*cx) > 0.0) { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        fu=(*func)(u); 
       for (k=1; k<=cptcovprod;k++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fu=(*func)(u); 
         if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/            SHFT(*fb,*fc,fu,(*func)(u)) 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/            } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        u=ulim; 
       savm=oldm;        fu=(*func)(u); 
       oldm=newm;      } else { 
     }        u=(*cx)+GOLD*(*cx-*bx); 
     for(i=1; i<=nlstate+ndeath; i++)        fu=(*func)(u); 
       for(j=1;j<=nlstate+ndeath;j++) {      } 
         po[i][j][h]=newm[i][j];      SHFT(*ax,*bx,*cx,u) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        SHFT(*fa,*fb,*fc,fu) 
          */        } 
       }  } 
   } /* end h */  
   return po;  /*************** linmin ************************/
 }  
   int ncom; 
   double *pcom,*xicom;
 /*************** log-likelihood *************/  double (*nrfunc)(double []); 
 double func( double *x)   
 {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   int i, ii, j, k, mi, d, kk;  { 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double brent(double ax, double bx, double cx, 
   double **out;                 double (*f)(double), double tol, double *xmin); 
   double sw; /* Sum of weights */    double f1dim(double x); 
   double lli; /* Individual log likelihood */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   long ipmx;                double *fc, double (*func)(double)); 
   /*extern weight */    int j; 
   /* We are differentiating ll according to initial status */    double xx,xmin,bx,ax; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double fx,fb,fa;
   /*for(i=1;i<imx;i++)   
     printf(" %d\n",s[4][i]);    ncom=n; 
   */    pcom=vector(1,n); 
   cov[1]=1.;    xicom=vector(1,n); 
     nrfunc=func; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for (j=1;j<=n;j++) { 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      pcom[j]=p[j]; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      xicom[j]=xi[j]; 
     for(mi=1; mi<= wav[i]-1; mi++){    } 
       for (ii=1;ii<=nlstate+ndeath;ii++)    ax=0.0; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    xx=1.0; 
       for(d=0; d<dh[mi][i]; d++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         newm=savm;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #ifdef DEBUG
         for (kk=1; kk<=cptcovage;kk++) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         }  #endif
            for (j=1;j<=n;j++) { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      xi[j] *= xmin; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      p[j] += xi[j]; 
         savm=oldm;    } 
         oldm=newm;    free_vector(xicom,1,n); 
            free_vector(pcom,1,n); 
          } 
       } /* end mult */  
        char *asc_diff_time(long time_sec, char ascdiff[])
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  {
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    long sec_left, days, hours, minutes;
       ipmx +=1;    days = (time_sec) / (60*60*24);
       sw += weight[i];    sec_left = (time_sec) % (60*60*24);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    hours = (sec_left) / (60*60) ;
     } /* end of wave */    sec_left = (sec_left) %(60*60);
   } /* end of individual */    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    return ascdiff;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  }
   return -l;  
 }  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
 /*********** Maximum Likelihood Estimation ***************/  { 
     void linmin(double p[], double xi[], int n, double *fret, 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))                double (*func)(double [])); 
 {    int i,ibig,j; 
   int i,j, iter;    double del,t,*pt,*ptt,*xit;
   double **xi,*delti;    double fp,fptt;
   double fret;    double *xits;
   xi=matrix(1,npar,1,npar);    int niterf, itmp;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)    pt=vector(1,n); 
       xi[i][j]=(i==j ? 1.0 : 0.0);    ptt=vector(1,n); 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    xit=vector(1,n); 
   powell(p,xi,npar,ftol,&iter,&fret,func);    xits=vector(1,n); 
     *fret=(*func)(p); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    for (j=1;j<=n;j++) pt[j]=p[j]; 
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    for (*iter=1;;++(*iter)) { 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      fp=(*fret); 
       ibig=0; 
 }      del=0.0; 
       last_time=curr_time;
 /**** Computes Hessian and covariance matrix ***/      (void) gettimeofday(&curr_time,&tzp);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 {      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   double  **a,**y,*x,pd;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   double **hess;      */
   int i, j,jk;     for (i=1;i<=n;i++) {
   int *indx;        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   double hessii(double p[], double delta, int theta, double delti[]);        fprintf(ficrespow," %.12lf", p[i]);
   double hessij(double p[], double delti[], int i, int j);      }
   void lubksb(double **a, int npar, int *indx, double b[]) ;      printf("\n");
   void ludcmp(double **a, int npar, int *indx, double *d) ;      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   hess=matrix(1,npar,1,npar);      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   printf("\nCalculation of the hessian matrix. Wait...\n");        strcpy(strcurr,asctime(&tm));
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  /*       asctime_r(&tm,strcurr); */
   for (i=1;i<=npar;i++){        forecast_time=curr_time; 
     printf("%d",i);fflush(stdout);        itmp = strlen(strcurr);
     fprintf(ficlog,"%d",i);fflush(ficlog);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     hess[i][i]=hessii(p,ftolhess,i,delti);          strcurr[itmp-1]='\0';
     /*printf(" %f ",p[i]);*/        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     /*printf(" %lf ",hess[i][i]);*/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   }        for(niterf=10;niterf<=30;niterf+=10){
            forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++) {          tmf = *localtime(&forecast_time.tv_sec);
     for (j=1;j<=npar;j++)  {  /*      asctime_r(&tmf,strfor); */
       if (j>i) {          strcpy(strfor,asctime(&tmf));
         printf(".%d%d",i,j);fflush(stdout);          itmp = strlen(strfor);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          if(strfor[itmp-1]=='\n')
         hess[i][j]=hessij(p,delti,i,j);          strfor[itmp-1]='\0';
         hess[j][i]=hess[i][j];              printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         /*printf(" %lf ",hess[i][j]);*/          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }        }
     }      }
   }      for (i=1;i<=n;i++) { 
   printf("\n");        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   fprintf(ficlog,"\n");        fptt=(*fret); 
   #ifdef DEBUG
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        printf("fret=%lf \n",*fret);
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        fprintf(ficlog,"fret=%lf \n",*fret);
    #endif
   a=matrix(1,npar,1,npar);        printf("%d",i);fflush(stdout);
   y=matrix(1,npar,1,npar);        fprintf(ficlog,"%d",i);fflush(ficlog);
   x=vector(1,npar);        linmin(p,xit,n,fret,func); 
   indx=ivector(1,npar);        if (fabs(fptt-(*fret)) > del) { 
   for (i=1;i<=npar;i++)          del=fabs(fptt-(*fret)); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          ibig=i; 
   ludcmp(a,npar,indx,&pd);        } 
   #ifdef DEBUG
   for (j=1;j<=npar;j++) {        printf("%d %.12e",i,(*fret));
     for (i=1;i<=npar;i++) x[i]=0;        fprintf(ficlog,"%d %.12e",i,(*fret));
     x[j]=1;        for (j=1;j<=n;j++) {
     lubksb(a,npar,indx,x);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for (i=1;i<=npar;i++){          printf(" x(%d)=%.12e",j,xit[j]);
       matcov[i][j]=x[i];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     }        }
   }        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
   printf("\n#Hessian matrix#\n");          fprintf(ficlog," p=%.12e",p[j]);
   fprintf(ficlog,"\n#Hessian matrix#\n");        }
   for (i=1;i<=npar;i++) {        printf("\n");
     for (j=1;j<=npar;j++) {        fprintf(ficlog,"\n");
       printf("%.3e ",hess[i][j]);  #endif
       fprintf(ficlog,"%.3e ",hess[i][j]);      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     printf("\n");  #ifdef DEBUG
     fprintf(ficlog,"\n");        int k[2],l;
   }        k[0]=1;
         k[1]=-1;
   /* Recompute Inverse */        printf("Max: %.12e",(*func)(p));
   for (i=1;i<=npar;i++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for (j=1;j<=n;j++) {
   ludcmp(a,npar,indx,&pd);          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
   /*  printf("\n#Hessian matrix recomputed#\n");        }
         printf("\n");
   for (j=1;j<=npar;j++) {        fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++) x[i]=0;        for(l=0;l<=1;l++) {
     x[j]=1;          for (j=1;j<=n;j++) {
     lubksb(a,npar,indx,x);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for (i=1;i<=npar;i++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       y[i][j]=x[i];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       printf("%.3e ",y[i][j]);          }
       fprintf(ficlog,"%.3e ",y[i][j]);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     printf("\n");        }
     fprintf(ficlog,"\n");  #endif
   }  
   */  
         free_vector(xit,1,n); 
   free_matrix(a,1,npar,1,npar);        free_vector(xits,1,n); 
   free_matrix(y,1,npar,1,npar);        free_vector(ptt,1,n); 
   free_vector(x,1,npar);        free_vector(pt,1,n); 
   free_ivector(indx,1,npar);        return; 
   free_matrix(hess,1,npar,1,npar);      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
 }        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
 /*************** hessian matrix ****************/        pt[j]=p[j]; 
 double hessii( double x[], double delta, int theta, double delti[])      } 
 {      fptt=(*func)(ptt); 
   int i;      if (fptt < fp) { 
   int l=1, lmax=20;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   double k1,k2;        if (t < 0.0) { 
   double p2[NPARMAX+1];          linmin(p,xit,n,fret,func); 
   double res;          for (j=1;j<=n;j++) { 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            xi[j][ibig]=xi[j][n]; 
   double fx;            xi[j][n]=xit[j]; 
   int k=0,kmax=10;          }
   double l1;  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   fx=func(x);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=npar;i++) p2[i]=x[i];          for(j=1;j<=n;j++){
   for(l=0 ; l <=lmax; l++){            printf(" %.12e",xit[j]);
     l1=pow(10,l);            fprintf(ficlog," %.12e",xit[j]);
     delts=delt;          }
     for(k=1 ; k <kmax; k=k+1){          printf("\n");
       delt = delta*(l1*k);          fprintf(ficlog,"\n");
       p2[theta]=x[theta] +delt;  #endif
       k1=func(p2)-fx;        }
       p2[theta]=x[theta]-delt;      } 
       k2=func(p2)-fx;    } 
       /*res= (k1-2.0*fx+k2)/delt/delt; */  } 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        /**** Prevalence limit (stable or period prevalence)  ****************/
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  {
 #endif    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */       matrix by transitions matrix until convergence is reached */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;    int i, ii,j,k;
       }    double min, max, maxmin, maxmax,sumnew=0.;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    double **matprod2();
         k=kmax; l=lmax*10.;    double **out, cov[NCOVMAX], **pmij();
       }    double **newm;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    double agefin, delaymax=50 ; /* Max number of years to converge */
         delts=delt;  
       }    for (ii=1;ii<=nlstate+ndeath;ii++)
     }      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   delti[theta]=delts;      }
   return res;  
       cov[1]=1.;
 }   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 double hessij( double x[], double delti[], int thetai,int thetaj)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 {      newm=savm;
   int i;      /* Covariates have to be included here again */
   int l=1, l1, lmax=20;       cov[2]=agefin;
   double k1,k2,k3,k4,res,fx;    
   double p2[NPARMAX+1];        for (k=1; k<=cptcovn;k++) {
   int k;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   fx=func(x);        }
   for (k=1; k<=2; k++) {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (i=1;i<=npar;i++) p2[i]=x[i];        for (k=1; k<=cptcovprod;k++)
     p2[thetai]=x[thetai]+delti[thetai]/k;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
          /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     p2[thetai]=x[thetai]+delti[thetai]/k;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     k2=func(p2)-fx;  
        savm=oldm;
     p2[thetai]=x[thetai]-delti[thetai]/k;      oldm=newm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      maxmax=0.;
     k3=func(p2)-fx;      for(j=1;j<=nlstate;j++){
          min=1.;
     p2[thetai]=x[thetai]-delti[thetai]/k;        max=0.;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for(i=1; i<=nlstate; i++) {
     k4=func(p2)-fx;          sumnew=0;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 #ifdef DEBUG          prlim[i][j]= newm[i][j]/(1-sumnew);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          max=FMAX(max,prlim[i][j]);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          min=FMIN(min,prlim[i][j]);
 #endif        }
   }        maxmin=max-min;
   return res;        maxmax=FMAX(maxmax,maxmin);
 }      }
       if(maxmax < ftolpl){
 /************** Inverse of matrix **************/        return prlim;
 void ludcmp(double **a, int n, int *indx, double *d)      }
 {    }
   int i,imax,j,k;  }
   double big,dum,sum,temp;  
   double *vv;  /*************** transition probabilities ***************/ 
    
   vv=vector(1,n);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   *d=1.0;  {
   for (i=1;i<=n;i++) {    double s1, s2;
     big=0.0;    /*double t34;*/
     for (j=1;j<=n;j++)    int i,j,j1, nc, ii, jj;
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      for(i=1; i<= nlstate; i++){
     vv[i]=1.0/big;        for(j=1; j<i;j++){
   }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   for (j=1;j<=n;j++) {            /*s2 += param[i][j][nc]*cov[nc];*/
     for (i=1;i<j;i++) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       sum=a[i][j];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          }
       a[i][j]=sum;          ps[i][j]=s2;
     }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     big=0.0;        }
     for (i=j;i<=n;i++) {        for(j=i+1; j<=nlstate+ndeath;j++){
       sum=a[i][j];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for (k=1;k<j;k++)            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         sum -= a[i][k]*a[k][j];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
       a[i][j]=sum;          }
       if ( (dum=vv[i]*fabs(sum)) >= big) {          ps[i][j]=s2;
         big=dum;        }
         imax=i;      }
       }      /*ps[3][2]=1;*/
     }      
     if (j != imax) {      for(i=1; i<= nlstate; i++){
       for (k=1;k<=n;k++) {        s1=0;
         dum=a[imax][k];        for(j=1; j<i; j++)
         a[imax][k]=a[j][k];          s1+=exp(ps[i][j]);
         a[j][k]=dum;        for(j=i+1; j<=nlstate+ndeath; j++)
       }          s1+=exp(ps[i][j]);
       *d = -(*d);        ps[i][i]=1./(s1+1.);
       vv[imax]=vv[j];        for(j=1; j<i; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     indx[j]=imax;        for(j=i+1; j<=nlstate+ndeath; j++)
     if (a[j][j] == 0.0) a[j][j]=TINY;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     if (j != n) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       dum=1.0/(a[j][j]);      } /* end i */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      
     }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }        for(jj=1; jj<= nlstate+ndeath; jj++){
   free_vector(vv,1,n);  /* Doesn't work */          ps[ii][jj]=0;
 ;          ps[ii][ii]=1;
 }        }
       }
 void lubksb(double **a, int n, int *indx, double b[])      
 {  
   int i,ii=0,ip,j;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double sum;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
    /*         printf("ddd %lf ",ps[ii][jj]); */
   for (i=1;i<=n;i++) {  /*       } */
     ip=indx[i];  /*       printf("\n "); */
     sum=b[ip];  /*        } */
     b[ip]=b[i];  /*        printf("\n ");printf("%lf ",cov[2]); */
     if (ii)         /*
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     else if (sum) ii=i;        goto end;*/
     b[i]=sum;      return ps;
   }  }
   for (i=n;i>=1;i--) {  
     sum=b[i];  /**************** Product of 2 matrices ******************/
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   }  {
 }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 /************ Frequencies ********************/    /* in, b, out are matrice of pointers which should have been initialized 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)       before: only the contents of out is modified. The function returns
 {  /* Some frequencies */       a pointer to pointers identical to out */
      long i, j, k;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    for(i=nrl; i<= nrh; i++)
   int first;      for(k=ncolol; k<=ncoloh; k++)
   double ***freq; /* Frequencies */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   double *pp;          out[i][k] +=in[i][j]*b[j][k];
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;    return out;
   char fileresp[FILENAMELENGTH];  }
    
