Diff for /imach/src/imach.c between versions 1.125 and 1.297

version 1.125, 2006/04/04 15:20:31 version 1.297, 2019/05/22 17:56:10
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.297  2019/05/22 17:56:10  brouard
     Summary: Fix bug by moving date2dmy and nhstepm which gaefin=-1
   
     Revision 1.296  2019/05/20 13:03:18  brouard
     Summary: Projection syntax simplified
   
   
     We can now start projections, forward or backward, from the mean date
     of inteviews up to or down to a number of years of projection:
     prevforecast=1 yearsfproj=15.3 mobil_average=0
     or
     prevforecast=1 starting-proj-date=1/1/2007 final-proj-date=12/31/2017 mobil_average=0
     or
     prevbackcast=1 yearsbproj=12.3 mobil_average=1
     or
     prevbackcast=1 starting-back-date=1/10/1999 final-back-date=1/1/1985 mobil_average=1
   
     Revision 1.295  2019/05/18 09:52:50  brouard
     Summary: doxygen tex bug
   
     Revision 1.294  2019/05/16 14:54:33  brouard
     Summary: There was some wrong lines added
   
     Revision 1.293  2019/05/09 15:17:34  brouard
     *** empty log message ***
   
     Revision 1.292  2019/05/09 14:17:20  brouard
     Summary: Some updates
   
     Revision 1.291  2019/05/09 13:44:18  brouard
     Summary: Before ncovmax
   
     Revision 1.290  2019/05/09 13:39:37  brouard
     Summary: 0.99r18 unlimited number of individuals
   
     The number n which was limited to 20,000 cases is now unlimited, from firstobs to lastobs. If the number is too for the virtual memory, probably an error will occur.
   
     Revision 1.289  2018/12/13 09:16:26  brouard
     Summary: Bug for young ages (<-30) will be in r17
   
     Revision 1.288  2018/05/02 20:58:27  brouard
     Summary: Some bugs fixed
   
     Revision 1.287  2018/05/01 17:57:25  brouard
     Summary: Bug fixed by providing frequencies only for non missing covariates
   
     Revision 1.286  2018/04/27 14:27:04  brouard
     Summary: some minor bugs
   
     Revision 1.285  2018/04/21 21:02:16  brouard
     Summary: Some bugs fixed, valgrind tested
   
     Revision 1.284  2018/04/20 05:22:13  brouard
     Summary: Computing mean and stdeviation of fixed quantitative variables
   
     Revision 1.283  2018/04/19 14:49:16  brouard
     Summary: Some minor bugs fixed
   
     Revision 1.282  2018/02/27 22:50:02  brouard
     *** empty log message ***
   
     Revision 1.281  2018/02/27 19:25:23  brouard
     Summary: Adding second argument for quitting
   
     Revision 1.280  2018/02/21 07:58:13  brouard
     Summary: 0.99r15
   
     New Makefile with recent VirtualBox 5.26. Bug in sqrt negatve in imach.c
   
     Revision 1.279  2017/07/20 13:35:01  brouard
     Summary: temporary working
   
     Revision 1.278  2017/07/19 14:09:02  brouard
     Summary: Bug for mobil_average=0 and prevforecast fixed(?)
   
     Revision 1.277  2017/07/17 08:53:49  brouard
     Summary: BOM files can be read now
   
     Revision 1.276  2017/06/30 15:48:31  brouard
     Summary: Graphs improvements
   
     Revision 1.275  2017/06/30 13:39:33  brouard
     Summary: Saito's color
   
     Revision 1.274  2017/06/29 09:47:08  brouard
     Summary: Version 0.99r14
   
     Revision 1.273  2017/06/27 11:06:02  brouard
     Summary: More documentation on projections
   
     Revision 1.272  2017/06/27 10:22:40  brouard
     Summary: Color of backprojection changed from 6 to 5(yellow)
   
     Revision 1.271  2017/06/27 10:17:50  brouard
     Summary: Some bug with rint
   
     Revision 1.270  2017/05/24 05:45:29  brouard
     *** empty log message ***
   
     Revision 1.269  2017/05/23 08:39:25  brouard
     Summary: Code into subroutine, cleanings
   
     Revision 1.268  2017/05/18 20:09:32  brouard
     Summary: backprojection and confidence intervals of backprevalence
   
     Revision 1.267  2017/05/13 10:25:05  brouard
     Summary: temporary save for backprojection
   
     Revision 1.266  2017/05/13 07:26:12  brouard
     Summary: Version 0.99r13 (improvements and bugs fixed)
   
     Revision 1.265  2017/04/26 16:22:11  brouard
     Summary: imach 0.99r13 Some bugs fixed
   
     Revision 1.264  2017/04/26 06:01:29  brouard
     Summary: Labels in graphs
   
     Revision 1.263  2017/04/24 15:23:15  brouard
     Summary: to save
   
     Revision 1.262  2017/04/18 16:48:12  brouard
     *** empty log message ***
   
     Revision 1.261  2017/04/05 10:14:09  brouard
     Summary: Bug in E_ as well as in T_ fixed nres-1 vs k1-1
   
     Revision 1.260  2017/04/04 17:46:59  brouard
     Summary: Gnuplot indexations fixed (humm)
   
     Revision 1.259  2017/04/04 13:01:16  brouard
     Summary: Some errors to warnings only if date of death is unknown but status is death we could set to pi3
   
     Revision 1.258  2017/04/03 10:17:47  brouard
     Summary: Version 0.99r12
   
     Some cleanings, conformed with updated documentation.
   
     Revision 1.257  2017/03/29 16:53:30  brouard
     Summary: Temp
   
     Revision 1.256  2017/03/27 05:50:23  brouard
     Summary: Temporary
   
     Revision 1.255  2017/03/08 16:02:28  brouard
     Summary: IMaCh version 0.99r10 bugs in gnuplot fixed
   
     Revision 1.254  2017/03/08 07:13:00  brouard
     Summary: Fixing data parameter line
   
     Revision 1.253  2016/12/15 11:59:41  brouard
     Summary: 0.99 in progress
   
     Revision 1.252  2016/09/15 21:15:37  brouard
     *** empty log message ***
   
     Revision 1.251  2016/09/15 15:01:13  brouard
     Summary: not working
   
     Revision 1.250  2016/09/08 16:07:27  brouard
     Summary: continue
   
     Revision 1.249  2016/09/07 17:14:18  brouard
     Summary: Starting values from frequencies
   
     Revision 1.248  2016/09/07 14:10:18  brouard
     *** empty log message ***
   
     Revision 1.247  2016/09/02 11:11:21  brouard
     *** empty log message ***
   
     Revision 1.246  2016/09/02 08:49:22  brouard
     *** empty log message ***
   
     Revision 1.245  2016/09/02 07:25:01  brouard
     *** empty log message ***
   
     Revision 1.244  2016/09/02 07:17:34  brouard
     *** empty log message ***
   
     Revision 1.243  2016/09/02 06:45:35  brouard
     *** empty log message ***
   
     Revision 1.242  2016/08/30 15:01:20  brouard
     Summary: Fixing a lots
   
     Revision 1.241  2016/08/29 17:17:25  brouard
     Summary: gnuplot problem in Back projection to fix
   
     Revision 1.240  2016/08/29 07:53:18  brouard
     Summary: Better
   
     Revision 1.239  2016/08/26 15:51:03  brouard
     Summary: Improvement in Powell output in order to copy and paste
   
     Author:
   
     Revision 1.238  2016/08/26 14:23:35  brouard
     Summary: Starting tests of 0.99
   
     Revision 1.237  2016/08/26 09:20:19  brouard
     Summary: to valgrind
   
     Revision 1.236  2016/08/25 10:50:18  brouard
     *** empty log message ***
   
     Revision 1.235  2016/08/25 06:59:23  brouard
     *** empty log message ***
   
     Revision 1.234  2016/08/23 16:51:20  brouard
     *** empty log message ***
   
     Revision 1.233  2016/08/23 07:40:50  brouard
     Summary: not working
   
     Revision 1.232  2016/08/22 14:20:21  brouard
     Summary: not working
   
     Revision 1.231  2016/08/22 07:17:15  brouard
     Summary: not working
   
     Revision 1.230  2016/08/22 06:55:53  brouard
     Summary: Not working
   
     Revision 1.229  2016/07/23 09:45:53  brouard
     Summary: Completing for func too
   
     Revision 1.228  2016/07/22 17:45:30  brouard
     Summary: Fixing some arrays, still debugging
   
     Revision 1.226  2016/07/12 18:42:34  brouard
     Summary: temp
   
     Revision 1.225  2016/07/12 08:40:03  brouard
     Summary: saving but not running
   
     Revision 1.224  2016/07/01 13:16:01  brouard
     Summary: Fixes
   
     Revision 1.223  2016/02/19 09:23:35  brouard
     Summary: temporary
   
     Revision 1.222  2016/02/17 08:14:50  brouard
     Summary: Probably last 0.98 stable version 0.98r6
   
     Revision 1.221  2016/02/15 23:35:36  brouard
     Summary: minor bug
   
     Revision 1.219  2016/02/15 00:48:12  brouard
     *** empty log message ***
   
     Revision 1.218  2016/02/12 11:29:23  brouard
     Summary: 0.99 Back projections
   
     Revision 1.217  2015/12/23 17:18:31  brouard
     Summary: Experimental backcast
   
     Revision 1.216  2015/12/18 17:32:11  brouard
     Summary: 0.98r4 Warning and status=-2
   
     Version 0.98r4 is now:
      - displaying an error when status is -1, date of interview unknown and date of death known;
      - permitting a status -2 when the vital status is unknown at a known date of right truncation.
     Older changes concerning s=-2, dating from 2005 have been supersed.
   
     Revision 1.215  2015/12/16 08:52:24  brouard
     Summary: 0.98r4 working
   
     Revision 1.214  2015/12/16 06:57:54  brouard
     Summary: temporary not working
   
     Revision 1.213  2015/12/11 18:22:17  brouard
     Summary: 0.98r4
   
     Revision 1.212  2015/11/21 12:47:24  brouard
     Summary: minor typo
   
     Revision 1.211  2015/11/21 12:41:11  brouard
     Summary: 0.98r3 with some graph of projected cross-sectional
   
     Author: Nicolas Brouard
   
     Revision 1.210  2015/11/18 17:41:20  brouard
     Summary: Start working on projected prevalences  Revision 1.209  2015/11/17 22:12:03  brouard
     Summary: Adding ftolpl parameter
     Author: N Brouard
   
     We had difficulties to get smoothed confidence intervals. It was due
     to the period prevalence which wasn't computed accurately. The inner
     parameter ftolpl is now an outer parameter of the .imach parameter
     file after estepm. If ftolpl is small 1.e-4 and estepm too,
     computation are long.
   
     Revision 1.208  2015/11/17 14:31:57  brouard
     Summary: temporary
   
     Revision 1.207  2015/10/27 17:36:57  brouard
     *** empty log message ***
   
     Revision 1.206  2015/10/24 07:14:11  brouard
     *** empty log message ***
   
     Revision 1.205  2015/10/23 15:50:53  brouard
     Summary: 0.98r3 some clarification for graphs on likelihood contributions
   
     Revision 1.204  2015/10/01 16:20:26  brouard
     Summary: Some new graphs of contribution to likelihood
   
     Revision 1.203  2015/09/30 17:45:14  brouard
     Summary: looking at better estimation of the hessian
   
     Also a better criteria for convergence to the period prevalence And
     therefore adding the number of years needed to converge. (The
     prevalence in any alive state shold sum to one
   
     Revision 1.202  2015/09/22 19:45:16  brouard
     Summary: Adding some overall graph on contribution to likelihood. Might change
   
     Revision 1.201  2015/09/15 17:34:58  brouard
     Summary: 0.98r0
   
     - Some new graphs like suvival functions
     - Some bugs fixed like model=1+age+V2.
   
     Revision 1.200  2015/09/09 16:53:55  brouard
     Summary: Big bug thanks to Flavia
   
     Even model=1+age+V2. did not work anymore
   
     Revision 1.199  2015/09/07 14:09:23  brouard
     Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   
     Revision 1.198  2015/09/03 07:14:39  brouard
     Summary: 0.98q5 Flavia
   
     Revision 1.197  2015/09/01 18:24:39  brouard
     *** empty log message ***
   
     Revision 1.196  2015/08/18 23:17:52  brouard
     Summary: 0.98q5
   
     Revision 1.195  2015/08/18 16:28:39  brouard
     Summary: Adding a hack for testing purpose
   
     After reading the title, ftol and model lines, if the comment line has
     a q, starting with #q, the answer at the end of the run is quit. It
     permits to run test files in batch with ctest. The former workaround was
     $ echo q | imach foo.imach
   
     Revision 1.194  2015/08/18 13:32:00  brouard
     Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   
     Revision 1.193  2015/08/04 07:17:42  brouard
     Summary: 0.98q4
   
     Revision 1.192  2015/07/16 16:49:02  brouard
     Summary: Fixing some outputs
   
     Revision 1.191  2015/07/14 10:00:33  brouard
     Summary: Some fixes
   
     Revision 1.190  2015/05/05 08:51:13  brouard
     Summary: Adding digits in output parameters (7 digits instead of 6)
   
     Fix 1+age+.
   
     Revision 1.189  2015/04/30 14:45:16  brouard
     Summary: 0.98q2
   
     Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
   
     Revision 1.187  2015/04/29 09:11:15  brouard
     *** empty log message ***
   
     Revision 1.186  2015/04/23 12:01:52  brouard
     Summary: V1*age is working now, version 0.98q1
   
     Some codes had been disabled in order to simplify and Vn*age was
     working in the optimization phase, ie, giving correct MLE parameters,
     but, as usual, outputs were not correct and program core dumped.
   
     Revision 1.185  2015/03/11 13:26:42  brouard
     Summary: Inclusion of compile and links command line for Intel Compiler
   
     Revision 1.184  2015/03/11 11:52:39  brouard
     Summary: Back from Windows 8. Intel Compiler
   
     Revision 1.183  2015/03/10 20:34:32  brouard
     Summary: 0.98q0, trying with directest, mnbrak fixed
   
     We use directest instead of original Powell test; probably no
     incidence on the results, but better justifications;
     We fixed Numerical Recipes mnbrak routine which was wrong and gave
     wrong results.
   
     Revision 1.182  2015/02/12 08:19:57  brouard
     Summary: Trying to keep directest which seems simpler and more general
     Author: Nicolas Brouard
   
     Revision 1.181  2015/02/11 23:22:24  brouard
     Summary: Comments on Powell added
   
     Author:
   
     Revision 1.180  2015/02/11 17:33:45  brouard
     Summary: Finishing move from main to function (hpijx and prevalence_limit)
   
     Revision 1.179  2015/01/04 09:57:06  brouard
     Summary: back to OS/X
   
     Revision 1.178  2015/01/04 09:35:48  brouard
     *** empty log message ***
   
     Revision 1.177  2015/01/03 18:40:56  brouard
     Summary: Still testing ilc32 on OSX
   
     Revision 1.176  2015/01/03 16:45:04  brouard
     *** empty log message ***
   
     Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
   
     Revision 1.174  2015/01/03 16:15:49  brouard
     Summary: Still in cross-compilation
   
     Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
   
     Revision 1.172  2014/12/27 12:07:47  brouard
     Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   
     Revision 1.171  2014/12/23 13:26:59  brouard
     Summary: Back from Visual C
   
     Still problem with utsname.h on Windows
   
     Revision 1.170  2014/12/23 11:17:12  brouard
     Summary: Cleaning some \%% back to %%
   
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
     Revision 1.169  2014/12/22 23:08:31  brouard
     Summary: 0.98p
   
     Outputs some informations on compiler used, OS etc. Testing on different platforms.
   
     Revision 1.168  2014/12/22 15:17:42  brouard
     Summary: update
   
     Revision 1.167  2014/12/22 13:50:56  brouard
     Summary: Testing uname and compiler version and if compiled 32 or 64
   
     Testing on Linux 64
   
     Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
   
     Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
   
     Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
   
     Author:
   
     Revision 1.161  2014/09/15 20:41:41  brouard
     Summary: Problem with macro SQR on Intel compiler
   
     Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
   
     Revision 1.159  2014/09/01 10:34:10  brouard
     Summary: WIN32
     Author: Brouard
   
     Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
   
     Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
     Author: Brouard
   
     In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   
     Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
   
     Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
     Author: Brouard
   
     Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
   
     Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
   
     Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
     Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
   
     Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
   
     Revision 1.149  2014/06/18 15:51:14  brouard
     Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
   
     Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
     Author: Brouard
   
     Just a new packaging for OS/X version 0.98nS
   
     Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
   
     Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
     Author: Brouard
   
     Merge, before building revised version.
   
     Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
     Author: Nicolas Brouard
   
     Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
     No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
     the source code.
   
     Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
     Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
   
     Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
     Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
   
     Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
   
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   
     Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
   
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
     Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies or State-specific
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (if states aren't health statuses) Expectancies from
   first survey ("cross") where individuals from different ages are    cross-longitudinal data. Cross-longitudinal data consist in: 
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    -1- a first survey ("cross") where individuals from different ages
   second wave of interviews ("longitudinal") which measure each change    are interviewed on their health status or degree of disability (in
   (if any) in individual health status.  Health expectancies are    the case of a health survey which is our main interest)
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    -2- at least a second wave of interviews ("longitudinal") which
   Maximum Likelihood of the parameters involved in the model.  The    measure each change (if any) in individual health status.  Health
   simplest model is the multinomial logistic model where pij is the    expectancies are computed from the time spent in each health state
   probability to be observed in state j at the second wave    according to a model. More health states you consider, more time is
   conditional to be observed in state i at the first wave. Therefore    necessary to reach the Maximum Likelihood of the parameters involved
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    in the model.  The simplest model is the multinomial logistic model
   'age' is age and 'sex' is a covariate. If you want to have a more    where pij is the probability to be observed in state j at the second
   complex model than "constant and age", you should modify the program    wave conditional to be observed in state i at the first
   where the markup *Covariates have to be included here again* invites    wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex +
   you to do it.  More covariates you add, slower the    etc , where 'age' is age and 'sex' is a covariate. If you want to
   convergence.    have a more complex model than "constant and age", you should modify
     the program where the markup *Covariates have to be included here
   The advantage of this computer programme, compared to a simple    again* invites you to do it.  More covariates you add, slower the
   multinomial logistic model, is clear when the delay between waves is not    convergence.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    The advantage of this computer programme, compared to a simple
   account using an interpolation or extrapolation.      multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
   hPijx is the probability to be observed in state i at age x+h    intermediate interview, the information is lost, but taken into
   conditional to the observed state i at age x. The delay 'h' can be    account using an interpolation or extrapolation.  
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    hPijx is the probability to be observed in state i at age x+h
   semester or year) is modelled as a multinomial logistic.  The hPx    conditional to the observed state i at age x. The delay 'h' can be
   matrix is simply the matrix product of nh*stepm elementary matrices    split into an exact number (nh*stepm) of unobserved intermediate
   and the contribution of each individual to the likelihood is simply    states. This elementary transition (by month, quarter,
   hPijx.    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
   Also this programme outputs the covariance matrix of the parameters but also    and the contribution of each individual to the likelihood is simply
   of the life expectancies. It also computes the period (stable) prevalence.    hPijx.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Also this programme outputs the covariance matrix of the parameters but also
            Institut national d'études démographiques, Paris.    of the life expectancies. It also computes the period (stable) prevalence.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.  Back prevalence and projections:
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version   - back_prevalence_limit(double *p, double **bprlim, double ageminpar,
   can be accessed at http://euroreves.ined.fr/imach .     double agemaxpar, double ftolpl, int *ncvyearp, double
      dateprev1,double dateprev2, int firstpass, int lastpass, int
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach     mobilavproj)
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so  
        Computes the back prevalence limit for any combination of
   **********************************************************************/      covariate values k at any age between ageminpar and agemaxpar and
 /*      returns it in **bprlim. In the loops,
   main  
   read parameterfile     - **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm,
   read datafile         **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k);
   concatwav  
   freqsummary     - hBijx Back Probability to be in state i at age x-h being in j at x
   if (mle >= 1)     Computes for any combination of covariates k and any age between bage and fage 
     mlikeli     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   print results files                          oldm=oldms;savm=savms;
   if mle==1  
      computes hessian     - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);
   read end of parameter file: agemin, agemax, bage, fage, estepm       Computes the transition matrix starting at age 'age' over
       begin-prev-date,...       'nhstepm*hstepm*stepm' months (i.e. until
   open gnuplot file       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
   open html file       nhstepm*hstepm matrices. 
   period (stable) prevalence  
    for age prevalim()       Returns p3mat[i][j][h] after calling
   h Pij x       p3mat[i][j][h]=matprod2(newm,
   variance of p varprob       bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm,
   forecasting if prevfcast==1 prevforecast call prevalence()       dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
   health expectancies       oldm);
   Variance-covariance of DFLE  
   prevalence()  Important routines
    movingaverage()  
   varevsij()  - func (or funcone), computes logit (pij) distinguishing
   if popbased==1 varevsij(,popbased)    o fixed variables (single or product dummies or quantitative);
   total life expectancies    o varying variables by:
   Variance of period (stable) prevalence     (1) wave (single, product dummies, quantitative), 
  end     (2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be:
 */         % fixed dummy (treated) or quantitative (not done because time-consuming);
          % varying dummy (not done) or quantitative (not done);
   - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)
     and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.
    - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables
 #include <math.h>    o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if
 #include <stdio.h>      race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.
 #include <stdlib.h>  
 #include <string.h>  
 #include <unistd.h>    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <limits.h>             Institut national d'études démographiques, Paris.
 #include <sys/types.h>    This software have been partly granted by Euro-REVES, a concerted action
 #include <sys/stat.h>    from the European Union.
 #include <errno.h>    It is copyrighted identically to a GNU software product, ie programme and
 extern int errno;    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 /* #include <sys/time.h> */  
 #include <time.h>    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #include "timeval.h"    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 /* #include <libintl.h> */    **********************************************************************/
 /* #define _(String) gettext (String) */  /*
     main
 #define MAXLINE 256    read parameterfile
     read datafile
 #define GNUPLOTPROGRAM "gnuplot"    concatwav
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    freqsummary
 #define FILENAMELENGTH 132    if (mle >= 1)
       mlikeli
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    print results files
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    if mle==1 
        computes hessian
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */        begin-prev-date,...
     open gnuplot file
 #define NINTERVMAX 8    open html file
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
 #define NCOVMAX 8 /* Maximum number of covariates */                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
 #define MAXN 20000      freexexit2 possible for memory heap.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    h Pij x                         | pij_nom  ficrestpij
 #define AGEBASE 40     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 #ifdef UNIX         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 #define DIRSEPARATOR '/'  
 #define CHARSEPARATOR "/"         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 #define ODIRSEPARATOR '\\'         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
 #else    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 #define DIRSEPARATOR '\\'     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 #define CHARSEPARATOR "\\"     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
 #define ODIRSEPARATOR '/'  
 #endif    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /* $Id$ */    Variance-covariance of DFLE
 /* $State$ */    prevalence()
      movingaverage()
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";    varevsij() 
 char fullversion[]="$Revision$ $Date$";    if popbased==1 varevsij(,popbased)
 char strstart[80];    total life expectancies
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];    Variance of period (stable) prevalence
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */   end
 int nvar;  */
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;  /* #define DEBUG */
 int nlstate=2; /* Number of live states */  /* #define DEBUGBRENT */
 int ndeath=1; /* Number of dead states */  /* #define DEBUGLINMIN */
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  /* #define DEBUGHESS */
 int popbased=0;  #define DEBUGHESSIJ
   /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan) *\/ */
 int *wav; /* Number of waves for this individuual 0 is possible */  #define POWELL /* Instead of NLOPT */
 int maxwav; /* Maxim number of waves */  #define POWELLNOF3INFF1TEST /* Skip test */
 int jmin, jmax; /* min, max spacing between 2 waves */  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
 int ijmin, ijmax; /* Individuals having jmin and jmax */  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
 int gipmx, gsw; /* Global variables on the number of contributions  
                    to the likelihood and the sum of weights (done by funcone)*/  #include <math.h>
 int mle, weightopt;  #include <stdio.h>
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #include <stdlib.h>
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #include <string.h>
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #include <ctype.h>
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  
 double jmean; /* Mean space between 2 waves */  #ifdef _WIN32
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #include <io.h>
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #include <windows.h>
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #include <tchar.h>
 FILE *ficlog, *ficrespow;  #else
 int globpr; /* Global variable for printing or not */  #include <unistd.h>
 double fretone; /* Only one call to likelihood */  #endif
 long ipmx; /* Number of contributions */  
 double sw; /* Sum of weights */  #include <limits.h>
 char filerespow[FILENAMELENGTH];  #include <sys/types.h>
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  
 FILE *ficresilk;  #if defined(__GNUC__)
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #include <sys/utsname.h> /* Doesn't work on Windows */
 FILE *ficresprobmorprev;  #endif
 FILE *fichtm, *fichtmcov; /* Html File */  
 FILE *ficreseij;  #include <sys/stat.h>
 char filerese[FILENAMELENGTH];  #include <errno.h>
 FILE *ficresstdeij;  /* extern int errno; */
 char fileresstde[FILENAMELENGTH];  
 FILE *ficrescveij;  /* #ifdef LINUX */
 char filerescve[FILENAMELENGTH];  /* #include <time.h> */
 FILE  *ficresvij;  /* #include "timeval.h" */
 char fileresv[FILENAMELENGTH];  /* #else */
 FILE  *ficresvpl;  /* #include <sys/time.h> */
 char fileresvpl[FILENAMELENGTH];  /* #endif */
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #include <time.h>
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  #ifdef GSL
 char command[FILENAMELENGTH];  #include <gsl/gsl_errno.h>
 int  outcmd=0;  #include <gsl/gsl_multimin.h>
   #endif
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
   
 char filelog[FILENAMELENGTH]; /* Log file */  #ifdef NLOPT
 char filerest[FILENAMELENGTH];  #include <nlopt.h>
 char fileregp[FILENAMELENGTH];  typedef struct {
 char popfile[FILENAMELENGTH];    double (* function)(double [] );
   } myfunc_data ;
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  #endif
   
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  /* #include <libintl.h> */
 struct timezone tzp;  /* #define _(String) gettext (String) */
 extern int gettimeofday();  
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  #define MAXLINE 2048 /* Was 256 and 1024. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 long time_value;  
 extern long time();  #define GNUPLOTPROGRAM "gnuplot"
 char strcurr[80], strfor[80];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 char *endptr;  
 long lval;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double dval;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 #define NR_END 1  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 #define FREE_ARG char*  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define FTOL 1.0e-10  
   #define NINTERVMAX 8
 #define NRANSI  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 #define ITMAX 200  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   #define NCOVMAX 20  /**< Maximum number of covariates, including generated covariates V1*V2 */
 #define TOL 2.0e-4  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
   /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
 #define CGOLD 0.3819660  #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
 #define ZEPS 1.0e-10  /*#define MAXN 20000 */ /* Should by replaced by nobs, real number of observations and unlimited */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define YEARM 12. /**< Number of months per year */
   /* #define AGESUP 130 */
 #define GOLD 1.618034  /* #define AGESUP 150 */
 #define GLIMIT 100.0  #define AGESUP 200
 #define TINY 1.0e-20  #define AGEINF 0
   #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
 static double maxarg1,maxarg2;  #define AGEBASE 40
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define AGEOVERFLOW 1.e20
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
    #ifdef _WIN32
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define DIRSEPARATOR '\\'
 #define rint(a) floor(a+0.5)  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 static double sqrarg;  #else
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define DIRSEPARATOR '/'
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define CHARSEPARATOR "/"
 int agegomp= AGEGOMP;  #define ODIRSEPARATOR '\\'
   #endif
 int imx;  
 int stepm=1;  /* $Id$ */
 /* Stepm, step in month: minimum step interpolation*/  /* $State$ */
   #include "version.h"
 int estepm;  char version[]=__IMACH_VERSION__;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  char copyright[]="April 2018,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018";
   char fullversion[]="$Revision$ $Date$"; 
 int m,nb;  char strstart[80];
 long *num;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
 double **pmmij, ***probs;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 double *ageexmed,*agecens;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 double dateintmean=0;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */
 double *weight;  int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */
 int **s; /* Status */  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 double *agedc, **covar, idx;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 double *lsurv, *lpop, *tpop;  int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */
   int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */
 double ftolhess; /* Tolerance for computing hessian */  int nsd=0; /**< Total number of single dummy variables (output) */
   int nsq=0; /**< Total number of single quantitative variables (output) */
 /**************** split *************************/  int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */
 {  int ntveff=0; /**< ntveff number of effective time varying variables */
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  int cptcov=0; /* Working variable */
   */  int nobs=10;  /* Number of observations in the data lastobs-firstobs */
   char  *ss;                            /* pointer */  int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
   int   l1, l2;                         /* length counters */  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
   l1 = strlen(path );                   /* length of path */  int ndeath=1; /* Number of dead states */
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  int  nqv=0, ntv=0, nqtv=0;    /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ 
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  int popbased=0;
     strcpy( name, path );               /* we got the fullname name because no directory */  
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  int *wav; /* Number of waves for this individuual 0 is possible */
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  int maxwav=0; /* Maxim number of waves */
     /* get current working directory */  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     /*    extern  char* getcwd ( char *buf , int len);*/  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       return( GLOCK_ERROR_GETCWD );                     to the likelihood and the sum of weights (done by funcone)*/
     }  int mle=1, weightopt=0;
     /* got dirc from getcwd*/  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     printf(" DIRC = %s \n",dirc);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   } else {                              /* strip direcotry from path */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     ss++;                               /* after this, the filename */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     l2 = strlen( ss );                  /* length of filename */  int countcallfunc=0;  /* Count the number of calls to func */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int selected(int kvar); /* Is covariate kvar selected for printing results */
     strcpy( name, ss );         /* save file name */  
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  double jmean=1; /* Mean space between 2 waves */
     dirc[l1-l2] = 0;                    /* add zero */  double **matprod2(); /* test */
     printf(" DIRC2 = %s \n",dirc);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   /* We add a separator at the end of dirc if not exists */  double   **ddnewms, **ddoldms, **ddsavms; /* for freeing later */
   l1 = strlen( dirc );                  /* length of directory */  
   if( dirc[l1-1] != DIRSEPARATOR ){  /*FILE *fic ; */ /* Used in readdata only */
     dirc[l1] =  DIRSEPARATOR;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop;
     dirc[l1+1] = 0;  FILE *ficlog, *ficrespow;
     printf(" DIRC3 = %s \n",dirc);  int globpr=0; /* Global variable for printing or not */
   }  double fretone; /* Only one call to likelihood */
   ss = strrchr( name, '.' );            /* find last / */  long ipmx=0; /* Number of contributions */
   if (ss >0){  double sw; /* Sum of weights */
     ss++;  char filerespow[FILENAMELENGTH];
     strcpy(ext,ss);                     /* save extension */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     l1= strlen( name);  FILE *ficresilk;
     l2= strlen(ss)+1;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     strncpy( finame, name, l1-l2);  FILE *ficresprobmorprev;
     finame[l1-l2]= 0;  FILE *fichtm, *fichtmcov; /* Html File */
   }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
   return( 0 );                          /* we're done */  FILE *ficresstdeij;
 }  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
 /******************************************/  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 void replace_back_to_slash(char *s, char*t)  
 {  char title[MAXLINE];
   int i;  char model[MAXLINE]; /**< The model line */
   int lg=0;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];
   i=0;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   lg=strlen(t);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   for(i=0; i<= lg; i++) {  char command[FILENAMELENGTH];
     (s[i] = t[i]);  int  outcmd=0;
     if (t[i]== '\\') s[i]='/';  
   }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 }  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
   char filelog[FILENAMELENGTH]; /* Log file */
 int nbocc(char *s, char occ)  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
   int i,j=0;  char popfile[FILENAMELENGTH];
   int lg=20;  
   i=0;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   if  (s[i] == occ ) j++;  /* struct timezone tzp; */
   }  /* extern int gettimeofday(); */
   return j;  struct tm tml, *gmtime(), *localtime();
 }  
   extern time_t time();
 void cutv(char *u,char *v, char*t, char occ)  
 {  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   /* cuts string t into u and v where u ends before first occurence of char 'occ'  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  struct tm tm;
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;  char strcurr[80], strfor[80];
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  char *endptr;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  long lval;
   }  double dval;
   
   lg=strlen(t);  #define NR_END 1
   for(j=0; j<p; j++) {  #define FREE_ARG char*
     (u[j] = t[j]);  #define FTOL 1.0e-10
   }  
      u[p]='\0';  #define NRANSI 
   #define ITMAX 200
    for(j=0; j<= lg; j++) {  #define ITPOWMAX 20 /* This is now multiplied by the number of parameters */ 
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /********************** nrerror ********************/  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 void nrerror(char error_text[])  
 {  #define GOLD 1.618034 
   fprintf(stderr,"ERREUR ...\n");  #define GLIMIT 100.0 
   fprintf(stderr,"%s\n",error_text);  #define TINY 1.0e-20 
   exit(EXIT_FAILURE);  
 }  static double maxarg1,maxarg2;
 /*********************** vector *******************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 double *vector(int nl, int nh)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {    
   double *v;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define rint(a) floor(a+0.5)
   if (!v) nrerror("allocation failure in vector");  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   return v-nl+NR_END;  #define mytinydouble 1.0e-16
 }  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
 /************************ free vector ******************/  /* static double dsqrarg; */
 void free_vector(double*v, int nl, int nh)  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
 {  static double sqrarg;
   free((FREE_ARG)(v+nl-NR_END));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  int imx; 
 {  int stepm=1;
   int *v;  /* Stepm, step in month: minimum step interpolation*/
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  int estepm;
   return v-nl+NR_END;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /******************free ivector **************************/  long *num;
 void free_ivector(int *v, long nl, long nh)  int firstpass=0, lastpass=4,*cod, *cens;
 {  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
   free((FREE_ARG)(v+nl-NR_END));                     covariate for which somebody answered excluding 
 }                     undefined. Usually 2: 0 and 1. */
   int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
 /************************lvector *******************************/                               covariate for which somebody answered including 
 long *lvector(long nl,long nh)                               undefined. Usually 3: -1, 0 and 1. */
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   long *v;  double **pmmij, ***probs; /* Global pointer */
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  double ***mobaverage, ***mobaverages; /* New global variable */
   if (!v) nrerror("allocation failure in ivector");  double *ageexmed,*agecens;
   return v-nl+NR_END;  double dateintmean=0;
 }    double anprojd, mprojd, jprojd; /* For eventual projections */
     double anprojf, mprojf, jprojf;
 /******************free lvector **************************/  
 void free_lvector(long *v, long nl, long nh)    double anbackd, mbackd, jbackd; /* For eventual backprojections */
 {    double anbackf, mbackf, jbackf;
   free((FREE_ARG)(v+nl-NR_END));    double jintmean,mintmean,aintmean;  
 }  double *weight;
   int **s; /* Status */
 /******************* imatrix *******************************/  double *agedc;
 int **imatrix(long nrl, long nrh, long ncl, long nch)  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */                    * covar=matrix(0,NCOVMAX,1,n); 
 {                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  double **coqvar; /* Fixed quantitative covariate nqv */
   int **m;  double ***cotvar; /* Time varying covariate ntv */
    double ***cotqvar; /* Time varying quantitative covariate itqv */
   /* allocate pointers to rows */  double  idx; 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   if (!m) nrerror("allocation failure 1 in matrix()");  /*           V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   m += NR_END;  /*k          1  2   3   4     5    6    7     8    9 */
   m -= nrl;  /*Tvar[k]=   5  4   3   6     5    2    7     1    1 */
    /* Tndvar[k]    1   2   3               4          5 */
    /*TDvar         4   3   6               7          1 */ /* For outputs only; combination of dummies fixed or varying */
   /* allocate rows and set pointers to them */  /* Tns[k]    1  2   2              4               5 */ /* Number of single cova */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /* TvarsD[k]    1   2                              3 */ /* Number of single dummy cova */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* TvarsDind    2   3                              9 */ /* position K of single dummy cova */
   m[nrl] += NR_END;  /* TvarsQ[k] 1                     2                 */ /* Number of single quantitative cova */
   m[nrl] -= ncl;  /* TvarsQind 1                     6                 */ /* position K of single quantitative cova */
    /* Tprod[i]=k           4               7            */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  /* Tage[i]=k                  5               8      */
    /* */
   /* return pointer to array of pointers to rows */  /* Type                    */
   return m;  /* V         1  2  3  4  5 */
 }  /*           F  F  V  V  V */
   /*           D  Q  D  D  Q */
 /****************** free_imatrix *************************/  /*                         */
 void free_imatrix(m,nrl,nrh,ncl,nch)  int *TvarsD;
       int **m;  int *TvarsDind;
       long nch,ncl,nrh,nrl;  int *TvarsQ;
      /* free an int matrix allocated by imatrix() */  int *TvarsQind;
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define MAXRESULTLINES 10
   free((FREE_ARG) (m+nrl-NR_END));  int nresult=0;
 }  int parameterline=0; /* # of the parameter (type) line */
   int TKresult[MAXRESULTLINES];
 /******************* matrix *******************************/  int Tresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */
 double **matrix(long nrl, long nrh, long ncl, long nch)  int Tinvresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */
 {  int Tvresult[MAXRESULTLINES][NCOVMAX]; /* For dummy variable , variable # (output) */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  double Tqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */
   double **m;  double Tqinvresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */
   int Tvqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , variable # (output) */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /* int *TDvar; /\**< TDvar[1]=4,  TDvarF[2]=3, TDvar[3]=6  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
   m += NR_END;  int *TvarF; /**< TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   m -= nrl;  int *TvarFind; /**< TvarFind[1]=6,  TvarFind[2]=7, Tvarind[3]=9  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   m[nrl] += NR_END;  int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   m[nrl] -= ncl;  int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   return m;  int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])  int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
    */  int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
 }  int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
   int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int *Tvarsel; /**< Selected covariates for output */
 {  double *Tvalsel; /**< Selected modality value of covariate for output */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
   free((FREE_ARG)(m+nrl-NR_END));  int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ 
 }  int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
   int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */
 /******************* ma3x *******************************/  int *FixedV; /** FixedV[v] 0 fixed, 1 varying */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int *Tage;
 {  int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
   double ***m;  int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ 
   int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1  */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int *Ndum; /** Freq of modality (tricode */
   if (!m) nrerror("allocation failure 1 in matrix()");  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
   m += NR_END;  int **Tvard;
   m -= nrl;  int *Tprod;/**< Gives the k position of the k1 product */
   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3  */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int *Tposprod; /**< Gives the k1 product from the k position */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");     /* if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2) */
   m[nrl] += NR_END;     /* Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5(V3*V2)]=2 (2nd product without age) */
   m[nrl] -= ncl;  int cptcovprod, *Tvaraff, *invalidvarcomb;
   double *lsurv, *lpop, *tpop;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   #define FD 1; /* Fixed dummy covariate */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define FQ 2; /* Fixed quantitative covariate */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define FP 3; /* Fixed product covariate */
   m[nrl][ncl] += NR_END;  #define FPDD 7; /* Fixed product dummy*dummy covariate */
   m[nrl][ncl] -= nll;  #define FPDQ 8; /* Fixed product dummy*quantitative covariate */
   for (j=ncl+1; j<=nch; j++)  #define FPQQ 9; /* Fixed product quantitative*quantitative covariate */
     m[nrl][j]=m[nrl][j-1]+nlay;  #define VD 10; /* Varying dummy covariate */
    #define VQ 11; /* Varying quantitative covariate */
   for (i=nrl+1; i<=nrh; i++) {  #define VP 12; /* Varying product covariate */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define VPDD 13; /* Varying product dummy*dummy covariate */
     for (j=ncl+1; j<=nch; j++)  #define VPDQ 14; /* Varying product dummy*quantitative covariate */
       m[i][j]=m[i][j-1]+nlay;  #define VPQQ 15; /* Varying product quantitative*quantitative covariate */
   }  #define APFD 16; /* Age product * fixed dummy covariate */
   return m;  #define APFQ 17; /* Age product * fixed quantitative covariate */
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  #define APVD 18; /* Age product * varying dummy covariate */
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  #define APVQ 19; /* Age product * varying quantitative covariate */
   */  
 }  #define FTYPE 1; /* Fixed covariate */
   #define VTYPE 2; /* Varying covariate (loop in wave) */
 /*************************free ma3x ************************/  #define ATYPE 2; /* Age product covariate (loop in dh within wave)*/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  struct kmodel{
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));          int maintype; /* main type */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));          int subtype; /* subtype */
   free((FREE_ARG)(m+nrl-NR_END));  };
 }  struct kmodel modell[NCOVMAX];
   
 /*************** function subdirf ***********/  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
 char *subdirf(char fileres[])  double ftolhess; /**< Tolerance for computing hessian */
 {  
   /* Caution optionfilefiname is hidden */  /**************** split *************************/
   strcpy(tmpout,optionfilefiname);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   strcat(tmpout,"/"); /* Add to the right */  {
   strcat(tmpout,fileres);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   return tmpout;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */ 
     char  *ss;                            /* pointer */
 /*************** function subdirf2 ***********/    int   l1=0, l2=0;                             /* length counters */
 char *subdirf2(char fileres[], char *preop)  
 {    l1 = strlen(path );                   /* length of path */
      if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   /* Caution optionfilefiname is hidden */    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   strcpy(tmpout,optionfilefiname);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   strcat(tmpout,"/");      strcpy( name, path );               /* we got the fullname name because no directory */
   strcat(tmpout,preop);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   strcat(tmpout,fileres);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   return tmpout;      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
   #ifdef WIN32
 /*************** function subdirf3 ***********/      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
 char *subdirf3(char fileres[], char *preop, char *preop2)  #else
 {          if (getcwd(dirc, FILENAME_MAX) == NULL) {
    #endif
   /* Caution optionfilefiname is hidden */        return( GLOCK_ERROR_GETCWD );
   strcpy(tmpout,optionfilefiname);      }
   strcat(tmpout,"/");      /* got dirc from getcwd*/
   strcat(tmpout,preop);      printf(" DIRC = %s \n",dirc);
   strcat(tmpout,preop2);    } else {                              /* strip directory from path */
   strcat(tmpout,fileres);      ss++;                               /* after this, the filename */
   return tmpout;      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /***************** f1dim *************************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 extern int ncom;      dirc[l1-l2] = '\0';                 /* add zero */
 extern double *pcom,*xicom;      printf(" DIRC2 = %s \n",dirc);
 extern double (*nrfunc)(double []);    }
      /* We add a separator at the end of dirc if not exists */
 double f1dim(double x)    l1 = strlen( dirc );                  /* length of directory */
 {    if( dirc[l1-1] != DIRSEPARATOR ){
   int j;      dirc[l1] =  DIRSEPARATOR;
   double f;      dirc[l1+1] = 0; 
   double *xt;      printf(" DIRC3 = %s \n",dirc);
      }
   xt=vector(1,ncom);    ss = strrchr( name, '.' );            /* find last / */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    if (ss >0){
   f=(*nrfunc)(xt);      ss++;
   free_vector(xt,1,ncom);      strcpy(ext,ss);                     /* save extension */
   return f;      l1= strlen( name);
 }      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
 /*****************brent *************************/      finame[l1-l2]= 0;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    }
 {  
   int iter;    return( 0 );                          /* we're done */
   double a,b,d,etemp;  }
   double fu,fv,fw,fx;  
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /******************************************/
   double e=0.0;  
    void replace_back_to_slash(char *s, char*t)
   a=(ax < cx ? ax : cx);  {
   b=(ax > cx ? ax : cx);    int i;
   x=w=v=bx;    int lg=0;
   fw=fv=fx=(*f)(x);    i=0;
   for (iter=1;iter<=ITMAX;iter++) {    lg=strlen(t);
     xm=0.5*(a+b);    for(i=0; i<= lg; i++) {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      (s[i] = t[i]);
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      if (t[i]== '\\') s[i]='/';
     printf(".");fflush(stdout);    }
     fprintf(ficlog,".");fflush(ficlog);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char *trimbb(char *out, char *in)
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    char *s;
 #endif    s=out;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    while (*in != '\0'){
       *xmin=x;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       return fx;        in++;
     }      }
     ftemp=fu;      *out++ = *in++;
     if (fabs(e) > tol1) {    }
       r=(x-w)*(fx-fv);    *out='\0';
       q=(x-v)*(fx-fw);    return s;
       p=(x-v)*q-(x-w)*r;  }
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  /* char *substrchaine(char *out, char *in, char *chain) */
       q=fabs(q);  /* { */
       etemp=e;  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
       e=d;  /*   char *s, *t; */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /*   t=in;s=out; */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /*   while ((*in != *chain) && (*in != '\0')){ */
       else {  /*     *out++ = *in++; */
         d=p/q;  /*   } */
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  /*   /\* *in matches *chain *\/ */
           d=SIGN(tol1,xm-x);  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
       }  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
     } else {  /*   } */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  /*   in--; chain--; */
     }  /*   while ( (*in != '\0')){ */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
     fu=(*f)(u);  /*     *out++ = *in++; */
     if (fu <= fx) {  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
       if (u >= x) a=x; else b=x;  /*   } */
       SHFT(v,w,x,u)  /*   *out='\0'; */
         SHFT(fv,fw,fx,fu)  /*   out=s; */
         } else {  /*   return out; */
           if (u < x) a=u; else b=u;  /* } */
           if (fu <= fw || w == x) {  char *substrchaine(char *out, char *in, char *chain)
             v=w;  {
             w=u;    /* Substract chain 'chain' from 'in', return and output 'out' */
             fv=fw;    /* in="V1+V1*age+age*age+V2", chain="age*age" */
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    char *strloc;
             v=u;  
             fv=fu;    strcpy (out, in); 
           }    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
         }    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
   }    if(strloc != NULL){ 
   nrerror("Too many iterations in brent");      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
   *xmin=x;      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
   return fx;      /* strcpy (strloc, strloc +strlen(chain));*/
 }    }
     printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
 /****************** mnbrak ***********************/    return out;
   }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  
 {  char *cutl(char *blocc, char *alocc, char *in, char occ)
   double ulim,u,r,q, dum;  {
   double fu;    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
         and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   *fa=(*func)(*ax);       gives blocc="abcdef" and alocc="ghi2j".
   *fb=(*func)(*bx);       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   if (*fb > *fa) {    */
     SHFT(dum,*ax,*bx,dum)    char *s, *t;
       SHFT(dum,*fb,*fa,dum)    t=in;s=in;
       }    while ((*in != occ) && (*in != '\0')){
   *cx=(*bx)+GOLD*(*bx-*ax);      *alocc++ = *in++;
   *fc=(*func)(*cx);    }
   while (*fb > *fc) {    if( *in == occ){
     r=(*bx-*ax)*(*fb-*fc);      *(alocc)='\0';
     q=(*bx-*cx)*(*fb-*fa);      s=++in;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   
     ulim=(*bx)+GLIMIT*(*cx-*bx);    if (s == t) {/* occ not found */
     if ((*bx-u)*(u-*cx) > 0.0) {      *(alocc-(in-s))='\0';
       fu=(*func)(u);      in=s;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    }
       fu=(*func)(u);    while ( *in != '\0'){
       if (fu < *fc) {      *blocc++ = *in++;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    }
           SHFT(*fb,*fc,fu,(*func)(u))  
           }    *blocc='\0';
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    return t;
       u=ulim;  }
       fu=(*func)(u);  char *cutv(char *blocc, char *alocc, char *in, char occ)
     } else {  {
       u=(*cx)+GOLD*(*cx-*bx);    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
       fu=(*func)(u);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     }       gives blocc="abcdef2ghi" and alocc="j".
     SHFT(*ax,*bx,*cx,u)       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       SHFT(*fa,*fb,*fc,fu)    */
       }    char *s, *t;
 }    t=in;s=in;
     while (*in != '\0'){
 /*************** linmin ************************/      while( *in == occ){
         *blocc++ = *in++;
 int ncom;        s=in;
 double *pcom,*xicom;      }
 double (*nrfunc)(double []);      *blocc++ = *in++;
      }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    if (s == t) /* occ not found */
 {      *(blocc-(in-s))='\0';
   double brent(double ax, double bx, double cx,    else
                double (*f)(double), double tol, double *xmin);      *(blocc-(in-s)-1)='\0';
   double f1dim(double x);    in=s;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    while ( *in != '\0'){
               double *fc, double (*func)(double));      *alocc++ = *in++;
   int j;    }
   double xx,xmin,bx,ax;  
   double fx,fb,fa;    *alocc='\0';
      return s;
   ncom=n;  }
   pcom=vector(1,n);  
   xicom=vector(1,n);  int nbocc(char *s, char occ)
   nrfunc=func;  {
   for (j=1;j<=n;j++) {    int i,j=0;
     pcom[j]=p[j];    int lg=20;
     xicom[j]=xi[j];    i=0;
   }    lg=strlen(s);
   ax=0.0;    for(i=0; i<= lg; i++) {
   xx=1.0;      if  (s[i] == occ ) j++;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    return j;
 #ifdef DEBUG  }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /* void cutv(char *u,char *v, char*t, char occ) */
 #endif  /* { */
   for (j=1;j<=n;j++) {  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     xi[j] *= xmin;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
     p[j] += xi[j];  /*      gives u="abcdef2ghi" and v="j" *\/ */
   }  /*   int i,lg,j,p=0; */
   free_vector(xicom,1,n);  /*   i=0; */
   free_vector(pcom,1,n);  /*   lg=strlen(t); */
 }  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
 char *asc_diff_time(long time_sec, char ascdiff[])  /*   } */
 {  
   long sec_left, days, hours, minutes;  /*   for(j=0; j<p; j++) { */
   days = (time_sec) / (60*60*24);  /*     (u[j] = t[j]); */
   sec_left = (time_sec) % (60*60*24);  /*   } */
   hours = (sec_left) / (60*60) ;  /*      u[p]='\0'; */
   sec_left = (sec_left) %(60*60);  
   minutes = (sec_left) /60;  /*    for(j=0; j<= lg; j++) { */
   sec_left = (sec_left) % (60);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);    /*   } */
   return ascdiff;  /* } */
 }  
   #ifdef _WIN32
 /*************** powell ************************/  char * strsep(char **pp, const char *delim)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    char *p, *q;
 {           
   void linmin(double p[], double xi[], int n, double *fret,    if ((p = *pp) == NULL)
               double (*func)(double []));      return 0;
   int i,ibig,j;    if ((q = strpbrk (p, delim)) != NULL)
   double del,t,*pt,*ptt,*xit;    {
   double fp,fptt;      *pp = q + 1;
   double *xits;      *q = '\0';
   int niterf, itmp;    }
     else
   pt=vector(1,n);      *pp = 0;
   ptt=vector(1,n);    return p;
   xit=vector(1,n);  }
   xits=vector(1,n);  #endif
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /********************** nrerror ********************/
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  void nrerror(char error_text[])
     ibig=0;  {
     del=0.0;    fprintf(stderr,"ERREUR ...\n");
     last_time=curr_time;    fprintf(stderr,"%s\n",error_text);
     (void) gettimeofday(&curr_time,&tzp);    exit(EXIT_FAILURE);
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);  }
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);  /*********************** vector *******************/
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */  double *vector(int nl, int nh)
    for (i=1;i<=n;i++) {  {
       printf(" %d %.12f",i, p[i]);    double *v;
       fprintf(ficlog," %d %.12lf",i, p[i]);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       fprintf(ficrespow," %.12lf", p[i]);    if (!v) nrerror("allocation failure in vector");
     }    return v-nl+NR_END;
     printf("\n");  }
     fprintf(ficlog,"\n");  
     fprintf(ficrespow,"\n");fflush(ficrespow);  /************************ free vector ******************/
     if(*iter <=3){  void free_vector(double*v, int nl, int nh)
       tm = *localtime(&curr_time.tv_sec);  {
       strcpy(strcurr,asctime(&tm));    free((FREE_ARG)(v+nl-NR_END));
 /*       asctime_r(&tm,strcurr); */  }
       forecast_time=curr_time;  
       itmp = strlen(strcurr);  /************************ivector *******************************/
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */  int *ivector(long nl,long nh)
         strcurr[itmp-1]='\0';  {
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    int *v;
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       for(niterf=10;niterf<=30;niterf+=10){    if (!v) nrerror("allocation failure in ivector");
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);    return v-nl+NR_END;
         tmf = *localtime(&forecast_time.tv_sec);  }
 /*      asctime_r(&tmf,strfor); */  
         strcpy(strfor,asctime(&tmf));  /******************free ivector **************************/
         itmp = strlen(strfor);  void free_ivector(int *v, long nl, long nh)
         if(strfor[itmp-1]=='\n')  {
         strfor[itmp-1]='\0';    free((FREE_ARG)(v+nl-NR_END));
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  }
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  
       }  /************************lvector *******************************/
     }  long *lvector(long nl,long nh)
     for (i=1;i<=n;i++) {  {
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    long *v;
       fptt=(*fret);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 #ifdef DEBUG    if (!v) nrerror("allocation failure in ivector");
       printf("fret=%lf \n",*fret);    return v-nl+NR_END;
       fprintf(ficlog,"fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /******************free lvector **************************/
       fprintf(ficlog,"%d",i);fflush(ficlog);  void free_lvector(long *v, long nl, long nh)
       linmin(p,xit,n,fret,func);  {
       if (fabs(fptt-(*fret)) > del) {    free((FREE_ARG)(v+nl-NR_END));
         del=fabs(fptt-(*fret));  }
         ibig=i;  
       }  /******************* imatrix *******************************/
 #ifdef DEBUG  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       printf("%d %.12e",i,(*fret));       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       fprintf(ficlog,"%d %.12e",i,(*fret));  { 
       for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    int **m; 
         printf(" x(%d)=%.12e",j,xit[j]);    
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    /* allocate pointers to rows */ 
       }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       for(j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
         printf(" p=%.12e",p[j]);    m += NR_END; 
         fprintf(ficlog," p=%.12e",p[j]);    m -= nrl; 
       }    
       printf("\n");    
       fprintf(ficlog,"\n");    /* allocate rows and set pointers to them */ 
 #endif    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    m[nrl] += NR_END; 
 #ifdef DEBUG    m[nrl] -= ncl; 
       int k[2],l;    
       k[0]=1;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       k[1]=-1;    
       printf("Max: %.12e",(*func)(p));    /* return pointer to array of pointers to rows */ 
       fprintf(ficlog,"Max: %.12e",(*func)(p));    return m; 
       for (j=1;j<=n;j++) {  } 
         printf(" %.12e",p[j]);  
         fprintf(ficlog," %.12e",p[j]);  /****************** free_imatrix *************************/
       }  void free_imatrix(m,nrl,nrh,ncl,nch)
       printf("\n");        int **m;
       fprintf(ficlog,"\n");        long nch,ncl,nrh,nrl; 
       for(l=0;l<=1;l++) {       /* free an int matrix allocated by imatrix() */ 
         for (j=1;j<=n;j++) {  { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    free((FREE_ARG) (m+nrl-NR_END)); 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  } 
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /******************* matrix *******************************/
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double **matrix(long nrl, long nrh, long ncl, long nch)
       }  {
 #endif    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
   
