Diff for /imach/src/imach.c between versions 1.2 and 1.100

version 1.2, 2001/03/13 18:10:26 version 1.100, 2004/07/12 18:29:06
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.100  2004/07/12 18:29:06  brouard
   individuals from different ages are interviewed on their health status    Add version for Mac OS X. Just define UNIX in Makefile
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.99  2004/06/05 08:57:40  brouard
   Health expectancies are computed from the transistions observed between    *** empty log message ***
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.98  2004/05/16 15:05:56  brouard
   reach the Maximum Likelihood of the parameters involved in the model.    New version 0.97 . First attempt to estimate force of mortality
   The simplest model is the multinomial logistic model where pij is    directly from the data i.e. without the need of knowing the health
   the probabibility to be observed in state j at the second wave conditional    state at each age, but using a Gompertz model: log u =a + b*age .
   to be observed in state i at the first wave. Therefore the model is:    This is the basic analysis of mortality and should be done before any
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    other analysis, in order to test if the mortality estimated from the
   is a covariate. If you want to have a more complex model than "constant and    cross-longitudinal survey is different from the mortality estimated
   age", you should modify the program where the markup    from other sources like vital statistic data.
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    The same imach parameter file can be used but the option for mle should be -3.
   
   The advantage that this computer programme claims, comes from that if the    Agnès, who wrote this part of the code, tried to keep most of the
   delay between waves is not identical for each individual, or if some    former routines in order to include the new code within the former code.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    The output is very simple: only an estimate of the intercept and of
   hPijx is the probability to be    the slope with 95% confident intervals.
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Current limitations:
   unobserved intermediate  states. This elementary transition (by month or    A) Even if you enter covariates, i.e. with the
   quarter trimester, semester or year) is model as a multinomial logistic.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    B) There is no computation of Life Expectancy nor Life Table.
   and the contribution of each individual to the likelihood is simply hPijx.  
     Revision 1.97  2004/02/20 13:25:42  lievre
   Also this programme outputs the covariance matrix of the parameters but also    Version 0.96d. Population forecasting command line is (temporarily)
   of the life expectancies. It also computes the prevalence limits.    suppressed.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.96  2003/07/15 15:38:55  brouard
            Institut national d'études démographiques, Paris.    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   This software have been partly granted by Euro-REVES, a concerted action    rewritten within the same printf. Workaround: many printfs.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.95  2003/07/08 07:54:34  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository):
   can be accessed at http://euroreves.ined.fr/imach .    (Repository): Using imachwizard code to output a more meaningful covariance
   **********************************************************************/    matrix (cov(a12,c31) instead of numbers.
    
 #include <math.h>    Revision 1.94  2003/06/27 13:00:02  brouard
 #include <stdio.h>    Just cleaning
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define MAXLINE 256    exist so I changed back to asctime which exists.
 #define FILENAMELENGTH 80    (Module): Version 0.96b
 /*#define DEBUG*/  
 #define windows    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    exist so I changed back to asctime which exists.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define NINTERVMAX 8    * imach.c (Repository): Duplicated warning errors corrected.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Repository): Elapsed time after each iteration is now output. It
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    helps to forecast when convergence will be reached. Elapsed time
 #define NCOVMAX 8 /* Maximum number of covariates */    is stamped in powell.  We created a new html file for the graphs
 #define MAXN 80000    concerning matrix of covariance. It has extension -cov.htm.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.90  2003/06/24 12:34:15  brouard
 #define AGEBASE 40    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 int nvar;  
 static int cptcov;    Revision 1.89  2003/06/24 12:30:52  brouard
 int cptcovn;    (Module): Some bugs corrected for windows. Also, when
 int npar=NPARMAX;    mle=-1 a template is output in file "or"mypar.txt with the design
 int nlstate=2; /* Number of live states */    of the covariance matrix to be input.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.87  2003/06/18 12:26:01  brouard
 int mle, weightopt;    Version 0.96
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.86  2003/06/17 20:04:08  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): Change position of html and gnuplot routines and added
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    routine fileappend.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;  
 FILE *ficgp, *fichtm;    Revision 1.85  2003/06/17 13:12:43  brouard
 FILE *ficreseij;    * imach.c (Repository): Check when date of death was earlier that
   char filerese[FILENAMELENGTH];    current date of interview. It may happen when the death was just
  FILE  *ficresvij;    prior to the death. In this case, dh was negative and likelihood
   char fileresv[FILENAMELENGTH];    was wrong (infinity). We still send an "Error" but patch by
  FILE  *ficresvpl;    assuming that the date of death was just one stepm after the
   char fileresvpl[FILENAMELENGTH];    interview.
     (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
     truncation)
 #define NR_END 1    (Repository): No more line truncation errors.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 #define NRANSI    place. It differs from routine "prevalence" which may be called
 #define ITMAX 200    many times. Probs is memory consuming and must be used with
     parcimony.
 #define TOL 2.0e-4    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 #define CGOLD 0.3819660    Revision 1.83  2003/06/10 13:39:11  lievre
 #define ZEPS 1.0e-10    *** empty log message ***
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.82  2003/06/05 15:57:20  brouard
 #define GOLD 1.618034    Add log in  imach.c and  fullversion number is now printed.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20  */
   /*
 static double maxarg1,maxarg2;     Interpolated Markov Chain
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Short summary of the programme:
      
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    This program computes Healthy Life Expectancies from
 #define rint(a) floor(a+0.5)    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 static double sqrarg;    interviewed on their health status or degree of disability (in the
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    case of a health survey which is our main interest) -2- at least a
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 int imx;    computed from the time spent in each health state according to a
 int stepm;    model. More health states you consider, more time is necessary to reach the
 /* Stepm, step in month: minimum step interpolation*/    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 int m,nb;    probability to be observed in state j at the second wave
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    conditional to be observed in state i at the first wave. Therefore
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 double **pmmij;    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 double *weight;    where the markup *Covariates have to be included here again* invites
 int **s; /* Status */    you to do it.  More covariates you add, slower the
 double *agedc, **covar, idx;    convergence.
 int **nbcode, *Tcode, *Tvar, **codtab;  
     The advantage of this computer programme, compared to a simple
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    multinomial logistic model, is clear when the delay between waves is not
 double ftolhess; /* Tolerance for computing hessian */    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /******************************************/  
     hPijx is the probability to be observed in state i at age x+h
 void replace(char *s, char*t)    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   int i;    states. This elementary transition (by month, quarter,
   int lg=20;    semester or year) is modelled as a multinomial logistic.  The hPx
   i=0;    matrix is simply the matrix product of nh*stepm elementary matrices
   lg=strlen(t);    and the contribution of each individual to the likelihood is simply
   for(i=0; i<= lg; i++) {    hPijx.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Also this programme outputs the covariance matrix of the parameters but also
   }    of the life expectancies. It also computes the stable prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int nbocc(char *s, char occ)             Institut national d'études démographiques, Paris.
 {    This software have been partly granted by Euro-REVES, a concerted action
   int i,j=0;    from the European Union.
   int lg=20;    It is copyrighted identically to a GNU software product, ie programme and
   i=0;    software can be distributed freely for non commercial use. Latest version
   lg=strlen(s);    can be accessed at http://euroreves.ined.fr/imach .
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   return j;    
 }    **********************************************************************/
   /*
 void cutv(char *u,char *v, char*t, char occ)    main
 {    read parameterfile
   int i,lg,j,p;    read datafile
   i=0;    concatwav
   if (t[0]== occ) p=0;    freqsummary
   for(j=0; j<=strlen(t)-1; j++) {    if (mle >= 1)
     if((t[j]!= occ) && (t[j+1]==occ)) p=j+1;      mlikeli
   }    print results files
     if mle==1 
   lg=strlen(t);       computes hessian
   for(j=0; j<p; j++) {    read end of parameter file: agemin, agemax, bage, fage, estepm
     (u[j] = t[j]);        begin-prev-date,...
     u[p]='\0';    open gnuplot file
   }    open html file
     stable prevalence
    for(j=0; j<= lg; j++) {     for age prevalim()
     if (j>=(p+1))(v[j-p-1] = t[j]);    h Pij x
   }    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
     Variance-covariance of DFLE
 /********************** nrerror ********************/    prevalence()
      movingaverage()
 void nrerror(char error_text[])    varevsij() 
 {    if popbased==1 varevsij(,popbased)
   fprintf(stderr,"ERREUR ...\n");    total life expectancies
   fprintf(stderr,"%s\n",error_text);    Variance of stable prevalence
   exit(1);   end
 }  */
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  
 {  
   double *v;   
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #include <math.h>
   if (!v) nrerror("allocation failure in vector");  #include <stdio.h>
   return v-nl+NR_END;  #include <stdlib.h>
 }  #include <unistd.h>
   