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /************* Higher Matrix Product ***************/
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   if((ficresp=fopen(fileresp,"w"))==NULL) {  {
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /* Computes the transition matrix starting at age 'age' over 
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);       'nhstepm*hstepm*stepm' months (i.e. until
     exit(0);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   }       nhstepm*hstepm matrices. 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   j1=0;       (typically every 2 years instead of every month which is too big 
         for the memory).
   j=cptcoveff;       Model is determined by parameters x and covariates have to be 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       included manually here. 
   
   first=1;       */
   
   for(k1=1; k1<=j;k1++){    int i, j, d, h, k;
     for(i1=1; i1<=ncodemax[k1];i1++){    double **out, cov[NCOVMAX];
       j1++;    double **newm;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/    /* Hstepm could be zero and should return the unit matrix */
       for (i=-1; i<=nlstate+ndeath; i++)      for (i=1;i<=nlstate+ndeath;i++)
         for (jk=-1; jk<=nlstate+ndeath; jk++)        for (j=1;j<=nlstate+ndeath;j++){
           for(m=agemin; m <= agemax+3; m++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
             freq[i][jk][m]=0;        po[i][j][0]=(i==j ? 1.0 : 0.0);
            }
       dateintsum=0;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       k2cpt=0;    for(h=1; h <=nhstepm; h++){
       for (i=1; i<=imx; i++) {      for(d=1; d <=hstepm; d++){
         bool=1;        newm=savm;
         if  (cptcovn>0) {        /* Covariates have to be included here again */
           for (z1=1; z1<=cptcoveff; z1++)        cov[1]=1.;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
               bool=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         }        for (k=1; k<=cptcovage;k++)
         if (bool==1) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for(m=firstpass; m<=lastpass; m++){        for (k=1; k<=cptcovprod;k++)
             k2=anint[m][i]+(mint[m][i]/12.);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
               if (m<lastpass) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
               }        savm=oldm;
                      oldm=newm;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      }
                 dateintsum=dateintsum+k2;      for(i=1; i<=nlstate+ndeath; i++)
                 k2cpt++;        for(j=1;j<=nlstate+ndeath;j++) {
               }          po[i][j][h]=newm[i][j];
             }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           }           */
         }        }
       }    } /* end h */
            return po;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  }
   
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");  /*************** log-likelihood *************/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  double func( double *x)
         fprintf(ficresp, "**********\n#");  {
       }    int i, ii, j, k, mi, d, kk;
       for(i=1; i<=nlstate;i++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double **out;
       fprintf(ficresp, "\n");    double sw; /* Sum of weights */
          double lli; /* Individual log likelihood */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    int s1, s2;
         if(i==(int)agemax+3){    double bbh, survp;
           fprintf(ficlog,"Total");    long ipmx;
         }else{    /*extern weight */
           if(first==1){    /* We are differentiating ll according to initial status */
             first=0;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             printf("See log file for details...\n");    /*for(i=1;i<imx;i++) 
           }      printf(" %d\n",s[4][i]);
           fprintf(ficlog,"Age %d", i);    */
         }    cov[1]=1.;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
             pp[jk] += freq[jk][m][i];  
         }    if(mle==1){
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pos += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
           if(pp[jk]>=1.e-10){          for (ii=1;ii<=nlstate+ndeath;ii++)
             if(first==1){            for (j=1;j<=nlstate+ndeath;j++){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            }
           }else{          for(d=0; d<dh[mi][i]; d++){
             if(first==1)            newm=savm;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            savm=oldm;
             pp[jk] += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
         
         for(jk=1,pos=0; jk <=nlstate ; jk++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           pos += pp[jk];          /* But now since version 0.9 we anticipate for bias at large stepm.
         for(jk=1; jk <=nlstate ; jk++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           if(pos>=1.e-5){           * (in months) between two waves is not a multiple of stepm, we rounded to 
             if(first==1)           * the nearest (and in case of equal distance, to the lowest) interval but now
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           }else{           * probability in order to take into account the bias as a fraction of the way
             if(first==1)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);           * -stepm/2 to stepm/2 .
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);           * For stepm=1 the results are the same as for previous versions of Imach.
           }           * For stepm > 1 the results are less biased than in previous versions. 
           if( i <= (int) agemax){           */
             if(pos>=1.e-5){          s1=s[mw[mi][i]][i];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          s2=s[mw[mi+1][i]][i];
               probs[i][jk][j1]= pp[jk]/pos;          bbh=(double)bh[mi][i]/(double)stepm; 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          /* bias bh is positive if real duration
             }           * is higher than the multiple of stepm and negative otherwise.
             else           */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           }          if( s2 > nlstate){ 
         }            /* i.e. if s2 is a death state and if the date of death is known 
                       then the contribution to the likelihood is the probability to 
         for(jk=-1; jk <=nlstate+ndeath; jk++)               die between last step unit time and current  step unit time, 
           for(m=-1; m <=nlstate+ndeath; m++)               which is also equal to probability to die before dh 
             if(freq[jk][m][i] !=0 ) {               minus probability to die before dh-stepm . 
             if(first==1)               In version up to 0.92 likelihood was computed
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          as if date of death was unknown. Death was treated as any other
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          health state: the date of the interview describes the actual state
             }          and not the date of a change in health state. The former idea was
         if(i <= (int) agemax)          to consider that at each interview the state was recorded
           fprintf(ficresp,"\n");          (healthy, disable or death) and IMaCh was corrected; but when we
         if(first==1)          introduced the exact date of death then we should have modified
           printf("Others in log...\n");          the contribution of an exact death to the likelihood. This new
         fprintf(ficlog,"\n");          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
   }          interview up to one month before death multiplied by the
   dateintmean=dateintsum/k2cpt;          probability to die within a month. Thanks to Chris
            Jackson for correcting this bug.  Former versions increased
   fclose(ficresp);          mortality artificially. The bad side is that we add another loop
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          which slows down the processing. The difference can be up to 10%
   free_vector(pp,1,nlstate);          lower mortality.
              */
   /* End of Freq */            lli=log(out[s1][s2] - savm[s1][s2]);
 }  
   
 /************ Prevalence ********************/          } else if  (s2==-2) {
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            for (j=1,survp=0. ; j<=nlstate; j++) 
 {  /* Some frequencies */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              /*survp += out[s1][j]; */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            lli= log(survp);
   double ***freq; /* Frequencies */          }
   double *pp;          
   double pos, k2;          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
   pp=vector(1,nlstate);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            lli= log(survp); 
            } 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;          else if  (s2==-5) { 
              for (j=1,survp=0. ; j<=2; j++)  
   j=cptcoveff;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            lli= log(survp); 
            } 
   for(k1=1; k1<=j;k1++){          
     for(i1=1; i1<=ncodemax[k1];i1++){          else{
       j1++;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                  /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       for (i=-1; i<=nlstate+ndeath; i++)            } 
         for (jk=-1; jk<=nlstate+ndeath; jk++)            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for(m=agemin; m <= agemax+3; m++)          /*if(lli ==000.0)*/
             freq[i][jk][m]=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                ipmx +=1;
       for (i=1; i<=imx; i++) {          sw += weight[i];
         bool=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if  (cptcovn>0) {        } /* end of wave */
           for (z1=1; z1<=cptcoveff; z1++)      } /* end of individual */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    }  else if(mle==2){
               bool=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if (bool==1) {        for(mi=1; mi<= wav[i]-1; mi++){
           for(m=firstpass; m<=lastpass; m++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             k2=anint[m][i]+(mint[m][i]/12.);            for (j=1;j<=nlstate+ndeath;j++){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==0) agev[m][i]=agemax+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               if(agev[m][i]==1) agev[m][i]=agemax+2;            }
               if (m<lastpass) {          for(d=0; d<=dh[mi][i]; d++){
                 if (calagedate>0)            newm=savm;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 else            for (kk=1; kk<=cptcovage;kk++) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            }
               }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
       }          } /* end mult */
       for(i=(int)agemin; i <= (int)agemax+3; i++){        
         for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          s2=s[mw[mi+1][i]][i];
             pp[jk] += freq[jk][m][i];          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for(jk=1; jk <=nlstate ; jk++){          ipmx +=1;
           for(m=-1, pos=0; m <=0 ; m++)          sw += weight[i];
             pos += freq[jk][m][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
              } /* end of individual */
         for(jk=1; jk <=nlstate ; jk++){    }  else if(mle==3){  /* exponential inter-extrapolation */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             pp[jk] += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            for (j=1;j<=nlstate+ndeath;j++){
                      oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
           if( i <= (int) agemax){            }
             if(pos>=1.e-5){          for(d=0; d<dh[mi][i]; d++){
               probs[i][jk][j1]= pp[jk]/pos;            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }/* end jk */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }/* end i */            }
     } /* end i1 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   } /* end k1 */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
              oldm=newm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          } /* end mult */
   free_vector(pp,1,nlstate);        
            s1=s[mw[mi][i]][i];
 }  /* End of Freq */          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 /************* Waves Concatenation ***************/          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        } /* end of wave */
      Death is a valid wave (if date is known).      } /* end of individual */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    }else if (mle==4){  /* ml=4 no inter-extrapolation */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      and mw[mi+1][i]. dh depends on stepm.        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, mi, m;            for (j=1;j<=nlstate+ndeath;j++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      double sum=0., jmean=0.;*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int first;            }
   int j, k=0,jk, ju, jl;          for(d=0; d<dh[mi][i]; d++){
   double sum=0.;            newm=savm;
   first=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   jmin=1e+5;            for (kk=1; kk<=cptcovage;kk++) {
   jmax=-1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   jmean=0.;            }
   for(i=1; i<=imx; i++){          
     mi=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     m=firstpass;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     while(s[m][i] <= nlstate){            savm=oldm;
       if(s[m][i]>=1)            oldm=newm;
         mw[++mi][i]=m;          } /* end mult */
       if(m >=lastpass)        
         break;          s1=s[mw[mi][i]][i];
       else          s2=s[mw[mi+1][i]][i];
         m++;          if( s2 > nlstate){ 
     }/* end while */            lli=log(out[s1][s2] - savm[s1][s2]);
     if (s[m][i] > nlstate){          }else{
       mi++;     /* Death is another wave */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       /* if(mi==0)  never been interviewed correctly before death */          }
          /* Only death is a correct wave */          ipmx +=1;
       mw[mi][i]=m;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     wav[i]=mi;        } /* end of wave */
     if(mi==0){      } /* end of individual */
       if(first==0){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         first=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
       if(first==1){          for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     } /* end mi==0 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<dh[mi][i]; d++){
   for(i=1; i<=imx; i++){            newm=savm;
     for(mi=1; mi<wav[i];mi++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (stepm <=0)            for (kk=1; kk<=cptcovage;kk++) {
         dh[mi][i]=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       else{            }
         if (s[mw[mi+1][i]][i] > nlstate) {          
           if (agedc[i] < 2*AGESUP) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if(j==0) j=1;  /* Survives at least one month after exam */            savm=oldm;
           k=k+1;            oldm=newm;
           if (j >= jmax) jmax=j;          } /* end mult */
           if (j <= jmin) jmin=j;        
           sum=sum+j;          s1=s[mw[mi][i]][i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          s2=s[mw[mi+1][i]][i];
           }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         }          ipmx +=1;
         else{          sw += weight[i];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           k=k+1;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           if (j >= jmax) jmax=j;        } /* end of wave */
           else if (j <= jmin)jmin=j;      } /* end of individual */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    } /* End of if */
           sum=sum+j;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         jk= j/stepm;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         jl= j -jk*stepm;    return -l;
         ju= j -(jk+1)*stepm;  }
         if(jl <= -ju)  
           dh[mi][i]=jk;  /*************** log-likelihood *************/
         else  double funcone( double *x)
           dh[mi][i]=jk+1;  {
         if(dh[mi][i]==0)    /* Same as likeli but slower because of a lot of printf and if */
           dh[mi][i]=1; /* At least one step */    int i, ii, j, k, mi, d, kk;
       }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
   }    double lli; /* Individual log likelihood */
   jmean=sum/k;    double llt;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    int s1, s2;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    double bbh, survp;
  }    /*extern weight */
     /* We are differentiating ll according to initial status */
 /*********** Tricode ****************************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 void tricode(int *Tvar, int **nbcode, int imx)    /*for(i=1;i<imx;i++) 
 {      printf(" %d\n",s[4][i]);
   int Ndum[20],ij=1, k, j, i;    */
   int cptcode=0;    cov[1]=1.;
   cptcoveff=0;  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1; i<=imx; i++) {        for (ii=1;ii<=nlstate+ndeath;ii++)
       ij=(int)(covar[Tvar[j]][i]);          for (j=1;j<=nlstate+ndeath;j++){
       Ndum[ij]++;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (ij > cptcode) cptcode=ij;          }
     }        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
     for (i=0; i<=cptcode; i++) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(Ndum[i]!=0) ncodemax[j]++;          for (kk=1; kk<=cptcovage;kk++) {
     }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     ij=1;          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1; i<=ncodemax[j]; i++) {          savm=oldm;
       for (k=0; k<=19; k++) {          oldm=newm;
         if (Ndum[k] != 0) {        } /* end mult */
           nbcode[Tvar[j]][ij]=k;        
                  s1=s[mw[mi][i]][i];
           ij++;        s2=s[mw[mi+1][i]][i];
         }        bbh=(double)bh[mi][i]/(double)stepm; 
         if (ij > ncodemax[j]) break;        /* bias is positive if real duration
       }           * is higher than the multiple of stepm and negative otherwise.
     }         */
   }          if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
  for (k=0; k<19; k++) Ndum[k]=0;        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
  for (i=1; i<=ncovmodel-2; i++) {            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    ij=Tvar[i];          lli= log(survp);
    Ndum[ij]++;        }else if (mle==1){
  }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
  ij=1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  for (i=1; i<=10; i++) {        } else if(mle==3){  /* exponential inter-extrapolation */
    if((Ndum[i]!=0) && (i<=ncovcol)){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      Tvaraff[ij]=i;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
      ij++;          lli=log(out[s1][s2]); /* Original formula */
    }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
  }          lli=log(out[s1][s2]); /* Original formula */
          } /* End of if */
  cptcoveff=ij-1;        ipmx +=1;
 }        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*********** Health Expectancies ****************/  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
 {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   /* Health expectancies */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double age, agelim, hf;            llt +=ll[k]*gipmx/gsw;
   double ***p3mat,***varhe;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   double **dnewm,**doldm;          }
   double *xp;          fprintf(ficresilk," %10.6f\n", -llt);
   double **gp, **gm;        }
   double ***gradg, ***trgradg;      } /* end of wave */
   int theta;    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   xp=vector(1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   dnewm=matrix(1,nlstate*2,1,npar);    if(globpr==0){ /* First time we count the contributions and weights */
   doldm=matrix(1,nlstate*2,1,nlstate*2);      gipmx=ipmx;
        gsw=sw;
   fprintf(ficreseij,"# Health expectancies\n");    }
   fprintf(ficreseij,"# Age");    return -l;
   for(i=1; i<=nlstate;i++)  }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   if(estepm < stepm){  {
     printf ("Problem %d lower than %d\n",estepm, stepm);    /* This routine should help understanding what is done with 
   }       the selection of individuals/waves and
   else  hstepm=estepm;         to check the exact contribution to the likelihood.
   /* We compute the life expectancy from trapezoids spaced every estepm months       Plotting could be done.
    * This is mainly to measure the difference between two models: for example     */
    * if stepm=24 months pijx are given only every 2 years and by summing them    int k;
    * we are calculating an estimate of the Life Expectancy assuming a linear  
    * progression inbetween and thus overestimating or underestimating according    if(*globpri !=0){ /* Just counts and sums, no printings */
    * to the curvature of the survival function. If, for the same date, we      strcpy(fileresilk,"ilk"); 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      strcat(fileresilk,fileres);
    * to compare the new estimate of Life expectancy with the same linear      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
    * hypothesis. A more precise result, taking into account a more precise        printf("Problem with resultfile: %s\n", fileresilk);
    * curvature will be obtained if estepm is as small as stepm. */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
   /* For example we decided to compute the life expectancy with the smallest unit */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      nhstepm is the number of hstepm from age to agelim      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      nstepm is the number of stepm from age to agelin.      for(k=1; k<=nlstate; k++) 
      Look at hpijx to understand the reason of that which relies in memory size        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
      and note for a fixed period like estepm months */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    }
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if    *fretone=(*funcone)(p);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    if(*globpri !=0){
      results. So we changed our mind and took the option of the best precision.      fclose(ficresilk);
   */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      fflush(fichtm); 
     } 
   agelim=AGESUP;    return;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     /* nhstepm age range expressed in number of stepm */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  /*********** Maximum Likelihood Estimation ***************/
     /* if (stepm >= YEARM) hstepm=1;*/  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    int i,j, iter;
     gp=matrix(0,nhstepm,1,nlstate*2);    double **xi;
     gm=matrix(0,nhstepm,1,nlstate*2);    double fret;
     double fretone; /* Only one call to likelihood */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /*  char filerespow[FILENAMELENGTH];*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    xi=matrix(1,npar,1,npar);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
     /* Computing Variances of health expectancies */    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
      for(theta=1; theta <=npar; theta++){      printf("Problem with resultfile: %s\n", filerespow);
       for(i=1; i<=npar; i++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    }
       }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
       cptj=0;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       for(j=1; j<= nlstate; j++){    fprintf(ficrespow,"\n");
         for(i=1; i<=nlstate; i++){  
           cptj=cptj+1;    powell(p,xi,npar,ftol,&iter,&fret,func);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    free_matrix(xi,1,npar,1,npar);
           }    fclose(ficrespow);
         }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
          fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
        