       free_vector(xit,1,n);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       free_vector(xits,1,n);    if (!m) nrerror("allocation failure 1 in matrix()");
       free_vector(ptt,1,n);    m += NR_END;
       free_vector(pt,1,n);    m -= nrl;
       return;  
     }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for (j=1;j<=n;j++) {    m[nrl] += NR_END;
       ptt[j]=2.0*p[j]-pt[j];    m[nrl] -= ncl;
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     }    return m;
     fptt=(*func)(ptt);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
     if (fptt < fp) {  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
       if (t < 0.0) {     */
         linmin(p,xit,n,fret,func);  }
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /*************************free matrix ************************/
           xi[j][n]=xit[j];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         }  {
 #ifdef DEBUG    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    free((FREE_ARG)(m+nrl-NR_END));
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  }
         for(j=1;j<=n;j++){  
           printf(" %.12e",xit[j]);  /******************* ma3x *******************************/
           fprintf(ficlog," %.12e",xit[j]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         }  {
         printf("\n");    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         fprintf(ficlog,"\n");    double ***m;
 #endif  
       }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
 }    m -= nrl;
   
 /**** Prevalence limit (stable or period prevalence)  ****************/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
   int i, ii,j,k;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double min, max, maxmin, maxmax,sumnew=0.;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double **matprod2();    m[nrl][ncl] += NR_END;
   double **out, cov[NCOVMAX], **pmij();    m[nrl][ncl] -= nll;
   double **newm;    for (j=ncl+1; j<=nch; j++) 
   double agefin, delaymax=50 ; /* Max number of years to converge */      m[nrl][j]=m[nrl][j-1]+nlay;
     
   for (ii=1;ii<=nlstate+ndeath;ii++)    for (i=nrl+1; i<=nrh; i++) {
     for (j=1;j<=nlstate+ndeath;j++){      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (j=ncl+1; j<=nch; j++) 
     }        m[i][j]=m[i][j-1]+nlay;
     }
    cov[1]=1.;    return m; 
      /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    */
     newm=savm;  }
     /* Covariates have to be included here again */  
      cov[2]=agefin;  /*************************free ma3x ************************/
    void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       for (k=1; k<=cptcovn;k++) {  {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    /* Caution optionfilefiname is hidden */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    strcpy(tmpout,optionfilefiname);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
     savm=oldm;    return tmpout;
     oldm=newm;  }
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /*************** function subdirf2 ***********/
       min=1.;  char *subdirf2(char fileres[], char *preop)
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    
         sumnew=0;    /* Caution optionfilefiname is hidden */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    strcpy(tmpout,optionfilefiname);
         prlim[i][j]= newm[i][j]/(1-sumnew);    strcat(tmpout,"/");
         max=FMAX(max,prlim[i][j]);    strcat(tmpout,preop);
         min=FMIN(min,prlim[i][j]);    strcat(tmpout,fileres);
       }    return tmpout;
       maxmin=max-min;  }
       maxmax=FMAX(maxmax,maxmin);  
     }  /*************** function subdirf3 ***********/
     if(maxmax < ftolpl){  char *subdirf3(char fileres[], char *preop, char *preop2)
       return prlim;  {
     }    
   }    /* Caution optionfilefiname is hidden */
 }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 /*************** transition probabilities ***************/    strcat(tmpout,preop);
     strcat(tmpout,preop2);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    strcat(tmpout,fileres);
 {    return tmpout;
   double s1, s2;  }
   /*double t34;*/   
   int i,j,j1, nc, ii, jj;  /*************** function subdirfext ***********/
   char *subdirfext(char fileres[], char *preop, char *postop)
     for(i=1; i<= nlstate; i++){  {
       for(j=1; j<i;j++){    
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcpy(tmpout,preop);
           /*s2 += param[i][j][nc]*cov[nc];*/    strcat(tmpout,fileres);
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcat(tmpout,postop);
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */    return tmpout;
         }  }
         ps[i][j]=s2;  
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */  /*************** function subdirfext3 ***********/
       }  char *subdirfext3(char fileres[], char *preop, char *postop)
       for(j=i+1; j<=nlstate+ndeath;j++){  {
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){    
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* Caution optionfilefiname is hidden */
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/");
         ps[i][j]=s2;    strcat(tmpout,preop);
       }    strcat(tmpout,fileres);
     }    strcat(tmpout,postop);
     /*ps[3][2]=1;*/    return tmpout;
      }
     for(i=1; i<= nlstate; i++){   
       s1=0;  char *asc_diff_time(long time_sec, char ascdiff[])
       for(j=1; j<i; j++)  {
         s1+=exp(ps[i][j]);    long sec_left, days, hours, minutes;
       for(j=i+1; j<=nlstate+ndeath; j++)    days = (time_sec) / (60*60*24);
         s1+=exp(ps[i][j]);    sec_left = (time_sec) % (60*60*24);
       ps[i][i]=1./(s1+1.);    hours = (sec_left) / (60*60) ;
       for(j=1; j<i; j++)    sec_left = (sec_left) %(60*60);
         ps[i][j]= exp(ps[i][j])*ps[i][i];    minutes = (sec_left) /60;
       for(j=i+1; j<=nlstate+ndeath; j++)    sec_left = (sec_left) % (60);
         ps[i][j]= exp(ps[i][j])*ps[i][i];    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    return ascdiff;
     } /* end i */  }
      
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /***************** f1dim *************************/
       for(jj=1; jj<= nlstate+ndeath; jj++){  extern int ncom; 
         ps[ii][jj]=0;  extern double *pcom,*xicom;
         ps[ii][ii]=1;  extern double (*nrfunc)(double []); 
       }   
     }  double f1dim(double x) 
      { 
     int j; 
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */    double f;
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */    double *xt; 
 /*         printf("ddd %lf ",ps[ii][jj]); */   
 /*       } */    xt=vector(1,ncom); 
 /*       printf("\n "); */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 /*        } */    f=(*nrfunc)(xt); 
 /*        printf("\n ");printf("%lf ",cov[2]); */    free_vector(xt,1,ncom); 
        /*    return f; 
       for(i=1; i<= npar; i++) printf("%f ",x[i]);  } 
       goto end;*/  
     return ps;  /*****************brent *************************/
 }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   {
 /**************** Product of 2 matrices ******************/    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
      * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
 {     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times     * returned function value. 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    */
   /* in, b, out are matrice of pointers which should have been initialized    int iter; 
      before: only the contents of out is modified. The function returns    double a,b,d,etemp;
      a pointer to pointers identical to out */    double fu=0,fv,fw,fx;
   long i, j, k;    double ftemp=0.;
   for(i=nrl; i<= nrh; i++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for(k=ncolol; k<=ncoloh; k++)    double e=0.0; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)   
         out[i][k] +=in[i][j]*b[j][k];    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
   return out;    x=w=v=bx; 
 }    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
 /************* Higher Matrix Product ***************/      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      printf(".");fflush(stdout);
 {      fprintf(ficlog,".");fflush(ficlog);
   /* Computes the transition matrix starting at age 'age' over  #ifdef DEBUGBRENT
      'nhstepm*hstepm*stepm' months (i.e. until      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      nhstepm*hstepm matrices.      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #endif
      (typically every 2 years instead of every month which is too big      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      for the memory).        *xmin=x; 
      Model is determined by parameters x and covariates have to be        return fx; 
      included manually here.      } 
       ftemp=fu;
      */      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
   int i, j, d, h, k;        q=(x-v)*(fx-fw); 
   double **out, cov[NCOVMAX];        p=(x-v)*q-(x-w)*r; 
   double **newm;        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
   /* Hstepm could be zero and should return the unit matrix */        q=fabs(q); 
   for (i=1;i<=nlstate+ndeath;i++)        etemp=e; 
     for (j=1;j<=nlstate+ndeath;j++){        e=d; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       po[i][j][0]=(i==j ? 1.0 : 0.0);                                  d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }        else { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */                                  d=p/q; 
   for(h=1; h <=nhstepm; h++){                                  u=x+d; 
     for(d=1; d <=hstepm; d++){                                  if (u-a < tol2 || b-u < tol2) 
       newm=savm;                                          d=SIGN(tol1,xm-x); 
       /* Covariates have to be included here again */        } 
       cov[1]=1.;      } else { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      } 
       for (k=1; k<=cptcovage;k++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      fu=(*f)(u); 
       for (k=1; k<=cptcovprod;k++)      if (fu <= fx) { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
         SHFT(fv,fw,fx,fu) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      } else { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        if (u < x) a=u; else b=u; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        if (fu <= fw || w == x) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                                  v=w; 
       savm=oldm;                                  w=u; 
       oldm=newm;                                  fv=fw; 
     }                                  fw=fu; 
     for(i=1; i<=nlstate+ndeath; i++)        } else if (fu <= fv || v == x || v == w) { 
       for(j=1;j<=nlstate+ndeath;j++) {                                  v=u; 
         po[i][j][h]=newm[i][j];                                  fv=fu; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        } 
          */      } 
       }    } 
   } /* end h */    nrerror("Too many iterations in brent"); 
   return po;    *xmin=x; 
 }    return fx; 
   } 
   
 /*************** log-likelihood *************/  /****************** mnbrak ***********************/
 double func( double *x)  
 {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   int i, ii, j, k, mi, d, kk;              double (*func)(double)) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
   double **out;  the downhill direction (defined by the function as evaluated at the initial points) and returns
   double sw; /* Sum of weights */  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
   double lli; /* Individual log likelihood */  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
   int s1, s2;     */
   double bbh, survp;    double ulim,u,r,q, dum;
   long ipmx;    double fu; 
   /*extern weight */  
   /* We are differentiating ll according to initial status */    double scale=10.;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    int iterscale=0;
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
   */    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
   cov[1]=1.;  
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
     /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
   if(mle==1){    /*   *bx = *ax - (*ax - *bx)/scale; */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /* } */
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)    if (*fb > *fa) { 
           for (j=1;j<=nlstate+ndeath;j++){      SHFT(dum,*ax,*bx,dum) 
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      SHFT(dum,*fb,*fa,dum) 
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    } 
           }    *cx=(*bx)+GOLD*(*bx-*ax); 
         for(d=0; d<dh[mi][i]; d++){    *fc=(*func)(*cx); 
           newm=savm;  #ifdef DEBUG
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
           for (kk=1; kk<=cptcovage;kk++) {    fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #endif
           }    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      r=(*bx-*ax)*(*fb-*fc); 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */
           savm=oldm;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
           oldm=newm;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
         } /* end mult */      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
            if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        fu=(*func)(u); 
         /* But now since version 0.9 we anticipate for bias at large stepm.  #ifdef DEBUG
          * If stepm is larger than one month (smallest stepm) and if the exact delay        /* f(x)=A(x-u)**2+f(u) */
          * (in months) between two waves is not a multiple of stepm, we rounded to        double A, fparabu; 
          * the nearest (and in case of equal distance, to the lowest) interval but now        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        fparabu= *fa - A*(*ax-u)*(*ax-u);
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the        printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
          * probability in order to take into account the bias as a fraction of the way        fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies        /* And thus,it can be that fu > *fc even if fparabu < *fc */
          * -stepm/2 to stepm/2 .        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
          * For stepm=1 the results are the same as for previous versions of Imach.          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
          * For stepm > 1 the results are less biased than in previous versions.        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
          */  #endif 
         s1=s[mw[mi][i]][i];  #ifdef MNBRAKORIGINAL
         s2=s[mw[mi+1][i]][i];  #else
         bbh=(double)bh[mi][i]/(double)stepm;  /*       if (fu > *fc) { */
         /* bias bh is positive if real duration  /* #ifdef DEBUG */
          * is higher than the multiple of stepm and negative otherwise.  /*       printf("mnbrak4  fu > fc \n"); */
          */  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  /* #endif */
         if( s2 > nlstate){  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
           /* i.e. if s2 is a death state and if the date of death is known  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
              then the contribution to the likelihood is the probability to  /*      dum=u; /\* Shifting c and u *\/ */
              die between last step unit time and current  step unit time,  /*      u = *cx; */
              which is also equal to probability to die before dh  /*      *cx = dum; */
              minus probability to die before dh-stepm .  /*      dum = fu; */
              In version up to 0.92 likelihood was computed  /*      fu = *fc; */
         as if date of death was unknown. Death was treated as any other  /*      *fc =dum; */
         health state: the date of the interview describes the actual state  /*       } else { /\* end *\/ */
         and not the date of a change in health state. The former idea was  /* #ifdef DEBUG */
         to consider that at each interview the state was recorded  /*       printf("mnbrak3  fu < fc \n"); */
         (healthy, disable or death) and IMaCh was corrected; but when we  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
         introduced the exact date of death then we should have modified  /* #endif */
         the contribution of an exact death to the likelihood. This new  /*      dum=u; /\* Shifting c and u *\/ */
         contribution is smaller and very dependent of the step unit  /*      u = *cx; */
         stepm. It is no more the probability to die between last interview  /*      *cx = dum; */
         and month of death but the probability to survive from last  /*      dum = fu; */
         interview up to one month before death multiplied by the  /*      fu = *fc; */
         probability to die within a month. Thanks to Chris  /*      *fc =dum; */
         Jackson for correcting this bug.  Former versions increased  /*       } */
         mortality artificially. The bad side is that we add another loop  #ifdef DEBUGMNBRAK
         which slows down the processing. The difference can be up to 10%                   double A, fparabu; 
         lower mortality.       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
           */       fparabu= *fa - A*(*ax-u)*(*ax-u);
           lli=log(out[s1][s2] - savm[s1][s2]);       printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
        fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
   #endif
         } else if  (s2==-2) {        dum=u; /* Shifting c and u */
           for (j=1,survp=0. ; j<=nlstate; j++)        u = *cx;
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];        *cx = dum;
           /*survp += out[s1][j]; */        dum = fu;
           lli= log(survp);        fu = *fc;
         }        *fc =dum;
          #endif
         else if  (s2==-4) {      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
           for (j=3,survp=0. ; j<=nlstate; j++)    #ifdef DEBUG
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];        printf("\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
           lli= log(survp);        fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
         }  #endif
         fu=(*func)(u); 
         else if  (s2==-5) {        if (fu < *fc) { 
           for (j=1,survp=0. ; j<=2; j++)    #ifdef DEBUG
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];                                  printf("\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
           lli= log(survp);                            fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
         }  #endif
                                    SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         else{                                  SHFT(*fb,*fc,fu,(*func)(u)) 
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  #ifdef DEBUG
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */                                          printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx));
         }  #endif
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        } 
         /*if(lli ==000.0)*/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */  #ifdef DEBUG
         ipmx +=1;        printf("\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
         sw += weight[i];        fprintf(ficlog,"\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #endif
       } /* end of wave */        u=ulim; 
     } /* end of individual */        fu=(*func)(u); 
   }  else if(mle==2){      } else { /* u could be left to b (if r > q parabola has a maximum) */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #ifdef DEBUG
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        printf("\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
       for(mi=1; mi<= wav[i]-1; mi++){        fprintf(ficlog,"\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
         for (ii=1;ii<=nlstate+ndeath;ii++)  #endif
           for (j=1;j<=nlstate+ndeath;j++){        u=(*cx)+GOLD*(*cx-*bx); 
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fu=(*func)(u); 
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  #ifdef DEBUG
           }        printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
         for(d=0; d<=dh[mi][i]; d++){        fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
           newm=savm;  #endif
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      } /* end tests */
           for (kk=1; kk<=cptcovage;kk++) {      SHFT(*ax,*bx,*cx,u) 
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      SHFT(*fa,*fb,*fc,fu) 
           }  #ifdef DEBUG
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
           savm=oldm;  #endif
           oldm=newm;    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
         } /* end mult */  } 
        
         s1=s[mw[mi][i]][i];  /*************** linmin ************************/
         s2=s[mw[mi+1][i]][i];  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
         bbh=(double)bh[mi][i]/(double)stepm;  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
         ipmx +=1;  the value of func at the returned location p . This is actually all accomplished by calling the
         sw += weight[i];  routines mnbrak and brent .*/
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  int ncom; 
       } /* end of wave */  double *pcom,*xicom;
     } /* end of individual */  double (*nrfunc)(double []); 
   }  else if(mle==3){  /* exponential inter-extrapolation */   
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #ifdef LINMINORIGINAL
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for(mi=1; mi<= wav[i]-1; mi++){  #else
         for (ii=1;ii<=nlstate+ndeath;ii++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) 
           for (j=1;j<=nlstate+ndeath;j++){  #endif
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  { 
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    double brent(double ax, double bx, double cx, 
           }                 double (*f)(double), double tol, double *xmin); 
         for(d=0; d<dh[mi][i]; d++){    double f1dim(double x); 
           newm=savm;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;                double *fc, double (*func)(double)); 
           for (kk=1; kk<=cptcovage;kk++) {    int j; 
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double xx,xmin,bx,ax; 
           }    double fx,fb,fa;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #ifdef LINMINORIGINAL
           savm=oldm;  #else
           oldm=newm;    double scale=10., axs, xxs; /* Scale added for infinity */
         } /* end mult */  #endif
          
         s1=s[mw[mi][i]][i];    ncom=n; 
         s2=s[mw[mi+1][i]][i];    pcom=vector(1,n); 
         bbh=(double)bh[mi][i]/(double)stepm;    xicom=vector(1,n); 
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    nrfunc=func; 
         ipmx +=1;    for (j=1;j<=n;j++) { 
         sw += weight[i];      pcom[j]=p[j]; 
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
       } /* end of wave */    } 
     } /* end of individual */  
   }else if (mle==4){  /* ml=4 no inter-extrapolation */  #ifdef LINMINORIGINAL
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    xx=1.;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  #else
       for(mi=1; mi<= wav[i]-1; mi++){    axs=0.0;
         for (ii=1;ii<=nlstate+ndeath;ii++)    xxs=1.;
           for (j=1;j<=nlstate+ndeath;j++){    do{
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      xx= xxs;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
           }      ax=0.;
         for(d=0; d<dh[mi][i]; d++){      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
           newm=savm;      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
           for (kk=1; kk<=cptcovage;kk++) {      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
           }      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
              /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef LINMINORIGINAL
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #else
           savm=oldm;      if (fx != fx){
           oldm=newm;                          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
         } /* end mult */                          printf("|");
                                fprintf(ficlog,"|");
         s1=s[mw[mi][i]][i];  #ifdef DEBUGLINMIN
         s2=s[mw[mi+1][i]][i];                          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
         if( s2 > nlstate){  #endif
           lli=log(out[s1][s2] - savm[s1][s2]);      }
         }else{    }while(fx != fx && xxs > 1.e-5);
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */  #endif
         }    
         ipmx +=1;  #ifdef DEBUGLINMIN
         sw += weight[i];    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  #endif
       } /* end of wave */  #ifdef LINMINORIGINAL
     } /* end of individual */  #else
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */          if(fb == fx){ /* Flat function in the direction */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){                  xmin=xx;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      *flat=1;
       for(mi=1; mi<= wav[i]-1; mi++){          }else{
         for (ii=1;ii<=nlstate+ndeath;ii++)      *flat=0;
           for (j=1;j<=nlstate+ndeath;j++){  #endif
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);                  /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
           }    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
         for(d=0; d<dh[mi][i]; d++){    /* fmin = f(p[j] + xmin * xi[j]) */
           newm=savm;    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
           for (kk=1; kk<=cptcovage;kk++) {  #ifdef DEBUG
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
           }    fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
          #endif
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef LINMINORIGINAL
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #else
           savm=oldm;                          }
           oldm=newm;  #endif
         } /* end mult */  #ifdef DEBUGLINMIN
          printf("linmin end ");
         s1=s[mw[mi][i]][i];    fprintf(ficlog,"linmin end ");
         s2=s[mw[mi+1][i]][i];  #endif
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */    for (j=1;j<=n;j++) { 
         ipmx +=1;  #ifdef LINMINORIGINAL
         sw += weight[i];      xi[j] *= xmin; 
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #else
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/  #ifdef DEBUGLINMIN
       } /* end of wave */      if(xxs <1.0)
     } /* end of individual */        printf(" before xi[%d]=%12.8f", j,xi[j]);
   } /* End of if */  #endif
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  #ifdef DEBUGLINMIN
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      if(xxs <1.0)
   return -l;        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
 }  #endif
   #endif
 /*************** log-likelihood *************/      p[j] += xi[j]; /* Parameters values are updated accordingly */
 double funcone( double *x)    } 
 {  #ifdef DEBUGLINMIN
   /* Same as likeli but slower because of a lot of printf and if */    printf("\n");
   int i, ii, j, k, mi, d, kk;    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
   double **out;    for (j=1;j<=n;j++) { 
   double lli; /* Individual log likelihood */      printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
   double llt;      fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
   int s1, s2;      if(j % ncovmodel == 0){
   double bbh, survp;        printf("\n");
   /*extern weight */        fprintf(ficlog,"\n");
   /* We are differentiating ll according to initial status */      }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    }
   /*for(i=1;i<imx;i++)  #else
     printf(" %d\n",s[4][i]);  #endif
   */    free_vector(xicom,1,n); 
   cov[1]=1.;    free_vector(pcom,1,n); 
   } 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*************** powell ************************/
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /*
     for(mi=1; mi<= wav[i]-1; mi++){  Minimization of a function func of n variables. Input consists of an initial starting point
       for (ii=1;ii<=nlstate+ndeath;ii++)  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
         for (j=1;j<=nlstate+ndeath;j++){  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  such that failure to decrease by more than this amount on one iteration signals doneness. On
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
         }  function value at p , and iter is the number of iterations taken. The routine linmin is used.
       for(d=0; d<dh[mi][i]; d++){   */
         newm=savm;  #ifdef LINMINORIGINAL
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #else
         for (kk=1; kk<=cptcovage;kk++) {          int *flatdir; /* Function is vanishing in that direction */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          int flat=0, flatd=0; /* Function is vanishing in that direction */
         }  #endif
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              double (*func)(double [])) 
         savm=oldm;  { 
         oldm=newm;  #ifdef LINMINORIGINAL
       } /* end mult */   void linmin(double p[], double xi[], int n, double *fret, 
                      double (*func)(double [])); 
       s1=s[mw[mi][i]][i];  #else 
       s2=s[mw[mi+1][i]][i];   void linmin(double p[], double xi[], int n, double *fret,
       bbh=(double)bh[mi][i]/(double)stepm;               double (*func)(double []),int *flat); 
       /* bias is positive if real duration  #endif
        * is higher than the multiple of stepm and negative otherwise.   int i,ibig,j,jk,k; 
        */    double del,t,*pt,*ptt,*xit;
       if( s2 > nlstate && (mle <5) ){  /* Jackson */    double directest;
         lli=log(out[s1][s2] - savm[s1][s2]);    double fp,fptt;
       } else if  (s2==-2) {    double *xits;
         for (j=1,survp=0. ; j<=nlstate; j++)    int niterf, itmp;
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];  #ifdef LINMINORIGINAL
         lli= log(survp);  #else
       }else if (mle==1){  
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */    flatdir=ivector(1,n); 
       } else if(mle==2){    for (j=1;j<=n;j++) flatdir[j]=0; 
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  #endif
       } else if(mle==3){  /* exponential inter-extrapolation */  
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    pt=vector(1,n); 
       } else if (mle==4){  /* mle=4 no inter-extrapolation */    ptt=vector(1,n); 
         lli=log(out[s1][s2]); /* Original formula */    xit=vector(1,n); 
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */    xits=vector(1,n); 
         lli=log(out[s1][s2]); /* Original formula */    *fret=(*func)(p); 
       } /* End of if */    for (j=1;j<=n;j++) pt[j]=p[j]; 
       ipmx +=1;    rcurr_time = time(NULL);  
       sw += weight[i];    for (*iter=1;;++(*iter)) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      fp=(*fret); /* From former iteration or initial value */
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */      ibig=0; 
       if(globpr){      del=0.0; 
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\      rlast_time=rcurr_time;
  %11.6f %11.6f %11.6f ", \      /* (void) gettimeofday(&curr_time,&tzp); */
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],      rcurr_time = time(NULL);  
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);      curr_time = *localtime(&rcurr_time);
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
           llt +=ll[k]*gipmx/gsw;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
         }      for (i=1;i<=n;i++) {
         fprintf(ficresilk," %10.6f\n", -llt);        fprintf(ficrespow," %.12lf", p[i]);
       }      }
     } /* end of wave */      fprintf(ficrespow,"\n");fflush(ficrespow);
   } /* end of individual */      printf("\n#model=  1      +     age ");
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      fprintf(ficlog,"\n#model=  1      +     age ");
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      if(nagesqr==1){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          printf("  + age*age  ");
   if(globpr==0){ /* First time we count the contributions and weights */          fprintf(ficlog,"  + age*age  ");
     gipmx=ipmx;      }
     gsw=sw;      for(j=1;j <=ncovmodel-2;j++){
   }        if(Typevar[j]==0) {
   return -l;          printf("  +      V%d  ",Tvar[j]);
 }          fprintf(ficlog,"  +      V%d  ",Tvar[j]);
         }else if(Typevar[j]==1) {
           printf("  +    V%d*age ",Tvar[j]);
 /*************** function likelione ***********/          fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))        }else if(Typevar[j]==2) {
 {          printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
   /* This routine should help understanding what is done with          fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
      the selection of individuals/waves and        }
      to check the exact contribution to the likelihood.      }
      Plotting could be done.      printf("\n");
    */  /*     printf("12   47.0114589    0.0154322   33.2424412    0.3279905    2.3731903  */
   int k;  /* 13  -21.5392400    0.1118147    1.2680506    1.2973408   -1.0663662  */
       fprintf(ficlog,"\n");
   if(*globpri !=0){ /* Just counts and sums, no printings */      for(i=1,jk=1; i <=nlstate; i++){
     strcpy(fileresilk,"ilk");        for(k=1; k <=(nlstate+ndeath); k++){
     strcat(fileresilk,fileres);          if (k != i) {
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {            printf("%d%d ",i,k);
       printf("Problem with resultfile: %s\n", fileresilk);            fprintf(ficlog,"%d%d ",i,k);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);            for(j=1; j <=ncovmodel; j++){
     }              printf("%12.7f ",p[jk]);
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");              fprintf(ficlog,"%12.7f ",p[jk]);
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");              jk++; 
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */            }
     for(k=1; k<=nlstate; k++)            printf("\n");
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);            fprintf(ficlog,"\n");
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");          }
   }        }
       }
   *fretone=(*funcone)(p);      if(*iter <=3 && *iter >1){
   if(*globpri !=0){        tml = *localtime(&rcurr_time);
     fclose(ficresilk);        strcpy(strcurr,asctime(&tml));
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));        rforecast_time=rcurr_time; 
     fflush(fichtm);        itmp = strlen(strcurr);
   }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   return;          strcurr[itmp-1]='\0';
 }        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         for(niterf=10;niterf<=30;niterf+=10){
 /*********** Maximum Likelihood Estimation ***************/          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
           forecast_time = *localtime(&rforecast_time);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          strcpy(strfor,asctime(&forecast_time));
 {          itmp = strlen(strfor);
   int i,j, iter;          if(strfor[itmp-1]=='\n')
   double **xi;            strfor[itmp-1]='\0';
   double fret;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   double fretone; /* Only one call to likelihood */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   /*  char filerespow[FILENAMELENGTH];*/        }
   xi=matrix(1,npar,1,npar);      }
   for (i=1;i<=npar;i++)      for (i=1;i<=n;i++) { /* For each direction i */
     for (j=1;j<=npar;j++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
       xi[i][j]=(i==j ? 1.0 : 0.0);        fptt=(*fret); 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  #ifdef DEBUG
   strcpy(filerespow,"pow");        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   strcat(filerespow,fileres);        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   if((ficrespow=fopen(filerespow,"w"))==NULL) {  #endif
     printf("Problem with resultfile: %s\n", filerespow);        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        fprintf(ficlog,"%d",i);fflush(ficlog);
   }  #ifdef LINMINORIGINAL
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
   for (i=1;i<=nlstate;i++)  #else
     for(j=1;j<=nlstate+ndeath;j++)        linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);                          flatdir[i]=flat; /* Function is vanishing in that direction i */
   fprintf(ficrespow,"\n");  #endif
                           /* Outputs are fret(new point p) p is updated and xit rescaled */
   powell(p,xi,npar,ftol,&iter,&fret,func);        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
                                   /* because that direction will be replaced unless the gain del is small */
   free_matrix(xi,1,npar,1,npar);                                  /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
   fclose(ficrespow);                                  /* Unless the n directions are conjugate some gain in the determinant may be obtained */
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));                                  /* with the new direction. */
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));                                  del=fabs(fptt-(*fret)); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));                                  ibig=i; 
         } 
 }  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
 /**** Computes Hessian and covariance matrix ***/        fprintf(ficlog,"%d %.12e",i,(*fret));
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        for (j=1;j<=n;j++) {
 {                                  xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double  **a,**y,*x,pd;                                  printf(" x(%d)=%.12e",j,xit[j]);
   double **hess;                                  fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   int i, j,jk;        }
   int *indx;        for(j=1;j<=n;j++) {
                                   printf(" p(%d)=%.12e",j,p[j]);
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);                                  fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);        }
   void lubksb(double **a, int npar, int *indx, double b[]) ;        printf("\n");
   void ludcmp(double **a, int npar, int *indx, double *d) ;        fprintf(ficlog,"\n");
   double gompertz(double p[]);  #endif
   hess=matrix(1,npar,1,npar);      } /* end loop on each direction i */
       /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
   printf("\nCalculation of the hessian matrix. Wait...\n");      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");      /* New value of last point Pn is not computed, P(n-1) */
   for (i=1;i<=npar;i++){        for(j=1;j<=n;j++) {
     printf("%d",i);fflush(stdout);                                  if(flatdir[j] >0){
     fprintf(ficlog,"%d",i);fflush(ficlog);                                          printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
                                              fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);                                  }
                                      /* printf("\n"); */
     /*  printf(" %f ",p[i]);                                  /* fprintf(ficlog,"\n"); */
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/                          }
   }      /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */
        if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */
   for (i=1;i<=npar;i++) {        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
     for (j=1;j<=npar;j++)  {        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
       if (j>i) {        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
         printf(".%d%d",i,j);fflush(stdout);        /* decreased of more than 3.84  */
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
         hess[i][j]=hessij(p,delti,i,j,func,npar);        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
                /* By adding 10 parameters more the gain should be 18.31 */
         hess[j][i]=hess[i][j];                              
         /*printf(" %lf ",hess[i][j]);*/        /* Starting the program with initial values given by a former maximization will simply change */
       }        /* the scales of the directions and the directions, because the are reset to canonical directions */
     }        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
   }        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
   printf("\n");  #ifdef DEBUG
   fprintf(ficlog,"\n");        int k[2],l;
         k[0]=1;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        k[1]=-1;
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        printf("Max: %.12e",(*func)(p));
          fprintf(ficlog,"Max: %.12e",(*func)(p));
   a=matrix(1,npar,1,npar);        for (j=1;j<=n;j++) {
   y=matrix(1,npar,1,npar);          printf(" %.12e",p[j]);
   x=vector(1,npar);          fprintf(ficlog," %.12e",p[j]);
   indx=ivector(1,npar);        }
   for (i=1;i<=npar;i++)        printf("\n");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        fprintf(ficlog,"\n");
   ludcmp(a,npar,indx,&pd);        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
   for (j=1;j<=npar;j++) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for (i=1;i<=npar;i++) x[i]=0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     x[j]=1;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     lubksb(a,npar,indx,x);          }
     for (i=1;i<=npar;i++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       matcov[i][j]=x[i];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }        }
   }  #endif
   
   printf("\n#Hessian matrix#\n");  #ifdef LINMINORIGINAL
   fprintf(ficlog,"\n#Hessian matrix#\n");  #else
   for (i=1;i<=npar;i++) {        free_ivector(flatdir,1,n); 
     for (j=1;j<=npar;j++) {  #endif
       printf("%.3e ",hess[i][j]);        free_vector(xit,1,n); 
       fprintf(ficlog,"%.3e ",hess[i][j]);        free_vector(xits,1,n); 
     }        free_vector(ptt,1,n); 
     printf("\n");        free_vector(pt,1,n); 
     fprintf(ficlog,"\n");        return; 
   }      } /* enough precision */ 
       if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); 
   /* Recompute Inverse */      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
   for (i=1;i<=npar;i++)        ptt[j]=2.0*p[j]-pt[j]; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        xit[j]=p[j]-pt[j]; 
   ludcmp(a,npar,indx,&pd);        pt[j]=p[j]; 
       } 
   /*  printf("\n#Hessian matrix recomputed#\n");      fptt=(*func)(ptt); /* f_3 */
   #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
   for (j=1;j<=npar;j++) {                  if (*iter <=4) {
     for (i=1;i<=npar;i++) x[i]=0;  #else
     x[j]=1;  #endif
     lubksb(a,npar,indx,x);  #ifdef POWELLNOF3INFF1TEST    /* skips test F3 <F1 */
     for (i=1;i<=npar;i++){  #else
       y[i][j]=x[i];      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
       printf("%.3e ",y[i][j]);  #endif
       fprintf(ficlog,"%.3e ",y[i][j]);        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
     }        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
     printf("\n");        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
     fprintf(ficlog,"\n");        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   }        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   */        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */
         /* also  lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */
   free_matrix(a,1,npar,1,npar);        /* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */
   free_matrix(y,1,npar,1,npar);        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   free_vector(x,1,npar);        /*  Even if f3 <f1, directest can be negative and t >0 */
   free_ivector(indx,1,npar);        /* mu² and del² are equal when f3=f1 */
   free_matrix(hess,1,npar,1,npar);                          /* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */
                           /* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */
                           /* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0  */
 }                          /* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0  */
   #ifdef NRCORIGINAL
 /*************** hessian matrix ****************/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)  #else
 {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
   int i;        t= t- del*SQR(fp-fptt);
   int l=1, lmax=20;  #endif
   double k1,k2;        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
   double p2[NPARMAX+1];  #ifdef DEBUG
   double res;        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   double fx;        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   int k=0,kmax=10;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   double l1;        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   fx=func(x);        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   for (i=1;i<=npar;i++) p2[i]=x[i];        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   for(l=0 ; l <=lmax; l++){  #endif
     l1=pow(10,l);  #ifdef POWELLORIGINAL
     delts=delt;        if (t < 0.0) { /* Then we use it for new direction */
     for(k=1 ; k <kmax; k=k+1){  #else
       delt = delta*(l1*k);        if (directest*t < 0.0) { /* Contradiction between both tests */
       p2[theta]=x[theta] +delt;                                  printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
       k1=func(p2)-fx;          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
       p2[theta]=x[theta]-delt;          fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
       k2=func(p2)-fx;          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
       /*res= (k1-2.0*fx+k2)/delt/delt; */        } 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        if (directest < 0.0) { /* Then we use it for new direction */
        #endif
 #ifdef DEBUG  #ifdef DEBUGLINMIN
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          printf("Before linmin in direction P%d-P0\n",n);
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          for (j=1;j<=n;j++) {
 #endif            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            if(j % ncovmodel == 0){
         k=kmax;              printf("\n");
       }              fprintf(ficlog,"\n");
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            }
         k=kmax; l=lmax*10.;          }
       }  #endif
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  #ifdef LINMINORIGINAL
         delts=delt;          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
       }  #else
     }          linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
   }          flatdir[i]=flat; /* Function is vanishing in that direction i */
   delti[theta]=delts;  #endif
   return res;          
    #ifdef DEBUGLINMIN
 }          for (j=1;j<=n;j++) { 
             printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
 {            if(j % ncovmodel == 0){
   int i;              printf("\n");
   int l=1, l1, lmax=20;              fprintf(ficlog,"\n");
   double k1,k2,k3,k4,res,fx;            }
   double p2[NPARMAX+1];          }
   int k;  #endif
           for (j=1;j<=n;j++) { 
   fx=func(x);            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
   for (k=1; k<=2; k++) {            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
     for (i=1;i<=npar;i++) p2[i]=x[i];          }
     p2[thetai]=x[thetai]+delti[thetai]/k;  #ifdef LINMINORIGINAL
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #else
     k1=func(p2)-fx;          for (j=1, flatd=0;j<=n;j++) {
              if(flatdir[j]>0)
     p2[thetai]=x[thetai]+delti[thetai]/k;              flatd++;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          }
     k2=func(p2)-fx;          if(flatd >0){
              printf("%d flat directions: ",flatd);
     p2[thetai]=x[thetai]-delti[thetai]/k;            fprintf(ficlog,"%d flat directions :",flatd);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            for (j=1;j<=n;j++) { 
     k3=func(p2)-fx;              if(flatdir[j]>0){
                  printf("%d ",j);
     p2[thetai]=x[thetai]-delti[thetai]/k;                fprintf(ficlog,"%d ",j);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;              }
     k4=func(p2)-fx;            }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            printf("\n");
 #ifdef DEBUG            fprintf(ficlog,"\n");
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          }
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  #endif
 #endif          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   }          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   return res;          
 }  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /************** Inverse of matrix **************/          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 void ludcmp(double **a, int n, int *indx, double *d)          for(j=1;j<=n;j++){
 {            printf(" %lf",xit[j]);
   int i,imax,j,k;            fprintf(ficlog," %lf",xit[j]);
   double big,dum,sum,temp;          }
   double *vv;          printf("\n");
            fprintf(ficlog,"\n");
   vv=vector(1,n);  #endif
   *d=1.0;        } /* end of t or directest negative */
   for (i=1;i<=n;i++) {  #ifdef POWELLNOF3INFF1TEST
     big=0.0;  #else
     for (j=1;j<=n;j++)        } /* end if (fptt < fp)  */
       if ((temp=fabs(a[i][j])) > big) big=temp;  #endif
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
     vv[i]=1.0/big;      } /*NODIRECTIONCHANGEDUNTILNITER  No change in drections until some iterations are done */
   }  #else
   for (j=1;j<=n;j++) {  #endif
     for (i=1;i<j;i++) {                  } /* loop iteration */ 
       sum=a[i][j];  } 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    
       a[i][j]=sum;  /**** Prevalence limit (stable or period prevalence)  ****************/
     }    
     big=0.0;    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres)
     for (i=j;i<=n;i++) {    {
       sum=a[i][j];      /**< Computes the prevalence limit in each live state at age x and for covariate combination ij 
       for (k=1;k<j;k++)       *   (and selected quantitative values in nres)
         sum -= a[i][k]*a[k][j];       *  by left multiplying the unit
       a[i][j]=sum;       *  matrix by transitions matrix until convergence is reached with precision ftolpl 
       if ( (dum=vv[i]*fabs(sum)) >= big) {       * Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I
         big=dum;       * Wx is row vector: population in state 1, population in state 2, population dead
         imax=i;       * or prevalence in state 1, prevalence in state 2, 0
       }       * newm is the matrix after multiplications, its rows are identical at a factor.
     }       * Inputs are the parameter, age, a tolerance for the prevalence limit ftolpl.
     if (j != imax) {       * Output is prlim.
       for (k=1;k<=n;k++) {       * Initial matrix pimij 
         dum=a[imax][k];       */
         a[imax][k]=a[j][k];    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
         a[j][k]=dum;    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
       }    /*  0,                   0                  , 1} */
       *d = -(*d);    /*
       vv[imax]=vv[j];     * and after some iteration: */
     }    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
     indx[j]=imax;    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
     if (a[j][j] == 0.0) a[j][j]=TINY;    /*  0,                   0                  , 1} */
     if (j != n) {    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
       dum=1.0/(a[j][j]);    /* {0.51571254859325999, 0.4842874514067399, */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    /*  0.51326036147820708, 0.48673963852179264} */
     }    /* If we start from prlim again, prlim tends to a constant matrix */
   }      
   free_vector(vv,1,n);  /* Doesn't work */    int i, ii,j,k;
 ;    double *min, *max, *meandiff, maxmax,sumnew=0.;
 }    /* double **matprod2(); */ /* test */
     double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
 void lubksb(double **a, int n, int *indx, double b[])    double **newm;
 {    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
   int i,ii=0,ip,j;    int ncvloop=0;
   double sum;    int first=0;
      
   for (i=1;i<=n;i++) {    min=vector(1,nlstate);
     ip=indx[i];    max=vector(1,nlstate);
     sum=b[ip];    meandiff=vector(1,nlstate);
     b[ip]=b[i];  
     if (ii)          /* Starting with matrix unity */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    for (ii=1;ii<=nlstate+ndeath;ii++)
     else if (sum) ii=i;      for (j=1;j<=nlstate+ndeath;j++){
     b[i]=sum;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }      }
   for (i=n;i>=1;i--) {    
     sum=b[i];    cov[1]=1.;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    
     b[i]=sum/a[i][i];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
 }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       ncvloop++;
 void pstamp(FILE *fichier)      newm=savm;
 {      /* Covariates have to be included here again */
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);      cov[2]=agefin;
 }      if(nagesqr==1)
         cov[3]= agefin*agefin;;
 /************ Frequencies ********************/      for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])                          /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
 {  /* Some frequencies */        cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
          /* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      }
   int first;      for (k=1; k<=nsq;k++) { /* For single varying covariates only */
   double ***freq; /* Frequencies */                          /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
   double *pp, **prop;        cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
   double pos,posprop, k2, dateintsum=0,k2cpt=0;        /* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
   char fileresp[FILENAMELENGTH];      }
        for (k=1; k<=cptcovage;k++){  /* For product with age */
   pp=vector(1,nlstate);        if(Dummy[Tvar[Tage[k]]]){
   prop=matrix(1,nlstate,iagemin,iagemax+3);          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
   strcpy(fileresp,"p");        } else{
   strcat(fileresp,fileres);          cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {        }
     printf("Problem with prevalence resultfile: %s\n", fileresp);        /* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      }
     exit(0);      for (k=1; k<=cptcovprod;k++){ /* For product without age */
   }        /* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);        if(Dummy[Tvard[k][1]==0]){
   j1=0;          if(Dummy[Tvard[k][2]==0]){
              cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
   j=cptcoveff;          }else{
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k];
           }
   first=1;        }else{
           if(Dummy[Tvard[k][2]==0]){
   for(k1=1; k1<=j;k1++){            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]];
     for(i1=1; i1<=ncodemax[k1];i1++){          }else{
       j1++;            cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          }
         scanf("%d", i);*/        }
       for (i=-5; i<=nlstate+ndeath; i++)        }
         for (jk=-5; jk<=nlstate+ndeath; jk++)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           for(m=iagemin; m <= iagemax+3; m++)      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
             freq[i][jk][m]=0;      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     for (i=1; i<=nlstate; i++)        /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       for(m=iagemin; m <= iagemax+3; m++)                  /* age and covariate values of ij are in 'cov' */
         prop[i][m]=0;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
            
