Diff for /imach/src/imach.c between versions 1.39 and 1.181

version 1.39, 2002/04/05 15:45:00 version 1.181, 2015/02/11 23:22:24
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.181  2015/02/11 23:22:24  brouard
      Summary: Comments on Powell added
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Author:
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.180  2015/02/11 17:33:45  brouard
   case of a health survey which is our main interest) -2- at least a    Summary: Finishing move from main to function (hpijx and prevalence_limit)
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.179  2015/01/04 09:57:06  brouard
   computed from the time spent in each health state according to a    Summary: back to OS/X
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.178  2015/01/04 09:35:48  brouard
   simplest model is the multinomial logistic model where pij is the    *** empty log message ***
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.177  2015/01/03 18:40:56  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: Still testing ilc32 on OSX
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.176  2015/01/03 16:45:04  brouard
   where the markup *Covariates have to be included here again* invites    *** empty log message ***
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.174  2015/01/03 16:15:49  brouard
   identical for each individual. Also, if a individual missed an    Summary: Still in cross-compilation
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.172  2014/12/27 12:07:47  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.171  2014/12/23 13:26:59  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    Summary: Back from Visual C
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Still problem with utsname.h on Windows
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.170  2014/12/23 11:17:12  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: Cleaning some \%% back to %%
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    The escape was mandatory for a specific compiler (which one?), but too many warnings.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.169  2014/12/22 23:08:31  brouard
   from the European Union.    Summary: 0.98p
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.168  2014/12/22 15:17:42  brouard
      Summary: update
 #include <math.h>  
 #include <stdio.h>    Revision 1.167  2014/12/22 13:50:56  brouard
 #include <stdlib.h>    Summary: Testing uname and compiler version and if compiled 32 or 64
 #include <unistd.h>  
     Testing on Linux 64
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "wgnuplot"    Revision 1.166  2014/12/22 11:40:47  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    *** empty log message ***
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.165  2014/12/16 11:20:36  brouard
 #define windows    Summary: After compiling on Visual C
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    * imach.c (Module): Merging 1.61 to 1.162
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.164  2014/12/16 10:52:11  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   
 #define NINTERVMAX 8    * imach.c (Module): Merging 1.61 to 1.162
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.163  2014/12/16 10:30:11  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    * imach.c (Module): Merging 1.61 to 1.162
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.162  2014/09/25 11:43:39  brouard
 #define AGESUP 130    Summary: temporary backup 0.99!
 #define AGEBASE 40  
     Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
 int erreur; /* Error number */  
 int nvar;    Author:
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.161  2014/09/15 20:41:41  brouard
 int nlstate=2; /* Number of live states */    Summary: Problem with macro SQR on Intel compiler
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.160  2014/09/02 09:24:05  brouard
 int popbased=0;    *** empty log message ***
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.159  2014/09/01 10:34:10  brouard
 int maxwav; /* Maxim number of waves */    Summary: WIN32
 int jmin, jmax; /* min, max spacing between 2 waves */    Author: Brouard
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.158  2014/08/27 17:11:51  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    *** empty log message ***
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.157  2014/08/27 16:26:55  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Summary: Preparing windows Visual studio version
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Author: Brouard
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    In order to compile on Visual studio, time.h is now correct and time_t
   char filerese[FILENAMELENGTH];    and tm struct should be used. difftime should be used but sometimes I
  FILE  *ficresvij;    just make the differences in raw time format (time(&now).
   char fileresv[FILENAMELENGTH];    Trying to suppress #ifdef LINUX
  FILE  *ficresvpl;    Add xdg-open for __linux in order to open default browser.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.156  2014/08/25 20:10:10  brouard
 #define NR_END 1    *** empty log message ***
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
 #define NRANSI    Author: Brouard
 #define ITMAX 200  
     Revision 1.154  2014/06/20 17:32:08  brouard
 #define TOL 2.0e-4    Summary: Outputs now all graphs of convergence to period prevalence
   
 #define CGOLD 0.3819660    Revision 1.153  2014/06/20 16:45:46  brouard
 #define ZEPS 1.0e-10    Summary: If 3 live state, convergence to period prevalence on same graph
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Author: Brouard
   
 #define GOLD 1.618034    Revision 1.152  2014/06/18 17:54:09  brouard
 #define GLIMIT 100.0    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 #define TINY 1.0e-20  
     Revision 1.151  2014/06/18 16:43:30  brouard
 static double maxarg1,maxarg2;    *** empty log message ***
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.150  2014/06/18 16:42:35  brouard
      Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Author: brouard
 #define rint(a) floor(a+0.5)  
     Revision 1.149  2014/06/18 15:51:14  brouard
 static double sqrarg;    Summary: Some fixes in parameter files errors
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Author: Nicolas Brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.148  2014/06/17 17:38:48  brouard
 int imx;    Summary: Nothing new
 int stepm;    Author: Brouard
 /* Stepm, step in month: minimum step interpolation*/  
     Just a new packaging for OS/X version 0.98nS
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.146  2014/06/16 10:20:28  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Summary: Merge
 double **pmmij, ***probs, ***mobaverage;    Author: Brouard
 double dateintmean=0;  
     Merge, before building revised version.
 double *weight;  
 int **s; /* Status */    Revision 1.145  2014/06/10 21:23:15  brouard
 double *agedc, **covar, idx;    Summary: Debugging with valgrind
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Author: Nicolas Brouard
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Lot of changes in order to output the results with some covariates
 double ftolhess; /* Tolerance for computing hessian */    After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
 /**************** split *************************/    No more memory valgrind error but a lot has to be done in order to
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    continue the work of splitting the code into subroutines.
 {    Also, decodemodel has been improved. Tricode is still not
    char *s;                             /* pointer */    optimal. nbcode should be improved. Documentation has been added in
    int  l1, l2;                         /* length counters */    the source code.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.143  2014/01/26 09:45:38  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #ifdef windows  
    s = strrchr( path, '\\' );           /* find last / */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #else    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.142  2014/01/26 03:57:36  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.141  2014/01/26 02:42:01  brouard
 #else    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       extern char       *getcwd( );  
     Revision 1.140  2011/09/02 10:37:54  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Summary: times.h is ok with mingw32 now.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.139  2010/06/14 07:50:17  brouard
       }    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
       strcpy( name, path );             /* we've got it */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.138  2010/04/30 18:19:40  brouard
       l2 = strlen( s );                 /* length of filename */    *** empty log message ***
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.137  2010/04/29 18:11:38  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): Checking covariates for more complex models
       dirc[l1-l2] = 0;                  /* add zero */    than V1+V2. A lot of change to be done. Unstable.
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.136  2010/04/26 20:30:53  brouard
 #ifdef windows    (Module): merging some libgsl code. Fixing computation
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    of likelione (using inter/intrapolation if mle = 0) in order to
 #else    get same likelihood as if mle=1.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Some cleaning of code and comments added.
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.135  2009/10/29 15:33:14  brouard
    s++;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.134  2009/10/29 13:18:53  brouard
    l2= strlen( s)+1;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.133  2009/07/06 10:21:25  brouard
    return( 0 );                         /* we're done */    just nforces
 }  
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
 /******************************************/  
     Revision 1.131  2009/06/20 16:22:47  brouard
 void replace(char *s, char*t)    Some dimensions resccaled
 {  
   int i;    Revision 1.130  2009/05/26 06:44:34  brouard
   int lg=20;    (Module): Max Covariate is now set to 20 instead of 8. A
   i=0;    lot of cleaning with variables initialized to 0. Trying to make
   lg=strlen(t);    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.129  2007/08/31 13:49:27  lievre
     if (t[i]== '\\') s[i]='/';    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   }  
 }    Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
 int nbocc(char *s, char occ)  
 {    Revision 1.127  2006/04/28 18:11:50  brouard
   int i,j=0;    (Module): Yes the sum of survivors was wrong since
   int lg=20;    imach-114 because nhstepm was no more computed in the age
   i=0;    loop. Now we define nhstepma in the age loop.
   lg=strlen(s);    (Module): In order to speed up (in case of numerous covariates) we
   for(i=0; i<= lg; i++) {    compute health expectancies (without variances) in a first step
   if  (s[i] == occ ) j++;    and then all the health expectancies with variances or standard
   }    deviation (needs data from the Hessian matrices) which slows the
   return j;    computation.
 }    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.126  2006/04/28 17:23:28  brouard
   int i,lg,j,p=0;    (Module): Yes the sum of survivors was wrong since
   i=0;    imach-114 because nhstepm was no more computed in the age
   for(j=0; j<=strlen(t)-1; j++) {    loop. Now we define nhstepma in the age loop.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Version 0.98h
   }  
     Revision 1.125  2006/04/04 15:20:31  lievre
   lg=strlen(t);    Errors in calculation of health expectancies. Age was not initialized.
   for(j=0; j<p; j++) {    Forecasting file added.
     (u[j] = t[j]);  
   }    Revision 1.124  2006/03/22 17:13:53  lievre
      u[p]='\0';    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.123  2006/03/20 10:52:43  brouard
   }    * imach.c (Module): <title> changed, corresponds to .htm file
 }    name. <head> headers where missing.
   
 /********************** nrerror ********************/    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 void nrerror(char error_text[])    otherwise the weight is truncated).
 {    Modification of warning when the covariates values are not 0 or
   fprintf(stderr,"ERREUR ...\n");    1.
   fprintf(stderr,"%s\n",error_text);    Version 0.98g
   exit(1);  
 }    Revision 1.122  2006/03/20 09:45:41  brouard
 /*********************** vector *******************/    (Module): Weights can have a decimal point as for
 double *vector(int nl, int nh)    English (a comma might work with a correct LC_NUMERIC environment,
 {    otherwise the weight is truncated).
   double *v;    Modification of warning when the covariates values are not 0 or
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    1.
   if (!v) nrerror("allocation failure in vector");    Version 0.98g
   return v-nl+NR_END;  
 }    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    * imach.c (Module): refinements in the computation of lli if
 {    status=-2 in order to have more reliable computation if stepm is
   free((FREE_ARG)(v+nl-NR_END));    not 1 month. Version 0.98f
 }  
     Revision 1.120  2006/03/16 15:10:38  lievre
 /************************ivector *******************************/    (Module): refinements in the computation of lli if
 int *ivector(long nl,long nh)    status=-2 in order to have more reliable computation if stepm is
 {    not 1 month. Version 0.98f
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.119  2006/03/15 17:42:26  brouard
   if (!v) nrerror("allocation failure in ivector");    (Module): Bug if status = -2, the loglikelihood was
   return v-nl+NR_END;    computed as likelihood omitting the logarithm. Version O.98e
 }  
     Revision 1.118  2006/03/14 18:20:07  brouard
 /******************free ivector **************************/    (Module): varevsij Comments added explaining the second
 void free_ivector(int *v, long nl, long nh)    table of variances if popbased=1 .
 {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   free((FREE_ARG)(v+nl-NR_END));    (Module): Function pstamp added
 }    (Module): Version 0.98d
   
 /******************* imatrix *******************************/    Revision 1.117  2006/03/14 17:16:22  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): varevsij Comments added explaining the second
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    table of variances if popbased=1 .
 {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): Function pstamp added
   int **m;    (Module): Version 0.98d
    
   /* allocate pointers to rows */    Revision 1.116  2006/03/06 10:29:27  brouard
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    (Module): Variance-covariance wrong links and
   if (!m) nrerror("allocation failure 1 in matrix()");    varian-covariance of ej. is needed (Saito).
   m += NR_END;  
   m -= nrl;    Revision 1.115  2006/02/27 12:17:45  brouard
      (Module): One freematrix added in mlikeli! 0.98c
    
   /* allocate rows and set pointers to them */    Revision 1.114  2006/02/26 12:57:58  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Module): Some improvements in processing parameter
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    filename with strsep.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.113  2006/02/24 14:20:24  brouard
      (Module): Memory leaks checks with valgrind and:
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    datafile was not closed, some imatrix were not freed and on matrix
      allocation too.
   /* return pointer to array of pointers to rows */  
   return m;    Revision 1.112  2006/01/30 09:55:26  brouard
 }    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 /****************** free_imatrix *************************/    Revision 1.111  2006/01/25 20:38:18  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    (Module): Lots of cleaning and bugs added (Gompertz)
       int **m;    (Module): Comments can be added in data file. Missing date values
       long nch,ncl,nrh,nrl;    can be a simple dot '.'.
      /* free an int matrix allocated by imatrix() */  
 {    Revision 1.110  2006/01/25 00:51:50  brouard
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    (Module): Lots of cleaning and bugs added (Gompertz)
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Revision 1.108  2006/01/19 18:05:42  lievre
 {    Gnuplot problem appeared...
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    To be fixed
   double **m;  
     Revision 1.107  2006/01/19 16:20:37  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Test existence of gnuplot in imach path
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.106  2006/01/19 13:24:36  brouard
   m -= nrl;    Some cleaning and links added in html output
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.105  2006/01/05 20:23:19  lievre
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    *** empty log message ***
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Module): If the status is missing at the last wave but we know
   return m;    that the person is alive, then we can code his/her status as -2
 }    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
 /*************************free matrix ************************/    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    the healthy state at last known wave). Version is 0.98
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.103  2005/09/30 15:54:49  lievre
   free((FREE_ARG)(m+nrl-NR_END));    (Module): sump fixed, loop imx fixed, and simplifications.
 }  
     Revision 1.102  2004/09/15 17:31:30  brouard
 /******************* ma3x *******************************/    Add the possibility to read data file including tab characters.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    Revision 1.101  2004/09/15 10:38:38  brouard
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Fix on curr_time
   double ***m;  
     Revision 1.100  2004/07/12 18:29:06  brouard
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Add version for Mac OS X. Just define UNIX in Makefile
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.99  2004/06/05 08:57:40  brouard
   m -= nrl;    *** empty log message ***
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.98  2004/05/16 15:05:56  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    New version 0.97 . First attempt to estimate force of mortality
   m[nrl] += NR_END;    directly from the data i.e. without the need of knowing the health
   m[nrl] -= ncl;    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    from other sources like vital statistic data.
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    The same imach parameter file can be used but the option for mle should be -3.
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    Agnès, who wrote this part of the code, tried to keep most of the
     m[nrl][j]=m[nrl][j-1]+nlay;    former routines in order to include the new code within the former code.
    
   for (i=nrl+1; i<=nrh; i++) {    The output is very simple: only an estimate of the intercept and of
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    the slope with 95% confident intervals.
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    Current limitations:
   }    A) Even if you enter covariates, i.e. with the
   return m;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 }    B) There is no computation of Life Expectancy nor Life Table.
   
 /*************************free ma3x ************************/    Revision 1.97  2004/02/20 13:25:42  lievre
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    Version 0.96d. Population forecasting command line is (temporarily)
 {    suppressed.
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.96  2003/07/15 15:38:55  brouard
   free((FREE_ARG)(m+nrl-NR_END));    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 }    rewritten within the same printf. Workaround: many printfs.
   