       for(i=1; i<=npar; i++)  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /**** Computes Hessian and covariance matrix ***/
        void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       cptj=0;  {
       for(j=1; j<= nlstate; j++){    double  **a,**y,*x,pd;
         for(i=1;i<=nlstate;i++){    double **hess;
           cptj=cptj+1;    int i, j,jk;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    int *indx;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       }    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(j=1; j<= nlstate*2; j++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
         for(h=0; h<=nhstepm-1; h++){    double gompertz(double p[]);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    hess=matrix(1,npar,1,npar);
         }  
      }    printf("\nCalculation of the hessian matrix. Wait...\n");
        fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 /* End theta */    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
      
      for(h=0; h<=nhstepm-1; h++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       for(j=1; j<=nlstate*2;j++)      
         for(theta=1; theta <=npar; theta++)      /*  printf(" %f ",p[i]);
           trgradg[h][j][theta]=gradg[h][theta][j];          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
          }
     
      for(i=1;i<=nlstate*2;i++)    for (i=1;i<=npar;i++) {
       for(j=1;j<=nlstate*2;j++)      for (j=1;j<=npar;j++)  {
         varhe[i][j][(int)age] =0.;        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
      printf("%d|",(int)age);fflush(stdout);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          hess[i][j]=hessij(p,delti,i,j,func,npar);
      for(h=0;h<=nhstepm-1;h++){          
       for(k=0;k<=nhstepm-1;k++){          hess[j][i]=hess[i][j];    
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          /*printf(" %lf ",hess[i][j]);*/
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        }
         for(i=1;i<=nlstate*2;i++)      }
           for(j=1;j<=nlstate*2;j++)    }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    printf("\n");
       }    fprintf(ficlog,"\n");
     }  
     /* Computing expectancies */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(j=1; j<=nlstate;j++)    
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    a=matrix(1,npar,1,npar);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    y=matrix(1,npar,1,npar);
              x=vector(1,npar);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;    for (j=1;j<=npar;j++) {
     for(i=1; i<=nlstate;i++)      for (i=1;i<=npar;i++) x[i]=0;
       for(j=1; j<=nlstate;j++){      x[j]=1;
         cptj++;      lubksb(a,npar,indx,x);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      for (i=1;i<=npar;i++){ 
       }        matcov[i][j]=x[i];
     fprintf(ficreseij,"\n");      }
        }
     free_matrix(gm,0,nhstepm,1,nlstate*2);  
     free_matrix(gp,0,nhstepm,1,nlstate*2);    printf("\n#Hessian matrix#\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    fprintf(ficlog,"\n#Hessian matrix#\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    for (i=1;i<=npar;i++) { 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=npar;j++) { 
   }        printf("%.3e ",hess[i][j]);
   printf("\n");        fprintf(ficlog,"%.3e ",hess[i][j]);
   fprintf(ficlog,"\n");      }
       printf("\n");
   free_vector(xp,1,npar);      fprintf(ficlog,"\n");
   free_matrix(dnewm,1,nlstate*2,1,npar);    }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    /* Recompute Inverse */
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 /************ Variance ******************/    ludcmp(a,npar,indx,&pd);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)  
 {    /*  printf("\n#Hessian matrix recomputed#\n");
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (j=1;j<=npar;j++) {
   /* double **newm;*/      for (i=1;i<=npar;i++) x[i]=0;
   double **dnewm,**doldm;      x[j]=1;
   double **dnewmp,**doldmp;      lubksb(a,npar,indx,x);
   int i, j, nhstepm, hstepm, h, nstepm ;      for (i=1;i<=npar;i++){ 
   int k, cptcode;        y[i][j]=x[i];
   double *xp;        printf("%.3e ",y[i][j]);
   double **gp, **gm;  /* for var eij */        fprintf(ficlog,"%.3e ",y[i][j]);
   double ***gradg, ***trgradg; /*for var eij */      }
   double **gradgp, **trgradgp; /* for var p point j */      printf("\n");
   double *gpp, *gmp; /* for var p point j */      fprintf(ficlog,"\n");
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    }
   double ***p3mat;    */
   double age,agelim, hf;  
   int theta;    free_matrix(a,1,npar,1,npar);
   char digit[4];    free_matrix(y,1,npar,1,npar);
   char digitp[16];    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
   char fileresprobmorprev[FILENAMELENGTH];    free_matrix(hess,1,npar,1,npar);
   
   if(popbased==1)  
     strcpy(digitp,"-populbased-");  }
   else  
     strcpy(digitp,"-stablbased-");  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   strcpy(fileresprobmorprev,"prmorprev");  {
   sprintf(digit,"%-d",ij);    int i;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    int l=1, lmax=20;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    double k1,k2;
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    double p2[NPARMAX+1];
   strcat(fileresprobmorprev,fileres);    double res;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    double fx;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    int k=0,kmax=10;
   }    double l1;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    fx=func(x);
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    for (i=1;i<=npar;i++) p2[i]=x[i];
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    for(l=0 ; l <=lmax; l++){
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      l1=pow(10,l);
     fprintf(ficresprobmorprev," p.%-d SE",j);      delts=delt;
     for(i=1; i<=nlstate;i++)      for(k=1 ; k <kmax; k=k+1){
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);        delt = delta*(l1*k);
   }          p2[theta]=x[theta] +delt;
   fprintf(ficresprobmorprev,"\n");        k1=func(p2)-fx;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        p2[theta]=x[theta]-delt;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        k2=func(p2)-fx;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     exit(0);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   }        
   else{  #ifdef DEBUG
     fprintf(ficgp,"\n# Routine varevsij");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  #endif
     printf("Problem with html file: %s\n", optionfilehtm);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     exit(0);          k=kmax;
   }        }
   else{        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          k=kmax; l=lmax*10.;
   }        }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        }
   fprintf(ficresvij,"# Age");      }
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)    delti[theta]=delts;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    return res; 
   fprintf(ficresvij,"\n");    
   }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   doldm=matrix(1,nlstate,1,nlstate);  {
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    int i;
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    double p2[NPARMAX+1];
   gpp=vector(nlstate+1,nlstate+ndeath);    int k;
   gmp=vector(nlstate+1,nlstate+ndeath);  
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    fx=func(x);
      for (k=1; k<=2; k++) {
   if(estepm < stepm){      for (i=1;i<=npar;i++) p2[i]=x[i];
     printf ("Problem %d lower than %d\n",estepm, stepm);      p2[thetai]=x[thetai]+delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   else  hstepm=estepm;        k1=func(p2)-fx;
   /* For example we decided to compute the life expectancy with the smallest unit */    
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      p2[thetai]=x[thetai]+delti[thetai]/k;
      nhstepm is the number of hstepm from age to agelim      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      nstepm is the number of stepm from age to agelin.      k2=func(p2)-fx;
      Look at hpijx to understand the reason of that which relies in memory size    
      and note for a fixed period like k years */      p2[thetai]=x[thetai]-delti[thetai]/k;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      survival function given by stepm (the optimization length). Unfortunately it      k3=func(p2)-fx;
      means that if the survival funtion is printed only each two years of age and if    
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      p2[thetai]=x[thetai]-delti[thetai]/k;
      results. So we changed our mind and took the option of the best precision.      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   */      k4=func(p2)-fx;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   agelim = AGESUP;  #ifdef DEBUG
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  #endif
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    return res;
     gp=matrix(0,nhstepm,1,nlstate);  }
     gm=matrix(0,nhstepm,1,nlstate);  
   /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
     for(theta=1; theta <=npar; theta++){  { 
       for(i=1; i<=npar; i++){ /* Computes gradient */    int i,imax,j,k; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double big,dum,sum,temp; 
       }    double *vv; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    vv=vector(1,n); 
     *d=1.0; 
       if (popbased==1) {    for (i=1;i<=n;i++) { 
         for(i=1; i<=nlstate;i++)      big=0.0; 
           prlim[i][i]=probs[(int)age][i][ij];      for (j=1;j<=n;j++) 
       }        if ((temp=fabs(a[i][j])) > big) big=temp; 
        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(j=1; j<= nlstate; j++){      vv[i]=1.0/big; 
         for(h=0; h<=nhstepm; h++){    } 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    for (j=1;j<=n;j++) { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      for (i=1;i<j;i++) { 
         }        sum=a[i][j]; 
       }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       /* This for computing forces of mortality (h=1)as a weighted average */        a[i][j]=sum; 
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){      } 
         for(i=1; i<= nlstate; i++)      big=0.0; 
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      for (i=j;i<=n;i++) { 
       }            sum=a[i][j]; 
       /* end force of mortality */        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
       for(i=1; i<=npar; i++) /* Computes gradient */        a[i][j]=sum; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            big=dum; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          imax=i; 
          } 
       if (popbased==1) {      } 
         for(i=1; i<=nlstate;i++)      if (j != imax) { 
           prlim[i][i]=probs[(int)age][i][ij];        for (k=1;k<=n;k++) { 
       }          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
       for(j=1; j<= nlstate; j++){          a[j][k]=dum; 
         for(h=0; h<=nhstepm; h++){        } 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        *d = -(*d); 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        vv[imax]=vv[j]; 
         }      } 
       }      indx[j]=imax; 
       /* This for computing force of mortality (h=1)as a weighted average */      if (a[j][j] == 0.0) a[j][j]=TINY; 
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      if (j != n) { 
         for(i=1; i<= nlstate; i++)        dum=1.0/(a[j][j]); 
           gmp[j] += prlim[i][i]*p3mat[i][j][1];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       }          } 
       /* end force of mortality */    } 
     free_vector(vv,1,n);  /* Doesn't work */
       for(j=1; j<= nlstate; j++) /* vareij */  ;
         for(h=0; h<=nhstepm; h++){  } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  void lubksb(double **a, int n, int *indx, double b[]) 
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  { 
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    int i,ii=0,ip,j; 
       }    double sum; 
    
     } /* End theta */    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      sum=b[ip]; 
       b[ip]=b[i]; 
     for(h=0; h<=nhstepm; h++) /* veij */      if (ii) 
       for(j=1; j<=nlstate;j++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         for(theta=1; theta <=npar; theta++)      else if (sum) ii=i; 
           trgradg[h][j][theta]=gradg[h][theta][j];      b[i]=sum; 
     } 
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    for (i=n;i>=1;i--) { 
       for(theta=1; theta <=npar; theta++)      sum=b[i]; 
         trgradgp[j][theta]=gradgp[theta][j];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    } 
     for(i=1;i<=nlstate;i++)  } 
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;  void pstamp(FILE *fichier)
   {
     for(h=0;h<=nhstepm;h++){    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       for(k=0;k<=nhstepm;k++){  }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  /************ Frequencies ********************/
         for(i=1;i<=nlstate;i++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           for(j=1;j<=nlstate;j++)  {  /* Some frequencies */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    
       }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     }    int first;
     double ***freq; /* Frequencies */
     /* pptj */    double *pp, **prop;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    char fileresp[FILENAMELENGTH];
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    pp=vector(1,nlstate);
         varppt[j][i]=doldmp[j][i];    prop=matrix(1,nlstate,iagemin,iagemax+3);
     /* end ppptj */    strcpy(fileresp,"p");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      strcat(fileresp,fileres);
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    if((ficresp=fopen(fileresp,"w"))==NULL) {
        printf("Problem with prevalence resultfile: %s\n", fileresp);
     if (popbased==1) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       for(i=1; i<=nlstate;i++)      exit(0);
         prlim[i][i]=probs[(int)age][i][ij];    }
     }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
        j1=0;
     /* This for computing force of mortality (h=1)as a weighted average */    
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    j=cptcoveff;
       for(i=1; i<= nlstate; i++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  
     }        first=1;
     /* end force of mortality */  
     for(k1=1; k1<=j;k1++){
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      for(i1=1; i1<=ncodemax[k1];i1++){
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        j1++;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for(i=1; i<=nlstate;i++){          scanf("%d", i);*/
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        for (i=-5; i<=nlstate+ndeath; i++)  
       }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     }            for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficresprobmorprev,"\n");              freq[i][jk][m]=0;
   