       dateintsum=0;      savm=oldm;
       k2cpt=0;      oldm=newm;
       for (i=1; i<=imx; i++) {  
         bool=1;      for(j=1; j<=nlstate; j++){
         if  (cptcovn>0) {        max[j]=0.;
           for (z1=1; z1<=cptcoveff; z1++)        min[j]=1.;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      }
               bool=0;      for(i=1;i<=nlstate;i++){
         }        sumnew=0;
         if (bool==1){        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           for(m=firstpass; m<=lastpass; m++){        for(j=1; j<=nlstate; j++){ 
             k2=anint[m][i]+(mint[m][i]/12.);          prlim[i][j]= newm[i][j]/(1-sumnew);
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/          max[j]=FMAX(max[j],prlim[i][j]);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;          min[j]=FMIN(min[j],prlim[i][j]);
               if(agev[m][i]==1) agev[m][i]=iagemax+2;        }
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];      }
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      maxmax=0.;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];      for(j=1; j<=nlstate; j++){
               }        meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
                      maxmax=FMAX(maxmax,meandiff[j]);
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {        /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
                 dateintsum=dateintsum+k2;      } /* j loop */
                 k2cpt++;      *ncvyear= (int)age- (int)agefin;
               }      /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
               /*}*/      if(maxmax < ftolpl){
           }        /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
         }        free_vector(min,1,nlstate);
       }        free_vector(max,1,nlstate);
                free_vector(meandiff,1,nlstate);
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        return prlim;
       pstamp(ficresp);      }
       if  (cptcovn>0) {    } /* agefin loop */
         fprintf(ficresp, "\n#********** Variable ");      /* After some age loop it doesn't converge */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    if(!first){
         fprintf(ficresp, "**********\n#");      first=1;
       }      printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d). Others in log file only...\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
       for(i=1; i<=nlstate;i++)    }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
       fprintf(ficresp, "\n");  
          /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
       for(i=iagemin; i <= iagemax+3; i++){    free_vector(min,1,nlstate);
         if(i==iagemax+3){    free_vector(max,1,nlstate);
           fprintf(ficlog,"Total");    free_vector(meandiff,1,nlstate);
         }else{    
           if(first==1){    return prlim; /* should not reach here */
             first=0;  }
             printf("See log file for details...\n");  
           }  
           fprintf(ficlog,"Age %d", i);   /**** Back Prevalence limit (stable or period prevalence)  ****************/
         }  
         for(jk=1; jk <=nlstate ; jk++){   /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)   /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
             pp[jk] += freq[jk][m][i];    double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres)
         }  {
         for(jk=1; jk <=nlstate ; jk++){    /* Computes the prevalence limit in each live state at age x and for covariate combination ij (<=2**cptcoveff) by left multiplying the unit
           for(m=-1, pos=0; m <=0 ; m++)       matrix by transitions matrix until convergence is reached with precision ftolpl */
             pos += freq[jk][m][i];    /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
           if(pp[jk]>=1.e-10){    /* Wx is row vector: population in state 1, population in state 2, population dead */
             if(first==1){    /* or prevalence in state 1, prevalence in state 2, 0 */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    /* newm is the matrix after multiplications, its rows are identical at a factor */
             }    /* Initial matrix pimij */
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
           }else{    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
             if(first==1)    /*  0,                   0                  , 1} */
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    /*
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);     * and after some iteration: */
           }    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
         }    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
     /*  0,                   0                  , 1} */
         for(jk=1; jk <=nlstate ; jk++){    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    /* {0.51571254859325999, 0.4842874514067399, */
             pp[jk] += freq[jk][m][i];    /*  0.51326036147820708, 0.48673963852179264} */
         }          /* If we start from prlim again, prlim tends to a constant matrix */
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){  
           pos += pp[jk];    int i, ii,j,k;
           posprop += prop[jk][i];    int first=0;
         }    double *min, *max, *meandiff, maxmax,sumnew=0.;
         for(jk=1; jk <=nlstate ; jk++){    /* double **matprod2(); */ /* test */
           if(pos>=1.e-5){    double **out, cov[NCOVMAX+1], **bmij();
             if(first==1)    double **newm;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double         **dnewm, **doldm, **dsavm;  /* for use */
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double         **oldm, **savm;  /* for use */
           }else{  
             if(first==1)    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    int ncvloop=0;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    
           }    min=vector(1,nlstate);
           if( i <= iagemax){    max=vector(1,nlstate);
             if(pos>=1.e-5){    meandiff=vector(1,nlstate);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);  
               /*probs[i][jk][j1]= pp[jk]/pos;*/    dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    oldm=oldms; savm=savms;
             }    
             else    /* Starting with matrix unity */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);    for (ii=1;ii<=nlstate+ndeath;ii++)
           }      for (j=1;j<=nlstate+ndeath;j++){
         }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
         for(jk=-1; jk <=nlstate+ndeath; jk++)    
           for(m=-1; m <=nlstate+ndeath; m++)    cov[1]=1.;
             if(freq[jk][m][i] !=0 ) {    
             if(first==1)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
             }    /* for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
         if(i <= iagemax)    for(agefin=age; agefin<FMIN(AGESUP,age+delaymax); agefin=agefin+stepm/YEARM){ /* A changer en age */
           fprintf(ficresp,"\n");      ncvloop++;
         if(first==1)      newm=savm; /* oldm should be kept from previous iteration or unity at start */
           printf("Others in log...\n");                  /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
         fprintf(ficlog,"\n");      /* Covariates have to be included here again */
       }      cov[2]=agefin;
     }      if(nagesqr==1)
   }        cov[3]= agefin*agefin;;
   dateintmean=dateintsum/k2cpt;      for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
                            /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
   fclose(ficresp);        cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);        /* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
   free_vector(pp,1,nlstate);      }
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);      /* for (k=1; k<=cptcovn;k++) { */
   /* End of Freq */      /*   /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */
 }      /*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
       /*   /\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\/ */
 /************ Prevalence ********************/      /* } */
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)      for (k=1; k<=nsq;k++) { /* For single varying covariates only */
 {                            /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people        cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
      in each health status at the date of interview (if between dateprev1 and dateprev2).        /* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
      We still use firstpass and lastpass as another selection.      }
   */      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; */
        /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      /*   /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\/ */
   double ***freq; /* Frequencies */      /*   cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; */
   double *pp, **prop;      for (k=1; k<=cptcovage;k++){  /* For product with age */
   double pos,posprop;        if(Dummy[Tvar[Tage[k]]]){
   double  y2; /* in fractional years */          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
   int iagemin, iagemax;        } else{
           cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
   iagemin= (int) agemin;        }
   iagemax= (int) agemax;        /* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
   /*pp=vector(1,nlstate);*/      }
   prop=matrix(1,nlstate,iagemin,iagemax+3);      for (k=1; k<=cptcovprod;k++){ /* For product without age */
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/        /* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
   j1=0;        if(Dummy[Tvard[k][1]==0]){
            if(Dummy[Tvard[k][2]==0]){
   j=cptcoveff;            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          }else{
              cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k];
   for(k1=1; k1<=j;k1++){          }
     for(i1=1; i1<=ncodemax[k1];i1++){        }else{
       j1++;          if(Dummy[Tvard[k][2]==0]){
                  cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]];
       for (i=1; i<=nlstate; i++)            }else{
         for(m=iagemin; m <= iagemax+3; m++)            cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]];
           prop[i][m]=0.0;          }
              }
       for (i=1; i<=imx; i++) { /* Each individual */      }
         bool=1;      
         if  (cptcovn>0) {      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           for (z1=1; z1<=cptcoveff; z1++)      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
               bool=0;      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         }      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
         if (bool==1) {                  /* ij should be linked to the correct index of cov */
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/                  /* age and covariate values ij are in 'cov', but we need to pass
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */                   * ij for the observed prevalence at age and status and covariate
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */                   * number:  prevacurrent[(int)agefin][ii][ij]
               if(agev[m][i]==0) agev[m][i]=iagemax+1;                   */
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);      /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
               if (s[m][i]>0 && s[m][i]<=nlstate) {      out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/      /* if((int)age == 86 || (int)age == 87){ */
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];      /*   printf(" Backward prevalim age=%d agefin=%d \n", (int) age, (int) agefin); */
                 prop[s[m][i]][iagemax+3] += weight[i];      /*   for(i=1; i<=nlstate+ndeath; i++) { */
               }      /*  printf("%d newm= ",i); */
             }      /*  for(j=1;j<=nlstate+ndeath;j++) { */
           } /* end selection of waves */      /*    printf("%f ",newm[i][j]); */
         }      /*  } */
       }      /*  printf("oldm * "); */
       for(i=iagemin; i <= iagemax+3; i++){        /*  for(j=1;j<=nlstate+ndeath;j++) { */
              /*    printf("%f ",oldm[i][j]); */
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {      /*  } */
           posprop += prop[jk][i];      /*  printf(" bmmij "); */
         }      /*  for(j=1;j<=nlstate+ndeath;j++) { */
       /*    printf("%f ",pmmij[i][j]); */
         for(jk=1; jk <=nlstate ; jk++){          /*  } */
           if( i <=  iagemax){      /*  printf("\n"); */
             if(posprop>=1.e-5){      /*   } */
               probs[i][jk][j1]= prop[jk][i]/posprop;      /* } */
             }      savm=oldm;
           }      oldm=newm;
         }/* end jk */  
       }/* end i */      for(j=1; j<=nlstate; j++){
     } /* end i1 */        max[j]=0.;
   } /* end k1 */        min[j]=1.;
        }
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/      for(j=1; j<=nlstate; j++){ 
   /*free_vector(pp,1,nlstate);*/        for(i=1;i<=nlstate;i++){
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);          /* bprlim[i][j]= newm[i][j]/(1-sumnew); */
 }  /* End of prevalence */          bprlim[i][j]= newm[i][j];
           max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */
 /************* Waves Concatenation ***************/          min[i]=FMIN(min[i],bprlim[i][j]);
         }
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      }
 {                  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      maxmax=0.;
      Death is a valid wave (if date is known).      for(i=1; i<=nlstate; i++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]        maxmax=FMAX(maxmax,meandiff[i]);
      and mw[mi+1][i]. dh depends on stepm.        /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
      */      } /* i loop */
       *ncvyear= -( (int)age- (int)agefin);
   int i, mi, m;      /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      if(maxmax < ftolpl){
      double sum=0., jmean=0.;*/        /* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
   int first;        free_vector(min,1,nlstate);
   int j, k=0,jk, ju, jl;        free_vector(max,1,nlstate);
   double sum=0.;        free_vector(meandiff,1,nlstate);
   first=0;        return bprlim;
   jmin=1e+5;      }
   jmax=-1;    } /* agefin loop */
   jmean=0.;      /* After some age loop it doesn't converge */
   for(i=1; i<=imx; i++){    if(!first){
     mi=0;      first=1;
     m=firstpass;      printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\
     while(s[m][i] <= nlstate){  Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)    }
         mw[++mi][i]=m;    fprintf(ficlog,"Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
       if(m >=lastpass)  Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
         break;    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
       else    free_vector(min,1,nlstate);
         m++;    free_vector(max,1,nlstate);
     }/* end while */    free_vector(meandiff,1,nlstate);
     if (s[m][i] > nlstate){    
       mi++;     /* Death is another wave */    return bprlim; /* should not reach here */
       /* if(mi==0)  never been interviewed correctly before death */  }
          /* Only death is a correct wave */  
       mw[mi][i]=m;  /*************** transition probabilities ***************/ 
     }  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     wav[i]=mi;  {
     if(mi==0){    /* According to parameters values stored in x and the covariate's values stored in cov,
       nbwarn++;       computes the probability to be observed in state j (after stepm years) being in state i by appying the
       if(first==0){       model to the ncovmodel covariates (including constant and age).
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         first=1;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
       }       ncth covariate in the global vector x is given by the formula:
       if(first==1){       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
       }       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     } /* end mi==0 */       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   } /* End individuals */       Outputs ps[i][j] or probability to be observed in j being in i according to
        the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   for(i=1; i<=imx; i++){       Sum on j ps[i][j] should equal to 1.
     for(mi=1; mi<wav[i];mi++){    */
       if (stepm <=0)    double s1, lnpijopii;
         dh[mi][i]=1;    /*double t34;*/
       else{    int i,j, nc, ii, jj;
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */  
           if (agedc[i] < 2*AGESUP) {    for(i=1; i<= nlstate; i++){
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      for(j=1; j<i;j++){
             if(j==0) j=1;  /* Survives at least one month after exam */        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             else if(j<0){          /*lnpijopii += param[i][j][nc]*cov[nc];*/
               nberr++;          lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
               j=1; /* Temporary Dangerous patch */        }
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);      }
             }      for(j=i+1; j<=nlstate+ndeath;j++){
             k=k+1;        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             if (j >= jmax){          /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
               jmax=j;          lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
               ijmax=i;          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
             }        }
             if (j <= jmin){        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
               jmin=j;      }
               ijmin=i;    }
             }    
             sum=sum+j;    for(i=1; i<= nlstate; i++){
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/      s1=0;
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/      for(j=1; j<i; j++){
           }        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         }        /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         else{      }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      for(j=i+1; j<=nlstate+ndeath; j++){
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           k=k+1;      }
           if (j >= jmax) {      /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
             jmax=j;      ps[i][i]=1./(s1+1.);
             ijmax=i;      /* Computing other pijs */
           }      for(j=1; j<i; j++)
           else if (j <= jmin){        ps[i][j]= exp(ps[i][j])*ps[i][i];
             jmin=j;      for(j=i+1; j<=nlstate+ndeath; j++)
             ijmin=i;        ps[i][j]= exp(ps[i][j])*ps[i][i];
           }      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    } /* end i */
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    
           if(j<0){    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
             nberr++;      for(jj=1; jj<= nlstate+ndeath; jj++){
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        ps[ii][jj]=0;
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        ps[ii][ii]=1;
           }      }
           sum=sum+j;    }
         }  
         jk= j/stepm;  
         jl= j -jk*stepm;    /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         ju= j -(jk+1)*stepm;    /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */    /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
           if(jl==0){    /*   } */
             dh[mi][i]=jk;    /*   printf("\n "); */
             bh[mi][i]=0;    /* } */
           }else{ /* We want a negative bias in order to only have interpolation ie    /* printf("\n ");printf("%lf ",cov[2]);*/
                   * at the price of an extra matrix product in likelihood */    /*
             dh[mi][i]=jk+1;      for(i=1; i<= npar; i++) printf("%f ",x[i]);
             bh[mi][i]=ju;                  goto end;*/
           }    return ps; /* Pointer is unchanged since its call */
         }else{  }
           if(jl <= -ju){  
             dh[mi][i]=jk;  /*************** backward transition probabilities ***************/ 
             bh[mi][i]=jl;       /* bias is positive if real duration  
                                  * is higher than the multiple of stepm and negative otherwise.   /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */
                                  */  /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
           }   double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
           else{  {
             dh[mi][i]=jk+1;    /* Computes the backward probability at age agefin and covariate combination ij. In fact cov is already filled and x too.
             bh[mi][i]=ju;     * Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij.
           }     */
           if(dh[mi][i]==0){    int i, ii, j,k;
             dh[mi][i]=1; /* At least one step */    
             bh[mi][i]=ju; /* At least one step */    double **out, **pmij();
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/    double sumnew=0.;
           }    double agefin;
         } /* end if mle */    double k3=0.; /* constant of the w_x diagonal matrix (in order for B to sum to 1 even for death state) */
       }    double **dnewm, **dsavm, **doldm;
     } /* end wave */    double **bbmij;
   }    
   jmean=sum/k;    doldm=ddoldms; /* global pointers */
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);    dnewm=ddnewms;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);    dsavm=ddsavms;
  }    
     agefin=cov[2];
 /*********** Tricode ****************************/    /* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */
 void tricode(int *Tvar, int **nbcode, int imx)    /* bmij *//* age is cov[2], ij is included in cov, but we need for
 {       the observed prevalence (with this covariate ij) at beginning of transition */
      /* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   int Ndum[20],ij=1, k, j, i, maxncov=19;  
   int cptcode=0;    /* P_x */
   cptcoveff=0;    pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm */
      /* outputs pmmij which is a stochastic matrix in row */
   for (k=0; k<maxncov; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;    /* Diag(w_x) */
     /* Rescaling the cross-sectional prevalence: Problem with prevacurrent which can be zero */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    sumnew=0.;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum    /*for (ii=1;ii<=nlstate+ndeath;ii++){*/
                                modality*/    for (ii=1;ii<=nlstate;ii++){ /* Only on live states */
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/      /* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]); */
       Ndum[ij]++; /*store the modality */      sumnew+=prevacurrent[(int)agefin][ii][ij];
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    }
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable    if(sumnew >0.01){  /* At least some value in the prevalence */
                                        Tvar[j]. If V=sex and male is 0 and      for (ii=1;ii<=nlstate+ndeath;ii++){
                                        female is 1, then  cptcode=1.*/        for (j=1;j<=nlstate+ndeath;j++)
     }          doldm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij]/sumnew : 0.0);
       }
     for (i=0; i<=cptcode; i++) {    }else{
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */      for (ii=1;ii<=nlstate+ndeath;ii++){
     }        for (j=1;j<=nlstate+ndeath;j++)
         doldm[ii][j]=(ii==j ? 1./nlstate : 0.0);
     ij=1;      }
     for (i=1; i<=ncodemax[j]; i++) {      /* if(sumnew <0.9){ */
       for (k=0; k<= maxncov; k++) {      /*   printf("Problem internal bmij B: sum on i wi <0.9: j=%d, sum_i wi=%lf,agefin=%d\n",j,sumnew, (int)agefin); */
         if (Ndum[k] != 0) {      /* } */
           nbcode[Tvar[j]][ij]=k;    }
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    k3=0.0;  /* We put the last diagonal to 0 */
              for (ii=nlstate+1;ii<=nlstate+ndeath;ii++){
           ij++;        doldm[ii][ii]= k3;
         }    }
         if (ij > ncodemax[j]) break;    /* End doldm, At the end doldm is diag[(w_i)] */
       }      
     }    /* Left product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm): diag[(w_i)*Px */
   }      bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* was a Bug Valgrind */
   
  for (k=0; k< maxncov; k++) Ndum[k]=0;    /* Diag(Sum_i w^i_x p^ij_x, should be the prevalence at age x+stepm */
     /* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */
  for (i=1; i<=ncovmodel-2; i++) {    for (j=1;j<=nlstate+ndeath;j++){
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/      sumnew=0.;
    ij=Tvar[i];      for (ii=1;ii<=nlstate;ii++){
    Ndum[ij]++;        /* sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; */
  }        sumnew+=pmmij[ii][j]*doldm[ii][ii]; /* Yes prevalence at beginning of transition */
       } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */
  ij=1;      for (ii=1;ii<=nlstate+ndeath;ii++){
  for (i=1; i<= maxncov; i++) {          /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
    if((Ndum[i]!=0) && (i<=ncovcol)){          /*      dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
      Tvaraff[ij]=i; /*For printing */          /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
      ij++;          /*      dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
    }          /* }else */
  }        dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0);
        } /*End ii */
  cptcoveff=ij-1; /*Number of simple covariates*/    } /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */
 }  
     ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* was a Bug Valgrind */
 /*********** Health Expectancies ****************/    /* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
     /* end bmij */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )    return ps; /*pointer is unchanged */
   }
 {  /*************** transition probabilities ***************/ 
   /* Health expectancies, no variances */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;  double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   double age, agelim, hf;  {
   double ***p3mat;    /* According to parameters values stored in x and the covariate's values stored in cov,
   double eip;       computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
   pstamp(ficreseij);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   fprintf(ficreseij,"# Age");       ncth covariate in the global vector x is given by the formula:
   for(i=1; i<=nlstate;i++){       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
     for(j=1; j<=nlstate;j++){       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
       fprintf(ficreseij," e%1d%1d ",i,j);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     }       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
     fprintf(ficreseij," e%1d. ",i);       Outputs ps[i][j] the probability to be observed in j being in j according to
   }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   fprintf(ficreseij,"\n");    */
     double s1, lnpijopii;
      /*double t34;*/
   if(estepm < stepm){    int i,j, nc, ii, jj;
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    for(i=1; i<= nlstate; i++){
   else  hstepm=estepm;        for(j=1; j<i;j++){
   /* We compute the life expectancy from trapezoids spaced every estepm months        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
    * This is mainly to measure the difference between two models: for example          /*lnpijopii += param[i][j][nc]*cov[nc];*/
    * if stepm=24 months pijx are given only every 2 years and by summing them          lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
    * we are calculating an estimate of the Life Expectancy assuming a linear          /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
    * progression in between and thus overestimating or underestimating according        }
    * to the curvature of the survival function. If, for the same date, we        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
    * to compare the new estimate of Life expectancy with the same linear      }
    * hypothesis. A more precise result, taking into account a more precise      for(j=i+1; j<=nlstate+ndeath;j++){
    * curvature will be obtained if estepm is as small as stepm. */        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   /* For example we decided to compute the life expectancy with the smallest unit */          lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
      nhstepm is the number of hstepm from age to agelim        }
      nstepm is the number of stepm from age to agelin.        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
      Look at hpijx to understand the reason of that which relies in memory size      }
      and note for a fixed period like estepm months */    }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    
      survival function given by stepm (the optimization length). Unfortunately it    for(i=1; i<= nlstate; i++){
      means that if the survival funtion is printed only each two years of age and if      s1=0;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for(j=1; j<i; j++){
      results. So we changed our mind and took the option of the best precision.        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   */        /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      }
       for(j=i+1; j<=nlstate+ndeath; j++){
   agelim=AGESUP;        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   /* If stepm=6 months */        /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
          ps[i][i]=1./(s1+1.);
 /* nhstepm age range expressed in number of stepm */      /* Computing other pijs */
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);      for(j=1; j<i; j++)
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   /* if (stepm >= YEARM) hstepm=1;*/      for(j=i+1; j<=nlstate+ndeath; j++)
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
   for (age=bage; age<=fage; age ++){    
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);          ps[ii][jj]=0;
            ps[ii][ii]=1;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }
        }
     printf("%d|",(int)age);fflush(stdout);    /* Added for prevbcast */ /* Transposed matrix too */
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    for(jj=1; jj<= nlstate+ndeath; jj++){
          s1=0.;
       for(ii=1; ii<= nlstate+ndeath; ii++){
     /* Computing expectancies */        s1+=ps[ii][jj];
     for(i=1; i<=nlstate;i++)      }
       for(j=1; j<=nlstate;j++)      for(ii=1; ii<= nlstate; ii++){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        ps[ii][jj]=ps[ii][jj]/s1;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      }
              }
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    /* Transposition */
     for(jj=1; jj<= nlstate+ndeath; jj++){
         }      for(ii=jj; ii<= nlstate+ndeath; ii++){
            s1=ps[ii][jj];
     fprintf(ficreseij,"%3.0f",age );        ps[ii][jj]=ps[jj][ii];
     for(i=1; i<=nlstate;i++){        ps[jj][ii]=s1;
       eip=0;      }
       for(j=1; j<=nlstate;j++){    }
         eip +=eij[i][j][(int)age];    /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );    /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       }    /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       fprintf(ficreseij,"%9.4f", eip );    /*   } */
     }    /*   printf("\n "); */
     fprintf(ficreseij,"\n");    /* } */
        /* printf("\n ");printf("%lf ",cov[2]);*/
   }    /*
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<= npar; i++) printf("%f ",x[i]);
   printf("\n");      goto end;*/
   fprintf(ficlog,"\n");    return ps;
    }
 }  
   
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )  /**************** Product of 2 matrices ******************/
   
 {  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   /* Covariances of health expectancies eij and of total life expectancies according  {
    to initial status i, ei. .    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;    /* in, b, out are matrice of pointers which should have been initialized 
   double age, agelim, hf;       before: only the contents of out is modified. The function returns
   double ***p3matp, ***p3matm, ***varhe;       a pointer to pointers identical to out */
   double **dnewm,**doldm;    int i, j, k;
   double *xp, *xm;    for(i=nrl; i<= nrh; i++)
   double **gp, **gm;      for(k=ncolol; k<=ncoloh; k++){
   double ***gradg, ***trgradg;        out[i][k]=0.;
   int theta;        for(j=ncl; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   double eip, vip;      }
     return out;
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);  }
   xp=vector(1,npar);  
   xm=vector(1,npar);  
   dnewm=matrix(1,nlstate*nlstate,1,npar);  /************* Higher Matrix Product ***************/
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);  
    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres )
   pstamp(ficresstdeij);  {
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");    /* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over 
   fprintf(ficresstdeij,"# Age");       'nhstepm*hstepm*stepm' months (i.e. until
   for(i=1; i<=nlstate;i++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     for(j=1; j<=nlstate;j++)       nhstepm*hstepm matrices. 
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     fprintf(ficresstdeij," e%1d. ",i);       (typically every 2 years instead of every month which is too big 
   }       for the memory).
   fprintf(ficresstdeij,"\n");       Model is determined by parameters x and covariates have to be 
        included manually here. 
   pstamp(ficrescveij);  
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");       */
   fprintf(ficrescveij,"# Age");  
   for(i=1; i<=nlstate;i++)    int i, j, d, h, k;
     for(j=1; j<=nlstate;j++){    double **out, cov[NCOVMAX+1];
       cptj= (j-1)*nlstate+i;    double **newm;
       for(i2=1; i2<=nlstate;i2++)    double agexact;
         for(j2=1; j2<=nlstate;j2++){    double agebegin, ageend;
           cptj2= (j2-1)*nlstate+i2;  
           if(cptj2 <= cptj)    /* Hstepm could be zero and should return the unit matrix */
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);    for (i=1;i<=nlstate+ndeath;i++)
         }      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficrescveij,"\n");        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
   if(estepm < stepm){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     printf ("Problem %d lower than %d\n",estepm, stepm);    for(h=1; h <=nhstepm; h++){
   }      for(d=1; d <=hstepm; d++){
   else  hstepm=estepm;          newm=savm;
   /* We compute the life expectancy from trapezoids spaced every estepm months        /* Covariates have to be included here again */
    * This is mainly to measure the difference between two models: for example        cov[1]=1.;
    * if stepm=24 months pijx are given only every 2 years and by summing them        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
    * we are calculating an estimate of the Life Expectancy assuming a linear        cov[2]=agexact;
    * progression in between and thus overestimating or underestimating according        if(nagesqr==1)
    * to the curvature of the survival function. If, for the same date, we          cov[3]= agexact*agexact;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
    * to compare the new estimate of Life expectancy with the same linear                          /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
    * hypothesis. A more precise result, taking into account a more precise          cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
    * curvature will be obtained if estepm is as small as stepm. */          /* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
         }
   /* For example we decided to compute the life expectancy with the smallest unit */        for (k=1; k<=nsq;k++) { /* For single varying covariates only */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
      nhstepm is the number of hstepm from age to agelim          cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
      nstepm is the number of stepm from age to agelin.          /* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
      Look at hpijx to understand the reason of that which relies in memory size        }
      and note for a fixed period like estepm months */        for (k=1; k<=cptcovage;k++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          if(Dummy[Tvar[Tage[k]]]){
      survival function given by stepm (the optimization length). Unfortunately it            cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
      means that if the survival funtion is printed only each two years of age and if          } else{
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
      results. So we changed our mind and took the option of the best precision.          }
   */          /* printf("hPxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        }
         for (k=1; k<=cptcovprod;k++){ /*  */
   /* If stepm=6 months */          /* printf("hPxij Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
   /* nhstepm age range expressed in number of stepm */          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
   agelim=AGESUP;        }
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);        /* for (k=1; k<=cptcovn;k++)  */
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */        /*        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
   /* if (stepm >= YEARM) hstepm=1;*/        /* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        /*        cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */
          /* for (k=1; k<=cptcovprod;k++) /\* Useless because included in cptcovn *\/ */
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; */
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);        
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   gp=matrix(0,nhstepm,1,nlstate*nlstate);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   gm=matrix(0,nhstepm,1,nlstate*nlstate);                          /* right multiplication of oldm by the current matrix */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   for (age=bage; age<=fage; age ++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         /* if((int)age == 70){ */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        /*        printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        /*        for(i=1; i<=nlstate+ndeath; i++) { */
          /*          printf("%d pmmij ",i); */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        /*          for(j=1;j<=nlstate+ndeath;j++) { */
         /*            printf("%f ",pmmij[i][j]); */
     /* Computing  Variances of health expectancies */        /*          } */
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to        /*          printf(" oldm "); */
        decrease memory allocation */        /*          for(j=1;j<=nlstate+ndeath;j++) { */
     for(theta=1; theta <=npar; theta++){        /*            printf("%f ",oldm[i][j]); */
       for(i=1; i<=npar; i++){        /*          } */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /*          printf("\n"); */
         xm[i] = x[i] - (i==theta ?delti[theta]:0);        /*        } */
       }        /* } */
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);          savm=oldm;
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);          oldm=newm;
        }
       for(j=1; j<= nlstate; j++){      for(i=1; i<=nlstate+ndeath; i++)
         for(i=1; i<=nlstate; i++){        for(j=1;j<=nlstate+ndeath;j++) {
           for(h=0; h<=nhstepm-1; h++){          po[i][j][h]=newm[i][j];
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;        }
           }      /*printf("h=%d ",h);*/
         }    } /* end h */
       }    /*     printf("\n H=%d \n",h); */
          return po;
       for(ij=1; ij<= nlstate*nlstate; ij++)  }
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];  /************* Higher Back Matrix Product ***************/
         }  /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
     }/* End theta */  double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres )
      {
        /* For a combination of dummy covariate ij, computes the transition matrix starting at age 'age' over
     for(h=0; h<=nhstepm-1; h++)       'nhstepm*hstepm*stepm' months (i.e. until
       for(j=1; j<=nlstate*nlstate;j++)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
         for(theta=1; theta <=npar; theta++)       nhstepm*hstepm matrices.
           trgradg[h][j][theta]=gradg[h][theta][j];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
           (typically every 2 years instead of every month which is too big
        for the memory).
      for(ij=1;ij<=nlstate*nlstate;ij++)       Model is determined by parameters x and covariates have to be
       for(ji=1;ji<=nlstate*nlstate;ji++)       included manually here. Then we use a call to bmij(x and cov)
         varhe[ij][ji][(int)age] =0.;       The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output
     */
      printf("%d|",(int)age);fflush(stdout);  
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    int i, j, d, h, k;
      for(h=0;h<=nhstepm-1;h++){    double **out, cov[NCOVMAX+1], **bmij();
       for(k=0;k<=nhstepm-1;k++){    double **newm, ***newmm;
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);    double agexact;
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);    double agebegin, ageend;
         for(ij=1;ij<=nlstate*nlstate;ij++)    double **oldm, **savm;
           for(ji=1;ji<=nlstate*nlstate;ji++)  
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;    newmm=po; /* To be saved */
       }    oldm=oldms;savm=savms; /* Global pointers */
     }    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
     /* Computing expectancies */      for (j=1;j<=nlstate+ndeath;j++){
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);          oldm[i][j]=(i==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate;i++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
       for(j=1; j<=nlstate;j++)      }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;    for(h=1; h <=nhstepm; h++){
                for(d=1; d <=hstepm; d++){
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        newm=savm;
         /* Covariates have to be included here again */
         }        cov[1]=1.;
         agexact=age-( (h-1)*hstepm + (d)  )*stepm/YEARM; /* age just before transition, d or d-1? */
     fprintf(ficresstdeij,"%3.0f",age );        /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
     for(i=1; i<=nlstate;i++){        cov[2]=agexact;
       eip=0.;        if(nagesqr==1)
       vip=0.;          cov[3]= agexact*agexact;
       for(j=1; j<=nlstate;j++){        for (k=1; k<=cptcovn;k++){
         eip += eij[i][j][(int)age];        /*        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */        /* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];          cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );          /* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
       }        }
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));        for (k=1; k<=nsq;k++) { /* For single varying covariates only */
     }          /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
     fprintf(ficresstdeij,"\n");          cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
           /* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
     fprintf(ficrescveij,"%3.0f",age );        }
     for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovage;k++){ /* Should start at cptcovn+1 */
       for(j=1; j<=nlstate;j++){          if(Dummy[Tvar[Tage[k]]]){
         cptj= (j-1)*nlstate+i;            cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
         for(i2=1; i2<=nlstate;i2++)          } else{
           for(j2=1; j2<=nlstate;j2++){            cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
             cptj2= (j2-1)*nlstate+i2;          }
             if(cptj2 <= cptj)          /* printf("hBxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);        }
           }        for (k=1; k<=cptcovprod;k++){ /* Useless because included in cptcovn */
       }          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
     fprintf(ficrescveij,"\n");        }                 
            /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);  
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);        /* Careful transposed matrix */
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);        /* age is in cov[2], prevacurrent at beginning of transition. */
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);        /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*                                                 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
   printf("\n");                     1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   fprintf(ficlog,"\n");        /* if((int)age == 70){ */
         /*        printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
   free_vector(xm,1,npar);        /*        for(i=1; i<=nlstate+ndeath; i++) { */
   free_vector(xp,1,npar);        /*          printf("%d pmmij ",i); */
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);        /*          for(j=1;j<=nlstate+ndeath;j++) { */
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);        /*            printf("%f ",pmmij[i][j]); */
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);        /*          } */
 }        /*          printf(" oldm "); */
         /*          for(j=1;j<=nlstate+ndeath;j++) { */
 /************ Variance ******************/        /*            printf("%f ",oldm[i][j]); */
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])        /*          } */
 {        /*          printf("\n"); */
   /* Variance of health expectancies */        /*        } */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        /* } */
   /* double **newm;*/        savm=oldm;
   double **dnewm,**doldm;        oldm=newm;
   double **dnewmp,**doldmp;      }
   int i, j, nhstepm, hstepm, h, nstepm ;      for(i=1; i<=nlstate+ndeath; i++)
   int k, cptcode;        for(j=1;j<=nlstate+ndeath;j++) {
   double *xp;          po[i][j][h]=newm[i][j];
   double **gp, **gm;  /* for var eij */          /* if(h==nhstepm) */
   double ***gradg, ***trgradg; /*for var eij */          /*   printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]); */
   double **gradgp, **trgradgp; /* for var p point j */        }
   double *gpp, *gmp; /* for var p point j */      /* printf("h=%d %.1f ",h, agexact); */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    } /* end h */
   double ***p3mat;    /* printf("\n H=%d nhs=%d \n",h, nhstepm); */
   double age,agelim, hf;    return po;
   double ***mobaverage;  }
   int theta;  
   char digit[4];  
   char digitp[25];  #ifdef NLOPT
     double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
   char fileresprobmorprev[FILENAMELENGTH];    double fret;
     double *xt;
   if(popbased==1){    int j;
     if(mobilav!=0)    myfunc_data *d2 = (myfunc_data *) pd;
       strcpy(digitp,"-populbased-mobilav-");  /* xt = (p1-1); */
     else strcpy(digitp,"-populbased-nomobil-");    xt=vector(1,n); 
   }    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   else  
     strcpy(digitp,"-stablbased-");    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
     /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
   if (mobilav!=0) {    printf("Function = %.12lf ",fret);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    printf("\n");
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);   free_vector(xt,1,n);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    return fret;
     }  }
   }  #endif
   
   strcpy(fileresprobmorprev,"prmorprev");  /*************** log-likelihood *************/
   sprintf(digit,"%-d",ij);  double func( double *x)
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/  {
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    int i, ii, j, k, mi, d, kk;
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    int ioffset=0;
   strcat(fileresprobmorprev,fileres);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    double **out;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    double lli; /* Individual log likelihood */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    int s1, s2;
   }    int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    double bbh, survp;
      long ipmx;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    double agexact;
   pstamp(ficresprobmorprev);    /*extern weight */
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    /* We are differentiating ll according to initial status */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    /*for(i=1;i<imx;i++) 
     fprintf(ficresprobmorprev," p.%-d SE",j);      printf(" %d\n",s[4][i]);
     for(i=1; i<=nlstate;i++)    */
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  
   }      ++countcallfunc;
   fprintf(ficresprobmorprev,"\n");  
   fprintf(ficgp,"\n# Routine varevsij");    cov[1]=1.;
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/  
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    ioffset=0;
 /*   } */    if(mle==1){
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   pstamp(ficresvij);        /* Computes the values of the ncovmodel covariates of the model
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");           depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
   if(popbased==1)           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");           to be observed in j being in i according to the model.
   else        */
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");        ioffset=2+nagesqr ;
   fprintf(ficresvij,"# Age");     /* Fixed */
   for(i=1; i<=nlstate;i++)        for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */
     for(j=1; j<=nlstate;j++)          cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);        }
   fprintf(ficresvij,"\n");        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   xp=vector(1,npar);           has been calculated etc */
   dnewm=matrix(1,nlstate,1,npar);        /* For an individual i, wav[i] gives the number of effective waves */
   doldm=matrix(1,nlstate,1,nlstate);        /* We compute the contribution to Likelihood of each effective transition
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);           mw[mi][i] is real wave of the mi th effectve wave */
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
            s2=s[mw[mi+1][i]][i];
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);           And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i]
   gpp=vector(nlstate+1,nlstate+ndeath);           But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
   gmp=vector(nlstate+1,nlstate+ndeath);           meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        */
          for(mi=1; mi<= wav[i]-1; mi++){
   if(estepm < stepm){          for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
     printf ("Problem %d lower than %d\n",estepm, stepm);            /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */
   }            cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
   else  hstepm=estepm;            }
   /* For example we decided to compute the life expectancy with the smallest unit */          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            for (j=1;j<=nlstate+ndeath;j++){
      nhstepm is the number of hstepm from age to agelim              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      nstepm is the number of stepm from age to agelin.              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      Look at hpijx to understand the reason of that which relies in memory size            }
      and note for a fixed period like k years */          for(d=0; d<dh[mi][i]; d++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            newm=savm;
      survival function given by stepm (the optimization length). Unfortunately it            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
      means that if the survival funtion is printed every two years of age and if            cov[2]=agexact;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            if(nagesqr==1)
      results. So we changed our mind and took the option of the best precision.              cov[3]= agexact*agexact;  /* Should be changed here */
   */            for (kk=1; kk<=cptcovage;kk++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            if(!FixedV[Tvar[Tage[kk]]])
   agelim = AGESUP;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            else
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gp=matrix(0,nhstepm,1,nlstate);            savm=oldm;
     gm=matrix(0,nhstepm,1,nlstate);            oldm=newm;
           } /* end mult */
           
     for(theta=1; theta <=npar; theta++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/          /* But now since version 0.9 we anticipate for bias at large stepm.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       }           * (in months) between two waves is not a multiple of stepm, we rounded to 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);             * the nearest (and in case of equal distance, to the lowest) interval but now
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       if (popbased==1) {           * probability in order to take into account the bias as a fraction of the way
         if(mobilav ==0){                                   * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           for(i=1; i<=nlstate;i++)                                   * -stepm/2 to stepm/2 .
             prlim[i][i]=probs[(int)age][i][ij];                                   * For stepm=1 the results are the same as for previous versions of Imach.
         }else{ /* mobilav */                                   * For stepm > 1 the results are less biased than in previous versions. 
           for(i=1; i<=nlstate;i++)                                   */
             prlim[i][i]=mobaverage[(int)age][i][ij];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias bh is positive if real duration
       for(j=1; j<= nlstate; j++){           * is higher than the multiple of stepm and negative otherwise.
         for(h=0; h<=nhstepm; h++){           */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          if( s2 > nlstate){ 
         }            /* i.e. if s2 is a death state and if the date of death is known 
       }               then the contribution to the likelihood is the probability to 
       /* This for computing probability of death (h=1 means               die between last step unit time and current  step unit time, 
          computed over hstepm matrices product = hstepm*stepm months)               which is also equal to probability to die before dh 
          as a weighted average of prlim.               minus probability to die before dh-stepm . 
       */               In version up to 0.92 likelihood was computed
       for(j=nlstate+1;j<=nlstate+ndeath;j++){               as if date of death was unknown. Death was treated as any other
         for(i=1,gpp[j]=0.; i<= nlstate; i++)               health state: the date of the interview describes the actual state
           gpp[j] += prlim[i][i]*p3mat[i][j][1];               and not the date of a change in health state. The former idea was
       }                   to consider that at each interview the state was recorded
       /* end probability of death */               (healthy, disable or death) and IMaCh was corrected; but when we
                introduced the exact date of death then we should have modified
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */               the contribution of an exact death to the likelihood. This new
         xp[i] = x[i] - (i==theta ?delti[theta]:0);               contribution is smaller and very dependent of the step unit
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                 stepm. It is no more the probability to die between last interview
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);               and month of death but the probability to survive from last
                 interview up to one month before death multiplied by the
       if (popbased==1) {               probability to die within a month. Thanks to Chris
         if(mobilav ==0){               Jackson for correcting this bug.  Former versions increased
           for(i=1; i<=nlstate;i++)               mortality artificially. The bad side is that we add another loop
             prlim[i][i]=probs[(int)age][i][ij];               which slows down the processing. The difference can be up to 10%
         }else{ /* mobilav */               lower mortality.
           for(i=1; i<=nlstate;i++)            */
             prlim[i][i]=mobaverage[(int)age][i][ij];            /* If, at the beginning of the maximization mostly, the
         }               cumulative probability or probability to be dead is
       }               constant (ie = 1) over time d, the difference is equal to
                0.  out[s1][3] = savm[s1][3]: probability, being at state
       for(j=1; j<= nlstate; j++){               s1 at precedent wave, to be dead a month before current
         for(h=0; h<=nhstepm; h++){               wave is equal to probability, being at state s1 at
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)               precedent wave, to be dead at mont of the current
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];               wave. Then the observed probability (that this person died)
         }               is null according to current estimated parameter. In fact,
       }               it should be very low but not zero otherwise the log go to
       /* This for computing probability of death (h=1 means               infinity.
          computed over hstepm matrices product = hstepm*stepm months)            */
          as a weighted average of prlim.  /* #ifdef INFINITYORIGINAL */
       */  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){  /* #else */
         for(i=1,gmp[j]=0.; i<= nlstate; i++)  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
          gmp[j] += prlim[i][i]*p3mat[i][j][1];  /*          lli=log(mytinydouble); */
       }      /*        else */
       /* end probability of death */  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   /* #endif */
       for(j=1; j<= nlstate; j++) /* vareij */            lli=log(out[s1][s2] - savm[s1][s2]);
         for(h=0; h<=nhstepm; h++){            
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          } else if  ( s2==-1 ) { /* alive */
         }            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */            /*survp += out[s1][j]; */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];            lli= log(survp);
       }          }
           else if  (s2==-4) { 
     } /* End theta */            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */            lli= log(survp); 
           } 
     for(h=0; h<=nhstepm; h++) /* veij */          else if  (s2==-5) { 
       for(j=1; j<=nlstate;j++)            for (j=1,survp=0. ; j<=2; j++)  
         for(theta=1; theta <=npar; theta++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           trgradg[h][j][theta]=gradg[h][theta][j];            lli= log(survp); 
           } 
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          else{
       for(theta=1; theta <=npar; theta++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         trgradgp[j][theta]=gradgp[theta][j];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
            } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          /*if(lli ==000.0)*/
     for(i=1;i<=nlstate;i++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for(j=1;j<=nlstate;j++)          ipmx +=1;
         vareij[i][j][(int)age] =0.;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(h=0;h<=nhstepm;h++){          /* if (lli < log(mytinydouble)){ */
       for(k=0;k<=nhstepm;k++){          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          /* } */
         for(i=1;i<=nlstate;i++)        } /* end of wave */
           for(j=1;j<=nlstate;j++)      } /* end of individual */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    }  else if(mle==2){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
     /* pptj */          for (ii=1;ii<=nlstate+ndeath;ii++)
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);            for (j=1;j<=nlstate+ndeath;j++){
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=nlstate+1;i<=nlstate+ndeath;i++)            }
         varppt[j][i]=doldmp[j][i];          for(d=0; d<=dh[mi][i]; d++){
     /* end ppptj */            newm=savm;
     /*  x centered again */            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);              cov[2]=agexact;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);            if(nagesqr==1)
                cov[3]= agexact*agexact;
     if (popbased==1) {            for (kk=1; kk<=cptcovage;kk++) {
       if(mobilav ==0){              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
         for(i=1; i<=nlstate;i++)            }
           prlim[i][i]=probs[(int)age][i][ij];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }else{ /* mobilav */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(i=1; i<=nlstate;i++)            savm=oldm;
           prlim[i][i]=mobaverage[(int)age][i][ij];            oldm=newm;
       }          } /* end mult */
     }        
                        s1=s[mw[mi][i]][i];
     /* This for computing probability of death (h=1 means          s2=s[mw[mi+1][i]][i];
        computed over hstepm (estepm) matrices product = hstepm*stepm months)          bbh=(double)bh[mi][i]/(double)stepm; 
        as a weighted average of prlim.          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     */          ipmx +=1;
     for(j=nlstate+1;j<=nlstate+ndeath;j++){          sw += weight[i];
       for(i=1,gmp[j]=0.;i<= nlstate; i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];        } /* end of wave */
     }          } /* end of individual */
     /* end probability of death */    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<=nlstate;i++){            for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     fprintf(ficresprobmorprev,"\n");          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     fprintf(ficresvij,"%.0f ",age );            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(i=1; i<=nlstate;i++)            cov[2]=agexact;
       for(j=1; j<=nlstate;j++){            if(nagesqr==1)
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              cov[3]= agexact*agexact;
       }            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficresvij,"\n");              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
     free_matrix(gp,0,nhstepm,1,nlstate);            }
     free_matrix(gm,0,nhstepm,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            savm=oldm;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            oldm=newm;
   } /* End age */          } /* end mult */
   free_vector(gpp,nlstate+1,nlstate+ndeath);        
   free_vector(gmp,nlstate+1,nlstate+ndeath);          s1=s[mw[mi][i]][i];
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          s2=s[mw[mi+1][i]][i];
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          ipmx +=1;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");          sw += weight[i];
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */        } /* end of wave */
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */      } /* end of individual */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);          for (ii=1;ii<=nlstate+ndeath;ii++)
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);            for (j=1;j<=nlstate+ndeath;j++){
 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);            }
           for(d=0; d<dh[mi][i]; d++){
   free_vector(xp,1,npar);            newm=savm;
   free_matrix(doldm,1,nlstate,1,nlstate);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(dnewm,1,nlstate,1,npar);            cov[2]=agexact;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            if(nagesqr==1)
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);              cov[3]= agexact*agexact;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            for (kk=1; kk<=cptcovage;kk++) {
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   fclose(ficresprobmorprev);            }
   fflush(ficgp);          
   fflush(fichtm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }  /* end varevsij */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /************ Variance of prevlim ******************/            oldm=newm;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])          } /* end mult */
 {        
   /* Variance of prevalence limit */          s1=s[mw[mi][i]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/          s2=s[mw[mi+1][i]][i];
   double **newm;          if( s2 > nlstate){ 
   double **dnewm,**doldm;            lli=log(out[s1][s2] - savm[s1][s2]);
   int i, j, nhstepm, hstepm;          } else if  ( s2==-1 ) { /* alive */
   int k, cptcode;            for (j=1,survp=0. ; j<=nlstate; j++) 
   double *xp;              survp += out[s1][j];
   double *gp, *gm;            lli= log(survp);
   double **gradg, **trgradg;          }else{
   double age,agelim;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int theta;          }
            ipmx +=1;
   pstamp(ficresvpl);          sw += weight[i];
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresvpl,"# Age");  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for(i=1; i<=nlstate;i++)        } /* end of wave */
       fprintf(ficresvpl," %1d-%1d",i,i);      } /* end of individual */
   fprintf(ficresvpl,"\n");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   xp=vector(1,npar);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   dnewm=matrix(1,nlstate,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   doldm=matrix(1,nlstate,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   hstepm=1*YEARM; /* Every year of age */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   agelim = AGESUP;            }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for(d=0; d<dh[mi][i]; d++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            newm=savm;
     if (stepm >= YEARM) hstepm=1;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            cov[2]=agexact;
     gradg=matrix(1,npar,1,nlstate);            if(nagesqr==1)
     gp=vector(1,nlstate);              cov[3]= agexact*agexact;
     gm=vector(1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){ /* Computes gradient */          
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            savm=oldm;
       for(i=1;i<=nlstate;i++)            oldm=newm;
         gp[i] = prlim[i][i];          } /* end mult */
            
       for(i=1; i<=npar; i++) /* Computes gradient */          s1=s[mw[mi][i]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          s2=s[mw[mi+1][i]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(i=1;i<=nlstate;i++)          ipmx +=1;
         gm[i] = prlim[i][i];          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1;i<=nlstate;i++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        } /* end of wave */
     } /* End theta */      } /* end of individual */
     } /* End of if */
     trgradg =matrix(1,nlstate,1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for(j=1; j<=nlstate;j++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(theta=1; theta <=npar; theta++)    return -l;
         trgradg[j][theta]=gradg[theta][j];  }
   
     for(i=1;i<=nlstate;i++)  /*************** log-likelihood *************/
       varpl[i][(int)age] =0.;  double funcone( double *x)
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  {
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    /* Same as func but slower because of a lot of printf and if */
     for(i=1;i<=nlstate;i++)    int i, ii, j, k, mi, d, kk;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int ioffset=0;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     fprintf(ficresvpl,"%.0f ",age );    double **out;
     for(i=1; i<=nlstate;i++)    double lli; /* Individual log likelihood */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double llt;
     fprintf(ficresvpl,"\n");    int s1, s2;
     free_vector(gp,1,nlstate);    int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);    double bbh, survp;
     free_matrix(trgradg,1,nlstate,1,npar);    double agexact;
   } /* End age */    double agebegin, ageend;
     /*extern weight */
   free_vector(xp,1,npar);    /* We are differentiating ll according to initial status */
   free_matrix(doldm,1,nlstate,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_matrix(dnewm,1,nlstate,1,nlstate);    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
 }    */
     cov[1]=1.;
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])    for(k=1; k<=nlstate; k++) ll[k]=0.;
 {    ioffset=0;
   int i, j=0,  i1, k1, l1, t, tj;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int k2, l2, j1,  z1;      /* ioffset=2+nagesqr+cptcovage; */
   int k=0,l, cptcode;      ioffset=2+nagesqr;
   int first=1, first1;      /* Fixed */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;      /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */
   double **dnewm,**doldm;      /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */
   double *xp;      for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */
   double *gp, *gm;        cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
   double **gradg, **trgradg;  /*    cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i];  */
   double **mu;  /*    cov[2+6]=covar[Tvar[6]][i];  */
   double age,agelim, cov[NCOVMAX];  /*    cov[2+6]=covar[2][i]; V2  */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  /*    cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i];  */
   int theta;  /*    cov[2+7]=covar[Tvar[7]][i];  */
   char fileresprob[FILENAMELENGTH];  /*    cov[2+7]=covar[7][i]; V7=V1*V2  */
   char fileresprobcov[FILENAMELENGTH];  /*    cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i];  */
   char fileresprobcor[FILENAMELENGTH];  /*    cov[2+9]=covar[Tvar[9]][i];  */
   /*    cov[2+9]=covar[1][i]; V1  */
   double ***varpij;      }
       /* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */
   strcpy(fileresprob,"prob");      /*   cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */
   strcat(fileresprob,fileres);      /* } */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      /* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */
     printf("Problem with resultfile: %s\n", fileresprob);      /*   cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      /* } */
   }      
   strcpy(fileresprobcov,"probcov");  
   strcat(fileresprobcov,fileres);      for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      /* Wave varying (but not age varying) */
     printf("Problem with resultfile: %s\n", fileresprobcov);        for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);          /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */
   }          cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
   strcpy(fileresprobcor,"probcor");        }
   strcat(fileresprobcor,fileres);        /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        /* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */
     printf("Problem with resultfile: %s\n", fileresprobcor);        /* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);        /* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */
   }        /* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        /* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        /*        iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        /*        /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        /*        cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        /* } */
   pstamp(ficresprob);        for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficresprob,"# Age");            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   pstamp(ficresprobcov);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          }
   fprintf(ficresprobcov,"# Age");        
   pstamp(ficresprobcor);        agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
   fprintf(ficresprobcor,"# Age");        for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
         /* for(d=0; d<=0; d++){  /\* Delay between two effective waves Only one matrix to speed up*\/ */
           /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   for(i=1; i<=nlstate;i++)            and mw[mi+1][i]. dh depends on stepm.*/
     for(j=1; j<=(nlstate+ndeath);j++){          newm=savm;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;  /* Here d is needed */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          cov[2]=agexact;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          if(nagesqr==1)
     }              cov[3]= agexact*agexact;
  /* fprintf(ficresprob,"\n");          for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresprobcov,"\n");            if(!FixedV[Tvar[Tage[kk]]])
   fprintf(ficresprobcor,"\n");              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
  */            else
  xp=vector(1,npar);              cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   first=1;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficgp,"\n# Routine varprob");          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   fprintf(fichtm,"\n");          savm=oldm;
           oldm=newm;
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);        } /* end mult */
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\        
   file %s<br>\n",optionfilehtmcov);        s1=s[mw[mi][i]][i];
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\        s2=s[mw[mi+1][i]][i];
 and drawn. It helps understanding how is the covariance between two incidences.\        /* if(s2==-1){ */
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        /*        printf(" ERROR s1=%d, s2=%d i=%d \n", s1, s2, i); */
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \        /*        /\* exit(1); *\/ */
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \        /* } */
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \        bbh=(double)bh[mi][i]/(double)stepm; 
 standard deviations wide on each axis. <br>\        /* bias is positive if real duration
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\         * is higher than the multiple of stepm and negative otherwise.
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\         */
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   cov[1]=1;        } else if  ( s2==-1 ) { /* alive */
   tj=cptcoveff;          for (j=1,survp=0. ; j<=nlstate; j++) 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   j1=0;          lli= log(survp);
   for(t=1; t<=tj;t++){        }else if (mle==1){
     for(i1=1; i1<=ncodemax[t];i1++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       j1++;        } else if(mle==2){
       if  (cptcovn>0) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         fprintf(ficresprob, "\n#********** Variable ");        } else if(mle==3){  /* exponential inter-extrapolation */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         fprintf(ficresprob, "**********\n#\n");        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         fprintf(ficresprobcov, "\n#********** Variable ");          lli=log(out[s1][s2]); /* Original formula */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        } else{  /* mle=0 back to 1 */
         fprintf(ficresprobcov, "**********\n#\n");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                  /*lli=log(out[s1][s2]); */ /* Original formula */
         fprintf(ficgp, "\n#********** Variable ");        } /* End of if */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        ipmx +=1;
         fprintf(ficgp, "**********\n#\n");        sw += weight[i];
                ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");        if(globpr){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");   %11.6f %11.6f %11.6f ", \
                          num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
         fprintf(ficresprobcor, "\n#********** Variable ");                      2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2]));
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         fprintf(ficresprobcor, "**********\n#");                llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                }
       for (age=bage; age<=fage; age ++){          fprintf(ficresilk," %10.6f\n", -llt);
         cov[2]=age;        }
         for (k=1; k<=cptcovn;k++) {          } /* end of wave */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  } /* end of individual */
         }  for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for (k=1; k<=cptcovprod;k++)  l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  if(globpr==0){ /* First time we count the contributions and weights */
                  gipmx=ipmx;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          gsw=sw;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  }
         gp=vector(1,(nlstate)*(nlstate+ndeath));  return -l;
         gm=vector(1,(nlstate)*(nlstate+ndeath));  }
      
