Diff for /imach/src/imach.c between versions 1.38 and 1.174

version 1.38, 2002/04/03 12:19:36 version 1.174, 2015/01/03 16:15:49
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.174  2015/01/03 16:15:49  brouard
      Summary: Still in cross-compilation
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.173  2015/01/03 12:06:26  brouard
   first survey ("cross") where individuals from different ages are    Summary: trying to detect cross-compilation
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.172  2014/12/27 12:07:47  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.171  2014/12/23 13:26:59  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: Back from Visual C
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Still problem with utsname.h on Windows
   probabibility to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.170  2014/12/23 11:17:12  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: Cleaning some \%% back to %%
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.169  2014/12/22 23:08:31  brouard
   convergence.    Summary: 0.98p
   
   The advantage of this computer programme, compared to a simple    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.168  2014/12/22 15:17:42  brouard
   intermediate interview, the information is lost, but taken into    Summary: update
   account using an interpolation or extrapolation.    
     Revision 1.167  2014/12/22 13:50:56  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: Testing uname and compiler version and if compiled 32 or 64
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Testing on Linux 64
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.166  2014/12/22 11:40:47  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    *** empty log message ***
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    * imach.c (Module): Merging 1.61 to 1.162
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.164  2014/12/16 10:52:11  brouard
            Institut national d'études démographiques, Paris.    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    * imach.c (Module): Merging 1.61 to 1.162
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.163  2014/12/16 10:30:11  brouard
   can be accessed at http://euroreves.ined.fr/imach .    * imach.c (Module): Merging 1.61 to 1.162
   **********************************************************************/  
      Revision 1.162  2014/09/25 11:43:39  brouard
 #include <math.h>    Summary: temporary backup 0.99!
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.1  2014/09/16 11:06:58  brouard
 #include <unistd.h>    Summary: With some code (wrong) for nlopt
   
 #define MAXLINE 256    Author:
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.161  2014/09/15 20:41:41  brouard
 #define FILENAMELENGTH 80    Summary: Problem with macro SQR on Intel compiler
 /*#define DEBUG*/  
 #define windows    Revision 1.160  2014/09/02 09:24:05  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    *** empty log message ***
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.159  2014/09/01 10:34:10  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Summary: WIN32
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Author: Brouard
   
 #define NINTERVMAX 8    Revision 1.158  2014/08/27 17:11:51  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    *** empty log message ***
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.157  2014/08/27 16:26:55  brouard
 #define MAXN 20000    Summary: Preparing windows Visual studio version
 #define YEARM 12. /* Number of months per year */    Author: Brouard
 #define AGESUP 130  
 #define AGEBASE 40    In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
 int erreur; /* Error number */    Trying to suppress #ifdef LINUX
 int nvar;    Add xdg-open for __linux in order to open default browser.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.156  2014/08/25 20:10:10  brouard
 int nlstate=2; /* Number of live states */    *** empty log message ***
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.155  2014/08/25 18:32:34  brouard
 int popbased=0;    Summary: New compile, minor changes
     Author: Brouard
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.154  2014/06/20 17:32:08  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    Summary: Outputs now all graphs of convergence to period prevalence
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.153  2014/06/20 16:45:46  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Summary: If 3 live state, convergence to period prevalence on same graph
 double jmean; /* Mean space between 2 waves */    Author: Brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.152  2014/06/18 17:54:09  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.151  2014/06/18 16:43:30  brouard
   char filerese[FILENAMELENGTH];    *** empty log message ***
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.150  2014/06/18 16:42:35  brouard
  FILE  *ficresvpl;    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   char fileresvpl[FILENAMELENGTH];    Author: brouard
   
 #define NR_END 1    Revision 1.149  2014/06/18 15:51:14  brouard
 #define FREE_ARG char*    Summary: Some fixes in parameter files errors
 #define FTOL 1.0e-10    Author: Nicolas Brouard
   
 #define NRANSI    Revision 1.148  2014/06/17 17:38:48  brouard
 #define ITMAX 200    Summary: Nothing new
     Author: Brouard
 #define TOL 2.0e-4  
     Just a new packaging for OS/X version 0.98nS
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.147  2014/06/16 10:33:11  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    *** empty log message ***
   
 #define GOLD 1.618034    Revision 1.146  2014/06/16 10:20:28  brouard
 #define GLIMIT 100.0    Summary: Merge
 #define TINY 1.0e-20    Author: Brouard
   
 static double maxarg1,maxarg2;    Merge, before building revised version.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.145  2014/06/10 21:23:15  brouard
      Summary: Debugging with valgrind
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Author: Nicolas Brouard
 #define rint(a) floor(a+0.5)  
     Lot of changes in order to output the results with some covariates
 static double sqrarg;    After the Edimburgh REVES conference 2014, it seems mandatory to
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    improve the code.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
 int imx;    Also, decodemodel has been improved. Tricode is still not
 int stepm;    optimal. nbcode should be improved. Documentation has been added in
 /* Stepm, step in month: minimum step interpolation*/    the source code.
   
 int estepm;    Revision 1.143  2014/01/26 09:45:38  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
 int m,nb;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.142  2014/01/26 03:57:36  brouard
 double dateintmean=0;    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
 double *weight;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.141  2014/01/26 02:42:01  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.140  2011/09/02 10:37:54  brouard
 double ftolhess; /* Tolerance for computing hessian */    Summary: times.h is ok with mingw32 now.
   
 /**************** split *************************/    Revision 1.139  2010/06/14 07:50:17  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 {    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.137  2010/04/29 18:11:38  brouard
 #ifdef windows    (Module): Checking covariates for more complex models
    s = strrchr( path, '\\' );           /* find last / */    than V1+V2. A lot of change to be done. Unstable.
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.136  2010/04/26 20:30:53  brouard
 #endif    (Module): merging some libgsl code. Fixing computation
    if ( s == NULL ) {                   /* no directory, so use current */    of likelione (using inter/intrapolation if mle = 0) in order to
 #if     defined(__bsd__)                /* get current working directory */    get same likelihood as if mle=1.
       extern char       *getwd( );    Some cleaning of code and comments added.
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.135  2009/10/29 15:33:14  brouard
 #else    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
       extern char       *getcwd( );  
     Revision 1.134  2009/10/29 13:18:53  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.133  2009/07/06 10:21:25  brouard
       }    just nforces
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.132  2009/07/06 08:22:05  brouard
       s++;                              /* after this, the filename */    Many tings
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.131  2009/06/20 16:22:47  brouard
       strcpy( name, s );                /* save file name */    Some dimensions resccaled
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.130  2009/05/26 06:44:34  brouard
    }    (Module): Max Covariate is now set to 20 instead of 8. A
    l1 = strlen( dirc );                 /* length of directory */    lot of cleaning with variables initialized to 0. Trying to make
 #ifdef windows    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.129  2007/08/31 13:49:27  lievre
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.128  2006/06/30 13:02:05  brouard
    s++;    (Module): Clarifications on computing e.j
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.127  2006/04/28 18:11:50  brouard
    l2= strlen( s)+1;    (Module): Yes the sum of survivors was wrong since
    strncpy( finame, name, l1-l2);    imach-114 because nhstepm was no more computed in the age
    finame[l1-l2]= 0;    loop. Now we define nhstepma in the age loop.
    return( 0 );                         /* we're done */    (Module): In order to speed up (in case of numerous covariates) we
 }    compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
 /******************************************/    computation.
     In the future we should be able to stop the program is only health
 void replace(char *s, char*t)    expectancies and graph are needed without standard deviations.
 {  
   int i;    Revision 1.126  2006/04/28 17:23:28  brouard
   int lg=20;    (Module): Yes the sum of survivors was wrong since
   i=0;    imach-114 because nhstepm was no more computed in the age
   lg=strlen(t);    loop. Now we define nhstepma in the age loop.
   for(i=0; i<= lg; i++) {    Version 0.98h
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.125  2006/04/04 15:20:31  lievre
   }    Errors in calculation of health expectancies. Age was not initialized.
 }    Forecasting file added.
   
 int nbocc(char *s, char occ)    Revision 1.124  2006/03/22 17:13:53  lievre
 {    Parameters are printed with %lf instead of %f (more numbers after the comma).
   int i,j=0;    The log-likelihood is printed in the log file
   int lg=20;  
   i=0;    Revision 1.123  2006/03/20 10:52:43  brouard
   lg=strlen(s);    * imach.c (Module): <title> changed, corresponds to .htm file
   for(i=0; i<= lg; i++) {    name. <head> headers where missing.
   if  (s[i] == occ ) j++;  
   }    * imach.c (Module): Weights can have a decimal point as for
   return j;    English (a comma might work with a correct LC_NUMERIC environment,
 }    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 void cutv(char *u,char *v, char*t, char occ)    1.
 {    Version 0.98g
   int i,lg,j,p=0;  
   i=0;    Revision 1.122  2006/03/20 09:45:41  brouard
   for(j=0; j<=strlen(t)-1; j++) {    (Module): Weights can have a decimal point as for
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    English (a comma might work with a correct LC_NUMERIC environment,
   }    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   lg=strlen(t);    1.
   for(j=0; j<p; j++) {    Version 0.98g
     (u[j] = t[j]);  
   }    Revision 1.121  2006/03/16 17:45:01  lievre
      u[p]='\0';    * imach.c (Module): Comments concerning covariates added
   
    for(j=0; j<= lg; j++) {    * imach.c (Module): refinements in the computation of lli if
     if (j>=(p+1))(v[j-p-1] = t[j]);    status=-2 in order to have more reliable computation if stepm is
   }    not 1 month. Version 0.98f
 }  
     Revision 1.120  2006/03/16 15:10:38  lievre
 /********************** nrerror ********************/    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 void nrerror(char error_text[])    not 1 month. Version 0.98f
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.119  2006/03/15 17:42:26  brouard
   fprintf(stderr,"%s\n",error_text);    (Module): Bug if status = -2, the loglikelihood was
   exit(1);    computed as likelihood omitting the logarithm. Version O.98e
 }  
 /*********************** vector *******************/    Revision 1.118  2006/03/14 18:20:07  brouard
 double *vector(int nl, int nh)    (Module): varevsij Comments added explaining the second
 {    table of variances if popbased=1 .
   double *v;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Module): Function pstamp added
   if (!v) nrerror("allocation failure in vector");    (Module): Version 0.98d
   return v-nl+NR_END;  
 }    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 /************************ free vector ******************/    table of variances if popbased=1 .
 void free_vector(double*v, int nl, int nh)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 {    (Module): Function pstamp added
   free((FREE_ARG)(v+nl-NR_END));    (Module): Version 0.98d
 }  
     Revision 1.116  2006/03/06 10:29:27  brouard
 /************************ivector *******************************/    (Module): Variance-covariance wrong links and
 int *ivector(long nl,long nh)    varian-covariance of ej. is needed (Saito).
 {  
   int *v;    Revision 1.115  2006/02/27 12:17:45  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    (Module): One freematrix added in mlikeli! 0.98c
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.114  2006/02/26 12:57:58  brouard
 }    (Module): Some improvements in processing parameter
     filename with strsep.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.113  2006/02/24 14:20:24  brouard
 {    (Module): Memory leaks checks with valgrind and:
   free((FREE_ARG)(v+nl-NR_END));    datafile was not closed, some imatrix were not freed and on matrix
 }    allocation too.
   
 /******************* imatrix *******************************/    Revision 1.112  2006/01/30 09:55:26  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): Back to gnuplot.exe instead of wgnuplot.exe
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.111  2006/01/25 20:38:18  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): Lots of cleaning and bugs added (Gompertz)
   int **m;    (Module): Comments can be added in data file. Missing date values
      can be a simple dot '.'.
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.110  2006/01/25 00:51:50  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Lots of cleaning and bugs added (Gompertz)
   m += NR_END;  
   m -= nrl;    Revision 1.109  2006/01/24 19:37:15  brouard
      (Module): Comments (lines starting with a #) are allowed in data.
    
   /* allocate rows and set pointers to them */    Revision 1.108  2006/01/19 18:05:42  lievre
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Gnuplot problem appeared...
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    To be fixed
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.107  2006/01/19 16:20:37  brouard
      Test existence of gnuplot in imach path
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.106  2006/01/19 13:24:36  brouard
   /* return pointer to array of pointers to rows */    Some cleaning and links added in html output
   return m;  
 }    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.104  2005/09/30 16:11:43  lievre
       int **m;    (Module): sump fixed, loop imx fixed, and simplifications.
       long nch,ncl,nrh,nrl;    (Module): If the status is missing at the last wave but we know
      /* free an int matrix allocated by imatrix() */    that the person is alive, then we can code his/her status as -2
 {    (instead of missing=-1 in earlier versions) and his/her
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    contributions to the likelihood is 1 - Prob of dying from last
   free((FREE_ARG) (m+nrl-NR_END));    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 }    the healthy state at last known wave). Version is 0.98
   
 /******************* matrix *******************************/    Revision 1.103  2005/09/30 15:54:49  lievre
 double **matrix(long nrl, long nrh, long ncl, long nch)    (Module): sump fixed, loop imx fixed, and simplifications.
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Revision 1.102  2004/09/15 17:31:30  brouard
   double **m;    Add the possibility to read data file including tab characters.
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.101  2004/09/15 10:38:38  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    Fix on curr_time
   m += NR_END;  
   m -= nrl;    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.99  2004/06/05 08:57:40  brouard
   m[nrl] += NR_END;    *** empty log message ***
   m[nrl] -= ncl;  
     Revision 1.98  2004/05/16 15:05:56  brouard
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    New version 0.97 . First attempt to estimate force of mortality
   return m;    directly from the data i.e. without the need of knowing the health
 }    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 /*************************free matrix ************************/    other analysis, in order to test if the mortality estimated from the
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    cross-longitudinal survey is different from the mortality estimated
 {    from other sources like vital statistic data.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    The same imach parameter file can be used but the option for mle should be -3.
 }  
     Agnès, who wrote this part of the code, tried to keep most of the
 /******************* ma3x *******************************/    former routines in order to include the new code within the former code.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    The output is very simple: only an estimate of the intercept and of
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    the slope with 95% confident intervals.
   double ***m;  
     Current limitations:
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    A) Even if you enter covariates, i.e. with the
   if (!m) nrerror("allocation failure 1 in matrix()");    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   m += NR_END;    B) There is no computation of Life Expectancy nor Life Table.
   m -= nrl;  
     Revision 1.97  2004/02/20 13:25:42  lievre
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Version 0.96d. Population forecasting command line is (temporarily)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    suppressed.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    rewritten within the same printf. Workaround: many printfs.
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Revision 1.95  2003/07/08 07:54:34  brouard
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    * imach.c (Repository):
   m[nrl][ncl] += NR_END;    (Repository): Using imachwizard code to output a more meaningful covariance
   m[nrl][ncl] -= nll;    matrix (cov(a12,c31) instead of numbers.
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Revision 1.94  2003/06/27 13:00:02  brouard
      Just cleaning
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Revision 1.93  2003/06/25 16:33:55  brouard
     for (j=ncl+1; j<=nch; j++)    (Module): On windows (cygwin) function asctime_r doesn't
       m[i][j]=m[i][j-1]+nlay;    exist so I changed back to asctime which exists.
   }    (Module): Version 0.96b
   return m;  
 }    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 /*************************free ma3x ************************/    exist so I changed back to asctime which exists.
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    Revision 1.91  2003/06/25 15:30:29  brouard
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    * imach.c (Repository): Duplicated warning errors corrected.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Repository): Elapsed time after each iteration is now output. It
   free((FREE_ARG)(m+nrl-NR_END));    helps to forecast when convergence will be reached. Elapsed time
 }    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.90  2003/06/24 12:34:15  brouard
 extern double *pcom,*xicom;    (Module): Some bugs corrected for windows. Also, when
 extern double (*nrfunc)(double []);    mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
 double f1dim(double x)  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
   int j;    (Module): Some bugs corrected for windows. Also, when
   double f;    mle=-1 a template is output in file "or"mypar.txt with the design
   double *xt;    of the covariance matrix to be input.
    