     fprintf(ficresvij,"%.0f ",age );      for (i=1; i<=nlstate; i++)  
     for(i=1; i<=nlstate;i++)        for(m=iagemin; m <= iagemax+3; m++)
       for(j=1; j<=nlstate;j++){          prop[i][m]=0;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        
       }        dateintsum=0;
     fprintf(ficresvij,"\n");        k2cpt=0;
     free_matrix(gp,0,nhstepm,1,nlstate);        for (i=1; i<=imx; i++) {
     free_matrix(gm,0,nhstepm,1,nlstate);          bool=1;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          if  (cptcovn>0) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            for (z1=1; z1<=cptcoveff; z1++) 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   } /* End age */                bool=0;
   free_vector(gpp,nlstate+1,nlstate+ndeath);          }
   free_vector(gmp,nlstate+1,nlstate+ndeath);          if (bool==1){
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);            for(m=firstpass; m<=lastpass; m++){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/              k2=anint[m][i]+(mint[m][i]/12.);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);                if (m<lastpass) {
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);                }
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   free_vector(xp,1,npar);                  dateintsum=dateintsum+k2;
   free_matrix(doldm,1,nlstate,1,nlstate);                  k2cpt++;
   free_matrix(dnewm,1,nlstate,1,npar);                }
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                /*}*/
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);            }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          }
   fclose(ficresprobmorprev);        }
   fclose(ficgp);         
   fclose(fichtm);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
 }        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
 /************ Variance of prevlim ******************/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          fprintf(ficresp, "**********\n#");
 {        }
   /* Variance of prevalence limit */        for(i=1; i<=nlstate;i++) 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   double **newm;        fprintf(ficresp, "\n");
   double **dnewm,**doldm;        
   int i, j, nhstepm, hstepm;        for(i=iagemin; i <= iagemax+3; i++){
   int k, cptcode;          if(i==iagemax+3){
   double *xp;            fprintf(ficlog,"Total");
   double *gp, *gm;          }else{
   double **gradg, **trgradg;            if(first==1){
   double age,agelim;              first=0;
   int theta;              printf("See log file for details...\n");
                }
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");            fprintf(ficlog,"Age %d", i);
   fprintf(ficresvpl,"# Age");          }
   for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficresvpl," %1d-%1d",i,i);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   fprintf(ficresvpl,"\n");              pp[jk] += freq[jk][m][i]; 
           }
   xp=vector(1,npar);          for(jk=1; jk <=nlstate ; jk++){
   dnewm=matrix(1,nlstate,1,npar);            for(m=-1, pos=0; m <=0 ; m++)
   doldm=matrix(1,nlstate,1,nlstate);              pos += freq[jk][m][i];
              if(pp[jk]>=1.e-10){
   hstepm=1*YEARM; /* Every year of age */              if(first==1){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   agelim = AGESUP;              }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            }else{
     if (stepm >= YEARM) hstepm=1;              if(first==1)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     gradg=matrix(1,npar,1,nlstate);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     gp=vector(1,nlstate);            }
     gm=vector(1,nlstate);          }
   
     for(theta=1; theta <=npar; theta++){          for(jk=1; jk <=nlstate ; jk++){
       for(i=1; i<=npar; i++){ /* Computes gradient */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              pp[jk] += freq[jk][m][i];
       }          }       
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       for(i=1;i<=nlstate;i++)            pos += pp[jk];
         gp[i] = prlim[i][i];            posprop += prop[jk][i];
              }
       for(i=1; i<=npar; i++) /* Computes gradient */          for(jk=1; jk <=nlstate ; jk++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            if(pos>=1.e-5){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              if(first==1)
       for(i=1;i<=nlstate;i++)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         gm[i] = prlim[i][i];              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
       for(i=1;i<=nlstate;i++)              if(first==1)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     } /* End theta */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
     trgradg =matrix(1,nlstate,1,npar);            if( i <= iagemax){
               if(pos>=1.e-5){
     for(j=1; j<=nlstate;j++)                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(theta=1; theta <=npar; theta++)                /*probs[i][jk][j1]= pp[jk]/pos;*/
         trgradg[j][theta]=gradg[theta][j];                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
     for(i=1;i<=nlstate;i++)              else
       varpl[i][(int)age] =0.;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          }
     for(i=1;i<=nlstate;i++)          
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
     fprintf(ficresvpl,"%.0f ",age );              if(freq[jk][m][i] !=0 ) {
     for(i=1; i<=nlstate;i++)              if(first==1)
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     fprintf(ficresvpl,"\n");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     free_vector(gp,1,nlstate);              }
     free_vector(gm,1,nlstate);          if(i <= iagemax)
     free_matrix(gradg,1,npar,1,nlstate);            fprintf(ficresp,"\n");
     free_matrix(trgradg,1,nlstate,1,npar);          if(first==1)
   } /* End age */            printf("Others in log...\n");
           fprintf(ficlog,"\n");
   free_vector(xp,1,npar);        }
   free_matrix(doldm,1,nlstate,1,npar);      }
   free_matrix(dnewm,1,nlstate,1,nlstate);    }
     dateintmean=dateintsum/k2cpt; 
 }   
     fclose(ficresp);
 /************ Variance of one-step probabilities  ******************/    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    free_vector(pp,1,nlstate);
 {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   int i, j=0,  i1, k1, l1, t, tj;    /* End of Freq */
   int k2, l2, j1,  z1;  }
   int k=0,l, cptcode;  
   int first=1, first1;  /************ Prevalence ********************/
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   double **dnewm,**doldm;  {  
   double *xp;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   double *gp, *gm;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   double **gradg, **trgradg;       We still use firstpass and lastpass as another selection.
   double **mu;    */
   double age,agelim, cov[NCOVMAX];   
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   int theta;    double ***freq; /* Frequencies */
   char fileresprob[FILENAMELENGTH];    double *pp, **prop;
   char fileresprobcov[FILENAMELENGTH];    double pos,posprop; 
   char fileresprobcor[FILENAMELENGTH];    double  y2; /* in fractional years */
     int iagemin, iagemax;
   double ***varpij;  
     iagemin= (int) agemin;
   strcpy(fileresprob,"prob");    iagemax= (int) agemax;
   strcat(fileresprob,fileres);    /*pp=vector(1,nlstate);*/
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     printf("Problem with resultfile: %s\n", fileresprob);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    j1=0;
   }    
   strcpy(fileresprobcov,"probcov");    j=cptcoveff;
   strcat(fileresprobcov,fileres);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    
     printf("Problem with resultfile: %s\n", fileresprobcov);    for(k1=1; k1<=j;k1++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;
   strcpy(fileresprobcor,"probcor");        
   strcat(fileresprobcor,fileres);        for (i=1; i<=nlstate; i++)  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          for(m=iagemin; m <= iagemax+3; m++)
     printf("Problem with resultfile: %s\n", fileresprobcor);            prop[i][m]=0.0;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);       
   }        for (i=1; i<=imx; i++) { /* Each individual */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          bool=1;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          if  (cptcovn>0) {
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            for (z1=1; z1<=cptcoveff; z1++) 
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                bool=0;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          } 
            if (bool==1) { 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   fprintf(ficresprob,"# Age");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   fprintf(ficresprobcov,"# Age");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficresprobcov,"# Age");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   for(i=1; i<=nlstate;i++)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(j=1; j<=(nlstate+ndeath);j++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);                } 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);              }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);            } /* end selection of waves */
     }            }
   fprintf(ficresprob,"\n");        }
   fprintf(ficresprobcov,"\n");        for(i=iagemin; i <= iagemax+3; i++){  
   fprintf(ficresprobcor,"\n");          
   xp=vector(1,npar);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            posprop += prop[jk][i]; 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          } 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          for(jk=1; jk <=nlstate ; jk++){     
   first=1;            if( i <=  iagemax){ 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              if(posprop>=1.e-5){ 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);                probs[i][jk][j1]= prop[jk][i]/posprop;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);              } 
     exit(0);            } 
   }          }/* end jk */ 
   else{        }/* end i */ 
     fprintf(ficgp,"\n# Routine varprob");      } /* end i1 */
   }    } /* end k1 */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    
     printf("Problem with html file: %s\n", optionfilehtm);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    /*free_vector(pp,1,nlstate);*/
     exit(0);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  }  /* End of prevalence */
   else{  
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");  /************* Waves Concatenation ***************/
     fprintf(fichtm,"\n");  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");  {
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
         */
   cov[1]=1;  
   tj=cptcoveff;    int i, mi, m;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   j1=0;       double sum=0., jmean=0.;*/
   for(t=1; t<=tj;t++){    int first;
     for(i1=1; i1<=ncodemax[t];i1++){    int j, k=0,jk, ju, jl;
       j1++;    double sum=0.;
          first=0;
       if  (cptcovn>0) {    jmin=1e+5;
         fprintf(ficresprob, "\n#********** Variable ");    jmax=-1;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    jmean=0.;
         fprintf(ficresprob, "**********\n#");    for(i=1; i<=imx; i++){
         fprintf(ficresprobcov, "\n#********** Variable ");      mi=0;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      m=firstpass;
         fprintf(ficresprobcov, "**********\n#");      while(s[m][i] <= nlstate){
                if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         fprintf(ficgp, "\n#********** Variable ");          mw[++mi][i]=m;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if(m >=lastpass)
         fprintf(ficgp, "**********\n#");          break;
                else
                  m++;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      }/* end while */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if (s[m][i] > nlstate){
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        mi++;     /* Death is another wave */
                /* if(mi==0)  never been interviewed correctly before death */
         fprintf(ficresprobcor, "\n#********** Variable ");               /* Only death is a correct wave */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        mw[mi][i]=m;
         fprintf(ficgp, "**********\n#");          }
       }  
            wav[i]=mi;
       for (age=bage; age<=fage; age ++){      if(mi==0){
         cov[2]=age;        nbwarn++;
         for (k=1; k<=cptcovn;k++) {        if(first==0){
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         }          first=1;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        }
         for (k=1; k<=cptcovprod;k++)        if(first==1){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
                }
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      } /* end mi==0 */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    } /* End individuals */
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));    for(i=1; i<=imx; i++){
          for(mi=1; mi<wav[i];mi++){
         for(theta=1; theta <=npar; theta++){        if (stepm <=0)
           for(i=1; i<=npar; i++)          dh[mi][i]=1;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        else{
                    if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            if (agedc[i] < 2*AGESUP) {
                        j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           k=0;              if(j==0) j=1;  /* Survives at least one month after exam */
           for(i=1; i<= (nlstate); i++){              else if(j<0){
             for(j=1; j<=(nlstate+ndeath);j++){                nberr++;
               k=k+1;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               gp[k]=pmmij[i][j];                j=1; /* Temporary Dangerous patch */
             }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                          fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           for(i=1; i<=npar; i++)              }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);              k=k+1;
                  if (j >= jmax){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                jmax=j;
           k=0;                ijmax=i;
           for(i=1; i<=(nlstate); i++){              }
             for(j=1; j<=(nlstate+ndeath);j++){              if (j <= jmin){
               k=k+1;                jmin=j;
               gm[k]=pmmij[i][j];                ijmin=i;
             }              }
           }              sum=sum+j;
                    /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              }
         }          }
           else{
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           for(theta=1; theta <=npar; theta++)  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
             trgradg[j][theta]=gradg[theta][j];  
                    k=k+1;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);            if (j >= jmax) {
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);              jmax=j;
                      ijmax=i;
         pmij(pmmij,cov,ncovmodel,x,nlstate);            }
                    else if (j <= jmin){
         k=0;              jmin=j;
         for(i=1; i<=(nlstate); i++){              ijmin=i;
           for(j=1; j<=(nlstate+ndeath);j++){            }
             k=k+1;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             mu[k][(int) age]=pmmij[i][j];            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           }            if(j<0){
         }              nberr++;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             varpij[i][j][(int)age] = doldm[i][j];            }
             sum=sum+j;
         /*printf("\n%d ",(int)age);          }
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          jk= j/stepm;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          jl= j -jk*stepm;
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          ju= j -(jk+1)*stepm;
      }*/          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
         fprintf(ficresprob,"\n%d ",(int)age);              dh[mi][i]=jk;
         fprintf(ficresprobcov,"\n%d ",(int)age);              bh[mi][i]=0;
         fprintf(ficresprobcor,"\n%d ",(int)age);            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              dh[mi][i]=jk+1;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));              bh[mi][i]=ju;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          }else{
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            if(jl <= -ju){
         }              dh[mi][i]=jk;
         i=0;              bh[mi][i]=jl;       /* bias is positive if real duration
         for (k=1; k<=(nlstate);k++){                                   * is higher than the multiple of stepm and negative otherwise.
           for (l=1; l<=(nlstate+ndeath);l++){                                   */
             i=i++;            }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            else{
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);              dh[mi][i]=jk+1;
             for (j=1; j<=i;j++){              bh[mi][i]=ju;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);            }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            if(dh[mi][i]==0){
             }              dh[mi][i]=1; /* At least one step */
           }              bh[mi][i]=ju; /* At least one step */
         }/* end of loop for state */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       } /* end of loop for age */            }
           } /* end if mle */
       /* Confidence intervalle of pij  */        }
       /*      } /* end wave */
       fprintf(ficgp,"\nset noparametric;unset label");    }
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    jmean=sum/k;
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);   }
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  /*********** Tricode ****************************/
       */  void tricode(int *Tvar, int **nbcode, int imx)
   {
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    
       first1=1;    int Ndum[20],ij=1, k, j, i, maxncov=19;
       for (k1=1; k1<=(nlstate);k1++){    int cptcode=0;
         for (l1=1; l1<=(nlstate+ndeath);l1++){    cptcoveff=0; 
           if(l1==k1) continue;   
           i=(k1-1)*(nlstate+ndeath)+l1;    for (k=0; k<maxncov; k++) Ndum[k]=0;
           for (k2=1; k2<=(nlstate);k2++){    for (k=1; k<=7; k++) ncodemax[k]=0;
             for (l2=1; l2<=(nlstate+ndeath);l2++){  
               if(l2==k2) continue;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
               j=(k2-1)*(nlstate+ndeath)+l2;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
               if(j<=i) continue;                                 modality*/ 
               for (age=bage; age<=fage; age ++){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                 if ((int)age %5==0){        Ndum[ij]++; /*store the modality */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;                                         Tvar[j]. If V=sex and male is 0 and 
                   mu1=mu[i][(int) age]/stepm*YEARM ;                                         female is 1, then  cptcode=1.*/
                   mu2=mu[j][(int) age]/stepm*YEARM;      }
                   /* Computing eigen value of matrix of covariance */  
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));      for (i=0; i<=cptcode; i++) {
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
                   if(first1==1){      }
                     first1=0;  
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);      ij=1; 
                   }      for (i=1; i<=ncodemax[j]; i++) {
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);        for (k=0; k<= maxncov; k++) {
                   /* Eigen vectors */          if (Ndum[k] != 0) {
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            nbcode[Tvar[j]][ij]=k; 
                   v21=sqrt(1.-v11*v11);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                   v12=-v21;            
                   v22=v11;            ij++;
                   /*printf(fignu*/          }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          if (ij > ncodemax[j]) break; 
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */        }  
                   if(first==1){      } 
                     first=0;    }  
                     fprintf(ficgp,"\nset parametric;set nolabel");  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);   for (k=0; k< maxncov; k++) Ndum[k]=0;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);   for (i=1; i<=ncovmodel-2; i++) { 
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);     ij=Tvar[i];
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);     Ndum[ij]++;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);   }
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \   ij=1;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);   for (i=1; i<= maxncov; i++) {
                     */     if((Ndum[i]!=0) && (i<=ncovcol)){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\       Tvaraff[ij]=i; /*For printing */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \       ij++;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));     }
                   }else{   }
                     first=0;   
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);   cptcoveff=ij-1; /*Number of simple covariates*/
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  }
                     /*  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  /*********** Health Expectancies ****************/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
                     */  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  {
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    /* Health expectancies, no variances */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
                   }/* if first */    double age, agelim, hf;
                 } /* age mod 5 */    double ***p3mat;
               } /* end loop age */    double eip;
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);  
               first=1;    pstamp(ficreseij);
             } /*l12 */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           } /* k12 */    fprintf(ficreseij,"# Age");
         } /*l1 */    for(i=1; i<=nlstate;i++){
       }/* k1 */      for(j=1; j<=nlstate;j++){
     } /* loop covariates */        fprintf(ficreseij," e%1d%1d ",i,j);
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficreseij," e%1d. ",i);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    fprintf(ficreseij,"\n");
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    
   }    if(estepm < stepm){
   free_vector(xp,1,npar);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fclose(ficresprob);    }
   fclose(ficresprobcov);    else  hstepm=estepm;   
   fclose(ficresprobcor);    /* We compute the life expectancy from trapezoids spaced every estepm months
   fclose(ficgp);     * This is mainly to measure the difference between two models: for example
   fclose(fichtm);     * if stepm=24 months pijx are given only every 2 years and by summing them
 }     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
 /******************* Printing html file ***********/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \     * to compare the new estimate of Life expectancy with the same linear 
                   int lastpass, int stepm, int weightopt, char model[],\     * hypothesis. A more precise result, taking into account a more precise
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\     * curvature will be obtained if estepm is as small as stepm. */
                   int popforecast, int estepm ,\  
                   double jprev1, double mprev1,double anprev1, \    /* For example we decided to compute the life expectancy with the smallest unit */
                   double jprev2, double mprev2,double anprev2){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   int jj1, k1, i1, cpt;       nhstepm is the number of hstepm from age to agelim 
   /*char optionfilehtm[FILENAMELENGTH];*/       nstepm is the number of stepm from age to agelin. 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {       Look at hpijx to understand the reason of that which relies in memory size
     printf("Problem with %s \n",optionfilehtm), exit(0);       and note for a fixed period like estepm months */
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n       results. So we changed our mind and took the option of the best precision.
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  - Life expectancies by age and initial health status (estepm=%2d months):  
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    agelim=AGESUP;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
  m=cptcoveff;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
  jj1=0;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  for(k1=1; k1<=m;k1++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
    for(i1=1; i1<=ncodemax[k1];i1++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      jj1++;      
      if (cptcovn > 0) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      
        for (cpt=1; cpt<=cptcoveff;cpt++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      printf("%d|",(int)age);fflush(stdout);
      }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      /* Pij */      
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      /* Computing expectancies */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          for(i=1; i<=nlstate;i++)
      /* Quasi-incidences */        for(j=1; j<=nlstate;j++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
        /* Stable prevalence in each health state */            
        for(cpt=1; cpt<nlstate;cpt++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }
        }  
      for(cpt=1; cpt<=nlstate;cpt++) {      fprintf(ficreseij,"%3.0f",age );
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      for(i=1; i<=nlstate;i++){
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        eip=0;
      }        for(j=1; j<=nlstate;j++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          eip +=eij[i][j][(int)age];
 health expectancies in states (1) and (2): e%s%d.png<br>          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        }
    } /* end i1 */        fprintf(ficreseij,"%9.4f", eip );
  }/* End k1 */      }
  fprintf(fichtm,"</ul>");      fprintf(ficreseij,"\n");
       