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)  /*************** function likelione ***********/
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*func)(double []))
            {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /* This routine should help understanding what is done with 
                 the selection of individuals/waves and
           k=0;       to check the exact contribution to the likelihood.
           for(i=1; i<= (nlstate); i++){       Plotting could be done.
             for(j=1; j<=(nlstate+ndeath);j++){     */
               k=k+1;    int k;
               gp[k]=pmmij[i][j];  
             }    if(*globpri !=0){ /* Just counts and sums, no printings */
           }      strcpy(fileresilk,"ILK_"); 
                strcat(fileresilk,fileresu);
           for(i=1; i<=npar; i++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);        printf("Problem with resultfile: %s\n", fileresilk);
            fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      }
           k=0;      fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           for(i=1; i<=(nlstate); i++){      fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
             for(j=1; j<=(nlstate+ndeath);j++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
               k=k+1;      for(k=1; k<=nlstate; k++) 
               gm[k]=pmmij[i][j];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
             }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           }    }
        
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    *fretone=(*func)(p);
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      if(*globpri !=0){
         }      fclose(ficresilk);
       if (mle ==0)
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
           for(theta=1; theta <=npar; theta++)      else if(mle >=1)
             trgradg[j][theta]=gradg[theta][j];        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
              fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      fprintf(fichtm,"\n<br>Equation of the model: <b>model=1+age+%s</b><br>\n",model); 
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      for (k=1; k<= nlstate ; k++) {
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      }
       fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
         pmij(pmmij,cov,ncovmodel,x,nlstate);  <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
              fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
         k=0;  <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
         for(i=1; i<=(nlstate); i++){      fflush(fichtm);
           for(j=1; j<=(nlstate+ndeath);j++){    }
             k=k+1;    return;
             mu[k][(int) age]=pmmij[i][j];  }
           }  
         }  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  /*********** Maximum Likelihood Estimation ***************/
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  
             varpij[i][j][(int)age] = doldm[i][j];  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
         /*printf("\n%d ",(int)age);    int i,j, iter=0;
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double **xi;
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    double fret;
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    double fretone; /* Only one call to likelihood */
           }*/    /*  char filerespow[FILENAMELENGTH];*/
   
         fprintf(ficresprob,"\n%d ",(int)age);  #ifdef NLOPT
         fprintf(ficresprobcov,"\n%d ",(int)age);    int creturn;
         fprintf(ficresprobcor,"\n%d ",(int)age);    nlopt_opt opt;
     /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    double *lb;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    double minf; /* the minimum objective value, upon return */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double * p1; /* Shifted parameters from 0 instead of 1 */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    myfunc_data dinst, *d = &dinst;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  #endif
         }  
         i=0;  
         for (k=1; k<=(nlstate);k++){    xi=matrix(1,npar,1,npar);
           for (l=1; l<=(nlstate+ndeath);l++){    for (i=1;i<=npar;i++)
             i=i++;      for (j=1;j<=npar;j++)
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);        xi[i][j]=(i==j ? 1.0 : 0.0);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             for (j=1; j<=i;j++){    strcpy(filerespow,"POW_"); 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    strcat(filerespow,fileres);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    if((ficrespow=fopen(filerespow,"w"))==NULL) {
             }      printf("Problem with resultfile: %s\n", filerespow);
           }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         }/* end of loop for state */    }
       } /* end of loop for age */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
       /* Confidence intervalle of pij  */      for(j=1;j<=nlstate+ndeath;j++)
       /*        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         fprintf(ficgp,"\nset noparametric;unset label");    fprintf(ficrespow,"\n");
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  #ifdef POWELL
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    powell(p,xi,npar,ftol,&iter,&fret,func);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  #endif
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  #ifdef NLOPT
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  #ifdef NEWUOA
       */    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   #else
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
       first1=1;  #endif
       for (k2=1; k2<=(nlstate);k2++){    lb=vector(0,npar-1);
         for (l2=1; l2<=(nlstate+ndeath);l2++){    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
           if(l2==k2) continue;    nlopt_set_lower_bounds(opt, lb);
           j=(k2-1)*(nlstate+ndeath)+l2;    nlopt_set_initial_step1(opt, 0.1);
           for (k1=1; k1<=(nlstate);k1++){    
             for (l1=1; l1<=(nlstate+ndeath);l1++){    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
               if(l1==k1) continue;    d->function = func;
               i=(k1-1)*(nlstate+ndeath)+l1;    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
               if(i<=j) continue;    nlopt_set_min_objective(opt, myfunc, d);
               for (age=bage; age<=fage; age ++){    nlopt_set_xtol_rel(opt, ftol);
                 if ((int)age %5==0){    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      printf("nlopt failed! %d\n",creturn); 
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    else {
                   mu1=mu[i][(int) age]/stepm*YEARM ;      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
                   mu2=mu[j][(int) age]/stepm*YEARM;      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
                   c12=cv12/sqrt(v1*v2);      iter=1; /* not equal */
                   /* Computing eigen value of matrix of covariance */    }
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    nlopt_destroy(opt);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  #endif
                   /* Eigen vectors */    free_matrix(xi,1,npar,1,npar);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    fclose(ficrespow);
                   /*v21=sqrt(1.-v11*v11); *//* error */    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                   v21=(lc1-v1)/cv12*v11;    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                   v12=-v21;    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                   v22=v11;  
                   tnalp=v21/v11;  }
                   if(first1==1){  
                     first1=0;  /**** Computes Hessian and covariance matrix ***/
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
                   }  {
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    double  **a,**y,*x,pd;
                   /*printf(fignu*/    /* double **hess; */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    int i, j;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    int *indx;
                   if(first==1){  
                     first=0;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
                     fprintf(ficgp,"\nset parametric;unset label");    double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    void lubksb(double **a, int npar, int *indx, double b[]) ;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    void ludcmp(double **a, int npar, int *indx, double *d) ;
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    double gompertz(double p[]);
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    /* hess=matrix(1,npar,1,npar); */
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\  
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\    printf("\nCalculation of the hessian matrix. Wait...\n");
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    for (i=1;i<=npar;i++){
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);      printf("%d-",i);fflush(stdout);
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      fprintf(ficlog,"%d-",i);fflush(ficlog);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);     
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      /*  printf(" %f ",p[i]);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
                   }else{    }
                     first=0;    
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);    for (i=1;i<=npar;i++) {
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      for (j=1;j<=npar;j++)  {
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        if (j>i) { 
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          printf(".%d-%d",i,j);fflush(stdout);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
                   }/* if first */          
                 } /* age mod 5 */          hess[j][i]=hess[i][j];    
               } /* end loop age */          /*printf(" %lf ",hess[i][j]);*/
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        }
               first=1;      }
             } /*l12 */    }
           } /* k12 */    printf("\n");
         } /*l1 */    fprintf(ficlog,"\n");
       }/* k1 */  
     } /* loop covariates */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    a=matrix(1,npar,1,npar);
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    y=matrix(1,npar,1,npar);
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);    x=vector(1,npar);
   free_vector(xp,1,npar);    indx=ivector(1,npar);
   fclose(ficresprob);    for (i=1;i<=npar;i++)
   fclose(ficresprobcov);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   fclose(ficresprobcor);    ludcmp(a,npar,indx,&pd);
   fflush(ficgp);  
   fflush(fichtmcov);    for (j=1;j<=npar;j++) {
 }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
       lubksb(a,npar,indx,x);
 /******************* Printing html file ***********/      for (i=1;i<=npar;i++){ 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        matcov[i][j]=x[i];
                   int lastpass, int stepm, int weightopt, char model[],\      }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    }
                   int popforecast, int estepm ,\  
                   double jprev1, double mprev1,double anprev1, \    printf("\n#Hessian matrix#\n");
                   double jprev2, double mprev2,double anprev2){    fprintf(ficlog,"\n#Hessian matrix#\n");
   int jj1, k1, i1, cpt;    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \        printf("%.6e ",hess[i][j]);
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \        fprintf(ficlog,"%.6e ",hess[i][j]);
 </ul>");      }
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \      printf("\n");
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",      fprintf(ficlog,"\n");
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    }
    fprintf(fichtm,"\  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",    /* printf("\n#Covariance matrix#\n"); */
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));    /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
    fprintf(fichtm,"\    /* for (i=1;i<=npar;i++) {  */
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",    /*   for (j=1;j<=npar;j++) {  */
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));    /*     printf("%.6e ",matcov[i][j]); */
    fprintf(fichtm,"\    /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \    /*   } */
    <a href=\"%s\">%s</a> <br>\n",    /*   printf("\n"); */
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    /*   fprintf(ficlog,"\n"); */
    fprintf(fichtm,"\    /* } */
  - Population projections by age and states: \  
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));    /* Recompute Inverse */
     /* for (i=1;i<=npar;i++) */
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
     /* ludcmp(a,npar,indx,&pd); */
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    /*  printf("\n#Hessian matrix recomputed#\n"); */
   
  jj1=0;    /* for (j=1;j<=npar;j++) { */
  for(k1=1; k1<=m;k1++){    /*   for (i=1;i<=npar;i++) x[i]=0; */
    for(i1=1; i1<=ncodemax[k1];i1++){    /*   x[j]=1; */
      jj1++;    /*   lubksb(a,npar,indx,x); */
      if (cptcovn > 0) {    /*   for (i=1;i<=npar;i++){  */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    /*     y[i][j]=x[i]; */
        for (cpt=1; cpt<=cptcoveff;cpt++)    /*     printf("%.3e ",y[i][j]); */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    /*     fprintf(ficlog,"%.3e ",y[i][j]); */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    /*   } */
      }    /*   printf("\n"); */
      /* Pij */    /*   fprintf(ficlog,"\n"); */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \    /* } */
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);      
      /* Quasi-incidences */    /* Verifying the inverse matrix */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\  #ifdef DEBUGHESS
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \    y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);  
        /* Period (stable) prevalence in each health state */     printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
        for(cpt=1; cpt<nlstate;cpt++){     fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \  
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    for (j=1;j<=npar;j++) {
        }      for (i=1;i<=npar;i++){ 
      for(cpt=1; cpt<=nlstate;cpt++) {        printf("%.2f ",y[i][j]);
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \        fprintf(ficlog,"%.2f ",y[i][j]);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);      }
      }      printf("\n");
    } /* end i1 */      fprintf(ficlog,"\n");
  }/* End k1 */    }
  fprintf(fichtm,"</ul>");  #endif
   
     free_matrix(a,1,npar,1,npar);
  fprintf(fichtm,"\    free_matrix(y,1,npar,1,npar);
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\    free_vector(x,1,npar);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);    free_ivector(indx,1,npar);
     /* free_matrix(hess,1,npar,1,npar); */
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",  
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));  
  fprintf(fichtm,"\  }
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",  
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
  fprintf(fichtm,"\  { /* Around values of x, computes the function func and returns the scales delti and hessian */
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    int i;
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));    int l=1, lmax=20;
  fprintf(fichtm,"\    double k1,k2, res, fx;
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \    double p2[MAXPARM+1]; /* identical to x */
    <a href=\"%s\">%s</a> <br>\n</li>",    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));    int k=0,kmax=10;
  fprintf(fichtm,"\    double l1;
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \  
    <a href=\"%s\">%s</a> <br>\n</li>",    fx=func(x);
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));    for (i=1;i<=npar;i++) p2[i]=x[i];
  fprintf(fichtm,"\    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",      l1=pow(10,l);
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));      delts=delt;
  fprintf(fichtm,"\      for(k=1 ; k <kmax; k=k+1){
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",        delt = delta*(l1*k);
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));        p2[theta]=x[theta] +delt;
  fprintf(fichtm,"\        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\        p2[theta]=x[theta]-delt;
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
 /*  if(popforecast==1) fprintf(fichtm,"\n */        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */        
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */  #ifdef DEBUGHESSII
 /*      <br>",fileres,fileres,fileres,fileres); */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 /*  else  */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */  #endif
  fflush(fichtm);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
  m=cptcoveff;        }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10;
  jj1=0;        }
  for(k1=1; k1<=m;k1++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
    for(i1=1; i1<=ncodemax[k1];i1++){          delts=delt;
      jj1++;        }
      if (cptcovn > 0) {      } /* End loop k */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    }
        for (cpt=1; cpt<=cptcoveff;cpt++)    delti[theta]=delts;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    return res; 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    
      }  }
      for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\  {
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);      int i;
      }    int l=1, lmax=20;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \    double k1,k2,k3,k4,res,fx;
 health expectancies in states (1) and (2): %s%d.png<br>\    double p2[MAXPARM+1];
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);    int k, kmax=1;
    } /* end i1 */    double v1, v2, cv12, lc1, lc2;
  }/* End k1 */  
  fprintf(fichtm,"</ul>");    int firstime=0;
  fflush(fichtm);    
 }    fx=func(x);
     for (k=1; k<=kmax; k=k+10) {
 /******************* Gnuplot file **************/      for (i=1;i<=npar;i++) p2[i]=x[i];
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      p2[thetai]=x[thetai]+delti[thetai]*k;
       p2[thetaj]=x[thetaj]+delti[thetaj]*k;
   char dirfileres[132],optfileres[132];      k1=func(p2)-fx;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    
   int ng;      p2[thetai]=x[thetai]+delti[thetai]*k;
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
 /*     printf("Problem with file %s",optionfilegnuplot); */      k2=func(p2)-fx;
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */    
 /*   } */      p2[thetai]=x[thetai]-delti[thetai]*k;
       p2[thetaj]=x[thetaj]+delti[thetaj]*k;
   /*#ifdef windows */      k3=func(p2)-fx;
   fprintf(ficgp,"cd \"%s\" \n",pathc);    
     /*#endif */      p2[thetai]=x[thetai]-delti[thetai]*k;
   m=pow(2,cptcoveff);      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
       k4=func(p2)-fx;
   strcpy(dirfileres,optionfilefiname);      res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
   strcpy(optfileres,"vpl");      if(k1*k2*k3*k4 <0.){
  /* 1eme*/        firstime=1;
   for (cpt=1; cpt<= nlstate ; cpt ++) {        kmax=kmax+10;
    for (k1=1; k1<= m ; k1 ++) {      }
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);      if(kmax >=10 || firstime ==1){
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);        printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
      fprintf(ficgp,"set xlabel \"Age\" \n\        fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
 set ylabel \"Probability\" \n\        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 set ter png small\n\        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 set size 0.65,0.65\n\      }
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);  #ifdef DEBUGHESSIJ
       v1=hess[thetai][thetai];
      for (i=1; i<= nlstate ; i ++) {      v2=hess[thetaj][thetaj];
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      cv12=res;
        else fprintf(ficgp," \%%*lf (\%%*lf)");      /* Computing eigen value of Hessian matrix */
      }      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      for (i=1; i<= nlstate ; i ++) {      if ((lc2 <0) || (lc1 <0) ){
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
        else fprintf(ficgp," \%%*lf (\%%*lf)");        fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
      }        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      for (i=1; i<= nlstate ; i ++) {      }
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  #endif
        else fprintf(ficgp," \%%*lf (\%%*lf)");    }
      }      return res;
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));  }
    }  
   }      /* Not done yet: Was supposed to fix if not exactly at the maximum */
   /*2 eme*/  /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
    /* { */
   for (k1=1; k1<= m ; k1 ++) {  /*   int i; */
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);  /*   int l=1, lmax=20; */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  /*   double k1,k2,k3,k4,res,fx; */
      /*   double p2[MAXPARM+1]; */
     for (i=1; i<= nlstate+1 ; i ++) {  /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
       k=2*i;  /*   int k=0,kmax=10; */
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  /*   double l1; */
       for (j=1; j<= nlstate+1 ; j ++) {    
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /*   fx=func(x); */
         else fprintf(ficgp," \%%*lf (\%%*lf)");  /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
       }    /*     l1=pow(10,l); */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  /*     delts=delt; */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  /*     for(k=1 ; k <kmax; k=k+1){ */
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  /*       delt = delti*(l1*k); */
       for (j=1; j<= nlstate+1 ; j ++) {  /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
         else fprintf(ficgp," \%%*lf (\%%*lf)");  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
       }    /*       k1=func(p2)-fx; */
       fprintf(ficgp,"\" t\"\" w l 0,");        
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
       for (j=1; j<= nlstate+1 ; j ++) {  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  /*       k2=func(p2)-fx; */
         else fprintf(ficgp," \%%*lf (\%%*lf)");        
       }    /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
       else fprintf(ficgp,"\" t\"\" w l 0,");  /*       k3=func(p2)-fx; */
     }        
   }  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
    /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
   /*3eme*/  /*       k4=func(p2)-fx; */
    /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
   for (k1=1; k1<= m ; k1 ++) {  /* #ifdef DEBUGHESSIJ */
     for (cpt=1; cpt<= nlstate ; cpt ++) {  /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
       /*       k=2+nlstate*(2*cpt-2); */  /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
       k=2+(nlstate+1)*(cpt-1);  /* #endif */
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);  /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
       fprintf(ficgp,"set ter png small\n\  /*      k=kmax; */
 set size 0.65,0.65\n\  /*       } */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);  /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  /*      k=kmax; l=lmax*10; */
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  /*       } */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  /*      delts=delt; */
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  /*       } */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  /*     } /\* End loop k *\/ */
          /*   } */
       */  /*   delti[theta]=delts; */
       for (i=1; i< nlstate ; i ++) {  /*   return res;  */
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);  /* } */
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/  
          
       }  /************** Inverse of matrix **************/
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);  void ludcmp(double **a, int n, int *indx, double *d) 
     }  { 
   }    int i,imax,j,k; 
      double big,dum,sum,temp; 
   /* CV preval stable (period) */    double *vv; 
   for (k1=1; k1<= m ; k1 ++) {   
     for (cpt=1; cpt<=nlstate ; cpt ++) {    vv=vector(1,n); 
       k=3;    *d=1.0; 
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);    for (i=1;i<=n;i++) { 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\      big=0.0; 
 set ter png small\nset size 0.65,0.65\n\      for (j=1;j<=n;j++) 
 unset log y\n\        if ((temp=fabs(a[i][j])) > big) big=temp; 
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);      if (big == 0.0){
              printf(" Singular Hessian matrix at row %d:\n",i);
       for (i=1; i< nlstate ; i ++)        for (j=1;j<=n;j++) {
         fprintf(ficgp,"+$%d",k+i+1);          printf(" a[%d][%d]=%f,",i,j,a[i][j]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          fprintf(ficlog," a[%d][%d]=%f,",i,j,a[i][j]);
              }
       l=3+(nlstate+ndeath)*cpt;        fflush(ficlog);
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);        fclose(ficlog);
       for (i=1; i< nlstate ; i ++) {        nrerror("Singular matrix in routine ludcmp"); 
         l=3+(nlstate+ndeath)*cpt;      }
         fprintf(ficgp,"+$%d",l+i+1);      vv[i]=1.0/big; 
       }    } 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      for (j=1;j<=n;j++) { 
     }      for (i=1;i<j;i++) { 
   }          sum=a[i][j]; 
          for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   /* proba elementaires */        a[i][j]=sum; 
   for(i=1,jk=1; i <=nlstate; i++){      } 
     for(k=1; k <=(nlstate+ndeath); k++){      big=0.0; 
       if (k != i) {      for (i=j;i<=n;i++) { 
         for(j=1; j <=ncovmodel; j++){        sum=a[i][j]; 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        for (k=1;k<j;k++) 
           jk++;          sum -= a[i][k]*a[k][j]; 
           fprintf(ficgp,"\n");        a[i][j]=sum; 
         }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       }          big=dum; 
     }          imax=i; 
    }        } 
       } 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      if (j != imax) { 
      for(jk=1; jk <=m; jk++) {        for (k=1;k<=n;k++) { 
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);          dum=a[imax][k]; 
        if (ng==2)          a[imax][k]=a[j][k]; 
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          a[j][k]=dum; 
        else        } 
          fprintf(ficgp,"\nset title \"Probability\"\n");        *d = -(*d); 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        vv[imax]=vv[j]; 
        i=1;      } 
        for(k2=1; k2<=nlstate; k2++) {      indx[j]=imax; 
          k3=i;      if (a[j][j] == 0.0) a[j][j]=TINY; 
          for(k=1; k<=(nlstate+ndeath); k++) {      if (j != n) { 
            if (k != k2){        dum=1.0/(a[j][j]); 
              if(ng==2)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      } 
              else    } 
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    free_vector(vv,1,n);  /* Doesn't work */
              ij=1;  ;
              for(j=3; j <=ncovmodel; j++) {  } 
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  void lubksb(double **a, int n, int *indx, double b[]) 
                  ij++;  { 
                }    int i,ii=0,ip,j; 
                else    double sum; 
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   
              }    for (i=1;i<=n;i++) { 
              fprintf(ficgp,")/(1");      ip=indx[i]; 
                    sum=b[ip]; 
              for(k1=1; k1 <=nlstate; k1++){        b[ip]=b[i]; 
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      if (ii) 
                ij=1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
                for(j=3; j <=ncovmodel; j++){      else if (sum) ii=i; 
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      b[i]=sum; 
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    } 
                    ij++;    for (i=n;i>=1;i--) { 
                  }      sum=b[i]; 
                  else      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      b[i]=sum/a[i][i]; 
                }    } 
                fprintf(ficgp,")");  } 
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  void pstamp(FILE *fichier)
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  {
              i=i+ncovmodel;    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
            }  }
          } /* end k */  
        } /* end k2 */  void date2dmy(double date,double *day, double *month, double *year){
      } /* end jk */    double yp=0., yp1=0., yp2=0.;
    } /* end ng */    
    fflush(ficgp);    yp1=modf(date,&yp);/* extracts integral of date in yp  and
 }  /* end gnuplot */                          fractional in yp1 */
     *year=yp;
     yp2=modf((yp1*12),&yp);
 /*************** Moving average **************/    *month=yp;
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){    yp1=modf((yp2*30.5),&yp);
     *day=yp;
   int i, cpt, cptcod;    if(*day==0) *day=1;
   int modcovmax =1;    if(*month==0) *month=1;
   int mobilavrange, mob;  }
   double age;  
   
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose  
                            a covariate has 2 modalities */  /************ Frequencies ********************/
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */  void  freqsummary(char fileres[], double p[], double pstart[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
                     int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){                    int firstpass,  int lastpass, int stepm, int weightopt, char model[])
     if(mobilav==1) mobilavrange=5; /* default */  {  /* Some frequencies as well as proposing some starting values */
     else mobilavrange=mobilav;    
     for (age=bage; age<=fage; age++)    int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1;
       for (i=1; i<=nlstate;i++)    int iind=0, iage=0;
         for (cptcod=1;cptcod<=modcovmax;cptcod++)    int mi; /* Effective wave */
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];    int first;
     /* We keep the original values on the extreme ages bage, fage and for    double ***freq; /* Frequencies */
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2    double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */
        we use a 5 terms etc. until the borders are no more concerned.    int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb);
     */    double *meanq, *stdq, *idq;
     for (mob=3;mob <=mobilavrange;mob=mob+2){    double **meanqt;
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){    double *pp, **prop, *posprop, *pospropt;
         for (i=1; i<=nlstate;i++){    double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
           for (cptcod=1;cptcod<=modcovmax;cptcod++){    char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];    double agebegin, ageend;
               for (cpt=1;cpt<=(mob-1)/2;cpt++){      
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];    pp=vector(1,nlstate);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];    prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); 
               }    posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ 
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;    pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ 
           }    /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
         }    meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
       }/* end age */    stdq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
     }/* end mob */    idq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
   }else return -1;    meanqt=matrix(1,lastpass,1,nqtveff);
   return 0;    strcpy(fileresp,"P_");
 }/* End movingaverage */    strcat(fileresp,fileresu);
     /*strcat(fileresphtm,fileresu);*/
     if((ficresp=fopen(fileresp,"w"))==NULL) {
 /************** Forecasting ******************/      printf("Problem with prevalence resultfile: %s\n", fileresp);
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   /* proj1, year, month, day of starting projection      exit(0);
      agemin, agemax range of age    }
      dateprev1 dateprev2 range of dates during which prevalence is computed    
      anproj2 year of en of projection (same day and month as proj1).    strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
   */    if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;      printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
   int *popage;      fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
   double agec; /* generic age */      fflush(ficlog);
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      exit(70); 
   double *popeffectif,*popcount;    }
   double ***p3mat;    else{
   double ***mobaverage;      fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   char fileresf[FILENAMELENGTH];  <hr size=\"2\" color=\"#EC5E5E\"> \n                                    \
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
   agelim=AGESUP;              fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    }
      fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm);
   strcpy(fileresf,"f");    
   strcat(fileresf,fileres);    strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
   if((ficresf=fopen(fileresf,"w"))==NULL) {    if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
     printf("Problem with forecast resultfile: %s\n", fileresf);      printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
   }      fflush(ficlog);
   printf("Computing forecasting: result on file '%s' \n", fileresf);      exit(70); 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    } else{
       fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  <hr size=\"2\" color=\"#EC5E5E\"> \n                                    \
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
   if (mobilav!=0) {              fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
     }    x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
   }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+4+AGEMARGE);
     j1=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    
   if (stepm<=12) stepsize=1;    /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */
   if(estepm < stepm){    j=cptcoveff;  /* Only dummy covariates of the model */
     printf ("Problem %d lower than %d\n",estepm, stepm);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }    
   else  hstepm=estepm;      
     /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
   hstepm=hstepm/stepm;       reference=low_education V1=0,V2=0
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and       med_educ                V1=1 V2=0, 
                                fractional in yp1 */       high_educ               V1=0 V2=1
   anprojmean=yp;       Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff 
   yp2=modf((yp1*12),&yp);    */
   mprojmean=yp;    dateintsum=0;
   yp1=modf((yp2*30.5),&yp);    k2cpt=0;
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;    if(cptcoveff == 0 )
   if(mprojmean==0) jprojmean=1;      nl=1;  /* Constant and age model only */
     else
   i1=cptcoveff;      nl=2;
   if (cptcovn < 1){i1=1;}  
      /* if a constant only model, one pass to compute frequency tables and to write it on ficresp */
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);    /* Loop on nj=1 or 2 if dummy covariates j!=0
       *   Loop on j1(1 to 2**cptcoveff) covariate combination
   fprintf(ficresf,"#****** Routine prevforecast **\n");     *     freq[s1][s2][iage] =0.
      *     Loop on iind
 /*            if (h==(int)(YEARM*yearp)){ */     *       ++freq[s1][s2][iage] weighted
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){     *     end iind
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     *     if covariate and j!0
       k=k+1;     *       headers Variable on one line
       fprintf(ficresf,"\n#******");     *     endif cov j!=0
       for(j=1;j<=cptcoveff;j++) {     *     header of frequency table by age
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     *     Loop on age
       }     *       pp[s1]+=freq[s1][s2][iage] weighted
       fprintf(ficresf,"******\n");     *       pos+=freq[s1][s2][iage] weighted
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");     *       Loop on s1 initial state
       for(j=1; j<=nlstate+ndeath;j++){     *         fprintf(ficresp
         for(i=1; i<=nlstate;i++)                   *       end s1
           fprintf(ficresf," p%d%d",i,j);     *     end age
         fprintf(ficresf," p.%d",j);     *     if j!=0 computes starting values
       }     *     end compute starting values
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {     *   end j1
         fprintf(ficresf,"\n");     * end nl 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);       */
     for (nj = 1; nj <= nl; nj++){   /* nj= 1 constant model, nl number of loops. */
         for (agec=fage; agec>=(ageminpar-1); agec--){      if(nj==1)
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);        j=0;  /* First pass for the constant */
           nhstepm = nhstepm/hstepm;      else{
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        j=cptcoveff; /* Other passes for the covariate values */
           oldm=oldms;savm=savms;      }
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);        first=1;
              for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all covariates combination of the model, excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */
           for (h=0; h<=nhstepm; h++){        posproptt=0.;
             if (h*hstepm/YEARM*stepm ==yearp) {        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
               fprintf(ficresf,"\n");          scanf("%d", i);*/
               for(j=1;j<=cptcoveff;j++)        for (i=-5; i<=nlstate+ndeath; i++)  
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (s2=-5; s2<=nlstate+ndeath; s2++)  
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);            for(m=iagemin; m <= iagemax+3; m++)
             }              freq[i][s2][m]=0;
             for(j=1; j<=nlstate+ndeath;j++) {        
               ppij=0.;        for (i=1; i<=nlstate; i++)  {
               for(i=1; i<=nlstate;i++) {          for(m=iagemin; m <= iagemax+3; m++)
                 if (mobilav==1)            prop[i][m]=0;
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];          posprop[i]=0;
                 else {          pospropt[i]=0;
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];        }
                 }        for (z1=1; z1<= nqfveff; z1++) { /* zeroing for each combination j1 as well as for the total */
                 if (h*hstepm/YEARM*stepm== yearp) {          idq[z1]=0.;
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);          meanq[z1]=0.;
                 }          stdq[z1]=0.;
               } /* end i */        }
               if (h*hstepm/YEARM*stepm==yearp) {        /* for (z1=1; z1<= nqtveff; z1++) { */
                 fprintf(ficresf," %.3f", ppij);        /*   for(m=1;m<=lastpass;m++){ */
               }        /*          meanqt[m][z1]=0.; */
             }/* end j */        /*        } */
           } /* end h */        /* }       */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* dateintsum=0; */
         } /* end agec */        /* k2cpt=0; */
       } /* end yearp */        
     } /* end cptcod */        /* For that combination of covariates j1 (V4=1 V3=0 for example), we count and print the frequencies in one pass */
   } /* end  cptcov */        for (iind=1; iind<=imx; iind++) { /* For each individual iind */
                  bool=1;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if(j !=0){
             if(anyvaryingduminmodel==0){ /* If All fixed covariates */
   fclose(ficresf);              if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 }                for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */
                   /* if(Tvaraff[z1] ==-20){ */
 /************** Forecasting *****not tested NB*************/                  /*       /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){                  /* }else  if(Tvaraff[z1] ==-10){ */
                    /*       /\* sumnew+=coqvar[z1][iind]; *\/ */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                  /* }else  */
   int *popage;                  if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ /* for combination j1 of covariates */
   double calagedatem, agelim, kk1, kk2;                    /* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */
   double *popeffectif,*popcount;                    bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */
   double ***p3mat,***tabpop,***tabpopprev;                    /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
   double ***mobaverage;                       bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
   char filerespop[FILENAMELENGTH];                       j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
                     /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  } /* Onlyf fixed */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                } /* end z1 */
   agelim=AGESUP;              } /* cptcovn > 0 */
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            } /* end any */
            }/* end j==0 */
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */
              /* for(m=firstpass; m<=lastpass; m++){ */
              for(mi=1; mi<wav[iind];mi++){ /* For each wave */
   strcpy(filerespop,"pop");              m=mw[mi][iind];
   strcat(filerespop,fileres);              if(j!=0){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {                if(anyvaryingduminmodel==1){ /* Some are varying covariates */
     printf("Problem with forecast resultfile: %s\n", filerespop);                  for (z1=1; z1<=cptcoveff; z1++) {
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);                    if( Fixed[Tmodelind[z1]]==1){
   }                      iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
   printf("Computing forecasting: result on file '%s' \n", filerespop);                      if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality. If covariate's 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);                                                                                        value is -1, we don't select. It differs from the 
                                                                                         constant and age model which counts them. */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                        bool=0; /* not selected */
                     }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */
   if (mobilav!=0) {                      if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                        bool=0;
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){                      }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                    }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);                  }
     }                }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */
   }              } /* end j==0 */
               /* bool =0 we keep that guy which corresponds to the combination of dummy values */
   stepsize=(int) (stepm+YEARM-1)/YEARM;              if(bool==1){ /*Selected */
   if (stepm<=12) stepsize=1;                /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
                     and mw[mi+1][iind]. dh depends on stepm. */
   agelim=AGESUP;                agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
                  ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */
   hstepm=1;                if(m >=firstpass && m <=lastpass){
   hstepm=hstepm/stepm;                  k2=anint[m][iind]+(mint[m][iind]/12.);
                    /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   if (popforecast==1) {                  if(agev[m][iind]==0) agev[m][iind]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
     if((ficpop=fopen(popfile,"r"))==NULL) {                  if(agev[m][iind]==1) agev[m][iind]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
       printf("Problem with population file : %s\n",popfile);exit(0);                  if (s[m][iind]>0 && s[m][iind]<=nlstate)  /* If status at wave m is known and a live state */
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);                    prop[s[m][iind]][(int)agev[m][iind]] += weight[iind];  /* At age of beginning of transition, where status is known */
     }                  if (m<lastpass) {
     popage=ivector(0,AGESUP);                    /* if(s[m][iind]==4 && s[m+1][iind]==4) */
     popeffectif=vector(0,AGESUP);                    /*   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */
     popcount=vector(0,AGESUP);                    if(s[m][iind]==-1)
                          printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));
     i=1;                      freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                    for (z1=1; z1<= nqfveff; z1++) { /* Quantitative variables, calculating mean */
                          idq[z1]=idq[z1]+weight[iind];
     imx=i;                      meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /* Computes mean of quantitative with selected filter */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                      stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; /* *weight[iind];*/  /* Computes mean of quantitative with selected filter */
   }                    }
                     /* if((int)agev[m][iind] == 55) */
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){                    /*   printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                    /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */
       k=k+1;                    freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
       fprintf(ficrespop,"\n#******");                  }
       for(j=1;j<=cptcoveff;j++) {                } /* end if between passes */  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99) && (j==0)) {
       }                  dateintsum=dateintsum+k2; /* on all covariates ?*/
       fprintf(ficrespop,"******\n");                  k2cpt++;
       fprintf(ficrespop,"# Age");                  /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                }
       if (popforecast==1)  fprintf(ficrespop," [Population]");              }else{
                      bool=1;
       for (cpt=0; cpt<=0;cpt++) {              }/* end bool 2 */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              } /* end m */
                    /* for (z1=1; z1<= nqfveff; z1++) { /\* Quantitative variables, calculating mean *\/ */
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){            /*   idq[z1]=idq[z1]+weight[iind]; */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            /*   meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /\* Computes mean of quantitative with selected filter *\/ */
           nhstepm = nhstepm/hstepm;            /*   stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; /\* *weight[iind];*\/  /\* Computes mean of quantitative with selected filter *\/ */
                      /* } */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } /* end bool */
           oldm=oldms;savm=savms;        } /* end iind = 1 to imx */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          /* prop[s][age] is feeded for any initial and valid live state as well as
                   freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
           for (h=0; h<=nhstepm; h++){        
             if (h==(int) (calagedatem+YEARM*cpt)) {        
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             }        if(cptcoveff==0 && nj==1) /* no covariate and first pass */
             for(j=1; j<=nlstate+ndeath;j++) {          pstamp(ficresp);
               kk1=0.;kk2=0;        if  (cptcoveff>0 && j!=0){
               for(i=1; i<=nlstate;i++) {                        pstamp(ficresp);
                 if (mobilav==1)          printf( "\n#********** Variable "); 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          fprintf(ficresp, "\n#********** Variable "); 
                 else {          fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
                 }          fprintf(ficlog, "\n#********** Variable "); 
               }          for (z1=1; z1<=cptcoveff; z1++){
               if (h==(int)(calagedatem+12*cpt)){            if(!FixedV[Tvaraff[z1]]){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                   /*fprintf(ficrespop," %.3f", kk1);              fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
               }              fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             }              fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             for(i=1; i<=nlstate;i++){            }else{
               kk1=0.;              printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                 for(j=1; j<=nlstate;j++){              fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];              fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                 }              fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];              fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             }            }
           }
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)          printf( "**********\n#");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          fprintf(ficresp, "**********\n#");
           }          fprintf(ficresphtm, "**********</h3>\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresphtmfr, "**********</h3>\n");
         }          fprintf(ficlog, "**********\n");
       }        }
          /*
   /******/          Printing means of quantitative variables if any
         */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        for (z1=1; z1<= nqfveff; z1++) {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficlog,"Mean of fixed quantitative variable V%d on %.0f individuals sum=%f", ncovcol+z1, idq[z1], meanq[z1]);
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){          fprintf(ficlog,", mean=%.3g\n",meanq[z1]/idq[z1]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          if(weightopt==1){
           nhstepm = nhstepm/hstepm;            printf(" Weighted mean and standard deviation of");
                      fprintf(ficlog," Weighted mean and standard deviation of");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficresphtmfr," Weighted mean and standard deviation of");
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            printf(" fixed quantitative variable V%d on %.0f representatives of the population : %6.3g (%6.3g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt((stdq[z1]-meanq[z1]*meanq[z1]/idq[z1])/idq[z1]));
           for (h=0; h<=nhstepm; h++){          fprintf(ficlog," fixed quantitative variable V%d on %.0f representatives of the population : %6.3g (%6.3g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt((stdq[z1]-meanq[z1]*meanq[z1]/idq[z1])/idq[z1]));
             if (h==(int) (calagedatem+YEARM*cpt)) {          fprintf(ficresphtmfr," fixed quantitative variable V%d on %.0f representatives of the population : %6.3g (%6.3g)<p>\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt((stdq[z1]-meanq[z1]*meanq[z1]/idq[z1])/idq[z1]));
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }
             }        /* for (z1=1; z1<= nqtveff; z1++) { */
             for(j=1; j<=nlstate+ndeath;j++) {        /*        for(m=1;m<=lastpass;m++){ */
               kk1=0.;kk2=0;        /*          fprintf(ficresphtmfr,"V quantitative id %d, pass id=%d, mean=%f<p>\n", z1, m, meanqt[m][z1]); */
               for(i=1; i<=nlstate;i++) {                      /*   } */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            /* } */
               }  
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
             }        if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */
           }          fprintf(ficresp, " Age");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(nj==2) for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         }        for(i=1; i<=nlstate;i++) {
       }          if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d)  N(%d)  N  ",i,i);
    }          fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
   }        }
          if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp, "\n");
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficresphtm, "\n");
         