   xt=vector(1,ncom);    Revision 1.88  2003/06/23 17:54:56  brouard
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);    Revision 1.87  2003/06/18 12:26:01  brouard
   return f;    Version 0.96
 }  
     Revision 1.86  2003/06/17 20:04:08  brouard
 /*****************brent *************************/    (Module): Change position of html and gnuplot routines and added
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    routine fileappend.
 {  
   int iter;    Revision 1.85  2003/06/17 13:12:43  brouard
   double a,b,d,etemp;    * imach.c (Repository): Check when date of death was earlier that
   double fu,fv,fw,fx;    current date of interview. It may happen when the death was just
   double ftemp;    prior to the death. In this case, dh was negative and likelihood
   double p,q,r,tol1,tol2,u,v,w,x,xm;    was wrong (infinity). We still send an "Error" but patch by
   double e=0.0;    assuming that the date of death was just one stepm after the
      interview.
   a=(ax < cx ? ax : cx);    (Repository): Because some people have very long ID (first column)
   b=(ax > cx ? ax : cx);    we changed int to long in num[] and we added a new lvector for
   x=w=v=bx;    memory allocation. But we also truncated to 8 characters (left
   fw=fv=fx=(*f)(x);    truncation)
   for (iter=1;iter<=ITMAX;iter++) {    (Repository): No more line truncation errors.
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Revision 1.84  2003/06/13 21:44:43  brouard
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    * imach.c (Repository): Replace "freqsummary" at a correct
     printf(".");fflush(stdout);    place. It differs from routine "prevalence" which may be called
 #ifdef DEBUG    many times. Probs is memory consuming and must be used with
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    parcimony.
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    Revision 1.83  2003/06/10 13:39:11  lievre
       *xmin=x;    *** empty log message ***
       return fx;  
     }    Revision 1.82  2003/06/05 15:57:20  brouard
     ftemp=fu;    Add log in  imach.c and  fullversion number is now printed.
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  */
       q=(x-v)*(fx-fw);  /*
       p=(x-v)*q-(x-w)*r;     Interpolated Markov Chain
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    Short summary of the programme:
       q=fabs(q);    
       etemp=e;    This program computes Healthy Life Expectancies from
       e=d;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    first survey ("cross") where individuals from different ages are
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    interviewed on their health status or degree of disability (in the
       else {    case of a health survey which is our main interest) -2- at least a
         d=p/q;    second wave of interviews ("longitudinal") which measure each change
         u=x+d;    (if any) in individual health status.  Health expectancies are
         if (u-a < tol2 || b-u < tol2)    computed from the time spent in each health state according to a
           d=SIGN(tol1,xm-x);    model. More health states you consider, more time is necessary to reach the
       }    Maximum Likelihood of the parameters involved in the model.  The
     } else {    simplest model is the multinomial logistic model where pij is the
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    probability to be observed in state j at the second wave
     }    conditional to be observed in state i at the first wave. Therefore
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     fu=(*f)(u);    'age' is age and 'sex' is a covariate. If you want to have a more
     if (fu <= fx) {    complex model than "constant and age", you should modify the program
       if (u >= x) a=x; else b=x;    where the markup *Covariates have to be included here again* invites
       SHFT(v,w,x,u)    you to do it.  More covariates you add, slower the
         SHFT(fv,fw,fx,fu)    convergence.
         } else {  
           if (u < x) a=u; else b=u;    The advantage of this computer programme, compared to a simple
           if (fu <= fw || w == x) {    multinomial logistic model, is clear when the delay between waves is not
             v=w;    identical for each individual. Also, if a individual missed an
             w=u;    intermediate interview, the information is lost, but taken into
             fv=fw;    account using an interpolation or extrapolation.  
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    hPijx is the probability to be observed in state i at age x+h
             v=u;    conditional to the observed state i at age x. The delay 'h' can be
             fv=fu;    split into an exact number (nh*stepm) of unobserved intermediate
           }    states. This elementary transition (by month, quarter,
         }    semester or year) is modelled as a multinomial logistic.  The hPx
   }    matrix is simply the matrix product of nh*stepm elementary matrices
   nrerror("Too many iterations in brent");    and the contribution of each individual to the likelihood is simply
   *xmin=x;    hPijx.
   return fx;  
 }    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence. 
 /****************** mnbrak ***********************/    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,             Institut national d'études démographiques, Paris.
             double (*func)(double))    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   double ulim,u,r,q, dum;    It is copyrighted identically to a GNU software product, ie programme and
   double fu;    software can be distributed freely for non commercial use. Latest version
      can be accessed at http://euroreves.ined.fr/imach .
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   if (*fb > *fa) {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     SHFT(dum,*ax,*bx,dum)    
       SHFT(dum,*fb,*fa,dum)    **********************************************************************/
       }  /*
   *cx=(*bx)+GOLD*(*bx-*ax);    main
   *fc=(*func)(*cx);    read parameterfile
   while (*fb > *fc) {    read datafile
     r=(*bx-*ax)*(*fb-*fc);    concatwav
     q=(*bx-*cx)*(*fb-*fa);    freqsummary
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if (mle >= 1)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      mlikeli
     ulim=(*bx)+GLIMIT*(*cx-*bx);    print results files
     if ((*bx-u)*(u-*cx) > 0.0) {    if mle==1 
       fu=(*func)(u);       computes hessian
     } else if ((*cx-u)*(u-ulim) > 0.0) {    read end of parameter file: agemin, agemax, bage, fage, estepm
       fu=(*func)(u);        begin-prev-date,...
       if (fu < *fc) {    open gnuplot file
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    open html file
           SHFT(*fb,*fc,fu,(*func)(u))    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
           }     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       u=ulim;      freexexit2 possible for memory heap.
       fu=(*func)(u);  
     } else {    h Pij x                         | pij_nom  ficrestpij
       u=(*cx)+GOLD*(*cx-*bx);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       fu=(*func)(u);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
     }         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       }         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
 }    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
      Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 /*************** linmin ************************/     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   
 int ncom;    forecasting if prevfcast==1 prevforecast call prevalence()
 double *pcom,*xicom;    health expectancies
 double (*nrfunc)(double []);    Variance-covariance of DFLE
      prevalence()
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     movingaverage()
 {    varevsij() 
   double brent(double ax, double bx, double cx,    if popbased==1 varevsij(,popbased)
                double (*f)(double), double tol, double *xmin);    total life expectancies
   double f1dim(double x);    Variance of period (stable) prevalence
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   end
               double *fc, double (*func)(double));  */
   int j;  
   double xx,xmin,bx,ax;  #define POWELL /* Instead of NLOPT */
   double fx,fb,fa;  
    #include <math.h>
   ncom=n;  #include <stdio.h>
   pcom=vector(1,n);  #include <stdlib.h>
   xicom=vector(1,n);  #include <string.h>
   nrfunc=func;  
   for (j=1;j<=n;j++) {  #ifdef _WIN32
     pcom[j]=p[j];  #include <io.h>
     xicom[j]=xi[j];  #include <windows.h>
   }  #include <tchar.h>
   ax=0.0;  #else
   xx=1.0;  #include <unistd.h>
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #endif
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  #include <limits.h>
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #include <sys/types.h>
 #endif  
   for (j=1;j<=n;j++) {  #if defined(__GNUC__)
     xi[j] *= xmin;  #include <sys/utsname.h> /* Doesn't work on Windows */
     p[j] += xi[j];  #endif
   }  
   free_vector(xicom,1,n);  #include <sys/stat.h>
   free_vector(pcom,1,n);  #include <errno.h>
 }  /* extern int errno; */
   
 /*************** powell ************************/  /* #ifdef LINUX */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  /* #include <time.h> */
             double (*func)(double []))  /* #include "timeval.h" */
 {  /* #else */
   void linmin(double p[], double xi[], int n, double *fret,  /* #include <sys/time.h> */
               double (*func)(double []));  /* #endif */
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  #include <time.h>
   double fp,fptt;  
   double *xits;  #ifdef GSL
   pt=vector(1,n);  #include <gsl/gsl_errno.h>
   ptt=vector(1,n);  #include <gsl/gsl_multimin.h>
   xit=vector(1,n);  #endif
   xits=vector(1,n);  
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  #ifdef NLOPT
   for (*iter=1;;++(*iter)) {  #include <nlopt.h>
     fp=(*fret);  typedef struct {
     ibig=0;    double (* function)(double [] );
     del=0.0;  } myfunc_data ;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #endif
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);  /* #include <libintl.h> */
     printf("\n");  /* #define _(String) gettext (String) */
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       fptt=(*fret);  
 #ifdef DEBUG  #define GNUPLOTPROGRAM "gnuplot"
       printf("fret=%lf \n",*fret);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #endif  #define FILENAMELENGTH 132
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       if (fabs(fptt-(*fret)) > del) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
         del=fabs(fptt-(*fret));  
         ibig=i;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       }  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  #define NINTERVMAX 8
       for (j=1;j<=n;j++) {  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
         printf(" x(%d)=%.12e",j,xit[j]);  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       }  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       for(j=1;j<=n;j++)  #define MAXN 20000
         printf(" p=%.12e",p[j]);  #define YEARM 12. /**< Number of months per year */
       printf("\n");  #define AGESUP 130
 #endif  #define AGEBASE 40
     }  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #ifdef _WIN32
 #ifdef DEBUG  #define DIRSEPARATOR '\\'
       int k[2],l;  #define CHARSEPARATOR "\\"
       k[0]=1;  #define ODIRSEPARATOR '/'
       k[1]=-1;  #else
       printf("Max: %.12e",(*func)(p));  #define DIRSEPARATOR '/'
       for (j=1;j<=n;j++)  #define CHARSEPARATOR "/"
         printf(" %.12e",p[j]);  #define ODIRSEPARATOR '\\'
       printf("\n");  #endif
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /* $Id$ */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /* $State$ */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  char version[]="Imach version 0.98p, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  char fullversion[]="$Revision$ $Date$"; 
       }  char strstart[80];
 #endif  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar=0, nforce=0; /* Number of variables, number of forces */
       free_vector(xit,1,n);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       free_vector(xits,1,n);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       free_vector(ptt,1,n);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       free_vector(pt,1,n);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
       return;  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     }  int cptcovprodnoage=0; /**< Number of covariate products without age */   
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     for (j=1;j<=n;j++) {  int cptcov=0; /* Working variable */
       ptt[j]=2.0*p[j]-pt[j];  int npar=NPARMAX;
       xit[j]=p[j]-pt[j];  int nlstate=2; /* Number of live states */
       pt[j]=p[j];  int ndeath=1; /* Number of dead states */
     }  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     fptt=(*func)(ptt);  int popbased=0;
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int *wav; /* Number of waves for this individuual 0 is possible */
       if (t < 0.0) {  int maxwav=0; /* Maxim number of waves */
         linmin(p,xit,n,fret,func);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
         for (j=1;j<=n;j++) {  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
           xi[j][ibig]=xi[j][n];  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
           xi[j][n]=xit[j];                     to the likelihood and the sum of weights (done by funcone)*/
         }  int mle=1, weightopt=0;
 #ifdef DEBUG  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         for(j=1;j<=n;j++)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
           printf(" %.12e",xit[j]);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
         printf("\n");  int countcallfunc=0;  /* Count the number of calls to func */
 #endif  double jmean=1; /* Mean space between 2 waves */
       }  double **matprod2(); /* test */
     }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  /*FILE *fic ; */ /* Used in readdata only */
   FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /**** Prevalence limit ****************/  FILE *ficlog, *ficrespow;
   int globpr=0; /* Global variable for printing or not */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  double fretone; /* Only one call to likelihood */
 {  long ipmx=0; /* Number of contributions */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  double sw; /* Sum of weights */
      matrix by transitions matrix until convergence is reached */  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   int i, ii,j,k;  FILE *ficresilk;
   double min, max, maxmin, maxmax,sumnew=0.;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   double **matprod2();  FILE *ficresprobmorprev;
   double **out, cov[NCOVMAX], **pmij();  FILE *fichtm, *fichtmcov; /* Html File */
   double **newm;  FILE *ficreseij;
   double agefin, delaymax=50 ; /* Max number of years to converge */  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
   for (ii=1;ii<=nlstate+ndeath;ii++)  char fileresstde[FILENAMELENGTH];
     for (j=1;j<=nlstate+ndeath;j++){  FILE *ficrescveij;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  char filerescve[FILENAMELENGTH];
     }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
    cov[1]=1.;  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char title[MAXLINE];
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     newm=savm;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     /* Covariates have to be included here again */  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
      cov[2]=agefin;  char command[FILENAMELENGTH];
    int  outcmd=0;
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  char filelog[FILENAMELENGTH]; /* Log file */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  char filerest[FILENAMELENGTH];
       for (k=1; k<=cptcovprod;k++)  char fileregp[FILENAMELENGTH];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  char popfile[FILENAMELENGTH];
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /* struct timezone tzp; */
   /* extern int gettimeofday(); */
     savm=oldm;  struct tm tml, *gmtime(), *localtime();
     oldm=newm;  
     maxmax=0.;  extern time_t time();
     for(j=1;j<=nlstate;j++){  
       min=1.;  struct tm start_time, end_time, curr_time, last_time, forecast_time;
       max=0.;  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       for(i=1; i<=nlstate; i++) {  struct tm tm;
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  char strcurr[80], strfor[80];
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  char *endptr;
         min=FMIN(min,prlim[i][j]);  long lval;
       }  double dval;
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  #define NR_END 1
     }  #define FREE_ARG char*
     if(maxmax < ftolpl){  #define FTOL 1.0e-10
       return prlim;  
     }  #define NRANSI 
   }  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /*************** transition probabilities ***************/  
   #define CGOLD 0.3819660 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #define ZEPS 1.0e-10 
 {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double s1, s2;  
   /*double t34;*/  #define GOLD 1.618034 
   int i,j,j1, nc, ii, jj;  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  static double maxarg1,maxarg2;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
         /*s2 += param[i][j][nc]*cov[nc];*/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       }  #define rint(a) floor(a+0.5)
       ps[i][j]=s2;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  /* #define mytinydouble 1.0e-16 */
     }  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
     for(j=i+1; j<=nlstate+ndeath;j++){  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /* static double dsqrarg; */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  static double sqrarg;
       }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       ps[i][j]=s2;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     }  int agegomp= AGEGOMP;
   }  
     /*ps[3][2]=1;*/  int imx; 
   int stepm=1;
   for(i=1; i<= nlstate; i++){  /* Stepm, step in month: minimum step interpolation*/
      s1=0;  
     for(j=1; j<i; j++)  int estepm;
       s1+=exp(ps[i][j]);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  int m,nb;
     ps[i][i]=1./(s1+1.);  long *num;
     for(j=1; j<i; j++)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     for(j=i+1; j<=nlstate+ndeath; j++)  double **pmmij, ***probs;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  double *ageexmed,*agecens;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  double dateintmean=0;
   } /* end i */  
   double *weight;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  int **s; /* Status */
     for(jj=1; jj<= nlstate+ndeath; jj++){  double *agedc;
       ps[ii][jj]=0;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       ps[ii][ii]=1;                    * covar=matrix(0,NCOVMAX,1,n); 
     }                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   }  double  idx; 
   int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   int *Ndum; /** Freq of modality (tricode */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     for(jj=1; jj<= nlstate+ndeath; jj++){  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
      printf("%lf ",ps[ii][jj]);  double *lsurv, *lpop, *tpop;
    }  
     printf("\n ");  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     }  double ftolhess; /**< Tolerance for computing hessian */
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  /**************** split *************************/
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   goto end;*/  {
     return ps;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
 /**************** Product of 2 matrices ******************/    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {    l1 = strlen(path );                   /* length of path */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   /* in, b, out are matrice of pointers which should have been initialized    if ( ss == NULL ) {                   /* no directory, so determine current directory */
      before: only the contents of out is modified. The function returns      strcpy( name, path );               /* we got the fullname name because no directory */
      a pointer to pointers identical to out */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   long i, j, k;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   for(i=nrl; i<= nrh; i++)      /* get current working directory */
     for(k=ncolol; k<=ncoloh; k++)      /*    extern  char* getcwd ( char *buf , int len);*/
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         out[i][k] +=in[i][j]*b[j][k];        return( GLOCK_ERROR_GETCWD );
       }
   return out;      /* got dirc from getcwd*/
 }      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
 /************* Higher Matrix Product ***************/      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      dirc[l1-l2] = 0;                    /* add zero */
      duration (i.e. until      printf(" DIRC2 = %s \n",dirc);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    /* We add a separator at the end of dirc if not exists */
      (typically every 2 years instead of every month which is too big).    l1 = strlen( dirc );                  /* length of directory */
      Model is determined by parameters x and covariates have to be    if( dirc[l1-1] != DIRSEPARATOR ){
      included manually here.      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
      */      printf(" DIRC3 = %s \n",dirc);
     }
   int i, j, d, h, k;    ss = strrchr( name, '.' );            /* find last / */
   double **out, cov[NCOVMAX];    if (ss >0){
   double **newm;      ss++;
       strcpy(ext,ss);                     /* save extension */
   /* Hstepm could be zero and should return the unit matrix */      l1= strlen( name);
   for (i=1;i<=nlstate+ndeath;i++)      l2= strlen(ss)+1;
     for (j=1;j<=nlstate+ndeath;j++){      strncpy( finame, name, l1-l2);
       oldm[i][j]=(i==j ? 1.0 : 0.0);      finame[l1-l2]= 0;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    }
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    return( 0 );                          /* we're done */
   for(h=1; h <=nhstepm; h++){  }
     for(d=1; d <=hstepm; d++){  
       newm=savm;  
       /* Covariates have to be included here again */  /******************************************/
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  void replace_back_to_slash(char *s, char*t)
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  {
       for (k=1; k<=cptcovage;k++)    int i;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int lg=0;
       for (k=1; k<=cptcovprod;k++)    i=0;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    lg=strlen(t);
     for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      if (t[i]== '\\') s[i]='/';
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  char *trimbb(char *out, char *in)
       oldm=newm;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     }    char *s;
     for(i=1; i<=nlstate+ndeath; i++)    s=out;
       for(j=1;j<=nlstate+ndeath;j++) {    while (*in != '\0'){
         po[i][j][h]=newm[i][j];      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        in++;
          */      }
       }      *out++ = *in++;
   } /* end h */    }
   return po;    *out='\0';
 }    return s;
   }
   