 /************************ free vector ******************/  /* #include <sys/time.h> */
 void free_vector(double*v, int nl, int nh)  #include <time.h>
 {  #include "timeval.h"
   free((FREE_ARG)(v+nl-NR_END));  
 }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  #define MAXLINE 256
 {  #define GNUPLOTPROGRAM "gnuplot"
   int *v;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define FILENAMELENGTH 132
   if (!v) nrerror("allocation failure in ivector");  /*#define DEBUG*/
   return v-nl+NR_END;  /*#define windows*/
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /******************* imatrix *******************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define NCOVMAX 8 /* Maximum number of covariates */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define AGESUP 130
   int **m;  #define AGEBASE 40
    #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   /* allocate pointers to rows */  #ifdef UNIX
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define DIRSEPARATOR '/'
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ODIRSEPARATOR '\\'
   m += NR_END;  #else
   m -= nrl;  #define DIRSEPARATOR '\\'
    #define ODIRSEPARATOR '/'
    #endif
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /* $Id$ */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* $State$ */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
    char fullversion[]="$Revision$ $Date$"; 
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    int nvar;
   /* return pointer to array of pointers to rows */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   return m;  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /****************** free_imatrix *************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 void free_imatrix(m,nrl,nrh,ncl,nch)  int popbased=0;
       int **m;  
       long nch,ncl,nrh,nrl;  int *wav; /* Number of waves for this individuual 0 is possible */
      /* free an int matrix allocated by imatrix() */  int maxwav; /* Maxim number of waves */
 {  int jmin, jmax; /* min, max spacing between 2 waves */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int gipmx, gsw; /* Global variables on the number of contributions 
   free((FREE_ARG) (m+nrl-NR_END));                     to the likelihood and the sum of weights (done by funcone)*/
 }  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 /******************* matrix *******************************/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 double **matrix(long nrl, long nrh, long ncl, long nch)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  double jmean; /* Mean space between 2 waves */
   double **m;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE *ficlog, *ficrespow;
   m += NR_END;  int globpr; /* Global variable for printing or not */
   m -= nrl;  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double sw; /* Sum of weights */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char filerespow[FILENAMELENGTH];
   m[nrl] += NR_END;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m[nrl] -= ncl;  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE *ficresprobmorprev;
   return m;  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /*************************free matrix ************************/  FILE  *ficresvij;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fileresvpl[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  char title[MAXLINE];
 }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 /******************* ma3x *******************************/  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char command[FILENAMELENGTH];
 {  int  outcmd=0;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char filelog[FILENAMELENGTH]; /* Log file */
   if (!m) nrerror("allocation failure 1 in matrix()");  char filerest[FILENAMELENGTH];
   m += NR_END;  char fileregp[FILENAMELENGTH];
   m -= nrl;  char popfile[FILENAMELENGTH];
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   m[nrl] -= ncl;  struct timezone tzp;
   extern int gettimeofday();
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  extern long time();
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char strcurr[80], strfor[80];
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #define NR_END 1
   for (j=ncl+1; j<=nch; j++)  #define FREE_ARG char*
     m[nrl][j]=m[nrl][j-1]+nlay;  #define FTOL 1.0e-10
    
   for (i=nrl+1; i<=nrh; i++) {  #define NRANSI 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define ITMAX 200 
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  #define TOL 2.0e-4 
   }  
   return m;  #define CGOLD 0.3819660 
 }  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define TINY 1.0e-20 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  static double maxarg1,maxarg2;
 }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 /***************** f1dim *************************/    
 extern int ncom;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 extern double *pcom,*xicom;  #define rint(a) floor(a+0.5)
 extern double (*nrfunc)(double []);  
    static double sqrarg;
 double f1dim(double x)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int j;  int agegomp= AGEGOMP;
   double f;  
   double *xt;  int imx; 
    int stepm=1;
   xt=vector(1,ncom);  /* Stepm, step in month: minimum step interpolation*/
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  int estepm;
   free_vector(xt,1,ncom);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   return f;  
 }  int m,nb;
   long *num;
 /*****************brent *************************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 {  double **pmmij, ***probs;
   int iter;  double *ageexmed,*agecens;
   double a,b,d,etemp;  double dateintmean=0;
   double fu,fv,fw,fx;  
   double ftemp;  double *weight;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  int **s; /* Status */
   double e=0.0;  double *agedc, **covar, idx;
    int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   x=w=v=bx;  double ftolhess; /* Tolerance for computing hessian */
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /**************** split *************************/
     xm=0.5*(a+b);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  {
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
     printf(".");fflush(stdout);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 #ifdef DEBUG    */ 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    char  *ss;                            /* pointer */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    int   l1, l2;                         /* length counters */
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    l1 = strlen(path );                   /* length of path */
       *xmin=x;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       return fx;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     }    if ( ss == NULL ) {                   /* no directory, so use current */
     ftemp=fu;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     if (fabs(e) > tol1) {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       r=(x-w)*(fx-fv);      /* get current working directory */
       q=(x-v)*(fx-fw);      /*    extern  char* getcwd ( char *buf , int len);*/
       p=(x-v)*q-(x-w)*r;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       q=2.0*(q-r);        return( GLOCK_ERROR_GETCWD );
       if (q > 0.0) p = -p;      }
       q=fabs(q);      strcpy( name, path );               /* we've got it */
       etemp=e;    } else {                              /* strip direcotry from path */
       e=d;      ss++;                               /* after this, the filename */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      l2 = strlen( ss );                  /* length of filename */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       else {      strcpy( name, ss );         /* save file name */
         d=p/q;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         u=x+d;      dirc[l1-l2] = 0;                    /* add zero */
         if (u-a < tol2 || b-u < tol2)    }
           d=SIGN(tol1,xm-x);    l1 = strlen( dirc );                  /* length of directory */
       }    /*#ifdef windows
     } else {    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #else
     }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #endif
     fu=(*f)(u);    */
     if (fu <= fx) {    ss = strrchr( name, '.' );            /* find last / */
       if (u >= x) a=x; else b=x;    if (ss >0){
       SHFT(v,w,x,u)      ss++;
         SHFT(fv,fw,fx,fu)      strcpy(ext,ss);                     /* save extension */
         } else {      l1= strlen( name);
           if (u < x) a=u; else b=u;      l2= strlen(ss)+1;
           if (fu <= fw || w == x) {      strncpy( finame, name, l1-l2);
             v=w;      finame[l1-l2]= 0;
             w=u;    }
             fv=fw;    return( 0 );                          /* we're done */
             fw=fu;  }
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  
             fv=fu;  /******************************************/
           }  
         }  void replace_back_to_slash(char *s, char*t)
   }  {
   nrerror("Too many iterations in brent");    int i;
   *xmin=x;    int lg=0;
   return fx;    i=0;
 }    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /****************** mnbrak ***********************/      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    }
             double (*func)(double))  }
 {  
   double ulim,u,r,q, dum;  int nbocc(char *s, char occ)
   double fu;  {
      int i,j=0;
   *fa=(*func)(*ax);    int lg=20;
   *fb=(*func)(*bx);    i=0;
   if (*fb > *fa) {    lg=strlen(s);
     SHFT(dum,*ax,*bx,dum)    for(i=0; i<= lg; i++) {
       SHFT(dum,*fb,*fa,dum)    if  (s[i] == occ ) j++;
       }    }
   *cx=(*bx)+GOLD*(*bx-*ax);    return j;
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  void cutv(char *u,char *v, char*t, char occ)
     q=(*bx-*cx)*(*fb-*fa);  {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    /* cuts string t into u and v where u is ended by char occ excluding it
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
     ulim=(*bx)+GLIMIT*(*cx-*bx);       gives u="abcedf" and v="ghi2j" */
     if ((*bx-u)*(u-*cx) > 0.0) {    int i,lg,j,p=0;
       fu=(*func)(u);    i=0;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    for(j=0; j<=strlen(t)-1; j++) {
       fu=(*func)(u);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       if (fu < *fc) {    }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))    lg=strlen(t);
           }    for(j=0; j<p; j++) {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      (u[j] = t[j]);
       u=ulim;    }
       fu=(*func)(u);       u[p]='\0';
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);     for(j=0; j<= lg; j++) {
       fu=(*func)(u);      if (j>=(p+1))(v[j-p-1] = t[j]);
     }    }
     SHFT(*ax,*bx,*cx,u)  }
       SHFT(*fa,*fb,*fc,fu)  
       }  /********************** nrerror ********************/
 }  
   void nrerror(char error_text[])
 /*************** linmin ************************/  {
     fprintf(stderr,"ERREUR ...\n");
 int ncom;    fprintf(stderr,"%s\n",error_text);
 double *pcom,*xicom;    exit(EXIT_FAILURE);
 double (*nrfunc)(double []);  }
    /*********************** vector *******************/
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  double *vector(int nl, int nh)
 {  {
   double brent(double ax, double bx, double cx,    double *v;
                double (*f)(double), double tol, double *xmin);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   double f1dim(double x);    if (!v) nrerror("allocation failure in vector");
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    return v-nl+NR_END;
               double *fc, double (*func)(double));  }
   int j;  
   double xx,xmin,bx,ax;  /************************ free vector ******************/
   double fx,fb,fa;  void free_vector(double*v, int nl, int nh)
    {
   ncom=n;    free((FREE_ARG)(v+nl-NR_END));
   pcom=vector(1,n);  }
   xicom=vector(1,n);  
   nrfunc=func;  /************************ivector *******************************/
   for (j=1;j<=n;j++) {  int *ivector(long nl,long nh)
     pcom[j]=p[j];  {
     xicom[j]=xi[j];    int *v;
   }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   ax=0.0;    if (!v) nrerror("allocation failure in ivector");
   xx=1.0;    return v-nl+NR_END;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  /******************free ivector **************************/
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  void free_ivector(int *v, long nl, long nh)
 #endif  {
   for (j=1;j<=n;j++) {    free((FREE_ARG)(v+nl-NR_END));
     xi[j] *= xmin;  }
     p[j] += xi[j];  
   }  /************************lvector *******************************/
   free_vector(xicom,1,n);  long *lvector(long nl,long nh)
   free_vector(pcom,1,n);  {
 }    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 /*************** powell ************************/    if (!v) nrerror("allocation failure in ivector");
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    return v-nl+NR_END;
             double (*func)(double []))  }
 {  
   void linmin(double p[], double xi[], int n, double *fret,  /******************free lvector **************************/
               double (*func)(double []));  void free_lvector(long *v, long nl, long nh)
   int i,ibig,j;  {
   double del,t,*pt,*ptt,*xit;    free((FREE_ARG)(v+nl-NR_END));
   double fp,fptt;  }
   double *xits;  
   pt=vector(1,n);  /******************* imatrix *******************************/
   ptt=vector(1,n);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   xit=vector(1,n);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   xits=vector(1,n);  { 
   *fret=(*func)(p);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   for (j=1;j<=n;j++) pt[j]=p[j];    int **m; 
   for (*iter=1;;++(*iter)) {    
     fp=(*fret);    /* allocate pointers to rows */ 
     ibig=0;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     del=0.0;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    m += NR_END; 
     for (i=1;i<=n;i++)    m -= nrl; 
       printf(" %d %.12f",i, p[i]);    
     printf("\n");    
     for (i=1;i<=n;i++) {    /* allocate rows and set pointers to them */ 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       fptt=(*fret);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 #ifdef DEBUG    m[nrl] += NR_END; 
       printf("fret=%lf \n",*fret);    m[nrl] -= ncl; 
 #endif    
       printf("%d",i);fflush(stdout);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       linmin(p,xit,n,fret,func);    
       if (fabs(fptt-(*fret)) > del) {    /* return pointer to array of pointers to rows */ 
         del=fabs(fptt-(*fret));    return m; 
         ibig=i;  } 
       }  
 #ifdef DEBUG  /****************** free_imatrix *************************/
       printf("%d %.12e",i,(*fret));  void free_imatrix(m,nrl,nrh,ncl,nch)
       for (j=1;j<=n;j++) {        int **m;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        long nch,ncl,nrh,nrl; 
         printf(" x(%d)=%.12e",j,xit[j]);       /* free an int matrix allocated by imatrix() */ 
       }  { 
       for(j=1;j<=n;j++)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         printf(" p=%.12e",p[j]);    free((FREE_ARG) (m+nrl-NR_END)); 
       printf("\n");  } 
 #endif  
     }  /******************* matrix *******************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  double **matrix(long nrl, long nrh, long ncl, long nch)
 #ifdef DEBUG  {
       int k[2],l;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       k[0]=1;    double **m;
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (j=1;j<=n;j++)    if (!m) nrerror("allocation failure 1 in matrix()");
         printf(" %.12e",p[j]);    m += NR_END;
       printf("\n");    m -= nrl;
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl] += NR_END;
         }    m[nrl] -= ncl;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #endif    return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      */
       free_vector(xit,1,n);  }
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  /*************************free matrix ************************/
       free_vector(pt,1,n);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       return;  {
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    free((FREE_ARG)(m+nrl-NR_END));
     for (j=1;j<=n;j++) {  }
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  /******************* ma3x *******************************/
       pt[j]=p[j];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
     fptt=(*func)(ptt);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     if (fptt < fp) {    double ***m;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         linmin(p,xit,n,fret,func);    if (!m) nrerror("allocation failure 1 in matrix()");
         for (j=1;j<=n;j++) {    m += NR_END;
           xi[j][ibig]=xi[j][n];    m -= nrl;
           xi[j][n]=xit[j];  
         }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl] += NR_END;
         for(j=1;j<=n;j++)    m[nrl] -= ncl;
           printf(" %.12e",xit[j]);  
         printf("\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #endif  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   }    m[nrl][ncl] += NR_END;
 }    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
 /**** Prevalence limit ****************/      m[nrl][j]=m[nrl][j-1]+nlay;
     
