Diff for /imach/src/imach.c between versions 1.48 and 1.114

version 1.48, 2002/06/10 13:12:49 version 1.114, 2006/02/26 12:57:58
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.114  2006/02/26 12:57:58  brouard
      (Module): Some improvements in processing parameter
   This program computes Healthy Life Expectancies from    filename with strsep.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.113  2006/02/24 14:20:24  brouard
   interviewed on their health status or degree of disability (in the    (Module): Memory leaks checks with valgrind and:
   case of a health survey which is our main interest) -2- at least a    datafile was not closed, some imatrix were not freed and on matrix
   second wave of interviews ("longitudinal") which measure each change    allocation too.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.112  2006/01/30 09:55:26  brouard
   model. More health states you consider, more time is necessary to reach the    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.111  2006/01/25 20:38:18  brouard
   probability to be observed in state j at the second wave    (Module): Lots of cleaning and bugs added (Gompertz)
   conditional to be observed in state i at the first wave. Therefore    (Module): Comments can be added in data file. Missing date values
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    can be a simple dot '.'.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.110  2006/01/25 00:51:50  brouard
   where the markup *Covariates have to be included here again* invites    (Module): Lots of cleaning and bugs added (Gompertz)
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.108  2006/01/19 18:05:42  lievre
   identical for each individual. Also, if a individual missed an    Gnuplot problem appeared...
   intermediate interview, the information is lost, but taken into    To be fixed
   account using an interpolation or extrapolation.    
     Revision 1.107  2006/01/19 16:20:37  brouard
   hPijx is the probability to be observed in state i at age x+h    Test existence of gnuplot in imach path
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.106  2006/01/19 13:24:36  brouard
   states. This elementary transition (by month or quarter trimester,    Some cleaning and links added in html output
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.105  2006/01/05 20:23:19  lievre
   and the contribution of each individual to the likelihood is simply    *** empty log message ***
   hPijx.  
     Revision 1.104  2005/09/30 16:11:43  lievre
   Also this programme outputs the covariance matrix of the parameters but also    (Module): sump fixed, loop imx fixed, and simplifications.
   of the life expectancies. It also computes the prevalence limits.    (Module): If the status is missing at the last wave but we know
      that the person is alive, then we can code his/her status as -2
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (instead of missing=-1 in earlier versions) and his/her
            Institut national d'études démographiques, Paris.    contributions to the likelihood is 1 - Prob of dying from last
   This software have been partly granted by Euro-REVES, a concerted action    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   from the European Union.    the healthy state at last known wave). Version is 0.98
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.103  2005/09/30 15:54:49  lievre
   can be accessed at http://euroreves.ined.fr/imach .    (Module): sump fixed, loop imx fixed, and simplifications.
   **********************************************************************/  
      Revision 1.102  2004/09/15 17:31:30  brouard
 #include <math.h>    Add the possibility to read data file including tab characters.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.101  2004/09/15 10:38:38  brouard
 #include <unistd.h>    Fix on curr_time
   
 #define MAXLINE 256    Revision 1.100  2004/07/12 18:29:06  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Add version for Mac OS X. Just define UNIX in Makefile
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.99  2004/06/05 08:57:40  brouard
 /*#define DEBUG*/    *** empty log message ***
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.98  2004/05/16 15:05:56  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    state at each age, but using a Gompertz model: log u =a + b*age .
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 #define NINTERVMAX 8    cross-longitudinal survey is different from the mortality estimated
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    from other sources like vital statistic data.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    The same imach parameter file can be used but the option for mle should be -3.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Agnès, who wrote this part of the code, tried to keep most of the
 #define AGESUP 130    former routines in order to include the new code within the former code.
 #define AGEBASE 40  
 #ifdef windows    The output is very simple: only an estimate of the intercept and of
 #define DIRSEPARATOR '\\'    the slope with 95% confident intervals.
 #else  
 #define DIRSEPARATOR '/'    Current limitations:
 #endif    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";    B) There is no computation of Life Expectancy nor Life Table.
 int erreur; /* Error number */  
 int nvar;    Revision 1.97  2004/02/20 13:25:42  lievre
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Version 0.96d. Population forecasting command line is (temporarily)
 int npar=NPARMAX;    suppressed.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.96  2003/07/15 15:38:55  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int popbased=0;    rewritten within the same printf. Workaround: many printfs.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.95  2003/07/08 07:54:34  brouard
 int maxwav; /* Maxim number of waves */    * imach.c (Repository):
 int jmin, jmax; /* min, max spacing between 2 waves */    (Repository): Using imachwizard code to output a more meaningful covariance
 int mle, weightopt;    matrix (cov(a12,c31) instead of numbers.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.94  2003/06/27 13:00:02  brouard
 double jmean; /* Mean space between 2 waves */    Just cleaning
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.93  2003/06/25 16:33:55  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): On windows (cygwin) function asctime_r doesn't
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    exist so I changed back to asctime which exists.
 FILE *fichtm; /* Html File */    (Module): Version 0.96b
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.92  2003/06/25 16:30:45  brouard
 FILE  *ficresvij;    (Module): On windows (cygwin) function asctime_r doesn't
 char fileresv[FILENAMELENGTH];    exist so I changed back to asctime which exists.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.91  2003/06/25 15:30:29  brouard
 char title[MAXLINE];    * imach.c (Repository): Duplicated warning errors corrected.
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    (Repository): Elapsed time after each iteration is now output. It
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    concerning matrix of covariance. It has extension -cov.htm.
   
 char filerest[FILENAMELENGTH];    Revision 1.90  2003/06/24 12:34:15  brouard
 char fileregp[FILENAMELENGTH];    (Module): Some bugs corrected for windows. Also, when
 char popfile[FILENAMELENGTH];    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.89  2003/06/24 12:30:52  brouard
 #define NR_END 1    (Module): Some bugs corrected for windows. Also, when
 #define FREE_ARG char*    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FTOL 1.0e-10    of the covariance matrix to be input.
   
 #define NRANSI    Revision 1.88  2003/06/23 17:54:56  brouard
 #define ITMAX 200    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 #define TOL 2.0e-4    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.86  2003/06/17 20:04:08  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.85  2003/06/17 13:12:43  brouard
 #define TINY 1.0e-20    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 static double maxarg1,maxarg2;    prior to the death. In this case, dh was negative and likelihood
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    was wrong (infinity). We still send an "Error" but patch by
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    assuming that the date of death was just one stepm after the
      interview.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Repository): Because some people have very long ID (first column)
 #define rint(a) floor(a+0.5)    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 static double sqrarg;    truncation)
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Repository): No more line truncation errors.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.84  2003/06/13 21:44:43  brouard
 int imx;    * imach.c (Repository): Replace "freqsummary" at a correct
 int stepm;    place. It differs from routine "prevalence" which may be called
 /* Stepm, step in month: minimum step interpolation*/    many times. Probs is memory consuming and must be used with
     parcimony.
 int estepm;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.83  2003/06/10 13:39:11  lievre
 int m,nb;    *** empty log message ***
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.82  2003/06/05 15:57:20  brouard
 double **pmmij, ***probs, ***mobaverage;    Add log in  imach.c and  fullversion number is now printed.
 double dateintmean=0;  
   */
 double *weight;  /*
 int **s; /* Status */     Interpolated Markov Chain
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Short summary of the programme:
     
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    This program computes Healthy Life Expectancies from
 double ftolhess; /* Tolerance for computing hessian */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 /**************** split *************************/    interviewed on their health status or degree of disability (in the
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    case of a health survey which is our main interest) -2- at least a
 {    second wave of interviews ("longitudinal") which measure each change
    char *s;                             /* pointer */    (if any) in individual health status.  Health expectancies are
    int  l1, l2;                         /* length counters */    computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
    l1 = strlen( path );                 /* length of path */    Maximum Likelihood of the parameters involved in the model.  The
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    simplest model is the multinomial logistic model where pij is the
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */    probability to be observed in state j at the second wave
    if ( s == NULL ) {                   /* no directory, so use current */    conditional to be observed in state i at the first wave. Therefore
 #if     defined(__bsd__)                /* get current working directory */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       extern char       *getwd( );    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
       if ( getwd( dirc ) == NULL ) {    where the markup *Covariates have to be included here again* invites
 #else    you to do it.  More covariates you add, slower the
       extern char       *getcwd( );    convergence.
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    The advantage of this computer programme, compared to a simple
 #endif    multinomial logistic model, is clear when the delay between waves is not
          return( GLOCK_ERROR_GETCWD );    identical for each individual. Also, if a individual missed an
       }    intermediate interview, the information is lost, but taken into
       strcpy( name, path );             /* we've got it */    account using an interpolation or extrapolation.  
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    hPijx is the probability to be observed in state i at age x+h
       l2 = strlen( s );                 /* length of filename */    conditional to the observed state i at age x. The delay 'h' can be
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    split into an exact number (nh*stepm) of unobserved intermediate
       strcpy( name, s );                /* save file name */    states. This elementary transition (by month, quarter,
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    semester or year) is modelled as a multinomial logistic.  The hPx
       dirc[l1-l2] = 0;                  /* add zero */    matrix is simply the matrix product of nh*stepm elementary matrices
    }    and the contribution of each individual to the likelihood is simply
    l1 = strlen( dirc );                 /* length of directory */    hPijx.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Also this programme outputs the covariance matrix of the parameters but also
 #else    of the life expectancies. It also computes the stable prevalence. 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    
 #endif    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    s = strrchr( name, '.' );            /* find last / */             Institut national d'études démographiques, Paris.
    s++;    This software have been partly granted by Euro-REVES, a concerted action
    strcpy(ext,s);                       /* save extension */    from the European Union.
    l1= strlen( name);    It is copyrighted identically to a GNU software product, ie programme and
    l2= strlen( s)+1;    software can be distributed freely for non commercial use. Latest version
    strncpy( finame, name, l1-l2);    can be accessed at http://euroreves.ined.fr/imach .
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
     **********************************************************************/
 /******************************************/  /*
     main
 void replace(char *s, char*t)    read parameterfile
 {    read datafile
   int i;    concatwav
   int lg=20;    freqsummary
   i=0;    if (mle >= 1)
   lg=strlen(t);      mlikeli
   for(i=0; i<= lg; i++) {    print results files
     (s[i] = t[i]);    if mle==1 
     if (t[i]== '\\') s[i]='/';       computes hessian
   }    read end of parameter file: agemin, agemax, bage, fage, estepm
 }        begin-prev-date,...
     open gnuplot file
 int nbocc(char *s, char occ)    open html file
 {    stable prevalence
   int i,j=0;     for age prevalim()
   int lg=20;    h Pij x
   i=0;    variance of p varprob
   lg=strlen(s);    forecasting if prevfcast==1 prevforecast call prevalence()
   for(i=0; i<= lg; i++) {    health expectancies
   if  (s[i] == occ ) j++;    Variance-covariance of DFLE
   }    prevalence()
   return j;     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 void cutv(char *u,char *v, char*t, char occ)    total life expectancies
 {    Variance of stable prevalence
   int i,lg,j,p=0;   end
   i=0;  */
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  
    
   lg=strlen(t);  #include <math.h>
   for(j=0; j<p; j++) {  #include <stdio.h>
     (u[j] = t[j]);  #include <stdlib.h>
   }  #include <string.h>
      u[p]='\0';  #include <unistd.h>
   
    for(j=0; j<= lg; j++) {  #include <limits.h>
     if (j>=(p+1))(v[j-p-1] = t[j]);  #include <sys/types.h>
   }  #include <sys/stat.h>
 }  #include <errno.h>
   extern int errno;
 /********************** nrerror ********************/  
   /* #include <sys/time.h> */
 void nrerror(char error_text[])  #include <time.h>
 {  #include "timeval.h"
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  /* #include <libintl.h> */
   exit(1);  /* #define _(String) gettext (String) */
 }  
 /*********************** vector *******************/  #define MAXLINE 256
 double *vector(int nl, int nh)  
 {  #define GNUPLOTPROGRAM "gnuplot"
   double *v;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define FILENAMELENGTH 132
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /************************ free vector ******************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 void free_vector(double*v, int nl, int nh)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 /************************ivector *******************************/  #define NCOVMAX 8 /* Maximum number of covariates */
 int *ivector(long nl,long nh)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   int *v;  #define AGESUP 130
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define AGEBASE 40
   if (!v) nrerror("allocation failure in ivector");  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   return v-nl+NR_END;  #ifdef UNIX
 }  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
 /******************free ivector **************************/  #define ODIRSEPARATOR '\\'
 void free_ivector(int *v, long nl, long nh)  #else
 {  #define DIRSEPARATOR '\\'
   free((FREE_ARG)(v+nl-NR_END));  #define CHARSEPARATOR "\\"
 }  #define ODIRSEPARATOR '/'
   #endif
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  /* $Id$ */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /* $State$ */
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
   int **m;  char fullversion[]="$Revision$ $Date$"; 
    int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   /* allocate pointers to rows */  int nvar;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   if (!m) nrerror("allocation failure 1 in matrix()");  int npar=NPARMAX;
   m += NR_END;  int nlstate=2; /* Number of live states */
   m -= nrl;  int ndeath=1; /* Number of dead states */
    int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
    int popbased=0;
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int *wav; /* Number of waves for this individuual 0 is possible */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int maxwav; /* Maxim number of waves */
   m[nrl] += NR_END;  int jmin, jmax; /* min, max spacing between 2 waves */
   m[nrl] -= ncl;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
    int gipmx, gsw; /* Global variables on the number of contributions 
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;                     to the likelihood and the sum of weights (done by funcone)*/
    int mle, weightopt;
   /* return pointer to array of pointers to rows */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   return m;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /****************** free_imatrix *************************/  double jmean; /* Mean space between 2 waves */
 void free_imatrix(m,nrl,nrh,ncl,nch)  double **oldm, **newm, **savm; /* Working pointers to matrices */
       int **m;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       long nch,ncl,nrh,nrl;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
      /* free an int matrix allocated by imatrix() */  FILE *ficlog, *ficrespow;
 {  int globpr; /* Global variable for printing or not */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  double fretone; /* Only one call to likelihood */
   free((FREE_ARG) (m+nrl-NR_END));  long ipmx; /* Number of contributions */
 }  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
 /******************* matrix *******************************/  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 double **matrix(long nrl, long nrh, long ncl, long nch)  FILE *ficresilk;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  FILE *ficresprobmorprev;
   double **m;  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char filerese[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE  *ficresvij;
   m += NR_END;  char fileresv[FILENAMELENGTH];
   m -= nrl;  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char title[MAXLINE];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m[nrl] += NR_END;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   m[nrl] -= ncl;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int  outcmd=0;
   return m;  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 /*************************free matrix ************************/  char filelog[FILENAMELENGTH]; /* Log file */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char popfile[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  
 }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
 /******************* ma3x *******************************/  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  struct timezone tzp;
 {  extern int gettimeofday();
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   double ***m;  long time_value;
   extern long time();
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char strcurr[80], strfor[80];
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  char *endptr;
   m -= nrl;  long lval;
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define NR_END 1
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FREE_ARG char*
   m[nrl] += NR_END;  #define FTOL 1.0e-10
   m[nrl] -= ncl;  
   #define NRANSI 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define ITMAX 200 
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define TOL 2.0e-4 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  #define CGOLD 0.3819660 
   m[nrl][ncl] -= nll;  #define ZEPS 1.0e-10 
   for (j=ncl+1; j<=nch; j++)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #define GOLD 1.618034 
   for (i=nrl+1; i<=nrh; i++) {  #define GLIMIT 100.0 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define TINY 1.0e-20 
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  static double maxarg1,maxarg2;
   }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   return m;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 /*************************free ma3x ************************/  #define rint(a) floor(a+0.5)
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  static double sqrarg;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   free((FREE_ARG)(m+nrl-NR_END));  int agegomp= AGEGOMP;
 }  
   int imx; 
 /***************** f1dim *************************/  int stepm=1;
 extern int ncom;  /* Stepm, step in month: minimum step interpolation*/
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  int estepm;
    /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 double f1dim(double x)  
 {  int m,nb;
   int j;  long *num;
   double f;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double *xt;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    double **pmmij, ***probs;
   xt=vector(1,ncom);  double *ageexmed,*agecens;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double dateintmean=0;
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  double *weight;
   return f;  int **s; /* Status */
 }  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 /*****************brent *************************/  double *lsurv, *lpop, *tpop;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   int iter;  double ftolhess; /* Tolerance for computing hessian */
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /**************** split *************************/
   double ftemp;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double p,q,r,tol1,tol2,u,v,w,x,xm;  {
   double e=0.0;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         the name of the file (name), its extension only (ext) and its first part of the name (finame)
   a=(ax < cx ? ax : cx);    */ 
   b=(ax > cx ? ax : cx);    char  *ss;                            /* pointer */
   x=w=v=bx;    int   l1, l2;                         /* length counters */
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    l1 = strlen(path );                   /* length of path */
     xm=0.5*(a+b);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     printf(".");fflush(stdout);      strcpy( name, path );               /* we got the fullname name because no directory */
 #ifdef DEBUG      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      /* get current working directory */
 #endif      /*    extern  char* getcwd ( char *buf , int len);*/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       *xmin=x;        return( GLOCK_ERROR_GETCWD );
       return fx;      }
     }      /* got dirc from getcwd*/
     ftemp=fu;      printf(" DIRC = %s \n",dirc);
     if (fabs(e) > tol1) {    } else {                              /* strip direcotry from path */
       r=(x-w)*(fx-fv);      ss++;                               /* after this, the filename */
       q=(x-v)*(fx-fw);      l2 = strlen( ss );                  /* length of filename */
       p=(x-v)*q-(x-w)*r;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       q=2.0*(q-r);      strcpy( name, ss );         /* save file name */
       if (q > 0.0) p = -p;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       q=fabs(q);      dirc[l1-l2] = 0;                    /* add zero */
       etemp=e;      printf(" DIRC2 = %s \n",dirc);
       e=d;    }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    /* We add a separator at the end of dirc if not exists */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    l1 = strlen( dirc );                  /* length of directory */
       else {    if( dirc[l1-1] != DIRSEPARATOR ){
         d=p/q;      dirc[l1] =  DIRSEPARATOR;
         u=x+d;      dirc[l1+1] = 0; 
         if (u-a < tol2 || b-u < tol2)      printf(" DIRC3 = %s \n",dirc);
           d=SIGN(tol1,xm-x);    }
       }    ss = strrchr( name, '.' );            /* find last / */
     } else {    if (ss >0){
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      ss++;
     }      strcpy(ext,ss);                     /* save extension */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      l1= strlen( name);
     fu=(*f)(u);      l2= strlen(ss)+1;
     if (fu <= fx) {      strncpy( finame, name, l1-l2);
       if (u >= x) a=x; else b=x;      finame[l1-l2]= 0;
       SHFT(v,w,x,u)    }
         SHFT(fv,fw,fx,fu)  
         } else {    return( 0 );                          /* we're done */
           if (u < x) a=u; else b=u;  }
           if (fu <= fw || w == x) {  
             v=w;  
             w=u;  /******************************************/
             fv=fw;  
             fw=fu;  void replace_back_to_slash(char *s, char*t)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    int i;
             fv=fu;    int lg=0;
           }    i=0;
         }    lg=strlen(t);
   }    for(i=0; i<= lg; i++) {
   nrerror("Too many iterations in brent");      (s[i] = t[i]);
   *xmin=x;      if (t[i]== '\\') s[i]='/';
   return fx;    }
 }  }
   