 /*************** log-likelihood *************/  char *cutl(char *blocc, char *alocc, char *in, char occ)
 double func( double *x)  {
 {    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   int i, ii, j, k, mi, d, kk;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   double l, ll[NLSTATEMAX], cov[NCOVMAX];       gives blocc="abcdef2ghi" and alocc="j".
   double **out;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   double sw; /* Sum of weights */    */
   double lli; /* Individual log likelihood */    char *s, *t;
   long ipmx;    t=in;s=in;
   /*extern weight */    while ((*in != occ) && (*in != '\0')){
   /* We are differentiating ll according to initial status */      *alocc++ = *in++;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    }
   /*for(i=1;i<imx;i++)    if( *in == occ){
     printf(" %d\n",s[4][i]);      *(alocc)='\0';
   */      s=++in;
   cov[1]=1.;    }
    
   for(k=1; k<=nlstate; k++) ll[k]=0.;    if (s == t) {/* occ not found */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      *(alocc-(in-s))='\0';
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      in=s;
     for(mi=1; mi<= wav[i]-1; mi++){    }
       for (ii=1;ii<=nlstate+ndeath;ii++)    while ( *in != '\0'){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      *blocc++ = *in++;
       for(d=0; d<dh[mi][i]; d++){    }
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    *blocc='\0';
         for (kk=1; kk<=cptcovage;kk++) {    return t;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  }
         }  char *cutv(char *blocc, char *alocc, char *in, char occ)
          {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         savm=oldm;       gives blocc="abcdef2ghi" and alocc="j".
         oldm=newm;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
            */
            char *s, *t;
       } /* end mult */    t=in;s=in;
          while (*in != '\0'){
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      while( *in == occ){
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        *blocc++ = *in++;
       ipmx +=1;        s=in;
       sw += weight[i];      }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      *blocc++ = *in++;
     } /* end of wave */    }
   } /* end of individual */    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    else
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      *(blocc-(in-s)-1)='\0';
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    in=s;
   return -l;    while ( *in != '\0'){
 }      *alocc++ = *in++;
     }
   
 /*********** Maximum Likelihood Estimation ***************/    *alocc='\0';
     return s;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  }
 {  
   int i,j, iter;  int nbocc(char *s, char occ)
   double **xi,*delti;  {
   double fret;    int i,j=0;
   xi=matrix(1,npar,1,npar);    int lg=20;
   for (i=1;i<=npar;i++)    i=0;
     for (j=1;j<=npar;j++)    lg=strlen(s);
       xi[i][j]=(i==j ? 1.0 : 0.0);    for(i=0; i<= lg; i++) {
   printf("Powell\n");    if  (s[i] == occ ) j++;
   powell(p,xi,npar,ftol,&iter,&fret,func);    }
     return j;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   /* void cutv(char *u,char *v, char*t, char occ) */
 }  /* { */
   /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
 /**** Computes Hessian and covariance matrix ***/  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /*      gives u="abcdef2ghi" and v="j" *\/ */
 {  /*   int i,lg,j,p=0; */
   double  **a,**y,*x,pd;  /*   i=0; */
   double **hess;  /*   lg=strlen(t); */
   int i, j,jk;  /*   for(j=0; j<=lg-1; j++) { */
   int *indx;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  /*   for(j=0; j<p; j++) { */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*     (u[j] = t[j]); */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*   } */
   /*      u[p]='\0'; */
   hess=matrix(1,npar,1,npar);  
   /*    for(j=0; j<= lg; j++) { */
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   for (i=1;i<=npar;i++){  /*   } */
     printf("%d",i);fflush(stdout);  /* } */
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/  #ifdef _WIN32
     /*printf(" %lf ",hess[i][i]);*/  char * strsep(char **pp, const char *delim)
   }  {
      char *p, *q;
   for (i=1;i<=npar;i++) {           
     for (j=1;j<=npar;j++)  {    if ((p = *pp) == NULL)
       if (j>i) {      return 0;
         printf(".%d%d",i,j);fflush(stdout);    if ((q = strpbrk (p, delim)) != NULL)
         hess[i][j]=hessij(p,delti,i,j);    {
         hess[j][i]=hess[i][j];          *pp = q + 1;
         /*printf(" %lf ",hess[i][j]);*/      *q = '\0';
       }    }
     }    else
   }      *pp = 0;
   printf("\n");    return p;
   }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  #endif
    
   a=matrix(1,npar,1,npar);  /********************** nrerror ********************/
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  void nrerror(char error_text[])
   indx=ivector(1,npar);  {
   for (i=1;i<=npar;i++)    fprintf(stderr,"ERREUR ...\n");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    fprintf(stderr,"%s\n",error_text);
   ludcmp(a,npar,indx,&pd);    exit(EXIT_FAILURE);
   }
   for (j=1;j<=npar;j++) {  /*********************** vector *******************/
     for (i=1;i<=npar;i++) x[i]=0;  double *vector(int nl, int nh)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    double *v;
     for (i=1;i<=npar;i++){    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       matcov[i][j]=x[i];    if (!v) nrerror("allocation failure in vector");
     }    return v-nl+NR_END;
   }  }
   
   printf("\n#Hessian matrix#\n");  /************************ free vector ******************/
   for (i=1;i<=npar;i++) {  void free_vector(double*v, int nl, int nh)
     for (j=1;j<=npar;j++) {  {
       printf("%.3e ",hess[i][j]);    free((FREE_ARG)(v+nl-NR_END));
     }  }
     printf("\n");  
   }  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   /* Recompute Inverse */  {
   for (i=1;i<=npar;i++)    int *v;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   ludcmp(a,npar,indx,&pd);    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   /*  printf("\n#Hessian matrix recomputed#\n");  }
   
   for (j=1;j<=npar;j++) {  /******************free ivector **************************/
     for (i=1;i<=npar;i++) x[i]=0;  void free_ivector(int *v, long nl, long nh)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    free((FREE_ARG)(v+nl-NR_END));
     for (i=1;i<=npar;i++){  }
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  /************************lvector *******************************/
     }  long *lvector(long nl,long nh)
     printf("\n");  {
   }    long *v;
   */    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
   free_matrix(a,1,npar,1,npar);    return v-nl+NR_END;
   free_matrix(y,1,npar,1,npar);  }
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  /******************free lvector **************************/
   free_matrix(hess,1,npar,1,npar);  void free_lvector(long *v, long nl, long nh)
   {
     free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /*************** hessian matrix ****************/  /******************* imatrix *******************************/
 double hessii( double x[], double delta, int theta, double delti[])  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   int i;  { 
   int l=1, lmax=20;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double k1,k2;    int **m; 
   double p2[NPARMAX+1];    
   double res;    /* allocate pointers to rows */ 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   double fx;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   int k=0,kmax=10;    m += NR_END; 
   double l1;    m -= nrl; 
     
   fx=func(x);    
   for (i=1;i<=npar;i++) p2[i]=x[i];    /* allocate rows and set pointers to them */ 
   for(l=0 ; l <=lmax; l++){    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     l1=pow(10,l);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     delts=delt;    m[nrl] += NR_END; 
     for(k=1 ; k <kmax; k=k+1){    m[nrl] -= ncl; 
       delt = delta*(l1*k);    
       p2[theta]=x[theta] +delt;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       k1=func(p2)-fx;    
       p2[theta]=x[theta]-delt;    /* return pointer to array of pointers to rows */ 
       k2=func(p2)-fx;    return m; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */  } 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        /****************** free_imatrix *************************/
 #ifdef DEBUG  void free_imatrix(m,nrl,nrh,ncl,nch)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        int **m;
 #endif        long nch,ncl,nrh,nrl; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */       /* free an int matrix allocated by imatrix() */ 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  { 
         k=kmax;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       }    free((FREE_ARG) (m+nrl-NR_END)); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  } 
         k=kmax; l=lmax*10.;  
       }  /******************* matrix *******************************/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  double **matrix(long nrl, long nrh, long ncl, long nch)
         delts=delt;  {
       }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     }    double **m;
   }  
   delti[theta]=delts;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   return res;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
 }    m -= nrl;
   
 double hessij( double x[], double delti[], int thetai,int thetaj)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   int i;    m[nrl] += NR_END;
   int l=1, l1, lmax=20;    m[nrl] -= ncl;
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   int k;    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   fx=func(x);  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   for (k=1; k<=2; k++) {  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
     for (i=1;i<=npar;i++) p2[i]=x[i];     */
     p2[thetai]=x[thetai]+delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;  /*************************free matrix ************************/
    void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     p2[thetai]=x[thetai]+delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     k2=func(p2)-fx;    free((FREE_ARG)(m+nrl-NR_END));
    }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /******************* ma3x *******************************/
     k3=func(p2)-fx;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double ***m;
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    m += NR_END;
 #endif    m -= nrl;
   }  
   return res;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /************** Inverse of matrix **************/    m[nrl] -= ncl;
 void ludcmp(double **a, int n, int *indx, double *d)  
 {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   int i,imax,j,k;  
   double big,dum,sum,temp;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double *vv;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
      m[nrl][ncl] += NR_END;
   vv=vector(1,n);    m[nrl][ncl] -= nll;
   *d=1.0;    for (j=ncl+1; j<=nch; j++) 
   for (i=1;i<=n;i++) {      m[nrl][j]=m[nrl][j-1]+nlay;
     big=0.0;    
     for (j=1;j<=n;j++)    for (i=nrl+1; i<=nrh; i++) {
       if ((temp=fabs(a[i][j])) > big) big=temp;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      for (j=ncl+1; j<=nch; j++) 
     vv[i]=1.0/big;        m[i][j]=m[i][j-1]+nlay;
   }    }
   for (j=1;j<=n;j++) {    return m; 
     for (i=1;i<j;i++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       sum=a[i][j];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    */
       a[i][j]=sum;  }
     }  
     big=0.0;  /*************************free ma3x ************************/
     for (i=j;i<=n;i++) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       sum=a[i][j];  {
       for (k=1;k<j;k++)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         sum -= a[i][k]*a[k][j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       a[i][j]=sum;    free((FREE_ARG)(m+nrl-NR_END));
       if ( (dum=vv[i]*fabs(sum)) >= big) {  }
         big=dum;  
         imax=i;  /*************** function subdirf ***********/
       }  char *subdirf(char fileres[])
     }  {
     if (j != imax) {    /* Caution optionfilefiname is hidden */
       for (k=1;k<=n;k++) {    strcpy(tmpout,optionfilefiname);
         dum=a[imax][k];    strcat(tmpout,"/"); /* Add to the right */
         a[imax][k]=a[j][k];    strcat(tmpout,fileres);
         a[j][k]=dum;    return tmpout;
       }  }
       *d = -(*d);  
       vv[imax]=vv[j];  /*************** function subdirf2 ***********/
     }  char *subdirf2(char fileres[], char *preop)
     indx[j]=imax;  {
     if (a[j][j] == 0.0) a[j][j]=TINY;    
     if (j != n) {    /* Caution optionfilefiname is hidden */
       dum=1.0/(a[j][j]);    strcpy(tmpout,optionfilefiname);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
   }    strcat(tmpout,fileres);
   free_vector(vv,1,n);  /* Doesn't work */    return tmpout;
 ;  }
 }  
   /*************** function subdirf3 ***********/
 void lubksb(double **a, int n, int *indx, double b[])  char *subdirf3(char fileres[], char *preop, char *preop2)
 {  {
   int i,ii=0,ip,j;    
   double sum;    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
   for (i=1;i<=n;i++) {    strcat(tmpout,"/");
     ip=indx[i];    strcat(tmpout,preop);
     sum=b[ip];    strcat(tmpout,preop2);
     b[ip]=b[i];    strcat(tmpout,fileres);
     if (ii)    return tmpout;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  }
     else if (sum) ii=i;  
     b[i]=sum;  char *asc_diff_time(long time_sec, char ascdiff[])
   }  {
   for (i=n;i>=1;i--) {    long sec_left, days, hours, minutes;
     sum=b[i];    days = (time_sec) / (60*60*24);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    sec_left = (time_sec) % (60*60*24);
     b[i]=sum/a[i][i];    hours = (sec_left) / (60*60) ;
   }    sec_left = (sec_left) %(60*60);
 }    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
 /************ Frequencies ********************/    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    return ascdiff;
 {  /* Some frequencies */  }
    
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  /***************** f1dim *************************/
   double ***freq; /* Frequencies */  extern int ncom; 
   double *pp;  extern double *pcom,*xicom;
   double pos, k2, dateintsum=0,k2cpt=0;  extern double (*nrfunc)(double []); 
   FILE *ficresp;   
   char fileresp[FILENAMELENGTH];  double f1dim(double x) 
    { 
   pp=vector(1,nlstate);    int j; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    double f;
   strcpy(fileresp,"p");    double *xt; 
   strcat(fileresp,fileres);   
   if((ficresp=fopen(fileresp,"w"))==NULL) {    xt=vector(1,ncom); 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     exit(0);    f=(*nrfunc)(xt); 
   }    free_vector(xt,1,ncom); 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    return f; 
   j1=0;  } 
    
   j=cptcoveff;  /*****************brent *************************/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
    { 
   for(k1=1; k1<=j;k1++){    int iter; 
     for(i1=1; i1<=ncodemax[k1];i1++){    double a,b,d,etemp;
       j1++;    double fu=0,fv,fw,fx;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    double ftemp=0.;
         scanf("%d", i);*/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       for (i=-1; i<=nlstate+ndeath; i++)      double e=0.0; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)     
           for(m=agemin; m <= agemax+3; m++)    a=(ax < cx ? ax : cx); 
             freq[i][jk][m]=0;    b=(ax > cx ? ax : cx); 
          x=w=v=bx; 
       dateintsum=0;    fw=fv=fx=(*f)(x); 
       k2cpt=0;    for (iter=1;iter<=ITMAX;iter++) { 
       for (i=1; i<=imx; i++) {      xm=0.5*(a+b); 
         bool=1;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         if  (cptcovn>0) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
           for (z1=1; z1<=cptcoveff; z1++)      printf(".");fflush(stdout);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      fprintf(ficlog,".");fflush(ficlog);
               bool=0;  #ifdef DEBUGBRENT
         }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         if (bool==1) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           for(m=firstpass; m<=lastpass; m++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
             k2=anint[m][i]+(mint[m][i]/12.);  #endif
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        *xmin=x; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        return fx; 
               if (m<lastpass) {      } 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      ftemp=fu;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      if (fabs(e) > tol1) { 
               }        r=(x-w)*(fx-fv); 
                      q=(x-v)*(fx-fw); 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        p=(x-v)*q-(x-w)*r; 
                 dateintsum=dateintsum+k2;        q=2.0*(q-r); 
                 k2cpt++;        if (q > 0.0) p = -p; 
               }        q=fabs(q); 
             }        etemp=e; 
           }        e=d; 
         }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                else { 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          d=p/q; 
           u=x+d; 
       if  (cptcovn>0) {          if (u-a < tol2 || b-u < tol2) 
         fprintf(ficresp, "\n#********** Variable ");            d=SIGN(tol1,xm-x); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        } 
         fprintf(ficresp, "**********\n#");      } else { 
       }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for(i=1; i<=nlstate;i++)      } 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fprintf(ficresp, "\n");      fu=(*f)(u); 
            if (fu <= fx) { 
       for(i=(int)agemin; i <= (int)agemax+3; i++){        if (u >= x) a=x; else b=x; 
         if(i==(int)agemax+3)        SHFT(v,w,x,u) 
           printf("Total");          SHFT(fv,fw,fx,fu) 
         else          } else { 
           printf("Age %d", i);            if (u < x) a=u; else b=u; 
         for(jk=1; jk <=nlstate ; jk++){            if (fu <= fw || w == x) { 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              v=w; 
             pp[jk] += freq[jk][m][i];              w=u; 
         }              fv=fw; 
         for(jk=1; jk <=nlstate ; jk++){              fw=fu; 
           for(m=-1, pos=0; m <=0 ; m++)            } else if (fu <= fv || v == x || v == w) { 
             pos += freq[jk][m][i];              v=u; 
           if(pp[jk]>=1.e-10)              fv=fu; 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            } 
           else          } 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    } 
         }    nrerror("Too many iterations in brent"); 
     *xmin=x; 
         for(jk=1; jk <=nlstate ; jk++){    return fx; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  } 
             pp[jk] += freq[jk][m][i];  
         }  /****************** mnbrak ***********************/
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
           pos += pp[jk];              double (*func)(double)) 
         for(jk=1; jk <=nlstate ; jk++){  { 
           if(pos>=1.e-5)    double ulim,u,r,q, dum;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double fu; 
           else   
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    *fa=(*func)(*ax); 
           if( i <= (int) agemax){    *fb=(*func)(*bx); 
             if(pos>=1.e-5){    if (*fb > *fa) { 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      SHFT(dum,*ax,*bx,dum) 
               probs[i][jk][j1]= pp[jk]/pos;        SHFT(dum,*fb,*fa,dum) 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        } 
             }    *cx=(*bx)+GOLD*(*bx-*ax); 
             else    *fc=(*func)(*cx); 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    while (*fb > *fc) { /* Declining fa, fb, fc */
           }      r=(*bx-*ax)*(*fb-*fc); 
         }      q=(*bx-*cx)*(*fb-*fa); 
              u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         for(jk=-1; jk <=nlstate+ndeath; jk++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
           for(m=-1; m <=nlstate+ndeath; m++)      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
         if(i <= (int) agemax)        fu=(*func)(u); 
           fprintf(ficresp,"\n");  #ifdef DEBUG
         printf("\n");        /* f(x)=A(x-u)**2+f(u) */
       }        double A, fparabu; 
     }        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
   }        fparabu= *fa - A*(*ax-u)*(*ax-u);
   dateintmean=dateintsum/k2cpt;        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
          fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
   fclose(ficresp);  #endif 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
   free_vector(pp,1,nlstate);        fu=(*func)(u); 
          if (fu < *fc) { 
   /* End of Freq */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 }            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
 /************ Prevalence ********************/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        u=ulim; 
 {  /* Some frequencies */        fu=(*func)(u); 
        } else { 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        u=(*cx)+GOLD*(*cx-*bx); 
   double ***freq; /* Frequencies */        fu=(*func)(u); 
   double *pp;      } 
   double pos, k2;      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   pp=vector(1,nlstate);        } 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  } 
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*************** linmin ************************/
   j1=0;  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
    resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   j=cptcoveff;  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  the value of func at the returned location p . This is actually all accomplished by calling the
    routines mnbrak and brent .*/
  for(k1=1; k1<=j;k1++){  int ncom; 
     for(i1=1; i1<=ncodemax[k1];i1++){  double *pcom,*xicom;
       j1++;  double (*nrfunc)(double []); 
     