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    for (i=nrl+1; i<=nrh; i++) {
 {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      for (j=ncl+1; j<=nch; j++) 
      matrix by transitions matrix until convergence is reached */        m[i][j]=m[i][j-1]+nlay;
     }
   int i, ii,j,k;    return m; 
   double min, max, maxmin, maxmax,sumnew=0.;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double **matprod2();             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double **out, cov[NCOVMAX], **pmij();    */
   double **newm;  }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /*************************free ma3x ************************/
   for (ii=1;ii<=nlstate+ndeath;ii++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free((FREE_ARG)(m+nrl-NR_END));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  }
     newm=savm;  
     /* Covariates have to be included here again */  /*************** function subdirf ***********/
     cov[1]=1.;  char *subdirf(char fileres[])
     cov[2]=agefin;  {
     if (cptcovn>0){    /* Caution optionfilefiname is hidden */
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/"); /* Add to the right */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    strcat(tmpout,fileres);
     return tmpout;
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  /*************** function subdirf2 ***********/
     for(j=1;j<=nlstate;j++){  char *subdirf2(char fileres[], char *preop)
       min=1.;  {
       max=0.;    
       for(i=1; i<=nlstate; i++) {    /* Caution optionfilefiname is hidden */
         sumnew=0;    strcpy(tmpout,optionfilefiname);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    strcat(tmpout,"/");
         prlim[i][j]= newm[i][j]/(1-sumnew);    strcat(tmpout,preop);
         max=FMAX(max,prlim[i][j]);    strcat(tmpout,fileres);
         min=FMIN(min,prlim[i][j]);    return tmpout;
       }  }
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  /*************** function subdirf3 ***********/
     }  char *subdirf3(char fileres[], char *preop, char *preop2)
     if(maxmax < ftolpl){  {
       return prlim;    
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/");
     strcat(tmpout,preop);
 /*************** transition probabilities **********/    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    return tmpout;
 {  }
   double s1, s2;  
   /*double t34;*/  /***************** f1dim *************************/
   int i,j,j1, nc, ii, jj;  extern int ncom; 
   extern double *pcom,*xicom;
     for(i=1; i<= nlstate; i++){  extern double (*nrfunc)(double []); 
     for(j=1; j<i;j++){   
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double f1dim(double x) 
         /*s2 += param[i][j][nc]*cov[nc];*/  { 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    int j; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double f;
       }    double *xt; 
       ps[i][j]=s2;   
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    xt=vector(1,ncom); 
     }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     for(j=i+1; j<=nlstate+ndeath;j++){    f=(*nrfunc)(xt); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    free_vector(xt,1,ncom); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return f; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  } 
       }  
       ps[i][j]=s2;  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   }  { 
   for(i=1; i<= nlstate; i++){    int iter; 
      s1=0;    double a,b,d,etemp;
     for(j=1; j<i; j++)    double fu,fv,fw,fx;
       s1+=exp(ps[i][j]);    double ftemp;
     for(j=i+1; j<=nlstate+ndeath; j++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       s1+=exp(ps[i][j]);    double e=0.0; 
     ps[i][i]=1./(s1+1.);   
     for(j=1; j<i; j++)    a=(ax < cx ? ax : cx); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    b=(ax > cx ? ax : cx); 
     for(j=i+1; j<=nlstate+ndeath; j++)    x=w=v=bx; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    fw=fv=fx=(*f)(x); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    for (iter=1;iter<=ITMAX;iter++) { 
   } /* end i */      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for(jj=1; jj<= nlstate+ndeath; jj++){      printf(".");fflush(stdout);
       ps[ii][jj]=0;      fprintf(ficlog,".");fflush(ficlog);
       ps[ii][ii]=1;  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  #endif
     for(jj=1; jj<= nlstate+ndeath; jj++){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      printf("%lf ",ps[ii][jj]);        *xmin=x; 
    }        return fx; 
     printf("\n ");      } 
     }      ftemp=fu;
     printf("\n ");printf("%lf ",cov[2]);*/      if (fabs(e) > tol1) { 
 /*        r=(x-w)*(fx-fv); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        q=(x-v)*(fx-fw); 
   goto end;*/        p=(x-v)*q-(x-w)*r; 
     return ps;        q=2.0*(q-r); 
 }        if (q > 0.0) p = -p; 
         q=fabs(q); 
 /**************** Product of 2 matrices ******************/        etemp=e; 
         e=d; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        else { 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          d=p/q; 
   /* in, b, out are matrice of pointers which should have been initialized          u=x+d; 
      before: only the contents of out is modified. The function returns          if (u-a < tol2 || b-u < tol2) 
      a pointer to pointers identical to out */            d=SIGN(tol1,xm-x); 
   long i, j, k;        } 
   for(i=nrl; i<= nrh; i++)      } else { 
     for(k=ncolol; k<=ncoloh; k++)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      } 
         out[i][k] +=in[i][j]*b[j][k];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
   return out;      if (fu <= fx) { 
 }        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
 /************* Higher Matrix Product ***************/          } else { 
             if (u < x) a=u; else b=u; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )            if (fu <= fw || w == x) { 
 {              v=w; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month              w=u; 
      duration (i.e. until              fv=fw; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.              fw=fu; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step            } else if (fu <= fv || v == x || v == w) { 
      (typically every 2 years instead of every month which is too big).              v=u; 
      Model is determined by parameters x and covariates have to be              fv=fu; 
      included manually here.            } 
           } 
      */    } 
     nrerror("Too many iterations in brent"); 
   int i, j, d, h, k;    *xmin=x; 
   double **out, cov[NCOVMAX];    return fx; 
   double **newm;  } 
   