 /****************** mnbrak ***********************/  int nbocc(char *s, char occ)
   {
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    int i,j=0;
             double (*func)(double))    int lg=20;
 {    i=0;
   double ulim,u,r,q, dum;    lg=strlen(s);
   double fu;    for(i=0; i<= lg; i++) {
      if  (s[i] == occ ) j++;
   *fa=(*func)(*ax);    }
   *fb=(*func)(*bx);    return j;
   if (*fb > *fa) {  }
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  void cutv(char *u,char *v, char*t, char occ)
       }  {
   *cx=(*bx)+GOLD*(*bx-*ax);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   *fc=(*func)(*cx);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   while (*fb > *fc) {       gives u="abcedf" and v="ghi2j" */
     r=(*bx-*ax)*(*fb-*fc);    int i,lg,j,p=0;
     q=(*bx-*cx)*(*fb-*fa);    i=0;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    for(j=0; j<=strlen(t)-1; j++) {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    }
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);    lg=strlen(t);
     } else if ((*cx-u)*(u-ulim) > 0.0) {    for(j=0; j<p; j++) {
       fu=(*func)(u);      (u[j] = t[j]);
       if (fu < *fc) {    }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))       u[p]='\0';
           SHFT(*fb,*fc,fu,(*func)(u))  
           }     for(j=0; j<= lg; j++) {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      if (j>=(p+1))(v[j-p-1] = t[j]);
       u=ulim;    }
       fu=(*func)(u);  }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /********************** nrerror ********************/
       fu=(*func)(u);  
     }  void nrerror(char error_text[])
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    fprintf(stderr,"ERREUR ...\n");
       }    fprintf(stderr,"%s\n",error_text);
 }    exit(EXIT_FAILURE);
   }
 /*************** linmin ************************/  /*********************** vector *******************/
   double *vector(int nl, int nh)
 int ncom;  {
 double *pcom,*xicom;    double *v;
 double (*nrfunc)(double []);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      if (!v) nrerror("allocation failure in vector");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    return v-nl+NR_END;
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /************************ free vector ******************/
   double f1dim(double x);  void free_vector(double*v, int nl, int nh)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    free((FREE_ARG)(v+nl-NR_END));
   int j;  }
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /************************ivector *******************************/
    int *ivector(long nl,long nh)
   ncom=n;  {
   pcom=vector(1,n);    int *v;
   xicom=vector(1,n);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   nrfunc=func;    if (!v) nrerror("allocation failure in ivector");
   for (j=1;j<=n;j++) {    return v-nl+NR_END;
     pcom[j]=p[j];  }
     xicom[j]=xi[j];  
   }  /******************free ivector **************************/
   ax=0.0;  void free_ivector(int *v, long nl, long nh)
   xx=1.0;  {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    free((FREE_ARG)(v+nl-NR_END));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  }
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /************************lvector *******************************/
 #endif  long *lvector(long nl,long nh)
   for (j=1;j<=n;j++) {  {
     xi[j] *= xmin;    long *v;
     p[j] += xi[j];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   }    if (!v) nrerror("allocation failure in ivector");
   free_vector(xicom,1,n);    return v-nl+NR_END;
   free_vector(pcom,1,n);  }
 }  
   /******************free lvector **************************/
 /*************** powell ************************/  void free_lvector(long *v, long nl, long nh)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    free((FREE_ARG)(v+nl-NR_END));
 {  }
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  /******************* imatrix *******************************/
   int i,ibig,j;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double del,t,*pt,*ptt,*xit;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double fp,fptt;  { 
   double *xits;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   pt=vector(1,n);    int **m; 
   ptt=vector(1,n);    
   xit=vector(1,n);    /* allocate pointers to rows */ 
   xits=vector(1,n);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   *fret=(*func)(p);    if (!m) nrerror("allocation failure 1 in matrix()"); 
   for (j=1;j<=n;j++) pt[j]=p[j];    m += NR_END; 
   for (*iter=1;;++(*iter)) {    m -= nrl; 
     fp=(*fret);    
     ibig=0;    
     del=0.0;    /* allocate rows and set pointers to them */ 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     for (i=1;i<=n;i++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       printf(" %d %.12f",i, p[i]);    m[nrl] += NR_END; 
     printf("\n");    m[nrl] -= ncl; 
     for (i=1;i<=n;i++) {    
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       fptt=(*fret);    
 #ifdef DEBUG    /* return pointer to array of pointers to rows */ 
       printf("fret=%lf \n",*fret);    return m; 
 #endif  } 
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  /****************** free_imatrix *************************/
       if (fabs(fptt-(*fret)) > del) {  void free_imatrix(m,nrl,nrh,ncl,nch)
         del=fabs(fptt-(*fret));        int **m;
         ibig=i;        long nch,ncl,nrh,nrl; 
       }       /* free an int matrix allocated by imatrix() */ 
 #ifdef DEBUG  { 
       printf("%d %.12e",i,(*fret));    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       for (j=1;j<=n;j++) {    free((FREE_ARG) (m+nrl-NR_END)); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  } 
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  /******************* matrix *******************************/
       for(j=1;j<=n;j++)  double **matrix(long nrl, long nrh, long ncl, long nch)
         printf(" p=%.12e",p[j]);  {
       printf("\n");    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 #endif    double **m;
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
       int k[2],l;    m += NR_END;
       k[0]=1;    m -= nrl;
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (j=1;j<=n;j++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         printf(" %.12e",p[j]);    m[nrl] += NR_END;
       printf("\n");    m[nrl] -= ncl;
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    return m;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         }     */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  }
       }  
 #endif  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
       free_vector(xit,1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       free_vector(xits,1,n);    free((FREE_ARG)(m+nrl-NR_END));
       free_vector(ptt,1,n);  }
       free_vector(pt,1,n);  
       return;  /******************* ma3x *******************************/
     }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  {
     for (j=1;j<=n;j++) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       ptt[j]=2.0*p[j]-pt[j];    double ***m;
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
     fptt=(*func)(ptt);    m += NR_END;
     if (fptt < fp) {    m -= nrl;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         linmin(p,xit,n,fret,func);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         for (j=1;j<=n;j++) {    m[nrl] += NR_END;
           xi[j][ibig]=xi[j][n];    m[nrl] -= ncl;
           xi[j][n]=xit[j];  
         }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         for(j=1;j<=n;j++)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           printf(" %.12e",xit[j]);    m[nrl][ncl] += NR_END;
         printf("\n");    m[nrl][ncl] -= nll;
 #endif    for (j=ncl+1; j<=nch; j++) 
       }      m[nrl][j]=m[nrl][j-1]+nlay;
     }    
   }    for (i=nrl+1; i<=nrh; i++) {
 }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
 /**** Prevalence limit ****************/        m[i][j]=m[i][j-1]+nlay;
     }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    return m; 
 {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
      matrix by transitions matrix until convergence is reached */    */
   }
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  /*************************free ma3x ************************/
   double **matprod2();  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   double agefin, delaymax=50 ; /* Max number of years to converge */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   for (ii=1;ii<=nlstate+ndeath;ii++)  }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*************** function subdirf ***********/
     }  char *subdirf(char fileres[])
   {
    cov[1]=1.;    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcat(tmpout,"/"); /* Add to the right */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    strcat(tmpout,fileres);
     newm=savm;    return tmpout;
     /* Covariates have to be included here again */  }
      cov[2]=agefin;  
    /*************** function subdirf2 ***********/
       for (k=1; k<=cptcovn;k++) {  char *subdirf2(char fileres[], char *preop)
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  {
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    
       }    /* Caution optionfilefiname is hidden */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    strcpy(tmpout,optionfilefiname);
       for (k=1; k<=cptcovprod;k++)    strcat(tmpout,"/");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(tmpout,preop);
     strcat(tmpout,fileres);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    return tmpout;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
     savm=oldm;  {
     oldm=newm;    
     maxmax=0.;    /* Caution optionfilefiname is hidden */
     for(j=1;j<=nlstate;j++){    strcpy(tmpout,optionfilefiname);
       min=1.;    strcat(tmpout,"/");
       max=0.;    strcat(tmpout,preop);
       for(i=1; i<=nlstate; i++) {    strcat(tmpout,preop2);
         sumnew=0;    strcat(tmpout,fileres);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    return tmpout;
         prlim[i][j]= newm[i][j]/(1-sumnew);  }
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  /***************** f1dim *************************/
       }  extern int ncom; 
       maxmin=max-min;  extern double *pcom,*xicom;
       maxmax=FMAX(maxmax,maxmin);  extern double (*nrfunc)(double []); 
     }   
     if(maxmax < ftolpl){  double f1dim(double x) 
       return prlim;  { 
     }    int j; 
   }    double f;
 }    double *xt; 
    
 /*************** transition probabilities ***************/    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    f=(*nrfunc)(xt); 
 {    free_vector(xt,1,ncom); 
   double s1, s2;    return f; 
   /*double t34;*/  } 
   int i,j,j1, nc, ii, jj;  
   /*****************brent *************************/
     for(i=1; i<= nlstate; i++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     for(j=1; j<i;j++){  { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    int iter; 
         /*s2 += param[i][j][nc]*cov[nc];*/    double a,b,d,etemp;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double fu,fv,fw,fx;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double ftemp;
       }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       ps[i][j]=s2;    double e=0.0; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/   
     }    a=(ax < cx ? ax : cx); 
     for(j=i+1; j<=nlstate+ndeath;j++){    b=(ax > cx ? ax : cx); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    x=w=v=bx; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    fw=fv=fx=(*f)(x); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    for (iter=1;iter<=ITMAX;iter++) { 
       }      xm=0.5*(a+b); 
       ps[i][j]=s2;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   }      printf(".");fflush(stdout);
     /*ps[3][2]=1;*/      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
   for(i=1; i<= nlstate; i++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      s1=0;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(j=1; j<i; j++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       s1+=exp(ps[i][j]);  #endif
     for(j=i+1; j<=nlstate+ndeath; j++)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       s1+=exp(ps[i][j]);        *xmin=x; 
     ps[i][i]=1./(s1+1.);        return fx; 
     for(j=1; j<i; j++)      } 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      ftemp=fu;
     for(j=i+1; j<=nlstate+ndeath; j++)      if (fabs(e) > tol1) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        r=(x-w)*(fx-fv); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        q=(x-v)*(fx-fw); 
   } /* end i */        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        if (q > 0.0) p = -p; 
     for(jj=1; jj<= nlstate+ndeath; jj++){        q=fabs(q); 
       ps[ii][jj]=0;        etemp=e; 
       ps[ii][ii]=1;        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
           d=p/q; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          u=x+d; 
     for(jj=1; jj<= nlstate+ndeath; jj++){          if (u-a < tol2 || b-u < tol2) 
      printf("%lf ",ps[ii][jj]);            d=SIGN(tol1,xm-x); 
    }        } 
     printf("\n ");      } else { 
     }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     printf("\n ");printf("%lf ",cov[2]);*/      } 
 /*      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      fu=(*f)(u); 
   goto end;*/      if (fu <= fx) { 
     return ps;        if (u >= x) a=x; else b=x; 
 }        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
 /**************** Product of 2 matrices ******************/          } else { 
             if (u < x) a=u; else b=u; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)            if (fu <= fw || w == x) { 
 {              v=w; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times              w=u; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */              fv=fw; 
   /* in, b, out are matrice of pointers which should have been initialized              fw=fu; 
      before: only the contents of out is modified. The function returns            } else if (fu <= fv || v == x || v == w) { 
      a pointer to pointers identical to out */              v=u; 
   long i, j, k;              fv=fu; 
   for(i=nrl; i<= nrh; i++)            } 
     for(k=ncolol; k<=ncoloh; k++)          } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    } 
         out[i][k] +=in[i][j]*b[j][k];    nrerror("Too many iterations in brent"); 
     *xmin=x; 
   return out;    return fx; 
 }  } 
   