       for (i=-1; i<=nlstate+ndeath; i++)    void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         for (jk=-1; jk<=nlstate+ndeath; jk++)    { 
           for(m=agemin; m <= agemax+3; m++)    double brent(double ax, double bx, double cx, 
             freq[i][jk][m]=0;                 double (*f)(double), double tol, double *xmin); 
          double f1dim(double x); 
       for (i=1; i<=imx; i++) {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         bool=1;                double *fc, double (*func)(double)); 
         if  (cptcovn>0) {    int j; 
           for (z1=1; z1<=cptcoveff; z1++)    double xx,xmin,bx,ax; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double fx,fb,fa;
               bool=0;   
         }    ncom=n; 
         if (bool==1) {    pcom=vector(1,n); 
           for(m=firstpass; m<=lastpass; m++){    xicom=vector(1,n); 
             k2=anint[m][i]+(mint[m][i]/12.);    nrfunc=func; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    for (j=1;j<=n;j++) { 
               if(agev[m][i]==0) agev[m][i]=agemax+1;      pcom[j]=p[j]; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;      xicom[j]=xi[j]; 
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    } 
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */    ax=0.0; 
             }    xx=1.0; 
           }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
         }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
       }  #ifdef DEBUG
         for(i=(int)agemin; i <= (int)agemax+3; i++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           for(jk=1; jk <=nlstate ; jk++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  #endif
               pp[jk] += freq[jk][m][i];    for (j=1;j<=n;j++) { 
           }      xi[j] *= xmin; 
           for(jk=1; jk <=nlstate ; jk++){      p[j] += xi[j]; 
             for(m=-1, pos=0; m <=0 ; m++)    } 
             pos += freq[jk][m][i];    free_vector(xicom,1,n); 
         }    free_vector(pcom,1,n); 
          } 
          for(jk=1; jk <=nlstate ; jk++){  
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
              pp[jk] += freq[jk][m][i];  /*************** powell ************************/
          }  /*
            Minimization of a function func of n variables. Input consists of an initial starting point
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
          for(jk=1; jk <=nlstate ; jk++){            such that failure to decrease by more than this amount on one iteration signals doneness. On
            if( i <= (int) agemax){  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
              if(pos>=1.e-5){  function value at p , and iter is the number of iterations taken. The routine linmin is used.
                probs[i][jk][j1]= pp[jk]/pos;   */
              }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
            }              double (*func)(double [])) 
          }  { 
              void linmin(double p[], double xi[], int n, double *fret, 
         }                double (*func)(double [])); 
     }    int i,ibig,j; 
   }    double del,t,*pt,*ptt,*xit;
      double fp,fptt;
      double *xits;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    int niterf, itmp;
   free_vector(pp,1,nlstate);  
      pt=vector(1,n); 
 }  /* End of Freq */    ptt=vector(1,n); 
     xit=vector(1,n); 
 /************* Waves Concatenation ***************/    xits=vector(1,n); 
     *fret=(*func)(p); 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    for (j=1;j<=n;j++) pt[j]=p[j]; 
 {      rcurr_time = time(NULL);  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    for (*iter=1;;++(*iter)) { 
      Death is a valid wave (if date is known).      fp=(*fret); 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      ibig=0; 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      del=0.0; 
      and mw[mi+1][i]. dh depends on stepm.      rlast_time=rcurr_time;
      */      /* (void) gettimeofday(&curr_time,&tzp); */
       rcurr_time = time(NULL);  
   int i, mi, m;      curr_time = *localtime(&rcurr_time);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
      double sum=0., jmean=0.;*/      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
   int j, k=0,jk, ju, jl;     for (i=1;i<=n;i++) {
   double sum=0.;        printf(" %d %.12f",i, p[i]);
   jmin=1e+5;        fprintf(ficlog," %d %.12lf",i, p[i]);
   jmax=-1;        fprintf(ficrespow," %.12lf", p[i]);
   jmean=0.;      }
   for(i=1; i<=imx; i++){      printf("\n");
     mi=0;      fprintf(ficlog,"\n");
     m=firstpass;      fprintf(ficrespow,"\n");fflush(ficrespow);
     while(s[m][i] <= nlstate){      if(*iter <=3){
       if(s[m][i]>=1)        tml = *localtime(&rcurr_time);
         mw[++mi][i]=m;        strcpy(strcurr,asctime(&tml));
       if(m >=lastpass)        rforecast_time=rcurr_time; 
         break;        itmp = strlen(strcurr);
       else        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         m++;          strcurr[itmp-1]='\0';
     }/* end while */        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     if (s[m][i] > nlstate){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       mi++;     /* Death is another wave */        for(niterf=10;niterf<=30;niterf+=10){
       /* if(mi==0)  never been interviewed correctly before death */          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
          /* Only death is a correct wave */          forecast_time = *localtime(&rforecast_time);
       mw[mi][i]=m;          strcpy(strfor,asctime(&forecast_time));
     }          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
     wav[i]=mi;          strfor[itmp-1]='\0';
     if(mi==0)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   }        }
       }
   for(i=1; i<=imx; i++){      for (i=1;i<=n;i++) { 
     for(mi=1; mi<wav[i];mi++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       if (stepm <=0)        fptt=(*fret); 
         dh[mi][i]=1;  #ifdef DEBUG
       else{            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         if (s[mw[mi+1][i]][i] > nlstate) {            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
           if (agedc[i] < 2*AGESUP) {  #endif
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        printf("%d",i);fflush(stdout);
           if(j==0) j=1;  /* Survives at least one month after exam */        fprintf(ficlog,"%d",i);fflush(ficlog);
           k=k+1;        linmin(p,xit,n,fret,func); 
           if (j >= jmax) jmax=j;        if (fabs(fptt-(*fret)) > del) { 
           if (j <= jmin) jmin=j;          del=fabs(fptt-(*fret)); 
           sum=sum+j;          ibig=i; 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        } 
           }  #ifdef DEBUG
         }        printf("%d %.12e",i,(*fret));
         else{        fprintf(ficlog,"%d %.12e",i,(*fret));
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for (j=1;j<=n;j++) {
           k=k+1;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           if (j >= jmax) jmax=j;          printf(" x(%d)=%.12e",j,xit[j]);
           else if (j <= jmin)jmin=j;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        }
           sum=sum+j;        for(j=1;j<=n;j++) {
         }          printf(" p(%d)=%.12e",j,p[j]);
         jk= j/stepm;          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
         jl= j -jk*stepm;        }
         ju= j -(jk+1)*stepm;        printf("\n");
         if(jl <= -ju)        fprintf(ficlog,"\n");
           dh[mi][i]=jk;  #endif
         else      } /* end i */
           dh[mi][i]=jk+1;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         if(dh[mi][i]==0)  #ifdef DEBUG
           dh[mi][i]=1; /* At least one step */        int k[2],l;
       }        k[0]=1;
     }        k[1]=-1;
   }        printf("Max: %.12e",(*func)(p));
   jmean=sum/k;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        for (j=1;j<=n;j++) {
  }          printf(" %.12e",p[j]);
 /*********** Tricode ****************************/          fprintf(ficlog," %.12e",p[j]);
 void tricode(int *Tvar, int **nbcode, int imx)        }
 {        printf("\n");
   int Ndum[20],ij=1, k, j, i;        fprintf(ficlog,"\n");
   int cptcode=0;        for(l=0;l<=1;l++) {
   cptcoveff=0;          for (j=1;j<=n;j++) {
              ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   for (k=0; k<19; k++) Ndum[k]=0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (k=1; k<=7; k++) ncodemax[k]=0;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (i=1; i<=imx; i++) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       ij=(int)(covar[Tvar[j]][i]);        }
       Ndum[ij]++;  #endif
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;  
     }        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
     for (i=0; i<=cptcode; i++) {        free_vector(ptt,1,n); 
       if(Ndum[i]!=0) ncodemax[j]++;        free_vector(pt,1,n); 
     }        return; 
     ij=1;      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { /* Computes an extrapolated point */
     for (i=1; i<=ncodemax[j]; i++) {        ptt[j]=2.0*p[j]-pt[j]; 
       for (k=0; k<=19; k++) {        xit[j]=p[j]-pt[j]; 
         if (Ndum[k] != 0) {        pt[j]=p[j]; 
           nbcode[Tvar[j]][ij]=k;      } 
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/      fptt=(*func)(ptt); 
           ij++;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
         }        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
         if (ij > ncodemax[j]) break;        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
       }          /* Let f"(x2) be the 2nd derivative equal everywhere.  */
     }        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   }          /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
  for (k=0; k<19; k++) Ndum[k]=0;        /* Thus we compare delta(2h) with observed f1-f3 */
         /* or best gain on one ancient line 'del' with total  */
  for (i=1; i<=ncovmodel-2; i++) {        /* gain f1-f2 = f1 - f2 - 'del' with del  */
       ij=Tvar[i];        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
       Ndum[ij]++;  
     }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
         t= t- del*SQR(fp-fptt);
  ij=1;        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
  for (i=1; i<=10; i++) {        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
    if((Ndum[i]!=0) && (i<=ncovcol)){  #ifdef DEBUG
      Tvaraff[ij]=i;        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
      ij++;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
    }        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
  }               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
          printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     cptcoveff=ij-1;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
 }  #endif
         if (t < 0.0) { /* Then we use it for last direction */
 /*********** Health Expectancies ****************/          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
           for (j=1;j<=n;j++) { 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
 {            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
   /* Health expectancies */          }
   int i, j, nhstepm, hstepm, h, nstepm;          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   double age, agelim, hf;          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
   double ***p3mat;  
    #ifdef DEBUG
   fprintf(ficreseij,"# Health expectancies\n");          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   fprintf(ficreseij,"# Age");          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(i=1; i<=nlstate;i++)          for(j=1;j<=n;j++){
     for(j=1; j<=nlstate;j++)            printf(" %.12e",xit[j]);
       fprintf(ficreseij," %1d-%1d",i,j);            fprintf(ficlog," %.12e",xit[j]);
   fprintf(ficreseij,"\n");          }
           printf("\n");
   if(estepm < stepm){          fprintf(ficlog,"\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);  #endif
   }        } /* end of t negative */
   else  hstepm=estepm;        } /* end if (fptt < fp)  */
   /* We compute the life expectancy from trapezoids spaced every estepm months    } 
    * This is mainly to measure the difference between two models: for example  } 
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear  /**** Prevalence limit (stable or period prevalence)  ****************/
    * progression inbetween and thus overestimating or underestimating according  
    * to the curvature of the survival function. If, for the same date, we  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  {
    * to compare the new estimate of Life expectancy with the same linear    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
    * hypothesis. A more precise result, taking into account a more precise       matrix by transitions matrix until convergence is reached */
    * curvature will be obtained if estepm is as small as stepm. */    
     int i, ii,j,k;
   /* For example we decided to compute the life expectancy with the smallest unit */    double min, max, maxmin, maxmax,sumnew=0.;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    /* double **matprod2(); */ /* test */
      nhstepm is the number of hstepm from age to agelim    double **out, cov[NCOVMAX+1], **pmij();
      nstepm is the number of stepm from age to agelin.    double **newm;
      Look at hpijx to understand the reason of that which relies in memory size    double agefin, delaymax=50 ; /* Max number of years to converge */
      and note for a fixed period like estepm months */    
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    for (ii=1;ii<=nlstate+ndeath;ii++)
      survival function given by stepm (the optimization length). Unfortunately it      for (j=1;j<=nlstate+ndeath;j++){
      means that if the survival funtion is printed only each two years of age and if        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      }
      results. So we changed our mind and took the option of the best precision.    
   */    cov[1]=1.;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   agelim=AGESUP;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      newm=savm;
     /* nhstepm age range expressed in number of stepm */      /* Covariates have to be included here again */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      cov[2]=agefin;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      
     /* if (stepm >= YEARM) hstepm=1;*/      for (k=1; k<=cptcovn;k++) {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
     for(i=1; i<=nlstate;i++)      
       for(j=1; j<=nlstate;j++)      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         }      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
     fprintf(ficreseij,"%3.0f",age );      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
     for(i=1; i<=nlstate;i++)      
       for(j=1; j<=nlstate;j++){      savm=oldm;
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);      oldm=newm;
       }      maxmax=0.;
     fprintf(ficreseij,"\n");      for(j=1;j<=nlstate;j++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        min=1.;
   }        max=0.;
 }        for(i=1; i<=nlstate; i++) {
           sumnew=0;
 /************ Variance ******************/          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          prlim[i][j]= newm[i][j]/(1-sumnew);
 {          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   /* Variance of health expectancies */          max=FMAX(max,prlim[i][j]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          min=FMIN(min,prlim[i][j]);
   double **newm;        }
   double **dnewm,**doldm;        maxmin=max-min;
   int i, j, nhstepm, hstepm, h, nstepm ;        maxmax=FMAX(maxmax,maxmin);
   int k, cptcode;      } /* j loop */
   double *xp;      if(maxmax < ftolpl){
   double **gp, **gm;        return prlim;
   double ***gradg, ***trgradg;      }
   double ***p3mat;    } /* age loop */
   double age,agelim, hf;    return prlim; /* should not reach here */
   int theta;  }
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");  /*************** transition probabilities ***************/ 
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     for(j=1; j<=nlstate;j++)  {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    /* According to parameters values stored in x and the covariate's values stored in cov,
   fprintf(ficresvij,"\n");       computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
   xp=vector(1,npar);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   dnewm=matrix(1,nlstate,1,npar);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   doldm=matrix(1,nlstate,1,nlstate);       ncth covariate in the global vector x is given by the formula:
         j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   if(estepm < stepm){       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
     printf ("Problem %d lower than %d\n",estepm, stepm);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   }       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   else  hstepm=estepm;         Outputs ps[i][j] the probability to be observed in j being in j according to
   /* For example we decided to compute the life expectancy with the smallest unit */       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    */
      nhstepm is the number of hstepm from age to agelim    double s1, lnpijopii;
      nstepm is the number of stepm from age to agelin.    /*double t34;*/
      Look at hpijx to understand the reason of that which relies in memory size    int i,j, nc, ii, jj;
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for(i=1; i<= nlstate; i++){
      survival function given by stepm (the optimization length). Unfortunately it        for(j=1; j<i;j++){
      means that if the survival funtion is printed only each two years of age and if          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            /*lnpijopii += param[i][j][nc]*cov[nc];*/
      results. So we changed our mind and took the option of the best precision.            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   */  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          }
   agelim = AGESUP;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        for(j=i+1; j<=nlstate+ndeath;j++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     gp=matrix(0,nhstepm,1,nlstate);            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     gm=matrix(0,nhstepm,1,nlstate);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }
     for(theta=1; theta <=npar; theta++){          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      }
       }      
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(i=1; i<= nlstate; i++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        s1=0;
         for(j=1; j<i; j++){
       if (popbased==1) {          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         for(i=1; i<=nlstate;i++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           prlim[i][i]=probs[(int)age][i][ij];        }
       }        for(j=i+1; j<=nlstate+ndeath; j++){
            s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       for(j=1; j<= nlstate; j++){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        ps[i][i]=1./(s1+1.);
         }        /* Computing other pijs */
       }        for(j=1; j<i; j++)
              ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(i=1; i<=npar; i++) /* Computes gradient */        for(j=i+1; j<=nlstate+ndeath; j++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          ps[i][j]= exp(ps[i][j])*ps[i][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      } /* end i */
        