 /***************** f1dim *************************/    Revision 1.95  2003/07/08 07:54:34  brouard
 extern int ncom;    * imach.c (Repository):
 extern double *pcom,*xicom;    (Repository): Using imachwizard code to output a more meaningful covariance
 extern double (*nrfunc)(double []);    matrix (cov(a12,c31) instead of numbers.
    
 double f1dim(double x)    Revision 1.94  2003/06/27 13:00:02  brouard
 {    Just cleaning
   int j;  
   double f;    Revision 1.93  2003/06/25 16:33:55  brouard
   double *xt;    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
   xt=vector(1,ncom);    (Module): Version 0.96b
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Revision 1.92  2003/06/25 16:30:45  brouard
   free_vector(xt,1,ncom);    (Module): On windows (cygwin) function asctime_r doesn't
   return f;    exist so I changed back to asctime which exists.
 }  
     Revision 1.91  2003/06/25 15:30:29  brouard
 /*****************brent *************************/    * imach.c (Repository): Duplicated warning errors corrected.
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    (Repository): Elapsed time after each iteration is now output. It
 {    helps to forecast when convergence will be reached. Elapsed time
   int iter;    is stamped in powell.  We created a new html file for the graphs
   double a,b,d,etemp;    concerning matrix of covariance. It has extension -cov.htm.
   double fu,fv,fw,fx;  
   double ftemp;    Revision 1.90  2003/06/24 12:34:15  brouard
   double p,q,r,tol1,tol2,u,v,w,x,xm;    (Module): Some bugs corrected for windows. Also, when
   double e=0.0;    mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    Revision 1.89  2003/06/24 12:30:52  brouard
   x=w=v=bx;    (Module): Some bugs corrected for windows. Also, when
   fw=fv=fx=(*f)(x);    mle=-1 a template is output in file "or"mypar.txt with the design
   for (iter=1;iter<=ITMAX;iter++) {    of the covariance matrix to be input.
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Revision 1.88  2003/06/23 17:54:56  brouard
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
     printf(".");fflush(stdout);  
 #ifdef DEBUG    Revision 1.87  2003/06/18 12:26:01  brouard
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Version 0.96
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    Revision 1.86  2003/06/17 20:04:08  brouard
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    (Module): Change position of html and gnuplot routines and added
       *xmin=x;    routine fileappend.
       return fx;  
     }    Revision 1.85  2003/06/17 13:12:43  brouard
     ftemp=fu;    * imach.c (Repository): Check when date of death was earlier that
     if (fabs(e) > tol1) {    current date of interview. It may happen when the death was just
       r=(x-w)*(fx-fv);    prior to the death. In this case, dh was negative and likelihood
       q=(x-v)*(fx-fw);    was wrong (infinity). We still send an "Error" but patch by
       p=(x-v)*q-(x-w)*r;    assuming that the date of death was just one stepm after the
       q=2.0*(q-r);    interview.
       if (q > 0.0) p = -p;    (Repository): Because some people have very long ID (first column)
       q=fabs(q);    we changed int to long in num[] and we added a new lvector for
       etemp=e;    memory allocation. But we also truncated to 8 characters (left
       e=d;    truncation)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    (Repository): No more line truncation errors.
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    Revision 1.84  2003/06/13 21:44:43  brouard
         d=p/q;    * imach.c (Repository): Replace "freqsummary" at a correct
         u=x+d;    place. It differs from routine "prevalence" which may be called
         if (u-a < tol2 || b-u < tol2)    many times. Probs is memory consuming and must be used with
           d=SIGN(tol1,xm-x);    parcimony.
       }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    Revision 1.83  2003/06/10 13:39:11  lievre
     }    *** empty log message ***
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    Revision 1.82  2003/06/05 15:57:20  brouard
     if (fu <= fx) {    Add log in  imach.c and  fullversion number is now printed.
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  */
         SHFT(fv,fw,fx,fu)  /*
         } else {     Interpolated Markov Chain
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {    Short summary of the programme:
             v=w;    
             w=u;    This program computes Healthy Life Expectancies from
             fv=fw;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
             fw=fu;    first survey ("cross") where individuals from different ages are
           } else if (fu <= fv || v == x || v == w) {    interviewed on their health status or degree of disability (in the
             v=u;    case of a health survey which is our main interest) -2- at least a
             fv=fu;    second wave of interviews ("longitudinal") which measure each change
           }    (if any) in individual health status.  Health expectancies are
         }    computed from the time spent in each health state according to a
   }    model. More health states you consider, more time is necessary to reach the
   nrerror("Too many iterations in brent");    Maximum Likelihood of the parameters involved in the model.  The
   *xmin=x;    simplest model is the multinomial logistic model where pij is the
   return fx;    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 /****************** mnbrak ***********************/    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    where the markup *Covariates have to be included here again* invites
             double (*func)(double))    you to do it.  More covariates you add, slower the
 {    convergence.
   double ulim,u,r,q, dum;  
   double fu;    The advantage of this computer programme, compared to a simple
      multinomial logistic model, is clear when the delay between waves is not
   *fa=(*func)(*ax);    identical for each individual. Also, if a individual missed an
   *fb=(*func)(*bx);    intermediate interview, the information is lost, but taken into
   if (*fb > *fa) {    account using an interpolation or extrapolation.  
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    hPijx is the probability to be observed in state i at age x+h
       }    conditional to the observed state i at age x. The delay 'h' can be
   *cx=(*bx)+GOLD*(*bx-*ax);    split into an exact number (nh*stepm) of unobserved intermediate
   *fc=(*func)(*cx);    states. This elementary transition (by month, quarter,
   while (*fb > *fc) {    semester or year) is modelled as a multinomial logistic.  The hPx
     r=(*bx-*ax)*(*fb-*fc);    matrix is simply the matrix product of nh*stepm elementary matrices
     q=(*bx-*cx)*(*fb-*fa);    and the contribution of each individual to the likelihood is simply
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    hPijx.
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    Also this programme outputs the covariance matrix of the parameters but also
     if ((*bx-u)*(u-*cx) > 0.0) {    of the life expectancies. It also computes the period (stable) prevalence. 
       fu=(*func)(u);    
     } else if ((*cx-u)*(u-ulim) > 0.0) {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       fu=(*func)(u);             Institut national d'études démographiques, Paris.
       if (fu < *fc) {    This software have been partly granted by Euro-REVES, a concerted action
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    from the European Union.
           SHFT(*fb,*fc,fu,(*func)(u))    It is copyrighted identically to a GNU software product, ie programme and
           }    software can be distributed freely for non commercial use. Latest version
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    can be accessed at http://euroreves.ined.fr/imach .
       u=ulim;  
       fu=(*func)(u);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     } else {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       u=(*cx)+GOLD*(*cx-*bx);    
       fu=(*func)(u);    **********************************************************************/
     }  /*
     SHFT(*ax,*bx,*cx,u)    main
       SHFT(*fa,*fb,*fc,fu)    read parameterfile
       }    read datafile
 }    concatwav
     freqsummary
 /*************** linmin ************************/    if (mle >= 1)
       mlikeli
 int ncom;    print results files
 double *pcom,*xicom;    if mle==1 
 double (*nrfunc)(double []);       computes hessian
      read end of parameter file: agemin, agemax, bage, fage, estepm
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))        begin-prev-date,...
 {    open gnuplot file
   double brent(double ax, double bx, double cx,    open html file
                double (*f)(double), double tol, double *xmin);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   double f1dim(double x);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
               double *fc, double (*func)(double));      freexexit2 possible for memory heap.
   int j;  
   double xx,xmin,bx,ax;    h Pij x                         | pij_nom  ficrestpij
   double fx,fb,fa;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
           1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   ncom=n;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   pcom=vector(1,n);  
   xicom=vector(1,n);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   nrfunc=func;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   for (j=1;j<=n;j++) {    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     pcom[j]=p[j];     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     xicom[j]=xi[j];     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   }  
   ax=0.0;    forecasting if prevfcast==1 prevforecast call prevalence()
   xx=1.0;    health expectancies
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    Variance-covariance of DFLE
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    prevalence()
 #ifdef DEBUG     movingaverage()
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    varevsij() 
 #endif    if popbased==1 varevsij(,popbased)
   for (j=1;j<=n;j++) {    total life expectancies
     xi[j] *= xmin;    Variance of period (stable) prevalence
     p[j] += xi[j];   end
   }  */
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  #define POWELL /* Instead of NLOPT */
 }  #define POWELLDIRECT /* Directest to decide new direction instead of Powell test */
   
 /*************** powell ************************/  #include <math.h>
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #include <stdio.h>
             double (*func)(double []))  #include <stdlib.h>
 {  #include <string.h>
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  #ifdef _WIN32
   int i,ibig,j;  #include <io.h>
   double del,t,*pt,*ptt,*xit;  #include <windows.h>
   double fp,fptt;  #include <tchar.h>
   double *xits;  #else
   pt=vector(1,n);  #include <unistd.h>
   ptt=vector(1,n);  #endif
   xit=vector(1,n);  
   xits=vector(1,n);  #include <limits.h>
   *fret=(*func)(p);  #include <sys/types.h>
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  #if defined(__GNUC__)
     fp=(*fret);  #include <sys/utsname.h> /* Doesn't work on Windows */
     ibig=0;  #endif
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #include <sys/stat.h>
     for (i=1;i<=n;i++)  #include <errno.h>
       printf(" %d %.12f",i, p[i]);  /* extern int errno; */
     printf("\n");  
     for (i=1;i<=n;i++) {  /* #ifdef LINUX */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /* #include <time.h> */
       fptt=(*fret);  /* #include "timeval.h" */
 #ifdef DEBUG  /* #else */
       printf("fret=%lf \n",*fret);  /* #include <sys/time.h> */
 #endif  /* #endif */
       printf("%d",i);fflush(stdout);  
       linmin(p,xit,n,fret,func);  #include <time.h>
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  #ifdef GSL
         ibig=i;  #include <gsl/gsl_errno.h>
       }  #include <gsl/gsl_multimin.h>
 #ifdef DEBUG  #endif
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #ifdef NLOPT
         printf(" x(%d)=%.12e",j,xit[j]);  #include <nlopt.h>
       }  typedef struct {
       for(j=1;j<=n;j++)    double (* function)(double [] );
         printf(" p=%.12e",p[j]);  } myfunc_data ;
       printf("\n");  #endif
 #endif  
     }  /* #include <libintl.h> */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /* #define _(String) gettext (String) */
 #ifdef DEBUG  
       int k[2],l;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       k[0]=1;  
       k[1]=-1;  #define GNUPLOTPROGRAM "gnuplot"
       printf("Max: %.12e",(*func)(p));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       for (j=1;j<=n;j++)  #define FILENAMELENGTH 132
         printf(" %.12e",p[j]);  
       printf("\n");  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       for(l=0;l<=1;l++) {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #define NINTERVMAX 8
       }  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 #endif  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       free_vector(xit,1,n);  #define MAXN 20000
       free_vector(xits,1,n);  #define YEARM 12. /**< Number of months per year */
       free_vector(ptt,1,n);  #define AGESUP 130
       free_vector(pt,1,n);  #define AGEBASE 40
       return;  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
     }  #ifdef _WIN32
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #define DIRSEPARATOR '\\'
     for (j=1;j<=n;j++) {  #define CHARSEPARATOR "\\"
       ptt[j]=2.0*p[j]-pt[j];  #define ODIRSEPARATOR '/'
       xit[j]=p[j]-pt[j];  #else
       pt[j]=p[j];  #define DIRSEPARATOR '/'
     }  #define CHARSEPARATOR "/"
     fptt=(*func)(ptt);  #define ODIRSEPARATOR '\\'
     if (fptt < fp) {  #endif
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  /* $Id$ */
         linmin(p,xit,n,fret,func);  /* $State$ */
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  char version[]="Imach version 0.98p, Février 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
           xi[j][n]=xit[j];  char fullversion[]="$Revision$ $Date$"; 
         }  char strstart[80];
 #ifdef DEBUG  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         for(j=1;j<=n;j++)  int nvar=0, nforce=0; /* Number of variables, number of forces */
           printf(" %.12e",xit[j]);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
         printf("\n");  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 #endif  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       }  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     }  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   }  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 }  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   int cptcov=0; /* Working variable */
 /**** Prevalence limit ****************/  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  int ndeath=1; /* Number of dead states */
 {  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  int popbased=0;
      matrix by transitions matrix until convergence is reached */  
   int *wav; /* Number of waves for this individuual 0 is possible */
   int i, ii,j,k;  int maxwav=0; /* Maxim number of waves */
   double min, max, maxmin, maxmax,sumnew=0.;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   double **matprod2();  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   double **out, cov[NCOVMAX], **pmij();  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   double **newm;                     to the likelihood and the sum of weights (done by funcone)*/
   double agefin, delaymax=50 ; /* Max number of years to converge */  int mle=1, weightopt=0;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   for (ii=1;ii<=nlstate+ndeath;ii++)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     for (j=1;j<=nlstate+ndeath;j++){  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     }  int countcallfunc=0;  /* Count the number of calls to func */
   double jmean=1; /* Mean space between 2 waves */
    cov[1]=1.;  double **matprod2(); /* test */
    double **oldm, **newm, **savm; /* Working pointers to matrices */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /*FILE *fic ; */ /* Used in readdata only */
     newm=savm;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     /* Covariates have to be included here again */  FILE *ficlog, *ficrespow;
      cov[2]=agefin;  int globpr=0; /* Global variable for printing or not */
    double fretone; /* Only one call to likelihood */
       for (k=1; k<=cptcovn;k++) {  long ipmx=0; /* Number of contributions */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double sw; /* Sum of weights */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  char filerespow[FILENAMELENGTH];
       }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  FILE *ficresilk;
       for (k=1; k<=cptcovprod;k++)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  FILE *ficreseij;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  char filerese[FILENAMELENGTH];
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  FILE *ficresstdeij;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
     savm=oldm;  char filerescve[FILENAMELENGTH];
     oldm=newm;  FILE  *ficresvij;
     maxmax=0.;  char fileresv[FILENAMELENGTH];
     for(j=1;j<=nlstate;j++){  FILE  *ficresvpl;
       min=1.;  char fileresvpl[FILENAMELENGTH];
       max=0.;  char title[MAXLINE];
       for(i=1; i<=nlstate; i++) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         sumnew=0;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         prlim[i][j]= newm[i][j]/(1-sumnew);  char command[FILENAMELENGTH];
         max=FMAX(max,prlim[i][j]);  int  outcmd=0;
         min=FMIN(min,prlim[i][j]);  
       }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  char filelog[FILENAMELENGTH]; /* Log file */
     }  char filerest[FILENAMELENGTH];
     if(maxmax < ftolpl){  char fileregp[FILENAMELENGTH];
       return prlim;  char popfile[FILENAMELENGTH];
     }  
   }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 }  
   /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
 /*************** transition probabilities ***************/  /* struct timezone tzp; */
   /* extern int gettimeofday(); */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  struct tm tml, *gmtime(), *localtime();
 {  
   double s1, s2;  extern time_t time();
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
     for(i=1; i<= nlstate; i++){  struct tm tm;
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char strcurr[80], strfor[80];
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char *endptr;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  long lval;
       }  double dval;
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  #define NR_END 1
     }  #define FREE_ARG char*
     for(j=i+1; j<=nlstate+ndeath;j++){  #define FTOL 1.0e-10
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define NRANSI 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #define ITMAX 200 
       }  
       ps[i][j]=s2;  #define TOL 2.0e-4 
     }  
   }  #define CGOLD 0.3819660 
     /*ps[3][2]=1;*/  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   for(i=1; i<= nlstate; i++){  
      s1=0;  #define GOLD 1.618034 
     for(j=1; j<i; j++)  #define GLIMIT 100.0 
       s1+=exp(ps[i][j]);  #define TINY 1.0e-20 
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);  static double maxarg1,maxarg2;
     ps[i][i]=1./(s1+1.);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     for(j=1; j<i; j++)  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       ps[i][j]= exp(ps[i][j])*ps[i][i];    
     for(j=i+1; j<=nlstate+ndeath; j++)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #define rint(a) floor(a+0.5)
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   } /* end i */  /* #define mytinydouble 1.0e-16 */
   /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /* static double dsqrarg; */
       ps[ii][jj]=0;  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
       ps[ii][ii]=1;  static double sqrarg;
     }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int agegomp= AGEGOMP;
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  int imx; 
     for(jj=1; jj<= nlstate+ndeath; jj++){  int stepm=1;
      printf("%lf ",ps[ii][jj]);  /* Stepm, step in month: minimum step interpolation*/
    }  
     printf("\n ");  int estepm;
     }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  int m,nb;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  long *num;
   goto end;*/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     return ps;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double *ageexmed,*agecens;
 /**************** Product of 2 matrices ******************/  double dateintmean=0;
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  double *weight;
 {  int **s; /* Status */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  double *agedc;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   /* in, b, out are matrice of pointers which should have been initialized                    * covar=matrix(0,NCOVMAX,1,n); 
      before: only the contents of out is modified. The function returns                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
      a pointer to pointers identical to out */  double  idx; 
   long i, j, k;  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   for(i=nrl; i<= nrh; i++)  int *Ndum; /** Freq of modality (tricode */
     for(k=ncolol; k<=ncoloh; k++)  int **codtab; /**< codtab=imatrix(1,100,1,10); */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         out[i][k] +=in[i][j]*b[j][k];  double *lsurv, *lpop, *tpop;
   
   return out;  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
 }  double ftolhess; /**< Tolerance for computing hessian */
   