   /****************** mnbrak ***********************/
 /************* Higher Matrix Product ***************/  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )              double (*func)(double)) 
 {  { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    double ulim,u,r,q, dum;
      duration (i.e. until    double fu; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.   
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    *fa=(*func)(*ax); 
      (typically every 2 years instead of every month which is too big).    *fb=(*func)(*bx); 
      Model is determined by parameters x and covariates have to be    if (*fb > *fa) { 
      included manually here.      SHFT(dum,*ax,*bx,dum) 
         SHFT(dum,*fb,*fa,dum) 
      */        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
   int i, j, d, h, k;    *fc=(*func)(*cx); 
   double **out, cov[NCOVMAX];    while (*fb > *fc) { 
   double **newm;      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
   /* Hstepm could be zero and should return the unit matrix */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   for (i=1;i<=nlstate+ndeath;i++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for (j=1;j<=nlstate+ndeath;j++){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      if ((*bx-u)*(u-*cx) > 0.0) { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        fu=(*func)(u); 
     }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fu=(*func)(u); 
   for(h=1; h <=nhstepm; h++){        if (fu < *fc) { 
     for(d=1; d <=hstepm; d++){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       newm=savm;            SHFT(*fb,*fc,fu,(*func)(u)) 
       /* Covariates have to be included here again */            } 
       cov[1]=1.;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        u=ulim; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        fu=(*func)(u); 
       for (k=1; k<=cptcovage;k++)      } else { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        u=(*cx)+GOLD*(*cx-*bx); 
       for (k=1; k<=cptcovprod;k++)        fu=(*func)(u); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } 
       SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        } 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************** linmin ************************/
       savm=oldm;  
       oldm=newm;  int ncom; 
     }  double *pcom,*xicom;
     for(i=1; i<=nlstate+ndeath; i++)  double (*nrfunc)(double []); 
       for(j=1;j<=nlstate+ndeath;j++) {   
         po[i][j][h]=newm[i][j];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  { 
          */    double brent(double ax, double bx, double cx, 
       }                 double (*f)(double), double tol, double *xmin); 
   } /* end h */    double f1dim(double x); 
   return po;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 }                double *fc, double (*func)(double)); 
     int j; 
     double xx,xmin,bx,ax; 
 /*************** log-likelihood *************/    double fx,fb,fa;
 double func( double *x)   
 {    ncom=n; 
   int i, ii, j, k, mi, d, kk;    pcom=vector(1,n); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    xicom=vector(1,n); 
   double **out;    nrfunc=func; 
   double sw; /* Sum of weights */    for (j=1;j<=n;j++) { 
   double lli; /* Individual log likelihood */      pcom[j]=p[j]; 
   long ipmx;      xicom[j]=xi[j]; 
   /*extern weight */    } 
   /* We are differentiating ll according to initial status */    ax=0.0; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    xx=1.0; 
   /*for(i=1;i<imx;i++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     printf(" %d\n",s[4][i]);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   */  #ifdef DEBUG
   cov[1]=1.;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for(k=1; k<=nlstate; k++) ll[k]=0.;  #endif
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for (j=1;j<=n;j++) { 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      xi[j] *= xmin; 
     for(mi=1; mi<= wav[i]-1; mi++){      p[j] += xi[j]; 
       for (ii=1;ii<=nlstate+ndeath;ii++)    } 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free_vector(xicom,1,n); 
       for(d=0; d<dh[mi][i]; d++){    free_vector(pcom,1,n); 
         newm=savm;  } 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  char *asc_diff_time(long time_sec, char ascdiff[])
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  {
         }    long sec_left, days, hours, minutes;
            days = (time_sec) / (60*60*24);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    sec_left = (time_sec) % (60*60*24);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    hours = (sec_left) / (60*60) ;
         savm=oldm;    sec_left = (sec_left) %(60*60);
         oldm=newm;    minutes = (sec_left) /60;
            sec_left = (sec_left) % (60);
            sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       } /* end mult */    return ascdiff;
        }
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /*************** powell ************************/
       ipmx +=1;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       sw += weight[i];              double (*func)(double [])) 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  { 
     } /* end of wave */    void linmin(double p[], double xi[], int n, double *fret, 
   } /* end of individual */                double (*func)(double [])); 
     int i,ibig,j; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    double del,t,*pt,*ptt,*xit;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double fp,fptt;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double *xits;
   return -l;    int niterf, itmp;
 }  
     pt=vector(1,n); 
     ptt=vector(1,n); 
 /*********** Maximum Likelihood Estimation ***************/    xit=vector(1,n); 
     xits=vector(1,n); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    *fret=(*func)(p); 
 {    for (j=1;j<=n;j++) pt[j]=p[j]; 
   int i,j, iter;    for (*iter=1;;++(*iter)) { 
   double **xi,*delti;      fp=(*fret); 
   double fret;      ibig=0; 
   xi=matrix(1,npar,1,npar);      del=0.0; 
   for (i=1;i<=npar;i++)      last_time=curr_time;
     for (j=1;j<=npar;j++)      (void) gettimeofday(&curr_time,&tzp);
       xi[i][j]=(i==j ? 1.0 : 0.0);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   printf("Powell\n");      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   powell(p,xi,npar,ftol,&iter,&fret,func);      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
       */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));     for (i=1;i<=n;i++) {
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
 }        fprintf(ficrespow," %.12lf", p[i]);
       }
 /**** Computes Hessian and covariance matrix ***/      printf("\n");
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      fprintf(ficlog,"\n");
 {      fprintf(ficrespow,"\n");fflush(ficrespow);
   double  **a,**y,*x,pd;      if(*iter <=3){
   double **hess;        tm = *localtime(&curr_time.tv_sec);
   int i, j,jk;        strcpy(strcurr,asctime(&tm));
   int *indx;  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
   double hessii(double p[], double delta, int theta, double delti[]);        itmp = strlen(strcurr);
   double hessij(double p[], double delti[], int i, int j);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   void lubksb(double **a, int npar, int *indx, double b[]) ;          strcurr[itmp-1]='\0';
   void ludcmp(double **a, int npar, int *indx, double *d) ;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   hess=matrix(1,npar,1,npar);        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   printf("\nCalculation of the hessian matrix. Wait...\n");          tmf = *localtime(&forecast_time.tv_sec);
   for (i=1;i<=npar;i++){  /*      asctime_r(&tmf,strfor); */
     printf("%d",i);fflush(stdout);          strcpy(strfor,asctime(&tmf));
     hess[i][i]=hessii(p,ftolhess,i,delti);          itmp = strlen(strfor);
     /*printf(" %f ",p[i]);*/          if(strfor[itmp-1]=='\n')
     /*printf(" %lf ",hess[i][i]);*/          strfor[itmp-1]='\0';
   }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
            fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++)  {      }
       if (j>i) {      for (i=1;i<=n;i++) { 
         printf(".%d%d",i,j);fflush(stdout);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         hess[i][j]=hessij(p,delti,i,j);        fptt=(*fret); 
         hess[j][i]=hess[i][j];      #ifdef DEBUG
         /*printf(" %lf ",hess[i][j]);*/        printf("fret=%lf \n",*fret);
       }        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
   }        printf("%d",i);fflush(stdout);
   printf("\n");        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        if (fabs(fptt-(*fret)) > del) { 
            del=fabs(fptt-(*fret)); 
   a=matrix(1,npar,1,npar);          ibig=i; 
   y=matrix(1,npar,1,npar);        } 
   x=vector(1,npar);  #ifdef DEBUG
   indx=ivector(1,npar);        printf("%d %.12e",i,(*fret));
   for (i=1;i<=npar;i++)        fprintf(ficlog,"%d %.12e",i,(*fret));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        for (j=1;j<=n;j++) {
   ludcmp(a,npar,indx,&pd);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   for (j=1;j<=npar;j++) {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for (i=1;i<=npar;i++) x[i]=0;        }
     x[j]=1;        for(j=1;j<=n;j++) {
     lubksb(a,npar,indx,x);          printf(" p=%.12e",p[j]);
     for (i=1;i<=npar;i++){          fprintf(ficlog," p=%.12e",p[j]);
       matcov[i][j]=x[i];        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
   #endif
   printf("\n#Hessian matrix#\n");      } 
   for (i=1;i<=npar;i++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (j=1;j<=npar;j++) {  #ifdef DEBUG
       printf("%.3e ",hess[i][j]);        int k[2],l;
     }        k[0]=1;
     printf("\n");        k[1]=-1;
   }        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
   /* Recompute Inverse */        for (j=1;j<=n;j++) {
   for (i=1;i<=npar;i++)          printf(" %.12e",p[j]);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          fprintf(ficlog," %.12e",p[j]);
   ludcmp(a,npar,indx,&pd);        }
         printf("\n");
   /*  printf("\n#Hessian matrix recomputed#\n");        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   for (j=1;j<=npar;j++) {          for (j=1;j<=n;j++) {
     for (i=1;i<=npar;i++) x[i]=0;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     x[j]=1;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     lubksb(a,npar,indx,x);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (i=1;i<=npar;i++){          }
       y[i][j]=x[i];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       printf("%.3e ",y[i][j]);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }        }
     printf("\n");  #endif
   }  
   */  
         free_vector(xit,1,n); 
   free_matrix(a,1,npar,1,npar);        free_vector(xits,1,n); 
   free_matrix(y,1,npar,1,npar);        free_vector(ptt,1,n); 
   free_vector(x,1,npar);        free_vector(pt,1,n); 
   free_ivector(indx,1,npar);        return; 
   free_matrix(hess,1,npar,1,npar);      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
 }        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
 /*************** hessian matrix ****************/        pt[j]=p[j]; 
 double hessii( double x[], double delta, int theta, double delti[])      } 
 {      fptt=(*func)(ptt); 
   int i;      if (fptt < fp) { 
   int l=1, lmax=20;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   double k1,k2;        if (t < 0.0) { 
   double p2[NPARMAX+1];          linmin(p,xit,n,fret,func); 
   double res;          for (j=1;j<=n;j++) { 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            xi[j][ibig]=xi[j][n]; 
   double fx;            xi[j][n]=xit[j]; 
   int k=0,kmax=10;          }
   double l1;  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   fx=func(x);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=npar;i++) p2[i]=x[i];          for(j=1;j<=n;j++){
   for(l=0 ; l <=lmax; l++){            printf(" %.12e",xit[j]);
     l1=pow(10,l);            fprintf(ficlog," %.12e",xit[j]);
     delts=delt;          }
     for(k=1 ; k <kmax; k=k+1){          printf("\n");
       delt = delta*(l1*k);          fprintf(ficlog,"\n");
       p2[theta]=x[theta] +delt;  #endif
       k1=func(p2)-fx;        }
       p2[theta]=x[theta]-delt;      } 
       k2=func(p2)-fx;    } 
       /*res= (k1-2.0*fx+k2)/delt/delt; */  } 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        /**** Prevalence limit (stable prevalence)  ****************/
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 #endif  {
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){       matrix by transitions matrix until convergence is reached */
         k=kmax;  
       }    int i, ii,j,k;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    double min, max, maxmin, maxmax,sumnew=0.;
         k=kmax; l=lmax*10.;    double **matprod2();
       }    double **out, cov[NCOVMAX], **pmij();
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    double **newm;
         delts=delt;    double agefin, delaymax=50 ; /* Max number of years to converge */
       }  
     }    for (ii=1;ii<=nlstate+ndeath;ii++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   delti[theta]=delts;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   return res;      }
    
 }     cov[1]=1.;
    
 double hessij( double x[], double delti[], int thetai,int thetaj)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   int i;      newm=savm;
   int l=1, l1, lmax=20;      /* Covariates have to be included here again */
   double k1,k2,k3,k4,res,fx;       cov[2]=agefin;
   double p2[NPARMAX+1];    
   int k;        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   fx=func(x);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   for (k=1; k<=2; k++) {        }
     for (i=1;i<=npar;i++) p2[i]=x[i];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     p2[thetai]=x[thetai]+delti[thetai]/k;        for (k=1; k<=cptcovprod;k++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     k1=func(p2)-fx;  
          /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     p2[thetai]=x[thetai]+delti[thetai]/k;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     k2=func(p2)-fx;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
    
     p2[thetai]=x[thetai]-delti[thetai]/k;      savm=oldm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      oldm=newm;
     k3=func(p2)-fx;      maxmax=0.;
        for(j=1;j<=nlstate;j++){
     p2[thetai]=x[thetai]-delti[thetai]/k;        min=1.;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        max=0.;
     k4=func(p2)-fx;        for(i=1; i<=nlstate; i++) {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          sumnew=0;
 #ifdef DEBUG          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          prlim[i][j]= newm[i][j]/(1-sumnew);
 #endif          max=FMAX(max,prlim[i][j]);
   }          min=FMIN(min,prlim[i][j]);
   return res;        }
 }        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
 /************** Inverse of matrix **************/      }
 void ludcmp(double **a, int n, int *indx, double *d)      if(maxmax < ftolpl){
 {        return prlim;
   int i,imax,j,k;      }
   double big,dum,sum,temp;    }
   double *vv;  }
    
   vv=vector(1,n);  /*************** transition probabilities ***************/ 
   *d=1.0;  
   for (i=1;i<=n;i++) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     big=0.0;  {
     for (j=1;j<=n;j++)    double s1, s2;
       if ((temp=fabs(a[i][j])) > big) big=temp;    /*double t34;*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    int i,j,j1, nc, ii, jj;
     vv[i]=1.0/big;  
   }      for(i=1; i<= nlstate; i++){
   for (j=1;j<=n;j++) {        for(j=1; j<i;j++){
     for (i=1;i<j;i++) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       sum=a[i][j];            /*s2 += param[i][j][nc]*cov[nc];*/
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       a[i][j]=sum;  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     }          }
     big=0.0;          ps[i][j]=s2;
     for (i=j;i<=n;i++) {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       sum=a[i][j];        }
       for (k=1;k<j;k++)        for(j=i+1; j<=nlstate+ndeath;j++){
         sum -= a[i][k]*a[k][j];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       a[i][j]=sum;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         big=dum;          }
         imax=i;          ps[i][j]=s2;
       }        }
     }      }
     if (j != imax) {      /*ps[3][2]=1;*/
       for (k=1;k<=n;k++) {      
         dum=a[imax][k];      for(i=1; i<= nlstate; i++){
         a[imax][k]=a[j][k];        s1=0;
         a[j][k]=dum;        for(j=1; j<i; j++)
       }          s1+=exp(ps[i][j]);
       *d = -(*d);        for(j=i+1; j<=nlstate+ndeath; j++)
       vv[imax]=vv[j];          s1+=exp(ps[i][j]);
     }        ps[i][i]=1./(s1+1.);
     indx[j]=imax;        for(j=1; j<i; j++)
     if (a[j][j] == 0.0) a[j][j]=TINY;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     if (j != n) {        for(j=i+1; j<=nlstate+ndeath; j++)
       dum=1.0/(a[j][j]);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     }      } /* end i */
   }      
   free_vector(vv,1,n);  /* Doesn't work */      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 ;        for(jj=1; jj<= nlstate+ndeath; jj++){
 }          ps[ii][jj]=0;
           ps[ii][ii]=1;
 void lubksb(double **a, int n, int *indx, double b[])        }
 {      }
   int i,ii=0,ip,j;      
   double sum;  
    /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   for (i=1;i<=n;i++) {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     ip=indx[i];  /*         printf("ddd %lf ",ps[ii][jj]); */
     sum=b[ip];  /*       } */
     b[ip]=b[i];  /*       printf("\n "); */
     if (ii)  /*        } */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*        printf("\n ");printf("%lf ",cov[2]); */
     else if (sum) ii=i;         /*
     b[i]=sum;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   }        goto end;*/
   for (i=n;i>=1;i--) {      return ps;
     sum=b[i];  }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  /**************** Product of 2 matrices ******************/
   }  
 }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
 /************ Frequencies ********************/    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
 {  /* Some frequencies */    /* in, b, out are matrice of pointers which should have been initialized 
         before: only the contents of out is modified. The function returns
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;       a pointer to pointers identical to out */
   double ***freq; /* Frequencies */    long i, j, k;
   double *pp;    for(i=nrl; i<= nrh; i++)
   double pos, k2, dateintsum=0,k2cpt=0;      for(k=ncolol; k<=ncoloh; k++)
   FILE *ficresp;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   char fileresp[FILENAMELENGTH];          out[i][k] +=in[i][j]*b[j][k];
    
   pp=vector(1,nlstate);    return out;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  /************* Higher Matrix Product ***************/
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   }  {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* Computes the transition matrix starting at age 'age' over 
   j1=0;       'nhstepm*hstepm*stepm' months (i.e. until
         age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   j=cptcoveff;       nhstepm*hstepm matrices. 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         (typically every 2 years instead of every month which is too big 
   for(k1=1; k1<=j;k1++){       for the memory).
     for(i1=1; i1<=ncodemax[k1];i1++){       Model is determined by parameters x and covariates have to be 
       j1++;       included manually here. 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/       */
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)      int i, j, d, h, k;
           for(m=agemin; m <= agemax+3; m++)    double **out, cov[NCOVMAX];
             freq[i][jk][m]=0;    double **newm;
        
       dateintsum=0;    /* Hstepm could be zero and should return the unit matrix */
       k2cpt=0;    for (i=1;i<=nlstate+ndeath;i++)
       for (i=1; i<=imx; i++) {      for (j=1;j<=nlstate+ndeath;j++){
         bool=1;        oldm[i][j]=(i==j ? 1.0 : 0.0);
         if  (cptcovn>0) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
           for (z1=1; z1<=cptcoveff; z1++)      }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               bool=0;    for(h=1; h <=nhstepm; h++){
         }      for(d=1; d <=hstepm; d++){
         if (bool==1) {        newm=savm;
           for(m=firstpass; m<=lastpass; m++){        /* Covariates have to be included here again */
             k2=anint[m][i]+(mint[m][i]/12.);        cov[1]=1.;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
               if(agev[m][i]==0) agev[m][i]=agemax+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for (k=1; k<=cptcovage;k++)
               if (m<lastpass) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for (k=1; k<=cptcovprod;k++)
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
               }  
                
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                 dateintsum=dateintsum+k2;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                 k2cpt++;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
               }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
             }        savm=oldm;
           }        oldm=newm;
         }      }
       }      for(i=1; i<=nlstate+ndeath; i++)
                for(j=1;j<=nlstate+ndeath;j++) {
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       if  (cptcovn>0) {           */
         fprintf(ficresp, "\n#********** Variable ");        }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    } /* end h */
         fprintf(ficresp, "**********\n#");    return po;
       }  }
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");  /*************** log-likelihood *************/
        double func( double *x)
       for(i=(int)agemin; i <= (int)agemax+3; i++){  {
         if(i==(int)agemax+3)    int i, ii, j, k, mi, d, kk;
           printf("Total");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         else    double **out;
           printf("Age %d", i);    double sw; /* Sum of weights */
         for(jk=1; jk <=nlstate ; jk++){    double lli; /* Individual log likelihood */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    int s1, s2;
             pp[jk] += freq[jk][m][i];    double bbh, survp;
         }    long ipmx;
         for(jk=1; jk <=nlstate ; jk++){    /*extern weight */
           for(m=-1, pos=0; m <=0 ; m++)    /* We are differentiating ll according to initial status */
             pos += freq[jk][m][i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           if(pp[jk]>=1.e-10)    /*for(i=1;i<imx;i++) 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      printf(" %d\n",s[4][i]);
           else    */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    cov[1]=1.;
         }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    if(mle==1){
             pp[jk] += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           pos += pp[jk];            for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if(pos>=1.e-5)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            }
           else          for(d=0; d<dh[mi][i]; d++){
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            newm=savm;
           if( i <= (int) agemax){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if(pos>=1.e-5){            for (kk=1; kk<=cptcovage;kk++) {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               probs[i][jk][j1]= pp[jk]/pos;            }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             else            savm=oldm;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            oldm=newm;
           }          } /* end mult */
         }        
                  /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         for(jk=-1; jk <=nlstate+ndeath; jk++)          /* But now since version 0.9 we anticipate for bias at large stepm.
           for(m=-1; m <=nlstate+ndeath; m++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           * (in months) between two waves is not a multiple of stepm, we rounded to 
         if(i <= (int) agemax)           * the nearest (and in case of equal distance, to the lowest) interval but now
           fprintf(ficresp,"\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         printf("\n");           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       }           * probability in order to take into account the bias as a fraction of the way
     }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
   dateintmean=dateintsum/k2cpt;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   fclose(ficresp);           */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s1=s[mw[mi][i]][i];
   free_vector(pp,1,nlstate);          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   /* End of Freq */          /* bias bh is positive if real duration
 }           * is higher than the multiple of stepm and negative otherwise.
            */
 /************ Prevalence ********************/          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          if( s2 > nlstate){ 
 {  /* Some frequencies */            /* i.e. if s2 is a death state and if the date of death is known 
                 then the contribution to the likelihood is the probability to 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;               die between last step unit time and current  step unit time, 
   double ***freq; /* Frequencies */               which is also equal to probability to die before dh 
   double *pp;               minus probability to die before dh-stepm . 
   double pos, k2;               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
   pp=vector(1,nlstate);          health state: the date of the interview describes the actual state
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          and not the date of a change in health state. The former idea was
            to consider that at each interview the state was recorded
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          (healthy, disable or death) and IMaCh was corrected; but when we
   j1=0;          introduced the exact date of death then we should have modified
            the contribution of an exact death to the likelihood. This new
   j=cptcoveff;          contribution is smaller and very dependent of the step unit
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          stepm. It is no more the probability to die between last interview
            and month of death but the probability to survive from last
   for(k1=1; k1<=j;k1++){          interview up to one month before death multiplied by the
     for(i1=1; i1<=ncodemax[k1];i1++){          probability to die within a month. Thanks to Chris
       j1++;          Jackson for correcting this bug.  Former versions increased
                mortality artificially. The bad side is that we add another loop
       for (i=-1; i<=nlstate+ndeath; i++)            which slows down the processing. The difference can be up to 10%
         for (jk=-1; jk<=nlstate+ndeath; jk++)            lower mortality.
           for(m=agemin; m <= agemax+3; m++)            */
             freq[i][jk][m]=0;            lli=log(out[s1][s2] - savm[s1][s2]);
        