       if (popbased==1) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(i=1; i<=nlstate;i++)        for(jj=1; jj<= nlstate+ndeath; jj++){
           prlim[i][i]=probs[(int)age][i][ij];          ps[ii][jj]=0;
       }          ps[ii][ii]=1;
         }
       for(j=1; j<= nlstate; j++){      }
         for(h=0; h<=nhstepm; h++){      
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         }      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       }      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       /*   } */
       for(j=1; j<= nlstate; j++)      /*   printf("\n "); */
         for(h=0; h<=nhstepm; h++){      /* } */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      /* printf("\n ");printf("%lf ",cov[2]);*/
         }      /*
     } /* End theta */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      return ps;
   }
     for(h=0; h<=nhstepm; h++)  
       for(j=1; j<=nlstate;j++)  /**************** Product of 2 matrices ******************/
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     for(i=1;i<=nlstate;i++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       for(j=1;j<=nlstate;j++)    /* in, b, out are matrice of pointers which should have been initialized 
         vareij[i][j][(int)age] =0.;       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
     for(h=0;h<=nhstepm;h++){    int i, j, k;
       for(k=0;k<=nhstepm;k++){    for(i=nrl; i<= nrh; i++)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      for(k=ncolol; k<=ncoloh; k++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        out[i][k]=0.;
         for(i=1;i<=nlstate;i++)        for(j=ncl; j<=nch; j++)
           for(j=1;j<=nlstate;j++)          out[i][k] +=in[i][j]*b[j][k];
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      }
       }    return out;
     }  }
   
     fprintf(ficresvij,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)  /************* Higher Matrix Product ***************/
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       }  {
     fprintf(ficresvij,"\n");    /* Computes the transition matrix starting at age 'age' over 
     free_matrix(gp,0,nhstepm,1,nlstate);       'nhstepm*hstepm*stepm' months (i.e. until
     free_matrix(gm,0,nhstepm,1,nlstate);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);       nhstepm*hstepm matrices. 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       (typically every 2 years instead of every month which is too big 
   } /* End age */       for the memory).
         Model is determined by parameters x and covariates have to be 
   free_vector(xp,1,npar);       included manually here. 
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);       */
   
 }    int i, j, d, h, k;
     double **out, cov[NCOVMAX+1];
 /************ Variance of prevlim ******************/    double **newm;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    /* Hstepm could be zero and should return the unit matrix */
   /* Variance of prevalence limit */    for (i=1;i<=nlstate+ndeath;i++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=nlstate+ndeath;j++){
   double **newm;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   double **dnewm,**doldm;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm;      }
   int k, cptcode;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double *xp;    for(h=1; h <=nhstepm; h++){
   double *gp, *gm;      for(d=1; d <=hstepm; d++){
   double **gradg, **trgradg;        newm=savm;
   double age,agelim;        /* Covariates have to be included here again */
   int theta;        cov[1]=1.;
            cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        for (k=1; k<=cptcovn;k++) 
   fprintf(ficresvpl,"# Age");          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovage;k++)
       fprintf(ficresvpl," %1d-%1d",i,i);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   fprintf(ficresvpl,"\n");        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   hstepm=1*YEARM; /* Every year of age */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   agelim = AGESUP;        savm=oldm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        oldm=newm;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      }
     if (stepm >= YEARM) hstepm=1;      for(i=1; i<=nlstate+ndeath; i++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(j=1;j<=nlstate+ndeath;j++) {
     gradg=matrix(1,npar,1,nlstate);          po[i][j][h]=newm[i][j];
     gp=vector(1,nlstate);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     gm=vector(1,nlstate);        }
       /*printf("h=%d ",h);*/
     for(theta=1; theta <=npar; theta++){    } /* end h */
       for(i=1; i<=npar; i++){ /* Computes gradient */  /*     printf("\n H=%d \n",h); */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    return po;
       }  }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  #ifdef NLOPT
         gp[i] = prlim[i][i];    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
        double fret;
       for(i=1; i<=npar; i++) /* Computes gradient */    double *xt;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int j;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    myfunc_data *d2 = (myfunc_data *) pd;
       for(i=1;i<=nlstate;i++)  /* xt = (p1-1); */
         gm[i] = prlim[i][i];    xt=vector(1,n); 
     for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
     } /* End theta */    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
     printf("Function = %.12lf ",fret);
     trgradg =matrix(1,nlstate,1,npar);    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
     printf("\n");
     for(j=1; j<=nlstate;j++)   free_vector(xt,1,n);
       for(theta=1; theta <=npar; theta++)    return fret;
         trgradg[j][theta]=gradg[theta][j];  }
   #endif
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;  /*************** log-likelihood *************/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  double func( double *x)
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  {
     for(i=1;i<=nlstate;i++)    int i, ii, j, k, mi, d, kk;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
     fprintf(ficresvpl,"%.0f ",age );    double sw; /* Sum of weights */
     for(i=1; i<=nlstate;i++)    double lli; /* Individual log likelihood */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int s1, s2;
     fprintf(ficresvpl,"\n");    double bbh, survp;
     free_vector(gp,1,nlstate);    long ipmx;
     free_vector(gm,1,nlstate);    /*extern weight */
     free_matrix(gradg,1,npar,1,nlstate);    /* We are differentiating ll according to initial status */
     free_matrix(trgradg,1,nlstate,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   } /* End age */    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   free_vector(xp,1,npar);    */
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    ++countcallfunc;
   
 }    cov[1]=1.;
   
 /************ Variance of one-step probabilities  ******************/    for(k=1; k<=nlstate; k++) ll[k]=0.;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  
 {    if(mle==1){
   int i, j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int k=0, cptcode;        /* Computes the values of the ncovmodel covariates of the model
   double **dnewm,**doldm;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   double *xp;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   double *gp, *gm;           to be observed in j being in i according to the model.
   double **gradg, **trgradg;         */
   double age,agelim, cov[NCOVMAX];        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   int theta;          cov[2+k]=covar[Tvar[k]][i];
   char fileresprob[FILENAMELENGTH];        }
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   strcpy(fileresprob,"prob");           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   strcat(fileresprob,fileres);           has been calculated etc */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        for(mi=1; mi<= wav[i]-1; mi++){
     printf("Problem with resultfile: %s\n", fileresprob);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   xp=vector(1,npar);          for(d=0; d<dh[mi][i]; d++){
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            newm=savm;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   cov[1]=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   for (age=bage; age<=fage; age ++){            }
     cov[2]=age;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     gradg=matrix(1,npar,1,9);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     trgradg=matrix(1,9,1,npar);            savm=oldm;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            oldm=newm;
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          } /* end mult */
            
     for(theta=1; theta <=npar; theta++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for(i=1; i<=npar; i++)          /* But now since version 0.9 we anticipate for bias at large stepm.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
                 * (in months) between two waves is not a multiple of stepm, we rounded to 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);           * the nearest (and in case of equal distance, to the lowest) interval but now
               * we keep into memory the bias bh[mi][i] and also the previous matrix product
       k=0;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       for(i=1; i<= (nlstate+ndeath); i++){           * probability in order to take into account the bias as a fraction of the way
         for(j=1; j<=(nlstate+ndeath);j++){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            k=k+1;           * -stepm/2 to stepm/2 .
           gp[k]=pmmij[i][j];           * For stepm=1 the results are the same as for previous versions of Imach.
         }           * For stepm > 1 the results are less biased than in previous versions. 
       }           */
           s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++)          s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          bbh=(double)bh[mi][i]/(double)stepm; 
              /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
       pmij(pmmij,cov,ncovmodel,xp,nlstate);           */
       k=0;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for(i=1; i<=(nlstate+ndeath); i++){          if( s2 > nlstate){ 
         for(j=1; j<=(nlstate+ndeath);j++){            /* i.e. if s2 is a death state and if the date of death is known 
           k=k+1;               then the contribution to the likelihood is the probability to 
           gm[k]=pmmij[i][j];               die between last step unit time and current  step unit time, 
         }               which is also equal to probability to die before dh 
       }               minus probability to die before dh-stepm . 
                     In version up to 0.92 likelihood was computed
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          as if date of death was unknown. Death was treated as any other
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            health state: the date of the interview describes the actual state
     }          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          (healthy, disable or death) and IMaCh was corrected; but when we
       for(theta=1; theta <=npar; theta++)          introduced the exact date of death then we should have modified
       trgradg[j][theta]=gradg[theta][j];          the contribution of an exact death to the likelihood. This new
            contribution is smaller and very dependent of the step unit
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          stepm. It is no more the probability to die between last interview
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
      pmij(pmmij,cov,ncovmodel,x,nlstate);          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
      k=0;          mortality artificially. The bad side is that we add another loop
      for(i=1; i<=(nlstate+ndeath); i++){          which slows down the processing. The difference can be up to 10%
        for(j=1; j<=(nlstate+ndeath);j++){          lower mortality.
          k=k+1;            */
          gm[k]=pmmij[i][j];            lli=log(out[s1][s2] - savm[s1][s2]);
         }  
      }  
                } else if  (s2==-2) {
      /*printf("\n%d ",(int)age);            for (j=1,survp=0. ; j<=nlstate; j++) 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                    /*survp += out[s1][j]; */
             lli= log(survp);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          }
      }*/          
           else if  (s2==-4) { 
   fprintf(ficresprob,"\n%d ",(int)age);            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            lli= log(survp); 
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);          } 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  
   }          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            lli= log(survp); 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          } 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          
 }          else{
  free_vector(xp,1,npar);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 fclose(ficresprob);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
 }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
 /******************* Printing html file ***********/          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          ipmx +=1;
  int lastpass, int stepm, int weightopt, char model[],\          sw += weight[i];
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        } /* end of wave */
  char version[], int popforecast, int estepm ){      } /* end of individual */
   int jj1, k1, i1, cpt;    }  else if(mle==2){
   FILE *fichtm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /*char optionfilehtm[FILENAMELENGTH];*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   strcpy(optionfilehtm,optionfile);          for (ii=1;ii<=nlstate+ndeath;ii++)
   strcat(optionfilehtm,".htm");            for (j=1;j<=nlstate+ndeath;j++){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("Problem with %s \n",optionfilehtm), exit(0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<=dh[mi][i]; d++){
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n            newm=savm;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 \n            for (kk=1; kk<=cptcovage;kk++) {
 Total number of observations=%d <br>\n              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            }
 <hr  size=\"2\" color=\"#EC5E5E\">            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  <ul><li>Outputs files<br>\n                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            savm=oldm;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n            oldm=newm;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          } /* end mult */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n        
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n          s1=s[mw[mi][i]][i];
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
  fprintf(fichtm,"\n          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n          ipmx +=1;
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          sw += weight[i];
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        } /* end of wave */
       } /* end of individual */
  if(popforecast==1) fprintf(fichtm,"\n    }  else if(mle==3){  /* exponential inter-extrapolation */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         <br>",fileres,fileres,fileres,fileres);        for(mi=1; mi<= wav[i]-1; mi++){
  else          for (ii=1;ii<=nlstate+ndeath;ii++)
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            for (j=1;j<=nlstate+ndeath;j++){
 fprintf(fichtm," <li>Graphs</li><p>");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
  m=cptcoveff;            }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
  jj1=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
  for(k1=1; k1<=m;k1++){            for (kk=1; kk<=cptcovage;kk++) {
    for(i1=1; i1<=ncodemax[k1];i1++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        jj1++;            }
        if (cptcovn > 0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          for (cpt=1; cpt<=cptcoveff;cpt++)            savm=oldm;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            oldm=newm;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          } /* end mult */
        }        
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          s1=s[mw[mi][i]][i];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              s2=s[mw[mi+1][i]][i];
        for(cpt=1; cpt<nlstate;cpt++){          bbh=(double)bh[mi][i]/(double)stepm; 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          ipmx +=1;
        }          sw += weight[i];
     for(cpt=1; cpt<=nlstate;cpt++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        } /* end of wave */
 interval) in state (%d): v%s%d%d.gif <br>      } /* end of individual */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      }else if (mle==4){  /* ml=4 no inter-extrapolation */
      }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      for(cpt=1; cpt<=nlstate;cpt++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        for(mi=1; mi<= wav[i]-1; mi++){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for (ii=1;ii<=nlstate+ndeath;ii++)
      }            for (j=1;j<=nlstate+ndeath;j++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 health expectancies in states (1) and (2): e%s%d.gif<br>              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            }
 fprintf(fichtm,"\n</body>");          for(d=0; d<dh[mi][i]; d++){
    }            newm=savm;
    }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 fclose(fichtm);            for (kk=1; kk<=cptcovage;kk++) {
 }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 /******************* Gnuplot file **************/          
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            savm=oldm;
             oldm=newm;
   strcpy(optionfilegnuplot,optionfilefiname);          } /* end mult */
   strcat(optionfilegnuplot,".gp.txt");        
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with file %s",optionfilegnuplot);          s2=s[mw[mi+1][i]][i];
   }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
 #ifdef windows          }else{
     fprintf(ficgp,"cd \"%s\" \n",pathc);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 #endif          }
 m=pow(2,cptcoveff);          ipmx +=1;
            sw += weight[i];
  /* 1eme*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (cpt=1; cpt<= nlstate ; cpt ++) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    for (k1=1; k1<= m ; k1 ++) {        } /* end of wave */
       } /* end of individual */
 #ifdef windows    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 #endif        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 #ifdef unix        for(mi=1; mi<= wav[i]-1; mi++){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          for (ii=1;ii<=nlstate+ndeath;ii++)
 #endif            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 for (i=1; i<= nlstate ; i ++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1; i<= nlstate ; i ++) {            for (kk=1; kk<=cptcovage;kk++) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }          
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      for (i=1; i<= nlstate ; i ++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            savm=oldm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            oldm=newm;
 }            } /* end mult */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        
 #ifdef unix          s1=s[mw[mi][i]][i];
 fprintf(ficgp,"\nset ter gif small size 400,300");          s2=s[mw[mi+1][i]][i];
 #endif          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          ipmx +=1;
    }          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*2 eme*/          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
   for (k1=1; k1<= m ; k1 ++) {      } /* end of individual */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    } /* End of if */
        for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for (i=1; i<= nlstate+1 ; i ++) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       k=2*i;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    return -l;
       for (j=1; j<= nlstate+1 ; j ++) {  }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /*************** log-likelihood *************/
 }    double funcone( double *x)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  {
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    /* Same as likeli but slower because of a lot of printf and if */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    int i, ii, j, k, mi, d, kk;
       for (j=1; j<= nlstate+1 ; j ++) {    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double **out;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    double lli; /* Individual log likelihood */
 }      double llt;
       fprintf(ficgp,"\" t\"\" w l 0,");    int s1, s2;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double bbh, survp;
       for (j=1; j<= nlstate+1 ; j ++) {    /*extern weight */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* We are differentiating ll according to initial status */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 }      /*for(i=1;i<imx;i++) 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      printf(" %d\n",s[4][i]);
       else fprintf(ficgp,"\" t\"\" w l 0,");    */
     }    cov[1]=1.;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  
   }    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   /*3eme*/    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (k1=1; k1<= m ; k1 ++) {      for(mi=1; mi<= wav[i]-1; mi++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for (ii=1;ii<=nlstate+ndeath;ii++)
       k=2+nlstate*(cpt-1);          for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=1; i< nlstate ; i ++) {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);          }
       }        for(d=0; d<dh[mi][i]; d++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          newm=savm;
     }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }          for (kk=1; kk<=cptcovage;kk++) {
              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* CV preval stat */          }
     for (k1=1; k1<= m ; k1 ++) {          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     for (cpt=1; cpt<nlstate ; cpt ++) {          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       k=3;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
       for (i=1; i< nlstate ; i ++)          savm=oldm;
         fprintf(ficgp,"+$%d",k+i+1);          oldm=newm;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        } /* end mult */
              