   /**************** split *************************/
 /************* Higher Matrix Product ***************/  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    */ 
      duration (i.e. until    char  *ss;                            /* pointer */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    int   l1, l2;                         /* length counters */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).    l1 = strlen(path );                   /* length of path */
      Model is determined by parameters x and covariates have to be    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      included manually here.    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
      */      strcpy( name, path );               /* we got the fullname name because no directory */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   int i, j, d, h, k;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double **out, cov[NCOVMAX];      /* get current working directory */
   double **newm;      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   /* Hstepm could be zero and should return the unit matrix */        return( GLOCK_ERROR_GETCWD );
   for (i=1;i<=nlstate+ndeath;i++)      }
     for (j=1;j<=nlstate+ndeath;j++){      /* got dirc from getcwd*/
       oldm[i][j]=(i==j ? 1.0 : 0.0);      printf(" DIRC = %s \n",dirc);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    } else {                              /* strip direcotry from path */
     }      ss++;                               /* after this, the filename */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      l2 = strlen( ss );                  /* length of filename */
   for(h=1; h <=nhstepm; h++){      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     for(d=1; d <=hstepm; d++){      strcpy( name, ss );         /* save file name */
       newm=savm;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       /* Covariates have to be included here again */      dirc[l1-l2] = 0;                    /* add zero */
       cov[1]=1.;      printf(" DIRC2 = %s \n",dirc);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    /* We add a separator at the end of dirc if not exists */
       for (k=1; k<=cptcovage;k++)    l1 = strlen( dirc );                  /* length of directory */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if( dirc[l1-1] != DIRSEPARATOR ){
       for (k=1; k<=cptcovprod;k++)      dirc[l1] =  DIRSEPARATOR;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      dirc[l1+1] = 0; 
       printf(" DIRC3 = %s \n",dirc);
     }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    ss = strrchr( name, '.' );            /* find last / */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    if (ss >0){
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      ss++;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      strcpy(ext,ss);                     /* save extension */
       savm=oldm;      l1= strlen( name);
       oldm=newm;      l2= strlen(ss)+1;
     }      strncpy( finame, name, l1-l2);
     for(i=1; i<=nlstate+ndeath; i++)      finame[l1-l2]= 0;
       for(j=1;j<=nlstate+ndeath;j++) {    }
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    return( 0 );                          /* we're done */
          */  }
       }  
   } /* end h */  
   return po;  /******************************************/
 }  
   void replace_back_to_slash(char *s, char*t)
   {
 /*************** log-likelihood *************/    int i;
 double func( double *x)    int lg=0;
 {    i=0;
   int i, ii, j, k, mi, d, kk;    lg=strlen(t);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    for(i=0; i<= lg; i++) {
   double **out;      (s[i] = t[i]);
   double sw; /* Sum of weights */      if (t[i]== '\\') s[i]='/';
   double lli; /* Individual log likelihood */    }
   long ipmx;  }
   /*extern weight */  
   /* We are differentiating ll according to initial status */  char *trimbb(char *out, char *in)
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   /*for(i=1;i<imx;i++)    char *s;
     printf(" %d\n",s[4][i]);    s=out;
   */    while (*in != '\0'){
   cov[1]=1.;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         in++;
   for(k=1; k<=nlstate; k++) ll[k]=0.;      }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      *out++ = *in++;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    }
     for(mi=1; mi<= wav[i]-1; mi++){    *out='\0';
       for (ii=1;ii<=nlstate+ndeath;ii++)    return s;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  char *cutl(char *blocc, char *alocc, char *in, char occ)
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  {
         for (kk=1; kk<=cptcovage;kk++) {    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         }       gives blocc="abcdef2ghi" and alocc="j".
               If occ is not found blocc is null and alocc is equal to in. Returns blocc
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    char *s, *t;
         savm=oldm;    t=in;s=in;
         oldm=newm;    while ((*in != occ) && (*in != '\0')){
              *alocc++ = *in++;
            }
       } /* end mult */    if( *in == occ){
            *(alocc)='\0';
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      s=++in;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    }
       ipmx +=1;   
       sw += weight[i];    if (s == t) {/* occ not found */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      *(alocc-(in-s))='\0';
     } /* end of wave */      in=s;
   } /* end of individual */    }
     while ( *in != '\0'){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      *blocc++ = *in++;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;    *blocc='\0';
 }    return t;
   }
   char *cutv(char *blocc, char *alocc, char *in, char occ)
 /*********** Maximum Likelihood Estimation ***************/  {
     /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 {       gives blocc="abcdef2ghi" and alocc="j".
   int i,j, iter;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   double **xi,*delti;    */
   double fret;    char *s, *t;
   xi=matrix(1,npar,1,npar);    t=in;s=in;
   for (i=1;i<=npar;i++)    while (*in != '\0'){
     for (j=1;j<=npar;j++)      while( *in == occ){
       xi[i][j]=(i==j ? 1.0 : 0.0);        *blocc++ = *in++;
   printf("Powell\n");        s=in;
   powell(p,xi,npar,ftol,&iter,&fret,func);      }
       *blocc++ = *in++;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
 }    else
       *(blocc-(in-s)-1)='\0';
 /**** Computes Hessian and covariance matrix ***/    in=s;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    while ( *in != '\0'){
 {      *alocc++ = *in++;
   double  **a,**y,*x,pd;    }
   double **hess;  
   int i, j,jk;    *alocc='\0';
   int *indx;    return s;
   }
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  int nbocc(char *s, char occ)
   void lubksb(double **a, int npar, int *indx, double b[]) ;  {
   void ludcmp(double **a, int npar, int *indx, double *d) ;    int i,j=0;
     int lg=20;
   hess=matrix(1,npar,1,npar);    i=0;
     lg=strlen(s);
   printf("\nCalculation of the hessian matrix. Wait...\n");    for(i=0; i<= lg; i++) {
   for (i=1;i<=npar;i++){    if  (s[i] == occ ) j++;
     printf("%d",i);fflush(stdout);    }
     hess[i][i]=hessii(p,ftolhess,i,delti);    return j;
     /*printf(" %f ",p[i]);*/  }
     /*printf(" %lf ",hess[i][i]);*/  
   }  /* void cutv(char *u,char *v, char*t, char occ) */
    /* { */
   for (i=1;i<=npar;i++) {  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     for (j=1;j<=npar;j++)  {  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       if (j>i) {  /*      gives u="abcdef2ghi" and v="j" *\/ */
         printf(".%d%d",i,j);fflush(stdout);  /*   int i,lg,j,p=0; */
         hess[i][j]=hessij(p,delti,i,j);  /*   i=0; */
         hess[j][i]=hess[i][j];      /*   lg=strlen(t); */
         /*printf(" %lf ",hess[i][j]);*/  /*   for(j=0; j<=lg-1; j++) { */
       }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
     }  /*   } */
   }  
   printf("\n");  /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /*   } */
    /*      u[p]='\0'; */
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  /*    for(j=0; j<= lg; j++) { */
   x=vector(1,npar);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   indx=ivector(1,npar);  /*   } */
   for (i=1;i<=npar;i++)  /* } */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  #ifdef _WIN32
   char * strsep(char **pp, const char *delim)
   for (j=1;j<=npar;j++) {  {
     for (i=1;i<=npar;i++) x[i]=0;    char *p, *q;
     x[j]=1;           
     lubksb(a,npar,indx,x);    if ((p = *pp) == NULL)
     for (i=1;i<=npar;i++){      return 0;
       matcov[i][j]=x[i];    if ((q = strpbrk (p, delim)) != NULL)
     }    {
   }      *pp = q + 1;
       *q = '\0';
   printf("\n#Hessian matrix#\n");    }
   for (i=1;i<=npar;i++) {    else
     for (j=1;j<=npar;j++) {      *pp = 0;
       printf("%.3e ",hess[i][j]);    return p;
     }  }
     printf("\n");  #endif
   }  
   /********************** nrerror ********************/
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  void nrerror(char error_text[])
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  {
   ludcmp(a,npar,indx,&pd);    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
   /*  printf("\n#Hessian matrix recomputed#\n");    exit(EXIT_FAILURE);
   }
   for (j=1;j<=npar;j++) {  /*********************** vector *******************/
     for (i=1;i<=npar;i++) x[i]=0;  double *vector(int nl, int nh)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    double *v;
     for (i=1;i<=npar;i++){    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       y[i][j]=x[i];    if (!v) nrerror("allocation failure in vector");
       printf("%.3e ",y[i][j]);    return v-nl+NR_END;
     }  }
     printf("\n");  
   }  /************************ free vector ******************/
   */  void free_vector(double*v, int nl, int nh)
   {
   free_matrix(a,1,npar,1,npar);    free((FREE_ARG)(v+nl-NR_END));
   free_matrix(y,1,npar,1,npar);  }
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);  /************************ivector *******************************/
   free_matrix(hess,1,npar,1,npar);  int *ivector(long nl,long nh)
   {
     int *v;
 }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 /*************** hessian matrix ****************/    return v-nl+NR_END;
 double hessii( double x[], double delta, int theta, double delti[])  }
 {  
   int i;  /******************free ivector **************************/
   int l=1, lmax=20;  void free_ivector(int *v, long nl, long nh)
   double k1,k2;  {
   double p2[NPARMAX+1];    free((FREE_ARG)(v+nl-NR_END));
   double res;  }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;  /************************lvector *******************************/
   int k=0,kmax=10;  long *lvector(long nl,long nh)
   double l1;  {
     long *v;
   fx=func(x);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   for (i=1;i<=npar;i++) p2[i]=x[i];    if (!v) nrerror("allocation failure in ivector");
   for(l=0 ; l <=lmax; l++){    return v-nl+NR_END;
     l1=pow(10,l);  }
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){  /******************free lvector **************************/
       delt = delta*(l1*k);  void free_lvector(long *v, long nl, long nh)
       p2[theta]=x[theta] +delt;  {
       k1=func(p2)-fx;    free((FREE_ARG)(v+nl-NR_END));
       p2[theta]=x[theta]-delt;  }
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /******************* imatrix *******************************/
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  int **imatrix(long nrl, long nrh, long ncl, long nch) 
             /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 #ifdef DEBUG  { 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 #endif    int **m; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    /* allocate pointers to rows */ 
         k=kmax;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       }    if (!m) nrerror("allocation failure 1 in matrix()"); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    m += NR_END; 
         k=kmax; l=lmax*10.;    m -= nrl; 
       }    
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    
         delts=delt;    /* allocate rows and set pointers to them */ 
       }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   }    m[nrl] += NR_END; 
   delti[theta]=delts;    m[nrl] -= ncl; 
   return res;    
      for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 }    
     /* return pointer to array of pointers to rows */ 
 double hessij( double x[], double delti[], int thetai,int thetaj)    return m; 
 {  } 
   int i;  
   int l=1, l1, lmax=20;  /****************** free_imatrix *************************/
   double k1,k2,k3,k4,res,fx;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double p2[NPARMAX+1];        int **m;
   int k;        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
   fx=func(x);  { 
   for (k=1; k<=2; k++) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     for (i=1;i<=npar;i++) p2[i]=x[i];    free((FREE_ARG) (m+nrl-NR_END)); 
     p2[thetai]=x[thetai]+delti[thetai]/k;  } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;  /******************* matrix *******************************/
    double **matrix(long nrl, long nrh, long ncl, long nch)
     p2[thetai]=x[thetai]+delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     k2=func(p2)-fx;    double **m;
    
     p2[thetai]=x[thetai]-delti[thetai]/k;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    if (!m) nrerror("allocation failure 1 in matrix()");
     k3=func(p2)-fx;    m += NR_END;
      m -= nrl;
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     k4=func(p2)-fx;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    m[nrl] += NR_END;
 #ifdef DEBUG    m[nrl] -= ncl;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   }    return m;
   return res;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 }  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 /************** Inverse of matrix **************/     */
 void ludcmp(double **a, int n, int *indx, double *d)  }
 {  
   int i,imax,j,k;  /*************************free matrix ************************/
   double big,dum,sum,temp;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double *vv;  {
      free((FREE_ARG)(m[nrl]+ncl-NR_END));
   vv=vector(1,n);    free((FREE_ARG)(m+nrl-NR_END));
   *d=1.0;  }
   for (i=1;i<=n;i++) {  
     big=0.0;  /******************* ma3x *******************************/
     for (j=1;j<=n;j++)  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       if ((temp=fabs(a[i][j])) > big) big=temp;  {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     vv[i]=1.0/big;    double ***m;
   }  
   for (j=1;j<=n;j++) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (i=1;i<j;i++) {    if (!m) nrerror("allocation failure 1 in matrix()");
       sum=a[i][j];    m += NR_END;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    m -= nrl;
       a[i][j]=sum;  
     }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     big=0.0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for (i=j;i<=n;i++) {    m[nrl] += NR_END;
       sum=a[i][j];    m[nrl] -= ncl;
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         big=dum;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         imax=i;    m[nrl][ncl] += NR_END;
       }    m[nrl][ncl] -= nll;
     }    for (j=ncl+1; j<=nch; j++) 
     if (j != imax) {      m[nrl][j]=m[nrl][j-1]+nlay;
       for (k=1;k<=n;k++) {    
         dum=a[imax][k];    for (i=nrl+1; i<=nrh; i++) {
         a[imax][k]=a[j][k];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         a[j][k]=dum;      for (j=ncl+1; j<=nch; j++) 
       }        m[i][j]=m[i][j-1]+nlay;
       *d = -(*d);    }
       vv[imax]=vv[j];    return m; 
     }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     indx[j]=imax;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     if (a[j][j] == 0.0) a[j][j]=TINY;    */
     if (j != n) {  }
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*************************free ma3x ************************/
     }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   }  {
   free_vector(vv,1,n);  /* Doesn't work */    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 ;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 }    free((FREE_ARG)(m+nrl-NR_END));
   }
 void lubksb(double **a, int n, int *indx, double b[])  
 {  /*************** function subdirf ***********/
   int i,ii=0,ip,j;  char *subdirf(char fileres[])
   double sum;  {
      /* Caution optionfilefiname is hidden */
   for (i=1;i<=n;i++) {    strcpy(tmpout,optionfilefiname);
     ip=indx[i];    strcat(tmpout,"/"); /* Add to the right */
     sum=b[ip];    strcat(tmpout,fileres);
     b[ip]=b[i];    return tmpout;
     if (ii)  }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;  /*************** function subdirf2 ***********/
     b[i]=sum;  char *subdirf2(char fileres[], char *preop)
   }  {
   for (i=n;i>=1;i--) {    
     sum=b[i];    /* Caution optionfilefiname is hidden */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    strcpy(tmpout,optionfilefiname);
     b[i]=sum/a[i][i];    strcat(tmpout,"/");
   }    strcat(tmpout,preop);
 }    strcat(tmpout,fileres);
     return tmpout;
 /************ Frequencies ********************/  }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */  /*************** function subdirf3 ***********/
    char *subdirf3(char fileres[], char *preop, char *preop2)
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  {
   double ***freq; /* Frequencies */    
   double *pp;    /* Caution optionfilefiname is hidden */
   double pos, k2, dateintsum=0,k2cpt=0;    strcpy(tmpout,optionfilefiname);
   FILE *ficresp;    strcat(tmpout,"/");
   char fileresp[FILENAMELENGTH];    strcat(tmpout,preop);
      strcat(tmpout,preop2);
   pp=vector(1,nlstate);    strcat(tmpout,fileres);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    return tmpout;
   strcpy(fileresp,"p");  }
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  char *asc_diff_time(long time_sec, char ascdiff[])
     printf("Problem with prevalence resultfile: %s\n", fileresp);  {
     exit(0);    long sec_left, days, hours, minutes;
   }    days = (time_sec) / (60*60*24);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    sec_left = (time_sec) % (60*60*24);
   j1=0;    hours = (sec_left) / (60*60) ;
      sec_left = (sec_left) %(60*60);
   j=cptcoveff;    minutes = (sec_left) /60;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    sec_left = (sec_left) % (60);
      sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   for(k1=1; k1<=j;k1++){    return ascdiff;
     for(i1=1; i1<=ncodemax[k1];i1++){  }
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  /***************** f1dim *************************/
         scanf("%d", i);*/  extern int ncom; 
       for (i=-1; i<=nlstate+ndeath; i++)    extern double *pcom,*xicom;
         for (jk=-1; jk<=nlstate+ndeath; jk++)    extern double (*nrfunc)(double []); 
           for(m=agemin; m <= agemax+3; m++)   
             freq[i][jk][m]=0;  double f1dim(double x) 
        { 
       dateintsum=0;    int j; 
       k2cpt=0;    double f;
       for (i=1; i<=imx; i++) {    double *xt; 
         bool=1;   
         if  (cptcovn>0) {    xt=vector(1,ncom); 
           for (z1=1; z1<=cptcoveff; z1++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    f=(*nrfunc)(xt); 
               bool=0;    free_vector(xt,1,ncom); 
         }    return f; 
         if (bool==1) {  } 
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  /*****************brent *************************/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
               if(agev[m][i]==0) agev[m][i]=agemax+1;  { 
               if(agev[m][i]==1) agev[m][i]=agemax+2;    int iter; 
               if (m<lastpass) {    double a,b,d,etemp;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double fu=0,fv,fw,fx;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    double ftemp=0.;
               }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
                  double e=0.0; 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {   
                 dateintsum=dateintsum+k2;    a=(ax < cx ? ax : cx); 
                 k2cpt++;    b=(ax > cx ? ax : cx); 
               }    x=w=v=bx; 
             }    fw=fv=fx=(*f)(x); 
           }    for (iter=1;iter<=ITMAX;iter++) { 
         }      xm=0.5*(a+b); 
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
              /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
       if  (cptcovn>0) {  #ifdef DEBUGBRENT
         fprintf(ficresp, "\n#********** Variable ");      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         fprintf(ficresp, "**********\n#");      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
       for(i=1; i<=nlstate;i++)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        *xmin=x; 
       fprintf(ficresp, "\n");        return fx; 
            } 
       for(i=(int)agemin; i <= (int)agemax+3; i++){      ftemp=fu;
         if(i==(int)agemax+3)      if (fabs(e) > tol1) { 
           printf("Total");        r=(x-w)*(fx-fv); 
         else        q=(x-v)*(fx-fw); 
           printf("Age %d", i);        p=(x-v)*q-(x-w)*r; 
         for(jk=1; jk <=nlstate ; jk++){        q=2.0*(q-r); 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        if (q > 0.0) p = -p; 
             pp[jk] += freq[jk][m][i];        q=fabs(q); 
         }        etemp=e; 
         for(jk=1; jk <=nlstate ; jk++){        e=d; 
           for(m=-1, pos=0; m <=0 ; m++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
             pos += freq[jk][m][i];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           if(pp[jk]>=1.e-10)        else { 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          d=p/q; 
           else          u=x+d; 
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          if (u-a < tol2 || b-u < tol2) 
         }            d=SIGN(tol1,xm-x); 
         } 
         for(jk=1; jk <=nlstate ; jk++){      } else { 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
             pp[jk] += freq[jk][m][i];      } 
         }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
         for(jk=1,pos=0; jk <=nlstate ; jk++)      if (fu <= fx) { 
           pos += pp[jk];        if (u >= x) a=x; else b=x; 
         for(jk=1; jk <=nlstate ; jk++){        SHFT(v,w,x,u) 
           if(pos>=1.e-5)          SHFT(fv,fw,fx,fu) 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          } else { 
           else            if (u < x) a=u; else b=u; 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            if (fu <= fw || w == x) { 
           if( i <= (int) agemax){              v=w; 
             if(pos>=1.e-5){              w=u; 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);              fv=fw; 
               probs[i][jk][j1]= pp[jk]/pos;              fw=fu; 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            } else if (fu <= fv || v == x || v == w) { 
             }              v=u; 
             else              fv=fu; 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            } 
           }          } 
         }    } 
            nrerror("Too many iterations in brent"); 
         for(jk=-1; jk <=nlstate+ndeath; jk++)    *xmin=x; 
           for(m=-1; m <=nlstate+ndeath; m++)    return fx; 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  } 
         if(i <= (int) agemax)  
           fprintf(ficresp,"\n");  /****************** mnbrak ***********************/
         printf("\n");  
       }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     }              double (*func)(double)) 
   }  { 
   dateintmean=dateintsum/k2cpt;    double ulim,u,r,q, dum;
      double fu; 
   fclose(ficresp);   
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    *fa=(*func)(*ax); 
   free_vector(pp,1,nlstate);    *fb=(*func)(*bx); 
      if (*fb > *fa) { 
   /* End of Freq */      SHFT(dum,*ax,*bx,dum) 
 }        SHFT(dum,*fb,*fa,dum) 
         } 
 /************ Prevalence ********************/    *cx=(*bx)+GOLD*(*bx-*ax); 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    *fc=(*func)(*cx); 
 {  /* Some frequencies */    while (*fb > *fc) { /* Declining fa, fb, fc */
        r=(*bx-*ax)*(*fb-*fc); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      q=(*bx-*cx)*(*fb-*fa); 
   double ***freq; /* Frequencies */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double *pp;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
   double pos, k2;      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
       if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
   pp=vector(1,nlstate);        fu=(*func)(u); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  #ifdef DEBUG
          /* f(x)=A(x-u)**2+f(u) */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        double A, fparabu; 
   j1=0;        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
          fparabu= *fa - A*(*ax-u)*(*ax-u);
   j=cptcoveff;        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
    #endif 
  for(k1=1; k1<=j;k1++){      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
     for(i1=1; i1<=ncodemax[k1];i1++){        fu=(*func)(u); 
       j1++;        if (fu < *fc) { 
            SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       for (i=-1; i<=nlstate+ndeath; i++)              SHFT(*fb,*fc,fu,(*func)(u)) 
         for (jk=-1; jk<=nlstate+ndeath; jk++)              } 
           for(m=agemin; m <= agemax+3; m++)      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
             freq[i][jk][m]=0;        u=ulim; 
              fu=(*func)(u); 
       for (i=1; i<=imx; i++) {      } else { 
         bool=1;        u=(*cx)+GOLD*(*cx-*bx); 
         if  (cptcovn>0) {        fu=(*func)(u); 
           for (z1=1; z1<=cptcoveff; z1++)      } 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      SHFT(*ax,*bx,*cx,u) 
               bool=0;        SHFT(*fa,*fb,*fc,fu) 
         }        } 
         if (bool==1) {  } 
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  /*************** linmin ************************/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
               if(agev[m][i]==0) agev[m][i]=agemax+1;  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
               if(agev[m][i]==1) agev[m][i]=agemax+2;  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  the value of func at the returned location p . This is actually all accomplished by calling the
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */  routines mnbrak and brent .*/
             }  int ncom; 
           }  double *pcom,*xicom;
         }  double (*nrfunc)(double []); 
       }   
         for(i=(int)agemin; i <= (int)agemax+3; i++){  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
           for(jk=1; jk <=nlstate ; jk++){  { 
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double brent(double ax, double bx, double cx, 
               pp[jk] += freq[jk][m][i];                 double (*f)(double), double tol, double *xmin); 
           }    double f1dim(double x); 
           for(jk=1; jk <=nlstate ; jk++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
             for(m=-1, pos=0; m <=0 ; m++)                double *fc, double (*func)(double)); 
             pos += freq[jk][m][i];    int j; 
         }    double xx,xmin,bx,ax; 
            double fx,fb,fa;
          for(jk=1; jk <=nlstate ; jk++){   
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    ncom=n; 
              pp[jk] += freq[jk][m][i];    pcom=vector(1,n); 
          }    xicom=vector(1,n); 
              nrfunc=func; 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
          for(jk=1; jk <=nlstate ; jk++){                xicom[j]=xi[j]; 
            if( i <= (int) agemax){    } 
              if(pos>=1.e-5){    ax=0.0; 
                probs[i][jk][j1]= pp[jk]/pos;    xx=1.0; 
              }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
            }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
          }  #ifdef DEBUG
              printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }  #endif
   }    for (j=1;j<=n;j++) { 
        xi[j] *= xmin; 
        p[j] += xi[j]; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    } 
   free_vector(pp,1,nlstate);    free_vector(xicom,1,n); 
      free_vector(pcom,1,n); 
 }  /* End of Freq */  } 
   