   /* Hstepm could be zero and should return the unit matrix */  /****************** mnbrak ***********************/
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       oldm[i][j]=(i==j ? 1.0 : 0.0);              double (*func)(double)) 
       po[i][j][0]=(i==j ? 1.0 : 0.0);  { 
     }    double ulim,u,r,q, dum;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double fu; 
   for(h=1; h <=nhstepm; h++){   
     for(d=1; d <=hstepm; d++){    *fa=(*func)(*ax); 
       newm=savm;    *fb=(*func)(*bx); 
       /* Covariates have to be included here again */    if (*fb > *fa) { 
       cov[1]=1.;      SHFT(dum,*ax,*bx,dum) 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        SHFT(dum,*fb,*fa,dum) 
       if (cptcovn>0){        } 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    *cx=(*bx)+GOLD*(*bx-*ax); 
     }    *fc=(*func)(*cx); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    while (*fb > *fc) { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      r=(*bx-*ax)*(*fb-*fc); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      q=(*bx-*cx)*(*fb-*fa); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       savm=oldm;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       oldm=newm;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     }      if ((*bx-u)*(u-*cx) > 0.0) { 
     for(i=1; i<=nlstate+ndeath; i++)        fu=(*func)(u); 
       for(j=1;j<=nlstate+ndeath;j++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         po[i][j][h]=newm[i][j];        fu=(*func)(u); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        if (fu < *fc) { 
          */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       }            SHFT(*fb,*fc,fu,(*func)(u)) 
   } /* end h */            } 
   return po;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 }        u=ulim; 
         fu=(*func)(u); 
       } else { 
 /*************** log-likelihood *************/        u=(*cx)+GOLD*(*cx-*bx); 
 double func( double *x)        fu=(*func)(u); 
 {      } 
   int i, ii, j, k, mi, d;      SHFT(*ax,*bx,*cx,u) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        SHFT(*fa,*fb,*fc,fu) 
   double **out;        } 
   double sw; /* Sum of weights */  } 
   double lli; /* Individual log likelihood */  
   long ipmx;  /*************** linmin ************************/
   /*extern weight */  
   /* We are differentiating ll according to initial status */  int ncom; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  double *pcom,*xicom;
   /*for(i=1;i<imx;i++)  double (*nrfunc)(double []); 
 printf(" %d\n",s[4][i]);   
   */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double brent(double ax, double bx, double cx, 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){                 double (*f)(double), double tol, double *xmin); 
        for(mi=1; mi<= wav[i]-1; mi++){    double f1dim(double x); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);                double *fc, double (*func)(double)); 
             for(d=0; d<dh[mi][i]; d++){    int j; 
         newm=savm;    double xx,xmin,bx,ax; 
           cov[1]=1.;    double fx,fb,fa;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;   
           if (cptcovn>0){    ncom=n; 
             for (k=1; k<=cptcovn;k++) {    pcom=vector(1,n); 
               cov[2+k]=covar[Tvar[k]][i];    xicom=vector(1,n); 
               /* printf("k=%d cptcovn=%d %lf\n",k,cptcovn,covar[Tvar[k]][i]);*/    nrfunc=func; 
             }    for (j=1;j<=n;j++) { 
             }      pcom[j]=p[j]; 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      xicom[j]=xi[j]; 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    } 
           savm=oldm;    ax=0.0; 
           oldm=newm;    xx=1.0; 
       } /* end mult */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
        *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  #ifdef DEBUG
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       ipmx +=1;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       sw += weight[i];  #endif
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    for (j=1;j<=n;j++) { 
     } /* end of wave */      xi[j] *= xmin; 
   } /* end of individual */      p[j] += xi[j]; 
     } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    free_vector(xicom,1,n); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    free_vector(pcom,1,n); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  } 
   
   return -l;  char *asc_diff_time(long time_sec, char ascdiff[])
 }  {
     long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
 /*********** Maximum Likelihood Estimation ***************/    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    sec_left = (sec_left) %(60*60);
 {    minutes = (sec_left) /60;
   int i,j, iter;    sec_left = (sec_left) % (60);
   double **xi,*delti;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   double fret;    return ascdiff;
   xi=matrix(1,npar,1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  /*************** powell ************************/
       xi[i][j]=(i==j ? 1.0 : 0.0);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   printf("Powell\n");              double (*func)(double [])) 
   powell(p,xi,npar,ftol,&iter,&fret,func);  { 
     void linmin(double p[], double xi[], int n, double *fret, 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));                double (*func)(double [])); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
 }    double fp,fptt;
     double *xits;
 /**** Computes Hessian and covariance matrix ***/    int niterf, itmp;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {    pt=vector(1,n); 
   double  **a,**y,*x,pd;    ptt=vector(1,n); 
   double **hess;    xit=vector(1,n); 
   int i, j,jk;    xits=vector(1,n); 
   int *indx;    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
   double hessii(double p[], double delta, int theta, double delti[]);    for (*iter=1;;++(*iter)) { 
   double hessij(double p[], double delti[], int i, int j);      fp=(*fret); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      ibig=0; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      del=0.0; 
       last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
   hess=matrix(1,npar,1,npar);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   printf("\nCalculation of the hessian matrix. Wait...\n");      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   for (i=1;i<=npar;i++){      */
     printf("%d",i);fflush(stdout);     for (i=1;i<=n;i++) {
     hess[i][i]=hessii(p,ftolhess,i,delti);        printf(" %d %.12f",i, p[i]);
     /*printf(" %f ",p[i]);*/        fprintf(ficlog," %d %.12lf",i, p[i]);
   }        fprintf(ficrespow," %.12lf", p[i]);
       }
   for (i=1;i<=npar;i++) {      printf("\n");
     for (j=1;j<=npar;j++)  {      fprintf(ficlog,"\n");
       if (j>i) {      fprintf(ficrespow,"\n");fflush(ficrespow);
         printf(".%d%d",i,j);fflush(stdout);      if(*iter <=3){
         hess[i][j]=hessij(p,delti,i,j);        tm = *localtime(&curr_time.tv_sec);
         hess[j][i]=hess[i][j];        strcpy(strcurr,asctime(&tmf));
       }  /*       asctime_r(&tm,strcurr); */
     }        forecast_time=curr_time;
   }        itmp = strlen(strcurr);
   printf("\n");        if(strcurr[itmp-1]=='\n')
           strcurr[itmp-1]='\0';
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   a=matrix(1,npar,1,npar);        for(niterf=10;niterf<=30;niterf+=10){
   y=matrix(1,npar,1,npar);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   x=vector(1,npar);          tmf = *localtime(&forecast_time.tv_sec);
   indx=ivector(1,npar);  /*      asctime_r(&tmf,strfor); */
   for (i=1;i<=npar;i++)          strcpy(strfor,asctime(&tmf));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          itmp = strlen(strfor);
   ludcmp(a,npar,indx,&pd);          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
   for (j=1;j<=npar;j++) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (i=1;i<=npar;i++) x[i]=0;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     x[j]=1;        }
     lubksb(a,npar,indx,x);      }
     for (i=1;i<=npar;i++){      for (i=1;i<=n;i++) { 
       matcov[i][j]=x[i];        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     }        fptt=(*fret); 
   }  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
   printf("\n#Hessian matrix#\n");        fprintf(ficlog,"fret=%lf \n",*fret);
   for (i=1;i<=npar;i++) {  #endif
     for (j=1;j<=npar;j++) {        printf("%d",i);fflush(stdout);
       printf("%.3e ",hess[i][j]);        fprintf(ficlog,"%d",i);fflush(ficlog);
     }        linmin(p,xit,n,fret,func); 
     printf("\n");        if (fabs(fptt-(*fret)) > del) { 
   }          del=fabs(fptt-(*fret)); 
           ibig=i; 
   /* Recompute Inverse */        } 
   for (i=1;i<=npar;i++)  #ifdef DEBUG
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        printf("%d %.12e",i,(*fret));
   ludcmp(a,npar,indx,&pd);        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   /*  printf("\n#Hessian matrix recomputed#\n");          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   for (j=1;j<=npar;j++) {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for (i=1;i<=npar;i++) x[i]=0;        }
     x[j]=1;        for(j=1;j<=n;j++) {
     lubksb(a,npar,indx,x);          printf(" p=%.12e",p[j]);
     for (i=1;i<=npar;i++){          fprintf(ficlog," p=%.12e",p[j]);
       y[i][j]=x[i];        }
       printf("%.3e ",y[i][j]);        printf("\n");
     }        fprintf(ficlog,"\n");
     printf("\n");  #endif
   }      } 
   */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
   free_matrix(a,1,npar,1,npar);        int k[2],l;
   free_matrix(y,1,npar,1,npar);        k[0]=1;
   free_vector(x,1,npar);        k[1]=-1;
   free_ivector(indx,1,npar);        printf("Max: %.12e",(*func)(p));
   free_matrix(hess,1,npar,1,npar);        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
 }          fprintf(ficlog," %.12e",p[j]);
         }
 /*************** hessian matrix ****************/        printf("\n");
 double hessii( double x[], double delta, int theta, double delti[])        fprintf(ficlog,"\n");
 {        for(l=0;l<=1;l++) {
   int i;          for (j=1;j<=n;j++) {
   int l=1, lmax=20;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   double k1,k2;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double p2[NPARMAX+1];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double res;          }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double fx;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int k=0,kmax=10;        }
   double l1;  #endif
   