       l=3+(nlstate+ndeath)*cpt;        s1=s[mw[mi][i]][i];
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        s2=s[mw[mi+1][i]][i];
       for (i=1; i< nlstate ; i ++) {        bbh=(double)bh[mi][i]/(double)stepm; 
         l=3+(nlstate+ndeath)*cpt;        /* bias is positive if real duration
         fprintf(ficgp,"+$%d",l+i+1);         * is higher than the multiple of stepm and negative otherwise.
       }         */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          if( s2 > nlstate && (mle <5) ){  /* Jackson */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          lli=log(out[s1][s2] - savm[s1][s2]);
     }        } else if  (s2==-2) {
   }            for (j=1,survp=0. ; j<=nlstate; j++) 
              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /* proba elementaires */          lli= log(survp);
    for(i=1,jk=1; i <=nlstate; i++){        }else if (mle==1){
     for(k=1; k <=(nlstate+ndeath); k++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       if (k != i) {        } else if(mle==2){
         for(j=1; j <=ncovmodel; j++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                } else if(mle==3){  /* exponential inter-extrapolation */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           jk++;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           fprintf(ficgp,"\n");          lli=log(out[s1][s2]); /* Original formula */
         }        } else{  /* mle=0 back to 1 */
       }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }          /*lli=log(out[s1][s2]); */ /* Original formula */
     }        } /* End of if */
         ipmx +=1;
     for(jk=1; jk <=m; jk++) {        sw += weight[i];
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    i=1;        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    for(k2=1; k2<=nlstate; k2++) {        if(globpr){
      k3=i;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
      for(k=1; k<=(nlstate+ndeath); k++) {   %11.6f %11.6f %11.6f ", \
        if (k != k2){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 ij=1;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         for(j=3; j <=ncovmodel; j++) {            llt +=ll[k]*gipmx/gsw;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }
             ij++;          fprintf(ficresilk," %10.6f\n", -llt);
           }        }
           else      } /* end of wave */
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    } /* end of individual */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           fprintf(ficgp,")/(1");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
            l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(k1=1; k1 <=nlstate; k1++){      if(globpr==0){ /* First time we count the contributions and weights */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      gipmx=ipmx;
 ij=1;      gsw=sw;
           for(j=3; j <=ncovmodel; j++){    }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    return -l;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  }
             ij++;  
           }  
           else  /*************** function likelione ***********/
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           }  {
           fprintf(ficgp,")");    /* This routine should help understanding what is done with 
         }       the selection of individuals/waves and
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);       to check the exact contribution to the likelihood.
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");       Plotting could be done.
         i=i+ncovmodel;     */
        }    int k;
      }  
    }    if(*globpri !=0){ /* Just counts and sums, no printings */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      strcpy(fileresilk,"ilk"); 
    }      strcat(fileresilk,fileres);
          if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   fclose(ficgp);        printf("Problem with resultfile: %s\n", fileresilk);
 }  /* end gnuplot */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
 /*************** Moving average **************/      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
   int i, cpt, cptcod;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       for (i=1; i<=nlstate;i++)    }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;    *fretone=(*funcone)(p);
        if(*globpri !=0){
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      fclose(ficresilk);
       for (i=1; i<=nlstate;i++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      fflush(fichtm); 
           for (cpt=0;cpt<=4;cpt++){    } 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    return;
           }  }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }  
       }  /*********** Maximum Likelihood Estimation ***************/
     }  
      void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 }  {
     int i,j, iter=0;
     double **xi;
 /************** Forecasting ******************/    double fret;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    double fretone; /* Only one call to likelihood */
      /*  char filerespow[FILENAMELENGTH];*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;  #ifdef NLOPT
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    int creturn;
   double *popeffectif,*popcount;    nlopt_opt opt;
   double ***p3mat;    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
   char fileresf[FILENAMELENGTH];    double *lb;
     double minf; /* the minimum objective value, upon return */
  agelim=AGESUP;    double * p1; /* Shifted parameters from 0 instead of 1 */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    myfunc_data dinst, *d = &dinst;
   #endif
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
    
      xi=matrix(1,npar,1,npar);
   strcpy(fileresf,"f");    for (i=1;i<=npar;i++)
   strcat(fileresf,fileres);      for (j=1;j<=npar;j++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Problem with forecast resultfile: %s\n", fileresf);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   }    strcpy(filerespow,"pow"); 
   printf("Computing forecasting: result on file '%s' \n", fileresf);    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   if (mobilav==1) {    }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     movingaverage(agedeb, fage, ageminpar, mobaverage);    for (i=1;i<=nlstate;i++)
   }      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficrespow,"\n");
   if (stepm<=12) stepsize=1;  #ifdef POWELL
      powell(p,xi,npar,ftol,&iter,&fret,func);
   agelim=AGESUP;  #endif
    
   hstepm=1;  #ifdef NLOPT
   hstepm=hstepm/stepm;  #ifdef NEWUOA
   yp1=modf(dateintmean,&yp);    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   anprojmean=yp;  #else
   yp2=modf((yp1*12),&yp);    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   mprojmean=yp;  #endif
   yp1=modf((yp2*30.5),&yp);    lb=vector(0,npar-1);
   jprojmean=yp;    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
   if(jprojmean==0) jprojmean=1;    nlopt_set_lower_bounds(opt, lb);
   if(mprojmean==0) jprojmean=1;    nlopt_set_initial_step1(opt, 0.1);
      
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
      d->function = func;
   for(cptcov=1;cptcov<=i2;cptcov++){    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    nlopt_set_min_objective(opt, myfunc, d);
       k=k+1;    nlopt_set_xtol_rel(opt, ftol);
       fprintf(ficresf,"\n#******");    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
       for(j=1;j<=cptcoveff;j++) {      printf("nlopt failed! %d\n",creturn); 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       }    else {
       fprintf(ficresf,"******\n");      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       fprintf(ficresf,"# StartingAge FinalAge");      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      iter=1; /* not equal */
          }
          nlopt_destroy(opt);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  #endif
         fprintf(ficresf,"\n");    free_matrix(xi,1,npar,1,npar);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      fclose(ficrespow);
     printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           nhstepm = nhstepm/hstepm;  
            }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  /**** Computes Hessian and covariance matrix ***/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
          {
           for (h=0; h<=nhstepm; h++){    double  **a,**y,*x,pd;
             if (h==(int) (calagedate+YEARM*cpt)) {    double **hess;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    int i, j;
             }    int *indx;
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
               for(i=1; i<=nlstate;i++) {                  double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
                 if (mobilav==1)    void lubksb(double **a, int npar, int *indx, double b[]) ;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    void ludcmp(double **a, int npar, int *indx, double *d) ;
                 else {    double gompertz(double p[]);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    hess=matrix(1,npar,1,npar);
                 }  
                    printf("\nCalculation of the hessian matrix. Wait...\n");
               }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
               if (h==(int)(calagedate+12*cpt)){    for (i=1;i<=npar;i++){
                 fprintf(ficresf," %.3f", kk1);      printf("%d",i);fflush(stdout);
                              fprintf(ficlog,"%d",i);fflush(ficlog);
               }     
             }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           }      
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*  printf(" %f ",p[i]);
         }          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       }    }
     }    
   }    for (i=1;i<=npar;i++) {
              for (j=1;j<=npar;j++)  {
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
   fclose(ficresf);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 }          hess[i][j]=hessij(p,delti,i,j,func,npar);
 /************** Forecasting ******************/          
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          hess[j][i]=hess[i][j];    
            /*printf(" %lf ",hess[i][j]);*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;      }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    }
   double *popeffectif,*popcount;    printf("\n");
   double ***p3mat,***tabpop,***tabpopprev;    fprintf(ficlog,"\n");
   char filerespop[FILENAMELENGTH];  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   agelim=AGESUP;    a=matrix(1,npar,1,npar);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    y=matrix(1,npar,1,npar);
      x=vector(1,npar);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    indx=ivector(1,npar);
      for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   strcpy(filerespop,"pop");    ludcmp(a,npar,indx,&pd);
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    for (j=1;j<=npar;j++) {
     printf("Problem with forecast resultfile: %s\n", filerespop);      for (i=1;i<=npar;i++) x[i]=0;
   }      x[j]=1;
   printf("Computing forecasting: result on file '%s' \n", filerespop);      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        matcov[i][j]=x[i];
       }
   if (mobilav==1) {    }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    printf("\n#Hessian matrix#\n");
   }    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for (j=1;j<=npar;j++) { 
   if (stepm<=12) stepsize=1;        printf("%.3e ",hess[i][j]);
          fprintf(ficlog,"%.3e ",hess[i][j]);
   agelim=AGESUP;      }
        printf("\n");
   hstepm=1;      fprintf(ficlog,"\n");
   hstepm=hstepm/stepm;    }
    
   if (popforecast==1) {    /* Recompute Inverse */
     if((ficpop=fopen(popfile,"r"))==NULL) {    for (i=1;i<=npar;i++)
       printf("Problem with population file : %s\n",popfile);exit(0);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     }    ludcmp(a,npar,indx,&pd);
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);    /*  printf("\n#Hessian matrix recomputed#\n");
     popcount=vector(0,AGESUP);  
        for (j=1;j<=npar;j++) {
     i=1;        for (i=1;i<=npar;i++) x[i]=0;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      x[j]=1;
          lubksb(a,npar,indx,x);
     imx=i;      for (i=1;i<=npar;i++){ 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        y[i][j]=x[i];
   }        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
   for(cptcov=1;cptcov<=i2;cptcov++){      }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      printf("\n");
       k=k+1;      fprintf(ficlog,"\n");
       fprintf(ficrespop,"\n#******");    }
       for(j=1;j<=cptcoveff;j++) {    */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    free_matrix(a,1,npar,1,npar);
       fprintf(ficrespop,"******\n");    free_matrix(y,1,npar,1,npar);
       fprintf(ficrespop,"# Age");    free_vector(x,1,npar);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    free_ivector(indx,1,npar);
       if (popforecast==1)  fprintf(ficrespop," [Population]");    free_matrix(hess,1,npar,1,npar);
        
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    }
          
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /*************** hessian matrix ****************/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           nhstepm = nhstepm/hstepm;  {
              int i;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int l=1, lmax=20;
           oldm=oldms;savm=savms;    double k1,k2;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double p2[MAXPARM+1]; /* identical to x */
            double res;
           for (h=0; h<=nhstepm; h++){    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
             if (h==(int) (calagedate+YEARM*cpt)) {    double fx;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    int k=0,kmax=10;
             }    double l1;
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    fx=func(x);
               for(i=1; i<=nlstate;i++) {                  for (i=1;i<=npar;i++) p2[i]=x[i];
                 if (mobilav==1)    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      l1=pow(10,l);
                 else {      delts=delt;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      for(k=1 ; k <kmax; k=k+1){
                 }        delt = delta*(l1*k);
               }        p2[theta]=x[theta] +delt;
               if (h==(int)(calagedate+12*cpt)){        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        p2[theta]=x[theta]-delt;
                   /*fprintf(ficrespop," %.3f", kk1);        k2=func(p2)-fx;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
               }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
             }        
             for(i=1; i<=nlstate;i++){  #ifdef DEBUGHESS
               kk1=0.;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                 for(j=1; j<=nlstate;j++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  #endif
                 }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             }          k=kmax;
         }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          k=kmax; l=lmax*10;
           }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         }          delts=delt;
       }        }
        }
   /******/    }
     delti[theta]=delts;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    return res; 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
            {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i;
           oldm=oldms;savm=savms;    int l=1, lmax=20;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double k1,k2,k3,k4,res,fx;
           for (h=0; h<=nhstepm; h++){    double p2[MAXPARM+1];
             if (h==(int) (calagedate+YEARM*cpt)) {    int k;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    fx=func(x);
             for(j=1; j<=nlstate+ndeath;j++) {    for (k=1; k<=2; k++) {
               kk1=0.;kk2=0;      for (i=1;i<=npar;i++) p2[i]=x[i];
               for(i=1; i<=nlstate;i++) {                    p2[thetai]=x[thetai]+delti[thetai]/k;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               }      k1=func(p2)-fx;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    
             }      p2[thetai]=x[thetai]+delti[thetai]/k;
           }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      k2=func(p2)-fx;
         }    
       }      p2[thetai]=x[thetai]-delti[thetai]/k;
    }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   }      k3=func(p2)-fx;
      
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   if (popforecast==1) {      k4=func(p2)-fx;
     free_ivector(popage,0,AGESUP);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     free_vector(popeffectif,0,AGESUP);  #ifdef DEBUG
     free_vector(popcount,0,AGESUP);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  #endif
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   fclose(ficrespop);    return res;
 }  }
   
 /***********************************************/  /************** Inverse of matrix **************/
 /**************** Main Program *****************/  void ludcmp(double **a, int n, int *indx, double *d) 
 /***********************************************/  { 
     int i,imax,j,k; 
 int main(int argc, char *argv[])    double big,dum,sum,temp; 
 {    double *vv; 
    
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    vv=vector(1,n); 
   double agedeb, agefin,hf;    *d=1.0; 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    for (i=1;i<=n;i++) { 
       big=0.0; 
   double fret;      for (j=1;j<=n;j++) 
   double **xi,tmp,delta;        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double dum; /* Dummy variable */      vv[i]=1.0/big; 
   double ***p3mat;    } 
   int *indx;    for (j=1;j<=n;j++) { 
   char line[MAXLINE], linepar[MAXLINE];      for (i=1;i<j;i++) { 
   char title[MAXLINE];        sum=a[i][j]; 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        a[i][j]=sum; 
        } 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      big=0.0; 
       for (i=j;i<=n;i++) { 
   char filerest[FILENAMELENGTH];        sum=a[i][j]; 
   char fileregp[FILENAMELENGTH];        for (k=1;k<j;k++) 
   char popfile[FILENAMELENGTH];          sum -= a[i][k]*a[k][j]; 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        a[i][j]=sum; 
   int firstobs=1, lastobs=10;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   int sdeb, sfin; /* Status at beginning and end */          big=dum; 
   int c,  h , cpt,l;          imax=i; 
   int ju,jl, mi;        } 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      } 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      if (j != imax) { 
   int mobilav=0,popforecast=0;        for (k=1;k<=n;k++) { 
   int hstepm, nhstepm;          dum=a[imax][k]; 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
   double bage, fage, age, agelim, agebase;        } 
   double ftolpl=FTOL;        *d = -(*d); 
   double **prlim;        vv[imax]=vv[j]; 
   double *severity;      } 
   double ***param; /* Matrix of parameters */      indx[j]=imax; 
   double  *p;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   double **matcov; /* Matrix of covariance */      if (j != n) { 
   double ***delti3; /* Scale */        dum=1.0/(a[j][j]); 
   double *delti; /* Scale */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   double ***eij, ***vareij;      } 
   double **varpl; /* Variances of prevalence limits by age */    } 
   double *epj, vepp;    free_vector(vv,1,n);  /* Doesn't work */
   double kk1, kk2;  ;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  } 
    
   void lubksb(double **a, int n, int *indx, double b[]) 
   char version[80]="Imach version 0.8b, March 2002, INED-EUROREVES ";  { 
   char *alph[]={"a","a","b","c","d","e"}, str[4];    int i,ii=0,ip,j; 
     double sum; 
    