       for (i=1; i<=imx; i++) {  
         bool=1;          } else if  (s2==-2) {
         if  (cptcovn>0) {            for (j=1,survp=0. ; j<=nlstate; j++) 
           for (z1=1; z1<=cptcoveff; z1++)              survp += out[s1][j];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            lli= survp;
               bool=0;          }
         }          
         if (bool==1) {          else if  (s2==-4) {
           for(m=firstpass; m<=lastpass; m++){            for (j=3,survp=0. ; j<=nlstate; j++) 
             k2=anint[m][i]+(mint[m][i]/12.);              survp += out[s1][j];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            lli= survp;
               if(agev[m][i]==0) agev[m][i]=agemax+1;          }
               if(agev[m][i]==1) agev[m][i]=agemax+2;          
               if (m<lastpass) {          else if  (s2==-5) {
                 if (calagedate>0)            for (j=1,survp=0. ; j<=2; j++) 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];              survp += out[s1][j];
                 else            lli= survp;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  
               }  
             }          else{
           }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       }          } 
       for(i=(int)agemin; i <= (int)agemax+3; i++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         for(jk=1; jk <=nlstate ; jk++){          /*if(lli ==000.0)*/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             pp[jk] += freq[jk][m][i];          ipmx +=1;
         }          sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=-1, pos=0; m <=0 ; m++)        } /* end of wave */
             pos += freq[jk][m][i];      } /* end of individual */
         }    }  else if(mle==2){
              for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             pp[jk] += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
                      oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                    }
         for(jk=1; jk <=nlstate ; jk++){              for(d=0; d<=dh[mi][i]; d++){
           if( i <= (int) agemax){            newm=savm;
             if(pos>=1.e-5){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               probs[i][jk][j1]= pp[jk]/pos;            for (kk=1; kk<=cptcovage;kk++) {
             }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     }            oldm=newm;
   }          } /* end mult */
         
            s1=s[mw[mi][i]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s2=s[mw[mi+1][i]][i];
   free_vector(pp,1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 }  /* End of Freq */          ipmx +=1;
           sw += weight[i];
 /************* Waves Concatenation ***************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      } /* end of individual */
 {    }  else if(mle==3){  /* exponential inter-extrapolation */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      Death is a valid wave (if date is known).        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for(mi=1; mi<= wav[i]-1; mi++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          for (ii=1;ii<=nlstate+ndeath;ii++)
      and mw[mi+1][i]. dh depends on stepm.            for (j=1;j<=nlstate+ndeath;j++){
      */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, mi, m;            }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          for(d=0; d<dh[mi][i]; d++){
      double sum=0., jmean=0.;*/            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int j, k=0,jk, ju, jl;            for (kk=1; kk<=cptcovage;kk++) {
   double sum=0.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   jmin=1e+5;            }
   jmax=-1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   jmean=0.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=imx; i++){            savm=oldm;
     mi=0;            oldm=newm;
     m=firstpass;          } /* end mult */
     while(s[m][i] <= nlstate){        
       if(s[m][i]>=1)          s1=s[mw[mi][i]][i];
         mw[++mi][i]=m;          s2=s[mw[mi+1][i]][i];
       if(m >=lastpass)          bbh=(double)bh[mi][i]/(double)stepm; 
         break;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       else          ipmx +=1;
         m++;          sw += weight[i];
     }/* end while */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (s[m][i] > nlstate){        } /* end of wave */
       mi++;     /* Death is another wave */      } /* end of individual */
       /* if(mi==0)  never been interviewed correctly before death */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
          /* Only death is a correct wave */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       mw[mi][i]=m;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     wav[i]=mi;            for (j=1;j<=nlstate+ndeath;j++){
     if(mi==0)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<dh[mi][i]; d++){
   for(i=1; i<=imx; i++){            newm=savm;
     for(mi=1; mi<wav[i];mi++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (stepm <=0)            for (kk=1; kk<=cptcovage;kk++) {
         dh[mi][i]=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       else{            }
         if (s[mw[mi+1][i]][i] > nlstate) {          
           if (agedc[i] < 2*AGESUP) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if(j==0) j=1;  /* Survives at least one month after exam */            savm=oldm;
           k=k+1;            oldm=newm;
           if (j >= jmax) jmax=j;          } /* end mult */
           if (j <= jmin) jmin=j;        
           sum=sum+j;          s1=s[mw[mi][i]][i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          s2=s[mw[mi+1][i]][i];
           }          if( s2 > nlstate){ 
         }            lli=log(out[s1][s2] - savm[s1][s2]);
         else{          }else{
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           k=k+1;          }
           if (j >= jmax) jmax=j;          ipmx +=1;
           else if (j <= jmin)jmin=j;          sw += weight[i];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           sum=sum+j;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         }        } /* end of wave */
         jk= j/stepm;      } /* end of individual */
         jl= j -jk*stepm;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         ju= j -(jk+1)*stepm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if(jl <= -ju)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           dh[mi][i]=jk;        for(mi=1; mi<= wav[i]-1; mi++){
         else          for (ii=1;ii<=nlstate+ndeath;ii++)
           dh[mi][i]=jk+1;            for (j=1;j<=nlstate+ndeath;j++){
         if(dh[mi][i]==0)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=1; /* At least one step */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     }          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   jmean=sum/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            for (kk=1; kk<=cptcovage;kk++) {
  }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /*********** Tricode ****************************/            }
 void tricode(int *Tvar, int **nbcode, int imx)          
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int Ndum[20],ij=1, k, j, i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int cptcode=0;            savm=oldm;
   cptcoveff=0;            oldm=newm;
            } /* end mult */
   for (k=0; k<19; k++) Ndum[k]=0;        
   for (k=1; k<=7; k++) ncodemax[k]=0;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (i=1; i<=imx; i++) {          ipmx +=1;
       ij=(int)(covar[Tvar[j]][i]);          sw += weight[i];
       Ndum[ij]++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       if (ij > cptcode) cptcode=ij;        } /* end of wave */
     }      } /* end of individual */
     } /* End of if */
     for (i=0; i<=cptcode; i++) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       if(Ndum[i]!=0) ncodemax[j]++;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     ij=1;    return -l;
   }
   
     for (i=1; i<=ncodemax[j]; i++) {  /*************** log-likelihood *************/
       for (k=0; k<=19; k++) {  double funcone( double *x)
         if (Ndum[k] != 0) {  {
           nbcode[Tvar[j]][ij]=k;    /* Same as likeli but slower because of a lot of printf and if */
              int i, ii, j, k, mi, d, kk;
           ij++;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         }    double **out;
         if (ij > ncodemax[j]) break;    double lli; /* Individual log likelihood */
       }      double llt;
     }    int s1, s2;
   }      double bbh, survp;
     /*extern weight */
  for (k=0; k<19; k++) Ndum[k]=0;    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  for (i=1; i<=ncovmodel-2; i++) {    /*for(i=1;i<imx;i++) 
       ij=Tvar[i];      printf(" %d\n",s[4][i]);
       Ndum[ij]++;    */
     }    cov[1]=1.;
   
  ij=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      Tvaraff[ij]=i;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      ij++;      for(mi=1; mi<= wav[i]-1; mi++){
    }        for (ii=1;ii<=nlstate+ndeath;ii++)
  }          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     cptcoveff=ij-1;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }          }
         for(d=0; d<dh[mi][i]; d++){
 /*********** Health Expectancies ****************/          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {          }
   /* Health expectancies */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double age, agelim, hf;          savm=oldm;
   double ***p3mat,***varhe;          oldm=newm;
   double **dnewm,**doldm;        } /* end mult */
   double *xp;        
   double **gp, **gm;        s1=s[mw[mi][i]][i];
   double ***gradg, ***trgradg;        s2=s[mw[mi+1][i]][i];
   int theta;        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);         * is higher than the multiple of stepm and negative otherwise.
   xp=vector(1,npar);         */
   dnewm=matrix(1,nlstate*2,1,npar);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   doldm=matrix(1,nlstate*2,1,nlstate*2);          lli=log(out[s1][s2] - savm[s1][s2]);
          } else if (mle==1){
   fprintf(ficreseij,"# Health expectancies\n");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   fprintf(ficreseij,"# Age");        } else if(mle==2){
   for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(j=1; j<=nlstate;j++)        } else if(mle==3){  /* exponential inter-extrapolation */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   fprintf(ficreseij,"\n");        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
   if(estepm < stepm){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     printf ("Problem %d lower than %d\n",estepm, stepm);          lli=log(out[s1][s2]); /* Original formula */
   }        } /* End of if */
   else  hstepm=estepm;          ipmx +=1;
   /* We compute the life expectancy from trapezoids spaced every estepm months        sw += weight[i];
    * This is mainly to measure the difference between two models: for example        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    * if stepm=24 months pijx are given only every 2 years and by summing them  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    * we are calculating an estimate of the Life Expectancy assuming a linear        if(globpr){
    * progression inbetween and thus overestimating or underestimating according          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    * to the curvature of the survival function. If, for the same date, we   %10.6f %10.6f %10.6f ", \
    * estimate the model with stepm=1 month, we can keep estepm to 24 months                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
    * to compare the new estimate of Life expectancy with the same linear                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
    * hypothesis. A more precise result, taking into account a more precise          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
    * curvature will be obtained if estepm is as small as stepm. */            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   /* For example we decided to compute the life expectancy with the smallest unit */          }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          fprintf(ficresilk," %10.6f\n", -llt);
      nhstepm is the number of hstepm from age to agelim        }
      nstepm is the number of stepm from age to agelin.      } /* end of wave */
      Look at hpijx to understand the reason of that which relies in memory size    } /* end of individual */
      and note for a fixed period like estepm months */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      survival function given by stepm (the optimization length). Unfortunately it    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      means that if the survival funtion is printed only each two years of age and if    if(globpr==0){ /* First time we count the contributions and weights */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      gipmx=ipmx;
      results. So we changed our mind and took the option of the best precision.      gsw=sw;
   */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    return -l;
   }
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */  /*************** function likelione ***********/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  {
     /* if (stepm >= YEARM) hstepm=1;*/    /* This routine should help understanding what is done with 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       the selection of individuals/waves and
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       to check the exact contribution to the likelihood.
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);       Plotting could be done.
     gp=matrix(0,nhstepm,1,nlstate*2);     */
     gm=matrix(0,nhstepm,1,nlstate*2);    int k;
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    if(*globpri !=0){ /* Just counts and sums, no printings */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      strcpy(fileresilk,"ilk"); 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        strcat(fileresilk,fileres);
        if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
     /* Computing Variances of health expectancies */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      for(theta=1; theta <=npar; theta++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(i=1; i<=npar; i++){      for(k=1; k<=nlstate; k++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
    
       cptj=0;    *fretone=(*funcone)(p);
       for(j=1; j<= nlstate; j++){    if(*globpri !=0){
         for(i=1; i<=nlstate; i++){      fclose(ficresilk);
           cptj=cptj+1;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      fflush(fichtm); 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    } 
           }    return;
         }  }
       }  
        
        /*********** Maximum Likelihood Estimation ***************/
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    {
          int i,j, iter;
       cptj=0;    double **xi;
       for(j=1; j<= nlstate; j++){    double fret;
         for(i=1;i<=nlstate;i++){    double fretone; /* Only one call to likelihood */
           cptj=cptj+1;    /*  char filerespow[FILENAMELENGTH];*/
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    xi=matrix(1,npar,1,npar);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for (i=1;i<=npar;i++)
           }      for (j=1;j<=npar;j++)
         }        xi[i][j]=(i==j ? 1.0 : 0.0);
       }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(j=1; j<= nlstate*2; j++)    strcpy(filerespow,"pow"); 
         for(h=0; h<=nhstepm-1; h++){    strcat(filerespow,fileres);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", filerespow);
      }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
        }
 /* End theta */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      for(h=0; h<=nhstepm-1; h++)    fprintf(ficrespow,"\n");
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)    powell(p,xi,npar,ftol,&iter,&fret,func);
           trgradg[h][j][theta]=gradg[h][theta][j];  
          fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      for(i=1;i<=nlstate*2;i++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(j=1;j<=nlstate*2;j++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         varhe[i][j][(int)age] =0.;  
   }
      printf("%d|",(int)age);fflush(stdout);  
      for(h=0;h<=nhstepm-1;h++){  /**** Computes Hessian and covariance matrix ***/
       for(k=0;k<=nhstepm-1;k++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  {
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    double  **a,**y,*x,pd;
         for(i=1;i<=nlstate*2;i++)    double **hess;
           for(j=1;j<=nlstate*2;j++)    int i, j,jk;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    int *indx;
       }  
     }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     /* Computing expectancies */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     for(i=1; i<=nlstate;i++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(j=1; j<=nlstate;j++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double gompertz(double p[]);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    hess=matrix(1,npar,1,npar);
            
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         }    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
     fprintf(ficreseij,"%3.0f",age );      fprintf(ficlog,"%d",i);fflush(ficlog);
     cptj=0;     
     for(i=1; i<=nlstate;i++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       for(j=1; j<=nlstate;j++){      
         cptj++;      /*  printf(" %f ",p[i]);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       }    }
     fprintf(ficreseij,"\n");    
        for (i=1;i<=npar;i++) {
     free_matrix(gm,0,nhstepm,1,nlstate*2);      for (j=1;j<=npar;j++)  {
     free_matrix(gp,0,nhstepm,1,nlstate*2);        if (j>i) { 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          printf(".%d%d",i,j);fflush(stdout);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   }          
   printf("\n");          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
   free_vector(xp,1,npar);        }
   free_matrix(dnewm,1,nlstate*2,1,npar);      }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    printf("\n");
 }    fprintf(ficlog,"\n");
   
 /************ Variance ******************/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 {    
   /* Variance of health expectancies */    a=matrix(1,npar,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    y=matrix(1,npar,1,npar);
   double **newm;    x=vector(1,npar);
   double **dnewm,**doldm;    indx=ivector(1,npar);
   int i, j, nhstepm, hstepm, h, nstepm ;    for (i=1;i<=npar;i++)
   int k, cptcode;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double *xp;    ludcmp(a,npar,indx,&pd);
   double **gp, **gm;  
   double ***gradg, ***trgradg;    for (j=1;j<=npar;j++) {
   double ***p3mat;      for (i=1;i<=npar;i++) x[i]=0;
   double age,agelim, hf;      x[j]=1;
   int theta;      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        matcov[i][j]=x[i];
   fprintf(ficresvij,"# Age");      }
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    printf("\n#Hessian matrix#\n");
   fprintf(ficresvij,"\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
   xp=vector(1,npar);      for (j=1;j<=npar;j++) { 
   dnewm=matrix(1,nlstate,1,npar);        printf("%.3e ",hess[i][j]);
   doldm=matrix(1,nlstate,1,nlstate);        fprintf(ficlog,"%.3e ",hess[i][j]);
        }
   if(estepm < stepm){      printf("\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);      fprintf(ficlog,"\n");
   }    }
   else  hstepm=estepm;    
   /* For example we decided to compute the life expectancy with the smallest unit */    /* Recompute Inverse */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (i=1;i<=npar;i++)
      nhstepm is the number of hstepm from age to agelim      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      nstepm is the number of stepm from age to agelin.    ludcmp(a,npar,indx,&pd);
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */    /*  printf("\n#Hessian matrix recomputed#\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    for (j=1;j<=npar;j++) {
      means that if the survival funtion is printed only each two years of age and if      for (i=1;i<=npar;i++) x[i]=0;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      x[j]=1;
      results. So we changed our mind and took the option of the best precision.      lubksb(a,npar,indx,x);
   */      for (i=1;i<=npar;i++){ 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        y[i][j]=x[i];
   agelim = AGESUP;        printf("%.3e ",y[i][j]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog,"%.3e ",y[i][j]);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      printf("\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    }
     gp=matrix(0,nhstepm,1,nlstate);    */
     gm=matrix(0,nhstepm,1,nlstate);  
     free_matrix(a,1,npar,1,npar);
     for(theta=1; theta <=npar; theta++){    free_matrix(y,1,npar,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_vector(x,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_ivector(indx,1,npar);
       }    free_matrix(hess,1,npar,1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   }
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  /*************** hessian matrix ****************/
           prlim[i][i]=probs[(int)age][i][ij];  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       }  {
      int i;
       for(j=1; j<= nlstate; j++){    int l=1, lmax=20;
         for(h=0; h<=nhstepm; h++){    double k1,k2;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double p2[NPARMAX+1];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double res;
         }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       }    double fx;
        int k=0,kmax=10;
       for(i=1; i<=npar; i++) /* Computes gradient */    double l1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fx=func(x);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){
       if (popbased==1) {      l1=pow(10,l);
         for(i=1; i<=nlstate;i++)      delts=delt;
           prlim[i][i]=probs[(int)age][i][ij];      for(k=1 ; k <kmax; k=k+1){
       }        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
       for(j=1; j<= nlstate; j++){        k1=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){        p2[theta]=x[theta]-delt;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        k2=func(p2)-fx;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        /*res= (k1-2.0*fx+k2)/delt/delt; */
         }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
   #ifdef DEBUG
       for(j=1; j<= nlstate; j++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for(h=0; h<=nhstepm; h++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  #endif
         }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     } /* End theta */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     for(h=0; h<=nhstepm; h++)          k=kmax; l=lmax*10.;
       for(j=1; j<=nlstate;j++)        }
         for(theta=1; theta <=npar; theta++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           trgradg[h][j][theta]=gradg[h][theta][j];          delts=delt;
         }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }
     for(i=1;i<=nlstate;i++)    }
       for(j=1;j<=nlstate;j++)    delti[theta]=delts;
         vareij[i][j][(int)age] =0.;    return res; 
     
     for(h=0;h<=nhstepm;h++){  }
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  {
         for(i=1;i<=nlstate;i++)    int i;
           for(j=1;j<=nlstate;j++)    int l=1, l1, lmax=20;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    double k1,k2,k3,k4,res,fx;
       }    double p2[NPARMAX+1];
     }    int k;
   
     fprintf(ficresvij,"%.0f ",age );    fx=func(x);
     for(i=1; i<=nlstate;i++)    for (k=1; k<=2; k++) {
       for(j=1; j<=nlstate;j++){      for (i=1;i<=npar;i++) p2[i]=x[i];
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fprintf(ficresvij,"\n");      k1=func(p2)-fx;
     free_matrix(gp,0,nhstepm,1,nlstate);    
     free_matrix(gm,0,nhstepm,1,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      k2=func(p2)-fx;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
   } /* End age */      p2[thetai]=x[thetai]-delti[thetai]/k;
        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   free_vector(xp,1,npar);      k3=func(p2)-fx;
   free_matrix(doldm,1,nlstate,1,npar);    
   free_matrix(dnewm,1,nlstate,1,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 }      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 /************ Variance of prevlim ******************/  #ifdef DEBUG
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   /* Variance of prevalence limit */  #endif
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    }
   double **newm;    return res;
   double **dnewm,**doldm;  }
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  /************** Inverse of matrix **************/
   double *xp;  void ludcmp(double **a, int n, int *indx, double *d) 
   double *gp, *gm;  { 
   double **gradg, **trgradg;    int i,imax,j,k; 
   double age,agelim;    double big,dum,sum,temp; 
   int theta;    double *vv; 
       