     }
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    printf("\n");
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    fprintf(ficlog,"\n");
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  }
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  
   {
  if(popforecast==1) fprintf(fichtm,"\n    /* Covariances of health expectancies eij and of total life expectancies according
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n     to initial status i, ei. .
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    */
         <br>",fileres,fileres,fileres,fileres);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
  else    double age, agelim, hf;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    double ***p3matp, ***p3matm, ***varhe;
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    double **dnewm,**doldm;
     double *xp, *xm;
  m=cptcoveff;    double **gp, **gm;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double ***gradg, ***trgradg;
     int theta;
  jj1=0;  
  for(k1=1; k1<=m;k1++){    double eip, vip;
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      if (cptcovn > 0) {    xp=vector(1,npar);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    xm=vector(1,npar);
        for (cpt=1; cpt<=cptcoveff;cpt++)    dnewm=matrix(1,nlstate*nlstate,1,npar);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    
      }    pstamp(ficresstdeij);
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    fprintf(ficresstdeij,"# Age");
 interval) in state (%d): v%s%d%d.png <br>    for(i=1; i<=nlstate;i++){
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(j=1; j<=nlstate;j++)
      }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
    } /* end i1 */      fprintf(ficresstdeij," e%1d. ",i);
  }/* End k1 */    }
  fprintf(fichtm,"</ul>");    fprintf(ficresstdeij,"\n");
 fclose(fichtm);  
 }    pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 /******************* Gnuplot file **************/    fprintf(ficrescveij,"# Age");
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        cptj= (j-1)*nlstate+i;
   int ng;        for(i2=1; i2<=nlstate;i2++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          for(j2=1; j2<=nlstate;j2++){
     printf("Problem with file %s",optionfilegnuplot);            cptj2= (j2-1)*nlstate+i2;
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);            if(cptj2 <= cptj)
   }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
 #ifdef windows      }
     fprintf(ficgp,"cd \"%s\" \n",pathc);    fprintf(ficrescveij,"\n");
 #endif    
 m=pow(2,cptcoveff);    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
  /* 1eme*/    }
   for (cpt=1; cpt<= nlstate ; cpt ++) {    else  hstepm=estepm;   
    for (k1=1; k1<= m ; k1 ++) {    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
 #ifdef windows     * if stepm=24 months pijx are given only every 2 years and by summing them
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);     * progression in between and thus overestimating or underestimating according
 #endif     * to the curvature of the survival function. If, for the same date, we 
 #ifdef unix     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);     * to compare the new estimate of Life expectancy with the same linear 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);     * hypothesis. A more precise result, taking into account a more precise
 #endif     * curvature will be obtained if estepm is as small as stepm. */
   
 for (i=1; i<= nlstate ; i ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   else fprintf(ficgp," \%%*lf (\%%*lf)");       nhstepm is the number of hstepm from age to agelim 
 }       nstepm is the number of stepm from age to agelin. 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);       Look at hpijx to understand the reason of that which relies in memory size
     for (i=1; i<= nlstate ; i ++) {       and note for a fixed period like estepm months */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   else fprintf(ficgp," \%%*lf (\%%*lf)");       survival function given by stepm (the optimization length). Unfortunately it
 }       means that if the survival funtion is printed only each two years of age and if
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      for (i=1; i<= nlstate ; i ++) {       results. So we changed our mind and took the option of the best precision.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    /* If stepm=6 months */
 #ifdef unix    /* nhstepm age range expressed in number of stepm */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    agelim=AGESUP;
 #endif    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
    }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }    /* if (stepm >= YEARM) hstepm=1;*/
   /*2 eme*/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
   for (k1=1; k1<= m ; k1 ++) {    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     for (i=1; i<= nlstate+1 ; i ++) {    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       k=2*i;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    for (age=bage; age<=fage; age ++){ 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 }           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");   
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {      /* Computing  Variances of health expectancies */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
         else fprintf(ficgp," \%%*lf (\%%*lf)");         decrease memory allocation */
 }        for(theta=1; theta <=npar; theta++){
       fprintf(ficgp,"\" t\"\" w l 0,");        for(i=1; i<=npar; i++){ 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for (j=1; j<= nlstate+1 ; j ++) {          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 }          hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    
       else fprintf(ficgp,"\" t\"\" w l 0,");        for(j=1; j<= nlstate; j++){
     }          for(i=1; i<=nlstate; i++){
   }            for(h=0; h<=nhstepm-1; h++){
                gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   /*3eme*/              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
   for (k1=1; k1<= m ; k1 ++) {          }
     for (cpt=1; cpt<= nlstate ; cpt ++) {        }
       k=2+nlstate*(2*cpt-2);       
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(ij=1; ij<= nlstate*nlstate; ij++)
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          for(h=0; h<=nhstepm-1; h++){
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      }/* End theta */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
 */          for(theta=1; theta <=npar; theta++)
       for (i=1; i< nlstate ; i ++) {            trgradg[h][j][theta]=gradg[h][theta][j];
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      
   
       }       for(ij=1;ij<=nlstate*nlstate;ij++)
     }        for(ji=1;ji<=nlstate*nlstate;ji++)
   }          varhe[ij][ji][(int)age] =0.;
    
   /* CV preval stat */       printf("%d|",(int)age);fflush(stdout);
     for (k1=1; k1<= m ; k1 ++) {       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for (cpt=1; cpt<nlstate ; cpt ++) {       for(h=0;h<=nhstepm-1;h++){
       k=3;        for(k=0;k<=nhstepm-1;k++){
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
       for (i=1; i< nlstate ; i ++)            for(ji=1;ji<=nlstate*nlstate;ji++)
         fprintf(ficgp,"+$%d",k+i+1);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        }
            }
       l=3+(nlstate+ndeath)*cpt;      /* Computing expectancies */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for (i=1; i< nlstate ; i ++) {      for(i=1; i<=nlstate;i++)
         l=3+(nlstate+ndeath)*cpt;        for(j=1; j<=nlstate;j++)
         fprintf(ficgp,"+$%d",l+i+1);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       }            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              
     }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   }    
            }
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficresstdeij,"%3.0f",age );
     for(k=1; k <=(nlstate+ndeath); k++){      for(i=1; i<=nlstate;i++){
       if (k != i) {        eip=0.;
         for(j=1; j <=ncovmodel; j++){        vip=0.;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        for(j=1; j<=nlstate;j++){
           jk++;          eip += eij[i][j][(int)age];
           fprintf(ficgp,"\n");          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
         }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     }        }
    }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      fprintf(ficresstdeij,"\n");
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      fprintf(ficrescveij,"%3.0f",age );
        if (ng==2)      for(i=1; i<=nlstate;i++)
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        for(j=1; j<=nlstate;j++){
        else          cptj= (j-1)*nlstate+i;
          fprintf(ficgp,"\nset title \"Probability\"\n");          for(i2=1; i2<=nlstate;i2++)
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            for(j2=1; j2<=nlstate;j2++){
        i=1;              cptj2= (j2-1)*nlstate+i2;
        for(k2=1; k2<=nlstate; k2++) {              if(cptj2 <= cptj)
          k3=i;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
          for(k=1; k<=(nlstate+ndeath); k++) {            }
            if (k != k2){        }
              if(ng==2)      fprintf(ficrescveij,"\n");
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);     
              else    }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
              ij=1;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
              for(j=3; j <=ncovmodel; j++) {    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                  ij++;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                }    printf("\n");
                else    fprintf(ficlog,"\n");
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
              }    free_vector(xm,1,npar);
              fprintf(ficgp,")/(1");    free_vector(xp,1,npar);
                  free_matrix(dnewm,1,nlstate*nlstate,1,npar);
              for(k1=1; k1 <=nlstate; k1++){      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                ij=1;  }
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /************ Variance ******************/
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
                    ij++;  {
                  }    /* Variance of health expectancies */
                  else    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* double **newm;*/
                }    double **dnewm,**doldm;
                fprintf(ficgp,")");    double **dnewmp,**doldmp;
              }    int i, j, nhstepm, hstepm, h, nstepm ;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    int k, cptcode;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    double *xp;
              i=i+ncovmodel;    double **gp, **gm;  /* for var eij */
            }    double ***gradg, ***trgradg; /*for var eij */
          } /* end k */    double **gradgp, **trgradgp; /* for var p point j */
        } /* end k2 */    double *gpp, *gmp; /* for var p point j */
      } /* end jk */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
    } /* end ng */    double ***p3mat;
    fclose(ficgp);    double age,agelim, hf;
 }  /* end gnuplot */    double ***mobaverage;
     int theta;
     char digit[4];
 /*************** Moving average **************/    char digitp[25];
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  
     char fileresprobmorprev[FILENAMELENGTH];
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    if(popbased==1){
       for (i=1; i<=nlstate;i++)      if(mobilav!=0)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        strcpy(digitp,"-populbased-mobilav-");
           mobaverage[(int)agedeb][i][cptcod]=0.;      else strcpy(digitp,"-populbased-nomobil-");
        }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    else 
       for (i=1; i<=nlstate;i++){      strcpy(digitp,"-stablbased-");
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){    if (mobilav!=0) {
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }      }
     }    }
      
 }    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 /************** Forecasting ******************/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileres);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   int *popage;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   double *popeffectif,*popcount;    }
   double ***p3mat;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   char fileresf[FILENAMELENGTH];   
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
  agelim=AGESUP;    pstamp(ficresprobmorprev);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
        for(i=1; i<=nlstate;i++)
   strcpy(fileresf,"f");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   strcat(fileresf,fileres);    }  
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fprintf(ficresprobmorprev,"\n");
     printf("Problem with forecast resultfile: %s\n", fileresf);    fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   if (mobilav==1) {    if(popbased==1)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     movingaverage(agedeb, fage, ageminpar, mobaverage);    else
   }      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for(i=1; i<=nlstate;i++)
   if (stepm<=12) stepsize=1;      for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   agelim=AGESUP;    fprintf(ficresvij,"\n");
    
   hstepm=1;    xp=vector(1,npar);
   hstepm=hstepm/stepm;    dnewm=matrix(1,nlstate,1,npar);
   yp1=modf(dateintmean,&yp);    doldm=matrix(1,nlstate,1,nlstate);
   anprojmean=yp;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   yp2=modf((yp1*12),&yp);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   jprojmean=yp;    gpp=vector(nlstate+1,nlstate+ndeath);
   if(jprojmean==0) jprojmean=1;    gmp=vector(nlstate+1,nlstate+ndeath);
   if(mprojmean==0) jprojmean=1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   for(cptcov=1;cptcov<=i2;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    else  hstepm=estepm;   
       k=k+1;    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficresf,"\n#******");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for(j=1;j<=cptcoveff;j++) {       nhstepm is the number of hstepm from age to agelim 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       nstepm is the number of stepm from age to agelin. 
       }       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficresf,"******\n");       and note for a fixed period like k years */
       fprintf(ficresf,"# StartingAge FinalAge");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);       survival function given by stepm (the optimization length). Unfortunately it
             means that if the survival funtion is printed every two years of age and if
             you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {       results. So we changed our mind and took the option of the best precision.
         fprintf(ficresf,"\n");    */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           oldm=oldms;savm=savms;      gp=matrix(0,nhstepm,1,nlstate);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        gm=matrix(0,nhstepm,1,nlstate);
          