   char z[1]="c", occ;    for (i=1;i<=n;i++) { 
 #include <sys/time.h>      ip=indx[i]; 
 #include <time.h>      sum=b[ip]; 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      b[ip]=b[i]; 
        if (ii) 
   /* long total_usecs;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   struct timeval start_time, end_time;      else if (sum) ii=i; 
        b[i]=sum; 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    } 
   getcwd(pathcd, size);    for (i=n;i>=1;i--) { 
       sum=b[i]; 
   printf("\n%s",version);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   if(argc <=1){      b[i]=sum/a[i][i]; 
     printf("\nEnter the parameter file name: ");    } 
     scanf("%s",pathtot);  } 
   }  
   else{  void pstamp(FILE *fichier)
     strcpy(pathtot,argv[1]);  {
   }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  }
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  /************ Frequencies ********************/
   /* cutv(path,optionfile,pathtot,'\\');*/  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int i, m, jk, j1, bool, z1,j;
   chdir(path);    int first;
   replace(pathc,path);    double ***freq; /* Frequencies */
     double *pp, **prop;
 /*-------- arguments in the command line --------*/    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     char fileresp[FILENAMELENGTH];
   strcpy(fileres,"r");    
   strcat(fileres, optionfilefiname);    pp=vector(1,nlstate);
   strcat(fileres,".txt");    /* Other files have txt extension */    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
   /*---------arguments file --------*/    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      printf("Problem with prevalence resultfile: %s\n", fileresp);
     printf("Problem with optionfile %s\n",optionfile);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     goto end;      exit(0);
   }    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   strcpy(filereso,"o");    j1=0;
   strcat(filereso,fileres);    
   if((ficparo=fopen(filereso,"w"))==NULL) {    j=cptcoveff;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   }  
     first=1;
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
     ungetc(c,ficpar);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
     fgets(line, MAXLINE, ficpar);    /*    j1++; */
     puts(line);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
     fputs(line,ficparo);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   }          scanf("%d", i);*/
   ungetc(c,ficpar);        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            for(m=iagemin; m <= iagemax+3; m++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);              freq[i][jk][m]=0;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        
 while((c=getc(ficpar))=='#' && c!= EOF){        for (i=1; i<=nlstate; i++)  
     ungetc(c,ficpar);          for(m=iagemin; m <= iagemax+3; m++)
     fgets(line, MAXLINE, ficpar);            prop[i][m]=0;
     puts(line);        
     fputs(line,ficparo);        dateintsum=0;
   }        k2cpt=0;
   ungetc(c,ficpar);        for (i=1; i<=imx; i++) {
            bool=1;
              if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
   covar=matrix(0,NCOVMAX,1,n);            for (z1=1; z1<=cptcoveff; z1++)       
   cptcovn=0;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
                 bool=0;
   ncovmodel=2+cptcovn;                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                    j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
   /* Read guess parameters */                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
   /* Reads comments: lines beginning with '#' */              } 
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);   
     fgets(line, MAXLINE, ficpar);          if (bool==1){
     puts(line);            for(m=firstpass; m<=lastpass; m++){
     fputs(line,ficparo);              k2=anint[m][i]+(mint[m][i]/12.);
   }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   ungetc(c,ficpar);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(i=1; i <=nlstate; i++)                if (m<lastpass) {
     for(j=1; j <=nlstate+ndeath-1; j++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fscanf(ficpar,"%1d%1d",&i1,&j1);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       fprintf(ficparo,"%1d%1d",i1,j1);                }
       printf("%1d%1d",i,j);                
       for(k=1; k<=ncovmodel;k++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         fscanf(ficpar," %lf",&param[i][j][k]);                  dateintsum=dateintsum+k2;
         printf(" %lf",param[i][j][k]);                  k2cpt++;
         fprintf(ficparo," %lf",param[i][j][k]);                }
       }                /*}*/
       fscanf(ficpar,"\n");            }
       printf("\n");          }
       fprintf(ficparo,"\n");        } /* end i */
     }         
          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        pstamp(ficresp);
         if  (cptcovn>0) {
   p=param[1][1];          fprintf(ficresp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* Reads comments: lines beginning with '#' */          fprintf(ficresp, "**********\n#");
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficlog, "\n#********** Variable "); 
     ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fgets(line, MAXLINE, ficpar);          fprintf(ficlog, "**********\n#");
     puts(line);        }
     fputs(line,ficparo);        for(i=1; i<=nlstate;i++) 
   }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   ungetc(c,ficpar);        fprintf(ficresp, "\n");
         
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for(i=iagemin; i <= iagemax+3; i++){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          if(i==iagemax+3){
   for(i=1; i <=nlstate; i++){            fprintf(ficlog,"Total");
     for(j=1; j <=nlstate+ndeath-1; j++){          }else{
       fscanf(ficpar,"%1d%1d",&i1,&j1);            if(first==1){
       printf("%1d%1d",i,j);              first=0;
       fprintf(ficparo,"%1d%1d",i1,j1);              printf("See log file for details...\n");
       for(k=1; k<=ncovmodel;k++){            }
         fscanf(ficpar,"%le",&delti3[i][j][k]);            fprintf(ficlog,"Age %d", i);
         printf(" %le",delti3[i][j][k]);          }
         fprintf(ficparo," %le",delti3[i][j][k]);          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       fscanf(ficpar,"\n");              pp[jk] += freq[jk][m][i]; 
       printf("\n");          }
       fprintf(ficparo,"\n");          for(jk=1; jk <=nlstate ; jk++){
     }            for(m=-1, pos=0; m <=0 ; m++)
   }              pos += freq[jk][m][i];
   delti=delti3[1][1];            if(pp[jk]>=1.e-10){
                if(first==1){
   /* Reads comments: lines beginning with '#' */                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     fgets(line, MAXLINE, ficpar);            }else{
     puts(line);              if(first==1)
     fputs(line,ficparo);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   ungetc(c,ficpar);            }
            }
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){          for(jk=1; jk <=nlstate ; jk++){
     fscanf(ficpar,"%s",&str);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     printf("%s",str);              pp[jk] += freq[jk][m][i];
     fprintf(ficparo,"%s",str);          }       
     for(j=1; j <=i; j++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       fscanf(ficpar," %le",&matcov[i][j]);            pos += pp[jk];
       printf(" %.5le",matcov[i][j]);            posprop += prop[jk][i];
       fprintf(ficparo," %.5le",matcov[i][j]);          }
     }          for(jk=1; jk <=nlstate ; jk++){
     fscanf(ficpar,"\n");            if(pos>=1.e-5){
     printf("\n");              if(first==1)
     fprintf(ficparo,"\n");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   for(i=1; i <=npar; i++)            }else{
     for(j=i+1;j<=npar;j++)              if(first==1)
       matcov[i][j]=matcov[j][i];                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                  fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   printf("\n");            }
             if( i <= iagemax){
               if(pos>=1.e-5){
     /*-------- Rewriting paramater file ----------*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
      strcpy(rfileres,"r");    /* "Rparameterfile */                /*probs[i][jk][j1]= pp[jk]/pos;*/
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
      strcat(rfileres,".");    /* */              }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */              else
     if((ficres =fopen(rfileres,"w"))==NULL) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            }
     }          }
     fprintf(ficres,"#%s\n",version);          
              for(jk=-1; jk <=nlstate+ndeath; jk++)
     /*-------- data file ----------*/            for(m=-1; m <=nlstate+ndeath; m++)
     if((fic=fopen(datafile,"r"))==NULL)    {              if(freq[jk][m][i] !=0 ) {
       printf("Problem with datafile: %s\n", datafile);goto end;              if(first==1)
     }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     n= lastobs;              }
     severity = vector(1,maxwav);          if(i <= iagemax)
     outcome=imatrix(1,maxwav+1,1,n);            fprintf(ficresp,"\n");
     num=ivector(1,n);          if(first==1)
     moisnais=vector(1,n);            printf("Others in log...\n");
     annais=vector(1,n);          fprintf(ficlog,"\n");
     moisdc=vector(1,n);        }
     andc=vector(1,n);        /*}*/
     agedc=vector(1,n);    }
     cod=ivector(1,n);    dateintmean=dateintsum/k2cpt; 
     weight=vector(1,n);   
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    fclose(ficresp);
     mint=matrix(1,maxwav,1,n);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     anint=matrix(1,maxwav,1,n);    free_vector(pp,1,nlstate);
     s=imatrix(1,maxwav+1,1,n);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     adl=imatrix(1,maxwav+1,1,n);        /* End of Freq */
     tab=ivector(1,NCOVMAX);  }
     ncodemax=ivector(1,8);  
   /************ Prevalence ********************/
     i=1;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     while (fgets(line, MAXLINE, fic) != NULL)    {  {  
       if ((i >= firstobs) && (i <=lastobs)) {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
               in each health status at the date of interview (if between dateprev1 and dateprev2).
         for (j=maxwav;j>=1;j--){       We still use firstpass and lastpass as another selection.
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    */
           strcpy(line,stra);   
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    int i, m, jk, j1, bool, z1,j;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    double **prop;
            double posprop; 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    double  y2; /* in fractional years */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    int iagemin, iagemax;
     int first; /** to stop verbosity which is redirected to log file */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    iagemin= (int) agemin;
     iagemax= (int) agemax;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    /*pp=vector(1,nlstate);*/
         for (j=ncovcol;j>=1;j--){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         }    j1=0;
         num[i]=atol(stra);    
            /*j=cptcoveff;*/
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    
     first=1;
         i=i+1;    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
       }      /*for(i1=1; i1<=ncodemax[k1];i1++){
     }        j1++;*/
     /* printf("ii=%d", ij);        
        scanf("%d",i);*/        for (i=1; i<=nlstate; i++)  
   imx=i-1; /* Number of individuals */          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
   /* for (i=1; i<=imx; i++){       
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for (i=1; i<=imx; i++) { /* Each individual */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          bool=1;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          if  (cptcovn>0) {
     }*/            for (z1=1; z1<=cptcoveff; z1++) 
                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   /* for (i=1; i<=imx; i++){                bool=0;
      if (s[4][i]==9)  s[4][i]=-1;          } 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}          if (bool==1) { 
   */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   /* Calculation of the number of parameter from char model*/              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   Tvar=ivector(1,15);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   Tprod=ivector(1,15);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   Tvaraff=ivector(1,15);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   Tvard=imatrix(1,15,1,2);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   Tage=ivector(1,15);                        /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                      prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if (strlen(model) >1){                  prop[s[m][i]][iagemax+3] += weight[i]; 
     j=0, j1=0, k1=1, k2=1;                } 
     j=nbocc(model,'+');              }
     j1=nbocc(model,'*');            } /* end selection of waves */
     cptcovn=j+1;          }
     cptcovprod=j1;        }
            for(i=iagemin; i <= iagemax+3; i++){  
     strcpy(modelsav,model);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            posprop += prop[jk][i]; 
       printf("Error. Non available option model=%s ",model);          } 
       goto end;          
     }          for(jk=1; jk <=nlstate ; jk++){     
                if( i <=  iagemax){ 
     for(i=(j+1); i>=1;i--){              if(posprop>=1.e-5){ 
       cutv(stra,strb,modelsav,'+');                probs[i][jk][j1]= prop[jk][i]/posprop;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);              } else{
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                if(first==1){
       /*scanf("%d",i);*/                  first=0;
       if (strchr(strb,'*')) {                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
         cutv(strd,strc,strb,'*');                }
         if (strcmp(strc,"age")==0) {              }
           cptcovprod--;            } 
           cutv(strb,stre,strd,'V');          }/* end jk */ 
           Tvar[i]=atoi(stre);        }/* end i */ 
           cptcovage++;      /*} *//* end i1 */
             Tage[cptcovage]=i;    } /* end j1 */
             /*printf("stre=%s ", stre);*/    
         }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         else if (strcmp(strd,"age")==0) {    /*free_vector(pp,1,nlstate);*/
           cptcovprod--;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           cutv(strb,stre,strc,'V');  }  /* End of prevalence */
           Tvar[i]=atoi(stre);  
           cptcovage++;  /************* Waves Concatenation ***************/
           Tage[cptcovage]=i;  
         }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         else {  {
           cutv(strb,stre,strc,'V');    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           Tvar[i]=ncovcol+k1;       Death is a valid wave (if date is known).
           cutv(strb,strc,strd,'V');       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           Tprod[k1]=i;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           Tvard[k1][1]=atoi(strc);       and mw[mi+1][i]. dh depends on stepm.
           Tvard[k1][2]=atoi(stre);       */
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    int i, mi, m;
           for (k=1; k<=lastobs;k++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       double sum=0., jmean=0.;*/
           k1++;    int first;
           k2=k2+2;    int j, k=0,jk, ju, jl;
         }    double sum=0.;
       }    first=0;
       else {    jmin=100000;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    jmax=-1;
        /*  scanf("%d",i);*/    jmean=0.;
       cutv(strd,strc,strb,'V');    for(i=1; i<=imx; i++){
       Tvar[i]=atoi(strc);      mi=0;
       }      m=firstpass;
       strcpy(modelsav,stra);        while(s[m][i] <= nlstate){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         scanf("%d",i);*/          mw[++mi][i]=m;
     }        if(m >=lastpass)
 }          break;
          else
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          m++;
   printf("cptcovprod=%d ", cptcovprod);      }/* end while */
   scanf("%d ",i);*/      if (s[m][i] > nlstate){
     fclose(fic);        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
     /*  if(mle==1){*/           /* Only death is a correct wave */
     if (weightopt != 1) { /* Maximisation without weights*/        mw[mi][i]=m;
       for(i=1;i<=n;i++) weight[i]=1.0;      }
     }  
     /*-calculation of age at interview from date of interview and age at death -*/      wav[i]=mi;
     agev=matrix(1,maxwav,1,imx);      if(mi==0){
         nbwarn++;
     for (i=1; i<=imx; i++) {        if(first==0){
       for(m=2; (m<= maxwav); m++) {          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          first=1;
          anint[m][i]=9999;        }
          s[m][i]=-1;        if(first==1){
        }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        }
       }      } /* end mi==0 */
     }    } /* End individuals */
   
     for (i=1; i<=imx; i++)  {    for(i=1; i<=imx; i++){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      for(mi=1; mi<wav[i];mi++){
       for(m=1; (m<= maxwav); m++){        if (stepm <=0)
         if(s[m][i] >0){          dh[mi][i]=1;
           if (s[m][i] >= nlstate+1) {        else{
             if(agedc[i]>0)          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
               if(moisdc[i]!=99 && andc[i]!=9999)            if (agedc[i] < 2*AGESUP) {
                 agev[m][i]=agedc[i];              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/              if(j==0) j=1;  /* Survives at least one month after exam */
            else {              else if(j<0){
               if (andc[i]!=9999){                nberr++;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               agev[m][i]=-1;                j=1; /* Temporary Dangerous patch */
               }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           else if(s[m][i] !=9){ /* Should no more exist */              }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              k=k+1;
             if(mint[m][i]==99 || anint[m][i]==9999)              if (j >= jmax){
               agev[m][i]=1;                jmax=j;
             else if(agev[m][i] <agemin){                ijmax=i;
               agemin=agev[m][i];              }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              if (j <= jmin){
             }                jmin=j;
             else if(agev[m][i] >agemax){                ijmin=i;
               agemax=agev[m][i];              }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              sum=sum+j;
             }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
             /*agev[m][i]=anint[m][i]-annais[i];*/              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             /*   agev[m][i] = age[i]+2*m;*/            }
           }          }
           else { /* =9 */          else{
             agev[m][i]=1;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             s[m][i]=-1;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           }  
         }            k=k+1;
         else /*= 0 Unknown */            if (j >= jmax) {
           agev[m][i]=1;              jmax=j;
       }              ijmax=i;
                }
     }            else if (j <= jmin){
     for (i=1; i<=imx; i++)  {              jmin=j;
       for(m=1; (m<= maxwav); m++){              ijmin=i;
         if (s[m][i] > (nlstate+ndeath)) {            }
           printf("Error: Wrong value in nlstate or ndeath\n");              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           goto end;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         }            if(j<0){
       }              nberr++;
     }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            }
             sum=sum+j;
     free_vector(severity,1,maxwav);          }
     free_imatrix(outcome,1,maxwav+1,1,n);          jk= j/stepm;
     free_vector(moisnais,1,n);          jl= j -jk*stepm;
     free_vector(annais,1,n);          ju= j -(jk+1)*stepm;
     /* free_matrix(mint,1,maxwav,1,n);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
        free_matrix(anint,1,maxwav,1,n);*/            if(jl==0){
     free_vector(moisdc,1,n);              dh[mi][i]=jk;
     free_vector(andc,1,n);              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
                        * to avoid the price of an extra matrix product in likelihood */
     wav=ivector(1,imx);              dh[mi][i]=jk+1;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);              bh[mi][i]=ju;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            }
              }else{
     /* Concatenates waves */            if(jl <= -ju){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
       Tcode=ivector(1,100);                                   */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            }
       ncodemax[1]=1;            else{
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);              dh[mi][i]=jk+1;
                    bh[mi][i]=ju;
    codtab=imatrix(1,100,1,10);            }
    h=0;            if(dh[mi][i]==0){
    m=pow(2,cptcoveff);              dh[mi][i]=1; /* At least one step */
                bh[mi][i]=ju; /* At least one step */
    for(k=1;k<=cptcoveff; k++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
      for(i=1; i <=(m/pow(2,k));i++){            }
        for(j=1; j <= ncodemax[k]; j++){          } /* end if mle */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        }
            h++;      } /* end wave */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    jmean=sum/k;
          }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
        }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
      }   }
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  /*********** Tricode ****************************/
       codtab[1][2]=1;codtab[2][2]=2; */  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
    /* for(i=1; i <=m ;i++){  {
       for(k=1; k <=cptcovn; k++){    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       }     * Boring subroutine which should only output nbcode[Tvar[j]][k]
       printf("\n");     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
       }     * nbcode[Tvar[j]][1]= 
       scanf("%d",i);*/    */
      
    /* Calculates basic frequencies. Computes observed prevalence at single age    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
        and prints on file fileres'p'. */    int modmaxcovj=0; /* Modality max of covariates j */
     int cptcode=0; /* Modality max of covariates j */
        int modmincovj=0; /* Modality min of covariates j */
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    cptcoveff=0; 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (k=-1; k < maxncov; k++) Ndum[k]=0;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
        