 /************* Waves Concatenation ***************/  
   /*************** powell ************************/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  /*
 {  Minimization of a function func of n variables. Input consists of an initial starting point
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
      Death is a valid wave (if date is known).  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  such that failure to decrease by more than this amount on one iteration signals doneness. On
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
      and mw[mi+1][i]. dh depends on stepm.  function value at p , and iter is the number of iterations taken. The routine linmin is used.
      */   */
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   int i, mi, m;              double (*func)(double [])) 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  { 
      double sum=0., jmean=0.;*/    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
   int j, k=0,jk, ju, jl;    int i,ibig,j; 
   double sum=0.;    double del,t,*pt,*ptt,*xit;
   jmin=1e+5;    double directest;
   jmax=-1;    double fp,fptt;
   jmean=0.;    double *xits;
   for(i=1; i<=imx; i++){    int niterf, itmp;
     mi=0;  
     m=firstpass;    pt=vector(1,n); 
     while(s[m][i] <= nlstate){    ptt=vector(1,n); 
       if(s[m][i]>=1)    xit=vector(1,n); 
         mw[++mi][i]=m;    xits=vector(1,n); 
       if(m >=lastpass)    *fret=(*func)(p); 
         break;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       else      rcurr_time = time(NULL);  
         m++;    for (*iter=1;;++(*iter)) { 
     }/* end while */      fp=(*fret); 
     if (s[m][i] > nlstate){      ibig=0; 
       mi++;     /* Death is another wave */      del=0.0; 
       /* if(mi==0)  never been interviewed correctly before death */      rlast_time=rcurr_time;
          /* Only death is a correct wave */      /* (void) gettimeofday(&curr_time,&tzp); */
       mw[mi][i]=m;      rcurr_time = time(NULL);  
     }      curr_time = *localtime(&rcurr_time);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
     wav[i]=mi;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
     if(mi==0)  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);     for (i=1;i<=n;i++) {
   }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
   for(i=1; i<=imx; i++){        fprintf(ficrespow," %.12lf", p[i]);
     for(mi=1; mi<wav[i];mi++){      }
       if (stepm <=0)      printf("\n");
         dh[mi][i]=1;      fprintf(ficlog,"\n");
       else{      fprintf(ficrespow,"\n");fflush(ficrespow);
         if (s[mw[mi+1][i]][i] > nlstate) {      if(*iter <=3){
           if (agedc[i] < 2*AGESUP) {        tml = *localtime(&rcurr_time);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        strcpy(strcurr,asctime(&tml));
           if(j==0) j=1;  /* Survives at least one month after exam */        rforecast_time=rcurr_time; 
           k=k+1;        itmp = strlen(strcurr);
           if (j >= jmax) jmax=j;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           if (j <= jmin) jmin=j;          strcurr[itmp-1]='\0';
           sum=sum+j;        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           }        for(niterf=10;niterf<=30;niterf+=10){
         }          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
         else{          forecast_time = *localtime(&rforecast_time);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          strcpy(strfor,asctime(&forecast_time));
           k=k+1;          itmp = strlen(strfor);
           if (j >= jmax) jmax=j;          if(strfor[itmp-1]=='\n')
           else if (j <= jmin)jmin=j;          strfor[itmp-1]='\0';
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           sum=sum+j;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         }        }
         jk= j/stepm;      }
         jl= j -jk*stepm;      for (i=1;i<=n;i++) { 
         ju= j -(jk+1)*stepm;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         if(jl <= -ju)        fptt=(*fret); 
           dh[mi][i]=jk;  #ifdef DEBUG
         else            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
           dh[mi][i]=jk+1;            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         if(dh[mi][i]==0)  #endif
           dh[mi][i]=1; /* At least one step */        printf("%d",i);fflush(stdout);
       }        fprintf(ficlog,"%d",i);fflush(ficlog);
     }        linmin(p,xit,n,fret,func); 
   }        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions 
   jmean=sum/k;                                         because that direction will be replaced unless the gain del is small
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);                                        in comparison with the 'probable' gain, mu^2, with the last average direction.
  }                                        Unless the n directions are conjugate some gain in the determinant may be obtained
 /*********** Tricode ****************************/                                        with the new direction.
 void tricode(int *Tvar, int **nbcode, int imx)                                        */
 {          del=fabs(fptt-(*fret)); 
   int Ndum[20],ij=1, k, j, i;          ibig=i; 
   int cptcode=0;        } 
   cptcoveff=0;  #ifdef DEBUG
          printf("%d %.12e",i,(*fret));
   for (k=0; k<19; k++) Ndum[k]=0;        fprintf(ficlog,"%d %.12e",i,(*fret));
   for (k=1; k<=7; k++) ncodemax[k]=0;        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          printf(" x(%d)=%.12e",j,xit[j]);
     for (i=1; i<=imx; i++) {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       ij=(int)(covar[Tvar[j]][i]);        }
       Ndum[ij]++;        for(j=1;j<=n;j++) {
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          printf(" p(%d)=%.12e",j,p[j]);
       if (ij > cptcode) cptcode=ij;          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
     }        }
         printf("\n");
     for (i=0; i<=cptcode; i++) {        fprintf(ficlog,"\n");
       if(Ndum[i]!=0) ncodemax[j]++;  #endif
     }      } /* end i */
     ij=1;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
         int k[2],l;
     for (i=1; i<=ncodemax[j]; i++) {        k[0]=1;
       for (k=0; k<=19; k++) {        k[1]=-1;
         if (Ndum[k] != 0) {        printf("Max: %.12e",(*func)(p));
           nbcode[Tvar[j]][ij]=k;        fprintf(ficlog,"Max: %.12e",(*func)(p));
                  for (j=1;j<=n;j++) {
           ij++;          printf(" %.12e",p[j]);
         }          fprintf(ficlog," %.12e",p[j]);
         if (ij > ncodemax[j]) break;        }
       }          printf("\n");
     }        fprintf(ficlog,"\n");
   }          for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
  for (k=0; k<19; k++) Ndum[k]=0;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
  for (i=1; i<=ncovmodel-2; i++) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       ij=Tvar[i];          }
       Ndum[ij]++;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
  ij=1;  #endif
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i;        free_vector(xit,1,n); 
      ij++;        free_vector(xits,1,n); 
    }        free_vector(ptt,1,n); 
  }        free_vector(pt,1,n); 
          return; 
     cptcoveff=ij-1;      } 
 }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
 /*********** Health Expectancies ****************/        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)        pt[j]=p[j]; 
 {      } 
   /* Health expectancies */      fptt=(*func)(ptt); /* f_3 */
   int i, j, nhstepm, hstepm, h, nstepm;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   double age, agelim, hf;        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
   double ***p3mat;        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
          /* Let f"(x2) be the 2nd derivative equal everywhere.  */
   fprintf(ficreseij,"# Health expectancies\n");        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   fprintf(ficreseij,"# Age");        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   for(i=1; i<=nlstate;i++)        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
     for(j=1; j<=nlstate;j++)        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
       fprintf(ficreseij," %1d-%1d",i,j);  
   fprintf(ficreseij,"\n");        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
         t= t- del*SQR(fp-fptt);
   if(estepm < stepm){        directest = SQR(fp-2.0*(*fret)+fptt) - 2.0 * del; /* If del was big enough we change it for a new direction */
     printf ("Problem %d lower than %d\n",estepm, stepm);  #ifdef DEBUG
   }        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   else  hstepm=estepm;          fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   /* We compute the life expectancy from trapezoids spaced every estepm months        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
    * This is mainly to measure the difference between two models: for example               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
    * if stepm=24 months pijx are given only every 2 years and by summing them        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
    * we are calculating an estimate of the Life Expectancy assuming a linear               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
    * progression inbetween and thus overestimating or underestimating according        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
    * to the curvature of the survival function. If, for the same date, we        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  #endif
    * to compare the new estimate of Life expectancy with the same linear  #ifdef POWELLDIRECT
    * hypothesis. A more precise result, taking into account a more precise        if (directest < 0.0) { /* Then we use it for new direction */
    * curvature will be obtained if estepm is as small as stepm. */  #else
         if (t < 0.0) { /* Then we use it for new direction */
   /* For example we decided to compute the life expectancy with the smallest unit */  #endif
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction.*/
      nhstepm is the number of hstepm from age to agelim          for (j=1;j<=n;j++) { 
      nstepm is the number of stepm from age to agelin.            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
      Look at hpijx to understand the reason of that which relies in memory size            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
      and note for a fixed period like estepm months */          }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
      survival function given by stepm (the optimization length). Unfortunately it          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  #ifdef DEBUG
      results. So we changed our mind and took the option of the best precision.          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
   agelim=AGESUP;            fprintf(ficlog," %.12e",xit[j]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }
     /* nhstepm age range expressed in number of stepm */          printf("\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          fprintf(ficlog,"\n");
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  #endif
     /* if (stepm >= YEARM) hstepm=1;*/        } /* end of t negative */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      } /* end if (fptt < fp)  */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  } 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    /**** Prevalence limit (stable or period prevalence)  ****************/
    
     /*for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++) printf("%f %.5f\n", age*12+h, p3mat[1][1][h]);*/  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     for(i=1; i<=nlstate;i++)       matrix by transitions matrix until convergence is reached */
       for(j=1; j<=nlstate;j++)    
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    int i, ii,j,k;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double min, max, maxmin, maxmax,sumnew=0.;
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    /* double **matprod2(); */ /* test */
         }    double **out, cov[NCOVMAX+1], **pmij();
     fprintf(ficreseij,"%3.0f",age );    double **newm;
     for(i=1; i<=nlstate;i++)    double agefin, delaymax=50 ; /* Max number of years to converge */
       for(j=1; j<=nlstate;j++){    
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);    for (ii=1;ii<=nlstate+ndeath;ii++)
       }      for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficreseij,"\n");        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
   }    
 }    cov[1]=1.;
     