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    vv=vector(1,n); 
   fprintf(ficresvpl,"# Age");    *d=1.0; 
   for(i=1; i<=nlstate;i++)    for (i=1;i<=n;i++) { 
       fprintf(ficresvpl," %1d-%1d",i,i);      big=0.0; 
   fprintf(ficresvpl,"\n");      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
   xp=vector(1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   dnewm=matrix(1,nlstate,1,npar);      vv[i]=1.0/big; 
   doldm=matrix(1,nlstate,1,nlstate);    } 
      for (j=1;j<=n;j++) { 
   hstepm=1*YEARM; /* Every year of age */      for (i=1;i<j;i++) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        sum=a[i][j]; 
   agelim = AGESUP;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        a[i][j]=sum; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      } 
     if (stepm >= YEARM) hstepm=1;      big=0.0; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for (i=j;i<=n;i++) { 
     gradg=matrix(1,npar,1,nlstate);        sum=a[i][j]; 
     gp=vector(1,nlstate);        for (k=1;k<j;k++) 
     gm=vector(1,nlstate);          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     for(theta=1; theta <=npar; theta++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */          big=dum; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          imax=i; 
       }        } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      } 
       for(i=1;i<=nlstate;i++)      if (j != imax) { 
         gp[i] = prlim[i][i];        for (k=1;k<=n;k++) { 
              dum=a[imax][k]; 
       for(i=1; i<=npar; i++) /* Computes gradient */          a[imax][k]=a[j][k]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          a[j][k]=dum; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } 
       for(i=1;i<=nlstate;i++)        *d = -(*d); 
         gm[i] = prlim[i][i];        vv[imax]=vv[j]; 
       } 
       for(i=1;i<=nlstate;i++)      indx[j]=imax; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      if (a[j][j] == 0.0) a[j][j]=TINY; 
     } /* End theta */      if (j != n) { 
         dum=1.0/(a[j][j]); 
     trgradg =matrix(1,nlstate,1,npar);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     for(j=1; j<=nlstate;j++)    } 
       for(theta=1; theta <=npar; theta++)    free_vector(vv,1,n);  /* Doesn't work */
         trgradg[j][theta]=gradg[theta][j];  ;
   } 
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;  void lubksb(double **a, int n, int *indx, double b[]) 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  { 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    int i,ii=0,ip,j; 
     for(i=1;i<=nlstate;i++)    double sum; 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */   
     for (i=1;i<=n;i++) { 
     fprintf(ficresvpl,"%.0f ",age );      ip=indx[i]; 
     for(i=1; i<=nlstate;i++)      sum=b[ip]; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      b[ip]=b[i]; 
     fprintf(ficresvpl,"\n");      if (ii) 
     free_vector(gp,1,nlstate);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     free_vector(gm,1,nlstate);      else if (sum) ii=i; 
     free_matrix(gradg,1,npar,1,nlstate);      b[i]=sum; 
     free_matrix(trgradg,1,nlstate,1,npar);    } 
   } /* End age */    for (i=n;i>=1;i--) { 
       sum=b[i]; 
   free_vector(xp,1,npar);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   free_matrix(doldm,1,nlstate,1,npar);      b[i]=sum/a[i][i]; 
   free_matrix(dnewm,1,nlstate,1,nlstate);    } 
   } 
 }  
   /************ Frequencies ********************/
 /************ Variance of one-step probabilities  ******************/  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  {  /* Some frequencies */
 {    
   int i, j,  i1, k1, l1;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   int k2, l2, j1,  z1;    int first;
   int k=0,l, cptcode;    double ***freq; /* Frequencies */
   int first=1;    double *pp, **prop;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double **dnewm,**doldm;    FILE *ficresp;
   double *xp;    char fileresp[FILENAMELENGTH];
   double *gp, *gm;    
   double **gradg, **trgradg;    pp=vector(1,nlstate);
   double **mu;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   double age,agelim, cov[NCOVMAX];    strcpy(fileresp,"p");
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    strcat(fileresp,fileres);
   int theta;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   char fileresprob[FILENAMELENGTH];      printf("Problem with prevalence resultfile: %s\n", fileresp);
   char fileresprobcov[FILENAMELENGTH];      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   char fileresprobcor[FILENAMELENGTH];      exit(0);
     }
   double ***varpij;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
   strcpy(fileresprob,"prob");    
   strcat(fileresprob,fileres);    j=cptcoveff;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     printf("Problem with resultfile: %s\n", fileresprob);  
   }    first=1;
   strcpy(fileresprobcov,"probcov");  
   strcat(fileresprobcov,fileres);    for(k1=1; k1<=j;k1++){
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      for(i1=1; i1<=ncodemax[k1];i1++){
     printf("Problem with resultfile: %s\n", fileresprobcov);        j1++;
   }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   strcpy(fileresprobcor,"probcor");          scanf("%d", i);*/
   strcat(fileresprobcor,fileres);        for (i=-5; i<=nlstate+ndeath; i++)  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     printf("Problem with resultfile: %s\n", fileresprobcor);            for(m=iagemin; m <= iagemax+3; m++)
   }              freq[i][jk][m]=0;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for (i=1; i<=nlstate; i++)  
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        for(m=iagemin; m <= iagemax+3; m++)
            prop[i][m]=0;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        
   fprintf(ficresprob,"# Age");        dateintsum=0;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        k2cpt=0;
   fprintf(ficresprobcov,"# Age");        for (i=1; i<=imx; i++) {
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          bool=1;
   fprintf(ficresprobcov,"# Age");          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   for(i=1; i<=nlstate;i++)                bool=0;
     for(j=1; j<=(nlstate+ndeath);j++){          }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          if (bool==1){
       fprintf(ficresprobcov," p%1d-%1d ",i,j);            for(m=firstpass; m<=lastpass; m++){
       fprintf(ficresprobcor," p%1d-%1d ",i,j);              k2=anint[m][i]+(mint[m][i]/12.);
     }                /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   fprintf(ficresprob,"\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficresprobcov,"\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficresprobcor,"\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   xp=vector(1,npar);                if (m<lastpass) {
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);                }
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);                
   first=1;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                  dateintsum=dateintsum+k2;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);                  k2cpt++;
     exit(0);                }
   }                /*}*/
   else{            }
     fprintf(ficgp,"\n# Routine varprob");          }
   }        }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {         
     printf("Problem with html file: %s\n", optionfilehtm);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     exit(0);  fprintf(ficresp, "#Local time at start: %s", strstart);
   }        if  (cptcovn>0) {
   else{          fprintf(ficresp, "\n#********** Variable "); 
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          fprintf(ficresp, "**********\n#");
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        }
         for(i=1; i<=nlstate;i++) 
   }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   cov[1]=1;        fprintf(ficresp, "\n");
   j=cptcoveff;        
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for(i=iagemin; i <= iagemax+3; i++){
   j1=0;          if(i==iagemax+3){
   for(k1=1; k1<=1;k1++){            fprintf(ficlog,"Total");
     for(i1=1; i1<=ncodemax[k1];i1++){          }else{
     j1++;            if(first==1){
               first=0;
     if  (cptcovn>0) {              printf("See log file for details...\n");
       fprintf(ficresprob, "\n#********** Variable ");            }
       fprintf(ficresprobcov, "\n#********** Variable ");            fprintf(ficlog,"Age %d", i);
       fprintf(ficgp, "\n#********** Variable ");          }
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficresprobcor, "\n#********** Variable ");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              pp[jk] += freq[jk][m][i]; 
       fprintf(ficresprob, "**********\n#");          }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficresprobcov, "**********\n#");            for(m=-1, pos=0; m <=0 ; m++)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              pos += freq[jk][m][i];
       fprintf(ficgp, "**********\n#");            if(pp[jk]>=1.e-10){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              if(first==1){
       fprintf(ficgp, "**********\n#");              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              }
       fprintf(fichtm, "**********\n#");              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     }            }else{
                  if(first==1)
       for (age=bage; age<=fage; age ++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         cov[2]=age;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for (k=1; k<=cptcovn;k++) {            }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          }
         }  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          for(jk=1; jk <=nlstate ; jk++){
         for (k=1; k<=cptcovprod;k++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              pp[jk] += freq[jk][m][i];
                  }       
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            pos += pp[jk];
         gp=vector(1,(nlstate)*(nlstate+ndeath));            posprop += prop[jk][i];
         gm=vector(1,(nlstate)*(nlstate+ndeath));          }
              for(jk=1; jk <=nlstate ; jk++){
         for(theta=1; theta <=npar; theta++){            if(pos>=1.e-5){
           for(i=1; i<=npar; i++)              if(first==1)
             xp[i] = x[i] + (i==theta ?delti[theta]:0);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                        fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            }else{
                        if(first==1)
           k=0;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           for(i=1; i<= (nlstate); i++){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             for(j=1; j<=(nlstate+ndeath);j++){            }
               k=k+1;            if( i <= iagemax){
               gp[k]=pmmij[i][j];              if(pos>=1.e-5){
             }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           }                /*probs[i][jk][j1]= pp[jk]/pos;*/
                          /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
           for(i=1; i<=npar; i++)              }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);              else
                    fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            }
           k=0;          }
           for(i=1; i<=(nlstate); i++){          
             for(j=1; j<=(nlstate+ndeath);j++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
               k=k+1;            for(m=-1; m <=nlstate+ndeath; m++)
               gm[k]=pmmij[i][j];              if(freq[jk][m][i] !=0 ) {
             }              if(first==1)
           }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                      fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)              }
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            if(i <= iagemax)
         }            fprintf(ficresp,"\n");
           if(first==1)
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            printf("Others in log...\n");
           for(theta=1; theta <=npar; theta++)          fprintf(ficlog,"\n");
             trgradg[j][theta]=gradg[theta][j];        }
              }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    dateintmean=dateintsum/k2cpt; 
           
         pmij(pmmij,cov,ncovmodel,x,nlstate);    fclose(ficresp);
            free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
         k=0;    free_vector(pp,1,nlstate);
         for(i=1; i<=(nlstate); i++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           for(j=1; j<=(nlstate+ndeath);j++){    /* End of Freq */
             k=k+1;  }
             mu[k][(int) age]=pmmij[i][j];  
           }  /************ Prevalence ********************/
         }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  {  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             varpij[i][j][(int)age] = doldm[i][j];       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
         /*printf("\n%d ",(int)age);    */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){   
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      }*/    double ***freq; /* Frequencies */
     double *pp, **prop;
         fprintf(ficresprob,"\n%d ",(int)age);    double pos,posprop; 
         fprintf(ficresprobcov,"\n%d ",(int)age);    double  y2; /* in fractional years */
         fprintf(ficresprobcor,"\n%d ",(int)age);    int iagemin, iagemax;
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    iagemin= (int) agemin;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    iagemax= (int) agemax;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    /*pp=vector(1,nlstate);*/
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         }    j1=0;
         i=0;    
         for (k=1; k<=(nlstate);k++){    j=cptcoveff;
           for (l=1; l<=(nlstate+ndeath);l++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             i=i++;    
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    for(k1=1; k1<=j;k1++){
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      for(i1=1; i1<=ncodemax[k1];i1++){
             for (j=1; j<=i;j++){        j1++;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        for (i=1; i<=nlstate; i++)  
             }          for(m=iagemin; m <= iagemax+3; m++)
           }            prop[i][m]=0.0;
         }/* end of loop for state */       
       } /* end of loop for age */        for (i=1; i<=imx; i++) { /* Each individual */
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          bool=1;
       for (k1=1; k1<=(nlstate);k1++){          if  (cptcovn>0) {
         for (l1=1; l1<=(nlstate+ndeath);l1++){            for (z1=1; z1<=cptcoveff; z1++) 
           if(l1==k1) continue;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           i=(k1-1)*(nlstate+ndeath)+l1;                bool=0;
           for (k2=1; k2<=(nlstate);k2++){          } 
             for (l2=1; l2<=(nlstate+ndeath);l2++){          if (bool==1) { 
               if(l2==k2) continue;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               j=(k2-1)*(nlstate+ndeath)+l2;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if(j<=i) continue;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               for (age=bage; age<=fage; age ++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if ((int)age %5==0){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   mu1=mu[i][(int) age]/stepm*YEARM ;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   mu2=mu[j][(int) age]/stepm*YEARM;                  prop[s[m][i]][iagemax+3] += weight[i]; 
                   /* Computing eigen value of matrix of covariance */                } 
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));              }
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));            } /* end selection of waves */
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);          }
                   /* Eigen vectors */        }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        for(i=iagemin; i <= iagemax+3; i++){  
                   v21=sqrt(1.-v11*v11);          
                   v12=-v21;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   v22=v11;            posprop += prop[jk][i]; 
                   /*printf(fignu*/          } 
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */          for(jk=1; jk <=nlstate ; jk++){     
                   if(first==1){            if( i <=  iagemax){ 
                     first=0;              if(posprop>=1.e-5){ 
                     fprintf(ficgp,"\nset parametric;set nolabel");                probs[i][jk][j1]= prop[jk][i]/posprop;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);              } 
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            } 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);          }/* end jk */ 
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);        }/* end i */ 
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);      } /* end i1 */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    } /* end k1 */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    /*free_vector(pp,1,nlstate);*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                   }else{  }  /* End of prevalence */
                     first=0;  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);  /************* Waves Concatenation ***************/
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  {
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   }/* if first */       Death is a valid wave (if date is known).
                 } /* age mod 5 */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
               } /* end loop age */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);       and mw[mi+1][i]. dh depends on stepm.
               first=1;       */
             } /*l12 */  
           } /* k12 */    int i, mi, m;
         } /*l1 */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       }/* k1 */       double sum=0., jmean=0.;*/
     } /* loop covariates */    int first;
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    int j, k=0,jk, ju, jl;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    double sum=0.;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    first=0;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    jmin=1e+5;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    jmax=-1;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    jmean=0.;
   }    for(i=1; i<=imx; i++){
   free_vector(xp,1,npar);      mi=0;
   fclose(ficresprob);      m=firstpass;
   fclose(ficresprobcov);      while(s[m][i] <= nlstate){
   fclose(ficresprobcor);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   fclose(ficgp);          mw[++mi][i]=m;
   fclose(fichtm);        if(m >=lastpass)
 }          break;
         else
           m++;
 /******************* Printing html file ***********/      }/* end while */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      if (s[m][i] > nlstate){
                   int lastpass, int stepm, int weightopt, char model[],\        mi++;     /* Death is another wave */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        /* if(mi==0)  never been interviewed correctly before death */
                   int popforecast, int estepm ,\           /* Only death is a correct wave */
                   double jprev1, double mprev1,double anprev1, \        mw[mi][i]=m;
                   double jprev2, double mprev2,double anprev2){      }
   int jj1, k1, i1, cpt;  
   /*char optionfilehtm[FILENAMELENGTH];*/      wav[i]=mi;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      if(mi==0){
     printf("Problem with %s \n",optionfilehtm), exit(0);        nbwarn++;
   }        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n          first=1;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n        }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        if(first==1){
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
  - Life expectancies by age and initial health status (estepm=%2d months):        }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      } /* end mi==0 */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    } /* End individuals */
   