     /* For Powell, parameters are in a vector p[] starting at p[1]    /* Loop on covariates without age and products */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
     if(mle==1){        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                                      * If product of Vn*Vm, still boolean *:
     }                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                          * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
     /*--------- results files --------------*/        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                                        modality of the nth covariate of individual i. */
          if (ij > modmaxcovj)
           modmaxcovj=ij; 
    jk=1;        else if (ij < modmincovj) 
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          modmincovj=ij; 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        if ((ij < -1) && (ij > NCOVMAX)){
    for(i=1,jk=1; i <=nlstate; i++){          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
      for(k=1; k <=(nlstate+ndeath); k++){          exit(1);
        if (k != i)        }else
          {        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
            printf("%d%d ",i,k);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
            fprintf(ficres,"%1d%1d ",i,k);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
            for(j=1; j <=ncovmodel; j++){        /* getting the maximum value of the modality of the covariate
              printf("%f ",p[jk]);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
              fprintf(ficres,"%f ",p[jk]);           female is 1, then modmaxcovj=1.*/
              jk++;      }
            }      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
            printf("\n");      cptcode=modmaxcovj;
            fprintf(ficres,"\n");      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
          }     /*for (i=0; i<=cptcode; i++) {*/
      }      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
    }        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
  if(mle==1){        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
     /* Computing hessian and covariance matrix */          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
     ftolhess=ftol; /* Usually correct */        }
     hesscov(matcov, p, npar, delti, ftolhess, func);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
  }           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      } /* Ndum[-1] number of undefined modalities */
     printf("# Scales (for hessian or gradient estimation)\n");  
      for(i=1,jk=1; i <=nlstate; i++){      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       for(j=1; j <=nlstate+ndeath; j++){      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
         if (j!=i) {      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
           fprintf(ficres,"%1d%1d",i,j);         modmincovj=3; modmaxcovj = 7;
           printf("%1d%1d",i,j);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
           for(k=1; k<=ncovmodel;k++){         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
             printf(" %.5e",delti[jk]);         variables V1_1 and V1_2.
             fprintf(ficres," %.5e",delti[jk]);         nbcode[Tvar[j]][ij]=k;
             jk++;         nbcode[Tvar[j]][1]=0;
           }         nbcode[Tvar[j]][2]=1;
           printf("\n");         nbcode[Tvar[j]][3]=2;
           fprintf(ficres,"\n");      */
         }      ij=1; /* ij is similar to i but can jumps over null modalities */
       }      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
      }        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
              /*recode from 0 */
     k=1;          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                                       k is a modality. If we have model=V1+V1*sex 
     for(i=1;i<=npar;i++){                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       /*  if (k>nlstate) k=1;            ij++;
       i1=(i-1)/(ncovmodel*nlstate)+1;          }
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          if (ij > ncodemax[j]) break; 
       printf("%s%d%d",alph[k],i1,tab[i]);*/        }  /* end of loop on */
       fprintf(ficres,"%3d",i);      } /* end of loop on modality */ 
       printf("%3d",i);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       for(j=1; j<=i;j++){    
         fprintf(ficres," %.5e",matcov[i][j]);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
         printf(" %.5e",matcov[i][j]);    
       }    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
       fprintf(ficres,"\n");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       printf("\n");     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       k++;     Ndum[ij]++; 
     }   } 
      
     while((c=getc(ficpar))=='#' && c!= EOF){   ij=1;
       ungetc(c,ficpar);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       fgets(line, MAXLINE, ficpar);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
       puts(line);     if((Ndum[i]!=0) && (i<=ncovcol)){
       fputs(line,ficparo);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     }       Tvaraff[ij]=i; /*For printing (unclear) */
     ungetc(c,ficpar);       ij++;
     estepm=0;     }else
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);         Tvaraff[ij]=0;
     if (estepm==0 || estepm < stepm) estepm=stepm;   }
     if (fage <= 2) {   ij--;
       bage = ageminpar;   cptcoveff=ij; /*Number of total covariates*/
       fage = agemaxpar;  
     }  }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  /*********** Health Expectancies ****************/
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
    void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    /* Health expectancies, no variances */
     puts(line);    int i, j, nhstepm, hstepm, h, nstepm;
     fputs(line,ficparo);    int nhstepma, nstepma; /* Decreasing with age */
   }    double age, agelim, hf;
   ungetc(c,ficpar);    double ***p3mat;
      double eip;
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    pstamp(ficreseij);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
          fprintf(ficreseij,"# Age");
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1; i<=nlstate;i++){
     ungetc(c,ficpar);      for(j=1; j<=nlstate;j++){
     fgets(line, MAXLINE, ficpar);        fprintf(ficreseij," e%1d%1d ",i,j);
     puts(line);      }
     fputs(line,ficparo);      fprintf(ficreseij," e%1d. ",i);
   }    }
   ungetc(c,ficpar);    fprintf(ficreseij,"\n");
    
     
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    if(estepm < stepm){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   fscanf(ficpar,"pop_based=%d\n",&popbased);    else  hstepm=estepm;   
   fprintf(ficparo,"pop_based=%d\n",popbased);      /* We compute the life expectancy from trapezoids spaced every estepm months
   fprintf(ficres,"pop_based=%d\n",popbased);       * This is mainly to measure the difference between two models: for example
       * if stepm=24 months pijx are given only every 2 years and by summing them
   while((c=getc(ficpar))=='#' && c!= EOF){     * we are calculating an estimate of the Life Expectancy assuming a linear 
     ungetc(c,ficpar);     * progression in between and thus overestimating or underestimating according
     fgets(line, MAXLINE, ficpar);     * to the curvature of the survival function. If, for the same date, we 
     puts(line);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     fputs(line,ficparo);     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
   ungetc(c,ficpar);     * curvature will be obtained if estepm is as small as stepm. */
   
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    /* For example we decided to compute the life expectancy with the smallest unit */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
 while((c=getc(ficpar))=='#' && c!= EOF){       and note for a fixed period like estepm months */
     ungetc(c,ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fgets(line, MAXLINE, ficpar);       survival function given by stepm (the optimization length). Unfortunately it
     puts(line);       means that if the survival funtion is printed only each two years of age and if
     fputs(line,ficparo);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   ungetc(c,ficpar);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    agelim=AGESUP;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
 /*------------ gnuplot -------------*/  /* nhstepm age range expressed in number of stepm */
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 /*------------ free_vector  -------------*/    /* if (stepm >= YEARM) hstepm=1;*/
  chdir(path);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    for (age=bage; age<=fage; age ++){ 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
  free_ivector(num,1,n);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
  free_vector(agedc,1,n);      /* if (stepm >= YEARM) hstepm=1;*/
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
  fclose(ficparo);  
  fclose(ficres);      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
 /*--------- index.htm --------*/         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /*--------------- Prevalence limit --------------*/      
        printf("%d|",(int)age);fflush(stdout);
   strcpy(filerespl,"pl");      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   strcat(filerespl,fileres);      
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      /* Computing expectancies */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fprintf(ficrespl,"#Prevalence limit\n");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   fprintf(ficrespl,"#Age ");            
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   fprintf(ficrespl,"\n");  
            }
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficreseij,"%3.0f",age );
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1; i<=nlstate;i++){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        eip=0;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1; j<=nlstate;j++){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          eip +=eij[i][j][(int)age];
   k=0;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   agebase=ageminpar;        }
   agelim=agemaxpar;        fprintf(ficreseij,"%9.4f", eip );
   ftolpl=1.e-10;      }
   i1=cptcoveff;      fprintf(ficreseij,"\n");
   if (cptcovn < 1){i1=1;}      
     }
   for(cptcov=1;cptcov<=i1;cptcov++){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    printf("\n");
         k=k+1;    fprintf(ficlog,"\n");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    
         fprintf(ficrespl,"\n#******");  }
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
         fprintf(ficrespl,"******\n");  
          {
         for (age=agebase; age<=agelim; age++){    /* Covariances of health expectancies eij and of total life expectancies according
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     to initial status i, ei. .
           fprintf(ficrespl,"%.0f",age );    */
           for(i=1; i<=nlstate;i++)    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
           fprintf(ficrespl," %.5f", prlim[i][i]);    int nhstepma, nstepma; /* Decreasing with age */
           fprintf(ficrespl,"\n");    double age, agelim, hf;
         }    double ***p3matp, ***p3matm, ***varhe;
       }    double **dnewm,**doldm;
     }    double *xp, *xm;
   fclose(ficrespl);    double **gp, **gm;
     double ***gradg, ***trgradg;
   /*------------- h Pij x at various ages ------------*/    int theta;
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double eip, vip;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
   printf("Computing pij: result on file '%s' \n", filerespij);    xm=vector(1,npar);
      dnewm=matrix(1,nlstate*nlstate,1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   /*if (stepm<=24) stepsize=2;*/    
     pstamp(ficresstdeij);
   agelim=AGESUP;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(ficresstdeij,"# Age");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    for(i=1; i<=nlstate;i++){
        for(j=1; j<=nlstate;j++)
   k=0;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficresstdeij," e%1d. ",i);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;    fprintf(ficresstdeij,"\n");
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)    pstamp(ficrescveij);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         fprintf(ficrespij,"******\n");    fprintf(ficrescveij,"# Age");
            for(i=1; i<=nlstate;i++)
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      for(j=1; j<=nlstate;j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        cptj= (j-1)*nlstate+i;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(i2=1; i2<=nlstate;i2++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(j2=1; j2<=nlstate;j2++){
           oldm=oldms;savm=savms;            cptj2= (j2-1)*nlstate+i2;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              if(cptj2 <= cptj)
           fprintf(ficrespij,"# Age");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           for(i=1; i<=nlstate;i++)          }
             for(j=1; j<=nlstate+ndeath;j++)      }
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(ficrescveij,"\n");
           fprintf(ficrespij,"\n");    
           for (h=0; h<=nhstepm; h++){    if(estepm < stepm){
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      printf ("Problem %d lower than %d\n",estepm, stepm);
             for(i=1; i<=nlstate;i++)    }
               for(j=1; j<=nlstate+ndeath;j++)    else  hstepm=estepm;   
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    /* We compute the life expectancy from trapezoids spaced every estepm months
             fprintf(ficrespij,"\n");     * This is mainly to measure the difference between two models: for example
           }     * if stepm=24 months pijx are given only every 2 years and by summing them
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           fprintf(ficrespij,"\n");     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we 
     }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/     * curvature will be obtained if estepm is as small as stepm. */
   
   fclose(ficrespij);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   /*---------- Forecasting ------------------*/       nstepm is the number of stepm from age to agelin. 
   if((stepm == 1) && (strcmp(model,".")==0)){       Look at hpijx to understand the reason of that which relies in memory size
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);       and note for a fixed period like estepm months */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     free_matrix(mint,1,maxwav,1,n);       survival function given by stepm (the optimization length). Unfortunately it
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);       means that if the survival funtion is printed only each two years of age and if
     free_vector(weight,1,n);}       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   else{       results. So we changed our mind and took the option of the best precision.
     erreur=108;    */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
      /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
   /*---------- Health expectancies and variances ------------*/    agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   strcpy(filerest,"t");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   strcat(filerest,fileres);    /* if (stepm >= YEARM) hstepm=1;*/
   if((ficrest=fopen(filerest,"w"))==NULL) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    
   }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   strcpy(filerese,"e");    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   strcat(filerese,fileres);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    for (age=bage; age<=fage; age ++){ 
   }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
  strcpy(fileresv,"v");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      /* If stepm=6 months */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      /* Computing  Variances of health expectancies */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       k=k+1;         decrease memory allocation */
       fprintf(ficrest,"\n#****** ");      for(theta=1; theta <=npar; theta++){
       for(j=1;j<=cptcoveff;j++)        for(i=1; i<=npar; i++){ 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficrest,"******\n");          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
       fprintf(ficreseij,"\n#****** ");        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       for(j=1;j<=cptcoveff;j++)        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       fprintf(ficreseij,"******\n");        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
       fprintf(ficresvij,"\n#****** ");            for(h=0; h<=nhstepm-1; h++){
       for(j=1;j<=cptcoveff;j++)              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       fprintf(ficresvij,"******\n");            }
           }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;       
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);          for(ij=1; ij<= nlstate*nlstate; ij++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for(h=0; h<=nhstepm-1; h++){
       oldm=oldms;savm=savms;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          }
          }/* End theta */
       
        
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      for(h=0; h<=nhstepm-1; h++)
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        for(j=1; j<=nlstate*nlstate;j++)
       fprintf(ficrest,"\n");          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       epj=vector(1,nlstate+1);      
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       for(ij=1;ij<=nlstate*nlstate;ij++)
         if (popbased==1) {        for(ji=1;ji<=nlstate*nlstate;ji++)
           for(i=1; i<=nlstate;i++)          varhe[ij][ji][(int)age] =0.;
             prlim[i][i]=probs[(int)age][i][k];  
         }       printf("%d|",(int)age);fflush(stdout);
               fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fprintf(ficrest," %4.0f",age);       for(h=0;h<=nhstepm-1;h++){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        for(k=0;k<=nhstepm-1;k++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           }          for(ij=1;ij<=nlstate*nlstate;ij++)
           epj[nlstate+1] +=epj[j];            for(ji=1;ji<=nlstate*nlstate;ji++)
         }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         for(i=1, vepp=0.;i <=nlstate;i++)        }
           for(j=1;j <=nlstate;j++)      }
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      /* Computing expectancies */
         for(j=1;j <=nlstate;j++){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++)
         fprintf(ficrest,"\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       }            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     }            
   }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   fclose(ficreseij);          }
   fclose(ficresvij);  
   fclose(ficrest);      fprintf(ficresstdeij,"%3.0f",age );
   fclose(ficpar);      for(i=1; i<=nlstate;i++){
   free_vector(epj,1,nlstate+1);        eip=0.;
          vip=0.;
   /*------- Variance limit prevalence------*/          for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
   strcpy(fileresvpl,"vpl");          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   strcat(fileresvpl,fileres);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        }
     exit(0);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   }      }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      fprintf(ficresstdeij,"\n");
   
   k=0;      fprintf(ficrescveij,"%3.0f",age );
   for(cptcov=1;cptcov<=i1;cptcov++){      for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1; j<=nlstate;j++){
       k=k+1;          cptj= (j-1)*nlstate+i;
       fprintf(ficresvpl,"\n#****** ");          for(i2=1; i2<=nlstate;i2++)
       for(j=1;j<=cptcoveff;j++)            for(j2=1; j2<=nlstate;j2++){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              cptj2= (j2-1)*nlstate+i2;
       fprintf(ficresvpl,"******\n");              if(cptj2 <= cptj)
                      fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            }
       oldm=oldms;savm=savms;        }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      fprintf(ficrescveij,"\n");
     }     
  }    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   fclose(ficresvpl);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   /*---------- End : free ----------------*/    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    printf("\n");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficlog,"\n");
    
      free_vector(xm,1,npar);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    free_vector(xp,1,npar);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    }
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);  /************ Variance ******************/
   free_matrix(agev,1,maxwav,1,imx);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  {
     /* Variance of health expectancies */
   if(erreur >0)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     printf("End of Imach with error or warning %d\n",erreur);    /* double **newm;*/
   else   printf("End of Imach\n");    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    
      int movingaverage();
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    double **dnewm,**doldm;
   /*printf("Total time was %d uSec.\n", total_usecs);*/    double **dnewmp,**doldmp;
   /*------ End -----------*/    int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
  end:    double **gp, **gm;  /* for var eij */
 #ifdef windows    double ***gradg, ***trgradg; /*for var eij */
   /* chdir(pathcd);*/    double **gradgp, **trgradgp; /* for var p point j */
 #endif    double *gpp, *gmp; /* for var p point j */
  /*system("wgnuplot graph.plt");*/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
  /*system("../gp37mgw/wgnuplot graph.plt");*/    double ***p3mat;
  /*system("cd ../gp37mgw");*/    double age,agelim, hf;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    double ***mobaverage;
  strcpy(plotcmd,GNUPLOTPROGRAM);    int theta;
  strcat(plotcmd," ");    char digit[4];
  strcat(plotcmd,optionfilegnuplot);    char digitp[25];
  system(plotcmd);  
     char fileresprobmorprev[FILENAMELENGTH];
 #ifdef windows  
   while (z[0] != 'q') {    if(popbased==1){
     /* chdir(path); */      if(mobilav!=0)
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        strcpy(digitp,"-populbased-mobilav-");
     scanf("%s",z);      else strcpy(digitp,"-populbased-nomobil-");
     if (z[0] == 'c') system("./imach");    }
     else if (z[0] == 'e') system(optionfilehtm);    else 
     else if (z[0] == 'g') system(plotcmd);      strcpy(digitp,"-stablbased-");
     else if (z[0] == 'q') exit(0);  
   }    if (mobilav!=0) {
 #endif      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
   #if defined(__GNUC__) 
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
   
   #include <stdint.h>
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   /* struct utsname sysInfo;
   
      if (uname(&sysInfo) != -1) {
        printf(" %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog," %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
             */
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version()); 
   
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compile for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (ie 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bits windows).\n");
              frintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bits windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.38  
changed lines
  Added in v.1.174


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>