 /************ Variance ******************/    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 {      newm=savm;
   /* Variance of health expectancies */      /* Covariates have to be included here again */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      cov[2]=agefin;
   double **newm;      
   double **dnewm,**doldm;      for (k=1; k<=cptcovn;k++) {
   int i, j, nhstepm, hstepm, h, nstepm ;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int k, cptcode;        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
   double *xp;      }
   double **gp, **gm;      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   double ***gradg, ***trgradg;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
   double ***p3mat;      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
   double age,agelim, hf;      
   int theta;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
    fprintf(ficresvij,"# Covariances of life expectancies\n");      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   fprintf(ficresvij,"# Age");      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   for(i=1; i<=nlstate;i++)      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
     for(j=1; j<=nlstate;j++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      
   fprintf(ficresvij,"\n");      savm=oldm;
       oldm=newm;
   xp=vector(1,npar);      maxmax=0.;
   dnewm=matrix(1,nlstate,1,npar);      for(j=1;j<=nlstate;j++){
   doldm=matrix(1,nlstate,1,nlstate);        min=1.;
          max=0.;
   if(estepm < stepm){        for(i=1; i<=nlstate; i++) {
     printf ("Problem %d lower than %d\n",estepm, stepm);          sumnew=0;
   }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   else  hstepm=estepm;            prlim[i][j]= newm[i][j]/(1-sumnew);
   /* For example we decided to compute the life expectancy with the smallest unit */          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          max=FMAX(max,prlim[i][j]);
      nhstepm is the number of hstepm from age to agelim          min=FMIN(min,prlim[i][j]);
      nstepm is the number of stepm from age to agelin.        }
      Look at hpijx to understand the reason of that which relies in memory size        maxmin=max-min;
      and note for a fixed period like k years */        maxmax=FMAX(maxmax,maxmin);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      } /* j loop */
      survival function given by stepm (the optimization length). Unfortunately it      if(maxmax < ftolpl){
      means that if the survival funtion is printed only each two years of age and if        return prlim;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      }
      results. So we changed our mind and took the option of the best precision.    } /* age loop */
   */    return prlim; /* should not reach here */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  }
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*************** transition probabilities ***************/ 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* According to parameters values stored in x and the covariate's values stored in cov,
     gp=matrix(0,nhstepm,1,nlstate);       computes the probability to be observed in state j being in state i by appying the
     gm=matrix(0,nhstepm,1,nlstate);       model to the ncovmodel covariates (including constant and age).
        lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
     for(theta=1; theta <=npar; theta++){       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
       for(i=1; i<=npar; i++){ /* Computes gradient */       ncth covariate in the global vector x is given by the formula:
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
       }       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
        Outputs ps[i][j] the probability to be observed in j being in j according to
       if (popbased==1) {       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         for(i=1; i<=nlstate;i++)    */
           prlim[i][i]=probs[(int)age][i][ij];    double s1, lnpijopii;
       }    /*double t34;*/
      int i,j, nc, ii, jj;
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){      for(i=1; i<= nlstate; i++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        for(j=1; j<i;j++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         }            /*lnpijopii += param[i][j][nc]*cov[nc];*/
       }            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
      /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
          for(j=i+1; j<=nlstate+ndeath;j++){
       if (popbased==1) {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         for(i=1; i<=nlstate;i++)            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
           prlim[i][i]=probs[(int)age][i][ij];            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
       }  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }
       for(j=1; j<= nlstate; j++){          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      
         }      for(i=1; i<= nlstate; i++){
       }        s1=0;
         for(j=1; j<i; j++){
       for(j=1; j<= nlstate; j++)          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         for(h=0; h<=nhstepm; h++){          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        }
         }        for(j=i+1; j<=nlstate+ndeath; j++){
     } /* End theta */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        }
         /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     for(h=0; h<=nhstepm; h++)        ps[i][i]=1./(s1+1.);
       for(j=1; j<=nlstate;j++)        /* Computing other pijs */
         for(theta=1; theta <=npar; theta++)        for(j=1; j<i; j++)
           trgradg[h][j][theta]=gradg[h][theta][j];          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(i=1;i<=nlstate;i++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for(j=1;j<=nlstate;j++)      } /* end i */
         vareij[i][j][(int)age] =0.;      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for(h=0;h<=nhstepm;h++){        for(jj=1; jj<= nlstate+ndeath; jj++){
       for(k=0;k<=nhstepm;k++){          ps[ii][jj]=0;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          ps[ii][ii]=1;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        }
         for(i=1;i<=nlstate;i++)      }
           for(j=1;j<=nlstate;j++)      
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      
       }      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     }      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     fprintf(ficresvij,"%.0f ",age );      /*   } */
     for(i=1; i<=nlstate;i++)      /*   printf("\n "); */
       for(j=1; j<=nlstate;j++){      /* } */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      /* printf("\n ");printf("%lf ",cov[2]);*/
       }      /*
     fprintf(ficresvij,"\n");        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     free_matrix(gp,0,nhstepm,1,nlstate);        goto end;*/
     free_matrix(gm,0,nhstepm,1,nlstate);      return ps;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /**************** Product of 2 matrices ******************/
   } /* End age */  
    double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   free_vector(xp,1,npar);  {
   free_matrix(doldm,1,nlstate,1,npar);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   free_matrix(dnewm,1,nlstate,1,nlstate);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
 }       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
 /************ Variance of prevlim ******************/    int i, j, k;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for(i=nrl; i<= nrh; i++)
 {      for(k=ncolol; k<=ncoloh; k++){
   /* Variance of prevalence limit */        out[i][k]=0.;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        for(j=ncl; j<=nch; j++)
   double **newm;          out[i][k] +=in[i][j]*b[j][k];
   double **dnewm,**doldm;      }
   int i, j, nhstepm, hstepm;    return out;
   int k, cptcode;  }
   double *xp;  
   double *gp, *gm;  
   double **gradg, **trgradg;  /************* Higher Matrix Product ***************/
   double age,agelim;  
   int theta;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
      {
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    /* Computes the transition matrix starting at age 'age' over 
   fprintf(ficresvpl,"# Age");       'nhstepm*hstepm*stepm' months (i.e. until
   for(i=1; i<=nlstate;i++)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       fprintf(ficresvpl," %1d-%1d",i,i);       nhstepm*hstepm matrices. 
   fprintf(ficresvpl,"\n");       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
   xp=vector(1,npar);       for the memory).
   dnewm=matrix(1,nlstate,1,npar);       Model is determined by parameters x and covariates have to be 
   doldm=matrix(1,nlstate,1,nlstate);       included manually here. 
    
   hstepm=1*YEARM; /* Every year of age */       */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;    int i, j, d, h, k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double **out, cov[NCOVMAX+1];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double **newm;
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* Hstepm could be zero and should return the unit matrix */
     gradg=matrix(1,npar,1,nlstate);    for (i=1;i<=nlstate+ndeath;i++)
     gp=vector(1,nlstate);      for (j=1;j<=nlstate+ndeath;j++){
     gm=vector(1,nlstate);        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){ /* Computes gradient */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for(h=1; h <=nhstepm; h++){
       }      for(d=1; d <=hstepm; d++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        newm=savm;
       for(i=1;i<=nlstate;i++)        /* Covariates have to be included here again */
         gp[i] = prlim[i][i];        cov[1]=1.;
            cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       for(i=1; i<=npar; i++) /* Computes gradient */        for (k=1; k<=cptcovn;k++) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1; k<=cptcovage;k++)
       for(i=1;i<=nlstate;i++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         gm[i] = prlim[i][i];        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     trgradg =matrix(1,nlstate,1,npar);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(j=1; j<=nlstate;j++)        savm=oldm;
       for(theta=1; theta <=npar; theta++)        oldm=newm;
         trgradg[j][theta]=gradg[theta][j];      }
       for(i=1; i<=nlstate+ndeath; i++)
     for(i=1;i<=nlstate;i++)        for(j=1;j<=nlstate+ndeath;j++) {
       varpl[i][(int)age] =0.;          po[i][j][h]=newm[i][j];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        }
     for(i=1;i<=nlstate;i++)      /*printf("h=%d ",h);*/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    } /* end h */
   /*     printf("\n H=%d \n",h); */
     fprintf(ficresvpl,"%.0f ",age );    return po;
     for(i=1; i<=nlstate;i++)  }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");  #ifdef NLOPT
     free_vector(gp,1,nlstate);    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     free_vector(gm,1,nlstate);    double fret;
     free_matrix(gradg,1,npar,1,nlstate);    double *xt;
     free_matrix(trgradg,1,nlstate,1,npar);    int j;
   } /* End age */    myfunc_data *d2 = (myfunc_data *) pd;
   /* xt = (p1-1); */
   free_vector(xp,1,npar);    xt=vector(1,n); 
   free_matrix(doldm,1,nlstate,1,npar);    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
 }    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
     printf("Function = %.12lf ",fret);
 /************ Variance of one-step probabilities  ******************/    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    printf("\n");
 {   free_vector(xt,1,n);
   int i, j, i1, k1, j1, z1;    return fret;
   int k=0, cptcode;  }
   double **dnewm,**doldm;  #endif
   double *xp;  
   double *gp, *gm;  /*************** log-likelihood *************/
   double **gradg, **trgradg;  double func( double *x)
   double age,agelim, cov[NCOVMAX];  {
   int theta;    int i, ii, j, k, mi, d, kk;
   char fileresprob[FILENAMELENGTH];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
   strcpy(fileresprob,"prob");    double sw; /* Sum of weights */
   strcat(fileresprob,fileres);    double lli; /* Individual log likelihood */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    int s1, s2;
     printf("Problem with resultfile: %s\n", fileresprob);    double bbh, survp;
   }    long ipmx;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    /*extern weight */
      /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   xp=vector(1,npar);    /*for(i=1;i<imx;i++) 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      printf(" %d\n",s[4][i]);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    */
    
   cov[1]=1;    ++countcallfunc;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    cov[1]=1.;
   j1=0;  
   for(k1=1; k1<=1;k1++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for(i1=1; i1<=ncodemax[k1];i1++){  
     j1++;    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if  (cptcovn>0) {        /* Computes the values of the ncovmodel covariates of the model
       fprintf(ficresprob, "\n#********** Variable ");           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       fprintf(ficresprob, "**********\n#");           to be observed in j being in i according to the model.
     }         */
            for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
       for (age=bage; age<=fage; age ++){          cov[2+k]=covar[Tvar[k]][i];
         cov[2]=age;        }
         for (k=1; k<=cptcovn;k++) {        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
                     has been calculated etc */
         }        for(mi=1; mi<= wav[i]-1; mi++){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          for (ii=1;ii<=nlstate+ndeath;ii++)
         for (k=1; k<=cptcovprod;k++)            for (j=1;j<=nlstate+ndeath;j++){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
         gradg=matrix(1,npar,1,9);            }
         trgradg=matrix(1,9,1,npar);          for(d=0; d<dh[mi][i]; d++){
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            newm=savm;
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                for (kk=1; kk<=cptcovage;kk++) {
         for(theta=1; theta <=npar; theta++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
           for(i=1; i<=npar; i++)            }
             xp[i] = x[i] + (i==theta ?delti[theta]:0);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            savm=oldm;
                      oldm=newm;
           k=0;          } /* end mult */
           for(i=1; i<= (nlstate+ndeath); i++){        
             for(j=1; j<=(nlstate+ndeath);j++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
               k=k+1;          /* But now since version 0.9 we anticipate for bias at large stepm.
               gp[k]=pmmij[i][j];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             }           * (in months) between two waves is not a multiple of stepm, we rounded to 
           }           * the nearest (and in case of equal distance, to the lowest) interval but now
                     * we keep into memory the bias bh[mi][i] and also the previous matrix product
           for(i=1; i<=npar; i++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             xp[i] = x[i] - (i==theta ?delti[theta]:0);           * probability in order to take into account the bias as a fraction of the way
               * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           pmij(pmmij,cov,ncovmodel,xp,nlstate);           * -stepm/2 to stepm/2 .
           k=0;           * For stepm=1 the results are the same as for previous versions of Imach.
           for(i=1; i<=(nlstate+ndeath); i++){           * For stepm > 1 the results are less biased than in previous versions. 
             for(j=1; j<=(nlstate+ndeath);j++){           */
               k=k+1;          s1=s[mw[mi][i]][i];
               gm[k]=pmmij[i][j];          s2=s[mw[mi+1][i]][i];
             }          bbh=(double)bh[mi][i]/(double)stepm; 
           }          /* bias bh is positive if real duration
                 * is higher than the multiple of stepm and negative otherwise.
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)           */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         }          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)               then the contribution to the likelihood is the probability to 
           for(theta=1; theta <=npar; theta++)               die between last step unit time and current  step unit time, 
             trgradg[j][theta]=gradg[theta][j];               which is also equal to probability to die before dh 
                       minus probability to die before dh-stepm . 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);               In version up to 0.92 likelihood was computed
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          as if date of death was unknown. Death was treated as any other
                  health state: the date of the interview describes the actual state
         pmij(pmmij,cov,ncovmodel,x,nlstate);          and not the date of a change in health state. The former idea was
                  to consider that at each interview the state was recorded
         k=0;          (healthy, disable or death) and IMaCh was corrected; but when we
         for(i=1; i<=(nlstate+ndeath); i++){          introduced the exact date of death then we should have modified
           for(j=1; j<=(nlstate+ndeath);j++){          the contribution of an exact death to the likelihood. This new
             k=k+1;          contribution is smaller and very dependent of the step unit
             gm[k]=pmmij[i][j];          stepm. It is no more the probability to die between last interview
           }          and month of death but the probability to survive from last
         }          interview up to one month before death multiplied by the
                probability to die within a month. Thanks to Chris
      /*printf("\n%d ",(int)age);          Jackson for correcting this bug.  Former versions increased
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          mortality artificially. The bad side is that we add another loop
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          which slows down the processing. The difference can be up to 10%
      }*/          lower mortality.
             */
         fprintf(ficresprob,"\n%d ",(int)age);            lli=log(out[s1][s2] - savm[s1][s2]);
   
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)  
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],doldm[i][i]);          } else if  (s2==-2) {
              for (j=1,survp=0. ; j<=nlstate; j++) 
       }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     }            /*survp += out[s1][j]; */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            lli= log(survp);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          else if  (s2==-4) { 
   }            for (j=3,survp=0. ; j<=nlstate; j++)  
   free_vector(xp,1,npar);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fclose(ficresprob);            lli= log(survp); 
            } 
 }  
           else if  (s2==-5) { 
 /******************* Printing html file ***********/            for (j=1,survp=0. ; j<=2; j++)  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
  int lastpass, int stepm, int weightopt, char model[],\            lli= log(survp); 
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          } 
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\          
  char version[], int popforecast, int estepm ){          else{
   int jj1, k1, i1, cpt;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   FILE *fichtm;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   /*char optionfilehtm[FILENAMELENGTH];*/          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   strcpy(optionfilehtm,optionfile);          /*if(lli ==000.0)*/
   strcat(optionfilehtm,".htm");          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          ipmx +=1;
     printf("Problem with %s \n",optionfilehtm), exit(0);          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      } /* end of individual */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    }  else if(mle==2){
 \n      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 Total number of observations=%d <br>\n        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        for(mi=1; mi<= wav[i]-1; mi++){
 <hr  size=\"2\" color=\"#EC5E5E\">          for (ii=1;ii<=nlstate+ndeath;ii++)
  <ul><li>Outputs files<br>\n            for (j=1;j<=nlstate+ndeath;j++){
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            }
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n          for(d=0; d<=dh[mi][i]; d++){
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n            newm=savm;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
  fprintf(fichtm,"\n              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n            }
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            savm=oldm;
             oldm=newm;
  if(popforecast==1) fprintf(fichtm,"\n          } /* end mult */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          s1=s[mw[mi][i]][i];
         <br>",fileres,fileres,fileres,fileres);          s2=s[mw[mi+1][i]][i];
  else          bbh=(double)bh[mi][i]/(double)stepm; 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 fprintf(fichtm," <li>Graphs</li><p>");          ipmx +=1;
           sw += weight[i];
  m=cptcoveff;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        } /* end of wave */
       } /* end of individual */
  jj1=0;    }  else if(mle==3){  /* exponential inter-extrapolation */
  for(k1=1; k1<=m;k1++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        jj1++;        for(mi=1; mi<= wav[i]-1; mi++){
        if (cptcovn > 0) {          for (ii=1;ii<=nlstate+ndeath;ii++)
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            for (j=1;j<=nlstate+ndeath;j++){
          for (cpt=1; cpt<=cptcoveff;cpt++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            }
        }          for(d=0; d<dh[mi][i]; d++){
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            newm=savm;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
        for(cpt=1; cpt<nlstate;cpt++){            for (kk=1; kk<=cptcovage;kk++) {
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }
        }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(cpt=1; cpt<=nlstate;cpt++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            savm=oldm;
 interval) in state (%d): v%s%d%d.gif <br>            oldm=newm;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            } /* end mult */
      }        
      for(cpt=1; cpt<=nlstate;cpt++) {          s1=s[mw[mi][i]][i];
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          s2=s[mw[mi+1][i]][i];
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          bbh=(double)bh[mi][i]/(double)stepm; 
      }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          ipmx +=1;
 health expectancies in states (1) and (2): e%s%d.gif<br>          sw += weight[i];
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 fprintf(fichtm,"\n</body>");        } /* end of wave */
    }      } /* end of individual */
    }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
 fclose(fichtm);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /******************* Gnuplot file **************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   strcpy(optionfilegnuplot,optionfilefiname);          for(d=0; d<dh[mi][i]; d++){
   strcat(optionfilegnuplot,".gp.txt");            newm=savm;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("Problem with file %s",optionfilegnuplot);            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
 #ifdef windows          
     fprintf(ficgp,"cd \"%s\" \n",pathc);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 #endif                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 m=pow(2,cptcoveff);            savm=oldm;
              oldm=newm;
  /* 1eme*/          } /* end mult */
   for (cpt=1; cpt<= nlstate ; cpt ++) {        
    for (k1=1; k1<= m ; k1 ++) {          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 #ifdef windows          if( s2 > nlstate){ 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            lli=log(out[s1][s2] - savm[s1][s2]);
 #endif          }else{
 #ifdef unix            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          }
 #endif          ipmx +=1;
           sw += weight[i];
 for (i=1; i<= nlstate ; i ++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        } /* end of wave */
 }      } /* end of individual */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     for (i=1; i<= nlstate ; i ++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            for (j=1;j<=nlstate+ndeath;j++){
      for (i=1; i<= nlstate ; i ++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            for(d=0; d<dh[mi][i]; d++){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            newm=savm;
 #ifdef unix            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 fprintf(ficgp,"\nset ter gif small size 400,300");            for (kk=1; kk<=cptcovage;kk++) {
 #endif              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            }
    }          
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /*2 eme*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   for (k1=1; k1<= m ; k1 ++) {            oldm=newm;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);          } /* end mult */
            
     for (i=1; i<= nlstate+1 ; i ++) {          s1=s[mw[mi][i]][i];
       k=2*i;          s2=s[mw[mi+1][i]][i];
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for (j=1; j<= nlstate+1 ; j ++) {          ipmx +=1;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          sw += weight[i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        } /* end of wave */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      } /* end of individual */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    } /* End of if */
       for (j=1; j<= nlstate+1 ; j ++) {    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 }      return -l;
       fprintf(ficgp,"\" t\"\" w l 0,");  }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  /*************** log-likelihood *************/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  double funcone( double *x)
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {
 }      /* Same as likeli but slower because of a lot of printf and if */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    int i, ii, j, k, mi, d, kk;
       else fprintf(ficgp,"\" t\"\" w l 0,");    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     }    double **out;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    double lli; /* Individual log likelihood */
   }    double llt;
      int s1, s2;
   /*3eme*/    double bbh, survp;
     /*extern weight */
   for (k1=1; k1<= m ; k1 ++) {    /* We are differentiating ll according to initial status */
     for (cpt=1; cpt<= nlstate ; cpt ++) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       k=2+nlstate*(cpt-1);    /*for(i=1;i<imx;i++) 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      printf(" %d\n",s[4][i]);
       for (i=1; i< nlstate ; i ++) {    */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    cov[1]=1.;
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     }  
     }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* CV preval stat */      for(mi=1; mi<= wav[i]-1; mi++){
     for (k1=1; k1<= m ; k1 ++) {        for (ii=1;ii<=nlstate+ndeath;ii++)
     for (cpt=1; cpt<nlstate ; cpt ++) {          for (j=1;j<=nlstate+ndeath;j++){
       k=3;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
       for (i=1; i< nlstate ; i ++)        for(d=0; d<dh[mi][i]; d++){
         fprintf(ficgp,"+$%d",k+i+1);          newm=savm;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                for (kk=1; kk<=cptcovage;kk++) {
       l=3+(nlstate+ndeath)*cpt;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          }
       for (i=1; i< nlstate ; i ++) {          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         l=3+(nlstate+ndeath)*cpt;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficgp,"+$%d",l+i+1);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          savm=oldm;
     }          oldm=newm;
   }          } /* end mult */
          