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];        free_vector(xit,1,n); 
   for(l=0 ; l <=lmax; l++){        free_vector(xits,1,n); 
     l1=pow(10,l);        free_vector(ptt,1,n); 
     delts=delt;        free_vector(pt,1,n); 
     for(k=1 ; k <kmax; k=k+1){        return; 
       delt = delta*(l1*k);      } 
       p2[theta]=x[theta] +delt;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       k1=func(p2)-fx;      for (j=1;j<=n;j++) { 
       p2[theta]=x[theta]-delt;        ptt[j]=2.0*p[j]-pt[j]; 
       k2=func(p2)-fx;        xit[j]=p[j]-pt[j]; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        pt[j]=p[j]; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      } 
            fptt=(*func)(ptt); 
 #ifdef DEBUG      if (fptt < fp) { 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 #endif        if (t < 0.0) { 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          linmin(p,xit,n,fret,func); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          for (j=1;j<=n;j++) { 
         k=kmax;            xi[j][ibig]=xi[j][n]; 
       }            xi[j][n]=xit[j]; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          }
         k=kmax; l=lmax*10.;  #ifdef DEBUG
       }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         delts=delt;          for(j=1;j<=n;j++){
       }            printf(" %.12e",xit[j]);
     }            fprintf(ficlog," %.12e",xit[j]);
   }          }
   delti[theta]=delts;          printf("\n");
   return res;            fprintf(ficlog,"\n");
 }  #endif
         }
 double hessij( double x[], double delti[], int thetai,int thetaj)      } 
 {    } 
   int i;  } 
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  /**** Prevalence limit (stable prevalence)  ****************/
   double p2[NPARMAX+1];  
   int k;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
   fx=func(x);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for (k=1; k<=2; k++) {       matrix by transitions matrix until convergence is reached */
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;    int i, ii,j,k;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double min, max, maxmin, maxmax,sumnew=0.;
     k1=func(p2)-fx;    double **matprod2();
      double **out, cov[NCOVMAX], **pmij();
     p2[thetai]=x[thetai]+delti[thetai]/k;    double **newm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double agefin, delaymax=50 ; /* Max number of years to converge */
     k2=func(p2)-fx;  
      for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetai]=x[thetai]-delti[thetai]/k;      for (j=1;j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     k3=func(p2)-fx;      }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;     cov[1]=1.;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;   
     k4=func(p2)-fx;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 #ifdef DEBUG      newm=savm;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      /* Covariates have to be included here again */
 #endif       cov[2]=agefin;
   }    
   return res;        for (k=1; k<=cptcovn;k++) {
 }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 /************** Inverse of matrix **************/        }
 void ludcmp(double **a, int n, int *indx, double *d)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {        for (k=1; k<=cptcovprod;k++)
   int i,imax,j,k;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double big,dum,sum,temp;  
   double *vv;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
          /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   vv=vector(1,n);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   *d=1.0;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   for (i=1;i<=n;i++) {  
     big=0.0;      savm=oldm;
     for (j=1;j<=n;j++)      oldm=newm;
       if ((temp=fabs(a[i][j])) > big) big=temp;      maxmax=0.;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      for(j=1;j<=nlstate;j++){
     vv[i]=1.0/big;        min=1.;
   }        max=0.;
   for (j=1;j<=n;j++) {        for(i=1; i<=nlstate; i++) {
     for (i=1;i<j;i++) {          sumnew=0;
       sum=a[i][j];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          prlim[i][j]= newm[i][j]/(1-sumnew);
       a[i][j]=sum;          max=FMAX(max,prlim[i][j]);
     }          min=FMIN(min,prlim[i][j]);
     big=0.0;        }
     for (i=j;i<=n;i++) {        maxmin=max-min;
       sum=a[i][j];        maxmax=FMAX(maxmax,maxmin);
       for (k=1;k<j;k++)      }
         sum -= a[i][k]*a[k][j];      if(maxmax < ftolpl){
       a[i][j]=sum;        return prlim;
       if ( (dum=vv[i]*fabs(sum)) >= big) {      }
         big=dum;    }
         imax=i;  }
       }  
     }  /*************** transition probabilities ***************/ 
     if (j != imax) {  
       for (k=1;k<=n;k++) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         dum=a[imax][k];  {
         a[imax][k]=a[j][k];    double s1, s2;
         a[j][k]=dum;    /*double t34;*/
       }    int i,j,j1, nc, ii, jj;
       *d = -(*d);  
       vv[imax]=vv[j];      for(i=1; i<= nlstate; i++){
     }        for(j=1; j<i;j++){
     indx[j]=imax;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     if (a[j][j] == 0.0) a[j][j]=TINY;            /*s2 += param[i][j][nc]*cov[nc];*/
     if (j != n) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       dum=1.0/(a[j][j]);  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          }
     }          ps[i][j]=s2;
   }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   free_vector(vv,1,n);  /* Doesn't work */        }
 ;        for(j=i+1; j<=nlstate+ndeath;j++){
 }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 void lubksb(double **a, int n, int *indx, double b[])  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 {          }
   int i,ii=0,ip,j;          ps[i][j]=s2;
   double sum;        }
        }
   for (i=1;i<=n;i++) {      /*ps[3][2]=1;*/
     ip=indx[i];      
     sum=b[ip];      for(i=1; i<= nlstate; i++){
     b[ip]=b[i];        s1=0;
     if (ii)        for(j=1; j<i; j++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          s1+=exp(ps[i][j]);
     else if (sum) ii=i;        for(j=i+1; j<=nlstate+ndeath; j++)
     b[i]=sum;          s1+=exp(ps[i][j]);
   }        ps[i][i]=1./(s1+1.);
   for (i=n;i>=1;i--) {        for(j=1; j<i; j++)
     sum=b[i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for(j=i+1; j<=nlstate+ndeath; j++)
     b[i]=sum/a[i][i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
   }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 }      } /* end i */
       