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {      for(theta=1; theta <=npar; theta++){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
             }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             for(j=1; j<=nlstate+ndeath;j++) {        }
               kk1=0.;kk2=0;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               for(i=1; i<=nlstate;i++) {                      prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        if (popbased==1) {
                 else {          if(mobilav ==0){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            for(i=1; i<=nlstate;i++)
                 }              prlim[i][i]=probs[(int)age][i][ij];
                          }else{ /* mobilav */ 
               }            for(i=1; i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)){              prlim[i][i]=mobaverage[(int)age][i][ij];
                 fprintf(ficresf," %.3f", kk1);          }
                                }
               }    
             }        for(j=1; j<= nlstate; j++){
           }          for(h=0; h<=nhstepm; h++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       }          }
     }        }
   }        /* This for computing probability of death (h=1 means
                   computed over hstepm matrices product = hstepm*stepm months) 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           as a weighted average of prlim.
         */
   fclose(ficresf);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
 /************** Forecasting ******************/            gpp[j] += prlim[i][i]*p3mat[i][j][1];
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        }    
          /* end probability of death */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   double *popeffectif,*popcount;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   double ***p3mat,***tabpop,***tabpopprev;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char filerespop[FILENAMELENGTH];   
         if (popbased==1) {
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if(mobilav ==0){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(i=1; i<=nlstate;i++)
   agelim=AGESUP;              prlim[i][i]=probs[(int)age][i][ij];
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
          }
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);        for(j=1; j<= nlstate; j++){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          for(h=0; h<=nhstepm; h++){
     printf("Problem with forecast resultfile: %s\n", filerespop);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   }          }
   printf("Computing forecasting: result on file '%s' \n", filerespop);        }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;           as a weighted average of prlim.
         */
   if (mobilav==1) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
         /* end probability of death */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;        for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
   agelim=AGESUP;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
   hstepm=1;  
   hstepm=hstepm/stepm;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   if (popforecast==1) {        }
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);      } /* End theta */
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  
     }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);      for(h=0; h<=nhstepm; h++) /* veij */
     popcount=vector(0,AGESUP);        for(j=1; j<=nlstate;j++)
              for(theta=1; theta <=npar; theta++)
     i=1;              trgradg[h][j][theta]=gradg[h][theta][j];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
          for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     imx=i;        for(theta=1; theta <=npar; theta++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          trgradgp[j][theta]=gradgp[theta][j];
   }    
   
   for(cptcov=1;cptcov<=i2;cptcov++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(i=1;i<=nlstate;i++)
       k=k+1;        for(j=1;j<=nlstate;j++)
       fprintf(ficrespop,"\n#******");          vareij[i][j][(int)age] =0.;
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(h=0;h<=nhstepm;h++){
       }        for(k=0;k<=nhstepm;k++){
       fprintf(ficrespop,"******\n");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficrespop,"# Age");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for(i=1;i<=nlstate;i++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");            for(j=1;j<=nlstate;j++)
                    vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       for (cpt=0; cpt<=0;cpt++) {        }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        }
            
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      /* pptj */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           nhstepm = nhstepm/hstepm;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                for(j=nlstate+1;j<=nlstate+ndeath;j++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           oldm=oldms;savm=savms;          varppt[j][i]=doldmp[j][i];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /* end ppptj */
              /*  x centered again */
           for (h=0; h<=nhstepm; h++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
             if (h==(int) (calagedate+YEARM*cpt)) {      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);   
             }      if (popbased==1) {
             for(j=1; j<=nlstate+ndeath;j++) {        if(mobilav ==0){
               kk1=0.;kk2=0;          for(i=1; i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                          prlim[i][i]=probs[(int)age][i][ij];
                 if (mobilav==1)        }else{ /* mobilav */ 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for(i=1; i<=nlstate;i++)
                 else {            prlim[i][i]=mobaverage[(int)age][i][ij];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        }
                 }      }
               }               
               if (h==(int)(calagedate+12*cpt)){      /* This for computing probability of death (h=1 means
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                   /*fprintf(ficrespop," %.3f", kk1);         as a weighted average of prlim.
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      */
               }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
             for(i=1; i<=nlstate;i++){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
               kk1=0.;      }    
                 for(j=1; j<=nlstate;j++){      /* end probability of death */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        }
           }      } 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresprobmorprev,"\n");
         }  
       }      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   /******/        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        fprintf(ficresvij,"\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      free_matrix(gp,0,nhstepm,1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      free_matrix(gm,0,nhstepm,1,nlstate);
           nhstepm = nhstepm/hstepm;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;    } /* End age */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_vector(gpp,nlstate+1,nlstate+ndeath);
           for (h=0; h<=nhstepm; h++){    free_vector(gmp,nlstate+1,nlstate+ndeath);
             if (h==(int) (calagedate+YEARM*cpt)) {    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
             for(j=1; j<=nlstate+ndeath;j++) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
               kk1=0.;kk2=0;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
               for(i=1; i<=nlstate;i++) {                /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
               }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
             }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
           }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
    }  */
   }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
      fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     free_vector(xp,1,npar);
   if (popforecast==1) {    free_matrix(doldm,1,nlstate,1,nlstate);
     free_ivector(popage,0,AGESUP);    free_matrix(dnewm,1,nlstate,1,npar);
     free_vector(popeffectif,0,AGESUP);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_vector(popcount,0,AGESUP);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fclose(ficresprobmorprev);
   fclose(ficrespop);    fflush(ficgp);
 }    fflush(fichtm); 
   }  /* end varevsij */
 /***********************************************/  
 /**************** Main Program *****************/  /************ Variance of prevlim ******************/
 /***********************************************/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
 int main(int argc, char *argv[])    /* Variance of prevalence limit */
 {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    double **dnewm,**doldm;
   double agedeb, agefin,hf;    int i, j, nhstepm, hstepm;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    int k, cptcode;
     double *xp;
   double fret;    double *gp, *gm;
   double **xi,tmp,delta;    double **gradg, **trgradg;
     double age,agelim;
   double dum; /* Dummy variable */    int theta;
   double ***p3mat;    
   int *indx;    pstamp(ficresvpl);
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];    fprintf(ficresvpl,"# Age");
   int firstobs=1, lastobs=10;    for(i=1; i<=nlstate;i++)
   int sdeb, sfin; /* Status at beginning and end */        fprintf(ficresvpl," %1d-%1d",i,i);
   int c,  h , cpt,l;    fprintf(ficresvpl,"\n");
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    xp=vector(1,npar);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    dnewm=matrix(1,nlstate,1,npar);
   int mobilav=0,popforecast=0;    doldm=matrix(1,nlstate,1,nlstate);
   int hstepm, nhstepm;    
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   double bage, fage, age, agelim, agebase;    agelim = AGESUP;
   double ftolpl=FTOL;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double **prlim;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   double *severity;      if (stepm >= YEARM) hstepm=1;
   double ***param; /* Matrix of parameters */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   double  *p;      gradg=matrix(1,npar,1,nlstate);
   double **matcov; /* Matrix of covariance */      gp=vector(1,nlstate);
   double ***delti3; /* Scale */      gm=vector(1,nlstate);
   double *delti; /* Scale */  
   double ***eij, ***vareij;      for(theta=1; theta <=npar; theta++){
   double **varpl; /* Variances of prevalence limits by age */        for(i=1; i<=npar; i++){ /* Computes gradient */
   double *epj, vepp;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double kk1, kk2;        }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
   char *alph[]={"a","a","b","c","d","e"}, str[4];      
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   char z[1]="c", occ;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 #include <sys/time.h>        for(i=1;i<=nlstate;i++)
 #include <time.h>          gm[i] = prlim[i][i];
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
          for(i=1;i<=nlstate;i++)
   /* long total_usecs;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   struct timeval start_time, end_time;      } /* End theta */
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      trgradg =matrix(1,nlstate,1,npar);
   getcwd(pathcd, size);  
       for(j=1; j<=nlstate;j++)
   printf("\n%s",version);        for(theta=1; theta <=npar; theta++)
   if(argc <=1){          trgradg[j][theta]=gradg[theta][j];
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] =0.;
   else{      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     strcpy(pathtot,argv[1]);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   }      for(i=1;i<=nlstate;i++)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      fprintf(ficresvpl,"%.0f ",age );
   /* cutv(path,optionfile,pathtot,'\\');*/      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      fprintf(ficresvpl,"\n");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      free_vector(gp,1,nlstate);
   chdir(path);      free_vector(gm,1,nlstate);
   replace(pathc,path);      free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
 /*-------- arguments in the command line --------*/    } /* End age */
   
   /* Log file */    free_vector(xp,1,npar);
   strcat(filelog, optionfilefiname);    free_matrix(doldm,1,nlstate,1,npar);
   strcat(filelog,".log");    /* */    free_matrix(dnewm,1,nlstate,1,nlstate);
   if((ficlog=fopen(filelog,"w"))==NULL)    {  
     printf("Problem with logfile %s\n",filelog);  }
     goto end;  
   }  /************ Variance of one-step probabilities  ******************/
   fprintf(ficlog,"Log filename:%s\n",filelog);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   fprintf(ficlog,"\n%s",version);  {
   fprintf(ficlog,"\nEnter the parameter file name: ");    int i, j=0,  i1, k1, l1, t, tj;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int k2, l2, j1,  z1;
   fflush(ficlog);    int k=0,l, cptcode;
     int first=1, first1;
   /* */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   strcpy(fileres,"r");    double **dnewm,**doldm;
   strcat(fileres, optionfilefiname);    double *xp;
   strcat(fileres,".txt");    /* Other files have txt extension */    double *gp, *gm;
     double **gradg, **trgradg;
   /*---------arguments file --------*/    double **mu;
     double age,agelim, cov[NCOVMAX];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     printf("Problem with optionfile %s\n",optionfile);    int theta;
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    char fileresprob[FILENAMELENGTH];
     goto end;    char fileresprobcov[FILENAMELENGTH];
   }    char fileresprobcor[FILENAMELENGTH];
   
   strcpy(filereso,"o");    double ***varpij;
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {    strcpy(fileresprob,"prob"); 
     printf("Problem with Output resultfile: %s\n", filereso);    strcat(fileresprob,fileres);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     goto end;      printf("Problem with resultfile: %s\n", fileresprob);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
   /* Reads comments: lines beginning with '#' */    strcpy(fileresprobcov,"probcov"); 
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileresprobcov,fileres);
     ungetc(c,ficpar);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);      printf("Problem with resultfile: %s\n", fileresprobcov);
     puts(line);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     fputs(line,ficparo);    }
   }    strcpy(fileresprobcor,"probcor"); 
   ungetc(c,ficpar);    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      printf("Problem with resultfile: %s\n", fileresprobcor);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    }
 while((c=getc(ficpar))=='#' && c!= EOF){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     ungetc(c,ficpar);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fgets(line, MAXLINE, ficpar);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     puts(line);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fputs(line,ficparo);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   ungetc(c,ficpar);    pstamp(ficresprob);
      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
        fprintf(ficresprob,"# Age");
   covar=matrix(0,NCOVMAX,1,n);    pstamp(ficresprobcov);
   cptcovn=0;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
   ncovmodel=2+cptcovn;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    fprintf(ficresprobcor,"# Age");
    