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    for(i=1; i<=imx; i++){
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      for(mi=1; mi<wav[i];mi++){
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n        if (stepm <=0)
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n          dh[mi][i]=1;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        else{
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n            if (agedc[i] < 2*AGESUP) {
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
  if(popforecast==1) fprintf(fichtm,"\n              else if(j<0){
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                nberr++;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         <br>",fileres,fileres,fileres,fileres);                j=1; /* Temporary Dangerous patch */
  else                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(fichtm," <li>Graphs</li><p>");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
  m=cptcoveff;              k=k+1;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              if (j >= jmax){
                 jmax=j;
  jj1=0;                ijmax=i;
  for(k1=1; k1<=m;k1++){              }
    for(i1=1; i1<=ncodemax[k1];i1++){              if (j <= jmin){
      jj1++;                jmin=j;
      if (cptcovn > 0) {                ijmin=i;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              }
        for (cpt=1; cpt<=cptcoveff;cpt++)              sum=sum+j;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      }            }
      /* Pij */          }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          else{
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      /* Quasi-incidences */  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            k=k+1;
        /* Stable prevalence in each health state */            if (j >= jmax) {
        for(cpt=1; cpt<nlstate;cpt++){              jmax=j;
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>              ijmax=i;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }
        }            else if (j <= jmin){
     for(cpt=1; cpt<=nlstate;cpt++) {              jmin=j;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              ijmin=i;
 interval) in state (%d): v%s%d%d.png <br>            }
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
      }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      for(cpt=1; cpt<=nlstate;cpt++) {            if(j<0){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              nberr++;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            }
 health expectancies in states (1) and (2): e%s%d.png<br>            sum=sum+j;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }
    }          jk= j/stepm;
  }          jl= j -jk*stepm;
 fclose(fichtm);          ju= j -(jk+1)*stepm;
 }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
 /******************* Gnuplot file **************/              dh[mi][i]=jk;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                    * at the price of an extra matrix product in likelihood */
   int ng;              dh[mi][i]=jk+1;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {              bh[mi][i]=ju;
     printf("Problem with file %s",optionfilegnuplot);            }
   }          }else{
             if(jl <= -ju){
 #ifdef windows              dh[mi][i]=jk;
     fprintf(ficgp,"cd \"%s\" \n",pathc);              bh[mi][i]=jl;       /* bias is positive if real duration
 #endif                                   * is higher than the multiple of stepm and negative otherwise.
 m=pow(2,cptcoveff);                                   */
              }
  /* 1eme*/            else{
   for (cpt=1; cpt<= nlstate ; cpt ++) {              dh[mi][i]=jk+1;
    for (k1=1; k1<= m ; k1 ++) {              bh[mi][i]=ju;
             }
 #ifdef windows            if(dh[mi][i]==0){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              dh[mi][i]=1; /* At least one step */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);              bh[mi][i]=ju; /* At least one step */
 #endif              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 #ifdef unix            }
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          } /* end if mle */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        }
 #endif      } /* end wave */
     }
 for (i=1; i<= nlstate ; i ++) {    jmean=sum/k;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 }   }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {  /*********** Tricode ****************************/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  void tricode(int *Tvar, int **nbcode, int imx)
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {
 }    
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    int Ndum[20],ij=1, k, j, i, maxncov=19;
      for (i=1; i<= nlstate ; i ++) {    int cptcode=0;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    cptcoveff=0; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");   
 }      for (k=0; k<maxncov; k++) Ndum[k]=0;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    for (k=1; k<=7; k++) ncodemax[k]=0;
 #ifdef unix  
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
 #endif      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
    }                                 modality*/ 
   }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   /*2 eme*/        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   for (k1=1; k1<= m ; k1 ++) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);                                         Tvar[j]. If V=sex and male is 0 and 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                                         female is 1, then  cptcode=1.*/
          }
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;      for (i=0; i<=cptcode; i++) {
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       for (j=1; j<= nlstate+1 ; j ++) {      }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      ij=1; 
 }        for (i=1; i<=ncodemax[j]; i++) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        for (k=0; k<= maxncov; k++) {
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          if (Ndum[k] != 0) {
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            nbcode[Tvar[j]][ij]=k; 
       for (j=1; j<= nlstate+1 ; j ++) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            
         else fprintf(ficgp," \%%*lf (\%%*lf)");            ij++;
 }            }
       fprintf(ficgp,"\" t\"\" w l 0,");          if (ij > ncodemax[j]) break; 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        }  
       for (j=1; j<= nlstate+1 ; j ++) {      } 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }     for (k=0; k< maxncov; k++) Ndum[k]=0;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");   for (i=1; i<=ncovmodel-2; i++) { 
     }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   }     ij=Tvar[i];
       Ndum[ij]++;
   /*3eme*/   }
   
   for (k1=1; k1<= m ; k1 ++) {   ij=1;
     for (cpt=1; cpt<= nlstate ; cpt ++) {   for (i=1; i<= maxncov; i++) {
       k=2+nlstate*(2*cpt-2);     if((Ndum[i]!=0) && (i<=ncovcol)){
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       Tvaraff[ij]=i; /*For printing */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);       ij++;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);     }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");   }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);   
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   cptcoveff=ij-1; /*Number of simple covariates*/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
   /*********** Health Expectancies ****************/
 */  
       for (i=1; i< nlstate ; i ++) {  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  
   {
       }    /* Health expectancies */
     }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   }    double age, agelim, hf;
      double ***p3mat,***varhe;
   /* CV preval stat */    double **dnewm,**doldm;
     for (k1=1; k1<= m ; k1 ++) {    double *xp;
     for (cpt=1; cpt<nlstate ; cpt ++) {    double **gp, **gm;
       k=3;    double ***gradg, ***trgradg;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    int theta;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       for (i=1; i< nlstate ; i ++)    xp=vector(1,npar);
         fprintf(ficgp,"+$%d",k+i+1);    dnewm=matrix(1,nlstate*nlstate,1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
          
       l=3+(nlstate+ndeath)*cpt;    fprintf(ficreseij,"# Local time at start: %s", strstart);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    fprintf(ficreseij,"# Health expectancies\n");
       for (i=1; i< nlstate ; i ++) {    fprintf(ficreseij,"# Age");
         l=3+(nlstate+ndeath)*cpt;    for(i=1; i<=nlstate;i++)
         fprintf(ficgp,"+$%d",l+i+1);      for(j=1; j<=nlstate;j++)
       }        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(ficreseij,"\n");
     }  
   }      if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
   /* proba elementaires */    }
    for(i=1,jk=1; i <=nlstate; i++){    else  hstepm=estepm;   
     for(k=1; k <=(nlstate+ndeath); k++){    /* We compute the life expectancy from trapezoids spaced every estepm months
       if (k != i) {     * This is mainly to measure the difference between two models: for example
         for(j=1; j <=ncovmodel; j++){     * if stepm=24 months pijx are given only every 2 years and by summing them
             * we are calculating an estimate of the Life Expectancy assuming a linear 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);     * progression in between and thus overestimating or underestimating according
           jk++;     * to the curvature of the survival function. If, for the same date, we 
           fprintf(ficgp,"\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         }     * to compare the new estimate of Life expectancy with the same linear 
       }     * hypothesis. A more precise result, taking into account a more precise
     }     * curvature will be obtained if estepm is as small as stepm. */
    }  
     /* For example we decided to compute the life expectancy with the smallest unit */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      for(jk=1; jk <=m; jk++) {       nhstepm is the number of hstepm from age to agelim 
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);       nstepm is the number of stepm from age to agelin. 
        if (ng==2)       Look at hpijx to understand the reason of that which relies in memory size
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");       and note for a fixed period like estepm months */
        else    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
          fprintf(ficgp,"\nset title \"Probability\"\n");       survival function given by stepm (the optimization length). Unfortunately it
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);       means that if the survival funtion is printed only each two years of age and if
        i=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        for(k2=1; k2<=nlstate; k2++) {       results. So we changed our mind and took the option of the best precision.
          k3=i;    */
          for(k=1; k<=(nlstate+ndeath); k++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
            if (k != k2){  
              if(ng==2)    agelim=AGESUP;
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
              else      /* nhstepm age range expressed in number of stepm */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
              ij=1;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
              for(j=3; j <=ncovmodel; j++) {      /* if (stepm >= YEARM) hstepm=1;*/
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                  ij++;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
                else      gm=matrix(0,nhstepm,1,nlstate*nlstate);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
              }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
              fprintf(ficgp,")/(1");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                    hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
              for(k1=1; k1 <=nlstate; k1++){     
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
                ij=1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      /* Computing  Variances of health expectancies */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                    ij++;       for(theta=1; theta <=npar; theta++){
                  }        for(i=1; i<=npar; i++){ 
                  else          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
                }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                fprintf(ficgp,")");    
              }        cptj=0;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        for(j=1; j<= nlstate; j++){
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          for(i=1; i<=nlstate; i++){
              i=i+ncovmodel;            cptj=cptj+1;
            }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
          }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
        }            }
      }          }
    }        }
    fclose(ficgp);       
 }  /* end gnuplot */       
         for(i=1; i<=npar; i++) 
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
 /*************** Moving average **************/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        
         cptj=0;
   int i, cpt, cptcod;        for(j=1; j<= nlstate; j++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          for(i=1;i<=nlstate;i++){
       for (i=1; i<=nlstate;i++)            cptj=cptj+1;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
           mobaverage[(int)agedeb][i][cptcod]=0.;  
                  gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            }
       for (i=1; i<=nlstate;i++){          }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
           for (cpt=0;cpt<=4;cpt++){        for(j=1; j<= nlstate*nlstate; j++)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          for(h=0; h<=nhstepm-1; h++){
           }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          }
         }       } 
       }     
     }  /* End theta */
      
 }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
        for(h=0; h<=nhstepm-1; h++)
 /************** Forecasting ******************/        for(j=1; j<=nlstate*nlstate;j++)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       for(i=1;i<=nlstate*nlstate;i++)
   double *popeffectif,*popcount;        for(j=1;j<=nlstate*nlstate;j++)
   double ***p3mat;          varhe[i][j][(int)age] =0.;
   char fileresf[FILENAMELENGTH];  
        printf("%d|",(int)age);fflush(stdout);
  agelim=AGESUP;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
            for(i=1;i<=nlstate*nlstate;i++)
   strcpy(fileresf,"f");            for(j=1;j<=nlstate*nlstate;j++)
   strcat(fileresf,fileres);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   if((ficresf=fopen(fileresf,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", fileresf);      }
   }      /* Computing expectancies */
   printf("Computing forecasting: result on file '%s' \n", fileresf);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   if (mobilav==1) {            
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }          }
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficreseij,"%3.0f",age );
   if (stepm<=12) stepsize=1;      cptj=0;
        for(i=1; i<=nlstate;i++)
   agelim=AGESUP;        for(j=1; j<=nlstate;j++){
            cptj++;
   hstepm=1;          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   hstepm=hstepm/stepm;        }
   yp1=modf(dateintmean,&yp);      fprintf(ficreseij,"\n");
   anprojmean=yp;     
   yp2=modf((yp1*12),&yp);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   mprojmean=yp;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   yp1=modf((yp2*30.5),&yp);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   jprojmean=yp;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   if(jprojmean==0) jprojmean=1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if(mprojmean==0) jprojmean=1;    }
      printf("\n");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    fprintf(ficlog,"\n");
    
   for(cptcov=1;cptcov<=i2;cptcov++){    free_vector(xp,1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       k=k+1;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficresf,"\n#******");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       for(j=1;j<=cptcoveff;j++) {  }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }  /************ Variance ******************/
       fprintf(ficresf,"******\n");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       fprintf(ficresf,"# StartingAge FinalAge");  {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    /* Variance of health expectancies */
          /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
          /* double **newm;*/
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    double **dnewm,**doldm;
         fprintf(ficresf,"\n");    double **dnewmp,**doldmp;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double *xp;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double **gp, **gm;  /* for var eij */
           nhstepm = nhstepm/hstepm;    double ***gradg, ***trgradg; /*for var eij */
              double **gradgp, **trgradgp; /* for var p point j */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *gpp, *gmp; /* for var p point j */
           oldm=oldms;savm=savms;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double ***p3mat;
            double age,agelim, hf;
           for (h=0; h<=nhstepm; h++){    double ***mobaverage;
             if (h==(int) (calagedate+YEARM*cpt)) {    int theta;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    char digit[4];
             }    char digitp[25];
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    char fileresprobmorprev[FILENAMELENGTH];
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)    if(popbased==1){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      if(mobilav!=0)
                 else {        strcpy(digitp,"-populbased-mobilav-");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      else strcpy(digitp,"-populbased-nomobil-");
                 }    }
                    else 
               }      strcpy(digitp,"-stablbased-");
               if (h==(int)(calagedate+12*cpt)){  
                 fprintf(ficresf," %.3f", kk1);    if (mobilav!=0) {
                              mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
             }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
         }    }
       }  
     }    strcpy(fileresprobmorprev,"prmorprev"); 
   }    sprintf(digit,"%-d",ij);
            /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   fclose(ficresf);    strcat(fileresprobmorprev,fileres);
 }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 /************** Forecasting ******************/      printf("Problem with resultfile: %s\n", fileresprobmorprev);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   int *popage;   
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   double *popeffectif,*popcount;    fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
   double ***p3mat,***tabpop,***tabpopprev;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   char filerespop[FILENAMELENGTH];    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficresprobmorprev," p.%-d SE",j);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate;i++)
   agelim=AGESUP;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    }  
      fprintf(ficresprobmorprev,"\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fprintf(ficgp,"\n# Routine varevsij");
      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   strcpy(filerespop,"pop");    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   strcat(filerespop,fileres);  /*   } */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     printf("Problem with forecast resultfile: %s\n", filerespop);   fprintf(ficresvij, "#Local time at start: %s", strstart);
   }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   printf("Computing forecasting: result on file '%s' \n", filerespop);    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   if (mobilav==1) {    fprintf(ficresvij,"\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    xp=vector(1,npar);
   }    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   if (stepm<=12) stepsize=1;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
   agelim=AGESUP;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
   hstepm=1;    gmp=vector(nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      
   if (popforecast==1) {    if(estepm < stepm){
     if((ficpop=fopen(popfile,"r"))==NULL) {      printf ("Problem %d lower than %d\n",estepm, stepm);
       printf("Problem with population file : %s\n",popfile);exit(0);    }
     }    else  hstepm=estepm;   
     popage=ivector(0,AGESUP);    /* For example we decided to compute the life expectancy with the smallest unit */
     popeffectif=vector(0,AGESUP);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     popcount=vector(0,AGESUP);       nhstepm is the number of hstepm from age to agelim 
           nstepm is the number of stepm from age to agelin. 
     i=1;         Look at hpijx to understand the reason of that which relies in memory size
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;       and note for a fixed period like k years */
        /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     imx=i;       survival function given by stepm (the optimization length). Unfortunately it
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];       means that if the survival funtion is printed every two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   for(cptcov=1;cptcov<=i2;cptcov++){    */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       k=k+1;    agelim = AGESUP;
       fprintf(ficrespop,"\n#******");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(j=1;j<=cptcoveff;j++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficrespop,"******\n");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       fprintf(ficrespop,"# Age");      gp=matrix(0,nhstepm,1,nlstate);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      gm=matrix(0,nhstepm,1,nlstate);
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
        
       for (cpt=0; cpt<=0;cpt++) {      for(theta=1; theta <=npar; theta++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           nhstepm = nhstepm/hstepm;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if (popbased==1) {
           oldm=oldms;savm=savms;          if(mobilav ==0){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(i=1; i<=nlstate;i++)
                      prlim[i][i]=probs[(int)age][i][ij];
           for (h=0; h<=nhstepm; h++){          }else{ /* mobilav */ 
             if (h==(int) (calagedate+YEARM*cpt)) {            for(i=1; i<=nlstate;i++)
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              prlim[i][i]=mobaverage[(int)age][i][ij];
             }          }
             for(j=1; j<=nlstate+ndeath;j++) {        }
               kk1=0.;kk2=0;    
               for(i=1; i<=nlstate;i++) {                      for(j=1; j<= nlstate; j++){
                 if (mobilav==1)          for(h=0; h<=nhstepm; h++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                 else {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          }
                 }        }
               }        /* This for computing probability of death (h=1 means
               if (h==(int)(calagedate+12*cpt)){           computed over hstepm matrices product = hstepm*stepm months) 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;           as a weighted average of prlim.
                   /*fprintf(ficrespop," %.3f", kk1);        */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
             for(i=1; i<=nlstate;i++){        }    
               kk1=0.;        /* end probability of death */
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                 }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        if (popbased==1) {
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          if(mobilav ==0){
           }            for(i=1; i<=nlstate;i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              prlim[i][i]=probs[(int)age][i][ij];
         }          }else{ /* mobilav */ 
       }            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   /******/          }
         }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(j=1; j<= nlstate; j++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for(h=0; h<=nhstepm; h++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           nhstepm = nhstepm/hstepm;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                    }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        /* This for computing probability of death (h=1 means
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             computed over hstepm matrices product = hstepm*stepm months) 
           for (h=0; h<=nhstepm; h++){           as a weighted average of prlim.
             if (h==(int) (calagedate+YEARM*cpt)) {        */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             for(j=1; j<=nlstate+ndeath;j++) {           gmp[j] += prlim[i][i]*p3mat[i][j][1];
               kk1=0.;kk2=0;        }    
               for(i=1; i<=nlstate;i++) {                      /* end probability of death */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }        for(j=1; j<= nlstate; j++) /* vareij */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          for(h=0; h<=nhstepm; h++){
             }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
    }        }
   }  
        } /* End theta */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);      for(h=0; h<=nhstepm; h++) /* veij */
     free_vector(popeffectif,0,AGESUP);        for(j=1; j<=nlstate;j++)
     free_vector(popcount,0,AGESUP);          for(theta=1; theta <=npar; theta++)
   }            trgradg[h][j][theta]=gradg[h][theta][j];
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   fclose(ficrespop);        for(theta=1; theta <=npar; theta++)
 }          trgradgp[j][theta]=gradgp[theta][j];
     