   /* proba elementaires */        s1=s[mw[mi][i]][i];
    for(i=1,jk=1; i <=nlstate; i++){        s2=s[mw[mi+1][i]][i];
     for(k=1; k <=(nlstate+ndeath); k++){        bbh=(double)bh[mi][i]/(double)stepm; 
       if (k != i) {        /* bias is positive if real duration
         for(j=1; j <=ncovmodel; j++){         * is higher than the multiple of stepm and negative otherwise.
                 */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           jk++;          lli=log(out[s1][s2] - savm[s1][s2]);
           fprintf(ficgp,"\n");        } else if  (s2==-2) {
         }          for (j=1,survp=0. ; j<=nlstate; j++) 
       }            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     }          lli= log(survp);
     }        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(jk=1; jk <=m; jk++) {        } else if(mle==2){
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
    i=1;        } else if(mle==3){  /* exponential inter-extrapolation */
    for(k2=1; k2<=nlstate; k2++) {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      k3=i;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
      for(k=1; k<=(nlstate+ndeath); k++) {          lli=log(out[s1][s2]); /* Original formula */
        if (k != k2){        } else{  /* mle=0 back to 1 */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 ij=1;          /*lli=log(out[s1][s2]); */ /* Original formula */
         for(j=3; j <=ncovmodel; j++) {        } /* End of if */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        ipmx +=1;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        sw += weight[i];
             ij++;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           else        if(globpr){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         }   %11.6f %11.6f %11.6f ", \
           fprintf(ficgp,")/(1");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                          2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         for(k1=1; k1 <=nlstate; k1++){            for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            llt +=ll[k]*gipmx/gsw;
 ij=1;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           for(j=3; j <=ncovmodel; j++){          }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          fprintf(ficresilk," %10.6f\n", -llt);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        }
             ij++;      } /* end of wave */
           }    } /* end of individual */
           else    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           fprintf(ficgp,")");    if(globpr==0){ /* First time we count the contributions and weights */
         }      gipmx=ipmx;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);      gsw=sw;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    }
         i=i+ncovmodel;    return -l;
        }  }
      }  
    }  
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  /*************** function likelione ***********/
    }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      {
   fclose(ficgp);    /* This routine should help understanding what is done with 
 }  /* end gnuplot */       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
        Plotting could be done.
 /*************** Moving average **************/     */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    int k;
   
   int i, cpt, cptcod;    if(*globpri !=0){ /* Just counts and sums, no printings */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      strcpy(fileresilk,"ilk"); 
       for (i=1; i<=nlstate;i++)      strcat(fileresilk,fileres);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           mobaverage[(int)agedeb][i][cptcod]=0.;        printf("Problem with resultfile: %s\n", fileresilk);
            fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      }
       for (i=1; i<=nlstate;i++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           for (cpt=0;cpt<=4;cpt++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      for(k=1; k<=nlstate; k++) 
           }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         }    }
       }  
     }    *fretone=(*funcone)(p);
        if(*globpri !=0){
 }      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
 /************** Forecasting ******************/    } 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    return;
    }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  /*********** Maximum Likelihood Estimation ***************/
   double *popeffectif,*popcount;  
   double ***p3mat;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   char fileresf[FILENAMELENGTH];  {
     int i,j, iter=0;
  agelim=AGESUP;    double **xi;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    double fret;
     double fretone; /* Only one call to likelihood */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /*  char filerespow[FILENAMELENGTH];*/
    
    #ifdef NLOPT
   strcpy(fileresf,"f");    int creturn;
   strcat(fileresf,fileres);    nlopt_opt opt;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
     printf("Problem with forecast resultfile: %s\n", fileresf);    double *lb;
   }    double minf; /* the minimum objective value, upon return */
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double * p1; /* Shifted parameters from 0 instead of 1 */
     myfunc_data dinst, *d = &dinst;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  #endif
   
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    xi=matrix(1,npar,1,npar);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   if (stepm<=12) stepsize=1;    strcpy(filerespow,"pow"); 
      strcat(filerespow,fileres);
   agelim=AGESUP;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", filerespow);
   hstepm=1;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   hstepm=hstepm/stepm;    }
   yp1=modf(dateintmean,&yp);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   anprojmean=yp;    for (i=1;i<=nlstate;i++)
   yp2=modf((yp1*12),&yp);      for(j=1;j<=nlstate+ndeath;j++)
   mprojmean=yp;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   yp1=modf((yp2*30.5),&yp);    fprintf(ficrespow,"\n");
   jprojmean=yp;  #ifdef POWELL
   if(jprojmean==0) jprojmean=1;    powell(p,xi,npar,ftol,&iter,&fret,func);
   if(mprojmean==0) jprojmean=1;  #endif
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  #ifdef NLOPT
    #ifdef NEWUOA
   for(cptcov=1;cptcov<=i2;cptcov++){    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  #else
       k=k+1;    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
       fprintf(ficresf,"\n#******");  #endif
       for(j=1;j<=cptcoveff;j++) {    lb=vector(0,npar-1);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
       }    nlopt_set_lower_bounds(opt, lb);
       fprintf(ficresf,"******\n");    nlopt_set_initial_step1(opt, 0.1);
       fprintf(ficresf,"# StartingAge FinalAge");    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
          d->function = func;
          printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    nlopt_set_min_objective(opt, myfunc, d);
         fprintf(ficresf,"\n");    nlopt_set_xtol_rel(opt, ftol);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
       printf("nlopt failed! %d\n",creturn); 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    else {
           nhstepm = nhstepm/hstepm;      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
                printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      iter=1; /* not equal */
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      nlopt_destroy(opt);
          #endif
           for (h=0; h<=nhstepm; h++){    free_matrix(xi,1,npar,1,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {    fclose(ficrespow);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
             }    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
             for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                }
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  /**** Computes Hessian and covariance matrix ***/
                 else {  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  {
                 }    double  **a,**y,*x,pd;
                    double **hess;
               }    int i, j;
               if (h==(int)(calagedate+12*cpt)){    int *indx;
                 fprintf(ficresf," %.3f", kk1);  
                            double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
               }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
             }    void lubksb(double **a, int npar, int *indx, double b[]) ;
           }    void ludcmp(double **a, int npar, int *indx, double *d) ;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double gompertz(double p[]);
         }    hess=matrix(1,npar,1,npar);
       }  
     }    printf("\nCalculation of the hessian matrix. Wait...\n");
   }    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
            for (i=1;i<=npar;i++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
   fclose(ficresf);     
 }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 /************** Forecasting ******************/      
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      /*  printf(" %f ",p[i]);
            printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    }
   int *popage;    
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    for (i=1;i<=npar;i++) {
   double *popeffectif,*popcount;      for (j=1;j<=npar;j++)  {
   double ***p3mat,***tabpop,***tabpopprev;        if (j>i) { 
   char filerespop[FILENAMELENGTH];          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
   agelim=AGESUP;          hess[j][i]=hess[i][j];    
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          /*printf(" %lf ",hess[i][j]);*/
          }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      }
      }
      printf("\n");
   strcpy(filerespop,"pop");    fprintf(ficlog,"\n");
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     printf("Problem with forecast resultfile: %s\n", filerespop);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   }    
   printf("Computing forecasting: result on file '%s' \n", filerespop);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    x=vector(1,npar);
     indx=ivector(1,npar);
   if (mobilav==1) {    for (i=1;i<=npar;i++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     movingaverage(agedeb, fage, ageminpar, mobaverage);    ludcmp(a,npar,indx,&pd);
   }  
     for (j=1;j<=npar;j++) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for (i=1;i<=npar;i++) x[i]=0;
   if (stepm<=12) stepsize=1;      x[j]=1;
        lubksb(a,npar,indx,x);
   agelim=AGESUP;      for (i=1;i<=npar;i++){ 
          matcov[i][j]=x[i];
   hstepm=1;      }
   hstepm=hstepm/stepm;    }
    
   if (popforecast==1) {    printf("\n#Hessian matrix#\n");
     if((ficpop=fopen(popfile,"r"))==NULL) {    fprintf(ficlog,"\n#Hessian matrix#\n");
       printf("Problem with population file : %s\n",popfile);exit(0);    for (i=1;i<=npar;i++) { 
     }      for (j=1;j<=npar;j++) { 
     popage=ivector(0,AGESUP);        printf("%.3e ",hess[i][j]);
     popeffectif=vector(0,AGESUP);        fprintf(ficlog,"%.3e ",hess[i][j]);
     popcount=vector(0,AGESUP);      }
          printf("\n");
     i=1;        fprintf(ficlog,"\n");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    }
      
     imx=i;    /* Recompute Inverse */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /*  printf("\n#Hessian matrix recomputed#\n");
       k=k+1;  
       fprintf(ficrespop,"\n#******");    for (j=1;j<=npar;j++) {
       for(j=1;j<=cptcoveff;j++) {      for (i=1;i<=npar;i++) x[i]=0;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      x[j]=1;
       }      lubksb(a,npar,indx,x);
       fprintf(ficrespop,"******\n");      for (i=1;i<=npar;i++){ 
       fprintf(ficrespop,"# Age");        y[i][j]=x[i];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        printf("%.3e ",y[i][j]);
       if (popforecast==1)  fprintf(ficrespop," [Population]");        fprintf(ficlog,"%.3e ",y[i][j]);
            }
       for (cpt=0; cpt<=0;cpt++) {      printf("\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        fprintf(ficlog,"\n");
            }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    free_matrix(a,1,npar,1,npar);
              free_matrix(y,1,npar,1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_vector(x,1,npar);
           oldm=oldms;savm=savms;    free_ivector(indx,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_matrix(hess,1,npar,1,npar);
          
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {  }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }  /*************** hessian matrix ****************/
             for(j=1; j<=nlstate+ndeath;j++) {  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
               kk1=0.;kk2=0;  {
               for(i=1; i<=nlstate;i++) {                  int i;
                 if (mobilav==1)    int l=1, lmax=20;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double k1,k2;
                 else {    double p2[MAXPARM+1]; /* identical to x */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double res;
                 }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
               }    double fx;
               if (h==(int)(calagedate+12*cpt)){    int k=0,kmax=10;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    double l1;
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fx=func(x);
               }    for (i=1;i<=npar;i++) p2[i]=x[i];
             }    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
             for(i=1; i<=nlstate;i++){      l1=pow(10,l);
               kk1=0.;      delts=delt;
                 for(j=1; j<=nlstate;j++){      for(k=1 ; k <kmax; k=k+1){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        delt = delta*(l1*k);
                 }        p2[theta]=x[theta] +delt;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
             }        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           }        
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #ifdef DEBUGHESS
         }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
    #endif
   /******/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          k=kmax;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          k=kmax; l=lmax*10;
           nhstepm = nhstepm/hstepm;        }
                  else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          delts=delt;
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    delti[theta]=delts;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    return res; 
             }    
             for(j=1; j<=nlstate+ndeath;j++) {  }
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      {
               }    int i;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    int l=1, lmax=20;
             }    double k1,k2,k3,k4,res,fx;
           }    double p2[MAXPARM+1];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k;
         }  
       }    fx=func(x);
    }    for (k=1; k<=2; k++) {
   }      for (i=1;i<=npar;i++) p2[i]=x[i];
        p2[thetai]=x[thetai]+delti[thetai]/k;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   if (popforecast==1) {    
     free_ivector(popage,0,AGESUP);      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_vector(popeffectif,0,AGESUP);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     free_vector(popcount,0,AGESUP);      k2=func(p2)-fx;
   }    
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      p2[thetai]=x[thetai]-delti[thetai]/k;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fclose(ficrespop);      k3=func(p2)-fx;
 }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
 /***********************************************/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 /**************** Main Program *****************/      k4=func(p2)-fx;
 /***********************************************/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
 int main(int argc, char *argv[])      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    }
   double agedeb, agefin,hf;    return res;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  }
   
   double fret;  /************** Inverse of matrix **************/
   double **xi,tmp,delta;  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
   double dum; /* Dummy variable */    int i,imax,j,k; 
   double ***p3mat;    double big,dum,sum,temp; 
   int *indx;    double *vv; 
   char line[MAXLINE], linepar[MAXLINE];   
   char title[MAXLINE];    vv=vector(1,n); 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    *d=1.0; 
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    for (i=1;i<=n;i++) { 
        big=0.0; 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
   char filerest[FILENAMELENGTH];      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   char fileregp[FILENAMELENGTH];      vv[i]=1.0/big; 
   char popfile[FILENAMELENGTH];    } 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    for (j=1;j<=n;j++) { 
   int firstobs=1, lastobs=10;      for (i=1;i<j;i++) { 
   int sdeb, sfin; /* Status at beginning and end */        sum=a[i][j]; 
   int c,  h , cpt,l;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   int ju,jl, mi;        a[i][j]=sum; 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      } 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      big=0.0; 
   int mobilav=0,popforecast=0;      for (i=j;i<=n;i++) { 
   int hstepm, nhstepm;        sum=a[i][j]; 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   double bage, fage, age, agelim, agebase;        a[i][j]=sum; 
   double ftolpl=FTOL;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   double **prlim;          big=dum; 
   double *severity;          imax=i; 
   double ***param; /* Matrix of parameters */        } 
   double  *p;      } 
   double **matcov; /* Matrix of covariance */      if (j != imax) { 
   double ***delti3; /* Scale */        for (k=1;k<=n;k++) { 
   double *delti; /* Scale */          dum=a[imax][k]; 
   double ***eij, ***vareij;          a[imax][k]=a[j][k]; 
   double **varpl; /* Variances of prevalence limits by age */          a[j][k]=dum; 
   double *epj, vepp;        } 
   double kk1, kk2;        *d = -(*d); 
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        vv[imax]=vv[j]; 
        } 
       indx[j]=imax; 
   char version[80]="Imach version 0.8b, March 2002, INED-EUROREVES ";      if (a[j][j] == 0.0) a[j][j]=TINY; 
   char *alph[]={"a","a","b","c","d","e"}, str[4];      if (j != n) { 
         dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   char z[1]="c", occ;      } 
 #include <sys/time.h>    } 
 #include <time.h>    free_vector(vv,1,n);  /* Doesn't work */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  ;
    } 
   /* long total_usecs;  
   struct timeval start_time, end_time;  void lubksb(double **a, int n, int *indx, double b[]) 
    { 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int i,ii=0,ip,j; 
   getcwd(pathcd, size);    double sum; 
    