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */    for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=1; j<=(nlstate+ndeath);j++){
     ungetc(c,ficpar);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     fgets(line, MAXLINE, ficpar);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     puts(line);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     fputs(line,ficparo);      }  
   }   /* fprintf(ficresprob,"\n");
   ungetc(c,ficpar);    fprintf(ficresprobcov,"\n");
      fprintf(ficresprobcor,"\n");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   */
     for(i=1; i <=nlstate; i++)   xp=vector(1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       fprintf(ficparo,"%1d%1d",i1,j1);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       if(mle==1)    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         printf("%1d%1d",i,j);    first=1;
       fprintf(ficlog,"%1d%1d",i,j);    fprintf(ficgp,"\n# Routine varprob");
       for(k=1; k<=ncovmodel;k++){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(fichtm,"\n");
         if(mle==1){  
           printf(" %lf",param[i][j][k]);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           fprintf(ficlog," %lf",param[i][j][k]);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         }    file %s<br>\n",optionfilehtmcov);
         else    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           fprintf(ficlog," %lf",param[i][j][k]);  and drawn. It helps understanding how is the covariance between two incidences.\
         fprintf(ficparo," %lf",param[i][j][k]);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       fscanf(ficpar,"\n");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       if(mle==1)  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         printf("\n");  standard deviations wide on each axis. <br>\
       fprintf(ficlog,"\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       fprintf(ficparo,"\n");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    cov[1]=1;
     tj=cptcoveff;
   p=param[1][1];    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      j1=0;
   /* Reads comments: lines beginning with '#' */    for(t=1; t<=tj;t++){
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i1=1; i1<=ncodemax[t];i1++){ 
     ungetc(c,ficpar);        j1++;
     fgets(line, MAXLINE, ficpar);        if  (cptcovn>0) {
     puts(line);          fprintf(ficresprob, "\n#********** Variable "); 
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprob, "**********\n#\n");
   ungetc(c,ficpar);          fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(ficresprobcov, "**********\n#\n");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          
   for(i=1; i <=nlstate; i++){          fprintf(ficgp, "\n#********** Variable "); 
     for(j=1; j <=nlstate+ndeath-1; j++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fscanf(ficpar,"%1d%1d",&i1,&j1);          fprintf(ficgp, "**********\n#\n");
       printf("%1d%1d",i,j);          
       fprintf(ficparo,"%1d%1d",i1,j1);          
       for(k=1; k<=ncovmodel;k++){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         fscanf(ficpar,"%le",&delti3[i][j][k]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         printf(" %le",delti3[i][j][k]);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         fprintf(ficparo," %le",delti3[i][j][k]);          
       }          fprintf(ficresprobcor, "\n#********** Variable ");    
       fscanf(ficpar,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("\n");          fprintf(ficresprobcor, "**********\n#");    
       fprintf(ficparo,"\n");        }
     }        
   }        for (age=bage; age<=fage; age ++){ 
   delti=delti3[1][1];          cov[2]=age;
            for (k=1; k<=cptcovn;k++) {
   /* Reads comments: lines beginning with '#' */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     fgets(line, MAXLINE, ficpar);          for (k=1; k<=cptcovprod;k++)
     puts(line);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     fputs(line,ficparo);          
   }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   ungetc(c,ficpar);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            gp=vector(1,(nlstate)*(nlstate+ndeath));
   matcov=matrix(1,npar,1,npar);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   for(i=1; i <=npar; i++){      
     fscanf(ficpar,"%s",&str);          for(theta=1; theta <=npar; theta++){
     if(mle==1)            for(i=1; i<=npar; i++)
       printf("%s",str);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     fprintf(ficlog,"%s",str);            
     fprintf(ficparo,"%s",str);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     for(j=1; j <=i; j++){            
       fscanf(ficpar," %le",&matcov[i][j]);            k=0;
       if(mle==1){            for(i=1; i<= (nlstate); i++){
         printf(" %.5le",matcov[i][j]);              for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficlog," %.5le",matcov[i][j]);                k=k+1;
       }                gp[k]=pmmij[i][j];
       else              }
         fprintf(ficlog," %.5le",matcov[i][j]);            }
       fprintf(ficparo," %.5le",matcov[i][j]);            
     }            for(i=1; i<=npar; i++)
     fscanf(ficpar,"\n");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     if(mle==1)      
       printf("\n");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fprintf(ficlog,"\n");            k=0;
     fprintf(ficparo,"\n");            for(i=1; i<=(nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
   for(i=1; i <=npar; i++)                k=k+1;
     for(j=i+1;j<=npar;j++)                gm[k]=pmmij[i][j];
       matcov[i][j]=matcov[j][i];              }
                }
   if(mle==1)       
     printf("\n");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   fprintf(ficlog,"\n");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
     /*-------- Rewriting paramater file ----------*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
      strcpy(rfileres,"r");    /* "Rparameterfile */            for(theta=1; theta <=npar; theta++)
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/              trgradg[j][theta]=gradg[theta][j];
      strcat(rfileres,".");    /* */          
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     if((ficres =fopen(rfileres,"w"))==NULL) {          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     fprintf(ficres,"#%s\n",version);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      
     /*-------- data file ----------*/          pmij(pmmij,cov,ncovmodel,x,nlstate);
     if((fic=fopen(datafile,"r"))==NULL)    {          
       printf("Problem with datafile: %s\n", datafile);goto end;          k=0;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;          for(i=1; i<=(nlstate); i++){
     }            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
     n= lastobs;              mu[k][(int) age]=pmmij[i][j];
     severity = vector(1,maxwav);            }
     outcome=imatrix(1,maxwav+1,1,n);          }
     num=ivector(1,n);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     moisnais=vector(1,n);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     annais=vector(1,n);              varpij[i][j][(int)age] = doldm[i][j];
     moisdc=vector(1,n);  
     andc=vector(1,n);          /*printf("\n%d ",(int)age);
     agedc=vector(1,n);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     cod=ivector(1,n);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     weight=vector(1,n);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            }*/
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);          fprintf(ficresprob,"\n%d ",(int)age);
     s=imatrix(1,maxwav+1,1,n);          fprintf(ficresprobcov,"\n%d ",(int)age);
     adl=imatrix(1,maxwav+1,1,n);              fprintf(ficresprobcor,"\n%d ",(int)age);
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     i=1;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     while (fgets(line, MAXLINE, fic) != NULL)    {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       if ((i >= firstobs) && (i <=lastobs)) {            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                  }
         for (j=maxwav;j>=1;j--){          i=0;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          for (k=1; k<=(nlstate);k++){
           strcpy(line,stra);            for (l=1; l<=(nlstate+ndeath);l++){ 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              i=i++;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                      for (j=1; j<=i;j++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          }/* end of loop for state */
         } /* end of loop for age */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){        /* Confidence intervalle of pij  */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        /*
         }          fprintf(ficgp,"\nset noparametric;unset label");
         num[i]=atol(stra);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                  fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         i=i+1;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       }        */
     }  
     /* printf("ii=%d", ij);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
        scanf("%d",i);*/        first1=1;
   imx=i-1; /* Number of individuals */        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   /* for (i=1; i<=imx; i++){            if(l2==k2) continue;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            j=(k2-1)*(nlstate+ndeath)+l2;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            for (k1=1; k1<=(nlstate);k1++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     }*/                if(l1==k1) continue;
    /*  for (i=1; i<=imx; i++){                i=(k1-1)*(nlstate+ndeath)+l1;
      if (s[4][i]==9)  s[4][i]=-1;                if(i<=j) continue;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                for (age=bage; age<=fage; age ++){ 
                    if ((int)age %5==0){
                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   /* Calculation of the number of parameter from char model*/                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   Tprod=ivector(1,15);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   Tvaraff=ivector(1,15);                    mu2=mu[j][(int) age]/stepm*YEARM;
   Tvard=imatrix(1,15,1,2);                    c12=cv12/sqrt(v1*v2);
   Tage=ivector(1,15);                          /* Computing eigen value of matrix of covariance */
                        lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if (strlen(model) >1){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     j=0, j1=0, k1=1, k2=1;                    /* Eigen vectors */
     j=nbocc(model,'+');                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     j1=nbocc(model,'*');                    /*v21=sqrt(1.-v11*v11); *//* error */
     cptcovn=j+1;                    v21=(lc1-v1)/cv12*v11;
     cptcovprod=j1;                    v12=-v21;
                        v22=v11;
     strcpy(modelsav,model);                    tnalp=v21/v11;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                    if(first1==1){
       printf("Error. Non available option model=%s ",model);                      first1=0;
       fprintf(ficlog,"Error. Non available option model=%s ",model);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       goto end;                    }
     }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                        /*printf(fignu*/
     for(i=(j+1); i>=1;i--){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */                    if(first==1){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                      first=0;
       /*scanf("%d",i);*/                      fprintf(ficgp,"\nset parametric;unset label");
       if (strchr(strb,'*')) {  /* Model includes a product */                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         if (strcmp(strc,"age")==0) { /* Vn*age */                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           cptcovprod--;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           cutv(strb,stre,strd,'V');  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           cptcovage++;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             Tage[cptcovage]=i;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             /*printf("stre=%s ", stre);*/                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           cptcovprod--;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           cutv(strb,stre,strc,'V');                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           Tvar[i]=atoi(stre);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           cptcovage++;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           Tage[cptcovage]=i;                    }else{
         }                      first=0;
         else {  /* Age is not in the model */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           Tvar[i]=ncovcol+k1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           Tprod[k1]=i;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           Tvard[k1][1]=atoi(strc); /* m*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           Tvard[k1][2]=atoi(stre); /* n */                    }/* if first */
           Tvar[cptcovn+k2]=Tvard[k1][1];                  } /* age mod 5 */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                } /* end loop age */
           for (k=1; k<=lastobs;k++)                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                first=1;
           k1++;              } /*l12 */
           k2=k2+2;            } /* k12 */
         }          } /*l1 */
       }        }/* k1 */
       else { /* no more sum */      } /* loop covariates */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    }
        /*  scanf("%d",i);*/    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       cutv(strd,strc,strb,'V');    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       Tvar[i]=atoi(strc);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       }    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       strcpy(modelsav,stra);      free_vector(xp,1,npar);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fclose(ficresprob);
         scanf("%d",i);*/    fclose(ficresprobcov);
     } /* end of loop + */    fclose(ficresprobcor);
   } /* end model */    fflush(ficgp);
      fflush(fichtmcov);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  }
   printf("cptcovprod=%d ", cptcovprod);  
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/  /******************* Printing html file ***********/
     fclose(fic);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
     /*  if(mle==1){*/                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     if (weightopt != 1) { /* Maximisation without weights*/                    int popforecast, int estepm ,\
       for(i=1;i<=n;i++) weight[i]=1.0;                    double jprev1, double mprev1,double anprev1, \
     }                    double jprev2, double mprev2,double anprev2){
     /*-calculation of age at interview from date of interview and age at death -*/    int jj1, k1, i1, cpt;
     agev=matrix(1,maxwav,1,imx);  
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     for (i=1; i<=imx; i++) {     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
       for(m=2; (m<= maxwav); m++) {  </ul>");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
          anint[m][i]=9999;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
          s[m][i]=-1;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
        }     fprintf(fichtm,"\
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     }     fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     for (i=1; i<=imx; i++)  {             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);     fprintf(fichtm,"\
       for(m=1; (m<= maxwav); m++){   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
         if(s[m][i] >0){     <a href=\"%s\">%s</a> <br>\n</li>",
           if (s[m][i] >= nlstate+1) {             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {   m=cptcoveff;
               if (andc[i]!=9999){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);   jj1=0;
               agev[m][i]=-1;   for(k1=1; k1<=m;k1++){
               }     for(i1=1; i1<=ncodemax[k1];i1++){
             }       jj1++;
           }       if (cptcovn > 0) {
           else if(s[m][i] !=9){ /* Should no more exist */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
             if(mint[m][i]==99 || anint[m][i]==9999)           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
               agev[m][i]=1;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
             else if(agev[m][i] <agemin){       }
               agemin=agev[m][i];       /* Pij */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
             }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
             else if(agev[m][i] >agemax){       /* Quasi-incidences */
               agemax=agev[m][i];       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
             }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
             /*agev[m][i]=anint[m][i]-annais[i];*/         /* Period (stable) prevalence in each health state */
             /*   agev[m][i] = age[i]+2*m;*/         for(cpt=1; cpt<nlstate;cpt++){
           }           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
           else { /* =9 */  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
             agev[m][i]=1;         }
             s[m][i]=-1;       for(cpt=1; cpt<=nlstate;cpt++) {
           }          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
         }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         else /*= 0 Unknown */       }
           agev[m][i]=1;     } /* end i1 */
       }   }/* End k1 */
       fprintf(fichtm,"</ul>");
     }  
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){   fprintf(fichtm,"\
         if (s[m][i] > (nlstate+ndeath)) {  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       }   fprintf(fichtm,"\
     }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     free_vector(severity,1,maxwav);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     free_imatrix(outcome,1,maxwav+1,1,n);   fprintf(fichtm,"\
     free_vector(moisnais,1,n);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     free_vector(annais,1,n);     <a href=\"%s\">%s</a> <br>\n</li>",
     /* free_matrix(mint,1,maxwav,1,n);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
        free_matrix(anint,1,maxwav,1,n);*/   fprintf(fichtm,"\
     free_vector(moisdc,1,n);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     free_vector(andc,1,n);     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       fprintf(fichtm,"\
     wav=ivector(1,imx);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     dh=imatrix(1,lastpass-firstpass+1,1,imx);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   fprintf(fichtm,"\
       - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
     /* Concatenates waves */           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);   fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  /*  if(popforecast==1) fprintf(fichtm,"\n */
       ncodemax[1]=1;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
        /*      <br>",fileres,fileres,fileres,fileres); */
    codtab=imatrix(1,100,1,10);  /*  else  */
    h=0;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    m=pow(2,cptcoveff);   fflush(fichtm);
     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){   m=cptcoveff;
        for(j=1; j <= ncodemax[k]; j++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  
            h++;   jj1=0;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;   for(k1=1; k1<=m;k1++){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/     for(i1=1; i1<=ncodemax[k1];i1++){
          }       jj1++;
        }       if (cptcovn > 0) {
      }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
    }         for (cpt=1; cpt<=cptcoveff;cpt++) 
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       codtab[1][2]=1;codtab[2][2]=2; */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    /* for(i=1; i <=m ;i++){       }
       for(k=1; k <=cptcovn; k++){       for(cpt=1; cpt<=nlstate;cpt++) {
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       }  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       printf("\n");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       }       }
       scanf("%d",i);*/       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
      health expectancies in states (1) and (2): %s%d.png<br>\
    /* Calculates basic frequencies. Computes observed prevalence at single age  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
        and prints on file fileres'p'. */     } /* end i1 */
    }/* End k1 */
       fprintf(fichtm,"</ul>");
       fflush(fichtm);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /******************* Gnuplot file **************/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
          char dirfileres[132],optfileres[132];
     /* For Powell, parameters are in a vector p[] starting at p[1]    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    int ng;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
     if(mle==1){  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  /*   } */
     }  
        /*#ifdef windows */
     /*--------- results files --------------*/    fprintf(ficgp,"cd \"%s\" \n",pathc);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      /*#endif */
      m=pow(2,cptcoveff);
   
    jk=1;    strcpy(dirfileres,optionfilefiname);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    strcpy(optfileres,"vpl");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   /* 1eme*/
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    for (cpt=1; cpt<= nlstate ; cpt ++) {
    for(i=1,jk=1; i <=nlstate; i++){     for (k1=1; k1<= m ; k1 ++) {
      for(k=1; k <=(nlstate+ndeath); k++){       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        if (k != i)       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
          {       fprintf(ficgp,"set xlabel \"Age\" \n\
            printf("%d%d ",i,k);  set ylabel \"Probability\" \n\
            fprintf(ficlog,"%d%d ",i,k);  set ter png small\n\
            fprintf(ficres,"%1d%1d ",i,k);  set size 0.65,0.65\n\
            for(j=1; j <=ncovmodel; j++){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
              printf("%f ",p[jk]);  
              fprintf(ficlog,"%f ",p[jk]);       for (i=1; i<= nlstate ; i ++) {
              fprintf(ficres,"%f ",p[jk]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
              jk++;         else fprintf(ficgp," \%%*lf (\%%*lf)");
            }       }
            printf("\n");       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
            fprintf(ficlog,"\n");       for (i=1; i<= nlstate ; i ++) {
            fprintf(ficres,"\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          }         else fprintf(ficgp," \%%*lf (\%%*lf)");
      }       } 
    }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
    if(mle==1){       for (i=1; i<= nlstate ; i ++) {
      /* Computing hessian and covariance matrix */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      ftolhess=ftol; /* Usually correct */         else fprintf(ficgp," \%%*lf (\%%*lf)");
      hesscov(matcov, p, npar, delti, ftolhess, func);       }  
    }       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");     }
    printf("# Scales (for hessian or gradient estimation)\n");    }
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    /*2 eme*/
    for(i=1,jk=1; i <=nlstate; i++){    
      for(j=1; j <=nlstate+ndeath; j++){    for (k1=1; k1<= m ; k1 ++) { 
        if (j!=i) {      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
          fprintf(ficres,"%1d%1d",i,j);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
          printf("%1d%1d",i,j);      
          fprintf(ficlog,"%1d%1d",i,j);      for (i=1; i<= nlstate+1 ; i ++) {
          for(k=1; k<=ncovmodel;k++){        k=2*i;
            printf(" %.5e",delti[jk]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
            fprintf(ficlog," %.5e",delti[jk]);        for (j=1; j<= nlstate+1 ; j ++) {
            fprintf(ficres," %.5e",delti[jk]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            jk++;          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }        }   
          printf("\n");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
          fprintf(ficlog,"\n");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          fprintf(ficres,"\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
        }        for (j=1; j<= nlstate+1 ; j ++) {
      }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
    }          else fprintf(ficgp," \%%*lf (\%%*lf)");
            }   
    k=1;        fprintf(ficgp,"\" t\"\" w l 0,");
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
    if(mle==1)        for (j=1; j<= nlstate+1 ; j ++) {
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
    for(i=1;i<=npar;i++){        }   
      /*  if (k>nlstate) k=1;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
          i1=(i-1)/(ncovmodel*nlstate)+1;        else fprintf(ficgp,"\" t\"\" w l 0,");
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      }
          printf("%s%d%d",alph[k],i1,tab[i]);*/    }
      fprintf(ficres,"%3d",i);    
      if(mle==1)    /*3eme*/
        printf("%3d",i);    
      fprintf(ficlog,"%3d",i);    for (k1=1; k1<= m ; k1 ++) { 
      for(j=1; j<=i;j++){      for (cpt=1; cpt<= nlstate ; cpt ++) {
        fprintf(ficres," %.5e",matcov[i][j]);        /*       k=2+nlstate*(2*cpt-2); */
        if(mle==1)        k=2+(nlstate+1)*(cpt-1);
          printf(" %.5e",matcov[i][j]);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
        fprintf(ficlog," %.5e",matcov[i][j]);        fprintf(ficgp,"set ter png small\n\
      }  set size 0.65,0.65\n\
      fprintf(ficres,"\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
      if(mle==1)        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
        printf("\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
      fprintf(ficlog,"\n");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
      k++;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
    }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
              fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
    while((c=getc(ficpar))=='#' && c!= EOF){          
      ungetc(c,ficpar);        */
      fgets(line, MAXLINE, ficpar);        for (i=1; i< nlstate ; i ++) {
      puts(line);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
      fputs(line,ficparo);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
    }          
    ungetc(c,ficpar);        } 
    estepm=0;        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      }
    if (estepm==0 || estepm < stepm) estepm=stepm;    }
    if (fage <= 2) {    
      bage = ageminpar;    /* CV preval stable (period) */
      fage = agemaxpar;    for (k1=1; k1<= m ; k1 ++) { 
    }      for (cpt=1; cpt<=nlstate ; cpt ++) {
            k=3;
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  set ter png small\nset size 0.65,0.65\n\
      unset log y\n\
    while((c=getc(ficpar))=='#' && c!= EOF){  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
      ungetc(c,ficpar);        
      fgets(line, MAXLINE, ficpar);        for (i=1; i< nlstate ; i ++)
      puts(line);          fprintf(ficgp,"+$%d",k+i+1);
      fputs(line,ficparo);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
    }        
    ungetc(c,ficpar);        l=3+(nlstate+ndeath)*cpt;
          fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        for (i=1; i< nlstate ; i ++) {
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          l=3+(nlstate+ndeath)*cpt;
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficgp,"+$%d",l+i+1);
            }
    while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
      ungetc(c,ficpar);      } 
      fgets(line, MAXLINE, ficpar);    }  
      puts(line);    
      fputs(line,ficparo);    /* proba elementaires */
    }    for(i=1,jk=1; i <=nlstate; i++){
    ungetc(c,ficpar);      for(k=1; k <=(nlstate+ndeath); k++){
          if (k != i) {
           for(j=1; j <=ncovmodel; j++){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            jk++; 
             fprintf(ficgp,"\n");
   fscanf(ficpar,"pop_based=%d\n",&popbased);          }
   fprintf(ficparo,"pop_based=%d\n",popbased);          }
   fprintf(ficres,"pop_based=%d\n",popbased);        }
       }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
     fgets(line, MAXLINE, ficpar);       for(jk=1; jk <=m; jk++) {
     puts(line);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
     fputs(line,ficparo);         if (ng==2)
   }           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   ungetc(c,ficpar);         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);         i=1;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
 while((c=getc(ficpar))=='#' && c!= EOF){             if (k != k2){
     ungetc(c,ficpar);               if(ng==2)
     fgets(line, MAXLINE, ficpar);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     puts(line);               else
     fputs(line,ficparo);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   }               ij=1;
   ungetc(c,ficpar);               for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                   ij++;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                 }
                  else
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
 /*------------ gnuplot -------------*/               fprintf(ficgp,")/(1");
   strcpy(optionfilegnuplot,optionfilefiname);               
   strcat(optionfilegnuplot,".gp");               for(k1=1; k1 <=nlstate; k1++){   
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     printf("Problem with file %s",optionfilegnuplot);                 ij=1;
   }                 for(j=3; j <=ncovmodel; j++){
   fclose(ficgp);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 /*--------- index.htm --------*/                     ij++;
                    }
   strcpy(optionfilehtm,optionfile);                   else
   strcat(optionfilehtm,".htm");                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                 }
     printf("Problem with %s \n",optionfilehtm), exit(0);                 fprintf(ficgp,")");
   }               }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n               i=i+ncovmodel;
 \n             }
 Total number of observations=%d <br>\n           } /* end k */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n         } /* end k2 */
 <hr  size=\"2\" color=\"#EC5E5E\">       } /* end jk */
  <ul><li><h4>Parameter files</h4>\n     } /* end ng */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n     fflush(ficgp); 
  - Log file of the run: <a href=\"%s\">%s</a><br>\n  }  /* end gnuplot */
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);  
   fclose(fichtm);  
   /*************** Moving average **************/
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
    