 /************ Frequencies ********************/      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)        for(jj=1; jj<= nlstate+ndeath; jj++){
 {  /* Some frequencies */          ps[ii][jj]=0;
            ps[ii][ii]=1;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        }
   double ***freq; /* Frequencies */      }
   double *pp;      
   double pos;  
   FILE *ficresp;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   char fileresp[FILENAMELENGTH];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
   pp=vector(1,nlstate);  /*       } */
   /*       printf("\n "); */
   strcpy(fileresp,"p");  /*        } */
   strcat(fileresp,fileres);  /*        printf("\n ");printf("%lf ",cov[2]); */
   if((ficresp=fopen(fileresp,"w"))==NULL) {         /*
     printf("Problem with prevalence resultfile: %s\n", fileresp);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     exit(0);        goto end;*/
   }      return ps;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  }
   j1=0;  
   /**************** Product of 2 matrices ******************/
   j=cptcovn;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
   for(k1=1; k1<=j;k1++){    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
    for(i1=1; i1<=ncodemax[k1];i1++){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
        j1++;    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
         for (i=-1; i<=nlstate+ndeath; i++)         a pointer to pointers identical to out */
          for (jk=-1; jk<=nlstate+ndeath; jk++)      long i, j, k;
            for(m=agemin; m <= agemax+3; m++)    for(i=nrl; i<= nrh; i++)
              freq[i][jk][m]=0;      for(k=ncolol; k<=ncoloh; k++)
                for(j=ncl,out[i][k]=0.; j<=nch; j++)
        for (i=1; i<=imx; i++) {          out[i][k] +=in[i][j]*b[j][k];
          bool=1;  
          if  (cptcovn>0) {    return out;
            for (z1=1; z1<=cptcovn; z1++)  }
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;  
          }  
           if (bool==1) {  /************* Higher Matrix Product ***************/
            for(m=firstpass; m<=lastpass-1; m++){  
              if(agev[m][i]==0) agev[m][i]=agemax+1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
              if(agev[m][i]==1) agev[m][i]=agemax+2;  {
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    /* Computes the transition matrix starting at age 'age' over 
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];       'nhstepm*hstepm*stepm' months (i.e. until
            }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
          }       nhstepm*hstepm matrices. 
        }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         if  (cptcovn>0) {       (typically every 2 years instead of every month which is too big 
          fprintf(ficresp, "\n#Variable");       for the memory).
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);       Model is determined by parameters x and covariates have to be 
        }       included manually here. 
        fprintf(ficresp, "\n#");  
        for(i=1; i<=nlstate;i++)       */
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
        fprintf(ficresp, "\n");    int i, j, d, h, k;
            double **out, cov[NCOVMAX];
   for(i=(int)agemin; i <= (int)agemax+3; i++){    double **newm;
     if(i==(int)agemax+3)  
       printf("Total");    /* Hstepm could be zero and should return the unit matrix */
     else    for (i=1;i<=nlstate+ndeath;i++)
       printf("Age %d", i);      for (j=1;j<=nlstate+ndeath;j++){
     for(jk=1; jk <=nlstate ; jk++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
         pp[jk] += freq[jk][m][i];      }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(jk=1; jk <=nlstate ; jk++){    for(h=1; h <=nhstepm; h++){
       for(m=-1, pos=0; m <=0 ; m++)      for(d=1; d <=hstepm; d++){
         pos += freq[jk][m][i];        newm=savm;
       if(pp[jk]>=1.e-10)        /* Covariates have to be included here again */
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        cov[1]=1.;
       else        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }        for (k=1; k<=cptcovage;k++)
     for(jk=1; jk <=nlstate ; jk++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovprod;k++)
         pp[jk] += freq[jk][m][i];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }  
     for(jk=1,pos=0; jk <=nlstate ; jk++)  
       pos += pp[jk];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     for(jk=1; jk <=nlstate ; jk++){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       if(pos>=1.e-5)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       else        savm=oldm;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        oldm=newm;
       if( i <= (int) agemax){      }
         if(pos>=1.e-5)      for(i=1; i<=nlstate+ndeath; i++)
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        for(j=1;j<=nlstate+ndeath;j++) {
       else          po[i][j][h]=newm[i][j];
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       }           */
     }        }
     for(jk=-1; jk <=nlstate+ndeath; jk++)    } /* end h */
       for(m=-1; m <=nlstate+ndeath; m++)    return po;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  }
     if(i <= (int) agemax)  
       fprintf(ficresp,"\n");  
     printf("\n");  /*************** log-likelihood *************/
     }  double func( double *x)
     }  {
  }    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   fclose(ficresp);    double **out;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    double sw; /* Sum of weights */
   free_vector(pp,1,nlstate);    double lli; /* Individual log likelihood */
     int s1, s2;
 }  /* End of Freq */    double bbh, survp;
     long ipmx;
 /************* Waves Concatenation ***************/    /*extern weight */
     /* We are differentiating ll according to initial status */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 {    /*for(i=1;i<imx;i++) 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      printf(" %d\n",s[4][i]);
      Death is a valid wave (if date is known).    */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    cov[1]=1.;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.    for(k=1; k<=nlstate; k++) ll[k]=0.;
      */  
     if(mle==1){
   int i, mi, m;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 float sum=0.;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   for(i=1; i<=imx; i++){            for (j=1;j<=nlstate+ndeath;j++){
     mi=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     m=firstpass;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     while(s[m][i] <= nlstate){            }
       if(s[m][i]>=1)          for(d=0; d<dh[mi][i]; d++){
         mw[++mi][i]=m;            newm=savm;
       if(m >=lastpass)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         break;            for (kk=1; kk<=cptcovage;kk++) {
       else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         m++;            }
     }/* end while */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     if (s[m][i] > nlstate){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       mi++;     /* Death is another wave */            savm=oldm;
       /* if(mi==0)  never been interviewed correctly before death */            oldm=newm;
          /* Only death is a correct wave */          } /* end mult */
       mw[mi][i]=m;        
     }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
     wav[i]=mi;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     if(mi==0)           * (in months) between two waves is not a multiple of stepm, we rounded to 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);           * the nearest (and in case of equal distance, to the lowest) interval but now
   }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   for(i=1; i<=imx; i++){           * probability in order to take into account the bias as a fraction of the way
     for(mi=1; mi<wav[i];mi++){           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       if (stepm <=0)           * -stepm/2 to stepm/2 .
         dh[mi][i]=1;           * For stepm=1 the results are the same as for previous versions of Imach.
       else{           * For stepm > 1 the results are less biased than in previous versions. 
         if (s[mw[mi+1][i]][i] > nlstate) {           */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          s1=s[mw[mi][i]][i];
           if(j=0) j=1;  /* Survives at least one month after exam */          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
         else{          /* bias is positive if real duration
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));           * is higher than the multiple of stepm and negative otherwise.
           /*printf("i=%d agevi+1=%lf agevi=%lf j=%d\n", i,agev[mw[mi+1][i]][i],agev[mw[mi][i]][i],j);*/           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           k=k+1;          if( s2 > nlstate){ 
           if (j >= jmax) jmax=j;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
           else if (j <= jmin)jmin=j;               to the likelihood is the probability to die between last step unit time and current 
           sum=sum+j;               step unit time, which is also the differences between probability to die before dh 
         }               and probability to die before dh-stepm . 
         jk= j/stepm;               In version up to 0.92 likelihood was computed
         jl= j -jk*stepm;          as if date of death was unknown. Death was treated as any other
         ju= j -(jk+1)*stepm;          health state: the date of the interview describes the actual state
         if(jl <= -ju)          and not the date of a change in health state. The former idea was
           dh[mi][i]=jk;          to consider that at each interview the state was recorded
         else          (healthy, disable or death) and IMaCh was corrected; but when we
           dh[mi][i]=jk+1;          introduced the exact date of death then we should have modified
         if(dh[mi][i]==0)          the contribution of an exact death to the likelihood. This new
           dh[mi][i]=1; /* At least one step */          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
     }          and month of death but the probability to survive from last
   }          interview up to one month before death multiplied by the
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);          probability to die within a month. Thanks to Chris
 }          Jackson for correcting this bug.  Former versions increased
 /*********** Tricode ****************************/          mortality artificially. The bad side is that we add another loop
 void tricode(int *Tvar, int **nbcode, int imx)          which slows down the processing. The difference can be up to 10%
 {          lower mortality.
   int Ndum[80],ij, k, j, i;            */
   int cptcode=0;            lli=log(out[s1][s2] - savm[s1][s2]);
   for (k=0; k<79; k++) Ndum[k]=0;          }else{
   for (k=1; k<=7; k++) ncodemax[k]=0;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   for (j=1; j<=cptcovn; j++) {          } 
     for (i=1; i<=imx; i++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       ij=(int)(covar[Tvar[j]][i]);          /*if(lli ==000.0)*/
       Ndum[ij]++;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       if (ij > cptcode) cptcode=ij;          ipmx +=1;
     }          sw += weight[i];
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=0; i<=cptcode; i++) {        } /* end of wave */
       if(Ndum[i]!=0) ncodemax[j]++;      } /* end of individual */
     }    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     ij=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1; i<=ncodemax[j]; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       for (k=0; k<=79; k++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         if (Ndum[k] != 0) {            for (j=1;j<=nlstate+ndeath;j++){
           nbcode[Tvar[j]][ij]=k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           ij++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         if (ij > ncodemax[j]) break;          for(d=0; d<=dh[mi][i]; d++){
       }              newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }              for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*********** Health Expectancies ****************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            oldm=newm;
 {          } /* end mult */
   /* Health expectancies */        
   int i, j, nhstepm, hstepm, h;          s1=s[mw[mi][i]][i];
   double age, agelim,hf;          s2=s[mw[mi+1][i]][i];
   double ***p3mat;          bbh=(double)bh[mi][i]/(double)stepm; 
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   fprintf(ficreseij,"# Health expectancies\n");          ipmx +=1;
   fprintf(ficreseij,"# Age");          sw += weight[i];
   for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(j=1; j<=nlstate;j++)        } /* end of wave */
       fprintf(ficreseij," %1d-%1d",i,j);      } /* end of individual */
   fprintf(ficreseij,"\n");    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   hstepm=1*YEARM; /*  Every j years of age (in month) */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   agelim=AGESUP;            for (j=1;j<=nlstate+ndeath;j++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* nhstepm age range expressed in number of stepm */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);            }
     /* Typically if 20 years = 20*12/6=40 stepm */          for(d=0; d<dh[mi][i]; d++){
     if (stepm >= YEARM) hstepm=1;            newm=savm;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (kk=1; kk<=cptcovage;kk++) {
     /* Computed by stepm unit matrices, product of hstepm matrices, stored              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     for(i=1; i<=nlstate;i++)            oldm=newm;
       for(j=1; j<=nlstate;j++)          } /* end mult */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        
           eij[i][j][(int)age] +=p3mat[i][j][h];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
              bbh=(double)bh[mi][i]/(double)stepm; 
     hf=1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     if (stepm >= YEARM) hf=stepm/YEARM;          ipmx +=1;
     fprintf(ficreseij,"%.0f",age );          sw += weight[i];
     for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate;j++){        } /* end of wave */
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);      } /* end of individual */
       }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     fprintf(ficreseij,"\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /************ Variance ******************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   /* Variance of health expectancies */          for(d=0; d<dh[mi][i]; d++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            newm=savm;
   double **newm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **dnewm,**doldm;            for (kk=1; kk<=cptcovage;kk++) {
   int i, j, nhstepm, hstepm, h;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int k, cptcode;            }
    double *xp;          
   double **gp, **gm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***gradg, ***trgradg;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***p3mat;            savm=oldm;
   double age,agelim;            oldm=newm;
   int theta;          } /* end mult */
         
    fprintf(ficresvij,"# Covariances of life expectancies\n");          s1=s[mw[mi][i]][i];
   fprintf(ficresvij,"# Age");          s2=s[mw[mi+1][i]][i];
   for(i=1; i<=nlstate;i++)          if( s2 > nlstate){ 
     for(j=1; j<=nlstate;j++)            lli=log(out[s1][s2] - savm[s1][s2]);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          }else{
   fprintf(ficresvij,"\n");            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
   xp=vector(1,npar);          ipmx +=1;
   dnewm=matrix(1,nlstate,1,npar);          sw += weight[i];
   doldm=matrix(1,nlstate,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   hstepm=1*YEARM; /* Every year of age */        } /* end of wave */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      } /* end of individual */
   agelim = AGESUP;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (stepm >= YEARM) hstepm=1;        for(mi=1; mi<= wav[i]-1; mi++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for (ii=1;ii<=nlstate+ndeath;ii++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (j=1;j<=nlstate+ndeath;j++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gp=matrix(0,nhstepm,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gm=matrix(0,nhstepm,1,nlstate);            }
           for(d=0; d<dh[mi][i]; d++){
     for(theta=1; theta <=npar; theta++){            newm=savm;
       for(i=1; i<=npar; i++){ /* Computes gradient */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          
       for(j=1; j<= nlstate; j++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(h=0; h<=nhstepm; h++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            savm=oldm;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            oldm=newm;
         }          } /* end mult */
       }        
              s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++) /* Computes gradient */          s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            ipmx +=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          sw += weight[i];
       for(j=1; j<= nlstate; j++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(h=0; h<=nhstepm; h++){          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        } /* end of wave */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      } /* end of individual */
         }    } /* End of if */
       }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(j=1; j<= nlstate; j++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         for(h=0; h<=nhstepm; h++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    return -l;
         }  }
     } /* End theta */  
   /*************** log-likelihood *************/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  double funcone( double *x)
   {
     for(h=0; h<=nhstepm; h++)    /* Same as likeli but slower because of a lot of printf and if */
       for(j=1; j<=nlstate;j++)    int i, ii, j, k, mi, d, kk;
         for(theta=1; theta <=npar; theta++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           trgradg[h][j][theta]=gradg[h][theta][j];    double **out;
     double lli; /* Individual log likelihood */
     for(i=1;i<=nlstate;i++)    double llt;
       for(j=1;j<=nlstate;j++)    int s1, s2;
         vareij[i][j][(int)age] =0.;    double bbh, survp;
     for(h=0;h<=nhstepm;h++){    /*extern weight */
       for(k=0;k<=nhstepm;k++){    /* We are differentiating ll according to initial status */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /*for(i=1;i<imx;i++) 
         for(i=1;i<=nlstate;i++)      printf(" %d\n",s[4][i]);
           for(j=1;j<=nlstate;j++)    */
             vareij[i][j][(int)age] += doldm[i][j];    cov[1]=1.;
       }  
     }    for(k=1; k<=nlstate; k++) ll[k]=0.;
     h=1;  
     if (stepm >= YEARM) h=stepm/YEARM;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficresvij,"%.0f ",age );      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)      for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=nlstate;j++){        for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          for (j=1;j<=nlstate+ndeath;j++){
       }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresvij,"\n");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gp,0,nhstepm,1,nlstate);          }
     free_matrix(gm,0,nhstepm,1,nlstate);        for(d=0; d<dh[mi][i]; d++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          newm=savm;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (kk=1; kk<=cptcovage;kk++) {
   } /* End age */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            }
   free_vector(xp,1,npar);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_matrix(doldm,1,nlstate,1,npar);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_matrix(dnewm,1,nlstate,1,nlstate);          savm=oldm;
           oldm=newm;
 }        } /* end mult */
         