   printf("\n%s",version);    for (i=1;i<=n;i++) { 
   if(argc <=1){      ip=indx[i]; 
     printf("\nEnter the parameter file name: ");      sum=b[ip]; 
     scanf("%s",pathtot);      b[ip]=b[i]; 
   }      if (ii) 
   else{        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     strcpy(pathtot,argv[1]);      else if (sum) ii=i; 
   }      b[i]=sum; 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    } 
   /*cygwin_split_path(pathtot,path,optionfile);    for (i=n;i>=1;i--) { 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      sum=b[i]; 
   /* cutv(path,optionfile,pathtot,'\\');*/      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    } 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  } 
   chdir(path);  
   replace(pathc,path);  void pstamp(FILE *fichier)
   {
 /*-------- arguments in the command line --------*/    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
   strcpy(fileres,"r");  
   strcat(fileres, optionfilefiname);  /************ Frequencies ********************/
   strcat(fileres,".txt");    /* Other files have txt extension */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   {  /* Some frequencies */
   /*---------arguments file --------*/    
     int i, m, jk, j1, bool, z1,j;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    int first;
     printf("Problem with optionfile %s\n",optionfile);    double ***freq; /* Frequencies */
     goto end;    double *pp, **prop;
   }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     char fileresp[FILENAMELENGTH];
   strcpy(filereso,"o");    
   strcat(filereso,fileres);    pp=vector(1,nlstate);
   if((ficparo=fopen(filereso,"w"))==NULL) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    strcpy(fileresp,"p");
   }    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
   /* Reads comments: lines beginning with '#' */      printf("Problem with prevalence resultfile: %s\n", fileresp);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     ungetc(c,ficpar);      exit(0);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     fputs(line,ficparo);    j1=0;
   }    
   ungetc(c,ficpar);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    first=1;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
     ungetc(c,ficpar);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
     fgets(line, MAXLINE, ficpar);    /*    j1++; */
     puts(line);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
     fputs(line,ficparo);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   }          scanf("%d", i);*/
   ungetc(c,ficpar);        for (i=-5; i<=nlstate+ndeath; i++)  
            for (jk=-5; jk<=nlstate+ndeath; jk++)  
                for(m=iagemin; m <= iagemax+3; m++)
   covar=matrix(0,NCOVMAX,1,n);              freq[i][jk][m]=0;
   cptcovn=0;        
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
   ncovmodel=2+cptcovn;            prop[i][m]=0;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        
          dateintsum=0;
   /* Read guess parameters */        k2cpt=0;
   /* Reads comments: lines beginning with '#' */        for (i=1; i<=imx; i++) {
   while((c=getc(ficpar))=='#' && c!= EOF){          bool=1;
     ungetc(c,ficpar);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
     fgets(line, MAXLINE, ficpar);            for (z1=1; z1<=cptcoveff; z1++)       
     puts(line);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
     fputs(line,ficparo);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
   }                bool=0;
   ungetc(c,ficpar);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                    bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
     for(i=1; i <=nlstate; i++)                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
     for(j=1; j <=nlstate+ndeath-1; j++){              } 
       fscanf(ficpar,"%1d%1d",&i1,&j1);          }
       fprintf(ficparo,"%1d%1d",i1,j1);   
       printf("%1d%1d",i,j);          if (bool==1){
       for(k=1; k<=ncovmodel;k++){            for(m=firstpass; m<=lastpass; m++){
         fscanf(ficpar," %lf",&param[i][j][k]);              k2=anint[m][i]+(mint[m][i]/12.);
         printf(" %lf",param[i][j][k]);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         fprintf(ficparo," %lf",param[i][j][k]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fscanf(ficpar,"\n");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       printf("\n");                if (m<lastpass) {
       fprintf(ficparo,"\n");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                  }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   p=param[1][1];                  dateintsum=dateintsum+k2;
                    k2cpt++;
   /* Reads comments: lines beginning with '#' */                }
   while((c=getc(ficpar))=='#' && c!= EOF){                /*}*/
     ungetc(c,ficpar);            }
     fgets(line, MAXLINE, ficpar);          }
     puts(line);        } /* end i */
     fputs(line,ficparo);         
   }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   ungetc(c,ficpar);        pstamp(ficresp);
         if  (cptcovn>0) {
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(ficresp, "\n#********** Variable "); 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(i=1; i <=nlstate; i++){          fprintf(ficresp, "**********\n#");
     for(j=1; j <=nlstate+ndeath-1; j++){          fprintf(ficlog, "\n#********** Variable "); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("%1d%1d",i,j);          fprintf(ficlog, "**********\n#");
       fprintf(ficparo,"%1d%1d",i1,j1);        }
       for(k=1; k<=ncovmodel;k++){        for(i=1; i<=nlstate;i++) 
         fscanf(ficpar,"%le",&delti3[i][j][k]);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         printf(" %le",delti3[i][j][k]);        fprintf(ficresp, "\n");
         fprintf(ficparo," %le",delti3[i][j][k]);        
       }        for(i=iagemin; i <= iagemax+3; i++){
       fscanf(ficpar,"\n");          if(i==iagemax+3){
       printf("\n");            fprintf(ficlog,"Total");
       fprintf(ficparo,"\n");          }else{
     }            if(first==1){
   }              first=0;
   delti=delti3[1][1];              printf("See log file for details...\n");
              }
   /* Reads comments: lines beginning with '#' */            fprintf(ficlog,"Age %d", i);
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          for(jk=1; jk <=nlstate ; jk++){
     fgets(line, MAXLINE, ficpar);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     puts(line);              pp[jk] += freq[jk][m][i]; 
     fputs(line,ficparo);          }
   }          for(jk=1; jk <=nlstate ; jk++){
   ungetc(c,ficpar);            for(m=-1, pos=0; m <=0 ; m++)
                pos += freq[jk][m][i];
   matcov=matrix(1,npar,1,npar);            if(pp[jk]>=1.e-10){
   for(i=1; i <=npar; i++){              if(first==1){
     fscanf(ficpar,"%s",&str);                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     printf("%s",str);              }
     fprintf(ficparo,"%s",str);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for(j=1; j <=i; j++){            }else{
       fscanf(ficpar," %le",&matcov[i][j]);              if(first==1)
       printf(" %.5le",matcov[i][j]);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficparo," %.5le",matcov[i][j]);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }            }
     fscanf(ficpar,"\n");          }
     printf("\n");  
     fprintf(ficparo,"\n");          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   for(i=1; i <=npar; i++)              pp[jk] += freq[jk][m][i];
     for(j=i+1;j<=npar;j++)          }       
       matcov[i][j]=matcov[j][i];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                pos += pp[jk];
   printf("\n");            posprop += prop[jk][i];
           }
           for(jk=1; jk <=nlstate ; jk++){
     /*-------- Rewriting paramater file ----------*/            if(pos>=1.e-5){
      strcpy(rfileres,"r");    /* "Rparameterfile */              if(first==1)
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      strcat(rfileres,".");    /* */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            }else{
     if((ficres =fopen(rfileres,"w"))==NULL) {              if(first==1)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficres,"#%s\n",version);            }
                if( i <= iagemax){
     /*-------- data file ----------*/              if(pos>=1.e-5){
     if((fic=fopen(datafile,"r"))==NULL)    {                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       printf("Problem with datafile: %s\n", datafile);goto end;                /*probs[i][jk][j1]= pp[jk]/pos;*/
     }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
     n= lastobs;              else
     severity = vector(1,maxwav);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     outcome=imatrix(1,maxwav+1,1,n);            }
     num=ivector(1,n);          }
     moisnais=vector(1,n);          
     annais=vector(1,n);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     moisdc=vector(1,n);            for(m=-1; m <=nlstate+ndeath; m++)
     andc=vector(1,n);              if(freq[jk][m][i] !=0 ) {
     agedc=vector(1,n);              if(first==1)
     cod=ivector(1,n);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     weight=vector(1,n);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              }
     mint=matrix(1,maxwav,1,n);          if(i <= iagemax)
     anint=matrix(1,maxwav,1,n);            fprintf(ficresp,"\n");
     s=imatrix(1,maxwav+1,1,n);          if(first==1)
     adl=imatrix(1,maxwav+1,1,n);                printf("Others in log...\n");
     tab=ivector(1,NCOVMAX);          fprintf(ficlog,"\n");
     ncodemax=ivector(1,8);        }
         /*}*/
     i=1;    }
     while (fgets(line, MAXLINE, fic) != NULL)    {    dateintmean=dateintsum/k2cpt; 
       if ((i >= firstobs) && (i <=lastobs)) {   
            fclose(ficresp);
         for (j=maxwav;j>=1;j--){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    free_vector(pp,1,nlstate);
           strcpy(line,stra);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /* End of Freq */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  }
         }  
          /************ Prevalence ********************/
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);       in each health status at the date of interview (if between dateprev1 and dateprev2).
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);       We still use firstpass and lastpass as another selection.
     */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);   
         for (j=ncovcol;j>=1;j--){    int i, m, jk, j1, bool, z1,j;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    double **prop;
         num[i]=atol(stra);    double posprop; 
            double  y2; /* in fractional years */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    int iagemin, iagemax;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    int first; /** to stop verbosity which is redirected to log file */
   
         i=i+1;    iagemin= (int) agemin;
       }    iagemax= (int) agemax;
     }    /*pp=vector(1,nlstate);*/
     /* printf("ii=%d", ij);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
        scanf("%d",i);*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   imx=i-1; /* Number of individuals */    j1=0;
     
   /* for (i=1; i<=imx; i++){    /*j=cptcoveff;*/
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    first=1;
     }*/    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
    /*  for (i=1; i<=imx; i++){      /*for(i1=1; i1<=ncodemax[k1];i1++){
      if (s[4][i]==9)  s[4][i]=-1;        j1++;*/
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        
          for (i=1; i<=nlstate; i++)  
            for(m=iagemin; m <= iagemax+3; m++)
   /* Calculation of the number of parameter from char model*/            prop[i][m]=0.0;
   Tvar=ivector(1,15);       
   Tprod=ivector(1,15);        for (i=1; i<=imx; i++) { /* Each individual */
   Tvaraff=ivector(1,15);          bool=1;
   Tvard=imatrix(1,15,1,2);          if  (cptcovn>0) {
   Tage=ivector(1,15);                  for (z1=1; z1<=cptcoveff; z1++) 
                  if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   if (strlen(model) >1){                bool=0;
     j=0, j1=0, k1=1, k2=1;          } 
     j=nbocc(model,'+');          if (bool==1) { 
     j1=nbocc(model,'*');            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     cptcovn=j+1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     cptcovprod=j1;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                    if(agev[m][i]==0) agev[m][i]=iagemax+1;
     strcpy(modelsav,model);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       printf("Error. Non available option model=%s ",model);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       goto end;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                      prop[s[m][i]][iagemax+3] += weight[i]; 
     for(i=(j+1); i>=1;i--){                } 
       cutv(stra,strb,modelsav,'+');              }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            } /* end selection of waves */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          }
       /*scanf("%d",i);*/        }
       if (strchr(strb,'*')) {        for(i=iagemin; i <= iagemax+3; i++){  
         cutv(strd,strc,strb,'*');          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         if (strcmp(strc,"age")==0) {            posprop += prop[jk][i]; 
           cptcovprod--;          } 
           cutv(strb,stre,strd,'V');          
           Tvar[i]=atoi(stre);          for(jk=1; jk <=nlstate ; jk++){     
           cptcovage++;            if( i <=  iagemax){ 
             Tage[cptcovage]=i;              if(posprop>=1.e-5){ 
             /*printf("stre=%s ", stre);*/                probs[i][jk][j1]= prop[jk][i]/posprop;
         }              } else{
         else if (strcmp(strd,"age")==0) {                if(first==1){
           cptcovprod--;                  first=0;
           cutv(strb,stre,strc,'V');                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
           Tvar[i]=atoi(stre);                }
           cptcovage++;              }
           Tage[cptcovage]=i;            } 
         }          }/* end jk */ 
         else {        }/* end i */ 
           cutv(strb,stre,strc,'V');      /*} *//* end i1 */
           Tvar[i]=ncovcol+k1;    } /* end j1 */
           cutv(strb,strc,strd,'V');    
           Tprod[k1]=i;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           Tvard[k1][1]=atoi(strc);    /*free_vector(pp,1,nlstate);*/
           Tvard[k1][2]=atoi(stre);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           Tvar[cptcovn+k2]=Tvard[k1][1];  }  /* End of prevalence */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)  /************* Waves Concatenation ***************/
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           k2=k2+2;  {
         }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
       else {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        /*  scanf("%d",i);*/       and mw[mi+1][i]. dh depends on stepm.
       cutv(strd,strc,strb,'V');       */
       Tvar[i]=atoi(strc);  
       }    int i, mi, m;
       strcpy(modelsav,stra);      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);       double sum=0., jmean=0.;*/
         scanf("%d",i);*/    int first;
     }    int j, k=0,jk, ju, jl;
 }    double sum=0.;
      first=0;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    jmin=100000;
   printf("cptcovprod=%d ", cptcovprod);    jmax=-1;
   scanf("%d ",i);*/    jmean=0.;
     fclose(fic);    for(i=1; i<=imx; i++){
       mi=0;
     /*  if(mle==1){*/      m=firstpass;
     if (weightopt != 1) { /* Maximisation without weights*/      while(s[m][i] <= nlstate){
       for(i=1;i<=n;i++) weight[i]=1.0;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     }          mw[++mi][i]=m;
     /*-calculation of age at interview from date of interview and age at death -*/        if(m >=lastpass)
     agev=matrix(1,maxwav,1,imx);          break;
         else
     for (i=1; i<=imx; i++) {          m++;
       for(m=2; (m<= maxwav); m++) {      }/* end while */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      if (s[m][i] > nlstate){
          anint[m][i]=9999;        mi++;     /* Death is another wave */
          s[m][i]=-1;        /* if(mi==0)  never been interviewed correctly before death */
        }           /* Only death is a correct wave */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        mw[mi][i]=m;
       }      }
     }  
       wav[i]=mi;
     for (i=1; i<=imx; i++)  {      if(mi==0){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        nbwarn++;
       for(m=1; (m<= maxwav); m++){        if(first==0){
         if(s[m][i] >0){          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           if (s[m][i] >= nlstate+1) {          first=1;
             if(agedc[i]>0)        }
               if(moisdc[i]!=99 && andc[i]!=9999)        if(first==1){
                 agev[m][i]=agedc[i];          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        }
            else {      } /* end mi==0 */
               if (andc[i]!=9999){    } /* End individuals */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;    for(i=1; i<=imx; i++){
               }      for(mi=1; mi<wav[i];mi++){
             }        if (stepm <=0)
           }          dh[mi][i]=1;
           else if(s[m][i] !=9){ /* Should no more exist */        else{
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if(mint[m][i]==99 || anint[m][i]==9999)            if (agedc[i] < 2*AGESUP) {
               agev[m][i]=1;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             else if(agev[m][i] <agemin){              if(j==0) j=1;  /* Survives at least one month after exam */
               agemin=agev[m][i];              else if(j<0){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                nberr++;
             }                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             else if(agev[m][i] >agemax){                j=1; /* Temporary Dangerous patch */
               agemax=agev[m][i];                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             /*agev[m][i]=anint[m][i]-annais[i];*/              }
             /*   agev[m][i] = age[i]+2*m;*/              k=k+1;
           }              if (j >= jmax){
           else { /* =9 */                jmax=j;
             agev[m][i]=1;                ijmax=i;
             s[m][i]=-1;              }
           }              if (j <= jmin){
         }                jmin=j;
         else /*= 0 Unknown */                ijmin=i;
           agev[m][i]=1;              }
       }              sum=sum+j;
                  /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for (i=1; i<=imx; i++)  {            }
       for(m=1; (m<= maxwav); m++){          }
         if (s[m][i] > (nlstate+ndeath)) {          else{
           printf("Error: Wrong value in nlstate or ndeath\n");              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           goto end;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         }  
       }            k=k+1;
     }            if (j >= jmax) {
               jmax=j;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);              ijmax=i;
             }
     free_vector(severity,1,maxwav);            else if (j <= jmin){
     free_imatrix(outcome,1,maxwav+1,1,n);              jmin=j;
     free_vector(moisnais,1,n);              ijmin=i;
     free_vector(annais,1,n);            }
     /* free_matrix(mint,1,maxwav,1,n);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
        free_matrix(anint,1,maxwav,1,n);*/            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     free_vector(moisdc,1,n);            if(j<0){
     free_vector(andc,1,n);              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                  fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     wav=ivector(1,imx);            }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            sum=sum+j;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          }
              jk= j/stepm;
     /* Concatenates waves */          jl= j -jk*stepm;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
       Tcode=ivector(1,100);              dh[mi][i]=jk;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);              bh[mi][i]=0;
       ncodemax[1]=1;            }else{ /* We want a negative bias in order to only have interpolation ie
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                    * to avoid the price of an extra matrix product in likelihood */
                    dh[mi][i]=jk+1;
    codtab=imatrix(1,100,1,10);              bh[mi][i]=ju;
    h=0;            }
    m=pow(2,cptcoveff);          }else{
              if(jl <= -ju){
    for(k=1;k<=cptcoveff; k++){              dh[mi][i]=jk;
      for(i=1; i <=(m/pow(2,k));i++){              bh[mi][i]=jl;       /* bias is positive if real duration
        for(j=1; j <= ncodemax[k]; j++){                                   * is higher than the multiple of stepm and negative otherwise.
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                                   */
            h++;            }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            else{
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/              dh[mi][i]=jk+1;
          }              bh[mi][i]=ju;
        }            }
      }            if(dh[mi][i]==0){
    }              dh[mi][i]=1; /* At least one step */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);              bh[mi][i]=ju; /* At least one step */
       codtab[1][2]=1;codtab[2][2]=2; */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
    /* for(i=1; i <=m ;i++){            }
       for(k=1; k <=cptcovn; k++){          } /* end if mle */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        }
       }      } /* end wave */
       printf("\n");    }
       }    jmean=sum/k;
       scanf("%d",i);*/    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
        fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    /* Calculates basic frequencies. Computes observed prevalence at single age   }
        and prints on file fileres'p'. */  
   /*********** Tricode ****************************/
      void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
      {
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * Boring subroutine which should only output nbcode[Tvar[j]][k]
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     * nbcode[Tvar[j]][1]= 
          */
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    int modmaxcovj=0; /* Modality max of covariates j */
     int cptcode=0; /* Modality max of covariates j */
     if(mle==1){    int modmincovj=0; /* Modality min of covariates j */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }  
        cptcoveff=0; 
     /*--------- results files --------------*/   
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
      for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
    jk=1;    /* Loop on covariates without age and products */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
    for(i=1,jk=1; i <=nlstate; i++){                                 modality of this covariate Vj*/ 
      for(k=1; k <=(nlstate+ndeath); k++){        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
        if (k != i)                                      * If product of Vn*Vm, still boolean *:
          {                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
            printf("%d%d ",i,k);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
            fprintf(ficres,"%1d%1d ",i,k);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
            for(j=1; j <=ncovmodel; j++){                                        modality of the nth covariate of individual i. */
              printf("%f ",p[jk]);        if (ij > modmaxcovj)
              fprintf(ficres,"%f ",p[jk]);          modmaxcovj=ij; 
              jk++;        else if (ij < modmincovj) 
            }          modmincovj=ij; 
            printf("\n");        if ((ij < -1) && (ij > NCOVMAX)){
            fprintf(ficres,"\n");          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
          }          exit(1);
      }        }else
    }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
  if(mle==1){        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     /* Computing hessian and covariance matrix */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     ftolhess=ftol; /* Usually correct */        /* getting the maximum value of the modality of the covariate
     hesscov(matcov, p, npar, delti, ftolhess, func);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
  }           female is 1, then modmaxcovj=1.*/
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      }
     printf("# Scales (for hessian or gradient estimation)\n");      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
      for(i=1,jk=1; i <=nlstate; i++){      cptcode=modmaxcovj;
       for(j=1; j <=nlstate+ndeath; j++){      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
         if (j!=i) {     /*for (i=0; i<=cptcode; i++) {*/
           fprintf(ficres,"%1d%1d",i,j);      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
           printf("%1d%1d",i,j);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
           for(k=1; k<=ncovmodel;k++){        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
             printf(" %.5e",delti[jk]);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
             fprintf(ficres," %.5e",delti[jk]);        }
             jk++;        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
           }           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
           printf("\n");      } /* Ndum[-1] number of undefined modalities */
           fprintf(ficres,"\n");  
         }      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       }      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
      }      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
             modmincovj=3; modmaxcovj = 7;
     k=1;         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         variables V1_1 and V1_2.
     for(i=1;i<=npar;i++){         nbcode[Tvar[j]][ij]=k;
       /*  if (k>nlstate) k=1;         nbcode[Tvar[j]][1]=0;
       i1=(i-1)/(ncovmodel*nlstate)+1;         nbcode[Tvar[j]][2]=1;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);         nbcode[Tvar[j]][3]=2;
       printf("%s%d%d",alph[k],i1,tab[i]);*/      */
       fprintf(ficres,"%3d",i);      ij=1; /* ij is similar to i but can jumps over null modalities */
       printf("%3d",i);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
       for(j=1; j<=i;j++){        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
         fprintf(ficres," %.5e",matcov[i][j]);          /*recode from 0 */
         printf(" %.5e",matcov[i][j]);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
       }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
       fprintf(ficres,"\n");                                       k is a modality. If we have model=V1+V1*sex 
       printf("\n");                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       k++;            ij++;
     }          }
              if (ij > ncodemax[j]) break; 
     while((c=getc(ficpar))=='#' && c!= EOF){        }  /* end of loop on */
       ungetc(c,ficpar);      } /* end of loop on modality */ 
       fgets(line, MAXLINE, ficpar);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       puts(line);    
       fputs(line,ficparo);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     }    
     ungetc(c,ficpar);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
     estepm=0;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
     if (estepm==0 || estepm < stepm) estepm=stepm;     Ndum[ij]++; 
     if (fage <= 2) {   } 
       bage = ageminpar;  
       fage = agemaxpar;   ij=1;
     }   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
         /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");     if((Ndum[i]!=0) && (i<=ncovcol)){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);       Tvaraff[ij]=i; /*For printing (unclear) */
         ij++;
     while((c=getc(ficpar))=='#' && c!= EOF){     }else
     ungetc(c,ficpar);         Tvaraff[ij]=0;
     fgets(line, MAXLINE, ficpar);   }
     puts(line);   ij--;
     fputs(line,ficparo);   cptcoveff=ij; /*Number of total covariates*/
   }  
   ungetc(c,ficpar);  }
    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*********** Health Expectancies ****************/
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
        void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  {
     fgets(line, MAXLINE, ficpar);    /* Health expectancies, no variances */
     puts(line);    int i, j, nhstepm, hstepm, h, nstepm;
     fputs(line,ficparo);    int nhstepma, nstepma; /* Decreasing with age */
   }    double age, agelim, hf;
   ungetc(c,ficpar);    double ***p3mat;
      double eip;
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    pstamp(ficreseij);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
   fscanf(ficpar,"pop_based=%d\n",&popbased);    for(i=1; i<=nlstate;i++){
   fprintf(ficparo,"pop_based=%d\n",popbased);        for(j=1; j<=nlstate;j++){
   fprintf(ficres,"pop_based=%d\n",popbased);          fprintf(ficreseij," e%1d%1d ",i,j);
        }
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficreseij," e%1d. ",i);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    fprintf(ficreseij,"\n");
     puts(line);  
     fputs(line,ficparo);    
   }    if(estepm < stepm){
   ungetc(c,ficpar);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    else  hstepm=estepm;   
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    /* We compute the life expectancy from trapezoids spaced every estepm months
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
 while((c=getc(ficpar))=='#' && c!= EOF){     * progression in between and thus overestimating or underestimating according
     ungetc(c,ficpar);     * to the curvature of the survival function. If, for the same date, we 
     fgets(line, MAXLINE, ficpar);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     puts(line);     * to compare the new estimate of Life expectancy with the same linear 
     fputs(line,ficparo);     * hypothesis. A more precise result, taking into account a more precise
   }     * curvature will be obtained if estepm is as small as stepm. */
   ungetc(c,ficpar);  
     /* For example we decided to compute the life expectancy with the smallest unit */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       nhstepm is the number of hstepm from age to agelim 
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 /*------------ gnuplot -------------*/       survival function given by stepm (the optimization length). Unfortunately it
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 /*------------ free_vector  -------------*/       results. So we changed our mind and took the option of the best precision.
  chdir(path);    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    agelim=AGESUP;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      /* If stepm=6 months */
  free_ivector(num,1,n);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
  free_vector(agedc,1,n);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      
  fclose(ficparo);  /* nhstepm age range expressed in number of stepm */
  fclose(ficres);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 /*--------- index.htm --------*/    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
      for (age=bage; age<=fage; age ++){ 
   /*--------------- Prevalence limit --------------*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   strcpy(filerespl,"pl");      /* if (stepm >= YEARM) hstepm=1;*/
   strcat(filerespl,fileres);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   fprintf(ficrespl,"#Prevalence limit\n");      
   fprintf(ficrespl,"#Age ");      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      
   fprintf(ficrespl,"\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        
   prlim=matrix(1,nlstate,1,nlstate);      printf("%d|",(int)age);fflush(stdout);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Computing expectancies */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1; i<=nlstate;i++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(j=1; j<=nlstate;j++)
   k=0;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   agebase=ageminpar;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   agelim=agemaxpar;            
   ftolpl=1.e-10;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}          }
   