 /***********************************************/  
 /**************** Main Program *****************/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 /***********************************************/      for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
 int main(int argc, char *argv[])          vareij[i][j][(int)age] =0.;
 {  
       for(h=0;h<=nhstepm;h++){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        for(k=0;k<=nhstepm;k++){
   double agedeb, agefin,hf;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
   double fret;            for(j=1;j<=nlstate;j++)
   double **xi,tmp,delta;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   double dum; /* Dummy variable */      }
   double ***p3mat;    
   int *indx;      /* pptj */
   char line[MAXLINE], linepar[MAXLINE];      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   int firstobs=1, lastobs=10;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   int sdeb, sfin; /* Status at beginning and end */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   int c,  h , cpt,l;          varppt[j][i]=doldmp[j][i];
   int ju,jl, mi;      /* end ppptj */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      /*  x centered again */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   int mobilav=0,popforecast=0;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   int hstepm, nhstepm;   
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      if (popbased==1) {
         if(mobilav ==0){
   double bage, fage, age, agelim, agebase;          for(i=1; i<=nlstate;i++)
   double ftolpl=FTOL;            prlim[i][i]=probs[(int)age][i][ij];
   double **prlim;        }else{ /* mobilav */ 
   double *severity;          for(i=1; i<=nlstate;i++)
   double ***param; /* Matrix of parameters */            prlim[i][i]=mobaverage[(int)age][i][ij];
   double  *p;        }
   double **matcov; /* Matrix of covariance */      }
   double ***delti3; /* Scale */               
   double *delti; /* Scale */      /* This for computing probability of death (h=1 means
   double ***eij, ***vareij;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   double **varpl; /* Variances of prevalence limits by age */         as a weighted average of prlim.
   double *epj, vepp;      */
   double kk1, kk2;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
   char *alph[]={"a","a","b","c","d","e"}, str[4];      /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   char z[1]="c", occ;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
 #include <sys/time.h>        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
 #include <time.h>        for(i=1; i<=nlstate;i++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
   /* long total_usecs;      } 
   struct timeval start_time, end_time;      fprintf(ficresprobmorprev,"\n");
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      fprintf(ficresvij,"%.0f ",age );
   getcwd(pathcd, size);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   printf("\n%s",version);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   if(argc <=1){        }
     printf("\nEnter the parameter file name: ");      fprintf(ficresvij,"\n");
     scanf("%s",pathtot);      free_matrix(gp,0,nhstepm,1,nlstate);
   }      free_matrix(gm,0,nhstepm,1,nlstate);
   else{      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     strcpy(pathtot,argv[1]);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    } /* End age */
   /*cygwin_split_path(pathtot,path,optionfile);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
   /* cutv(path,optionfile,pathtot,'\\');*/    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   chdir(path);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   replace(pathc,path);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 /*-------- arguments in the command line --------*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   strcpy(fileres,"r");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   strcat(fileres, optionfilefiname);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   strcat(fileres,".txt");    /* Other files have txt extension */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   /*---------arguments file --------*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     printf("Problem with optionfile %s\n",optionfile);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     goto end;  
   }    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
   strcpy(filereso,"o");    free_matrix(dnewm,1,nlstate,1,npar);
   strcat(filereso,fileres);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficparo=fopen(filereso,"w"))==NULL) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
   /* Reads comments: lines beginning with '#' */    fflush(ficgp);
   while((c=getc(ficpar))=='#' && c!= EOF){    fflush(fichtm); 
     ungetc(c,ficpar);  }  /* end varevsij */
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /************ Variance of prevlim ******************/
     fputs(line,ficparo);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   }  {
   ungetc(c,ficpar);    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double **newm;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    double **dnewm,**doldm;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    int i, j, nhstepm, hstepm;
 while((c=getc(ficpar))=='#' && c!= EOF){    int k, cptcode;
     ungetc(c,ficpar);    double *xp;
     fgets(line, MAXLINE, ficpar);    double *gp, *gm;
     puts(line);    double **gradg, **trgradg;
     fputs(line,ficparo);    double age,agelim;
   }    int theta;
   ungetc(c,ficpar);    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
      fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
        fprintf(ficresvpl,"# Age");
   covar=matrix(0,NCOVMAX,1,n);    for(i=1; i<=nlstate;i++)
   cptcovn=0;        fprintf(ficresvpl," %1d-%1d",i,i);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(ficresvpl,"\n");
   
   ncovmodel=2+cptcovn;    xp=vector(1,npar);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   /* Read guess parameters */    
   /* Reads comments: lines beginning with '#' */    hstepm=1*YEARM; /* Every year of age */
   while((c=getc(ficpar))=='#' && c!= EOF){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     ungetc(c,ficpar);    agelim = AGESUP;
     fgets(line, MAXLINE, ficpar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     puts(line);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fputs(line,ficparo);      if (stepm >= YEARM) hstepm=1;
   }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   ungetc(c,ficpar);      gradg=matrix(1,npar,1,nlstate);
        gp=vector(1,nlstate);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      gm=vector(1,nlstate);
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){      for(theta=1; theta <=npar; theta++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);        for(i=1; i<=npar; i++){ /* Computes gradient */
       fprintf(ficparo,"%1d%1d",i1,j1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       printf("%1d%1d",i,j);        }
       for(k=1; k<=ncovmodel;k++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fscanf(ficpar," %lf",&param[i][j][k]);        for(i=1;i<=nlstate;i++)
         printf(" %lf",param[i][j][k]);          gp[i] = prlim[i][i];
         fprintf(ficparo," %lf",param[i][j][k]);      
       }        for(i=1; i<=npar; i++) /* Computes gradient */
       fscanf(ficpar,"\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       printf("\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficparo,"\n");        for(i=1;i<=nlstate;i++)
     }          gm[i] = prlim[i][i];
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   p=param[1][1];      } /* End theta */
    
   /* Reads comments: lines beginning with '#' */      trgradg =matrix(1,nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(j=1; j<=nlstate;j++)
     fgets(line, MAXLINE, ficpar);        for(theta=1; theta <=npar; theta++)
     puts(line);          trgradg[j][theta]=gradg[theta][j];
     fputs(line,ficparo);  
   }      for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      for(i=1;i<=nlstate;i++)
   for(i=1; i <=nlstate; i++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficresvpl,"%.0f ",age );
       printf("%1d%1d",i,j);      for(i=1; i<=nlstate;i++)
       fprintf(ficparo,"%1d%1d",i1,j1);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       for(k=1; k<=ncovmodel;k++){      fprintf(ficresvpl,"\n");
         fscanf(ficpar,"%le",&delti3[i][j][k]);      free_vector(gp,1,nlstate);
         printf(" %le",delti3[i][j][k]);      free_vector(gm,1,nlstate);
         fprintf(ficparo," %le",delti3[i][j][k]);      free_matrix(gradg,1,npar,1,nlstate);
       }      free_matrix(trgradg,1,nlstate,1,npar);
       fscanf(ficpar,"\n");    } /* End age */
       printf("\n");  
       fprintf(ficparo,"\n");    free_vector(xp,1,npar);
     }    free_matrix(doldm,1,nlstate,1,npar);
   }    free_matrix(dnewm,1,nlstate,1,nlstate);
   delti=delti3[1][1];  
    }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  /************ Variance of one-step probabilities  ******************/
     ungetc(c,ficpar);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     fgets(line, MAXLINE, ficpar);  {
     puts(line);    int i, j=0,  i1, k1, l1, t, tj;
     fputs(line,ficparo);    int k2, l2, j1,  z1;
   }    int k=0,l, cptcode;
   ungetc(c,ficpar);    int first=1, first1;
      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   matcov=matrix(1,npar,1,npar);    double **dnewm,**doldm;
   for(i=1; i <=npar; i++){    double *xp;
     fscanf(ficpar,"%s",&str);    double *gp, *gm;
     printf("%s",str);    double **gradg, **trgradg;
     fprintf(ficparo,"%s",str);    double **mu;
     for(j=1; j <=i; j++){    double age,agelim, cov[NCOVMAX];
       fscanf(ficpar," %le",&matcov[i][j]);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       printf(" %.5le",matcov[i][j]);    int theta;
       fprintf(ficparo," %.5le",matcov[i][j]);    char fileresprob[FILENAMELENGTH];
     }    char fileresprobcov[FILENAMELENGTH];
     fscanf(ficpar,"\n");    char fileresprobcor[FILENAMELENGTH];
     printf("\n");  
     fprintf(ficparo,"\n");    double ***varpij;
   }  
   for(i=1; i <=npar; i++)    strcpy(fileresprob,"prob"); 
     for(j=i+1;j<=npar;j++)    strcat(fileresprob,fileres);
       matcov[i][j]=matcov[j][i];    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprob);
   printf("\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     /*-------- Rewriting paramater file ----------*/    strcat(fileresprobcov,fileres);
      strcpy(rfileres,"r");    /* "Rparameterfile */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      printf("Problem with resultfile: %s\n", fileresprobcov);
      strcat(rfileres,".");    /* */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    }
     if((ficres =fopen(rfileres,"w"))==NULL) {    strcpy(fileresprobcor,"probcor"); 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    strcat(fileresprobcor,fileres);
     }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     fprintf(ficres,"#%s\n",version);      printf("Problem with resultfile: %s\n", fileresprobcor);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     /*-------- data file ----------*/    }
     if((fic=fopen(datafile,"r"))==NULL)    {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       printf("Problem with datafile: %s\n", datafile);goto end;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     n= lastobs;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     severity = vector(1,maxwav);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     outcome=imatrix(1,maxwav+1,1,n);    fprintf(ficresprob, "#Local time at start: %s", strstart);
     num=ivector(1,n);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     moisnais=vector(1,n);    fprintf(ficresprob,"# Age");
     annais=vector(1,n);    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     moisdc=vector(1,n);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     andc=vector(1,n);    fprintf(ficresprobcov,"# Age");
     agedc=vector(1,n);    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
     cod=ivector(1,n);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     weight=vector(1,n);    fprintf(ficresprobcov,"# Age");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);    for(i=1; i<=nlstate;i++)
     s=imatrix(1,maxwav+1,1,n);      for(j=1; j<=(nlstate+ndeath);j++){
     adl=imatrix(1,maxwav+1,1,n);            fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     tab=ivector(1,NCOVMAX);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     ncodemax=ivector(1,8);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
     i=1;   /* fprintf(ficresprob,"\n");
     while (fgets(line, MAXLINE, fic) != NULL)    {    fprintf(ficresprobcov,"\n");
       if ((i >= firstobs) && (i <=lastobs)) {    fprintf(ficresprobcor,"\n");
           */
         for (j=maxwav;j>=1;j--){   xp=vector(1,npar);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           strcpy(line,stra);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         }    first=1;
            fprintf(ficgp,"\n# Routine varprob");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n");
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         for (j=ncovcol;j>=1;j--){  and drawn. It helps understanding how is the covariance between two incidences.\
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         num[i]=atol(stra);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
          would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  standard deviations wide on each axis. <br>\
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         i=i+1;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       }  
     }    cov[1]=1;
     /* printf("ii=%d", ij);    tj=cptcoveff;
        scanf("%d",i);*/    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   imx=i-1; /* Number of individuals */    j1=0;
     for(t=1; t<=tj;t++){
   /* for (i=1; i<=imx; i++){      for(i1=1; i1<=ncodemax[t];i1++){ 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        j1++;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        if  (cptcovn>0) {
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          fprintf(ficresprob, "\n#********** Variable "); 
     }*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    /*  for (i=1; i<=imx; i++){          fprintf(ficresprob, "**********\n#\n");
      if (s[4][i]==9)  s[4][i]=-1;          fprintf(ficresprobcov, "\n#********** Variable "); 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprobcov, "**********\n#\n");
            
   /* Calculation of the number of parameter from char model*/          fprintf(ficgp, "\n#********** Variable "); 
   Tvar=ivector(1,15);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   Tprod=ivector(1,15);          fprintf(ficgp, "**********\n#\n");
   Tvaraff=ivector(1,15);          
   Tvard=imatrix(1,15,1,2);          
   Tage=ivector(1,15);                fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if (strlen(model) >1){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     j=0, j1=0, k1=1, k2=1;          
     j=nbocc(model,'+');          fprintf(ficresprobcor, "\n#********** Variable ");    
     j1=nbocc(model,'*');          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     cptcovn=j+1;          fprintf(ficresprobcor, "**********\n#");    
     cptcovprod=j1;        }
            
     strcpy(modelsav,model);        for (age=bage; age<=fage; age ++){ 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          cov[2]=age;
       printf("Error. Non available option model=%s ",model);          for (k=1; k<=cptcovn;k++) {
       goto end;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     }          }
              for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for(i=(j+1); i>=1;i--){          for (k=1; k<=cptcovprod;k++)
       cutv(stra,strb,modelsav,'+');            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       /*scanf("%d",i);*/          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       if (strchr(strb,'*')) {          gp=vector(1,(nlstate)*(nlstate+ndeath));
         cutv(strd,strc,strb,'*');          gm=vector(1,(nlstate)*(nlstate+ndeath));
         if (strcmp(strc,"age")==0) {      
           cptcovprod--;          for(theta=1; theta <=npar; theta++){
           cutv(strb,stre,strd,'V');            for(i=1; i<=npar; i++)
           Tvar[i]=atoi(stre);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           cptcovage++;            
             Tage[cptcovage]=i;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             /*printf("stre=%s ", stre);*/            
         }            k=0;
         else if (strcmp(strd,"age")==0) {            for(i=1; i<= (nlstate); i++){
           cptcovprod--;              for(j=1; j<=(nlstate+ndeath);j++){
           cutv(strb,stre,strc,'V');                k=k+1;
           Tvar[i]=atoi(stre);                gp[k]=pmmij[i][j];
           cptcovage++;              }
           Tage[cptcovage]=i;            }
         }            
         else {            for(i=1; i<=npar; i++)
           cutv(strb,stre,strc,'V');              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           Tvar[i]=ncovcol+k1;      
           cutv(strb,strc,strd,'V');            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           Tprod[k1]=i;            k=0;
           Tvard[k1][1]=atoi(strc);            for(i=1; i<=(nlstate); i++){
           Tvard[k1][2]=atoi(stre);              for(j=1; j<=(nlstate+ndeath);j++){
           Tvar[cptcovn+k2]=Tvard[k1][1];                k=k+1;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                gm[k]=pmmij[i][j];
           for (k=1; k<=lastobs;k++)              }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            }
           k1++;       
           k2=k2+2;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
         }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       }          }
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
        /*  scanf("%d",i);*/            for(theta=1; theta <=npar; theta++)
       cutv(strd,strc,strb,'V');              trgradg[j][theta]=gradg[theta][j];
       Tvar[i]=atoi(strc);          
       }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       strcpy(modelsav,stra);            matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         scanf("%d",i);*/          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   printf("cptcovprod=%d ", cptcovprod);          
   scanf("%d ",i);*/          k=0;
     fclose(fic);          for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
     /*  if(mle==1){*/              k=k+1;
     if (weightopt != 1) { /* Maximisation without weights*/              mu[k][(int) age]=pmmij[i][j];
       for(i=1;i<=n;i++) weight[i]=1.0;            }
     }          }
     /*-calculation of age at interview from date of interview and age at death -*/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     agev=matrix(1,maxwav,1,imx);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {          /*printf("\n%d ",(int)age);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
          anint[m][i]=9999;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
          s[m][i]=-1;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        }            }*/
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  
       }          fprintf(ficresprob,"\n%d ",(int)age);
     }          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       for(m=1; (m<= maxwav); m++){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         if(s[m][i] >0){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           if (s[m][i] >= nlstate+1) {            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             if(agedc[i]>0)            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
               if(moisdc[i]!=99 && andc[i]!=9999)          }
                 agev[m][i]=agedc[i];          i=0;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          for (k=1; k<=(nlstate);k++){
            else {            for (l=1; l<=(nlstate+ndeath);l++){ 
               if (andc[i]!=9999){              i=i++;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               agev[m][i]=-1;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               }              for (j=1; j<=i;j++){
             }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           else if(s[m][i] !=9){ /* Should no more exist */              }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            }
             if(mint[m][i]==99 || anint[m][i]==9999)          }/* end of loop for state */
               agev[m][i]=1;        } /* end of loop for age */
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];        /* Confidence intervalle of pij  */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        /*
             }          fprintf(ficgp,"\nset noparametric;unset label");
             else if(agev[m][i] >agemax){          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
               agemax=agev[m][i];          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
             }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
             /*agev[m][i]=anint[m][i]-annais[i];*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
             /*   agev[m][i] = age[i]+2*m;*/          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           }        */
           else { /* =9 */  
             agev[m][i]=1;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
             s[m][i]=-1;        first1=1;
           }        for (k2=1; k2<=(nlstate);k2++){
         }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         else /*= 0 Unknown */            if(l2==k2) continue;
           agev[m][i]=1;            j=(k2-1)*(nlstate+ndeath)+l2;
       }            for (k1=1; k1<=(nlstate);k1++){
                  for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     }                if(l1==k1) continue;
     for (i=1; i<=imx; i++)  {                i=(k1-1)*(nlstate+ndeath)+l1;
       for(m=1; (m<= maxwav); m++){                if(i<=j) continue;
         if (s[m][i] > (nlstate+ndeath)) {                for (age=bage; age<=fage; age ++){ 
           printf("Error: Wrong value in nlstate or ndeath\n");                    if ((int)age %5==0){
           goto end;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     }                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
     free_vector(severity,1,maxwav);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     free_imatrix(outcome,1,maxwav+1,1,n);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     free_vector(moisnais,1,n);                    /* Eigen vectors */
     free_vector(annais,1,n);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     /* free_matrix(mint,1,maxwav,1,n);                    /*v21=sqrt(1.-v11*v11); *//* error */
        free_matrix(anint,1,maxwav,1,n);*/                    v21=(lc1-v1)/cv12*v11;
     free_vector(moisdc,1,n);                    v12=-v21;
     free_vector(andc,1,n);                    v22=v11;
                     tnalp=v21/v11;
                        if(first1==1){
     wav=ivector(1,imx);                      first1=0;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                    }
                        fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     /* Concatenates waves */                    /*printf(fignu*/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
       Tcode=ivector(1,100);                      first=0;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                      fprintf(ficgp,"\nset parametric;unset label");
       ncodemax[1]=1;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                            fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    codtab=imatrix(1,100,1,10);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
    h=0;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
    m=pow(2,cptcoveff);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    for(k=1;k<=cptcoveff; k++){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
      for(i=1; i <=(m/pow(2,k));i++){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
        for(j=1; j <= ncodemax[k]; j++){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
            h++;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
          }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
        }                    }else{
      }                      first=0;
    }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       codtab[1][2]=1;codtab[2][2]=2; */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    /* for(i=1; i <=m ;i++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       for(k=1; k <=cptcovn; k++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       }                    }/* if first */
       printf("\n");                  } /* age mod 5 */
       }                } /* end loop age */
       scanf("%d",i);*/                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                    first=1;
    /* Calculates basic frequencies. Computes observed prevalence at single age              } /*l12 */
        and prints on file fileres'p'. */            } /* k12 */
           } /*l1 */
            }/* k1 */
          } /* loop covariates */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
          free_vector(xp,1,npar);
     /* For Powell, parameters are in a vector p[] starting at p[1]    fclose(ficresprob);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fclose(ficresprobcov);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fclose(ficresprobcor);
     fflush(ficgp);
     if(mle==1){    fflush(fichtmcov);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  }
     }  
      