 /************ Variance of prevlim ******************/        s1=s[mw[mi][i]][i];
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        s2=s[mw[mi+1][i]][i];
 {        bbh=(double)bh[mi][i]/(double)stepm; 
   /* Variance of prevalence limit */        /* bias is positive if real duration
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/         * is higher than the multiple of stepm and negative otherwise.
   double **newm;         */
   double **dnewm,**doldm;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   int i, j, nhstepm, hstepm;          lli=log(out[s1][s2] - savm[s1][s2]);
   int k, cptcode;        } else if (mle==1){
   double *xp;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double *gp, *gm;        } else if(mle==2){
   double **gradg, **trgradg;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double age,agelim;        } else if(mle==3){  /* exponential inter-extrapolation */
   int theta;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
            } else if (mle==4){  /* mle=4 no inter-extrapolation */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          lli=log(out[s1][s2]); /* Original formula */
   fprintf(ficresvpl,"# Age");        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   for(i=1; i<=nlstate;i++)          lli=log(out[s1][s2]); /* Original formula */
       fprintf(ficresvpl," %1d-%1d",i,i);        } /* End of if */
   fprintf(ficresvpl,"\n");        ipmx +=1;
         sw += weight[i];
   xp=vector(1,npar);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   dnewm=matrix(1,nlstate,1,npar);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   doldm=matrix(1,nlstate,1,nlstate);        if(globpr){
            fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   hstepm=1*YEARM; /* Every year of age */   %10.6f %10.6f %10.6f ", \
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   agelim = AGESUP;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            llt +=ll[k]*gipmx/gsw;
     if (stepm >= YEARM) hstepm=1;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          }
     gradg=matrix(1,npar,1,nlstate);          fprintf(ficresilk," %10.6f\n", -llt);
     gp=vector(1,nlstate);        }
     gm=vector(1,nlstate);      } /* end of wave */
     } /* end of individual */
     for(theta=1; theta <=npar; theta++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(i=1; i<=npar; i++){ /* Computes gradient */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    if(globpr==0){ /* First time we count the contributions and weights */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      gipmx=ipmx;
       for(i=1;i<=nlstate;i++)      gsw=sw;
         gp[i] = prlim[i][i];    }
        return -l;
       for(i=1; i<=npar; i++) /* Computes gradient */  }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  /*************** function likelione ***********/
         gm[i] = prlim[i][i];  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
       for(i=1;i<=nlstate;i++)    /* This routine should help understanding what is done with 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];       the selection of individuals/waves and
     } /* End theta */       to check the exact contribution to the likelihood.
        Plotting could be done.
     trgradg =matrix(1,nlstate,1,npar);     */
     int k;
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)    if(*globpri !=0){ /* Just counts and sums, no printings */
         trgradg[j][theta]=gradg[theta][j];      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
     for(i=1;i<=nlstate;i++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       varpl[i][(int)age] =0.;        printf("Problem with resultfile: %s\n", fileresilk);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      }
     for(i=1;i<=nlstate;i++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     fprintf(ficresvpl,"%.0f ",age );      for(k=1; k<=nlstate; k++) 
     for(i=1; i<=nlstate;i++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     fprintf(ficresvpl,"\n");    }
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);    *fretone=(*funcone)(p);
     free_matrix(gradg,1,npar,1,nlstate);    if(*globpri !=0){
     free_matrix(trgradg,1,nlstate,1,npar);      fclose(ficresilk);
   } /* End age */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
   free_vector(xp,1,npar);    } 
   free_matrix(doldm,1,nlstate,1,npar);    return;
   free_matrix(dnewm,1,nlstate,1,nlstate);  }
   
 }  
   /*********** Maximum Likelihood Estimation ***************/
   
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 /***********************************************/  {
 /**************** Main Program *****************/    int i,j, iter;
 /***********************************************/    double **xi;
     double fret;
 /*int main(int argc, char *argv[])*/    double fretone; /* Only one call to likelihood */
 int main()    /*  char filerespow[FILENAMELENGTH];*/
 {    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;      for (j=1;j<=npar;j++)
   double agedeb, agefin,hf;        xi[i][j]=(i==j ? 1.0 : 0.0);
   double agemin=1.e20, agemax=-1.e20;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
   double fret;    strcat(filerespow,fileres);
   double **xi,tmp,delta;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
   double dum; /* Dummy variable */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   double ***p3mat;    }
   int *indx;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   char line[MAXLINE], linepar[MAXLINE];    for (i=1;i<=nlstate;i++)
   char title[MAXLINE];      for(j=1;j<=nlstate+ndeath;j++)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    fprintf(ficrespow,"\n");
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];    powell(p,xi,npar,ftol,&iter,&fret,func);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;    fclose(ficrespow);
   int sdeb, sfin; /* Status at beginning and end */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   int c,  h , cpt,l;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int ju,jl, mi;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   int i1,j1, k1,jk,aa,bb, stepsize;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  }
    
   int hstepm, nhstepm;  /**** Computes Hessian and covariance matrix ***/
   double bage, fage, age, agelim, agebase;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double ftolpl=FTOL;  {
   double **prlim;    double  **a,**y,*x,pd;
   double *severity;    double **hess;
   double ***param; /* Matrix of parameters */    int i, j,jk;
   double  *p;    int *indx;
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double *delti; /* Scale */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   double ***eij, ***vareij;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   double **varpl; /* Variances of prevalence limits by age */    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double *epj, vepp;    double gompertz(double p[]);
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";    hess=matrix(1,npar,1,npar);
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
   char z[1]="c", occ;    printf("\nCalculation of the hessian matrix. Wait...\n");
 #include <sys/time.h>    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 #include <time.h>    for (i=1;i<=npar;i++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      printf("%d",i);fflush(stdout);
   /* long total_usecs;      fprintf(ficlog,"%d",i);fflush(ficlog);
   struct timeval start_time, end_time;     
         hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      
       /*  printf(" %f ",p[i]);
           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   printf("\nIMACH, Version 0.63");    }
   printf("\nEnter the parameter file name: ");    
     for (i=1;i<=npar;i++) {
 #ifdef windows      for (j=1;j<=npar;j++)  {
   scanf("%s",pathtot);        if (j>i) { 
   getcwd(pathcd, size);          printf(".%d%d",i,j);fflush(stdout);
   cutv(path,optionfile,pathtot,'\\');          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   chdir(path);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   replace(pathc,path);          
 #endif          hess[j][i]=hess[i][j];    
 #ifdef unix          /*printf(" %lf ",hess[i][j]);*/
   scanf("%s",optionfile);        }
 #endif      }
     }
 /*-------- arguments in the command line --------*/    printf("\n");
     fprintf(ficlog,"\n");
   strcpy(fileres,"r");  
   strcat(fileres, optionfile);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   /*---------arguments file --------*/    
     a=matrix(1,npar,1,npar);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    y=matrix(1,npar,1,npar);
     printf("Problem with optionfile %s\n",optionfile);    x=vector(1,npar);
     goto end;    indx=ivector(1,npar);
   }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   strcpy(filereso,"o");    ludcmp(a,npar,indx,&pd);
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {    for (j=1;j<=npar;j++) {
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      for (i=1;i<=npar;i++) x[i]=0;
   }      x[j]=1;
       lubksb(a,npar,indx,x);
   /* Reads comments: lines beginning with '#' */      for (i=1;i<=npar;i++){ 
   while((c=getc(ficpar))=='#' && c!= EOF){        matcov[i][j]=x[i];
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);    }
     puts(line);  
     fputs(line,ficparo);    printf("\n#Hessian matrix#\n");
   }    fprintf(ficlog,"\n#Hessian matrix#\n");
   ungetc(c,ficpar);    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        printf("%.3e ",hess[i][j]);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);        fprintf(ficlog,"%.3e ",hess[i][j]);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      }
       printf("\n");
   covar=matrix(1,NCOVMAX,1,n);          fprintf(ficlog,"\n");
   if (strlen(model)<=1) cptcovn=0;    }
   else {  
     j=0;    /* Recompute Inverse */
     j=nbocc(model,'+');    for (i=1;i<=npar;i++)
     cptcovn=j+1;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   }    ludcmp(a,npar,indx,&pd);
   