   if (popforecast==1) {        /* Header of frequency table by age */
     free_ivector(popage,0,AGESUP);        fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
     free_vector(popeffectif,0,AGESUP);        fprintf(ficresphtmfr,"<th>Age</th> ");
     free_vector(popcount,0,AGESUP);        for(s2=-1; s2 <=nlstate+ndeath; s2++){
   }          for(m=-1; m <=nlstate+ndeath; m++){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if(s2!=0 && m!=0)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              fprintf(ficresphtmfr,"<th>%d%d</th> ",s2,m);
   fclose(ficrespop);          }
 } /* End of popforecast */        }
         fprintf(ficresphtmfr, "\n");
 int fileappend(FILE *fichier, char *optionfich)      
 {        /* For each age */
   if((fichier=fopen(optionfich,"a"))==NULL) {        for(iage=iagemin; iage <= iagemax+3; iage++){
     printf("Problem with file: %s\n", optionfich);          fprintf(ficresphtm,"<tr>");
     fprintf(ficlog,"Problem with file: %s\n", optionfich);          if(iage==iagemax+1){
     return (0);            fprintf(ficlog,"1");
   }            fprintf(ficresphtmfr,"<tr><th>0</th> ");
   fflush(fichier);          }else if(iage==iagemax+2){
   return (1);            fprintf(ficlog,"0");
 }            fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
           }else if(iage==iagemax+3){
             fprintf(ficlog,"Total");
 /**************** function prwizard **********************/            fprintf(ficresphtmfr,"<tr><th>Total</th> ");
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)          }else{
 {            if(first==1){
               first=0;
   /* Wizard to print covariance matrix template */              printf("See log file for details...\n");
             }
   char ca[32], cb[32], cc[32];            fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage);
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;            fprintf(ficlog,"Age %d", iage);
   int numlinepar;          }
           for(s1=1; s1 <=nlstate ; s1++){
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            for(m=-1, pp[s1]=0; m <=nlstate+ndeath ; m++)
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              pp[s1] += freq[s1][m][iage]; 
   for(i=1; i <=nlstate; i++){          }
     jj=0;          for(s1=1; s1 <=nlstate ; s1++){
     for(j=1; j <=nlstate+ndeath; j++){            for(m=-1, pos=0; m <=0 ; m++)
       if(j==i) continue;              pos += freq[s1][m][iage];
       jj++;            if(pp[s1]>=1.e-10){
       /*ca[0]= k+'a'-1;ca[1]='\0';*/              if(first==1){
       printf("%1d%1d",i,j);                printf(" %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]);
       fprintf(ficparo,"%1d%1d",i,j);              }
       for(k=1; k<=ncovmodel;k++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]);
         /*        printf(" %lf",param[i][j][k]); */            }else{
         /*        fprintf(ficparo," %lf",param[i][j][k]); */              if(first==1)
         printf(" 0.");                printf(" %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1);
         fprintf(ficparo," 0.");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1);
       }            }
       printf("\n");          }
       fprintf(ficparo,"\n");        
     }          for(s1=1; s1 <=nlstate ; s1++){ 
   }            /* posprop[s1]=0; */
   printf("# Scales (for hessian or gradient estimation)\n");            for(m=0, pp[s1]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");              pp[s1] += freq[s1][m][iage];
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/          }       /* pp[s1] is the total number of transitions starting from state s1 and any ending status until this age */
   for(i=1; i <=nlstate; i++){        
     jj=0;          for(s1=1,pos=0, pospropta=0.; s1 <=nlstate ; s1++){
     for(j=1; j <=nlstate+ndeath; j++){            pos += pp[s1]; /* pos is the total number of transitions until this age */
       if(j==i) continue;            posprop[s1] += prop[s1][iage]; /* prop is the number of transitions from a live state
       jj++;                                              from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
       fprintf(ficparo,"%1d%1d",i,j);            pospropta += prop[s1][iage]; /* prop is the number of transitions from a live state
       printf("%1d%1d",i,j);                                            from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
       fflush(stdout);          }
       for(k=1; k<=ncovmodel;k++){          
         /*      printf(" %le",delti3[i][j][k]); */          /* Writing ficresp */
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */          if(cptcoveff==0 && nj==1){ /* no covariate and first pass */
         printf(" 0.");            if( iage <= iagemax){
         fprintf(ficparo," 0.");              fprintf(ficresp," %d",iage);
       }            }
       numlinepar++;          }else if( nj==2){
       printf("\n");            if( iage <= iagemax){
       fprintf(ficparo,"\n");              fprintf(ficresp," %d",iage);
     }              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   }            }
   printf("# Covariance matrix\n");          }
 /* # 121 Var(a12)\n\ */          for(s1=1; s1 <=nlstate ; s1++){
 /* # 122 Cov(b12,a12) Var(b12)\n\ */            if(pos>=1.e-5){
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */              if(first==1)
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */                printf(" %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos);
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos);
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */            }else{
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */              if(first==1)
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */                printf(" %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1);
   fflush(stdout);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1);
   fprintf(ficparo,"# Covariance matrix\n");            }
   /* # 121 Var(a12)\n\ */            if( iage <= iagemax){
   /* # 122 Cov(b12,a12) Var(b12)\n\ */              if(pos>=1.e-5){
   /* #   ...\n\ */                if(cptcoveff==0 && nj==1){ /* no covariate and first pass */
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */                  fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                  }else if( nj==2){
   for(itimes=1;itimes<=2;itimes++){                  fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
     jj=0;                }
     for(i=1; i <=nlstate; i++){                fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
       for(j=1; j <=nlstate+ndeath; j++){                /*probs[iage][s1][j1]= pp[s1]/pos;*/
         if(j==i) continue;                /*printf("\niage=%d s1=%d j1=%d %.5f %.0f %.0f %f",iage,s1,j1,pp[s1]/pos, pp[s1],pos,probs[iage][s1][j1]);*/
         for(k=1; k<=ncovmodel;k++){              } else{
           jj++;                if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," NaNq %.0f %.0f",prop[s1][iage],pospropta);
           ca[0]= k+'a'-1;ca[1]='\0';                fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[s1][iage],pospropta);
           if(itimes==1){              }
             printf("#%1d%1d%d",i,j,k);            }
             fprintf(ficparo,"#%1d%1d%d",i,j,k);            pospropt[s1] +=posprop[s1];
           }else{          } /* end loop s1 */
             printf("%1d%1d%d",i,j,k);          /* pospropt=0.; */
             fprintf(ficparo,"%1d%1d%d",i,j,k);          for(s1=-1; s1 <=nlstate+ndeath; s1++){
             /*  printf(" %.5le",matcov[i][j]); */            for(m=-1; m <=nlstate+ndeath; m++){
           }              if(freq[s1][m][iage] !=0 ) { /* minimizing output */
           ll=0;                if(first==1){
           for(li=1;li <=nlstate; li++){                  printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]);
             for(lj=1;lj <=nlstate+ndeath; lj++){                }
               if(lj==li) continue;                /* printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); */
               for(lk=1;lk<=ncovmodel;lk++){                fprintf(ficlog," %d%d=%.0f",s1,m,freq[s1][m][iage]);
                 ll++;              }
                 if(ll<=jj){              if(s1!=0 && m!=0)
                   cb[0]= lk +'a'-1;cb[1]='\0';                fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[s1][m][iage]);
                   if(ll<jj){            }
                     if(itimes==1){          } /* end loop s1 */
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          posproptt=0.; 
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          for(s1=1; s1 <=nlstate; s1++){
                     }else{            posproptt += pospropt[s1];
                       printf(" 0.");          }
                       fprintf(ficparo," 0.");          fprintf(ficresphtmfr,"</tr>\n ");
                     }          fprintf(ficresphtm,"</tr>\n");
                   }else{          if((cptcoveff==0 && nj==1)|| nj==2 ) {
                     if(itimes==1){            if(iage <= iagemax)
                       printf(" Var(%s%1d%1d)",ca,i,j);              fprintf(ficresp,"\n");
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);          }
                     }else{          if(first==1)
                       printf(" 0.");            printf("Others in log...\n");
                       fprintf(ficparo," 0.");          fprintf(ficlog,"\n");
                     }        } /* end loop age iage */
                   }        
                 }        fprintf(ficresphtm,"<tr><th>Tot</th>");
               } /* end lk */        for(s1=1; s1 <=nlstate ; s1++){
             } /* end lj */          if(posproptt < 1.e-5){
           } /* end li */            fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[s1],posproptt); 
           printf("\n");          }else{
           fprintf(ficparo,"\n");            fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[s1]/posproptt,pospropt[s1],posproptt);  
           numlinepar++;          }
         } /* end k*/        }
       } /*end j */        fprintf(ficresphtm,"</tr>\n");
     } /* end i */        fprintf(ficresphtm,"</table>\n");
   } /* end itimes */        fprintf(ficresphtmfr,"</table>\n");
         if(posproptt < 1.e-5){
 } /* end of prwizard */          fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
 /******************* Gompertz Likelihood ******************************/          fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
 double gompertz(double x[])          fprintf(ficlog,"#  This combination (%d) is not valid and no result will be produced\n",j1);
 {          printf("#  This combination (%d) is not valid and no result will be produced\n",j1);
   double A,B,L=0.0,sump=0.,num=0.;          invalidvarcomb[j1]=1;
   int i,n=0; /* n is the size of the sample */        }else{
           fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1);
   for (i=0;i<=imx-1 ; i++) {          invalidvarcomb[j1]=0;
     sump=sump+weight[i];        }
     /*    sump=sump+1;*/        fprintf(ficresphtmfr,"</table>\n");
     num=num+1;        fprintf(ficlog,"\n");
   }        if(j!=0){
            printf("#Freqsummary: Starting values for combination j1=%d:\n", j1);
            for(i=1,s1=1; i <=nlstate; i++){
   /* for (i=0; i<=imx; i++)            for(k=1; k <=(nlstate+ndeath); k++){
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/              if (k != i) {
                 for(jj=1; jj <=ncovmodel; jj++){ /* For counting s1 */
   for (i=1;i<=imx ; i++)                  if(jj==1){  /* Constant case (in fact cste + age) */
     {                    if(j1==1){ /* All dummy covariates to zero */
       if (cens[i] == 1 && wav[i]>1)                      freq[i][k][iagemax+4]=freq[i][k][iagemax+3]; /* Stores case 0 0 0 */
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));                      freq[i][i][iagemax+4]=freq[i][i][iagemax+3]; /* Stores case 0 0 0 */
                            printf("%d%d ",i,k);
       if (cens[i] == 0 && wav[i]>1)                      fprintf(ficlog,"%d%d ",i,k);
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))                      printf("%12.7f ln(%.0f/%.0f)= %f, OR=%f sd=%f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]),freq[i][k][iagemax+3]/freq[i][i][iagemax+3], sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]));
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);                        fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
                            pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]);
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */                    }
       if (wav[i] > 1 ) { /* ??? */                  }else if((j1==1) && (jj==2 || nagesqr==1)){ /* age or age*age parameter without covariate V4*age (to be done later) */
         L=L+A*weight[i];                    for(iage=iagemin; iage <= iagemax+3; iage++){
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/                      x[iage]= (double)iage;
       }                      y[iage]= log(freq[i][k][iage]/freq[i][i][iage]);
     }                      /* printf("i=%d, k=%d, s1=%d, j1=%d, jj=%d, y[%d]=%f\n",i,k,s1,j1,jj, iage, y[iage]); */
                     }
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/                    /* Some are not finite, but linreg will ignore these ages */
                      no=0;
   return -2*L*num/sump;                    linreg(iagemin,iagemax,&no,x,y,&a,&b,&r, &sa, &sb ); /* y= a+b*x with standard errors */
 }                    pstart[s1]=b;
                     pstart[s1-1]=a;
 /******************* Printing html file ***********/                  }else if( j1!=1 && (j1==2 || (log(j1-1.)/log(2.)-(int)(log(j1-1.)/log(2.))) <0.010) && ( TvarsDind[(int)(log(j1-1.)/log(2.))+1]+2+nagesqr == jj)  && Dummy[jj-2-nagesqr]==0){ /* We want only if the position, jj, in model corresponds to unique covariate equal to 1 in j1 combination */ 
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \                    printf("j1=%d, jj=%d, (int)(log(j1-1.)/log(2.))+1=%d, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(int)(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]);
                   int lastpass, int stepm, int weightopt, char model[],\                    printf("j1=%d, jj=%d, (log(j1-1.)/log(2.))+1=%f, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]);
                   int imx,  double p[],double **matcov,double agemortsup){                    pstart[s1]= log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]));
   int i,k;                    printf("%d%d ",i,k);
                     fprintf(ficlog,"%d%d ",i,k);
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");                    printf("s1=%d,i=%d,k=%d,p[%d]=%12.7f ln((%.0f/%.0f)/(%.0f/%.0f))= %f, OR=%f sd=%f \n",s1,i,k,s1,p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3],freq[i][k][iagemax+4],freq[i][i][iagemax+4], log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])),(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]), sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]+1/freq[i][k][iagemax+4]+1/freq[i][i][iagemax+4]));
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);                  }else{ /* Other cases, like quantitative fixed or varying covariates */
   for (i=1;i<=2;i++)                    ;
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));                  }
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");                  /* printf("%12.7f )", param[i][jj][k]); */
   fprintf(fichtm,"</ul>");                  /* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */
                   s1++; 
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");                } /* end jj */
               } /* end k!= i */
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");            } /* end k */
           } /* end i, s1 */
  for (k=agegomp;k<(agemortsup-2);k++)        } /* end j !=0 */
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);      } /* end selected combination of covariate j1 */
       if(j==0){ /* We can estimate starting values from the occurences in each case */
          printf("#Freqsummary: Starting values for the constants:\n");
   fflush(fichtm);        fprintf(ficlog,"\n");
 }        for(i=1,s1=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
 /******************* Gnuplot file **************/            if (k != i) {
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
   char dirfileres[132],optfileres[132];              for(jj=1; jj <=ncovmodel; jj++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                pstart[s1]=p[s1]; /* Setting pstart to p values by default */
   int ng;                if(jj==1){ /* Age has to be done */
                   pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]);
                   printf("%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
   /*#ifdef windows */                  fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
   fprintf(ficgp,"cd \"%s\" \n",pathc);                }
     /*#endif */                /* printf("%12.7f )", param[i][jj][k]); */
                 /* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */
                 s1++; 
   strcpy(dirfileres,optionfilefiname);              }
   strcpy(optfileres,"vpl");              printf("\n");
   fprintf(ficgp,"set out \"graphmort.png\"\n ");              fprintf(ficlog,"\n");
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");            }
   fprintf(ficgp, "set ter png small\n set log y\n");          }
   fprintf(ficgp, "set size 0.65,0.65\n");        } /* end of state i */
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);        printf("#Freqsummary\n");
         fprintf(ficlog,"\n");
 }        for(s1=-1; s1 <=nlstate+ndeath; s1++){
           for(s2=-1; s2 <=nlstate+ndeath; s2++){
             /* param[i]|j][k]= freq[s1][s2][iagemax+3] */
             printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]);
             fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]);
             /* if(freq[s1][s2][iage] !=0 ) { /\* minimizing output *\/ */
 /***********************************************/            /*   printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */
 /**************** Main Program *****************/            /*   fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */
 /***********************************************/            /* } */
           }
 int main(int argc, char *argv[])        } /* end loop s1 */
 {        
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);        printf("\n");
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;        fprintf(ficlog,"\n");
   int linei, month, year,iout;      } /* end j=0 */
   int jj, ll, li, lj, lk, imk;    } /* end j */
   int numlinepar=0; /* Current linenumber of parameter file */  
   int itimes;    if(mle == -2){  /* We want to use these values as starting values */
   int NDIM=2;      for(i=1, jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
   char ca[32], cb[32], cc[32];          if(j!=i){
   char dummy[]="                         ";            /*ca[0]= k+'a'-1;ca[1]='\0';*/
   /*  FILE *fichtm; *//* Html File */            printf("%1d%1d",i,j);
   /* FILE *ficgp;*/ /*Gnuplot File */            fprintf(ficparo,"%1d%1d",i,j);
   struct stat info;            for(k=1; k<=ncovmodel;k++){
   double agedeb, agefin,hf;              /*    printf(" %lf",param[i][j][k]); */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;              /*    fprintf(ficparo," %lf",param[i][j][k]); */
               p[jk]=pstart[jk];
   double fret;              printf(" %f ",pstart[jk]);
   double **xi,tmp,delta;              fprintf(ficparo," %f ",pstart[jk]);
               jk++;
   double dum; /* Dummy variable */            }
   double ***p3mat;            printf("\n");
   double ***mobaverage;            fprintf(ficparo,"\n");
   int *indx;          }
   char line[MAXLINE], linepar[MAXLINE];        }
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];      }
   char pathr[MAXLINE], pathimach[MAXLINE];    } /* end mle=-2 */
   char **bp, *tok, *val; /* pathtot */    dateintmean=dateintsum/k2cpt; 
   int firstobs=1, lastobs=10;    date2dmy(dateintmean,&jintmean,&mintmean,&aintmean);
   int sdeb, sfin; /* Status at beginning and end */    
   int c,  h , cpt,l;    fclose(ficresp);
   int ju,jl, mi;    fclose(ficresphtm);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fclose(ficresphtmfr);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;    free_vector(idq,1,nqfveff);
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    free_vector(meanq,1,nqfveff);
   int mobilav=0,popforecast=0;    free_vector(stdq,1,nqfveff);
   int hstepm, nhstepm;    free_matrix(meanqt,1,lastpass,1,nqtveff);
   int agemortsup;    free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
   float  sumlpop=0.;    free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;    free_vector(pospropt,1,nlstate);
     free_vector(posprop,1,nlstate);
   double bage, fage, age, agelim, agebase;    free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+4+AGEMARGE);
   double ftolpl=FTOL;    free_vector(pp,1,nlstate);
   double **prlim;    /* End of freqsummary */
   double *severity;  }
   double ***param; /* Matrix of parameters */  
   double  *p;  /* Simple linear regression */
   double **matcov; /* Matrix of covariance */  int linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb) {
   double ***delti3; /* Scale */  
   double *delti; /* Scale */    /* y=a+bx regression */
   double ***eij, ***vareij;    double   sumx = 0.0;                        /* sum of x                      */
   double **varpl; /* Variances of prevalence limits by age */    double   sumx2 = 0.0;                       /* sum of x**2                   */
   double *epj, vepp;    double   sumxy = 0.0;                       /* sum of x * y                  */
   double kk1, kk2;    double   sumy = 0.0;                        /* sum of y                      */
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    double   sumy2 = 0.0;                       /* sum of y**2                   */
   double **ximort;    double   sume2 = 0.0;                       /* sum of square or residuals */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double yhat;
   int *dcwave;    
     double denom=0;
   char z[1]="c", occ;    int i;
     int ne=*no;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    
   char  *strt, strtend[80];    for ( i=ifi, ne=0;i<=ila;i++) {
   char *stratrunc;      if(!isfinite(x[i]) || !isfinite(y[i])){
   int lstra;        /* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */
         continue;
   long total_usecs;      }
        ne=ne+1;
 /*   setlocale (LC_ALL, ""); */      sumx  += x[i];       
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */      sumx2 += x[i]*x[i];  
 /*   textdomain (PACKAGE); */      sumxy += x[i] * y[i];
 /*   setlocale (LC_CTYPE, ""); */      sumy  += y[i];      
 /*   setlocale (LC_MESSAGES, ""); */      sumy2 += y[i]*y[i]; 
       denom = (ne * sumx2 - sumx*sumx);
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      /* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */
   (void) gettimeofday(&start_time,&tzp);    } 
   curr_time=start_time;    
   tm = *localtime(&start_time.tv_sec);    denom = (ne * sumx2 - sumx*sumx);
   tmg = *gmtime(&start_time.tv_sec);    if (denom == 0) {
   strcpy(strstart,asctime(&tm));      // vertical, slope m is infinity
       *b = INFINITY;
 /*  printf("Localtime (at start)=%s",strstart); */      *a = 0;
 /*  tp.tv_sec = tp.tv_sec +86400; */      if (r) *r = 0;
 /*  tm = *localtime(&start_time.tv_sec); */      return 1;
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */    }
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */    
 /*   tmg.tm_hour=tmg.tm_hour + 1; */    *b = (ne * sumxy  -  sumx * sumy) / denom;
 /*   tp.tv_sec = mktime(&tmg); */    *a = (sumy * sumx2  -  sumx * sumxy) / denom;
 /*   strt=asctime(&tmg); */    if (r!=NULL) {
 /*   printf("Time(after) =%s",strstart);  */      *r = (sumxy - sumx * sumy / ne) /          /* compute correlation coeff     */
 /*  (void) time (&time_value);        sqrt((sumx2 - sumx*sumx/ne) *
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);             (sumy2 - sumy*sumy/ne));
 *  tm = *localtime(&time_value);    }
 *  strstart=asctime(&tm);    *no=ne;
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);    for ( i=ifi, ne=0;i<=ila;i++) {
 */      if(!isfinite(x[i]) || !isfinite(y[i])){
         /* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */
   nberr=0; /* Number of errors and warnings */        continue;
   nbwarn=0;      }
   getcwd(pathcd, size);      ne=ne+1;
       yhat = y[i] - *a -*b* x[i];
   printf("\n%s\n%s",version,fullversion);      sume2  += yhat * yhat ;       
   if(argc <=1){      
     printf("\nEnter the parameter file name: ");      denom = (ne * sumx2 - sumx*sumx);
     fgets(pathr,FILENAMELENGTH,stdin);      /* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */
     i=strlen(pathr);    } 
     if(pathr[i-1]=='\n')    *sb = sqrt(sume2/(double)(ne-2)/(sumx2 - sumx * sumx /(double)ne));
       pathr[i-1]='\0';    *sa= *sb * sqrt(sumx2/ne);
    for (tok = pathr; tok != NULL; ){    
       printf("Pathr |%s|\n",pathr);    return 0; 
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');  }
       printf("val= |%s| pathr=%s\n",val,pathr);  
       strcpy (pathtot, val);  /************ Prevalence ********************/
       if(pathr[0] == '\0') break; /* Dirty */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     }  {  
   }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   else{       in each health status at the date of interview (if between dateprev1 and dateprev2).
     strcpy(pathtot,argv[1]);       We still use firstpass and lastpass as another selection.
   }    */
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/   
   /*cygwin_split_path(pathtot,path,optionfile);    int i, m, jk, j1, bool, z1,j, iv;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    int mi; /* Effective wave */
   /* cutv(path,optionfile,pathtot,'\\');*/    int iage;
     double agebegin, ageend;
   /* Split argv[0], imach program to get pathimach */  
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);    double **prop;
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    double posprop; 
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    double  y2; /* in fractional years */
  /*   strcpy(pathimach,argv[0]); */    int iagemin, iagemax;
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */    int first; /** to stop verbosity which is redirected to log file */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    iagemin= (int) agemin;
   chdir(path); /* Can be a relative path */    iagemax= (int) agemax;
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */    /*pp=vector(1,nlstate);*/
     printf("Current directory %s!\n",pathcd);    prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); 
   strcpy(command,"mkdir ");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   strcat(command,optionfilefiname);    j1=0;
   if((outcmd=system(command)) != 0){    
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);    /*j=cptcoveff;*/
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     /* fclose(ficlog); */    
 /*     exit(1); */    first=0;
   }    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */
 /*   if((imk=mkdir(optionfilefiname))<0){ */      for (i=1; i<=nlstate; i++)  
 /*     perror("mkdir"); */        for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++)
 /*   } */          prop[i][iage]=0.0;
       printf("Prevalence combination of varying and fixed dummies %d\n",j1);
   /*-------- arguments in the command line --------*/      /* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */
       fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1);
   /* Log file */      
   strcat(filelog, optionfilefiname);      for (i=1; i<=imx; i++) { /* Each individual */
   strcat(filelog,".log");    /* */        bool=1;
   if((ficlog=fopen(filelog,"w"))==NULL)    {        /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
     printf("Problem with logfile %s\n",filelog);        for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */
     goto end;          m=mw[mi][i];
   }          /* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */
   fprintf(ficlog,"Log filename:%s\n",filelog);          /* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */
   fprintf(ficlog,"\n%s\n%s",version,fullversion);          for (z1=1; z1<=cptcoveff; z1++){
   fprintf(ficlog,"\nEnter the parameter file name: \n");            if( Fixed[Tmodelind[z1]]==1){
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\              iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
  path=%s \n\              if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */
  optionfile=%s\n\                bool=0;
  optionfilext=%s\n\            }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
                 bool=0;
   printf("Local time (at start):%s",strstart);              }
   fprintf(ficlog,"Local time (at start): %s",strstart);          }
   fflush(ficlog);          if(bool==1){ /* Otherwise we skip that wave/person */
 /*   (void) gettimeofday(&curr_time,&tzp); */            agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */            /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
             if(m >=firstpass && m <=lastpass){
   /* */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   strcpy(fileres,"r");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   strcat(fileres, optionfilefiname);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   strcat(fileres,".txt");    /* Other files have txt extension */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+4+AGEMARGE){
   /*---------arguments file --------*/                  printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); 
                   exit(1);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                }
     printf("Problem with optionfile %s\n",optionfile);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     fflush(ficlog);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
     goto end;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   }                } /* end valid statuses */ 
               } /* end selection of dates */
             } /* end selection of waves */
           } /* end bool */
   strcpy(filereso,"o");        } /* end wave */
   strcat(filereso,fileres);      } /* end individual */
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */      for(i=iagemin; i <= iagemax+3; i++){  
     printf("Problem with Output resultfile: %s\n", filereso);        for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);          posprop += prop[jk][i]; 
     fflush(ficlog);        } 
     goto end;        
   }        for(jk=1; jk <=nlstate ; jk++){       
           if( i <=  iagemax){ 
   /* Reads comments: lines beginning with '#' */            if(posprop>=1.e-5){ 
   numlinepar=0;              probs[i][jk][j1]= prop[jk][i]/posprop;
   while((c=getc(ficpar))=='#' && c!= EOF){            } else{
     ungetc(c,ficpar);              if(!first){
     fgets(line, MAXLINE, ficpar);                first=1;
     numlinepar++;                printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]);
     puts(line);              }else{
     fputs(line,ficparo);                fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases.\n",jk,i,jk, j1,probs[i][jk][j1]);
     fputs(line,ficlog);              }
   }            }
   ungetc(c,ficpar);          } 
         }/* end jk */ 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      }/* end i */ 
   numlinepar++;       /*} *//* end i1 */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    } /* end j1 */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   fflush(ficlog);    /*free_vector(pp,1,nlstate);*/
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+4+AGEMARGE);
     ungetc(c,ficpar);  }  /* End of prevalence */
     fgets(line, MAXLINE, ficpar);  
     numlinepar++;  /************* Waves Concatenation ***************/
     puts(line);  
     fputs(line,ficparo);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     fputs(line,ficlog);  {
   }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   ungetc(c,ficpar);       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   covar=matrix(0,NCOVMAX,1,n);       and mw[mi+1][i]. dh depends on stepm.
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
     int i=0, mi=0, m=0, mli=0;
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */       double sum=0., jmean=0.;*/
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/    int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0;
     int j, k=0,jk, ju, jl;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double sum=0.;
   delti=delti3[1][1];    first=0;
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    firstwo=0;
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    firsthree=0;
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    firstfour=0;
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    jmin=100000;
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    jmax=-1;
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    jmean=0.;
     fclose (ficparo);  
     fclose (ficlog);  /* Treating live states */
     goto end;    for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
     exit(0);      mi=0;  /* First valid wave */
   }      mli=0; /* Last valid wave */
   else if(mle==-3) {      m=firstpass;
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      while(s[m][i] <= nlstate){  /* a live state */
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);        if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);          mli=m-1;/* mw[++mi][i]=m-1; */
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
     matcov=matrix(1,npar,1,npar);          mw[++mi][i]=m;
   }          mli=m;
   else{        } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */
     /* Read guess parameters */        if(m < lastpass){ /* m < lastpass, standard case */
     /* Reads comments: lines beginning with '#' */          m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);        else{ /* m >= lastpass, eventual special issue with warning */
       fgets(line, MAXLINE, ficpar);  #ifdef UNKNOWNSTATUSNOTCONTRIBUTING
       numlinepar++;          break;
       puts(line);  #else
       fputs(line,ficparo);          if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){
       fputs(line,ficlog);            if(firsthree == 0){
     }              printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p%d%d .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
     ungetc(c,ficpar);              firsthree=1;
                }
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p%d%d .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
     for(i=1; i <=nlstate; i++){            mw[++mi][i]=m;
       j=0;            mli=m;
       for(jj=1; jj <=nlstate+ndeath; jj++){          }
         if(jj==i) continue;          if(s[m][i]==-2){ /* Vital status is really unknown */
         j++;            nbwarn++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);            if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified? */
         if ((i1 != i) && (j1 != j)){              printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \              fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
 It might be a problem of design; if ncovcol and the model are correct\n \            }
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);            break;
           exit(1);          }
         }          break;
         fprintf(ficparo,"%1d%1d",i1,j1);  #endif
         if(mle==1)        }/* End m >= lastpass */
           printf("%1d%1d",i,j);      }/* end while */
         fprintf(ficlog,"%1d%1d",i,j);  
         for(k=1; k<=ncovmodel;k++){      /* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */
           fscanf(ficpar," %lf",&param[i][j][k]);      /* After last pass */
           if(mle==1){  /* Treating death states */
             printf(" %lf",param[i][j][k]);      if (s[m][i] > nlstate){  /* In a death state */
             fprintf(ficlog," %lf",param[i][j][k]);        /* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */
           }        /* } */
           else        mi++;     /* Death is another wave */
             fprintf(ficlog," %lf",param[i][j][k]);        /* if(mi==0)  never been interviewed correctly before death */
           fprintf(ficparo," %lf",param[i][j][k]);        /* Only death is a correct wave */
         }        mw[mi][i]=m;
         fscanf(ficpar,"\n");      } /* else not in a death state */
         numlinepar++;  #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
         if(mle==1)      else if ((int) andc[i] != 9999) {  /* Date of death is known */
           printf("\n");        if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
         fprintf(ficlog,"\n");          if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */
         fprintf(ficparo,"\n");            nbwarn++;
       }            if(firstfiv==0){
     }                printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
     fflush(ficlog);              firstfiv=1;
             }else{
     p=param[1][1];              fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
                }
     /* Reads comments: lines beginning with '#' */          }else{ /* Death occured afer last wave potential bias */
     while((c=getc(ficpar))=='#' && c!= EOF){            nberr++;
       ungetc(c,ficpar);            if(firstwo==0){
       fgets(line, MAXLINE, ficpar);              printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictive wave at the date of last vital status scan, with a dead status or alive but unknown state status (-1). See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
       numlinepar++;              firstwo=1;
       puts(line);            }
       fputs(line,ficparo);            fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictive wave at the date of last vital status scan, with a dead status or alive but unknown state status (-1). See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
       fputs(line,ficlog);          }
     }        }else{ /* if date of interview is unknown */
     ungetc(c,ficpar);          /* death is known but not confirmed by death status at any wave */
           if(firstfour==0){
     for(i=1; i <=nlstate; i++){            printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
       for(j=1; j <=nlstate+ndeath-1; j++){            firstfour=1;
         fscanf(ficpar,"%1d%1d",&i1,&j1);          }
         if ((i1-i)*(j1-j)!=0){          fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);        }
           exit(1);      } /* end if date of death is known */
         }  #endif
         printf("%1d%1d",i,j);      wav[i]=mi; /* mi should be the last effective wave (or mli) */
         fprintf(ficparo,"%1d%1d",i1,j1);      /* wav[i]=mw[mi][i]; */
         fprintf(ficlog,"%1d%1d",i1,j1);      if(mi==0){
         for(k=1; k<=ncovmodel;k++){        nbwarn++;
           fscanf(ficpar,"%le",&delti3[i][j][k]);        if(first==0){
           printf(" %le",delti3[i][j][k]);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           fprintf(ficparo," %le",delti3[i][j][k]);          first=1;
           fprintf(ficlog," %le",delti3[i][j][k]);        }
         }        if(first==1){
         fscanf(ficpar,"\n");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         numlinepar++;        }
         printf("\n");      } /* end mi==0 */
         fprintf(ficparo,"\n");    } /* End individuals */
         fprintf(ficlog,"\n");    /* wav and mw are no more changed */
       }          
     }    
     fflush(ficlog);    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
     delti=delti3[1][1];        if (stepm <=0)
           dh[mi][i]=1;
         else{
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death, but what if date is unknown? */
              if (agedc[i] < 2*AGESUP) {
     /* Reads comments: lines beginning with '#' */              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     while((c=getc(ficpar))=='#' && c!= EOF){              if(j==0) j=1;  /* Survives at least one month after exam */
       ungetc(c,ficpar);              else if(j<0){
       fgets(line, MAXLINE, ficpar);                nberr++;
       numlinepar++;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       puts(line);                j=1; /* Temporary Dangerous patch */
       fputs(line,ficparo);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       fputs(line,ficlog);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     ungetc(c,ficpar);              }
                k=k+1;
     matcov=matrix(1,npar,1,npar);              if (j >= jmax){
     for(i=1; i <=npar; i++){                jmax=j;
       fscanf(ficpar,"%s",&str);                ijmax=i;
       if(mle==1)              }
         printf("%s",str);              if (j <= jmin){
       fprintf(ficlog,"%s",str);                jmin=j;
       fprintf(ficparo,"%s",str);                ijmin=i;
       for(j=1; j <=i; j++){              }
         fscanf(ficpar," %le",&matcov[i][j]);              sum=sum+j;
         if(mle==1){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           printf(" %.5le",matcov[i][j]);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         }            }
         fprintf(ficlog," %.5le",matcov[i][j]);          }
         fprintf(ficparo," %.5le",matcov[i][j]);          else{
       }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       fscanf(ficpar,"\n");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       numlinepar++;                                          
       if(mle==1)            k=k+1;
         printf("\n");            if (j >= jmax) {
       fprintf(ficlog,"\n");              jmax=j;
       fprintf(ficparo,"\n");              ijmax=i;
     }            }
     for(i=1; i <=npar; i++)            else if (j <= jmin){
       for(j=i+1;j<=npar;j++)              jmin=j;
         matcov[i][j]=matcov[j][i];              ijmin=i;
                }
     if(mle==1)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       printf("\n");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     fprintf(ficlog,"\n");            if(j<0){
                  nberr++;
     fflush(ficlog);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     /*-------- Rewriting parameter file ----------*/            }
     strcpy(rfileres,"r");    /* "Rparameterfile */            sum=sum+j;
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          }
     strcat(rfileres,".");    /* */          jk= j/stepm;
     strcat(rfileres,optionfilext);    /* Other files have txt extension */          jl= j -jk*stepm;
     if((ficres =fopen(rfileres,"w"))==NULL) {          ju= j -(jk+1)*stepm;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;            if(jl==0){
     }              dh[mi][i]=jk;
     fprintf(ficres,"#%s\n",version);              bh[mi][i]=0;
   }    /* End of mle != -3 */            }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
   /*-------- data file ----------*/              dh[mi][i]=jk+1;
   if((fic=fopen(datafile,"r"))==NULL)    {              bh[mi][i]=ju;
     printf("Problem while opening datafile: %s\n", datafile);goto end;            }
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;          }else{
   }            if(jl <= -ju){
               dh[mi][i]=jk;
   n= lastobs;              bh[mi][i]=jl;       /* bias is positive if real duration
   severity = vector(1,maxwav);                                   * is higher than the multiple of stepm and negative otherwise.
   outcome=imatrix(1,maxwav+1,1,n);                                   */
   num=lvector(1,n);            }
   moisnais=vector(1,n);            else{
   annais=vector(1,n);              dh[mi][i]=jk+1;
   moisdc=vector(1,n);              bh[mi][i]=ju;
   andc=vector(1,n);            }
   agedc=vector(1,n);            if(dh[mi][i]==0){
   cod=ivector(1,n);              dh[mi][i]=1; /* At least one step */
   weight=vector(1,n);              bh[mi][i]=ju; /* At least one step */
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   mint=matrix(1,maxwav,1,n);            }
   anint=matrix(1,maxwav,1,n);          } /* end if mle */
   s=imatrix(1,maxwav+1,1,n);        }
   tab=ivector(1,NCOVMAX);      } /* end wave */
   ncodemax=ivector(1,8);    }
     jmean=sum/k;
   i=1;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   linei=0;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {  }
     linei=linei+1;  
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */  /*********** Tricode ****************************/
       if(line[j] == '\t')   void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum)
         line[j] = ' ';   {
     }     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){     /*     Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       ;      * Boring subroutine which should only output nbcode[Tvar[j]][k]
     };      * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable
     line[j+1]=0;  /* Trims blanks at end of line */      * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually);
     if(line[0]=='#'){      */
       fprintf(ficlog,"Comment line\n%s\n",line);  
       printf("Comment line\n%s\n",line);     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
       continue;     int modmaxcovj=0; /* Modality max of covariates j */
     }     int cptcode=0; /* Modality max of covariates j */
      int modmincovj=0; /* Modality min of covariates j */
     for (j=maxwav;j>=1;j--){  
       cutv(stra, strb,line,' ');  
       errno=0;     /* cptcoveff=0;  */
       lval=strtol(strb,&endptr,10);     /* *cptcov=0; */
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/   
       if( strb[0]=='\0' || (*endptr != '\0')){     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);     for (k=1; k <= maxncov; k++)
         exit(1);       for(j=1; j<=2; j++)
       }         nbcode[k][j]=0; /* Valgrind */
       s[j][i]=lval;  
           /* Loop on covariates without age and products and no quantitative variable */
       strcpy(line,stra);     for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */
       cutv(stra, strb,line,' ');       for (j=-1; (j < maxncov); j++) Ndum[j]=0;
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){       if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ 
       }         switch(Fixed[k]) {
       else  if(iout=sscanf(strb,"%s.") != 0){         case 0: /* Testing on fixed dummy covariate, simple or product of fixed */
         month=99;           for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
         year=9999;             ij=(int)(covar[Tvar[k]][i]);
       }else{             /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);              * If product of Vn*Vm, still boolean *:
         exit(1);              * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
       }              * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
       anint[j][i]= (double) year;             /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
       mint[j][i]= (double)month;                modality of the nth covariate of individual i. */
       strcpy(line,stra);             if (ij > modmaxcovj)
     } /* ENd Waves */               modmaxcovj=ij; 
                 else if (ij < modmincovj) 
     cutv(stra, strb,line,' ');               modmincovj=ij; 
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){             if (ij <0 || ij >1 ){
     }               printf("Information, IMaCh doesn't treat covariate with missing values (-1), individual %d will be skipped.\n",i);
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){               fprintf(ficlog,"Information, currently IMaCh doesn't treat covariate with missing values (-1), individual %d will be skipped.\n",i);
       month=99;             }
       year=9999;             if ((ij < -1) || (ij > NCOVMAX)){
     }else{               printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);               exit(1);
       exit(1);             }else
     }               Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     andc[i]=(double) year;             /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     moisdc[i]=(double) month;             /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     strcpy(line,stra);             /* getting the maximum value of the modality of the covariate
                    (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     cutv(stra, strb,line,' ');                female ies 1, then modmaxcovj=1.
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){             */
     }           } /* end for loop on individuals i */
     else  if(iout=sscanf(strb,"%s.") != 0){           printf(" Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
       month=99;           fprintf(ficlog," Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
       year=9999;           cptcode=modmaxcovj;
     }else{           /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);           /*for (i=0; i<=cptcode; i++) {*/
       exit(1);           for (j=modmincovj;  j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */
     }             printf("Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
     annais[i]=(double)(year);             fprintf(ficlog, "Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
     moisnais[i]=(double)(month);             if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */
     strcpy(line,stra);               if( j != -1){
                     ncodemax[k]++;  /* ncodemax[k]= Number of modalities of the k th
     cutv(stra, strb,line,' ');                                    covariate for which somebody answered excluding 
     errno=0;                                    undefined. Usually 2: 0 and 1. */
     dval=strtod(strb,&endptr);               }
     if( strb[0]=='\0' || (*endptr != '\0')){               ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);                                       covariate for which somebody answered including 
       exit(1);                                       undefined. Usually 3: -1, 0 and 1. */
     }             }    /* In fact  ncodemax[k]=2 (dichotom. variables only) but it could be more for
     weight[i]=dval;                   * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     strcpy(line,stra);           } /* Ndum[-1] number of undefined modalities */
                              
     for (j=ncovcol;j>=1;j--){           /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       cutv(stra, strb,line,' ');           /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */
       errno=0;           /* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */
       lval=strtol(strb,&endptr,10);           /* modmincovj=3; modmaxcovj = 7; */
       if( strb[0]=='\0' || (*endptr != '\0')){           /* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);           /* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */
         exit(1);           /*              defining two dummy variables: variables V1_1 and V1_2.*/
       }           /* nbcode[Tvar[j]][ij]=k; */
       if(lval <-1 || lval >1){           /* nbcode[Tvar[j]][1]=0; */
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \           /* nbcode[Tvar[j]][2]=1; */
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \           /* nbcode[Tvar[j]][3]=2; */
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \           /* To be continued (not working yet). */
  For example, for multinomial values like 1, 2 and 3,\n \           ij=0; /* ij is similar to i but can jump over null modalities */
  build V1=0 V2=0 for the reference value (1),\n \  
         V1=1 V2=0 for (2) \n \           /* for (i=modmincovj; i<=modmaxcovj; i++) { */ /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \           /* Skipping the case of missing values by reducing nbcode to 0 and 1 and not -1, 0, 1 */
  output of IMaCh is often meaningless.\n \           /* model=V1+V2+V3, if V2=-1, 0 or 1, then nbcode[2][1]=0 and nbcode[2][2]=1 instead of
  Exiting.\n",lval,linei, i,line,j);            * nbcode[2][1]=-1, nbcode[2][2]=0 and nbcode[2][3]=1 */
         exit(1);           /*, could be restored in the future */
       }           for (i=0; i<=1; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
       covar[j][i]=(double)(lval);             if (Ndum[i] == 0) { /* If nobody responded to this modality k */
       strcpy(line,stra);               break;
     }             }
     lstra=strlen(stra);             ij++;
                 nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1 . Could be -1*/
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */             cptcode = ij; /* New max modality for covar j */
       stratrunc = &(stra[lstra-9]);           } /* end of loop on modality i=-1 to 1 or more */
       num[i]=atol(stratrunc);           break;
     }         case 1: /* Testing on varying covariate, could be simple and
     else                  * should look at waves or product of fixed *
       num[i]=atol(stra);                  * varying. No time to test -1, assuming 0 and 1 only */
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){           ij=0;
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/           for(i=0; i<=1;i++){
                 nbcode[Tvar[k]][++ij]=i;
     i=i+1;           }
   } /* End loop reading  data */           break;
   fclose(fic);         default:
   /* printf("ii=%d", ij);           break;
      scanf("%d",i);*/         } /* end switch */
   imx=i-1; /* Number of individuals */       } /* end dummy test */
      } /* end of loop on model-covariate k. nbcode[Tvark][1]=-1, nbcode[Tvark][1]=0 and nbcode[Tvark][2]=1 sets the value of covariate k*/  
   /* for (i=1; i<=imx; i++){    
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;     for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;     /* Look at fixed dummy (single or product) covariates to check empty modalities */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;     for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
     }*/       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
    /*  for (i=1; i<=imx; i++){       ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ 
      if (s[4][i]==9)  s[4][i]=-1;       Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/       /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1,  {2, 1, 1, 1, 2, 1, 1, 0, 0} */
       } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */
   /* for (i=1; i<=imx; i++) */    
       ij=0;
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;     /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */
      else weight[i]=1;*/     for (k=1; k<=  cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
        /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   /* Calculation of the number of parameters from char model */       /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */       if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy and non empty in the model */
   Tprod=ivector(1,15);         /* If product not in single variable we don't print results */
   Tvaraff=ivector(1,15);         /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   Tvard=imatrix(1,15,1,2);         ++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */
   Tage=ivector(1,15);               Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/
             Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */
   if (strlen(model) >1){ /* If there is at least 1 covariate */         TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */
     j=0, j1=0, k1=1, k2=1;         if(Fixed[k]!=0)
     j=nbocc(model,'+'); /* j=Number of '+' */           anyvaryingduminmodel=1;
     j1=nbocc(model,'*'); /* j1=Number of '*' */         /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */
     cptcovn=j+1;         /*   Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */
     cptcovprod=j1; /*Number of products */         /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */
             /*   Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */
     strcpy(modelsav,model);         /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){         /*   Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */
       printf("Error. Non available option model=%s ",model);       } 
       fprintf(ficlog,"Error. Non available option model=%s ",model);     } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
       goto end;     /* ij--; */
     }     /* cptcoveff=ij; /\*Number of total covariates*\/ */
         *cptcov=ij; /*Number of total real effective covariates: effective
     /* This loop fills the array Tvar from the string 'model'.*/                  * because they can be excluded from the model and real
                   * if in the model but excluded because missing values, but how to get k from ij?*/
     for(i=(j+1); i>=1;i--){     for(j=ij+1; j<= cptcovt; j++){
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */       Tvaraff[j]=0;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */       Tmodelind[j]=0;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/     }
       /*scanf("%d",i);*/     for(j=ntveff+1; j<= cptcovt; j++){
       if (strchr(strb,'*')) {  /* Model includes a product */       TmodelInvind[j]=0;
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/     }
         if (strcmp(strc,"age")==0) { /* Vn*age */     /* To be sorted */
           cptcovprod--;     ;
           cutv(strb,stre,strd,'V');   }
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  
           cptcovage++;  
             Tage[cptcovage]=i;  /*********** Health Expectancies ****************/
             /*printf("stre=%s ", stre);*/  
         }   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres )
         else if (strcmp(strd,"age")==0) { /* or age*Vn */  
           cptcovprod--;  {
           cutv(strb,stre,strc,'V');    /* Health expectancies, no variances */
           Tvar[i]=atoi(stre);    int i, j, nhstepm, hstepm, h, nstepm;
           cptcovage++;    int nhstepma, nstepma; /* Decreasing with age */
           Tage[cptcovage]=i;    double age, agelim, hf;
         }    double ***p3mat;
         else {  /* Age is not in the model */    double eip;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  
           Tvar[i]=ncovcol+k1;    /* pstamp(ficreseij); */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           Tprod[k1]=i;    fprintf(ficreseij,"# Age");
           Tvard[k1][1]=atoi(strc); /* m*/    for(i=1; i<=nlstate;i++){
           Tvard[k1][2]=atoi(stre); /* n */      for(j=1; j<=nlstate;j++){
           Tvar[cptcovn+k2]=Tvard[k1][1];        fprintf(ficreseij," e%1d%1d ",i,j);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      }
           for (k=1; k<=lastobs;k++)      fprintf(ficreseij," e%1d. ",i);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    }
           k1++;    fprintf(ficreseij,"\n");
           k2=k2+2;  
         }    
       }    if(estepm < stepm){
       else { /* no more sum */      printf ("Problem %d lower than %d\n",estepm, stepm);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    }
        /*  scanf("%d",i);*/    else  hstepm=estepm;   
       cutv(strd,strc,strb,'V');    /* We compute the life expectancy from trapezoids spaced every estepm months
       Tvar[i]=atoi(strc);     * This is mainly to measure the difference between two models: for example
       }     * if stepm=24 months pijx are given only every 2 years and by summing them
       strcpy(modelsav,stra);       * we are calculating an estimate of the Life Expectancy assuming a linear 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);     * progression in between and thus overestimating or underestimating according
         scanf("%d",i);*/     * to the curvature of the survival function. If, for the same date, we 
     } /* end of loop + */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   } /* end model */     * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.     * curvature will be obtained if estepm is as small as stepm. */
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/  
     /* For example we decided to compute the life expectancy with the smallest unit */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   printf("cptcovprod=%d ", cptcovprod);       nhstepm is the number of hstepm from age to agelim 
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason which relies in memory size consideration
   scanf("%d ",i);*/       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     /*  if(mle==1){*/       survival function given by stepm (the optimization length). Unfortunately it
   if (weightopt != 1) { /* Maximisation without weights*/       means that if the survival funtion is printed only each two years of age and if
     for(i=1;i<=n;i++) weight[i]=1.0;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
     /*-calculation of age at interview from date of interview and age at death -*/    */
   agev=matrix(1,maxwav,1,imx);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   for (i=1; i<=imx; i++) {    agelim=AGESUP;
     for(m=2; (m<= maxwav); m++) {    /* If stepm=6 months */
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         anint[m][i]=9999;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         s[m][i]=-1;      
       }  /* nhstepm age range expressed in number of stepm */
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         nberr++;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         s[m][i]=-1;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }  
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    for (age=bage; age<=fage; age ++){ 
         nberr++;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);      /* if (stepm >= YEARM) hstepm=1;*/
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       }  
     }      /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   for (i=1; i<=imx; i++)  {      
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres);  
     for(m=firstpass; (m<= lastpass); m++){      
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         if (s[m][i] >= nlstate+1) {      
           if(agedc[i]>0)      printf("%d|",(int)age);fflush(stdout);
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
               agev[m][i]=agedc[i];      
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      /* Computing expectancies */
             else {      for(i=1; i<=nlstate;i++)
               if ((int)andc[i]!=9999){        for(j=1; j<=nlstate;j++)
                 nbwarn++;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);            
                 agev[m][i]=-1;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
               }  
             }          }
         }  
         else if(s[m][i] !=9){ /* Standard case, age in fractional      fprintf(ficreseij,"%3.0f",age );
                                  years but with the precision of a month */      for(i=1; i<=nlstate;i++){
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        eip=0;
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)        for(j=1; j<=nlstate;j++){
             agev[m][i]=1;          eip +=eij[i][j][(int)age];
           else if(agev[m][i] <agemin){          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
             agemin=agev[m][i];        }
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        fprintf(ficreseij,"%9.4f", eip );
           }      }
           else if(agev[m][i] >agemax){      fprintf(ficreseij,"\n");
             agemax=agev[m][i];      
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    }
           }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           /*agev[m][i]=anint[m][i]-annais[i];*/    printf("\n");
           /*     agev[m][i] = age[i]+2*m;*/    fprintf(ficlog,"\n");
         }    
         else { /* =9 */  }
           agev[m][i]=1;  
           s[m][i]=-1;   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres )
         }  
       }  {
       else /*= 0 Unknown */    /* Covariances of health expectancies eij and of total life expectancies according
         agev[m][i]=1;       to initial status i, ei. .
     }    */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   }    int nhstepma, nstepma; /* Decreasing with age */
   for (i=1; i<=imx; i++)  {    double age, agelim, hf;
     for(m=firstpass; (m<=lastpass); m++){    double ***p3matp, ***p3matm, ***varhe;
       if (s[m][i] > (nlstate+ndeath)) {    double **dnewm,**doldm;
         nberr++;    double *xp, *xm;
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        double **gp, **gm;
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        double ***gradg, ***trgradg;
         goto end;    int theta;
       }  
     }    double eip, vip;
   }  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   /*for (i=1; i<=imx; i++){    xp=vector(1,npar);
   for (m=firstpass; (m<lastpass); m++){    xm=vector(1,npar);
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    dnewm=matrix(1,nlstate*nlstate,1,npar);
 }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
 }*/    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    for(i=1; i<=nlstate;i++){
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   agegomp=(int)agemin;      fprintf(ficresstdeij," e%1d. ",i);
   free_vector(severity,1,maxwav);    }
   free_imatrix(outcome,1,maxwav+1,1,n);    fprintf(ficresstdeij,"\n");
   free_vector(moisnais,1,n);  
   free_vector(annais,1,n);    pstamp(ficrescveij);
   /* free_matrix(mint,1,maxwav,1,n);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      free_matrix(anint,1,maxwav,1,n);*/    fprintf(ficrescveij,"# Age");
   free_vector(moisdc,1,n);    for(i=1; i<=nlstate;i++)
   free_vector(andc,1,n);      for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
            for(i2=1; i2<=nlstate;i2++)
   wav=ivector(1,imx);          for(j2=1; j2<=nlstate;j2++){
   dh=imatrix(1,lastpass-firstpass+1,1,imx);            cptj2= (j2-1)*nlstate+i2;
   bh=imatrix(1,lastpass-firstpass+1,1,imx);            if(cptj2 <= cptj)
   mw=imatrix(1,lastpass-firstpass+1,1,imx);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
              }
   /* Concatenates waves */      }
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fprintf(ficrescveij,"\n");
     