     /*--------- results files --------------*/  /******************* Printing html file ***********/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                      int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
    jk=1;                    int popforecast, int estepm ,\
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    double jprev1, double mprev1,double anprev1, \
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    double jprev2, double mprev2,double anprev2){
    for(i=1,jk=1; i <=nlstate; i++){    int jj1, k1, i1, cpt;
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
          {     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
            printf("%d%d ",i,k);  </ul>");
            fprintf(ficres,"%1d%1d ",i,k);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
            for(j=1; j <=ncovmodel; j++){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              printf("%f ",p[jk]);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
              fprintf(ficres,"%f ",p[jk]);     fprintf(fichtm,"\
              jk++;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
            }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
            printf("\n");     fprintf(fichtm,"\
            fprintf(ficres,"\n");   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
          }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      }     fprintf(fichtm,"\
    }   - Life expectancies by age and initial health status (estepm=%2d months): \
  if(mle==1){     <a href=\"%s\">%s</a> <br>\n</li>",
     /* Computing hessian and covariance matrix */             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
  }  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");   m=cptcoveff;
     printf("# Scales (for hessian or gradient estimation)\n");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){   jj1=0;
         if (j!=i) {   for(k1=1; k1<=m;k1++){
           fprintf(ficres,"%1d%1d",i,j);     for(i1=1; i1<=ncodemax[k1];i1++){
           printf("%1d%1d",i,j);       jj1++;
           for(k=1; k<=ncovmodel;k++){       if (cptcovn > 0) {
             printf(" %.5e",delti[jk]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             fprintf(ficres," %.5e",delti[jk]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
             jk++;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           printf("\n");       }
           fprintf(ficres,"\n");       /* Pij */
         }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
       }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
      }       /* Quasi-incidences */
           fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     k=1;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         /* Stable prevalence in each health state */
     for(i=1;i<=npar;i++){         for(cpt=1; cpt<nlstate;cpt++){
       /*  if (k>nlstate) k=1;           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
       i1=(i-1)/(ncovmodel*nlstate)+1;  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);         }
       printf("%s%d%d",alph[k],i1,tab[i]);*/       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficres,"%3d",i);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
       printf("%3d",i);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       for(j=1; j<=i;j++){       }
         fprintf(ficres," %.5e",matcov[i][j]);     } /* end i1 */
         printf(" %.5e",matcov[i][j]);   }/* End k1 */
       }   fprintf(fichtm,"</ul>");
       fprintf(ficres,"\n");  
       printf("\n");  
       k++;   fprintf(fichtm,"\
     }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fgets(line, MAXLINE, ficpar);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       puts(line);   fprintf(fichtm,"\
       fputs(line,ficparo);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     ungetc(c,ficpar);  
     estepm=0;   fprintf(fichtm,"\
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     if (estepm==0 || estepm < stepm) estepm=stepm;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     if (fage <= 2) {   fprintf(fichtm,"\
       bage = ageminpar;   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       fage = agemaxpar;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     }   fprintf(fichtm,"\
       - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   fprintf(fichtm,"\
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
             subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /*  if(popforecast==1) fprintf(fichtm,"\n */
     fgets(line, MAXLINE, ficpar);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     puts(line);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     fputs(line,ficparo);  /*      <br>",fileres,fileres,fileres,fileres); */
   }  /*  else  */
   ungetc(c,ficpar);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     fflush(fichtm);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   m=cptcoveff;
         if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   jj1=0;
     fgets(line, MAXLINE, ficpar);   for(k1=1; k1<=m;k1++){
     puts(line);     for(i1=1; i1<=ncodemax[k1];i1++){
     fputs(line,ficparo);       jj1++;
   }       if (cptcovn > 0) {
   ungetc(c,ficpar);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;       }
        for(cpt=1; cpt<=nlstate;cpt++) {
   fscanf(ficpar,"pop_based=%d\n",&popbased);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   fprintf(ficparo,"pop_based=%d\n",popbased);    prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   fprintf(ficres,"pop_based=%d\n",popbased);    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         }
   while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     ungetc(c,ficpar);  health expectancies in states (1) and (2): %s%d.png<br>\
     fgets(line, MAXLINE, ficpar);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
     puts(line);     } /* end i1 */
     fputs(line,ficparo);   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
   ungetc(c,ficpar);   fflush(fichtm);
   }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /******************* Gnuplot file **************/
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
 while((c=getc(ficpar))=='#' && c!= EOF){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     ungetc(c,ficpar);    int ng;
     fgets(line, MAXLINE, ficpar);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     puts(line);  /*     printf("Problem with file %s",optionfilegnuplot); */
     fputs(line,ficparo);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   }  /*   } */
   ungetc(c,ficpar);  
     /*#ifdef windows */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      /*#endif */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    m=pow(2,cptcoveff);
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
 /*------------ gnuplot -------------*/   /* 1eme*/
   strcpy(optionfilegnuplot,optionfilefiname);    for (cpt=1; cpt<= nlstate ; cpt ++) {
   strcat(optionfilegnuplot,".gp");     for (k1=1; k1<= m ; k1 ++) {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     printf("Problem with file %s",optionfilegnuplot);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   }       fprintf(ficgp,"set xlabel \"Age\" \n\
   fclose(ficgp);  set ylabel \"Probability\" \n\
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  set ter png small\n\
 /*--------- index.htm --------*/  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   strcpy(optionfilehtm,optionfile);  
   strcat(optionfilehtm,".htm");       for (i=1; i<= nlstate ; i ++) {
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Problem with %s \n",optionfilehtm), exit(0);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n       for (i=1; i<= nlstate ; i ++) {
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 \n         else fprintf(ficgp," \%%*lf (\%%*lf)");
 Total number of observations=%d <br>\n       } 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
 <hr  size=\"2\" color=\"#EC5E5E\">       for (i=1; i<= nlstate ; i ++) {
  <ul><li>Parameter files<br>\n         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n         else fprintf(ficgp," \%%*lf (\%%*lf)");
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);       }  
   fclose(fichtm);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    }
      /*2 eme*/
 /*------------ free_vector  -------------*/    
  chdir(path);    for (k1=1; k1<= m ; k1 ++) { 
        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
  free_ivector(wav,1,imx);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        for (i=1; i<= nlstate+1 ; i ++) {
  free_ivector(num,1,n);        k=2*i;
  free_vector(agedc,1,n);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        for (j=1; j<= nlstate+1 ; j ++) {
  fclose(ficparo);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  fclose(ficres);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   /*--------------- Prevalence limit --------------*/        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   strcpy(filerespl,"pl");        for (j=1; j<= nlstate+1 ; j ++) {
   strcat(filerespl,fileres);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        }   
   }        fprintf(ficgp,"\" t\"\" w l 0,");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fprintf(ficrespl,"#Prevalence limit\n");        for (j=1; j<= nlstate+1 ; j ++) {
   fprintf(ficrespl,"#Age ");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficrespl,"\n");        }   
          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   prlim=matrix(1,nlstate,1,nlstate);        else fprintf(ficgp,"\" t\"\" w l 0,");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*3eme*/
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    
   k=0;    for (k1=1; k1<= m ; k1 ++) { 
   agebase=ageminpar;      for (cpt=1; cpt<= nlstate ; cpt ++) {
   agelim=agemaxpar;        k=2+nlstate*(2*cpt-2);
   ftolpl=1.e-10;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   i1=cptcoveff;        fprintf(ficgp,"set ter png small\n\
   if (cptcovn < 1){i1=1;}  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   for(cptcov=1;cptcov<=i1;cptcov++){        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         k=k+1;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         fprintf(ficrespl,"\n#******");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
         fprintf(ficrespl,"******\n");        */
                for (i=1; i< nlstate ; i ++) {
         for (age=agebase; age<=agelim; age++){          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          
           fprintf(ficrespl,"%.0f",age );        } 
           for(i=1; i<=nlstate;i++)      }
           fprintf(ficrespl," %.5f", prlim[i][i]);    }
           fprintf(ficrespl,"\n");    
         }    /* CV preval stable (period) */
       }    for (k1=1; k1<= m ; k1 ++) { 
     }      for (cpt=1; cpt<=nlstate ; cpt ++) {
   fclose(ficrespl);        k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   /*------------- h Pij x at various ages ------------*/        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    set ter png small\nset size 0.65,0.65\n\
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  unset log y\n\
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        
   }        for (i=1; i< nlstate ; i ++)
   printf("Computing pij: result on file '%s' \n", filerespij);          fprintf(ficgp,"+$%d",k+i+1);
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   stepsize=(int) (stepm+YEARM-1)/YEARM;        
   /*if (stepm<=24) stepsize=2;*/        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   agelim=AGESUP;        for (i=1; i< nlstate ; i ++) {
   hstepm=stepsize*YEARM; /* Every year of age */          l=3+(nlstate+ndeath)*cpt;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          fprintf(ficgp,"+$%d",l+i+1);
          }
   k=0;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   for(cptcov=1;cptcov<=i1;cptcov++){      } 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }  
       k=k+1;    
         fprintf(ficrespij,"\n#****** ");    /* proba elementaires */
         for(j=1;j<=cptcoveff;j++)    for(i=1,jk=1; i <=nlstate; i++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(k=1; k <=(nlstate+ndeath); k++){
         fprintf(ficrespij,"******\n");        if (k != i) {
                  for(j=1; j <=ncovmodel; j++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            jk++; 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            fprintf(ficgp,"\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }
           fprintf(ficrespij,"# Age");     }
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
               fprintf(ficrespij," %1d-%1d",i,j);       for(jk=1; jk <=m; jk++) {
           fprintf(ficrespij,"\n");         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
            for (h=0; h<=nhstepm; h++){         if (ng==2)
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
             for(i=1; i<=nlstate;i++)         else
               for(j=1; j<=nlstate+ndeath;j++)           fprintf(ficgp,"\nset title \"Probability\"\n");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
             fprintf(ficrespij,"\n");         i=1;
              }         for(k2=1; k2<=nlstate; k2++) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           k3=i;
           fprintf(ficrespij,"\n");           for(k=1; k<=(nlstate+ndeath); k++) {
         }             if (k != k2){
     }               if(ng==2)
   }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
   fclose(ficrespij);               for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   /*---------- Forecasting ------------------*/                   ij++;
   if((stepm == 1) && (strcmp(model,".")==0)){                 }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                 else
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   }               }
   else{               fprintf(ficgp,")/(1");
     erreur=108;               
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);               for(k1=1; k1 <=nlstate; k1++){   
   }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   ij=1;
                  for(j=3; j <=ncovmodel; j++){
   /*---------- Health expectancies and variances ------------*/                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   strcpy(filerest,"t");                     ij++;
   strcat(filerest,fileres);                   }
   if((ficrest=fopen(filerest,"w"))==NULL) {                   else
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   }                 }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                 fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   strcpy(filerese,"e");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   strcat(filerese,fileres);               i=i+ncovmodel;
   if((ficreseij=fopen(filerese,"w"))==NULL) {             }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);           } /* end k */
   }         } /* end k2 */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);       } /* end jk */
      } /* end ng */
  strcpy(fileresv,"v");     fflush(ficgp); 
   strcat(fileresv,fileres);  }  /* end gnuplot */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }  /*************** Moving average **************/
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   calagedate=-1;  
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int i, cpt, cptcod;
     int modcovmax =1;
   k=0;    int mobilavrange, mob;
   for(cptcov=1;cptcov<=i1;cptcov++){    double age;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
       fprintf(ficrest,"\n#****** ");                             a covariate has 2 modalities */
       for(j=1;j<=cptcoveff;j++)    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       fprintf(ficreseij,"\n#****** ");      else mobilavrange=mobilav;
       for(j=1;j<=cptcoveff;j++)      for (age=bage; age<=fage; age++)
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (i=1; i<=nlstate;i++)
       fprintf(ficreseij,"******\n");          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       fprintf(ficresvij,"\n#****** ");      /* We keep the original values on the extreme ages bage, fage and for 
       for(j=1;j<=cptcoveff;j++)         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         we use a 5 terms etc. until the borders are no more concerned. 
       fprintf(ficresvij,"******\n");      */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
       oldm=oldms;savm=savms;          for (i=1; i<=nlstate;i++){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);              for (cptcod=1;cptcod<=modcovmax;cptcod++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
       oldm=oldms;savm=savms;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                    }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
              }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        }/* end age */
       fprintf(ficrest,"\n");      }/* end mob */
     }else return -1;
       epj=vector(1,nlstate+1);    return 0;
       for(age=bage; age <=fage ;age++){  }/* End movingaverage */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)  /************** Forecasting ******************/
             prlim[i][i]=probs[(int)age][i][k];  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
         }    /* proj1, year, month, day of starting projection 
               agemin, agemax range of age
         fprintf(ficrest," %4.0f",age);       dateprev1 dateprev2 range of dates during which prevalence is computed
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){       anproj2 year of en of projection (same day and month as proj1).
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    int *popage;
           }    double agec; /* generic age */
           epj[nlstate+1] +=epj[j];    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
         }    double *popeffectif,*popcount;
     double ***p3mat;
         for(i=1, vepp=0.;i <=nlstate;i++)    double ***mobaverage;
           for(j=1;j <=nlstate;j++)    char fileresf[FILENAMELENGTH];
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    agelim=AGESUP;
         for(j=1;j <=nlstate;j++){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));   
         }    strcpy(fileresf,"f"); 
         fprintf(ficrest,"\n");    strcat(fileresf,fileres);
       }    if((ficresf=fopen(fileresf,"w"))==NULL) {
     }      printf("Problem with forecast resultfile: %s\n", fileresf);
   }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 free_matrix(mint,1,maxwav,1,n);    }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    printf("Computing forecasting: result on file '%s' \n", fileresf);
     free_vector(weight,1,n);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   fclose(ficreseij);  
   fclose(ficresvij);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   fclose(ficrest);  
   fclose(ficpar);    if (mobilav!=0) {
   free_vector(epj,1,nlstate+1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   /*------- Variance limit prevalence------*/          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcpy(fileresvpl,"vpl");      }
   strcat(fileresvpl,fileres);    }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     exit(0);    if (stepm<=12) stepsize=1;
   }    if(estepm < stepm){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   k=0;    else  hstepm=estepm;   
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    hstepm=hstepm/stepm; 
       k=k+1;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       fprintf(ficresvpl,"\n#****** ");                                 fractional in yp1 */
       for(j=1;j<=cptcoveff;j++)    anprojmean=yp;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    yp2=modf((yp1*12),&yp);
       fprintf(ficresvpl,"******\n");    mprojmean=yp;
          yp1=modf((yp2*30.5),&yp);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    jprojmean=yp;
       oldm=oldms;savm=savms;    if(jprojmean==0) jprojmean=1;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    if(mprojmean==0) jprojmean=1;
     }  
  }    i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   fclose(ficresvpl);    
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   /*---------- End : free ----------------*/    
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    fprintf(ficresf,"#****** Routine prevforecast **\n");
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*            if (h==(int)(YEARM*yearp)){ */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
        for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
          k=k+1;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficresf,"\n#******");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(j=1;j<=cptcoveff;j++) {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
          fprintf(ficresf,"******\n");
   free_matrix(matcov,1,npar,1,npar);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   free_vector(delti,1,npar);        for(j=1; j<=nlstate+ndeath;j++){ 
   free_matrix(agev,1,maxwav,1,imx);          for(i=1; i<=nlstate;i++)              
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
   fprintf(fichtm,"\n</body>");        }
   fclose(fichtm);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   fclose(ficgp);          fprintf(ficresf,"\n");
            fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
   if(erreur >0)          for (agec=fage; agec>=(ageminpar-1); agec--){ 
     printf("End of Imach with error or warning %d\n",erreur);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   else   printf("End of Imach\n");            nhstepm = nhstepm/hstepm; 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              oldm=oldms;savm=savms;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   /*printf("Total time was %d uSec.\n", total_usecs);*/          
   /*------ End -----------*/            for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
  end:                for(j=1;j<=cptcoveff;j++) 
 #ifdef windows                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /* chdir(pathcd);*/                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 #endif              } 
  /*system("wgnuplot graph.plt");*/              for(j=1; j<=nlstate+ndeath;j++) {
  /*system("../gp37mgw/wgnuplot graph.plt");*/                ppij=0.;
  /*system("cd ../gp37mgw");*/                for(i=1; i<=nlstate;i++) {
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                  if (mobilav==1) 
  strcpy(plotcmd,GNUPLOTPROGRAM);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
  strcat(plotcmd," ");                  else {
  strcat(plotcmd,optionfilegnuplot);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
  system(plotcmd);                  }
                   if (h*hstepm/YEARM*stepm== yearp) {
 #ifdef windows                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   while (z[0] != 'q') {                  }
     /* chdir(path); */                } /* end i */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                if (h*hstepm/YEARM*stepm==yearp) {
     scanf("%s",z);                  fprintf(ficresf," %.3f", ppij);
     if (z[0] == 'c') system("./imach");                }
     else if (z[0] == 'e') system(optionfilehtm);              }/* end j */
     else if (z[0] == 'g') system(plotcmd);            } /* end h */
     else if (z[0] == 'q') exit(0);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }          } /* end agec */
 #endif        } /* end yearp */
 }      } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.48  
changed lines
  Added in v.1.114


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>