 /*------------ free_vector  -------------*/    int i, cpt, cptcod;
  chdir(path);    int modcovmax =1;
      int mobilavrange, mob;
  free_ivector(wav,1,imx);    double age;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
  free_ivector(num,1,n);                             a covariate has 2 modalities */
  free_vector(agedc,1,n);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
  fclose(ficres);      if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
   /*--------------- Prevalence limit --------------*/        for (i=1; i<=nlstate;i++)
            for (cptcod=1;cptcod<=modcovmax;cptcod++)
   strcpy(filerespl,"pl");            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   strcat(filerespl,fileres);      /* We keep the original values on the extreme ages bage, fage and for 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;         we use a 5 terms etc. until the borders are no more concerned. 
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;      */ 
   }      for (mob=3;mob <=mobilavrange;mob=mob+2){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);          for (i=1; i<=nlstate;i++){
   fprintf(ficrespl,"#Prevalence limit\n");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   fprintf(ficrespl,"#Age ");              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   fprintf(ficrespl,"\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                    mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   prlim=matrix(1,nlstate,1,nlstate);                }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }/* end age */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      }/* end mob */
   k=0;    }else return -1;
   agebase=ageminpar;    return 0;
   agelim=agemaxpar;  }/* End movingaverage */
   ftolpl=1.e-10;  
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}  /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   for(cptcov=1;cptcov<=i1;cptcov++){    /* proj1, year, month, day of starting projection 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       agemin, agemax range of age
         k=k+1;       dateprev1 dateprev2 range of dates during which prevalence is computed
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       anproj2 year of en of projection (same day and month as proj1).
         fprintf(ficrespl,"\n#******");    */
         printf("\n#******");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
         fprintf(ficlog,"\n#******");    int *popage;
         for(j=1;j<=cptcoveff;j++) {    double agec; /* generic age */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double *popeffectif,*popcount;
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***p3mat;
         }    double ***mobaverage;
         fprintf(ficrespl,"******\n");    char fileresf[FILENAMELENGTH];
         printf("******\n");  
         fprintf(ficlog,"******\n");    agelim=AGESUP;
            prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         for (age=agebase; age<=agelim; age++){   
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    strcpy(fileresf,"f"); 
           fprintf(ficrespl,"%.0f",age );    strcat(fileresf,fileres);
           for(i=1; i<=nlstate;i++)    if((ficresf=fopen(fileresf,"w"))==NULL) {
           fprintf(ficrespl," %.5f", prlim[i][i]);      printf("Problem with forecast resultfile: %s\n", fileresf);
           fprintf(ficrespl,"\n");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
         }    }
       }    printf("Computing forecasting: result on file '%s' \n", fileresf);
     }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   fclose(ficrespl);  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   /*------------- h Pij x at various ages ------------*/  
      if (mobilav!=0) {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   }      }
   printf("Computing pij: result on file '%s' \n", filerespij);    }
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);  
      stepsize=(int) (stepm+YEARM-1)/YEARM;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    if (stepm<=12) stepsize=1;
   /*if (stepm<=24) stepsize=2;*/    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   agelim=AGESUP;    }
   hstepm=stepsize*YEARM; /* Every year of age */    else  hstepm=estepm;   
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
     hstepm=hstepm/stepm; 
   /* hstepm=1;   aff par mois*/    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
   k=0;    anprojmean=yp;
   for(cptcov=1;cptcov<=i1;cptcov++){    yp2=modf((yp1*12),&yp);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    mprojmean=yp;
       k=k+1;    yp1=modf((yp2*30.5),&yp);
         fprintf(ficrespij,"\n#****** ");    jprojmean=yp;
         for(j=1;j<=cptcoveff;j++)    if(jprojmean==0) jprojmean=1;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if(mprojmean==0) jprojmean=1;
         fprintf(ficrespij,"******\n");  
            i1=cptcoveff;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    if (cptcovn < 1){i1=1;}
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    fprintf(ficresf,"#****** Routine prevforecast **\n");
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*            if (h==(int)(YEARM*yearp)){ */
           oldm=oldms;savm=savms;    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           fprintf(ficrespij,"# Age");        k=k+1;
           for(i=1; i<=nlstate;i++)        fprintf(ficresf,"\n#******");
             for(j=1; j<=nlstate+ndeath;j++)        for(j=1;j<=cptcoveff;j++) {
               fprintf(ficrespij," %1d-%1d",i,j);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"\n");        }
            for (h=0; h<=nhstepm; h++){        fprintf(ficresf,"******\n");
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
             for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate+ndeath;j++){ 
               for(j=1; j<=nlstate+ndeath;j++)          for(i=1; i<=nlstate;i++)              
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            fprintf(ficresf," p%d%d",i,j);
             fprintf(ficrespij,"\n");          fprintf(ficresf," p.%d",j);
              }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficrespij,"\n");          fprintf(ficresf,"\n");
         }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     }  
   }          for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficrespij);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
   /*---------- Forecasting ------------------*/            for (h=0; h<=nhstepm; h++){
   if((stepm == 1) && (strcmp(model,".")==0)){              if (h*hstepm/YEARM*stepm ==yearp) {
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                fprintf(ficresf,"\n");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                for(j=1;j<=cptcoveff;j++) 
   }                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   else{                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     erreur=108;              } 
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);              for(j=1; j<=nlstate+ndeath;j++) {
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                ppij=0.;
   }                for(i=1; i<=nlstate;i++) {
                    if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   /*---------- Health expectancies and variances ------------*/                  else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   strcpy(filerest,"t");                  }
   strcat(filerest,fileres);                  if (h*hstepm/YEARM*stepm== yearp) {
   if((ficrest=fopen(filerest,"w"))==NULL) {                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                  }
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;                } /* end i */
   }                if (h*hstepm/YEARM*stepm==yearp) {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                  fprintf(ficresf," %.3f", ppij);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);                }
               }/* end j */
             } /* end h */
   strcpy(filerese,"e");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(filerese,fileres);          } /* end agec */
   if((ficreseij=fopen(filerese,"w"))==NULL) {        } /* end yearp */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      } /* end cptcod */
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    } /* end  cptcov */
   }         
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  
     fclose(ficresf);
   strcpy(fileresv,"v");  }
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  /************** Forecasting *****not tested NB*************/
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    
   }    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    int *popage;
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double calagedatem, agelim, kk1, kk2;
   calagedate=-1;    double *popeffectif,*popcount;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
   k=0;    char filerespop[FILENAMELENGTH];
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       k=k+1;    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficrest,"\n#****** ");    agelim=AGESUP;
       for(j=1;j<=cptcoveff;j++)    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       fprintf(ficrest,"******\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
       fprintf(ficreseij,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)    strcpy(filerespop,"pop"); 
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcat(filerespop,fileres);
       fprintf(ficreseij,"******\n");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficresvij,"\n#****** ");      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("Computing forecasting: result on file '%s' \n", filerespop);
       fprintf(ficresvij,"******\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       oldm=oldms;savm=savms;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       if(popbased==1){      }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    }
        }  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
      if (stepm<=12) stepsize=1;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    agelim=AGESUP;
       fprintf(ficrest,"\n");    
     hstepm=1;
       epj=vector(1,nlstate+1);    hstepm=hstepm/stepm; 
       for(age=bage; age <=fage ;age++){    
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    if (popforecast==1) {
         if (popbased==1) {      if((ficpop=fopen(popfile,"r"))==NULL) {
           for(i=1; i<=nlstate;i++)        printf("Problem with population file : %s\n",popfile);exit(0);
             prlim[i][i]=probs[(int)age][i][k];        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
         }      } 
              popage=ivector(0,AGESUP);
         fprintf(ficrest," %4.0f",age);      popeffectif=vector(0,AGESUP);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      popcount=vector(0,AGESUP);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      i=1;   
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
           }     
           epj[nlstate+1] +=epj[j];      imx=i;
         }      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
             vepp += vareij[i][j][(int)age];     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        k=k+1;
         for(j=1;j <=nlstate;j++){        fprintf(ficrespop,"\n#******");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        for(j=1;j<=cptcoveff;j++) {
         }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"\n");        }
       }        fprintf(ficrespop,"******\n");
     }        fprintf(ficrespop,"# Age");
   }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
 free_matrix(mint,1,maxwav,1,n);        if (popforecast==1)  fprintf(ficrespop," [Population]");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        
     free_vector(weight,1,n);        for (cpt=0; cpt<=0;cpt++) { 
   fclose(ficreseij);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   fclose(ficresvij);          
   fclose(ficrest);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   fclose(ficpar);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   free_vector(epj,1,nlstate+1);            nhstepm = nhstepm/hstepm; 
              
   /*------- Variance limit prevalence------*/              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
   strcpy(fileresvpl,"vpl");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   strcat(fileresvpl,fileres);          
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            for (h=0; h<=nhstepm; h++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              if (h==(int) (calagedatem+YEARM*cpt)) {
     exit(0);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   }              } 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
   k=0;                for(i=1; i<=nlstate;i++) {              
   for(cptcov=1;cptcov<=i1;cptcov++){                  if (mobilav==1) 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
       k=k+1;                  else {
       fprintf(ficresvpl,"\n#****** ");                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
       for(j=1;j<=cptcoveff;j++)                  }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                }
       fprintf(ficresvpl,"******\n");                if (h==(int)(calagedatem+12*cpt)){
                        tabpop[(int)(agedeb)][j][cptcod]=kk1;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                    /*fprintf(ficrespop," %.3f", kk1);
       oldm=oldms;savm=savms;                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                }
     }              }
  }              for(i=1; i<=nlstate;i++){
                 kk1=0.;
   fclose(ficresvpl);                  for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   /*---------- End : free ----------------*/                  }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
                }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                  fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
              }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);   
      /******/
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   free_matrix(agev,1,maxwav,1,imx);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   fprintf(fichtm,"\n</body>");            nhstepm = nhstepm/hstepm; 
   fclose(fichtm);            
   fclose(ficgp);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   if(erreur >0){            for (h=0; h<=nhstepm; h++){
     printf("End of Imach with error or warning %d\n",erreur);              if (h==(int) (calagedatem+YEARM*cpt)) {
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   }else{              } 
    printf("End of Imach\n");              for(j=1; j<=nlstate+ndeath;j++) {
    fprintf(ficlog,"End of Imach\n");                kk1=0.;kk2=0;
   }                for(i=1; i<=nlstate;i++) {              
   printf("See log file on %s\n",filelog);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   fclose(ficlog);                }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
                }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            }
   /*printf("Total time was %d uSec.\n", total_usecs);*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*------ End -----------*/          }
         }
      } 
  end:    }
 #ifdef windows   
   /* chdir(pathcd);*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 #endif  
  /*system("wgnuplot graph.plt");*/    if (popforecast==1) {
  /*system("../gp37mgw/wgnuplot graph.plt");*/      free_ivector(popage,0,AGESUP);
  /*system("cd ../gp37mgw");*/      free_vector(popeffectif,0,AGESUP);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      free_vector(popcount,0,AGESUP);
  strcpy(plotcmd,GNUPLOTPROGRAM);    }
  strcat(plotcmd," ");    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  strcat(plotcmd,optionfilegnuplot);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  system(plotcmd);    fclose(ficrespop);
   } /* End of popforecast */
 #ifdef windows  
   while (z[0] != 'q') {  int fileappend(FILE *fichier, char *optionfich)
     /* chdir(path); */  {
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    if((fichier=fopen(optionfich,"a"))==NULL) {
     scanf("%s",z);      printf("Problem with file: %s\n", optionfich);
     if (z[0] == 'c') system("./imach");      fprintf(ficlog,"Problem with file: %s\n", optionfich);
     else if (z[0] == 'e') system(optionfilehtm);      return (0);
     else if (z[0] == 'g') system(plotcmd);    }
     else if (z[0] == 'q') exit(0);    fflush(fichier);
   }    return (1);
 #endif  }
 }  
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.121


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>