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   Tcode=ivector(1,100);    }
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    else  hstepm=estepm;   
   ncodemax[1]=1;    /* We compute the life expectancy from trapezoids spaced every estepm months
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);     * This is mainly to measure the difference between two models: for example
           * if stepm=24 months pijx are given only every 2 years and by summing them
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of     * we are calculating an estimate of the Life Expectancy assuming a linear 
                                  the estimations*/     * progression in between and thus overestimating or underestimating according
   h=0;     * to the curvature of the survival function. If, for the same date, we 
   m=pow(2,cptcoveff);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   for(k=1;k<=cptcoveff; k++){     * hypothesis. A more precise result, taking into account a more precise
     for(i=1; i <=(m/pow(2,k));i++){     * curvature will be obtained if estepm is as small as stepm. */
       for(j=1; j <= ncodemax[k]; j++){  
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    /* For example we decided to compute the life expectancy with the smallest unit */
           h++;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;       nhstepm is the number of hstepm from age to agelim 
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/       nstepm is the number of stepm from age to agelin. 
         }       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);       means that if the survival funtion is printed only each two years of age and if
      codtab[1][2]=1;codtab[2][2]=2; */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /* for(i=1; i <=m ;i++){       results. So we changed our mind and took the option of the best precision.
      for(k=1; k <=cptcovn; k++){    */
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      }  
      printf("\n");    /* If stepm=6 months */
      }    /* nhstepm age range expressed in number of stepm */
      scanf("%d",i);*/    agelim=AGESUP;
        nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   /*------------ gnuplot -------------*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   strcpy(optionfilegnuplot,optionfilefiname);    /* if (stepm >= YEARM) hstepm=1;*/
   if(mle==-3)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     strcat(optionfilegnuplot,"-mort");    
   strcat(optionfilegnuplot,".gp");    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     printf("Problem with file %s",optionfilegnuplot);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   else{    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     fprintf(ficgp,"\n# %s\n", version);  
     fprintf(ficgp,"# %s\n", optionfilegnuplot);    for (age=bage; age<=fage; age ++){ 
     fprintf(ficgp,"set missing 'NaNq'\n");      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /*  fclose(ficgp);*/      /* if (stepm >= YEARM) hstepm=1;*/
   /*--------- index.htm --------*/      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */      /* If stepm=6 months */
   if(mle==-3)      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     strcat(optionfilehtm,"-mort");         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   strcat(optionfilehtm,".htm");      
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     printf("Problem with %s \n",optionfilehtm), exit(0);                  
   }      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */         decrease memory allocation */
   strcat(optionfilehtmcov,"-cov.htm");      for(theta=1; theta <=npar; theta++){
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {        for(i=1; i<=npar; i++){ 
     printf("Problem with %s \n",optionfilehtmcov), exit(0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   else{        }
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres);  
 <hr size=\"2\" color=\"#EC5E5E\"> \n\        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres);  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\                          
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);        for(j=1; j<= nlstate; j++){
   }          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
 <hr size=\"2\" color=\"#EC5E5E\"> \n\              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\            }
 \n\          }
 <hr  size=\"2\" color=\"#EC5E5E\">\        }
  <ul><li><h4>Parameter files</h4>\n\                          
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\        for(ij=1; ij<= nlstate*nlstate; ij++)
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\          for(h=0; h<=nhstepm-1; h++){
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\          }
  - Date and time at start: %s</ul>\n",\      }/* End theta */
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\      
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\      
           fileres,fileres,\      for(h=0; h<=nhstepm-1; h++)
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);        for(j=1; j<=nlstate*nlstate;j++)
   fflush(fichtm);          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   strcpy(pathr,path);      
   strcat(pathr,optionfilefiname);                  
   chdir(optionfilefiname); /* Move to directory named optionfile */      for(ij=1;ij<=nlstate*nlstate;ij++)
          for(ji=1;ji<=nlstate*nlstate;ji++)
   /* Calculates basic frequencies. Computes observed prevalence at single age          varhe[ij][ji][(int)age] =0.;
      and prints on file fileres'p'. */                  
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   fprintf(fichtm,"\n");      for(h=0;h<=nhstepm-1;h++){
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\        for(k=0;k<=nhstepm-1;k++){
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           imx,agemin,agemax,jmin,jmax,jmean);          for(ij=1;ij<=nlstate*nlstate;ij++)
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(ji=1;ji<=nlstate*nlstate;ji++)
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                  
          /* Computing expectancies */
          hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres);  
   /* For Powell, parameters are in a vector p[] starting at p[1]      for(i=1; i<=nlstate;i++)
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        for(j=1; j<=nlstate;j++)
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/                                          
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   if (mle==-3){                                          
     ximort=matrix(1,NDIM,1,NDIM);          }
     cens=ivector(1,n);  
     ageexmed=vector(1,n);      /* Standard deviation of expectancies ij */         
     agecens=vector(1,n);      fprintf(ficresstdeij,"%3.0f",age );
     dcwave=ivector(1,n);      for(i=1; i<=nlstate;i++){
          eip=0.;
     for (i=1; i<=imx; i++){        vip=0.;
       dcwave[i]=-1;        for(j=1; j<=nlstate;j++){
       for (m=firstpass; m<=lastpass; m++)          eip += eij[i][j][(int)age];
         if (s[m][i]>nlstate) {          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
           dcwave[i]=m;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
           break;        }
         }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     }      }
       fprintf(ficresstdeij,"\n");
     for (i=1; i<=imx; i++) {                  
       if (wav[i]>0){      /* Variance of expectancies ij */           
         ageexmed[i]=agev[mw[1][i]][i];      fprintf(ficrescveij,"%3.0f",age );
         j=wav[i];      for(i=1; i<=nlstate;i++)
         agecens[i]=1.;        for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
         if (ageexmed[i]> 1 && wav[i] > 0){          for(i2=1; i2<=nlstate;i2++)
           agecens[i]=agev[mw[j][i]][i];            for(j2=1; j2<=nlstate;j2++){
           cens[i]= 1;              cptj2= (j2-1)*nlstate+i2;
         }else if (ageexmed[i]< 1)              if(cptj2 <= cptj)
           cens[i]= -1;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)            }
           cens[i]=0 ;        }
       }      fprintf(ficrescveij,"\n");
       else cens[i]=-1;                  
     }    }
        free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     for (i=1;i<=NDIM;i++) {    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       for (j=1;j<=NDIM;j++)    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         ximort[i][j]=(i == j ? 1.0 : 0.0);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p[1]=0.0268; p[NDIM]=0.083;    printf("\n");
     /*printf("%lf %lf", p[1], p[2]);*/    fprintf(ficlog,"\n");
              
        free_vector(xm,1,npar);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");    free_vector(xp,1,npar);
     strcpy(filerespow,"pow-mort");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     strcat(filerespow,fileres);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       printf("Problem with resultfile: %s\n", filerespow);  }
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);   
     }  /************ Variance ******************/
     fprintf(ficrespow,"# Powell\n# iter -2*LL");   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres)
     /*  for (i=1;i<=nlstate;i++)   {
         for(j=1;j<=nlstate+ndeath;j++)     /** Variance of health expectancies 
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      *  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);
     */      * double **newm;
     fprintf(ficrespow,"\n");      * int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav) 
          */
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);    
     fclose(ficrespow);     /* int movingaverage(); */
         double **dnewm,**doldm;
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);     double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
     for(i=1; i <=NDIM; i++)     int first=0;
       for(j=i+1;j<=NDIM;j++)     int k;
         matcov[i][j]=matcov[j][i];     double *xp;
         double **gp, **gm;  /**< for var eij */
     printf("\nCovariance matrix\n ");     double ***gradg, ***trgradg; /**< for var eij */
     for(i=1; i <=NDIM; i++) {     double **gradgp, **trgradgp; /**< for var p point j */
       for(j=1;j<=NDIM;j++){     double *gpp, *gmp; /**< for var p point j */
         printf("%f ",matcov[i][j]);     double **varppt; /**< for var p point j nlstate to nlstate+ndeath */
       }     double ***p3mat;
       printf("\n ");     double age,agelim, hf;
     }     /* double ***mobaverage; */
         int theta;
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);     char digit[4];
     for (i=1;i<=NDIM;i++)     char digitp[25];
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));  
      char fileresprobmorprev[FILENAMELENGTH];
     lsurv=vector(1,AGESUP);  
     lpop=vector(1,AGESUP);     if(popbased==1){
     tpop=vector(1,AGESUP);       if(mobilav!=0)
     lsurv[agegomp]=100000;         strcpy(digitp,"-POPULBASED-MOBILAV_");
           else strcpy(digitp,"-POPULBASED-NOMOBIL_");
     for (k=agegomp;k<=AGESUP;k++) {     }
       agemortsup=k;     else 
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;       strcpy(digitp,"-STABLBASED_");
     }  
         /* if (mobilav!=0) { */
     for (k=agegomp;k<agemortsup;k++)     /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));     /*   if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
         /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
     for (k=agegomp;k<agemortsup;k++){     /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;     /*   } */
       sumlpop=sumlpop+lpop[k];     /* } */
     }  
         strcpy(fileresprobmorprev,"PRMORPREV-"); 
     tpop[agegomp]=sumlpop;     sprintf(digit,"%-d",ij);
     for (k=agegomp;k<(agemortsup-3);k++){     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       /*  tpop[k+1]=2;*/     strcat(fileresprobmorprev,digit); /* Tvar to be done */
       tpop[k+1]=tpop[k]-lpop[k];     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     }     strcat(fileresprobmorprev,fileresu);
         if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           printf("Problem with resultfile: %s\n", fileresprobmorprev);
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     for (k=agegomp;k<(agemortsup-2);k++)     }
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         pstamp(ficresprobmorprev);
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);     fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies");
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \       fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                      stepm, weightopt,\     }
                      model,imx,p,matcov,agemortsup);     for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresprobmorprev,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,j)]);
     free_vector(lsurv,1,AGESUP);     fprintf(ficresprobmorprev,"\n");
     free_vector(lpop,1,AGESUP);  
     free_vector(tpop,1,AGESUP);     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   } /* Endof if mle==-3 */     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," p.%-d SE",j);
   else{ /* For mle >=1 */       for(i=1; i<=nlstate;i++)
           fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */     }  
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);     fprintf(ficresprobmorprev,"\n");
     for (k=1; k<=npar;k++)    
       printf(" %d %8.5f",k,p[k]);     fprintf(ficgp,"\n# Routine varevsij");
     printf("\n");     fprintf(ficgp,"\nunset title \n");
     globpr=1; /* to print the contributions */     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     for (k=1; k<=npar;k++)  
       printf(" %d %8.5f",k,p[k]);     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     printf("\n");     pstamp(ficresvij);
     if(mle>=1){ /* Could be 1 or 2 */     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);     if(popbased==1)
     }       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
         else
     /*--------- results files --------------*/       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);     fprintf(ficresvij,"# Age");
         for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate;j++)
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     fprintf(ficresvij,"\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
     for(i=1,jk=1; i <=nlstate; i++){     xp=vector(1,npar);
       for(k=1; k <=(nlstate+ndeath); k++){     dnewm=matrix(1,nlstate,1,npar);
         if (k != i) {     doldm=matrix(1,nlstate,1,nlstate);
           printf("%d%d ",i,k);     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           fprintf(ficlog,"%d%d ",i,k);     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           fprintf(ficres,"%1d%1d ",i,k);  
           for(j=1; j <=ncovmodel; j++){     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
             printf("%lf ",p[jk]);     gpp=vector(nlstate+1,nlstate+ndeath);
             fprintf(ficlog,"%lf ",p[jk]);     gmp=vector(nlstate+1,nlstate+ndeath);
             fprintf(ficres,"%lf ",p[jk]);     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             jk++;    
           }     if(estepm < stepm){
           printf("\n");       printf ("Problem %d lower than %d\n",estepm, stepm);
           fprintf(ficlog,"\n");     }
           fprintf(ficres,"\n");     else  hstepm=estepm;   
         }     /* For example we decided to compute the life expectancy with the smallest unit */
       }     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     }        nhstepm is the number of hstepm from age to agelim 
     if(mle!=0){        nstepm is the number of stepm from age to agelim. 
       /* Computing hessian and covariance matrix */        Look at function hpijx to understand why because of memory size limitations, 
       ftolhess=ftol; /* Usually correct */        we decided (b) to get a life expectancy respecting the most precise curvature of the
       hesscov(matcov, p, npar, delti, ftolhess, func);        survival function given by stepm (the optimization length). Unfortunately it
     }        means that if the survival funtion is printed every two years of age and if
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     printf("# Scales (for hessian or gradient estimation)\n");        results. So we changed our mind and took the option of the best precision.
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");     */
     for(i=1,jk=1; i <=nlstate; i++){     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       for(j=1; j <=nlstate+ndeath; j++){     agelim = AGESUP;
         if (j!=i) {     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           fprintf(ficres,"%1d%1d",i,j);       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           printf("%1d%1d",i,j);       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           fprintf(ficlog,"%1d%1d",i,j);       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(k=1; k<=ncovmodel;k++){       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
             printf(" %.5e",delti[jk]);       gp=matrix(0,nhstepm,1,nlstate);
             fprintf(ficlog," %.5e",delti[jk]);       gm=matrix(0,nhstepm,1,nlstate);
             fprintf(ficres," %.5e",delti[jk]);                  
             jk++;                  
           }       for(theta=1; theta <=npar; theta++){
           printf("\n");         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           fprintf(ficlog,"\n");           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           fprintf(ficres,"\n");         }
         }         /**< Computes the prevalence limit with parameter theta shifted of delta up to ftolpl precision and 
       }          * returns into prlim .
     }          */
             prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     if(mle>=1)         /* If popbased = 1 we use crossection prevalences. Previous step is useless but prlim is created */
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         if (popbased==1) {
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");           if(mobilav ==0){
     /* # 121 Var(a12)\n\ */             for(i=1; i<=nlstate;i++)
     /* # 122 Cov(b12,a12) Var(b12)\n\ */               prlim[i][i]=probs[(int)age][i][ij];
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */           }else{ /* mobilav */ 
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */             for(i=1; i<=nlstate;i++)
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */               prlim[i][i]=mobaverage[(int)age][i][ij];
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */           }
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */         }
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */         /**< Computes the shifted transition matrix \f$ {}{h}_p^{ij}x\f$ at horizon h.
              */                      
             hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  /* Returns p3mat[i][j][h] for h=0 to nhstepm */
     /* Just to have a covariance matrix which will be more understandable         /**< And for each alive state j, sums over i \f$ w^i_x {}{h}_p^{ij}x\f$, which are the probability
        even is we still don't want to manage dictionary of variables          * at horizon h in state j including mortality.
     */          */
     for(itimes=1;itimes<=2;itimes++){         for(j=1; j<= nlstate; j++){
       jj=0;           for(h=0; h<=nhstepm; h++){
       for(i=1; i <=nlstate; i++){             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         for(j=1; j <=nlstate+ndeath; j++){               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           if(j==i) continue;           }
           for(k=1; k<=ncovmodel;k++){         }
             jj++;         /* Next for computing shifted+ probability of death (h=1 means
             ca[0]= k+'a'-1;ca[1]='\0';            computed over hstepm matrices product = hstepm*stepm months) 
             if(itimes==1){            as a weighted average of prlim(i) * p(i,j) p.3=w1*p13 + w2*p23 .
               if(mle>=1)         */
                 printf("#%1d%1d%d",i,j,k);         for(j=nlstate+1;j<=nlstate+ndeath;j++){
               fprintf(ficlog,"#%1d%1d%d",i,j,k);           for(i=1,gpp[j]=0.; i<= nlstate; i++)
               fprintf(ficres,"#%1d%1d%d",i,j,k);             gpp[j] += prlim[i][i]*p3mat[i][j][1];
             }else{         }
               if(mle>=1)         
                 printf("%1d%1d%d",i,j,k);         /* Again with minus shift */
               fprintf(ficlog,"%1d%1d%d",i,j,k);                          
               fprintf(ficres,"%1d%1d%d",i,j,k);         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
             }           xp[i] = x[i] - (i==theta ?delti[theta]:0);
             ll=0;  
             for(li=1;li <=nlstate; li++){         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres);
               for(lj=1;lj <=nlstate+ndeath; lj++){                          
                 if(lj==li) continue;         if (popbased==1) {
                 for(lk=1;lk<=ncovmodel;lk++){           if(mobilav ==0){
                   ll++;             for(i=1; i<=nlstate;i++)
                   if(ll<=jj){               prlim[i][i]=probs[(int)age][i][ij];
                     cb[0]= lk +'a'-1;cb[1]='\0';           }else{ /* mobilav */ 
                     if(ll<jj){             for(i=1; i<=nlstate;i++)
                       if(itimes==1){               prlim[i][i]=mobaverage[(int)age][i][ij];
                         if(mle>=1)           }
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);         }
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                          
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  
                       }else{                          
                         if(mle>=1)         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
                           printf(" %.5e",matcov[jj][ll]);           for(h=0; h<=nhstepm; h++){
                         fprintf(ficlog," %.5e",matcov[jj][ll]);             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                         fprintf(ficres," %.5e",matcov[jj][ll]);               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                       }           }
                     }else{         }
                       if(itimes==1){         /* This for computing probability of death (h=1 means
                         if(mle>=1)            computed over hstepm matrices product = hstepm*stepm months) 
                           printf(" Var(%s%1d%1d)",ca,i,j);            as a weighted average of prlim.
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);         */
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);         for(j=nlstate+1;j<=nlstate+ndeath;j++){
                       }else{           for(i=1,gmp[j]=0.; i<= nlstate; i++)
                         if(mle>=1)             gmp[j] += prlim[i][i]*p3mat[i][j][1];
                           printf(" %.5e",matcov[jj][ll]);         }    
                         fprintf(ficlog," %.5e",matcov[jj][ll]);         /* end shifting computations */
                         fprintf(ficres," %.5e",matcov[jj][ll]);  
                       }         /**< Computing gradient matrix at horizon h 
                     }          */
                   }         for(j=1; j<= nlstate; j++) /* vareij */
                 } /* end lk */           for(h=0; h<=nhstepm; h++){
               } /* end lj */             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
             } /* end li */           }
             if(mle>=1)         /**< Gradient of overall mortality p.3 (or p.j) 
               printf("\n");          */
             fprintf(ficlog,"\n");         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu mortality from j */
             fprintf(ficres,"\n");           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
             numlinepar++;         }
           } /* end k*/                          
         } /*end j */       } /* End theta */
       } /* end i */       
     } /* end itimes */       /* We got the gradient matrix for each theta and state j */                
           trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     fflush(ficlog);                  
     fflush(ficres);       for(h=0; h<=nhstepm; h++) /* veij */
             for(j=1; j<=nlstate;j++)
     while((c=getc(ficpar))=='#' && c!= EOF){           for(theta=1; theta <=npar; theta++)
       ungetc(c,ficpar);             trgradg[h][j][theta]=gradg[h][theta][j];
       fgets(line, MAXLINE, ficpar);                  
       puts(line);       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       fputs(line,ficparo);         for(theta=1; theta <=npar; theta++)
     }           trgradgp[j][theta]=gradgp[theta][j];
     ungetc(c,ficpar);       /**< as well as its transposed matrix 
            */                
     estepm=0;                  
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     if (estepm==0 || estepm < stepm) estepm=stepm;       for(i=1;i<=nlstate;i++)
     if (fage <= 2) {         for(j=1;j<=nlstate;j++)
       bage = ageminpar;           vareij[i][j][(int)age] =0.;
       fage = agemaxpar;  
     }       /* Computing trgradg by matcov by gradg at age and summing over h
            * and k (nhstepm) formula 15 of article
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        * Lievre-Brouard-Heathcote
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        */
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       
           for(h=0;h<=nhstepm;h++){
     while((c=getc(ficpar))=='#' && c!= EOF){         for(k=0;k<=nhstepm;k++){
       ungetc(c,ficpar);           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       fgets(line, MAXLINE, ficpar);           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       puts(line);           for(i=1;i<=nlstate;i++)
       fputs(line,ficparo);             for(j=1;j<=nlstate;j++)
     }               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     ungetc(c,ficpar);         }
           }
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);                  
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);       /* pptj is p.3 or p.j = trgradgp by cov by gradgp, variance of
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        * p.j overall mortality formula 49 but computed directly because
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        * we compute the grad (wix pijx) instead of grad (pijx),even if
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        * wix is independent of theta.
            */
     while((c=getc(ficpar))=='#' && c!= EOF){       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       ungetc(c,ficpar);       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       fgets(line, MAXLINE, ficpar);       for(j=nlstate+1;j<=nlstate+ndeath;j++)
       puts(line);         for(i=nlstate+1;i<=nlstate+ndeath;i++)
       fputs(line,ficparo);           varppt[j][i]=doldmp[j][i];
     }       /* end ppptj */
     ungetc(c,ficpar);       /*  x centered again */
                      
           prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;                  
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;       if (popbased==1) {
             if(mobilav ==0){
     fscanf(ficpar,"pop_based=%d\n",&popbased);           for(i=1; i<=nlstate;i++)
     fprintf(ficparo,"pop_based=%d\n",popbased);               prlim[i][i]=probs[(int)age][i][ij];
     fprintf(ficres,"pop_based=%d\n",popbased);           }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
     while((c=getc(ficpar))=='#' && c!= EOF){             prlim[i][i]=mobaverage[(int)age][i][ij];
       ungetc(c,ficpar);         }
       fgets(line, MAXLINE, ficpar);       }
       puts(line);                  
       fputs(line,ficparo);       /* This for computing probability of death (h=1 means
     }          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     ungetc(c,ficpar);          as a weighted average of prlim.
           */
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres);  
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);       for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);       }    
     /* day and month of proj2 are not used but only year anproj2.*/       /* end probability of death */
                      
           fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/         for(i=1; i<=nlstate;i++){
               fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */         }
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);       } 
           fprintf(ficresprobmorprev,"\n");
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\                  
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\       fprintf(ficresvij,"%.0f ",age );
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);       for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate;j++){
    /*------------ free_vector  -------------*/           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
    /*  chdir(path); */         }
         fprintf(ficresvij,"\n");
     free_ivector(wav,1,imx);       free_matrix(gp,0,nhstepm,1,nlstate);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       free_matrix(gm,0,nhstepm,1,nlstate);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     free_lvector(num,1,n);       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(agedc,1,n);     } /* End age */
     /*free_matrix(covar,0,NCOVMAX,1,n);*/     free_vector(gpp,nlstate+1,nlstate+ndeath);
     /*free_matrix(covar,1,NCOVMAX,1,n);*/     free_vector(gmp,nlstate+1,nlstate+ndeath);
     fclose(ficparo);     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     fclose(ficres);     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
      fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     strcpy(filerespl,"pl");     fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
     strcat(filerespl,fileres);     /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     if((ficrespl=fopen(filerespl,"w"))==NULL) {     /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;     /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     }     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     pstamp(ficrespl);     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
     fprintf(ficrespl,"# Period (stable) prevalence \n");     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
     fprintf(ficrespl,"#Age ");      */
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);     /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficrespl,"\n");     fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
    
     prlim=matrix(1,nlstate,1,nlstate);     free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
     agebase=ageminpar;     free_matrix(dnewm,1,nlstate,1,npar);
     agelim=agemaxpar;     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     ftolpl=1.e-10;     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     i1=cptcoveff;     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (cptcovn < 1){i1=1;}     /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
      fclose(ficresprobmorprev);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){     fflush(ficgp);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     fflush(fichtm); 
         k=k+1;   }  /* end varevsij */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");  /************ Variance of prevlim ******************/
         printf("\n#******");   void varprevlim(char fileresvpl[], FILE *ficresvpl, double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres)
         fprintf(ficlog,"\n#******");  {
         for(j=1;j<=cptcoveff;j++) {    /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double **dnewmpar,**doldm;
         }    int i, j, nhstepm, hstepm;
         fprintf(ficrespl,"******\n");    double *xp;
         printf("******\n");    double *gp, *gm;
         fprintf(ficlog,"******\n");    double **gradg, **trgradg;
            double **mgm, **mgp;
         for (age=agebase; age<=agelim; age++){    double age,agelim;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    int theta;
           fprintf(ficrespl,"%.0f ",age );    
           for(j=1;j<=cptcoveff;j++)    pstamp(ficresvpl);
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresvpl,"# Standard deviation of period (forward stable) prevalences \n");
           for(i=1; i<=nlstate;i++)    fprintf(ficresvpl,"# Age ");
             fprintf(ficrespl," %.5f", prlim[i][i]);    if(nresult >=1)
           fprintf(ficrespl,"\n");      fprintf(ficresvpl," Result# ");
         }    for(i=1; i<=nlstate;i++)
       }        fprintf(ficresvpl," %1d-%1d",i,i);
     }    fprintf(ficresvpl,"\n");
     fclose(ficrespl);  
     xp=vector(1,npar);
     /*------------- h Pij x at various ages ------------*/    dnewmpar=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);    
     if((ficrespij=fopen(filerespij,"w"))==NULL) {    hstepm=1*YEARM; /* Every year of age */
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    agelim = AGESUP;
     }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     printf("Computing pij: result on file '%s' \n", filerespij);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     stepsize=(int) (stepm+YEARM-1)/YEARM;      gradg=matrix(1,npar,1,nlstate);
     /*if (stepm<=24) stepsize=2;*/      mgp=matrix(1,npar,1,nlstate);
       mgm=matrix(1,npar,1,nlstate);
     agelim=AGESUP;      gp=vector(1,nlstate);
     hstepm=stepsize*YEARM; /* Every year of age */      gm=vector(1,nlstate);
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
       for(theta=1; theta <=npar; theta++){
     /* hstepm=1;   aff par mois*/        for(i=1; i<=npar; i++){ /* Computes gradient */
     pstamp(ficrespij);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");        }
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){        /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /*        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
         k=k+1;        /* else */
         fprintf(ficrespij,"\n#****** ");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
         for(j=1;j<=cptcoveff;j++)        for(i=1;i<=nlstate;i++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          gp[i] = prlim[i][i];
         fprintf(ficrespij,"******\n");          mgp[theta][i] = prlim[i][i];
                }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        for(i=1; i<=npar; i++) /* Computes gradient */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
         /*        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/        /* else */
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1;i<=nlstate;i++){
           oldm=oldms;savm=savms;          gm[i] = prlim[i][i];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            mgm[theta][i] = prlim[i][i];
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");        }
           for(i=1; i<=nlstate;i++)        for(i=1;i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
               fprintf(ficrespij," %1d-%1d",i,j);        /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
           fprintf(ficrespij,"\n");      } /* End theta */
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      trgradg =matrix(1,nlstate,1,npar);
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)      for(j=1; j<=nlstate;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        for(theta=1; theta <=npar; theta++)
             fprintf(ficrespij,"\n");          trgradg[j][theta]=gradg[theta][j];
           }      /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*   printf("\nmgm mgp %d ",(int)age); */
           fprintf(ficrespij,"\n");      /*   for(j=1; j<=nlstate;j++){ */
         }      /*  printf(" %d ",j); */
       }      /*  for(theta=1; theta <=npar; theta++) */
     }      /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
       /*  printf("\n "); */
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);      /*   } */
       /* } */
     fclose(ficrespij);      /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\n gradg %d ",(int)age); */
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      /*   for(j=1; j<=nlstate;j++){ */
     for(i=1;i<=AGESUP;i++)      /*  printf("%d ",j); */
       for(j=1;j<=NCOVMAX;j++)      /*  for(theta=1; theta <=npar; theta++) */
         for(k=1;k<=NCOVMAX;k++)      /*    printf("%d %lf ",theta,gradg[theta][j]); */
           probs[i][j][k]=0.;      /*  printf("\n "); */
       /*   } */
     /*---------- Forecasting ------------------*/      /* } */
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/  
     if(prevfcast==1){      for(i=1;i<=nlstate;i++)
       /*    if(stepm ==1){*/        varpl[i][(int)age] =0.;
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);      if((int)age==79 ||(int)age== 80  ||(int)age== 81){
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
       /*      }  */      matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
       /*      else{ */      }else{
       /*        erreur=108; */      matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      }
       /*      } */      for(i=1;i<=nlstate;i++)
     }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    
       fprintf(ficresvpl,"%.0f ",age );
     /*---------- Health expectancies and variances ------------*/      if(nresult >=1)
         fprintf(ficresvpl,"%d ",nres );
     strcpy(filerest,"t");      for(i=1; i<=nlstate;i++){
     strcat(filerest,fileres);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     if((ficrest=fopen(filerest,"w"))==NULL) {        /* for(j=1;j<=nlstate;j++) */
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;        /*        fprintf(ficresvpl," %d %.5f ",j,prlim[j][i]); */
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;      }
     }      fprintf(ficresvpl,"\n");
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);      free_vector(gp,1,nlstate);
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);      free_vector(gm,1,nlstate);
       free_matrix(mgm,1,npar,1,nlstate);
       free_matrix(mgp,1,npar,1,nlstate);
     strcpy(filerese,"e");      free_matrix(gradg,1,npar,1,nlstate);
     strcat(filerese,fileres);      free_matrix(trgradg,1,nlstate,1,npar);
     if((ficreseij=fopen(filerese,"w"))==NULL) {    } /* End age */
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    free_vector(xp,1,npar);
     }    free_matrix(doldm,1,nlstate,1,npar);
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);    free_matrix(dnewmpar,1,nlstate,1,nlstate);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  
   }
     strcpy(fileresstde,"stde");  
     strcat(fileresstde,fileres);  
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {  /************ Variance of backprevalence limit ******************/
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);   void varbrevlim(char fileresvbl[], FILE  *ficresvbl, double **varbpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **bprlim, double ftolpl, int mobilavproj, int *ncvyearp, int ij, char strstart[], int nres)
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);  {
     }    /* Variance of backward prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);  
     double **dnewmpar,**doldm;
     strcpy(filerescve,"cve");    int i, j, nhstepm, hstepm;
     strcat(filerescve,fileres);    double *xp;
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {    double *gp, *gm;
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);    double **gradg, **trgradg;
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);    double **mgm, **mgp;
     }    double age,agelim;
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);    int theta;
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);    
     pstamp(ficresvbl);
     strcpy(fileresv,"v");    fprintf(ficresvbl,"# Standard deviation of back (stable) prevalences \n");
     strcat(fileresv,fileres);    fprintf(ficresvbl,"# Age ");
     if((ficresvij=fopen(fileresv,"w"))==NULL) {    if(nresult >=1)
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      fprintf(ficresvbl," Result# ");
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    for(i=1; i<=nlstate;i++)
     }        fprintf(ficresvbl," %1d-%1d",i,i);
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fprintf(ficresvbl,"\n");
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
     xp=vector(1,npar);
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */    dnewmpar=matrix(1,nlstate,1,npar);
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    doldm=matrix(1,nlstate,1,nlstate);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\    
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);    hstepm=1*YEARM; /* Every year of age */
     */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGEINF;
     if (mobilav!=0) {    for (age=fage; age>=bage; age --){ /* If stepm=6 months */
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      nhstepm=(int) rint((age-agelim)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      if (stepm >= YEARM) hstepm=1;
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         printf(" Error in movingaverage mobilav=%d\n",mobilav);      gradg=matrix(1,npar,1,nlstate);
       }      mgp=matrix(1,npar,1,nlstate);
     }      mgm=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      gm=vector(1,nlstate);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;      for(theta=1; theta <=npar; theta++){
         fprintf(ficrest,"\n#****** ");        for(i=1; i<=npar; i++){ /* Computes gradient */
         for(j=1;j<=cptcoveff;j++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
         fprintf(ficrest,"******\n");        if(mobilavproj > 0 )
           bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
         fprintf(ficreseij,"\n#****** ");        else
         fprintf(ficresstdeij,"\n#****** ");          bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
         fprintf(ficrescveij,"\n#****** ");        for(i=1;i<=nlstate;i++){
         for(j=1;j<=cptcoveff;j++) {          gp[i] = bprlim[i][i];
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          mgp[theta][i] = bprlim[i][i];
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for(i=1; i<=npar; i++) /* Computes gradient */
         }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficreseij,"******\n");         if(mobilavproj > 0 )
         fprintf(ficresstdeij,"******\n");          bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
         fprintf(ficrescveij,"******\n");         else
           bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
         fprintf(ficresvij,"\n#****** ");        for(i=1;i<=nlstate;i++){
         for(j=1;j<=cptcoveff;j++)          gm[i] = bprlim[i][i];
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          mgm[theta][i] = bprlim[i][i];
         fprintf(ficresvij,"******\n");        }
         for(i=1;i<=nlstate;i++)
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         oldm=oldms;savm=savms;        /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);        } /* End theta */
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);    
        trgradg =matrix(1,nlstate,1,npar);
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
         oldm=oldms;savm=savms;      for(j=1; j<=nlstate;j++)
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);        for(theta=1; theta <=npar; theta++)
         if(popbased==1){          trgradg[j][theta]=gradg[theta][j];
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);      /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
         }      /*   printf("\nmgm mgp %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
         pstamp(ficrest);      /*  printf(" %d ",j); */
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");      /*  for(theta=1; theta <=npar; theta++) */
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
         fprintf(ficrest,"\n");      /*  printf("\n "); */
       /*   } */
         epj=vector(1,nlstate+1);      /* } */
         for(age=bage; age <=fage ;age++){      /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      /*   printf("\n gradg %d ",(int)age); */
           if (popbased==1) {      /*   for(j=1; j<=nlstate;j++){ */
             if(mobilav ==0){      /*  printf("%d ",j); */
               for(i=1; i<=nlstate;i++)      /*  for(theta=1; theta <=npar; theta++) */
                 prlim[i][i]=probs[(int)age][i][k];      /*    printf("%d %lf ",theta,gradg[theta][j]); */
             }else{ /* mobilav */      /*  printf("\n "); */
               for(i=1; i<=nlstate;i++)      /*   } */
                 prlim[i][i]=mobaverage[(int)age][i][k];      /* } */
             }  
           }      for(i=1;i<=nlstate;i++)
                varbpl[i][(int)age] =0.;
           fprintf(ficrest," %4.0f",age);      if((int)age==79 ||(int)age== 80  ||(int)age== 81){
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
               epj[j] += prlim[i][i]*eij[i][j][(int)age];      }else{
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
             }      matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
             epj[nlstate+1] +=epj[j];      }
           }      for(i=1;i<=nlstate;i++)
         varbpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           for(i=1, vepp=0.;i <=nlstate;i++)  
             for(j=1;j <=nlstate;j++)      fprintf(ficresvbl,"%.0f ",age );
               vepp += vareij[i][j][(int)age];      if(nresult >=1)
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        fprintf(ficresvbl,"%d ",nres );
           for(j=1;j <=nlstate;j++){      for(i=1; i<=nlstate;i++)
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        fprintf(ficresvbl," %.5f (%.5f)",bprlim[i][i],sqrt(varbpl[i][(int)age]));
           }      fprintf(ficresvbl,"\n");
           fprintf(ficrest,"\n");      free_vector(gp,1,nlstate);
         }      free_vector(gm,1,nlstate);
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      free_matrix(mgm,1,npar,1,nlstate);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      free_matrix(mgp,1,npar,1,nlstate);
         free_vector(epj,1,nlstate+1);      free_matrix(gradg,1,npar,1,nlstate);
       }      free_matrix(trgradg,1,nlstate,1,npar);
     }    } /* End age */
     free_vector(weight,1,n);  
     free_imatrix(Tvard,1,15,1,2);    free_vector(xp,1,npar);
     free_imatrix(s,1,maxwav+1,1,n);    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(anint,1,maxwav,1,n);    free_matrix(dnewmpar,1,nlstate,1,nlstate);
     free_matrix(mint,1,maxwav,1,n);  
     free_ivector(cod,1,n);  }
     free_ivector(tab,1,NCOVMAX);  
     fclose(ficreseij);  /************ Variance of one-step probabilities  ******************/
     fclose(ficresstdeij);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     fclose(ficrescveij);   {
     fclose(ficresvij);     int i, j=0,  k1, l1, tj;
     fclose(ficrest);     int k2, l2, j1,  z1;
     fclose(ficpar);     int k=0, l;
       int first=1, first1, first2;
     /*------- Variance of period (stable) prevalence------*/       double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
     strcpy(fileresvpl,"vpl");     double *xp;
     strcat(fileresvpl,fileres);     double *gp, *gm;
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {     double **gradg, **trgradg;
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);     double **mu;
       exit(0);     double age, cov[NCOVMAX+1];
     }     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);     int theta;
      char fileresprob[FILENAMELENGTH];
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){     char fileresprobcov[FILENAMELENGTH];
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     char fileresprobcor[FILENAMELENGTH];
         k=k+1;     double ***varpij;
         fprintf(ficresvpl,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)     strcpy(fileresprob,"PROB_"); 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     strcat(fileresprob,fileres);
         fprintf(ficresvpl,"******\n");     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
             printf("Problem with resultfile: %s\n", fileresprob);
         varpl=matrix(1,nlstate,(int) bage, (int) fage);       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         oldm=oldms;savm=savms;     }
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);     strcpy(fileresprobcov,"PROBCOV_"); 
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);     strcat(fileresprobcov,fileresu);
       }     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     }       printf("Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     fclose(ficresvpl);     }
      strcpy(fileresprobcor,"PROBCOR_"); 
     /*---------- End : free ----------------*/     strcat(fileresprobcor,fileresu);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       printf("Problem with resultfile: %s\n", fileresprobcor);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   }  /* mle==-3 arrives here for freeing */     }
   free_matrix(prlim,1,nlstate,1,nlstate);     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     free_matrix(covar,0,NCOVMAX,1,n);     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     free_matrix(matcov,1,npar,1,npar);     pstamp(ficresprob);
     /*free_vector(delti,1,npar);*/     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     fprintf(ficresprob,"# Age");
     free_matrix(agev,1,maxwav,1,imx);     pstamp(ficresprobcov);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      fprintf(ficresprobcov,"# Age");
     free_ivector(ncodemax,1,8);     pstamp(ficresprobcor);
     free_ivector(Tvar,1,15);     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     free_ivector(Tprod,1,15);     fprintf(ficresprobcor,"# Age");
     free_ivector(Tvaraff,1,15);  
     free_ivector(Tage,1,15);  
     free_ivector(Tcode,1,100);     for(i=1; i<=nlstate;i++)
        for(j=1; j<=(nlstate+ndeath);j++){
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     free_imatrix(codtab,1,100,1,10);         fprintf(ficresprobcov," p%1d-%1d ",i,j);
   fflush(fichtm);         fprintf(ficresprobcor," p%1d-%1d ",i,j);
   fflush(ficgp);       }  
       /* fprintf(ficresprob,"\n");
         fprintf(ficresprobcov,"\n");
   if((nberr >0) || (nbwarn>0)){        fprintf(ficresprobcor,"\n");
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);     */
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);     xp=vector(1,npar);
   }else{     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     printf("End of Imach\n");     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     fprintf(ficlog,"End of Imach\n");     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   }     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   printf("See log file on %s\n",filelog);     first=1;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */     fprintf(ficgp,"\n# Routine varprob");
   (void) gettimeofday(&end_time,&tzp);     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   tm = *localtime(&end_time.tv_sec);     fprintf(fichtm,"\n");
   tmg = *gmtime(&end_time.tv_sec);  
   strcpy(strtend,asctime(&tm));     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. File %s</li>\n",optionfilehtmcov,optionfilehtmcov);
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   /*  printf("Total time was %d uSec.\n", total_usecs);*/  standard deviations wide on each axis. <br>\
 /*   if(fileappend(fichtm,optionfilehtm)){ */   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   fclose(fichtm);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);  
   fclose(fichtmcov);     cov[1]=1;
   fclose(ficgp);     /* tj=cptcoveff; */
   fclose(ficlog);     tj = (int) pow(2,cptcoveff);
   /*------ End -----------*/     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      j1=0;
      for(j1=1; j1<=tj;j1++){  /* For each valid combination of covariates or only once*/
    printf("Before Current directory %s!\n",pathcd);       if  (cptcovn>0) {
    if(chdir(pathcd) != 0)         fprintf(ficresprob, "\n#********** Variable "); 
     printf("Can't move to directory %s!\n",path);         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   if(getcwd(pathcd,MAXLINE) > 0)         fprintf(ficresprob, "**********\n#\n");
     printf("Current directory %s!\n",pathcd);         fprintf(ficresprobcov, "\n#********** Variable "); 
   /*strcat(plotcmd,CHARSEPARATOR);*/         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   sprintf(plotcmd,"gnuplot");         fprintf(ficresprobcov, "**********\n#\n");
 #ifndef UNIX                          
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);         fprintf(ficgp, "\n#********** Variable "); 
 #endif         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   if(!stat(plotcmd,&info)){         fprintf(ficgp, "**********\n#\n");
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);                          
     if(!stat(getenv("GNUPLOTBIN"),&info)){                          
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     }else         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
       strcpy(pplotcmd,plotcmd);         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 #ifdef UNIX                          
     strcpy(plotcmd,GNUPLOTPROGRAM);         fprintf(ficresprobcor, "\n#********** Variable ");    
     if(!stat(plotcmd,&info)){         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);         fprintf(ficresprobcor, "**********\n#");    
     }else         if(invalidvarcomb[j1]){
       strcpy(pplotcmd,plotcmd);           fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); 
 #endif           fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); 
   }else           continue;
     strcpy(pplotcmd,plotcmd);         }
         }
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        gp=vector(1,(nlstate)*(nlstate+ndeath));
   if((outcmd=system(plotcmd)) != 0){       gm=vector(1,(nlstate)*(nlstate+ndeath));
     printf("\n Problem with gnuplot\n");       for (age=bage; age<=fage; age ++){ 
   }         cov[2]=age;
   printf(" Wait...");         if(nagesqr==1)
   while (z[0] != 'q') {           cov[3]= age*age;
     /* chdir(path); */         for (k=1; k<=cptcovn;k++) {
     printf("\nType e to edit output files, g to graph again and q for exiting: ");           cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
     scanf("%s",z);           /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
 /*     if (z[0] == 'c') system("./imach"); */                                                                      * 1  1 1 1 1
     if (z[0] == 'e') {                                                                      * 2  2 1 1 1
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);                                                                      * 3  1 2 1 1
       system(optionfilehtm);                                                                      */
     }           /* nbcode[1][1]=0 nbcode[1][2]=1;*/
     else if (z[0] == 'g') system(plotcmd);         }
     else if (z[0] == 'q') exit(0);         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   }         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
   end:         for (k=1; k<=cptcovprod;k++)
   while (z[0] != 'q') {           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
     printf("\nType  q for exiting: ");                          
     scanf("%s",z);                          
   }         for(theta=1; theta <=npar; theta++){
 }           for(i=1; i<=npar; i++)
              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                                   
            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                                   
            k=0;
            for(i=1; i<= (nlstate); i++){
              for(j=1; j<=(nlstate+ndeath);j++){
                k=k+1;
                gp[k]=pmmij[i][j];
              }
            }
                                   
            for(i=1; i<=npar; i++)
              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
                                   
            pmij(pmmij,cov,ncovmodel,xp,nlstate);
            k=0;
            for(i=1; i<=(nlstate); i++){
              for(j=1; j<=(nlstate+ndeath);j++){
                k=k+1;
                gm[k]=pmmij[i][j];
              }
            }
                                   
            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
          }
   
          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
            for(theta=1; theta <=npar; theta++)
              trgradg[j][theta]=gradg[theta][j];
                           
          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                           
          pmij(pmmij,cov,ncovmodel,x,nlstate);
                           
          k=0;
          for(i=1; i<=(nlstate); i++){
            for(j=1; j<=(nlstate+ndeath);j++){
              k=k+1;
              mu[k][(int) age]=pmmij[i][j];
            }
          }
          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
              varpij[i][j][(int)age] = doldm[i][j];
                           
          /*printf("\n%d ",(int)age);
            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
            }*/
                           
          fprintf(ficresprob,"\n%d ",(int)age);
          fprintf(ficresprobcov,"\n%d ",(int)age);
          fprintf(ficresprobcor,"\n%d ",(int)age);
                           
          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
          }
          i=0;
          for (k=1; k<=(nlstate);k++){
            for (l=1; l<=(nlstate+ndeath);l++){ 
              i++;
              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
              for (j=1; j<=i;j++){
                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
              }
            }
          }/* end of loop for state */
        } /* end of loop for age */
        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       
        /* Confidence intervalle of pij  */
        /*
          fprintf(ficgp,"\nunset parametric;unset label");
          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
        */
                   
        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
        first1=1;first2=2;
        for (k2=1; k2<=(nlstate);k2++){
          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
            if(l2==k2) continue;
            j=(k2-1)*(nlstate+ndeath)+l2;
            for (k1=1; k1<=(nlstate);k1++){
              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                if(l1==k1) continue;
                i=(k1-1)*(nlstate+ndeath)+l1;
                if(i<=j) continue;
                for (age=bage; age<=fage; age ++){ 
                  if ((int)age %5==0){
                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                    mu1=mu[i][(int) age]/stepm*YEARM ;
                    mu2=mu[j][(int) age]/stepm*YEARM;
                    c12=cv12/sqrt(v1*v2);
                    /* Computing eigen value of matrix of covariance */
                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                    if ((lc2 <0) || (lc1 <0) ){
                      if(first2==1){
                        first1=0;
                        printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                      }
                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
                      /* lc2=fabs(lc2); */
                    }
                                                                   
                    /* Eigen vectors */
                    if(1+(v1-lc1)*(v1-lc1)/cv12/cv12 <1.e-5){
                      printf(" Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                      fprintf(ficlog," Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                      v11=(1./sqrt(fabs(1+(v1-lc1)*(v1-lc1)/cv12/cv12)));
                    }else
                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                    /*v21=sqrt(1.-v11*v11); *//* error */
                    v21=(lc1-v1)/cv12*v11;
                    v12=-v21;
                    v22=v11;
                    tnalp=v21/v11;
                    if(first1==1){
                      first1=0;
                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                    }
                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                    /*printf(fignu*/
                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                    if(first==1){
                      first=0;
                      fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                      fprintf(ficgp,"\nset parametric;unset label");
                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                      fprintf(ficgp,"\nset ter svg size 640, 480");
                      fprintf(fichtmcov,"\n<p><br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">                                                                                                                                           \
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,      \
                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                      fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                      fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \
                              mu1,std,v11,sqrt(fabs(lc1)),v12,sqrt(fabs(lc2)), \
                              mu2,std,v21,sqrt(fabs(lc1)),v22,sqrt(fabs(lc2))); /* For gnuplot only */
                    }else{
                      first=0;
                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
                              mu1,std,v11,sqrt(lc1),v12,sqrt(fabs(lc2)),   \
                              mu2,std,v21,sqrt(lc1),v22,sqrt(fabs(lc2)));
                    }/* if first */
                  } /* age mod 5 */
                } /* end loop age */
                fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                first=1;
              } /*l12 */
            } /* k12 */
          } /*l1 */
        }/* k1 */
      }  /* loop on combination of covariates j1 */
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
      free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
      free_vector(xp,1,npar);
      fclose(ficresprob);
      fclose(ficresprobcov);
      fclose(ficresprobcor);
      fflush(ficgp);
      fflush(fichtmcov);
    }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int mobilav, int prevfcast, int mobilavproj, int prevbcast, int estepm , \
                     double jprev1, double mprev1,double anprev1, double dateprev1, double dateprojd, double dateback1, \
                     double jprev2, double mprev2,double anprev2, double dateprev2, double dateprojf, double dateback2){
     int jj1, k1, i1, cpt, k4, nres;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li> model=1+age+%s\n \
   </ul>", model);
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
      fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
      fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
      fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
      fprintf(fichtm,"\
    - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
      fprintf(fichtm,"\
    - Period (forward) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
      fprintf(fichtm,"\
    - Backward prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      if(prevfcast==1){
        fprintf(fichtm,"\
    - Prevalence projections by age and states:                            \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
      }
   
   
      m=pow(2,cptcoveff);
      if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
      fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
      jj1=0;
   
      fprintf(fichtm," \n<ul>");
      for(nres=1; nres <= nresult; nres++) /* For each resultline */
      for(k1=1; k1<=m;k1++){ /* For each combination of covariate */
        if(m != 1 && TKresult[nres]!= k1)
          continue;
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"\n<li><a  size=\"1\" color=\"#EC5E5E\" href=\"#rescov");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);
          }
          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
            fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]);
          }
          fprintf(fichtm,"\">");
          
          /* if(nqfveff+nqtveff 0) */ /* Test to be done */
          fprintf(fichtm,"************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);
          }
          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
            fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
          }
          if(invalidvarcomb[k1]){
            fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); 
            continue;
          }
          fprintf(fichtm,"</a></li>");
        } /* cptcovn >0 */
      }
        fprintf(fichtm," \n</ul>");
   
      jj1=0;
   
      for(nres=1; nres <= nresult; nres++) /* For each resultline */
      for(k1=1; k1<=m;k1++){ /* For each combination of covariate */
        if(m != 1 && TKresult[nres]!= k1)
          continue;
   