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficreseij,"%3.0f",age );
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i=1; i<=nlstate;i++){
         k=k+1;        eip=0;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        for(j=1; j<=nlstate;j++){
         fprintf(ficrespl,"\n#******");          eip +=eij[i][j][(int)age];
         for(j=1;j<=cptcoveff;j++)          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
         fprintf(ficrespl,"******\n");        fprintf(ficreseij,"%9.4f", eip );
              }
         for (age=agebase; age<=agelim; age++){      fprintf(ficreseij,"\n");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      
           fprintf(ficrespl,"%.0f",age );    }
           for(i=1; i<=nlstate;i++)    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespl," %.5f", prlim[i][i]);    printf("\n");
           fprintf(ficrespl,"\n");    fprintf(ficlog,"\n");
         }    
       }  }
     }  
   fclose(ficrespl);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   /*------------- h Pij x at various ages ------------*/  {
      /* Covariances of health expectancies eij and of total life expectancies according
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);     to initial status i, ei. .
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   }    int nhstepma, nstepma; /* Decreasing with age */
   printf("Computing pij: result on file '%s' \n", filerespij);    double age, agelim, hf;
      double ***p3matp, ***p3matm, ***varhe;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double **dnewm,**doldm;
   /*if (stepm<=24) stepsize=2;*/    double *xp, *xm;
     double **gp, **gm;
   agelim=AGESUP;    double ***gradg, ***trgradg;
   hstepm=stepsize*YEARM; /* Every year of age */    int theta;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
      double eip, vip;
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    xp=vector(1,npar);
       k=k+1;    xm=vector(1,npar);
         fprintf(ficrespij,"\n#****** ");    dnewm=matrix(1,nlstate*nlstate,1,npar);
         for(j=1;j<=cptcoveff;j++)    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
         fprintf(ficrespij,"******\n");    pstamp(ficresstdeij);
            fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    fprintf(ficresstdeij,"# Age");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for(i=1; i<=nlstate;i++){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for(j=1; j<=nlstate;j++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
           oldm=oldms;savm=savms;      fprintf(ficresstdeij," e%1d. ",i);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
           fprintf(ficrespij,"# Age");    fprintf(ficresstdeij,"\n");
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)    pstamp(ficrescveij);
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           fprintf(ficrespij,"\n");    fprintf(ficrescveij,"# Age");
           for (h=0; h<=nhstepm; h++){    for(i=1; i<=nlstate;i++)
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      for(j=1; j<=nlstate;j++){
             for(i=1; i<=nlstate;i++)        cptj= (j-1)*nlstate+i;
               for(j=1; j<=nlstate+ndeath;j++)        for(i2=1; i2<=nlstate;i2++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          for(j2=1; j2<=nlstate;j2++){
             fprintf(ficrespij,"\n");            cptj2= (j2-1)*nlstate+i2;
           }            if(cptj2 <= cptj)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           fprintf(ficrespij,"\n");          }
         }      }
     }    fprintf(ficrescveij,"\n");
   }    
     if(estepm < stepm){
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   fclose(ficrespij);    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   /*---------- Forecasting ------------------*/     * if stepm=24 months pijx are given only every 2 years and by summing them
   if((stepm == 1) && (strcmp(model,".")==0)){     * we are calculating an estimate of the Life Expectancy assuming a linear 
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);     * progression in between and thus overestimating or underestimating according
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);     * to the curvature of the survival function. If, for the same date, we 
     free_matrix(mint,1,maxwav,1,n);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);     * to compare the new estimate of Life expectancy with the same linear 
     free_vector(weight,1,n);}     * hypothesis. A more precise result, taking into account a more precise
   else{     * curvature will be obtained if estepm is as small as stepm. */
     erreur=108;  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   /*---------- Health expectancies and variances ------------*/       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   strcpy(filerest,"t");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   strcat(filerest,fileres);       survival function given by stepm (the optimization length). Unfortunately it
   if((ficrest=fopen(filerest,"w"))==NULL) {       means that if the survival funtion is printed only each two years of age and if
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   strcpy(filerese,"e");    /* If stepm=6 months */
   strcat(filerese,fileres);    /* nhstepm age range expressed in number of stepm */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    agelim=AGESUP;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  strcpy(fileresv,"v");    
   strcat(fileresv,fileres);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    for (age=bage; age<=fage; age ++){ 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       k=k+1;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficrest,"\n#****** ");      /* if (stepm >= YEARM) hstepm=1;*/
       for(j=1;j<=cptcoveff;j++)      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
       fprintf(ficreseij,"\n#****** ");         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       for(j=1;j<=cptcoveff;j++)      
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficreseij,"******\n");  
       /* Computing  Variances of health expectancies */
       fprintf(ficresvij,"\n#****** ");      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       for(j=1;j<=cptcoveff;j++)         decrease memory allocation */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(theta=1; theta <=npar; theta++){
       fprintf(ficresvij,"******\n");        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       oldm=oldms;savm=savms;        }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);          hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       oldm=oldms;savm=savms;    
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        for(j=1; j<= nlstate; j++){
              for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
                gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);            }
       fprintf(ficrest,"\n");          }
         }
       epj=vector(1,nlstate+1);       
       for(age=bage; age <=fage ;age++){        for(ij=1; ij<= nlstate*nlstate; ij++)
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for(h=0; h<=nhstepm-1; h++){
         if (popbased==1) {            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           for(i=1; i<=nlstate;i++)          }
             prlim[i][i]=probs[(int)age][i][k];      }/* End theta */
         }      
              
         fprintf(ficrest," %4.0f",age);      for(h=0; h<=nhstepm-1; h++)
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        for(j=1; j<=nlstate*nlstate;j++)
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          for(theta=1; theta <=npar; theta++)
             epj[j] += prlim[i][i]*eij[i][j][(int)age];            trgradg[h][j][theta]=gradg[h][theta][j];
           }      
           epj[nlstate+1] +=epj[j];  
         }       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(i=1, vepp=0.;i <=nlstate;i++)        for(ji=1;ji<=nlstate*nlstate;ji++)
           for(j=1;j <=nlstate;j++)          varhe[ij][ji][(int)age] =0.;
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));       printf("%d|",(int)age);fflush(stdout);
         for(j=1;j <=nlstate;j++){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       for(h=0;h<=nhstepm-1;h++){
         }        for(k=0;k<=nhstepm-1;k++){
         fprintf(ficrest,"\n");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     }          for(ij=1;ij<=nlstate*nlstate;ij++)
   }            for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   fclose(ficreseij);        }
   fclose(ficresvij);      }
   fclose(ficrest);  
   fclose(ficpar);      /* Computing expectancies */
   free_vector(epj,1,nlstate+1);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
        for(i=1; i<=nlstate;i++)
   /*------- Variance limit prevalence------*/          for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   strcpy(fileresvpl,"vpl");            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   strcat(fileresvpl,fileres);            
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);          }
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   k=0;        eip=0.;
   for(cptcov=1;cptcov<=i1;cptcov++){        vip=0.;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1; j<=nlstate;j++){
       k=k+1;          eip += eij[i][j][(int)age];
       fprintf(ficresvpl,"\n#****** ");          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       for(j=1;j<=cptcoveff;j++)            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
       fprintf(ficresvpl,"******\n");        }
              fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;      fprintf(ficresstdeij,"\n");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }      fprintf(ficrescveij,"%3.0f",age );
  }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   fclose(ficresvpl);          cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
   /*---------- End : free ----------------*/            for(j2=1; j2<=nlstate;j2++){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);              cptj2= (j2-1)*nlstate+i2;
                if(cptj2 <= cptj)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            }
          }
        fprintf(ficrescveij,"\n");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);     
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   free_matrix(matcov,1,npar,1,npar);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   free_vector(delti,1,npar);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(agev,1,maxwav,1,imx);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    printf("\n");
     fprintf(ficlog,"\n");
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);    free_vector(xm,1,npar);
   else   printf("End of Imach\n");    free_vector(xp,1,npar);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   /*printf("Total time was %d uSec.\n", total_usecs);*/  }
   /*------ End -----------*/  
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
  end:  {
 #ifdef windows    /* Variance of health expectancies */
   /* chdir(pathcd);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 #endif    /* double **newm;*/
  /*system("wgnuplot graph.plt");*/    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
  /*system("../gp37mgw/wgnuplot graph.plt");*/    
  /*system("cd ../gp37mgw");*/    int movingaverage();
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    double **dnewm,**doldm;
  strcpy(plotcmd,GNUPLOTPROGRAM);    double **dnewmp,**doldmp;
  strcat(plotcmd," ");    int i, j, nhstepm, hstepm, h, nstepm ;
  strcat(plotcmd,optionfilegnuplot);    int k;
  system(plotcmd);    double *xp;
     double **gp, **gm;  /* for var eij */
 #ifdef windows    double ***gradg, ***trgradg; /*for var eij */
   while (z[0] != 'q') {    double **gradgp, **trgradgp; /* for var p point j */
     /* chdir(path); */    double *gpp, *gmp; /* for var p point j */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     scanf("%s",z);    double ***p3mat;
     if (z[0] == 'c') system("./imach");    double age,agelim, hf;
     else if (z[0] == 'e') system(optionfilehtm);    double ***mobaverage;
     else if (z[0] == 'g') system(plotcmd);    int theta;
     else if (z[0] == 'q') exit(0);    char digit[4];
   }    char digitp[25];
 #endif  
 }    char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
   
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         /*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
           k=k+1; 
       /* for (k=1; k <= (int) pow(2,cptcoveff); k++){*/
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
               fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         /*}*/
       }
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.39  
changed lines
  Added in v.1.181


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>