        /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"\n<p><a name=\"rescov");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);
          }
          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
            fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]);
          }
          fprintf(fichtm,"\"</a>");
    
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);
            printf(" V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);fflush(stdout);
            /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
            /* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */
          }
          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);fflush(stdout);
         }
          
          /* if(nqfveff+nqtveff 0) */ /* Test to be done */
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
          if(invalidvarcomb[k1]){
            fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); 
            printf("\nCombination (%d) ignored because no cases \n",k1); 
            continue;
          }
        }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model (yours is: logit(pij)=log(pij/pii)= aij+ bij age+%s) as a function of age: <a href=\"%s_%d-1-%d.svg\">%s_%d-1-%d.svg</a><br> \
   <img src=\"%s_%d-1-%d.svg\">",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);
        /* Pij */
        fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2-%d.svg\">%s_%d-2-%d.svg</a><br> \
   <img src=\"%s_%d-2-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
    incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
   divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3-%d.svg\">%s_%d-3-%d.svg</a><br> \
   <img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. And probability to be observed in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d and in any other live state (total).\
    And probability to be observed in various states (up to %d) being in state %d at different ages.       \
    <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> <img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
        }
        /* Period (forward stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
        }
        if(prevbcast==1){
          /* Backward prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
          }
        }
        if(prevfcast==1){
          /* Projection of prevalence up to period (forward stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) forward prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d-%d.svg\">", dateprev1, dateprev2, mobilavproj, dateprojd, dateprojf, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
          }
        }
        if(prevbcast==1){
         /* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \
    from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d (randomness in cross-sectional prevalence is not taken into \
    account but can visually be appreciated). Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \
   with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
    <img src=\"%s_%d-%d-%d.svg\">", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
          }
        }
            
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a> <br> \
   <img src=\"%s_%d-%d-%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
        }
        /* } /\* end i1 *\/ */
      }/* End k1 */
      fprintf(fichtm,"</ul>");
   
      fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
      fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
      fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
      fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
      fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
      fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
      fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the forward (period) prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
              estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
      fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
              estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
      fprintf(fichtm,"\
    - Standard deviation of forward (period) prevalences: <a href=\"%s\">%s</a> <br>\n",\
              subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      fflush(fichtm);
      fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
      m=pow(2,cptcoveff);
      if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
      jj1=0;
   
      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
      for(k1=1; k1<=m;k1++){
        if(m != 1 && TKresult[nres]!= k1)
          continue;
        /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++)  /**< cptcoveff number of variables */
            fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);
            /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
   
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   
          if(invalidvarcomb[k1]){
            fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); 
            continue;
          }
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>\n <br>\
   <img src=\"%s_%d-%d-%d.svg\">",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences:  <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>\n<br>\
   <img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres);
        /* } /\* end i1 *\/ */
      }/* End k1 */
     }/* End nres */
      fprintf(fichtm,"</ul>");
      fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int prevbcast, char pathc[], double p[], int offyear, int offbyear){
   
     char dirfileres[132],optfileres[132];
     char gplotcondition[132], gplotlabel[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,ij=0, ijp=0, l=0;
     int lv=0, vlv=0, kl=0;
     int ng=0;
     int vpopbased;
     int ioffset; /* variable offset for columns */
     int iyearc=1; /* variable column for year of projection  */
     int iagec=1; /* variable column for age of projection  */
     int nres=0; /* Index of resultline */
     int istart=1; /* For starting graphs in projections */
   
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
     /*#endif */
     m=pow(2,cptcoveff);
   
     /* diagram of the model */
     fprintf(ficgp,"\n#Diagram of the model \n");
     fprintf(ficgp,"\ndelta=0.03;delta2=0.07;unset arrow;\n");
     fprintf(ficgp,"yoff=(%d > 2? 0:1);\n",nlstate);
     fprintf(ficgp,"\n#Peripheral arrows\nset for [i=1:%d] for [j=1:%d] arrow i*10+j from cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.95*(cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) - cos(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta2:0)), -0.95*(sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) - sin(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d))+( i!=j?(i-j)/abs(i-j)*delta2:0)) ls (i < j? 1:2)\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
   
     fprintf(ficgp,"\n#Centripete arrows (turning in other direction (1-i) instead of (i-1)) \nset for [i=1:%d] arrow (%d+1)*10+i from cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.80*(cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0)  ), -0.80*(sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) + yoff ) ls 4\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
     fprintf(ficgp,"\n#show arrow\nunset label\n");
     fprintf(ficgp,"\n#States labels, starting from 2 (2-i) instead of (1-i), was (i-1)\nset for [i=1:%d] label i sprintf(\"State %%d\",i) center at cos(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)), yoff+sin(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)) font \"helvetica, 16\" tc rgbcolor \"blue\"\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
     fprintf(ficgp,"\nset label %d+1 sprintf(\"State %%d\",%d+1) center at 0.,0.  font \"helvetica, 16\" tc rgbcolor \"red\"\n",nlstate,nlstate);
     fprintf(ficgp,"\n#show label\nunset border;unset xtics; unset ytics;\n");
     fprintf(ficgp,"\n\nset ter svg size 640, 480;set out \"%s_.svg\" \n",subdirf2(optionfilefiname,"D_"));
     fprintf(ficgp,"unset log y; plot [-1.2:1.2][yoff-1.2:1.2] 1/0 not; set out;reset;\n");
   
     /* Contribution to likelihood */
     /* Plot the probability implied in the likelihood */
     fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
     /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
     fprintf(ficgp,"\nset ter pngcairo size 640, 480");
   /* nice for mle=4 plot by number of matrix products.
      replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
     /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
     fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
     fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
     fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
     fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
     for (i=1; i<= nlstate ; i ++) {
       fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
       fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
       fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
       for (j=2; j<= nlstate+ndeath ; j ++) {
         fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
       }
       fprintf(ficgp,";\nset out; unset ylabel;\n"); 
     }
     /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */                
     /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
     /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
     fprintf(ficgp,"\nset out;unset log\n");
     /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */
       for (k1=1; k1<= m ; k1 ++){ /* For each valid combination of covariate */
         for(nres=1; nres <= nresult; nres++){ /* For each resultline */
           /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
           if(m != 1 && TKresult[nres]!= k1)
             continue;
           /* We are interested in selected combination by the resultline */
           /* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */
           fprintf(ficgp,"\n# 1st: Forward (stable period) prevalence with CI: 'VPL_' files  and live state =%d ", cpt);
           strcpy(gplotlabel,"(");
           for (k=1; k<=cptcoveff; k++){    /* For each covariate k get corresponding value lv for combination k1 */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */
             /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */
             /* printf(" V%d=%d ",Tvaraff[k],vlv); */
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             /* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }
           strcpy(gplotlabel+strlen(gplotlabel),")");
           /* printf("\n#\n"); */
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             /*k1=k1-1;*/ /* To be checked */
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
         
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
           fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres);
           /* fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); */
           fprintf(ficgp,"set title \"Alive state %d %s\" font \"Helvetica,12\"\n",cpt,gplotlabel);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
           /* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */
         /* k1-1 error should be nres-1*/
           for (i=1; i<= nlstate ; i ++) {
             if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
             else        fprintf(ficgp," %%*lf (%%*lf)");
           }
           fprintf(ficgp,"\" t\"Forward prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
           for (i=1; i<= nlstate ; i ++) {
             if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           } 
           fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); 
           for (i=1; i<= nlstate ; i ++) {
             if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }  
           /* fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); */
           
           fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" u 1:((",subdirf2(fileresu,"P_"));
           if(cptcoveff ==0){
             fprintf(ficgp,"$%d)) t 'Observed prevalence in state %d' with line lt 3",      2+3*(cpt-1),  cpt );
           }else{
             kl=0;
             for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
               lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
               /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
               /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
               /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
               vlv= nbcode[Tvaraff[k]][lv];
               kl++;
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
               /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
               if(k==cptcoveff){
                 fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Observed prevalence in state %d' w l lt 2",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
                         2+cptcoveff*2+3*(cpt-1),  cpt );  /* 4 or 6 ?*/
               }else{
                 fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
                 kl++;
               }
             } /* end covariate */
           } /* end if no covariate */
   
           if(prevbcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
             /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
             fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */
             if(cptcoveff ==0){
               fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line lt 3",    2+(cpt-1),  cpt );
             }else{
               kl=0;
               for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[k]][lv];
                 kl++;
                 /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                 /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                 /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                 /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                 if(k==cptcoveff){
                   fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
                           2+cptcoveff*2+(cpt-1),  cpt );  /* 4 or 6 ?*/
                 }else{
                   fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
                   kl++;
                 }
               } /* end covariate */
             } /* end if no covariate */
             if(prevbcast == 1){
               fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);
               /* k1-1 error should be nres-1*/
               for (i=1; i<= nlstate ; i ++) {
                 if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                 else        fprintf(ficgp," %%*lf (%%*lf)");
               }
               fprintf(ficgp,"\" t\"Backward (stable) prevalence\" w l lt 6 dt 3,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);
               for (i=1; i<= nlstate ; i ++) {
                 if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                 else fprintf(ficgp," %%*lf (%%*lf)");
               } 
               fprintf(ficgp,"\" t\"95%% CI\" w l lt 4,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); 
               for (i=1; i<= nlstate ; i ++) {
                 if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                 else fprintf(ficgp," %%*lf (%%*lf)");
               } 
               fprintf(ficgp,"\" t\"\" w l lt 4");
             } /* end if backprojcast */
           } /* end if prevbcast */
           /* fprintf(ficgp,"\nset out ;unset label;\n"); */
           fprintf(ficgp,"\nset out ;unset title;\n");
         } /* nres */
       } /* k1 */
     } /* cpt */
   
     
     /*2 eme*/
     for (k1=1; k1<= m ; k1 ++){  
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(m != 1 && TKresult[nres]!= k1)
           continue;
         fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
         strcpy(gplotlabel,"(");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
         }
         /* for(k=1; k <= ncovds; k++){ */
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
         strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
                           
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres);
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           fprintf(ficgp,"\nset label \"popbased %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",vpopbased,gplotlabel);
           if(vpopbased==0){
             fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
           }else
             fprintf(ficgp,"\nreplot ");
           for (i=1; i<= nlstate+1 ; i ++) {
             k=2*i;
             fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1, vpopbased);
             for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");
             }   
             if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
             else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
             fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased);
             for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");
             }   
             fprintf(ficgp,"\" t\"\" w l lt 0,");
             fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased);
             for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");
             }   
             if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
             else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
           } /* state */
         } /* vpopbased */
         fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */
       } /* end nres */
     } /* k1 end 2 eme*/
           
           
     /*3eme*/
     for (k1=1; k1<= m ; k1 ++){
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(m != 1 && TKresult[nres]!= k1)
           continue;
   
         for (cpt=1; cpt<= nlstate ; cpt ++) {
           fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files:  combination=%d state=%d",k1, cpt);
           strcpy(gplotlabel,"(");
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
                           
           /*       k=2+nlstate*(2*cpt-2); */
           k=2+(nlstate+1)*(cpt-1);
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"%s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel);
           fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),nres-1,nres-1,k,cpt);
           /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                                   
           */
           for (i=1; i< nlstate ; i ++) {
             fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+i,cpt,i+1);
             /*    fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                                   
           } 
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+nlstate,cpt);
         }
         fprintf(ficgp,"\nunset label;\n");
       } /* end nres */
     } /* end kl 3eme */
     
     /* 4eme */
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<=m; k1++){    /* For each covariate and each value */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(m != 1 && TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/
           strcpy(gplotlabel,"(");
           fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
         
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3;
           for (i=1; i<= nlstate ; i ++){
             if(i==1){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
             }else{
               fprintf(ficgp,", '' ");
             }
             l=(nlstate+ndeath)*(i-1)+1;
             fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
             for (j=2; j<= nlstate+ndeath ; j ++)
               fprintf(ficgp,"+$%d",k+l+j-1);
             fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
           } /* nlstate */
           fprintf(ficgp,"\nset out; unset label;\n");
         } /* end cpt state*/ 
       } /* end nres */
     } /* end covariate k1 */  
   
   /* 5eme */
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1++){ /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(m != 1 && TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
           strcpy(gplotlabel,"(");
           fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
         
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3;
           for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
             if(j==1)
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
             else
               fprintf(ficgp,", '' ");
             l=(nlstate+ndeath)*(cpt-1) +j;
             fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
             /* for (i=2; i<= nlstate+ndeath ; i ++) */
             /*   fprintf(ficgp,"+$%d",k+l+i-1); */
             fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
           } /* nlstate */
           fprintf(ficgp,", '' ");
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
           for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
             l=(nlstate+ndeath)*(cpt-1) +j;
             if(j < nlstate)
               fprintf(ficgp,"$%d +",k+l);
             else
               fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
           }
           fprintf(ficgp,"\nset out; unset label;\n");
         } /* end cpt state*/ 
       } /* end covariate */  
     } /* end nres */
     
   /* 6eme */
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       if(m != 1 && TKresult[nres]!= k1)
         continue;
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */
         strcpy(gplotlabel,"(");      
         fprintf(ficgp,"\n#\n#\n#CV preval stable (forward): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
         }
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         } 
         strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
         
         fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
         fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3; /* Offset */
         for (i=1; i<= nlstate ; i ++){ /* State of origin */
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1; /* 1, 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out; unset label;\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     
   /* 7eme */
     if(prevbcast == 1){
       /* CV backward prevalence  for each covariate */
       for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(m != 1 && TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */
           strcpy(gplotlabel,"(");      
           fprintf(ficgp,"\n#\n#\n#CV Backward stable prevalence: 'pijb' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3; /* Offset */
           for (i=1; i<= nlstate ; i ++){ /* State of arrival */
             if(i==1)
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
             else
               fprintf(ficgp,", '' ");
             /* l=(nlstate+ndeath)*(i-1)+1; */
             l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
             fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */
             /* for (j=2; j<= nlstate ; j ++) */
             /*    fprintf(ficgp,"+$%d",k+l+j-1); */
             /*    /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
             fprintf(ficgp,") t \"bprev(%d,%d)\" w l",cpt,i);
           } /* nlstate */
           fprintf(ficgp,"\nset out; unset label;\n");
         } /* end cpt state*/ 
       } /* end covariate */  
     } /* End if prevbcast */
     
     /* 8eme */
     if(prevfcast==1){
       /* Projection from cross-sectional to forward stable (period) prevalence for each covariate */
       
       for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(m != 1 && TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           strcpy(gplotlabel,"(");      
           fprintf(ficgp,"\n#\n#\n#Projection of prevalence to forward stable prevalence (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
   
           /* for (i=1; i<= nlstate+1 ; i ++){  /\* nlstate +1 p11 p21 p.1 *\/ */
           istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */
           /*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */
           for (i=istart; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==istart){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               ioffset=2; /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               fprintf(ficgp," u %d:(", ioffset); 
               if(i==nlstate+1){
                 fprintf(ficgp," $%d/(1.-$%d)):1 t 'pw.%d' with line lc variable ",        \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                 fprintf(ficgp,",\\\n '' ");
                 fprintf(ficgp," u %d:(",ioffset); 
                 fprintf(ficgp," (($1-$2) == %d ) ? $%d/(1.-$%d) : 1/0):1 with labels center not ", \
                        offyear,                           \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate );
               }else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ",      \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
             }else{ /* more than 2 covariates */
               ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/
               /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
               /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
               iyearc=ioffset-1;
               iagec=ioffset;
               fprintf(ficgp," u %d:(",ioffset); 
               kl=0;
               strcpy(gplotcondition,"(");
               for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */
                 kl++;
                 sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
                 kl++;
                 if(k <cptcoveff && cptcoveff>1)
                   sprintf(gplotcondition+strlen(gplotcondition)," && ");
               }
               strcpy(gplotcondition+strlen(gplotcondition),")");
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
               /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
               if(i==nlstate+1){
                 fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0):%d t 'p.%d' with line lc variable", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,iyearc, cpt );
                 fprintf(ficgp,",\\\n '' ");
                 fprintf(ficgp," u %d:(",iagec); 
                 fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d/(1.-$%d) : 1/0):%d with labels center not ", gplotcondition, \
                         iyearc, iagec, offyear,                           \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate, iyearc );
   /*  '' u 6:(($1==1 && $2==0  && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/
               }else{
                 fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );
               }
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out; unset label;\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevfcast */
     
     if(prevbcast==1){
       /* Back projection from cross-sectional to stable (mixed) for each covariate */
       
       for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(m != 1 && TKresult[nres]!= k1)
           continue;
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           strcpy(gplotlabel,"(");      
           fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
           }
           for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
             fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"# hbijx=backprobability over h years, hb.jx is weighted by observed prev at destination state\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
   
           /* for (i=1; i<= nlstate+1 ; i ++){  /\* nlstate +1 p11 p21 p.1 *\/ */
           istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */
           /*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */
           for (i=istart; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==istart){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"FB_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               ioffset=2; /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               fprintf(ficgp," u %d:(", ioffset); 
               if(i==nlstate+1){
                 fprintf(ficgp," $%d/(1.-$%d)):1 t 'bw%d' with line lc variable ", \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                 fprintf(ficgp,",\\\n '' ");
                 fprintf(ficgp," u %d:(",ioffset); 
                 fprintf(ficgp," (($1-$2) == %d ) ? $%d : 1/0):1 with labels center not ", \
                        offbyear,                          \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1) );
               }else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'b%d%d' with line ",      \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt,i );
             }else{ /* more than 2 covariates */
               ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/
               /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
               /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
               iyearc=ioffset-1;
               iagec=ioffset;
               fprintf(ficgp," u %d:(",ioffset); 
               kl=0;
               strcpy(gplotcondition,"(");
               for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */
                 kl++;
                 sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
                 kl++;
                 if(k <cptcoveff && cptcoveff>1)
                   sprintf(gplotcondition+strlen(gplotcondition)," && ");
               }
               strcpy(gplotcondition+strlen(gplotcondition),")");
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
               /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
               if(i==nlstate+1){
                 fprintf(ficgp,"%s ? $%d : 1/0):%d t 'bw%d' with line lc variable", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),iyearc,cpt );
                 fprintf(ficgp,",\\\n '' ");
                 fprintf(ficgp," u %d:(",iagec); 
                 /* fprintf(ficgp,"%s && (($5-$6) == %d ) ? $%d/(1.-$%d) : 1/0):5 with labels center not ", gplotcondition, \ */
                 fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d : 1/0):%d with labels center not ", gplotcondition, \
                         iyearc,iagec,offbyear,                            \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1), iyearc );
   /*  '' u 6:(($1==1 && $2==0  && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/
               }else{
                 /* fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ */
                 fprintf(ficgp,"%s ? $%d : 1/0) t 'b%d%d' with line ", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1), cpt,i );
               }
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out; unset label;\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevbcast */
     
     
     /* 9eme writing MLE parameters */
     fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
     }
     fprintf(ficgp,"##############\n#\n");
     
     /*goto avoid;*/
     /* 10eme Graphics of probabilities or incidences using written MLE parameters */
     fprintf(ficgp,"\n##############\n#10eme Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
     for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
       fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n");
       fprintf(ficgp,"#model=%s \n",model);
       fprintf(ficgp,"# Type of graphic ng=%d\n",ng);
       fprintf(ficgp,"#   k1=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */
       for(k1=1; k1 <=m; k1++)  /* For each combination of covariate */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(m != 1 && TKresult[nres]!= k1)
           continue;
         fprintf(ficgp,"\n\n# Combination of dummy  k1=%d which is ",k1);
         strcpy(gplotlabel,"(");
         /*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*/
         for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv);
         }
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         } 
         strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");
         fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres);
         fprintf(ficgp,"\nset key outside ");
         /* fprintf(ficgp,"\nset label \"%s\" at graph 1.2,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); */
         fprintf(ficgp,"\nset title \"%s\" font \"Helvetica,12\"\n",gplotlabel);
         fprintf(ficgp,"\nset ter svg size 640, 480 ");
         if (ng==1){
           fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
           fprintf(ficgp,"\nunset log y");
         }else if (ng==2){
           fprintf(ficgp,"\nset ylabel \"Probability\"\n");
           fprintf(ficgp,"\nset log y");
         }else if (ng==3){
           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           fprintf(ficgp,"\nset log y");
         }else
           fprintf(ficgp,"\nunset title ");
         fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         i=1;
         for(k2=1; k2<=nlstate; k2++) {
           k3=i;
           for(k=1; k<=(nlstate+ndeath); k++) {
             if (k != k2){
               switch( ng) {
               case 1:
                 if(nagesqr==0)
                   fprintf(ficgp," p%d+p%d*x",i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                 break;
               case 2: /* ng=2 */
                 if(nagesqr==0)
                   fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                 break;
               case 3:
                 if(nagesqr==0)
                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                 break;
               }
               ij=1;/* To be checked else nbcode[0][0] wrong */
               ijp=1; /* product no age */
               /* for(j=3; j <=ncovmodel-nagesqr; j++) { */
               for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
                 /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                 if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                   if(j==Tage[ij]) { /* Product by age  To be looked at!!*/
                     if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                       if(DummyV[j]==0){
                         fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);;
                       }else{ /* quantitative */
                         fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                         /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                       }
                       ij++;
                     }
                   } 
                 }else if(cptcovprod >0){
                   if(j==Tprod[ijp]) { /* */ 
                     /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                     if(ijp <=cptcovprod) { /* Product */
                       if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                         if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                           /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                           fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                         }else{ /* Vn is dummy and Vm is quanti */
                           /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                           fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                         }
                       }else{ /* Vn*Vm Vn is quanti */
                         if(DummyV[Tvard[ijp][2]]==0){
                           fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                         }else{ /* Both quanti */
                           fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                         }
                       }
                       ijp++;
                     }
                   } /* end Tprod */
                 } else{  /* simple covariate */
                   /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */
                   if(Dummy[j]==0){
                     fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /*  */
                   }else{ /* quantitative */
                     fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */
                     /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   }
                 } /* end simple */
               } /* end j */
             }else{
               i=i-ncovmodel;
               if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */
                 fprintf(ficgp," (1.");
             }
             
             if(ng != 1){
               fprintf(ficgp,")/(1");
               
               for(cpt=1; cpt <=nlstate; cpt++){ 
                 if(nagesqr==0)
                   fprintf(ficgp,"+exp(p%d+p%d*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr);
                  
                 ij=1;
                 for(j=3; j <=ncovmodel-nagesqr; j++){
                    if(cptcovage >0){ 
                      if((j-2)==Tage[ij]) { /* Bug valgrind */
                        if(ij <=cptcovage) { /* Bug valgrind */
                          fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);
                          /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                          ij++;
                        }
                      }
                    }else
                      fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/* Valgrind bug nbcode */
                 }
                 fprintf(ficgp,")");
               }
               fprintf(ficgp,")");
               if(ng ==2)
                 fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"p%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
               else /* ng= 3 */
                 fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"i%d%d\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
             }else{ /* end ng <> 1 */
               if( k !=k2) /* logit p11 is hard to draw */
                 fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"logit(p%d%d)\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
             }
             if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
               fprintf(ficgp,",");
             if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath))
               fprintf(ficgp,",");
             i=i+ncovmodel;
           } /* end k */
         } /* end k2 */
         /* fprintf(ficgp,"\n set out; unset label;set key default;\n"); */
         fprintf(ficgp,"\n set out; unset title;set key default;\n");
       } /* end k1 */
     } /* end ng */
     /* avoid: */
     fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   /* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */
    int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){
      
      int i, cpt, cptcod;
      int modcovmax =1;
      int mobilavrange, mob;
      int iage=0;
      int firstA1=0, firstA2=0;
   
      double sum=0., sumr=0.;
      double age;
      double *sumnewp, *sumnewm, *sumnewmr;
      double *agemingood, *agemaxgood; 
      double *agemingoodr, *agemaxgoodr; 
     
     
      /* modcovmax=2*cptcoveff;  Max number of modalities. We suppose  */
      /*              a covariate has 2 modalities, should be equal to ncovcombmax   */
   
      sumnewp = vector(1,ncovcombmax);
      sumnewm = vector(1,ncovcombmax);
      sumnewmr = vector(1,ncovcombmax);
      agemingood = vector(1,ncovcombmax);  
      agemingoodr = vector(1,ncovcombmax); 
      agemaxgood = vector(1,ncovcombmax);
      agemaxgoodr = vector(1,ncovcombmax);
   
      for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
        sumnewm[cptcod]=0.; sumnewmr[cptcod]=0.;
        sumnewp[cptcod]=0.;
        agemingood[cptcod]=0, agemingoodr[cptcod]=0;
        agemaxgood[cptcod]=0, agemaxgoodr[cptcod]=0;
      }
      if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */
     
      if(mobilav==-1 || mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
        if(mobilav==1 || mobilav==-1) mobilavrange=5; /* default */
        else mobilavrange=mobilav;
        for (age=bage; age<=fage; age++)
          for (i=1; i<=nlstate;i++)
            for (cptcod=1;cptcod<=ncovcombmax;cptcod++)
              mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
        /* We keep the original values on the extreme ages bage, fage and for 
           fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           we use a 5 terms etc. until the borders are no more concerned. 
        */ 
        for (mob=3;mob <=mobilavrange;mob=mob+2){
          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
            for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
              sumnewm[cptcod]=0.;
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                }
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
              } /* end i */
              if(sumnewm[cptcod] >1.e-3) mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/sumnewm[cptcod]; /* Rescaling to sum one */
            } /* end cptcod */
          }/* end age */
        }/* end mob */
      }else{
        printf("Error internal in movingaverage, mobilav=%d.\n",mobilav);
        return -1;
      }
   
      for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ /* for each combination */
        /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
        if(invalidvarcomb[cptcod]){
          printf("\nCombination (%d) ignored because no cases \n",cptcod); 
          continue;
        }
   
        for (age=fage-(mob-1)/2; age>=bage+(mob-1)/2; age--){ /*looking for the youngest and oldest good age */
          sumnewm[cptcod]=0.;
          sumnewmr[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
          }
          if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
            agemingoodr[cptcod]=age;
          }
          if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
              agemingood[cptcod]=age;
          }
        } /* age */
        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ /*looking for the youngest and oldest good age */
          sumnewm[cptcod]=0.;
          sumnewmr[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
          }
          if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
            agemaxgoodr[cptcod]=age;
          }
          if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
            agemaxgood[cptcod]=age;
          }
        } /* age */
        /* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */
        /* but they will change */
        firstA1=0;firstA2=0;
        for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */
          sumnewm[cptcod]=0.;
          sumnewmr[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
          }
          if(mobilav==-1){ /* Forcing raw ages if good else agemingood */
            if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
              agemaxgoodr[cptcod]=age;  /* age min */
              for (i=1; i<=nlstate;i++)
                mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
            }else{ /* bad we change the value with the values of good ages */
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgoodr[cptcod]][i][cptcod];
              } /* i */
            } /* end bad */
          }else{
            if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
              agemaxgood[cptcod]=age;
            }else{ /* bad we change the value with the values of good ages */
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
              } /* i */
            } /* end bad */
          }/* end else */
          sum=0.;sumr=0.;
          for (i=1; i<=nlstate;i++){
            sum+=mobaverage[(int)age][i][cptcod];
            sumr+=probs[(int)age][i][cptcod];
          }
          if(fabs(sum - 1.) > 1.e-3) { /* bad */
            if(!firstA1){
              firstA1=1;
              printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
            }
            fprintf(ficlog,"Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
          } /* end bad */
          /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
          if(fabs(sumr - 1.) > 1.e-3) { /* bad */
            if(!firstA2){
              firstA2=1;
              printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
            }
            fprintf(ficlog,"Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
          } /* end bad */
        }/* age */
   
        for (age=bage+(mob-1)/2; age<=fage; age++){/* From youngest, finding the oldest wrong */
          sumnewm[cptcod]=0.;
          sumnewmr[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
          } 
          if(mobilav==-1){ /* Forcing raw ages if good else agemingood */
            if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good */
              agemingoodr[cptcod]=age;
              for (i=1; i<=nlstate;i++)
                mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
            }else{ /* bad we change the value with the values of good ages */
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingoodr[cptcod]][i][cptcod];
              } /* i */
            } /* end bad */
          }else{
            if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
              agemingood[cptcod]=age;
            }else{ /* bad */
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
              } /* i */
            } /* end bad */
          }/* end else */
          sum=0.;sumr=0.;
          for (i=1; i<=nlstate;i++){
            sum+=mobaverage[(int)age][i][cptcod];
            sumr+=mobaverage[(int)age][i][cptcod];
          }
          if(fabs(sum - 1.) > 1.e-3) { /* bad */
            printf("Moving average B1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you decrease fage=%d?\n",cptcod, sum, (int) age, (int)fage);
          } /* end bad */
          /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
          if(fabs(sumr - 1.) > 1.e-3) { /* bad */
            printf("Moving average B2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase fage=%d\n",cptcod,sumr, (int)age, (int)fage);
          } /* end bad */
        }/* age */
   
                   
        for (age=bage; age<=fage; age++){
          /* printf("%d %d ", cptcod, (int)age); */
          sumnewp[cptcod]=0.;
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewp[cptcod]+=probs[(int)age][i][cptcod];
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            /* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */
          }
          /* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */
        }
        /* printf("\n"); */
        /* } */
   
        /* brutal averaging */
        /* for (i=1; i<=nlstate;i++){ */
        /*   for (age=1; age<=bage; age++){ */
        /*          mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
        /*          /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */
        /*   }      */
        /*   for (age=fage; age<=AGESUP; age++){ */
        /*          mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; */
        /*          /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */
        /*   } */
        /* } /\* end i status *\/ */
        /* for (i=nlstate+1; i<=nlstate+ndeath;i++){ */
        /*   for (age=1; age<=AGESUP; age++){ */
        /*          /\*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*\/ */
        /*          mobaverage[(int)age][i][cptcod]=0.; */
        /*   } */
        /* } */
      }/* end cptcod */
      free_vector(agemaxgoodr,1, ncovcombmax);
      free_vector(agemaxgood,1, ncovcombmax);
      free_vector(agemingood,1, ncovcombmax);
      free_vector(agemingoodr,1, ncovcombmax);
      free_vector(sumnewmr,1, ncovcombmax);
      free_vector(sumnewm,1, ncovcombmax);
      free_vector(sumnewp,1, ncovcombmax);
      return 0;
    }/* End movingaverage */
    
   
    
   /************** Forecasting ******************/
   /* void prevforecast(char fileres[], double dateintmean, double anprojd, double mprojd, double jprojd, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anprojf, double p[], int cptcoveff)*/
   void prevforecast(char fileres[], double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){
     /* dateintemean, mean date of interviews
        dateprojd, year, month, day of starting projection 
        dateprojf date of end of projection;year of end of projection (same day and month as proj1).
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
     */
     /* double anprojd, mprojd, jprojd; */
     /* double anprojf, mprojf, jprojf; */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2;
     double *popeffectif,*popcount;
     double ***p3mat;
     /* double ***mobaverage; */
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     /*          firstpass, lastpass,  stepm,  weightopt, model); */
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
     fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else{
       hstepm=estepm;   
     }
     if(estepm > stepm){ /* Yes every two year */
       stepsize=2;
     }
     hstepm=hstepm/stepm;
   
     
     /* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
     /*                              fractional in yp1 *\/ */
     /* aintmean=yp; */
     /* yp2=modf((yp1*12),&yp); */
     /* mintmean=yp; */
     /* yp1=modf((yp2*30.5),&yp); */
     /* jintmean=yp; */
     /* if(jintmean==0) jintmean=1; */
     /* if(mintmean==0) mintmean=1; */
   
   
     /* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */
     /* date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); */
     /* date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); */
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
     
   /*            if (h==(int)(YEARM*yearp)){ */
     for(nres=1; nres <= nresult; nres++) /* For each resultline */
     for(k=1; k<=i1;k++){
       if(i1 != 1 && TKresult[nres]!= k)
         continue;
       if(invalidvarcomb[k]){
         printf("\nCombination (%d) projection ignored because no cases \n",k); 
         continue;
       }
       fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
         fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
       }
       fprintf(ficresf," yearproj age");
       for(j=1; j<=nlstate+ndeath;j++){ 
         for(i=1; i<=nlstate;i++)        
           fprintf(ficresf," p%d%d",i,j);
         fprintf(ficresf," wp.%d",j);
       }
       for (yearp=0; yearp<=(anprojf-anprojd);yearp +=stepsize) {
         fprintf(ficresf,"\n");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jprojd,mprojd,anprojd+yearp);   
         /* for (agec=fage; agec>=(ageminpar-1); agec--){  */
         for (agec=fage; agec>=(bage); agec--){ 
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
           nhstepm = nhstepm/hstepm; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           /* We compute pii at age agec over nhstepm);*/
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres);
           /* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */
           for (h=0; h<=nhstepm; h++){
             if (h*hstepm/YEARM*stepm ==yearp) {
               break;
             }
           }
           fprintf(ficresf,"\n");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresf,"%.f %.f ",anprojd+yearp,agec+h*hstepm/YEARM*stepm);
           
           for(j=1; j<=nlstate+ndeath;j++) {
             ppij=0.;
             for(i=1; i<=nlstate;i++) {
               if (mobilav>=1)
                ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k];
               else { /* even if mobilav==-1 we use mobaverage, probs may not sums to 1 */
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];
               }
               fprintf(ficresf," %.3f", p3mat[i][j][h]);
             } /* end i */
             fprintf(ficresf," %.3f", ppij);
           }/* end j */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         } /* end agec */
         /* diffyear=(int) anproj1+yearp-ageminpar-1; */
         /*printf("Prevforecast %d+%d-%d=diffyear=%d\n",(int) anproj1, (int)yearp,(int)ageminpar,(int) anproj1-(int)ageminpar);*/
       } /* end yearp */
     } /* end  k */
           
     fclose(ficresf);
     printf("End of Computing forecasting \n");
     fprintf(ficlog,"End of Computing forecasting\n");
   
   }
   
   /************** Back Forecasting ******************/
    /* void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */
    void prevbackforecast(char fileres[], double ***prevacurrent, double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){
     /* back1, year, month, day of starting backprojection
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anback2 year of end of backprojection (same day and month as back1).
        prevacurrent and prev are prevalences.
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
     double agec; /* generic age */
     double agelim, ppij, ppi, yp,yp1,yp2,jintmean,mintmean,aintmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     /* double ***mobaverage; */
     char fileresfb[FILENAMELENGTH];
    
     agelim=AGEINF;
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     /*          firstpass, lastpass,  stepm,  weightopt, model); */
   
     /*Do we need to compute prevalence again?*/
   
     /* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
     
     strcpy(fileresfb,"FB_");
     strcat(fileresfb,fileresu);
     if((ficresfb=fopen(fileresfb,"w"))==NULL) {
       printf("Problem with back forecast resultfile: %s\n", fileresfb);
       fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb);
     }
     printf("\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb);
     fprintf(ficlog,"\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb);
     
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
     
      
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else{
       hstepm=estepm;   
     }
     if(estepm >= stepm){ /* Yes every two year */
       stepsize=2;
     }
     
     hstepm=hstepm/stepm;
     /* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
     /*                              fractional in yp1 *\/ */
     /* aintmean=yp; */
     /* yp2=modf((yp1*12),&yp); */
     /* mintmean=yp; */
     /* yp1=modf((yp2*30.5),&yp); */
     /* jintmean=yp; */
     /* if(jintmean==0) jintmean=1; */
     /* if(mintmean==0) jintmean=1; */
     
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2);
     printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2);
     
     fprintf(ficresfb,"#****** Routine prevbackforecast **\n");
     
     for(nres=1; nres <= nresult; nres++) /* For each resultline */
     for(k=1; k<=i1;k++){
       if(i1 != 1 && TKresult[nres]!= k)
         continue;
       if(invalidvarcomb[k]){
         printf("\nCombination (%d) projection ignored because no cases \n",k); 
         continue;
       }
       fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
         fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
       }
       fprintf(ficresfb," yearbproj age");
       for(j=1; j<=nlstate+ndeath;j++){
         for(i=1; i<=nlstate;i++)
           fprintf(ficresfb," b%d%d",i,j);
         fprintf(ficresfb," b.%d",j);
       }
       for (yearp=0; yearp>=(anbackf-anbackd);yearp -=stepsize) {
         /* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  */
         fprintf(ficresfb,"\n");
         fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jbackd,mbackd,anbackd+yearp);
         /* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */
         /* for (agec=bage; agec<=agemax-1; agec++){  /\* testing *\/ */
         for (agec=bage; agec<=fage; agec++){  /* testing */
           /* We compute bij at age agec over nhstepm, nhstepm decreases when agec increases because of agemax;*/
           nhstepm=(int) (agec-agelim) *YEARM/stepm;/*     nhstepm=(int) rint((agec-agelim)*YEARM/stepm);*/
           nhstepm = nhstepm/hstepm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           /* computes hbxij at age agec over 1 to nhstepm */
           /* printf("####prevbackforecast debug  agec=%.2f nhstepm=%d\n",agec, nhstepm);fflush(stdout); */
           hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm, k, nres);
           /* hpxij(p3mat,nhstepm,agec,hstepm,p,             nlstate,stepm,oldm,savm, k,nres); */
           /* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */
           /* printf(" agec=%.2f\n",agec);fflush(stdout); */
           for (h=0; h<=nhstepm; h++){
             if (h*hstepm/YEARM*stepm ==-yearp) {
               break;
             }
           }
           fprintf(ficresfb,"\n");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresfb,"%.f %.f ",anbackd+yearp,agec-h*hstepm/YEARM*stepm);
           for(i=1; i<=nlstate+ndeath;i++) {
             ppij=0.;ppi=0.;
             for(j=1; j<=nlstate;j++) {
               /* if (mobilav==1) */
               ppij=ppij+p3mat[i][j][h]*prevacurrent[(int)agec][j][k];
               ppi=ppi+prevacurrent[(int)agec][j][k];
               /* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][j][k]; */
               /* ppi=ppi+mobaverage[(int)agec][j][k]; */
                 /* else { */
                 /*        ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; */
                 /* } */
               fprintf(ficresfb," %.3f", p3mat[i][j][h]);
             } /* end j */
             if(ppi <0.99){
               printf("Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi);
               fprintf(ficlog,"Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi);
             }
             fprintf(ficresfb," %.3f", ppij);
           }/* end j */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         } /* end agec */
       } /* end yearp */
     } /* end k */
     
     /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
     
     fclose(ficresfb);
     printf("End of Computing Back forecasting \n");
     fprintf(ficlog,"End of Computing Back forecasting\n");
           
   }
   
   /* Variance of prevalence limit: varprlim */
    void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){
       /*------- Variance of forward period (stable) prevalence------*/   
    
      char fileresvpl[FILENAMELENGTH];  
      FILE *ficresvpl;
      double **oldm, **savm;
      double **varpl; /* Variances of prevalence limits by age */   
      int i1, k, nres, j ;
      
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of forward period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
       
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
       
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){
         if(i1 != 1 && TKresult[nres]!= k)
           continue;
         fprintf(ficresvpl,"\n#****** ");
         printf("\n#****** ");
         fprintf(ficlog,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresvpl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileresvpl, ficresvpl, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyearp, k, strstart, nres);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       
       fclose(ficresvpl);
       printf("done variance-covariance of forward period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of forward period prevalence\n");fflush(ficlog);
   
    }
   /* Variance of back prevalence: varbprlim */
    void varbprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **bprlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){
         /*------- Variance of back (stable) prevalence------*/
   
      char fileresvbl[FILENAMELENGTH];  
      FILE  *ficresvbl;
   
      double **oldm, **savm;
      double **varbpl; /* Variances of back prevalence limits by age */   
      int i1, k, nres, j ;
   
      strcpy(fileresvbl,"VBL_");
      strcat(fileresvbl,fileresu);
      if((ficresvbl=fopen(fileresvbl,"w"))==NULL) {
        printf("Problem with variance of back (stable) prevalence  resultfile: %s\n", fileresvbl);
        exit(0);
      }
      printf("Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(stdout);
      fprintf(ficlog, "Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(ficlog);
      
      
      i1=pow(2,cptcoveff);
      if (cptcovn < 1){i1=1;}
      
      for(nres=1; nres <= nresult; nres++) /* For each resultline */
        for(k=1; k<=i1;k++){
          if(i1 != 1 && TKresult[nres]!= k)
            continue;
          fprintf(ficresvbl,"\n#****** ");
          printf("\n#****** ");
          fprintf(ficlog,"\n#****** ");
          for(j=1;j<=cptcoveff;j++) {
            fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
            fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
            printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
          }
          for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
            printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
            fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
            fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
          }
          fprintf(ficresvbl,"******\n");
          printf("******\n");
          fprintf(ficlog,"******\n");
          
          varbpl=matrix(1,nlstate,(int) bage, (int) fage);
          oldm=oldms;savm=savms;
          
          varbrevlim(fileresvbl, ficresvbl, varbpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, bprlim, ftolpl, mobilavproj, ncvyearp, k, strstart, nres);
          free_matrix(varbpl,1,nlstate,(int) bage, (int)fage);
          /*}*/
        }
      
      fclose(ficresvbl);
      printf("done variance-covariance of back prevalence\n");fflush(stdout);
      fprintf(ficlog,"done variance-covariance of back prevalence\n");fflush(ficlog);
   
    } /* End of varbprlim */
   
   /************** Forecasting *****not tested NB*************/
   /* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */
     
   /*   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */
   /*   int *popage; */
   /*   double calagedatem, agelim, kk1, kk2; */
   /*   double *popeffectif,*popcount; */
   /*   double ***p3mat,***tabpop,***tabpopprev; */
   /*   /\* double ***mobaverage; *\/ */
   /*   char filerespop[FILENAMELENGTH]; */
   
   /*   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   agelim=AGESUP; */
   /*   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */
     
   /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
     
     
   /*   strcpy(filerespop,"POP_");  */
   /*   strcat(filerespop,fileresu); */
   /*   if((ficrespop=fopen(filerespop,"w"))==NULL) { */
   /*     printf("Problem with forecast resultfile: %s\n", filerespop); */
   /*     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */
   /*   } */
   /*   printf("Computing forecasting: result on file '%s' \n", filerespop); */
   /*   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */
   
   /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
   
   /*   /\* if (mobilav!=0) { *\/ */
   /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
   /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
   /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*   } *\/ */
   /*   /\* } *\/ */
   
   /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
   /*   if (stepm<=12) stepsize=1; */
     
   /*   agelim=AGESUP; */
     
   /*   hstepm=1; */
   /*   hstepm=hstepm/stepm;  */
           
   /*   if (popforecast==1) { */
   /*     if((ficpop=fopen(popfile,"r"))==NULL) { */
   /*       printf("Problem with population file : %s\n",popfile);exit(0); */
   /*       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */
   /*     }  */
   /*     popage=ivector(0,AGESUP); */
   /*     popeffectif=vector(0,AGESUP); */
   /*     popcount=vector(0,AGESUP); */
       
   /*     i=1;    */
   /*     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */
       
   /*     imx=i; */
   /*     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */
   /*   } */
     
   /*   for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */
   /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
   /*       k=k+1; */
   /*       fprintf(ficrespop,"\n#******"); */
   /*       for(j=1;j<=cptcoveff;j++) { */
   /*      fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*       } */
   /*       fprintf(ficrespop,"******\n"); */
   /*       fprintf(ficrespop,"# Age"); */
   /*       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */
   /*       if (popforecast==1)  fprintf(ficrespop," [Population]"); */
         
   /*       for (cpt=0; cpt<=0;cpt++) {  */
   /*      fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
           
   /*      for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
   /*        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
   /*        nhstepm = nhstepm/hstepm;  */
             
   /*        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*        oldm=oldms;savm=savms; */
   /*        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
             
   /*        for (h=0; h<=nhstepm; h++){ */
   /*          if (h==(int) (calagedatem+YEARM*cpt)) { */
   /*            fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
   /*          }  */
   /*          for(j=1; j<=nlstate+ndeath;j++) { */
   /*            kk1=0.;kk2=0; */
   /*            for(i=1; i<=nlstate;i++) {               */
   /*              if (mobilav==1)  */
   /*                kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */
   /*              else { */
   /*                kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */
   /*              } */
   /*            } */
   /*            if (h==(int)(calagedatem+12*cpt)){ */
   /*              tabpop[(int)(agedeb)][j][cptcod]=kk1; */
   /*              /\*fprintf(ficrespop," %.3f", kk1); */
   /*                if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */
   /*            } */
   /*          } */
   /*          for(i=1; i<=nlstate;i++){ */
   /*            kk1=0.; */
   /*            for(j=1; j<=nlstate;j++){ */
   /*              kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  */
   /*            } */
   /*            tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */
   /*          } */
               
   /*          if (h==(int)(calagedatem+12*cpt)) */
   /*            for(j=1; j<=nlstate;j++)  */
   /*              fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */
   /*        } */
   /*        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*      } */
   /*       } */
         
   /*       /\******\/ */
         
   /*       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  */
   /*      fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
   /*      for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
   /*        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
   /*        nhstepm = nhstepm/hstepm;  */
             
   /*        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*        oldm=oldms;savm=savms; */
   /*        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
   /*        for (h=0; h<=nhstepm; h++){ */
   /*          if (h==(int) (calagedatem+YEARM*cpt)) { */
   /*            fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
   /*          }  */
   /*          for(j=1; j<=nlstate+ndeath;j++) { */
   /*            kk1=0.;kk2=0; */
   /*            for(i=1; i<=nlstate;i++) {               */
   /*              kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];     */
   /*            } */
   /*            if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);         */
   /*          } */
   /*        } */
   /*        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*      } */
   /*       } */
   /*     }  */
   /*   } */
     
   /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
     
   /*   if (popforecast==1) { */
   /*     free_ivector(popage,0,AGESUP); */
   /*     free_vector(popeffectif,0,AGESUP); */
   /*     free_vector(popcount,0,AGESUP); */
   /*   } */
   /*   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   fclose(ficrespop); */
   /* } /\* End of popforecast *\/ */
    
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=1;i<=imx ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0, iv=0, v;
     int lstra;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
   
     DummyV=ivector(1,NCOVMAX); /* 1 to 3 */
     FixedV=ivector(1,NCOVMAX); /* 1 to 3 */
   
     for(v=1; v <=ncovcol;v++){
       DummyV[v]=0;
       FixedV[v]=0;
     }
     for(v=ncovcol+1; v <=ncovcol+nqv;v++){
       DummyV[v]=1;
       FixedV[v]=0;
     }
     for(v=ncovcol+nqv+1; v <=ncovcol+nqv+ntv;v++){
       DummyV[v]=0;
       FixedV[v]=1;
     }
     for(v=ncovcol+nqv+ntv+1; v <=ncovcol+nqv+ntv+nqtv;v++){
       DummyV[v]=1;
       FixedV[v]=1;
     }
     for(v=1; v <=ncovcol+nqv+ntv+nqtv;v++){
       printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
       fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
     }
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
       
       /* Loops on waves */
       for (j=maxwav;j>=1;j--){
         for (iv=nqtv;iv>=1;iv--){  /* Loop  on time varying quantitative variables */
           cutv(stra, strb, line, ' '); 
           if(strb[0]=='.') { /* Missing value */
             lval=-1;
             cotqvar[j][iv][i]=-1; /* 0.0/0.0 */
             cotvar[j][ntv+iv][i]=-1; /* For performance reasons */
             if(isalpha(strb[1])) { /* .m or .d Really Missing value */
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);
               return 1;
             }
           }else{
             errno=0;
             /* what_kind_of_number(strb); */
             dval=strtod(strb,&endptr); 
             /* if( strb[0]=='\0' || (*endptr != '\0')){ */
             /* if(strb != endptr && *endptr == '\0') */
             /*    dval=dlval; */
             /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
             if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog);
               return 1;
             }
             cotqvar[j][iv][i]=dval; 
             cotvar[j][ntv+iv][i]=dval; 
           }
           strcpy(line,stra);
         }/* end loop ntqv */
         
         for (iv=ntv;iv>=1;iv--){  /* Loop  on time varying dummies */
           cutv(stra, strb, line, ' '); 
           if(strb[0]=='.') { /* Missing value */
             lval=-1;
           }else{
             errno=0;
             lval=strtol(strb,&endptr,10); 
             /*    if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
             if( strb[0]=='\0' || (*endptr != '\0')){
               printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav);
               fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog);
               return 1;
             }
           }
           if(lval <-1 || lval >1){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
             return 1;
           }
           cotvar[j][iv][i]=(double)(lval);
           strcpy(line,stra);
         }/* end loop ntv */
         
         /* Statuses  at wave */
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing value */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         
         s[j][i]=lval;
         
         /* Date of Interview */
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* End loop on waves */
       
       /* Date of death */
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       /* Date of birth */
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
         
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       /* Sample weight */
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (iv=nqv;iv>=1;iv--){  /* Loop  on fixed quantitative variables */
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing value */
           lval=-1;
         }else{
           errno=0;
           /* what_kind_of_number(strb); */
           dval=strtod(strb,&endptr);
           /* if(strb != endptr && *endptr == '\0') */
           /*   dval=dlval; */
           /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog);
             return 1;
           }
           coqvar[iv][i]=dval; 
           covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ 
         }
         strcpy(line,stra);
       }/* end loop nqv */
       
       /* Covariate values */
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing covariate value */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     
     *imax=i-1; /* Number of individuals */
     fclose(fic);
     
     return (0);
     /* endread: */
     printf("Exiting readdata: ");
     fclose(fic);
     return (1);
   }
   
   void removefirstspace(char **stri){/*, char stro[]) {*/
     char *p1 = *stri, *p2 = *stri;
     while (*p2 == ' ')
       p2++; 
     /* while ((*p1++ = *p2++) !=0) */
     /*   ; */
     /* do */
     /*   while (*p2 == ' ') */
     /*     p2++; */
     /* while (*p1++ == *p2++); */
     *stri=p2; 
   }
   
   int decoderesult ( char resultline[], int nres)
   /**< This routine decode one result line and returns the combination # of dummy covariates only **/
   {
     int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0;
     char resultsav[MAXLINE];
     int resultmodel[MAXLINE];
     int modelresult[MAXLINE];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     removefirstspace(&resultline);
     printf("decoderesult:%s\n",resultline);
   
     if (strstr(resultline,"v") !=0){
       printf("Error. 'v' must be in upper case 'V' result: %s ",resultline);
       fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog);
       return 1;
     }
     trimbb(resultsav, resultline);
     if (strlen(resultsav) >1){
       j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */
     }
     if(j == 0){ /* Resultline but no = */
       TKresult[nres]=0; /* Combination for the nresult and the model */
       return (0);
     }
       
     if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */
       printf("ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
       fprintf(ficlog,"ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
     }
     for(k=1; k<=j;k++){ /* Loop on any covariate of the result line */
       if(nbocc(resultsav,'=') >1){
          cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' 
                                         resultsav= V4=1 V5=25.1 V3=0 strb=V3=0 stra= V4=1 V5=25.1 */
          cutl(strc,strd,strb,'=');  /* strb:V4=1 strc=1 strd=V4 */
       }else
         cutl(strc,strd,resultsav,'=');
       Tvalsel[k]=atof(strc); /* 1 */
       
       cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */;
       Tvarsel[k]=atoi(strc);
       /* Typevarsel[k]=1;  /\* 1 for age product *\/ */
       /* cptcovsel++;     */
       if (nbocc(stra,'=') >0)
         strcpy(resultsav,stra); /* and analyzes it */
     }
     /* Checking for missing or useless values in comparison of current model needs */
     for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       if(Typevar[k1]==0){ /* Single covariate in model */
         match=0;
         for(k2=1; k2 <=j;k2++){/* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
           if(Tvar[k1]==Tvarsel[k2]) {/* Tvar[1]=5 == Tvarsel[2]=5   */
             modelresult[k2]=k1;/* modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
             match=1;
             break;
           }
         }
         if(match == 0){
           printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
         }
       }
     }
     /* Checking for missing or useless values in comparison of current model needs */
     for(k2=1; k2 <=j;k2++){ /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
       match=0;
       for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         if(Typevar[k1]==0){ /* Single */
           if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4   */
             resultmodel[k1]=k2;  /* resultmodel[2]=1 resultmodel[1]=2  resultmodel[3]=3  resultmodel[6]=4 resultmodel[9]=5 */
             ++match;
           }
         }
       }
       if(match == 0){
         printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
       }else if(match > 1){
         printf("Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model);
       }
     }
         
     /* We need to deduce which combination number is chosen and save quantitative values */
     /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
     /* result line V4=1 V5=25.1 V3=0  V2=8 V1=1 */
     /* should give a combination of dummy V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 5 + (1offset) = 6*/
     /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
     /* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/
     /*    1 0 0 0 */
     /*    2 1 0 0 */
     /*    3 0 1 0 */ 
     /*    4 1 1 0 */ /* V4=1, V3=1, V1=0 */
     /*    5 0 0 1 */
     /*    6 1 0 1 */ /* V4=1, V3=0, V1=1 */
     /*    7 0 1 1 */
     /*    8 1 1 1 */
     /* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */
     /* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */
     /* V5*age V5 known which value for nres?  */
     /* Tqinvresult[2]=8 Tqinvresult[1]=25.1  */
     for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* model line */
       if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Single dummy */
         k3= resultmodel[k1]; /* resultmodel[2(V4)] = 1=k3 */
         k2=(int)Tvarsel[k3]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
         k+=Tvalsel[k3]*pow(2,k4);  /*  Tvalsel[1]=1  */
         Tresult[nres][k4+1]=Tvalsel[k3];/* Tresult[nres][1]=1(V4=1)  Tresult[nres][2]=0(V3=0) */
         Tvresult[nres][k4+1]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
         Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */
         printf("Decoderesult Dummy k=%d, V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k2, k3, (int)Tvalsel[k3], k4);
         k4++;;
       }  else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Single quantitative */
         k3q= resultmodel[k1]; /* resultmodel[2] = 1=k3 */
         k2q=(int)Tvarsel[k3q]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
         Tqresult[nres][k4q+1]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */
         Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */
         Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
         printf("Decoderesult Quantitative nres=%d, V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);
         k4q++;;
       }
     }
     
     TKresult[nres]=++k; /* Combination for the nresult and the model */
     return (0);
   }
   
   int decodemodel( char model[], int lastobs)
    /**< This routine decodes the model and returns:
           * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
           * - nagesqr = 1 if age*age in the model, otherwise 0.
           * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
           * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
           * - cptcovage number of covariates with age*products =2
           * - cptcovs number of simple covariates
           * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
           *     which is a new column after the 9 (ncovcol) variables. 
           * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
           * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
           *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
           * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
           */
   {
     int i, j, k, ks, v;
     int  j1, k1, k2, k3, k4;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
           printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
           fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
           return 1;
         }
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                        * cst, age and age*age 
                        * V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/
         /* including age products which are counted in cptcovage.
          * but the covariates which are products must be treated 
          * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
         
         
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[2]=1 Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
         
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/
           Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;
         }
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               Typevar[k]=1;  /* 1 for age product */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               Typevar[k]=1;  /* 1 for age product */
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but
                                                   because this model-covariate is a construction we invent a new column
                                                   which is after existing variables ncovcol+nqv+ntv+nqtv + k1
                                                   If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                                   Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               Typevar[k]=2;  /* 2 for double fixed dummy covariates */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
               /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
               /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
               /*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */
               /*                     1  2   3      4     5 | Tvar[5+1)=1, Tvar[7]=2   */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */
             cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */
             Tvar[k]=atoi(strd);
             Typevar[k]=0;  /* 0 for simple covariates */
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
                                   /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                                     scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
     
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
        printf("cptcovprod=%d ", cptcovprod);
        fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
        scanf("%d ",i);*/
   
   
   /* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind
      of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */
   /* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1  = 5 possible variables data: 2 fixed 3, varying
      model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place
      k =           1    2   3     4       5       6      7      8        9
      Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5
      Typevar[k]=   0    0   0     2       1       0      2      1        1
      Fixed[k]      1    1   1     1       3       0    0 or 2   2        3
      Dummy[k]      1    0   0     0       3       1      1      2        3
             Tmodelind[combination of covar]=k;
   */  
   /* Dispatching between quantitative and time varying covariates */
     /* If Tvar[k] >ncovcol it is a product */
     /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */
           /* Computing effective variables, ie used by the model, that is from the cptcovt variables */
     printf("Model=%s\n\
   Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
   Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
   Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
     fprintf(ficlog,"Model=%s\n\
   Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
   Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
   Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
     for(k=-1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;}
     for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */
       if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */
         Fixed[k]= 0;
         Dummy[k]= 0;
         ncoveff++;
         ncovf++;
         nsd++;
         modell[k].maintype= FTYPE;
         TvarsD[nsd]=Tvar[k];
         TvarsDind[nsd]=k;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       }else if( Tvar[k] <=ncovcol &&  Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */
         Fixed[k]= 0;
         Dummy[k]= 0;
         ncoveff++;
         ncovf++;
         modell[k].maintype= FTYPE;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */
         Fixed[k]= 0;
         Dummy[k]= 1;
         nqfveff++;
         modell[k].maintype= FTYPE;
         modell[k].subtype= FQ;
         nsq++;
         TvarsQ[nsq]=Tvar[k];
         TvarsQind[nsq]=k;
         ncovf++;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
         TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
       }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */
         Fixed[k]= 1;
         Dummy[k]= 0;
         ntveff++; /* Only simple time varying dummy variable */
         modell[k].maintype= VTYPE;
         modell[k].subtype= VD;
         nsd++;
         TvarsD[nsd]=Tvar[k];
         TvarsDind[nsd]=k;
         ncovv++; /* Only simple time varying variables */
         TvarV[ncovv]=Tvar[k];
         TvarVind[ncovv]=k; /* TvarVind[2]=2  TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
         TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4  TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
         TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
         printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv);
         printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv);
       }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv  && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/
         Fixed[k]= 1;
         Dummy[k]= 1;
         nqtveff++;
         modell[k].maintype= VTYPE;
         modell[k].subtype= VQ;
         ncovv++; /* Only simple time varying variables */
         nsq++;
         TvarsQ[nsq]=Tvar[k];
         TvarsQind[nsq]=k;
         TvarV[ncovv]=Tvar[k];
         TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
         TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
         TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
         TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */
         /* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */
         printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv);
         printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv);
       }else if (Typevar[k] == 1) {  /* product with age */
         ncova++;
         TvarA[ncova]=Tvar[k];
         TvarAind[ncova]=k;
         if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */
           Fixed[k]= 2;
           Dummy[k]= 2;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APFD;
           /* ncoveff++; */
         }else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/
           Fixed[k]= 2;
           Dummy[k]= 3;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APFQ;                /*      Product age * fixed quantitative */
           /* nqfveff++;  /\* Only simple fixed quantitative variable *\/ */
         }else if( Tvar[k] <=ncovcol+nqv+ntv ){
           Fixed[k]= 3;
           Dummy[k]= 2;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APVD;                /*      Product age * varying dummy */
           /* ntveff++; /\* Only simple time varying dummy variable *\/ */
         }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){
           Fixed[k]= 3;
           Dummy[k]= 3;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APVQ;                /*      Product age * varying quantitative */
           /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */
         }
       }else if (Typevar[k] == 2) {  /* product without age */
         k1=Tposprod[k];
         if(Tvard[k1][1] <=ncovcol){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDD;              /*      Product fixed dummy * fixed dummy */
             ncovf++; /* Fixed variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 0;  /* or 2 ?*/
             Dummy[k]= 1;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDQ;              /*      Product fixed dummy * fixed quantitative */
             ncovf++; /* Varying variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product fixed dummy * varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product fixed dummy * varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else if(Tvard[k1][1] <=ncovcol+nqv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 0;  /* or 2 ?*/
             Dummy[k]= 1;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDQ;              /*      Product fixed quantitative * fixed dummy */
             ncovf++; /* Fixed variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product fixed quantitative * varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product fixed quantitative * varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product time varying dummy * fixed dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying dummy * fixed quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product time varying dummy * time varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying dummy * time varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying quantitative * fixed dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product time varying quantitative * fixed quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying quantitative * time varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product time varying quantitative * time varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
         }else{
           printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
           fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
         } /*end k1*/
       }else{
         printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
         fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
       }
       printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
       printf("           modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype);
       fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
     }
     /* Searching for doublons in the model */
     for(k1=1; k1<= cptcovt;k1++){
       for(k2=1; k2 <k1;k2++){
         /* if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ */
         if((Typevar[k1]==Typevar[k2]) && (Fixed[k1]==Fixed[k2]) && (Dummy[k1]==Dummy[k2] )){
           if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */
             if(Tvar[k1]==Tvar[k2]){
               printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]);
               fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); fflush(ficlog);
               return(1);
             }
           }else if (Typevar[k1] ==2){
             k3=Tposprod[k1];
             k4=Tposprod[k2];
             if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){
               printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
               fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
               return(1);
             }
           }
         }
       }
     }
     printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
     fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
     printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq);
     fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq);
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
     printf("Exiting decodemodel: ");
     return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {/* Check ages at death */
     int i, m;
     int firstone=0;
     
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
             s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           if(firstone == 0){
             firstone=1;
           printf("Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\nOther similar cases in log file\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m);
           }
           fprintf(ficlog,"Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m);
           s[m][i]=-1;  /* Droping the death status */
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\nOther similar cases in log file\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m);
           fprintf(ficlog,"Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m);
           s[m][i]=-2; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
                 /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           } /* end if */
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           } /* en if 9*/
           else { /* =9 */
             /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else if(s[m][i]==0) /*= 0 Unknown */
           agev[m][i]=1;
         else{
           printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           agev[m][i]=0;
         }
       } /* End for lastpass */
     }
       
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
   {
   #include <stdint.h>
   
     /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   
   
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main ()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
   }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
     /*--------------- Prevalence limit  (forward period or forward stable prevalence) --------------*/
     int i, j, k, i1, k4=0, nres=0 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Forward period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
     agebase=ageminpar;
     agelim=agemaxpar;
   
     /* i1=pow(2,ncoveff); */
     i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
     if (cptcovn < 1){i1=1;}
   
     for(k=1; k<=i1;k++){ /* For each combination k of dummy covariates in the model */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         if(i1 != 1 && TKresult[nres]!= k)
           continue;
   
         /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
         /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         /* k=k+1; */
         /* to clean */
         //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
         fprintf(ficrespl,"#******");
         printf("#******");
         fprintf(ficlog,"#******");
         for(j=1;j<=cptcoveff ;j++) {/* all covariates */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         if(invalidvarcomb[k]){
           printf("\nCombination (%d) ignored because no case \n",k); 
           fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); 
           fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); 
           continue;
         }
   
         fprintf(ficrespl,"#Age ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
         fprintf(ficrespl,"Total Years_to_converge\n");
       
         for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
           prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           tot=0.;
           for(i=1; i<=nlstate;i++){
             tot +=  prlim[i][i];
             fprintf(ficrespl," %.5f", prlim[i][i]);
           }
           fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
         } /* Age */
         /* was end of cptcod */
       } /* cptcov */
     } /* nres */
     return 0;
   }
   
   int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
           /*--------------- Back Prevalence limit  (backward stable prevalence) --------------*/
           
           /* Computes the back prevalence limit  for any combination      of covariate values 
      * at any age between ageminpar and agemaxpar
            */
     int i, j, k, i1, nres=0 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
     /* double ***mobaverage; */
     /* double      **dnewm, **doldm, **dsavm;  /\* for use *\/ */
   
     strcpy(fileresplb,"PLB_");
     strcat(fileresplb,fileresu);
     if((ficresplb=fopen(fileresplb,"w"))==NULL) {
       printf("Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
       fprintf(ficlog,"Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
     }
     printf("Computing backward prevalence: result on file '%s' \n", fileresplb);
     fprintf(ficlog,"Computing backward prevalence: result on file '%s' \n", fileresplb);
     pstamp(ficresplb);
     fprintf(ficresplb,"# Backward prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficresplb,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
     fprintf(ficresplb,"\n");
     
     
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
     
     agebase=ageminpar;
     agelim=agemaxpar;
     
     
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
        if(i1 != 1 && TKresult[nres]!= k)
           continue;
         //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
         fprintf(ficresplb,"#******");
         printf("#******");
         fprintf(ficlog,"#******");
         for(j=1;j<=cptcoveff ;j++) {/* all covariates */
           fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         }
         fprintf(ficresplb,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         if(invalidvarcomb[k]){
           printf("\nCombination (%d) ignored because no cases \n",k); 
           fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); 
           fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); 
           continue;
         }
       
         fprintf(ficresplb,"#Age ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
         fprintf(ficresplb,"Total Years_to_converge\n");
       
       
         for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
           if(mobilavproj > 0){
             /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
             /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
             bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k, nres);
           }else if (mobilavproj == 0){
             printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
             fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
             exit(1);
           }else{
             /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
             bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres);
             /* printf("TOTOT\n"); */
             /* exit(1); */
           }
           fprintf(ficresplb,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           tot=0.;
           for(i=1; i<=nlstate;i++){
             tot +=  bprlim[i][i];
             fprintf(ficresplb," %.5f", bprlim[i][i]);
           }
           fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
         } /* Age */
         /* was end of cptcod */
         /*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */
       } /* end of any combination */
     } /* end of nres */  
     /* hBijx(p, bage, fage); */
     /* fclose(ficrespijb); */
     
     return 0;
   }
    
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k, k4, nres=0;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
                   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
                   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   /*      k=k+1;  */
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){
         if(i1 != 1 && TKresult[nres]!= k)
           continue;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
       return 0;
   }
    
    int hBijx(double *p, int bage, int fage, double ***prevacurrent){
       /*------------- h Bij x at various ages ------------*/
   
     int stepsize;
     /* int agelim; */
           int ageminl;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k, nres;
           
     double agedeb;
     double ***p3mat;
           
     strcpy(filerespijb,"PIJB_");  strcat(filerespijb,fileresu);
     if((ficrespijb=fopen(filerespijb,"w"))==NULL) {
       printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1;
       fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1;
     }
     printf("Computing pij back: result on file '%s' \n", filerespijb);
     fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
     
     /* agelim=AGESUP; */
     ageminl=AGEINF; /* was 30 */
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
     
     /* hstepm=1;   aff par mois*/
     pstamp(ficrespijb);
     fprintf(ficrespijb,"#****** h Bij x Back probability to be in state i at age x-h being in j at x: B1j+B2j+...=1 ");
     i1= pow(2,cptcoveff);
     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
     /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
     /*    k=k+1;  */
     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(i1 != 1 && TKresult[nres]!= k)
           continue;
         fprintf(ficrespijb,"\n#****** ");
         for(j=1;j<=cptcoveff;j++)
           fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         }
         fprintf(ficrespijb,"******\n");
         if(invalidvarcomb[k]){  /* Is it necessary here? */
           fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); 
           continue;
         }
         
         /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
         for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
           /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
           nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm+0.1)-1; /* Typically 20 years = 20*12/6=40 or 55*12/24=27.5-1.1=>27 */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 or 28*/
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */
           /* and memory limitations if stepm is small */
   
           /* oldm=oldms;savm=savms; */
           /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
           hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres);
           /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
           fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespijb," %1d-%1d",i,j);
           fprintf(ficrespijb,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
             /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespijb," %.5f", p3mat[i][j][h]);
             fprintf(ficrespijb,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespijb,"\n");
         } /* end age deb */
       } /* end combination */
     } /* end nres */
     return 0;
    } /*  hBijx */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, iter=0,m,size=100, cptcod; /* Suppressing because nobs */
     /* int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; */
     int ncvyear=0; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
     int nres=0;
     int endishere=0;
     int noffset=0;
     int ncurrv=0; /* Temporary variable */
     
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
     double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     /* double ***mobaverage; */
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char  modeltemp[MAXLINE];
     char resultline[MAXLINE];
     
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10; /* nobs = lastobs-firstobs declared globally ;*/
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     /* double anprojd, mprojd, jprojd; /\* For eventual projections *\/ */
     /* double anprojf, mprojf, jprojf; */
     /* double jintmean,mintmean,aintmean;   */
     int prvforecast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */
     int prvbackcast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */
     double yrfproj= 10.0; /* Number of years of forward projections */
     double yrbproj= 10.0; /* Number of years of backward projections */
     int prevbcast=0; /* defined as global for mlikeli and mle, replacing backcast */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double **bprlim;
     double ***param; /* Matrix of parameters */
     double ***paramstart; /* Matrix of starting parameter values */
     double  *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
   
     double *epj, vepp;
   
     double dateprev1, dateprev2;
     double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0, dateprojd=0, dateprojf=0;
     double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0, datebackd=0, datebackf=0;
   
   
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
       }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else if (argc<=2){
       strcpy(pathtot,argv[1]);
     }
     else{
       strcpy(pathtot,argv[1]);
       strcpy(z,argv[2]);
       printf("\nargv[2]=%s z=%c\n",argv[2],z[0]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
         /*-------- Rewriting parameter file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name */
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", rfileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       fflush(ficlog);
       goto end;
     }
     fprintf(ficres,"#IMaCh %s\n",version);
   
                                         
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     /* Is it a BOM UTF-8 Windows file? */
     /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       noffset=0;
       if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */
       {
         noffset=noffset+3;
         printf("# File is an UTF8 Bom.\n"); // 0xBF
       }
       else if( line[0] == (char)0xFE && line[1] == (char)0xFF)
       {
         noffset=noffset+2;
         printf("# File is an UTF16BE BOM file\n");
       }
       else if( line[0] == 0 && line[1] == 0)
       {
         if( line[2] == (char)0xFE && line[3] == (char)0xFF){
           noffset=noffset+4;
           printf("# File is an UTF16BE BOM file\n");
         }
       } else{
         ;/*printf(" Not a BOM file\n");*/
       }
     
       /* If line starts with a # it is a comment */
       if (line[noffset] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficres);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
         fprintf(ficlog,"Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
       fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
       fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* while(fscanf(ficpar,"%[^\n]", line)) { */
       /* If line starts with a # it is a comment. Strangely fgets reads the EOL and fputs doesn't */
       if (line[0] == '#') {
         numlinepar++;
         printf("%s",line);
         fprintf(ficres,"%s",line);
         fprintf(ficparo,"%s",line);
         fprintf(ficlog,"%s",line);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 11) {
         printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         printf("but line=%s\n",line);
         fprintf(ficlog,"Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         fprintf(ficlog,"but line=%s\n",line);
       }
       if( lastpass > maxwav){
         printf("Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
         fprintf(ficlog,"Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
         fflush(ficlog);
         goto end;
       }
         printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
       fprintf(ficparo,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
       fprintf(ficres,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, 0, weightopt);
       fprintf(ficlog,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         printf("%s",line);
         fprintf(ficres,"%s",line);
         fprintf(ficparo,"%s",line);
         fprintf(ficlog,"%s",line);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
       fprintf(ficparo,"model=1+age+%s\n",model);fflush(stdout);
       fprintf(ficres,"model=1+age+%s\n",model);fflush(stdout);
       fprintf(ficlog,"model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     /* fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
     /* fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end without space \n \
    'model=1+age+' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age' or \n \
    'model=1+age+V1+V2' or 'model=1+age+V1+V2+V1*V2' etc. \n");            \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter vectors and subdiagonal covariance matrix.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,firstobs,lastobs);  /**< used in readdata */
     if(nqv>=1)coqvar=matrix(1,nqv,firstobs,lastobs);  /**< Fixed quantitative covariate */
     if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,firstobs,lastobs);  /**< Time varying quantitative covariate */
     if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,firstobs,lastobs);  /**< Time varying covariate (dummy and quantitative)*/
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
   /* We could also provide initial parameters values giving by simple logistic regression 
    * only one way, that is without matrix product. We will have nlstate maximizations */
         /* for(i=1;i<nlstate;i++){ */
         /*        /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
         /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
         /* } */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }  else if(mle==-5) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }  else{ /* Begin of mle != -1 or -5 */
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       paramstart= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           while((c=getc(ficpar))=='#' && c!= EOF){
             ungetc(c,ficpar);
             fgets(line, MAXLINE, ficpar);
             numlinepar++;
             fputs(line,stdout);
             fputs(line,ficparo);
             fputs(line,ficlog);
           }
           ungetc(c,ficpar);
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
       
       /* Reads parameters values */
       p=param[1][1];
       pstart=paramstart[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
       
       /* Reads covariance matrix */
       delti=delti3[1][1];
                   
                   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
                   
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
                   
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
                   
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else{
           if(mle==1)
             printf("%1d%1d%d",i1,j1,jk);
         }
         fprintf(ficlog,"%1d%1d%d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
                                   printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
     }    /* End of mle != -3 */
     
     /*  Main data
      */
     nobs=lastobs-firstobs+1; /* was = lastobs;*/
     /* num=lvector(1,n); */
     /* moisnais=vector(1,n); */
     /* annais=vector(1,n); */
     /* moisdc=vector(1,n); */
     /* andc=vector(1,n); */
     /* weight=vector(1,n); */
     /* agedc=vector(1,n); */
     /* cod=ivector(1,n); */
     /* for(i=1;i<=n;i++){ */
     num=lvector(firstobs,lastobs);
     moisnais=vector(firstobs,lastobs);
     annais=vector(firstobs,lastobs);
     moisdc=vector(firstobs,lastobs);
     andc=vector(firstobs,lastobs);
     weight=vector(firstobs,lastobs);
     agedc=vector(firstobs,lastobs);
     cod=ivector(firstobs,lastobs);
     for(i=firstobs;i<=lastobs;i++){
       num[i]=0;
       moisnais[i]=0;
       annais[i]=0;
       moisdc[i]=0;
       andc[i]=0;
       agedc[i]=0;
       cod[i]=0;
       weight[i]=1.0; /* Equal weights, 1 by default */
     }
     mint=matrix(1,maxwav,firstobs,lastobs);
     anint=matrix(1,maxwav,firstobs,lastobs);
     s=imatrix(1,maxwav+1,firstobs,lastobs); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
     */
     
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     TvarsDind=ivector(1,NCOVMAX); /*  */
     TvarsD=ivector(1,NCOVMAX); /*  */
     TvarsQind=ivector(1,NCOVMAX); /*  */
     TvarsQ=ivector(1,NCOVMAX); /*  */
     TvarF=ivector(1,NCOVMAX); /*  */
     TvarFind=ivector(1,NCOVMAX); /*  */
     TvarV=ivector(1,NCOVMAX); /*  */
     TvarVind=ivector(1,NCOVMAX); /*  */
     TvarA=ivector(1,NCOVMAX); /*  */
     TvarAind=ivector(1,NCOVMAX); /*  */
     TvarFD=ivector(1,NCOVMAX); /*  */
     TvarFDind=ivector(1,NCOVMAX); /*  */
     TvarFQ=ivector(1,NCOVMAX); /*  */
     TvarFQind=ivector(1,NCOVMAX); /*  */
     TvarVD=ivector(1,NCOVMAX); /*  */
     TvarVDind=ivector(1,NCOVMAX); /*  */
     TvarVQ=ivector(1,NCOVMAX); /*  */
     TvarVQind=ivector(1,NCOVMAX); /*  */
   
     Tvalsel=vector(1,NCOVMAX); /*  */
     Tvarsel=ivector(1,NCOVMAX); /*  */
     Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */
     Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */
     Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */
     Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
        Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
     Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an
                                   * individual dummy, fixed or varying:
                                   * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,
                                   * 3, 1, 0, 0, 0, 0, 0, 0},
                                   * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , 
                                   * V1 df, V2 qf, V3 & V4 dv, V5 qv
                                   * Tmodelind[1]@9={9,0,3,2,}*/
     TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/
     TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an
                                   * individual quantitative, fixed or varying:
                                   * Tmodelqind[1]=1,Tvaraff[1]@9={4,
                                   * 3, 1, 0, 0, 0, 0, 0, 0},
                                   * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3  = {4, 3, 5}*/
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,firstobs,lastobs);
     free_vector(annais,firstobs,lastobs);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     /* free_vector(moisdc,1,n); */
     /* free_vector(andc,1,n); */
     /* */
     
     wav=ivector(1,imx);
     /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
     dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
     bh=imatrix(1,lastpass-firstpass+2,1,imx);
     mw=imatrix(1,lastpass-firstpass+2,1,imx);
      
     /* Concatenates waves */
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     */
   
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* Concatenates waves */
    
     free_vector(moisdc,firstobs,lastobs);
     free_vector(andc,firstobs,lastobs);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     cptcoveff=0;
     if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
       tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     }
     
     ncovcombmax=pow(2,cptcoveff);
     invalidvarcomb=ivector(1, ncovcombmax); 
     for(i=1;i<ncovcombmax;i++)
       invalidvarcomb[i]=0;
     
     /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
     
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
      * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
      * (currently 0 or 1) in the data.
      * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
      * corresponding modality (h,j).
      */
   
     h=0;
     /*if (cptcovn > 0) */
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to m=2**k
              * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
              * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
        /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
        * and the value of each covariate?
        * V1=1, V2=1, V3=2, V4=1 ?
        * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
        * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
        * In order to get the real value in the data, we use nbcode
        * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
        * We are keeping this crazy system in order to be able (in the future?) 
        * to have more than 2 values (0 or 1) for a covariate.
        * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
        * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
        *              bbbbbbbb
        *              76543210     
        *   h-1        00000101 (6-1=5)
        *(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift
        *           &
        *     1        00000001 (1)
        *              00000000        = 1 & ((h-1) >> (k-1))
        *          +1= 00000001 =1 
        *
        * h=14, k=3 => h'=h-1=13, k'=k-1=2
        *          h'      1101 =2^3+2^2+0x2^1+2^0
        *    >>k'            11
        *          &   00000001
        *            = 00000001
        *      +1    = 00000010=2    =  codtabm(14,3)   
        * Reverse h=6 and m=16?
        * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
        * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
        * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
        * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
        * V3=decodtabm(14,3,2**4)=2
        *          h'=13   1101 =2^3+2^2+0x2^1+2^0
        *(h-1) >> (j-1)    0011 =13 >> 2
        *          &1 000000001
        *           = 000000001
        *         +1= 000000010 =2
        *                  2211
        *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
        *                  V3=2
                    * codtabm and decodtabm are identical
        */
   
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age 
                    and for any valid combination of covariates
        and prints on file fileres'p'. */
     freqsummary(fileres, p, pstart, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \
                 firstpass, lastpass,  stepm,  weightopt, model);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<h4>Parameter line 2</h4><ul><li>Tolerance for the convergence of the likelihood: ftol=%g \n<li>Interval for the elementary matrix (in month): stepm=%d",\
             ftol, stepm);
     fprintf(fichtm,"\n<li>Number of fixed dummy covariates: ncovcol=%d ", ncovcol);
     ncurrv=1;
     for(i=ncurrv; i <=ncovcol; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li> Number of fixed quantitative variables: nqv=%d ", nqv); 
     ncurrv=i;
     for(i=ncurrv; i <=ncurrv-1+nqv; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li> Number of time varying (wave varying) dummy covariates: ntv=%d ", ntv);
     ncurrv=i;
     for(i=ncurrv; i <=ncurrv-1+ntv; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li>Number of time varying  quantitative covariates: nqtv=%d ", nqtv);
     ncurrv=i;
     for(i=ncurrv; i <=ncurrv-1+nqtv; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li>Weights column \n<br>Number of alive states: nlstate=%d <br>Number of death states (not really implemented): ndeath=%d \n<li>Number of waves: maxwav=%d \n<li>Parameter for maximization (1), using parameter values (0), for design of parameters and variance-covariance matrix: mle=%d \n<li>Does the weight column be taken into account (1), or not (0): weight=%d</ul>\n", \
              nlstate, ndeath, maxwav, mle, weightopt);
   
     fprintf(fichtm,"<h4> Diagram of states <a href=\"%s_.svg\">%s_.svg</a></h4> \n\
   <img src=\"%s_.svg\">", subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"));
   
     
     fprintf(fichtm,"\n<h4>Some descriptive statistics </h4>\n<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
     imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
   
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       for(i=1;i<=NDIM;i++)
         for(j=1;j<=NDIM;j++)
           ximort[i][j]=0.;
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(firstobs,lastobs);
       ageexmed=vector(firstobs,lastobs);
       agecens=vector(firstobs,lastobs);
       dcwave=ivector(firstobs,lastobs);
                   
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
       
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
           
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
                                   matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
                                   printf("%f ",matcov[i][j]);
                                   fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
                   ageminpar=50;
                   agemaxpar=100;
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else{
                           printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
                           fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   }
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
       free_matrix(ximort,1,NDIM,1,NDIM);
       free_ivector(dcwave,firstobs,lastobs);
       free_vector(agecens,firstobs,lastobs);
       free_vector(ageexmed,firstobs,lastobs);
       free_ivector(cens,firstobs,lastobs);
   #ifdef GSL
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard  */
     else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         /* for(i=1;i<nlstate;i++){ */
         /*        /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
         /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
         /* } */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       
       /*--------- results files --------------*/
       /* fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); */
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
       
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       while(fgets(line, MAXLINE, ficpar)) {
         /* If line starts with a # it is a comment */
         if (line[0] == '#') {
           numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           continue;
         }else
           break;
       }
       
       /* while((c=getc(ficpar))=='#' && c!= EOF){ */
       /*   ungetc(c,ficpar); */
       /*   fgets(line, MAXLINE, ficpar); */
       /*   fputs(line,stdout); */
       /*   fputs(line,ficparo); */
       /* } */
       /* ungetc(c,ficpar); */
       
       estepm=0;
       if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
         
         if (num_filled != 6) {
           printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
           fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
           goto end;
         }
         printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
       }
       /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
       /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
       
       /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
                   
       /* Other stuffs, more or less useful */    
       while(fgets(line, MAXLINE, ficpar)) {
         /* If line starts with a # it is a comment */
         if (line[0] == '#') {
           numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           continue;
         }else
           break;
       }
   
       if((num_filled=sscanf(line,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav)) !=EOF){
         
         if (num_filled != 7) {
           printf("Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004  mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
           fprintf(ficlog,"Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004  mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
           goto end;
         }
         printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       }
   
       while(fgets(line, MAXLINE, ficpar)) {
         /* If line starts with a # it is a comment */
         if (line[0] == '#') {
           numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           continue;
         }else
           break;
       }
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       if((num_filled=sscanf(line,"pop_based=%d\n",&popbased)) !=EOF){
         if (num_filled != 1) {
           printf("Error: Not 1 (data)parameters in line but %d, for example:pop_based=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
           fprintf(ficlog,"Error: Not 1 (data)parameters in line but %d, for example: pop_based=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
           goto end;
         }
         printf("pop_based=%d\n",popbased);
         fprintf(ficlog,"pop_based=%d\n",popbased);
         fprintf(ficparo,"pop_based=%d\n",popbased);   
         fprintf(ficres,"pop_based=%d\n",popbased);   
       }
        
       /* Results */
       nresult=0;
       do{
         if(!fgets(line, MAXLINE, ficpar)){
           endishere=1;
           parameterline=14;
         }else if (line[0] == '#') {
           /* If line starts with a # it is a comment */
           numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           continue;
         }else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp))
           parameterline=11;
         else if(sscanf(line,"prevbackcast=%[^\n]\n",modeltemp))
           parameterline=12;
         else if(sscanf(line,"result:%[^\n]\n",modeltemp))
           parameterline=13;
         else{
           parameterline=14;
         }
         switch (parameterline){ 
         case 11:
           if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF && (num_filled == 8)){
                     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             /* day and month of proj2 are not used but only year anproj2.*/
             dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.;
             dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.;
             prvforecast = 1;
           } 
           else if((num_filled=sscanf(line,"prevforecast=%d yearsfproj=%lf mobil_average=%d\n",&prevfcast,&yrfproj,&mobilavproj)) !=EOF){/* && (num_filled == 3))*/
             printf(" Num_filled=%d, yearsfproj=%lf, mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
             prvforecast = 2;
           }
           else {
             printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearsfproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
             fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
             goto end;
           }
           break;
         case 12:
           if((num_filled=sscanf(line,"prevbackcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&prevbcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF && (num_filled == 8)){
             fprintf(ficparo,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             printf("prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             fprintf(ficlog,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             fprintf(ficres,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             /* day and month of back2 are not used but only year anback2.*/
             dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.;
             dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.;
             prvbackcast = 1;
           } 
           else if((num_filled=sscanf(line,"prevbackcast=%d yearsbproj=%lf mobil_average=%d\n",&prevbcast,&yrbproj,&mobilavproj)) ==3){/* && (num_filled == 3))*/
             printf(" Num_filled=%d, yearsbproj=%lf, mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
             prvbackcast = 2;
           }
           else {
             printf("Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearsbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
             fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
             goto end;
           }
           break;
           /* /\*fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);*\/ */
           /* if((num_filled=sscanf(line,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF){ */
           /*   if (num_filled != 8) { */
           /*     printf("Error: Not 8 (data)parameters in line but %d, for example:backcast=1 starting-back-date=1/1/1990 final-back-date=1/1/1970 mobil_average=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line); */
           /*     fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:backcast=1 starting-back-date=1/1/1990 final-back-date=1/1/1970 mobil_average=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line); */
           /*     goto end; */
           /*   } */
           /*   printf("backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); */
           /*   fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); */
           /*   fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); */
           /*   fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); */
           /*   /\* day and month of proj2 are not used but only year anproj2.*\/ */
           /*   dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.; */
           /*   dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.; */
           /* } */
           /* break; */
         case 13:
           if((num_filled=sscanf(line,"result:%[^\n]\n",resultline)) !=EOF){
             if (num_filled == 0){
               resultline[0]='\0';
               printf("Warning %d: no result line! It should be at minimum 'result: V2=0 V1=1 or result:.\n%s\n", num_filled, line);
               fprintf(ficlog,"Warning %d: no result line! It should be at minimum 'result: V2=0 V1=1 or result:.\n%s\n", num_filled, line);
               break;
             } else if (num_filled != 1){
               printf("ERROR %d: result line! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",num_filled, line);
               fprintf(ficlog,"ERROR %d: result line! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",num_filled, line);
             }
             nresult++; /* Sum of resultlines */
             printf("Result %d: result=%s\n",nresult, resultline);
             if(nresult > MAXRESULTLINES){
               printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
               fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
               goto end;
             }
             decoderesult(resultline, nresult); /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */
             fprintf(ficparo,"result: %s\n",resultline);
             fprintf(ficres,"result: %s\n",resultline);
             fprintf(ficlog,"result: %s\n",resultline);
             break;
           case 14: 
             if(ncovmodel >2 && nresult==0 ){
               printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line);
               goto end;
             }
             break;
           default:
             nresult=1;
             decoderesult(".",nresult ); /* No covariate */
           }
         } /* End switch parameterline */
       }while(endishere==0); /* End do */
       
       /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
         printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
         fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else{
         /* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */
         /* It seems that anprojd which is computed from the mean year at interview which is known yet because of freqsummary */
         /* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ /* Done in freqsummary */
         if(prvforecast==1){
           dateprojd=(jproj1+12*mproj1+365*anproj1)/365;
           jprojd=jproj1;
           mprojd=mproj1;
           anprojd=anproj1;
           dateprojf=(jproj2+12*mproj2+365*anproj2)/365;
           jprojf=jproj2;
           mprojf=mproj2;
           anprojf=anproj2;
         } else if(prvforecast == 2){
           dateprojd=dateintmean;
           date2dmy(dateprojd,&jprojd, &mprojd, &anprojd);
           dateprojf=dateintmean+yrfproj;
           date2dmy(dateprojf,&jprojf, &mprojf, &anprojf);
         }
         if(prvbackcast==1){
           datebackd=(jback1+12*mback1+365*anback1)/365;
           jbackd=jback1;
           mbackd=mback1;
           anbackd=anback1;
           datebackf=(jback2+12*mback2+365*anback2)/365;
           jbackf=jback2;
           mbackf=mback2;
           anbackf=anback2;
         } else if(prvbackcast == 2){
           datebackd=dateintmean;
           date2dmy(datebackd,&jbackd, &mbackd, &anbackd);
           datebackf=dateintmean-yrbproj;
           date2dmy(datebackf,&jbackf, &mbackf, &anbackf);
         }
         
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, prevbcast, pathc,p, (int)anprojd-bage, (int)anbackd-fage);
       }
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,prevbcast, estepm, \
                    jprev1,mprev1,anprev1,dateprev1, dateprojd, datebackd,jprev2,mprev2,anprev2,dateprev2,dateprojf, datebackf);
                   
       /*------------ free_vector  -------------*/
       /*  chdir(path); */
                   
       /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
       /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
       free_lvector(num,firstobs,lastobs);
       free_vector(agedc,firstobs,lastobs);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
                   
                   
       /* Other results (useful)*/
                   
                   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
       
       /* ncovcombmax=  pow(2,cptcoveff); */
       /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
       
       /* Prevalence for each covariate combination in probs[age][status][cov] */
       probs= ma3x(AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
       for(i=AGEINF;i<=AGESUP;i++)
         for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */
           for(k=1;k<=ncovcombmax;k++)
             probs[i][j][k]=0.;
       prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, 
                  ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       if (mobilav!=0 ||mobilavproj !=0 ) {
         mobaverages= ma3x(AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
         for(i=AGEINF;i<=AGESUP;i++)
           for(j=1;j<=nlstate+ndeath;j++)
             for(k=1;k<=ncovcombmax;k++)
               mobaverages[i][j][k]=0.;
         mobaverage=mobaverages;
         if (mobilav!=0) {
           printf("Movingaveraging observed prevalence\n");
           fprintf(ficlog,"Movingaveraging observed prevalence\n");
           if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
             fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             printf(" Error in movingaverage mobilav=%d\n",mobilav);
           }
         } else if (mobilavproj !=0) {
           printf("Movingaveraging projected observed prevalence\n");
           fprintf(ficlog,"Movingaveraging projected observed prevalence\n");
           if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
             fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
             printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
           }
         }else{
           printf("Internal error moving average\n");
           fflush(stdout);
           exit(1);
         }
       }/* end if moving average */
       
       /*---------- Forecasting ------------------*/
       if(prevfcast==1){ 
         /*   /\*    if(stepm ==1){*\/ */
         /*   /\*  anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */
         /*This done previously after freqsummary.*/
         /*   dateprojd=(jproj1+12*mproj1+365*anproj1)/365; */
         /*   dateprojf=(jproj2+12*mproj2+365*anproj2)/365; */
         
         /* } else if (prvforecast==2){ */
         /*   /\*    if(stepm ==1){*\/ */
         /*   /\*  anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */
         /* } */
         /*prevforecast(fileresu, dateintmean, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);*/
         prevforecast(fileresu,dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, p, cptcoveff);
       }
   
       /* Prevbcasting */
       if(prevbcast==1){
         ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
         ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
         ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
   
         /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
   
         bprlim=matrix(1,nlstate,1,nlstate);
   
         back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
         fclose(ficresplb);
   
         hBijx(p, bage, fage, mobaverage);
         fclose(ficrespijb);
   
         /* /\* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, *\/ */
         /* /\*                   mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); *\/ */
         /* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, */
         /*                       mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */
         prevbackforecast(fileresu, mobaverage, dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2,
                          mobilavproj, bage, fage, firstpass, lastpass, p, cptcoveff);
   
         
         varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
   
         
         free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
         free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
       }    /* end  Prevbcasting */
    
    
       /* ------ Other prevalence ratios------------ */
   
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
                   
                   
       /*---------- Health expectancies, no variances ------------*/
                   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
   
       pstamp(ficreseij);
                   
       i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
       if (cptcovn < 1){i1=1;}
       
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(i1 != 1 && TKresult[nres]!= k)
           continue;
         fprintf(ficreseij,"\n#****** ");
         printf("\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficreseij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         }
         fprintf(ficreseij,"******\n");
         printf("******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres);  
         
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
       }
       fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
   
                   
       /*---------- State-specific expectancies and variances ------------*/
                   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout);
       fprintf(ficlog,"      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog);
   
       i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
       if (cptcovn < 1){i1=1;}
       
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(i1 != 1 && TKresult[nres]!= k)
           continue;
         printf("\n#****** Result for:");
         fprintf(ficrest,"\n#****** Result for:");
         fprintf(ficlog,"\n#****** Result for:");
         for(j=1;j<=cptcoveff;j++){ 
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficrest,"******\n");
         fprintf(ficlog,"******\n");
         printf("******\n");
         
         fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           fprintf(ficresstdeij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficrescveij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");
         /* pstamp(ficresvij); */
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         printf(" cvevsij ");
         fprintf(ficlog, " cvevsij ");
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres);
         printf(" end cvevsij \n ");
         fprintf(ficlog, " end cvevsij \n ");
         
         /*
          */
         /* goto endfree; */
         
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         pstamp(ficrest);
         
         epj=vector(1,nlstate+1);
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           oldm=oldms;savm=savms; /* ZZ Segmentation fault */
           cptcod= 0; /* To be deleted */
           printf("varevsij vpopbased=%d \n",vpopbased);
           fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           if(vpopbased==1)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
           else
             fprintf(ficrest,"the age specific forward period (stable) prevalences in each health state \n");
           fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
           /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
           printf("Computing age specific forward period (stable) prevalences in each health state \n");
           fprintf(ficlog,"Computing age specific forward period (stable) prevalences in each health state \n");
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */
             if (vpopbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
             
             fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
             /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
             /* printf(" age %4.0f ",age); */
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
               }
               epj[nlstate+1] +=epj[j];
             }
             /* printf(" age %4.0f \n",age); */
             
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
         } /* End vpopbased */
         free_vector(epj,1,nlstate+1);
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         printf("done selection\n");fflush(stdout);
         fprintf(ficlog,"done selection\n");fflush(ficlog);
         
       } /* End k selection */
   
       printf("done State-specific expectancies\n");fflush(stdout);
       fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);
   
       /* variance-covariance of forward period prevalence*/
       varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
   
       
       free_vector(weight,firstobs,lastobs);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,firstobs,lastobs);
       free_matrix(anint,1,maxwav,firstobs,lastobs); 
       free_matrix(mint,1,maxwav,firstobs,lastobs);
       free_ivector(cod,firstobs,lastobs);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
       
       
       /*---------- End : free ----------------*/
       if (mobilav!=0 ||mobilavproj !=0)
         free_ma3x(mobaverages,AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
       free_ma3x(probs,AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     }  /* mle==-3 arrives here for freeing */
     /* endfree:*/
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,firstobs,lastobs);
     if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,firstobs,lastobs);
     if(nqv>=1)free_matrix(coqvar,1,nqv,firstobs,lastobs);
     free_matrix(covar,0,NCOVMAX,firstobs,lastobs);
     free_matrix(matcov,1,npar,1,npar);
     free_matrix(hess,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(paramstart,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     
     free_ivector(ncodemax,1,NCOVMAX);
     free_ivector(ncodemaxwundef,1,NCOVMAX);
     free_ivector(Dummy,-1,NCOVMAX);
     free_ivector(Fixed,-1,NCOVMAX);
     free_ivector(DummyV,1,NCOVMAX);
     free_ivector(FixedV,1,NCOVMAX);
     free_ivector(Typevar,-1,NCOVMAX);
     free_ivector(Tvar,1,NCOVMAX);
     free_ivector(TvarsQ,1,NCOVMAX);
     free_ivector(TvarsQind,1,NCOVMAX);
     free_ivector(TvarsD,1,NCOVMAX);
     free_ivector(TvarsDind,1,NCOVMAX);
     free_ivector(TvarFD,1,NCOVMAX);
     free_ivector(TvarFDind,1,NCOVMAX);
     free_ivector(TvarF,1,NCOVMAX);
     free_ivector(TvarFind,1,NCOVMAX);
     free_ivector(TvarV,1,NCOVMAX);
     free_ivector(TvarVind,1,NCOVMAX);
     free_ivector(TvarA,1,NCOVMAX);
     free_ivector(TvarAind,1,NCOVMAX);
     free_ivector(TvarFQ,1,NCOVMAX);
     free_ivector(TvarFQind,1,NCOVMAX);
     free_ivector(TvarVD,1,NCOVMAX);
     free_ivector(TvarVDind,1,NCOVMAX);
     free_ivector(TvarVQ,1,NCOVMAX);
     free_ivector(TvarVQind,1,NCOVMAX);
     free_ivector(Tvarsel,1,NCOVMAX);
     free_vector(Tvalsel,1,NCOVMAX);
     free_ivector(Tposprod,1,NCOVMAX);
     free_ivector(Tprod,1,NCOVMAX);
     free_ivector(Tvaraff,1,NCOVMAX);
     free_ivector(invalidvarcomb,1,ncovcombmax);
     free_ivector(Tage,1,NCOVMAX);
     free_ivector(Tmodelind,1,NCOVMAX);
     free_ivector(TmodelInvind,1,NCOVMAX);
     free_ivector(TmodelInvQind,1,NCOVMAX);
     
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
     /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
     
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
     
   
   /* Executes gnuplot */
     
     printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
     if (_chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(_getcwd(pathcd,MAXLINE) > 0)
   #else
       if(chdir(pathcd) != 0)
         printf("Can't move to directory %s!\n", path);
     if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
     strcpy(pplotcmd,plotcmd);
     
     if((outcmd=system(plotcmd)) != 0){
       printf("Error in gnuplot, command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0){
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
         strcpy(plotcmd,pplotcmd);
       }
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
   end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
     printf("End\n");
     exit(0);
   }

Removed from v.1.125  
changed lines
  Added in v.1.297


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>