   ncovmodel=2+cptcovn;    /*  printf("\n#Hessian matrix recomputed#\n");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
      for (j=1;j<=npar;j++) {
   /* Read guess parameters */      for (i=1;i<=npar;i++) x[i]=0;
   /* Reads comments: lines beginning with '#' */      x[j]=1;
   while((c=getc(ficpar))=='#' && c!= EOF){      lubksb(a,npar,indx,x);
     ungetc(c,ficpar);      for (i=1;i<=npar;i++){ 
     fgets(line, MAXLINE, ficpar);        y[i][j]=x[i];
     puts(line);        printf("%.3e ",y[i][j]);
     fputs(line,ficparo);        fprintf(ficlog,"%.3e ",y[i][j]);
   }      }
   ungetc(c,ficpar);      printf("\n");
        fprintf(ficlog,"\n");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    }
     for(i=1; i <=nlstate; i++)    */
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_matrix(a,1,npar,1,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);    free_matrix(y,1,npar,1,npar);
       printf("%1d%1d",i,j);    free_vector(x,1,npar);
       for(k=1; k<=ncovmodel;k++){    free_ivector(indx,1,npar);
         fscanf(ficpar," %lf",&param[i][j][k]);    free_matrix(hess,1,npar,1,npar);
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);  
       }  }
       fscanf(ficpar,"\n");  
       printf("\n");  /*************** hessian matrix ****************/
       fprintf(ficparo,"\n");  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     }  {
      int i;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    int l=1, lmax=20;
   p=param[1][1];    double k1,k2;
      double p2[NPARMAX+1];
   /* Reads comments: lines beginning with '#' */    double res;
   while((c=getc(ficpar))=='#' && c!= EOF){    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     ungetc(c,ficpar);    double fx;
     fgets(line, MAXLINE, ficpar);    int k=0,kmax=10;
     puts(line);    double l1;
     fputs(line,ficparo);  
   }    fx=func(x);
   ungetc(c,ficpar);    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      l1=pow(10,l);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      delts=delt;
   for(i=1; i <=nlstate; i++){      for(k=1 ; k <kmax; k=k+1){
     for(j=1; j <=nlstate+ndeath-1; j++){        delt = delta*(l1*k);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        p2[theta]=x[theta] +delt;
       printf("%1d%1d",i,j);        k1=func(p2)-fx;
       fprintf(ficparo,"%1d%1d",i1,j1);        p2[theta]=x[theta]-delt;
       for(k=1; k<=ncovmodel;k++){        k2=func(p2)-fx;
         fscanf(ficpar,"%le",&delti3[i][j][k]);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         printf(" %le",delti3[i][j][k]);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         fprintf(ficparo," %le",delti3[i][j][k]);        
       }  #ifdef DEBUG
       fscanf(ficpar,"\n");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       printf("\n");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fprintf(ficparo,"\n");  #endif
     }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   delti=delti3[1][1];          k=kmax;
          }
   /* Reads comments: lines beginning with '#' */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   while((c=getc(ficpar))=='#' && c!= EOF){          k=kmax; l=lmax*10.;
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     puts(line);          delts=delt;
     fputs(line,ficparo);        }
   }      }
   ungetc(c,ficpar);    }
      delti[theta]=delts;
   matcov=matrix(1,npar,1,npar);    return res; 
   for(i=1; i <=npar; i++){    
     fscanf(ficpar,"%s",&str);  }
     printf("%s",str);  
     fprintf(ficparo,"%s",str);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     for(j=1; j <=i; j++){  {
       fscanf(ficpar," %le",&matcov[i][j]);    int i;
       printf(" %.5le",matcov[i][j]);    int l=1, l1, lmax=20;
       fprintf(ficparo," %.5le",matcov[i][j]);    double k1,k2,k3,k4,res,fx;
     }    double p2[NPARMAX+1];
     fscanf(ficpar,"\n");    int k;
     printf("\n");  
     fprintf(ficparo,"\n");    fx=func(x);
   }    for (k=1; k<=2; k++) {
   for(i=1; i <=npar; i++)      for (i=1;i<=npar;i++) p2[i]=x[i];
     for(j=i+1;j<=npar;j++)      p2[thetai]=x[thetai]+delti[thetai]/k;
       matcov[i][j]=matcov[j][i];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k1=func(p2)-fx;
   printf("\n");    
       p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
    if(mle==1){      k2=func(p2)-fx;
     /*-------- data file ----------*/    
     if((ficres =fopen(fileres,"w"))==NULL) {      p2[thetai]=x[thetai]-delti[thetai]/k;
       printf("Problem with resultfile: %s\n", fileres);goto end;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     }      k3=func(p2)-fx;
     fprintf(ficres,"#%s\n",version);    
          p2[thetai]=x[thetai]-delti[thetai]/k;
     if((fic=fopen(datafile,"r"))==NULL)    {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       printf("Problem with datafile: %s\n", datafile);goto end;      k4=func(p2)-fx;
     }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
     n= lastobs;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     severity = vector(1,maxwav);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     outcome=imatrix(1,maxwav+1,1,n);  #endif
     num=ivector(1,n);    }
     moisnais=vector(1,n);    return res;
     annais=vector(1,n);  }
     moisdc=vector(1,n);  
     andc=vector(1,n);  /************** Inverse of matrix **************/
     agedc=vector(1,n);  void ludcmp(double **a, int n, int *indx, double *d) 
     cod=ivector(1,n);  { 
     weight=vector(1,n);    int i,imax,j,k; 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    double big,dum,sum,temp; 
     mint=matrix(1,maxwav,1,n);    double *vv; 
     anint=matrix(1,maxwav,1,n);   
     s=imatrix(1,maxwav+1,1,n);    vv=vector(1,n); 
     adl=imatrix(1,maxwav+1,1,n);        *d=1.0; 
     tab=ivector(1,NCOVMAX);    for (i=1;i<=n;i++) { 
     ncodemax=ivector(1,NCOVMAX);      big=0.0; 
       for (j=1;j<=n;j++) 
     i=1;        if ((temp=fabs(a[i][j])) > big) big=temp; 
     while (fgets(line, MAXLINE, fic) != NULL)    {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       if ((i >= firstobs) && (i <=lastobs)) {      vv[i]=1.0/big; 
            } 
         for (j=maxwav;j>=1;j--){    for (j=1;j<=n;j++) { 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      for (i=1;i<j;i++) { 
           strcpy(line,stra);        sum=a[i][j]; 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        a[i][j]=sum; 
         }      } 
              big=0.0; 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      for (i=j;i<=n;i++) { 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        sum=a[i][j]; 
         for (k=1;k<j;k++) 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          sum -= a[i][k]*a[k][j]; 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          big=dum; 
         for (j=ncov;j>=1;j--){          imax=i; 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        } 
         }      } 
         num[i]=atol(stra);      if (j != imax) { 
         for (k=1;k<=n;k++) { 
         /* printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
         /*printf("%d %.lf %.lf %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),(covar[3][i]), (covar[4][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]));*/          a[j][k]=dum; 
         } 
         i=i+1;        *d = -(*d); 
       }        vv[imax]=vv[j]; 
     }      } 
     /*scanf("%d",i);*/      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
   imx=i-1; /* Number of individuals */      if (j != n) { 
          dum=1.0/(a[j][j]); 
   /* Calculation of the number of parameter from char model*/        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   Tvar=ivector(1,8);          } 
        } 
   if (strlen(model) >1){    free_vector(vv,1,n);  /* Doesn't work */
     j=0;  ;
     j=nbocc(model,'+');  } 
     cptcovn=j+1;  
    void lubksb(double **a, int n, int *indx, double b[]) 
     strcpy(modelsav,model);  { 
     if (j==0) {    int i,ii=0,ip,j; 
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);    double sum; 
     }   
     else {    for (i=1;i<=n;i++) { 
       for(i=j; i>=1;i--){      ip=indx[i]; 
         cutv(stra,strb,modelsav,'+');      sum=b[ip]; 
         if (strchr(strb,'*')) {      b[ip]=b[i]; 
           cutv(strd,strc,strb,'*');      if (ii) 
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           cutv(strb,strc,strd,'V');      else if (sum) ii=i; 
           for (k=1; k<=lastobs;k++)      b[i]=sum; 
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    } 
         }    for (i=n;i>=1;i--) { 
         else {      sum=b[i]; 
           cutv(strd,strc,strb,'V');      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           Tvar[i+1]=atoi(strc);      b[i]=sum/a[i][i]; 
         }    } 
         strcpy(modelsav,stra);    } 
       }  
       /*cutv(strd,strc,stra,'V');*/  /************ Frequencies ********************/
       Tvar[1]=atoi(strc);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     }  {  /* Some frequencies */
   }    
   /*printf("tvar=%d ",Tvar[1]);*/    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   /*scanf("%d ",i);*/    int first;
     fclose(fic);    double ***freq; /* Frequencies */
     double *pp, **prop;
     if (weightopt != 1) { /* Maximisation without weights*/    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(i=1;i<=n;i++) weight[i]=1.0;    FILE *ficresp;
     }    char fileresp[FILENAMELENGTH];
     /*-calculation of age at interview from date of interview and age at death -*/    
     agev=matrix(1,maxwav,1,imx);    pp=vector(1,nlstate);
        prop=matrix(1,nlstate,iagemin,iagemax+3);
     for (i=1; i<=imx; i++)  {    strcpy(fileresp,"p");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    strcat(fileresp,fileres);
       for(m=1; (m<= maxwav); m++){    if((ficresp=fopen(fileresp,"w"))==NULL) {
         if (mint[m][i]==99 || anint[m][i]==9999) s[m][i]=-1;        printf("Problem with prevalence resultfile: %s\n", fileresp);
         if(s[m][i] >0){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           if (s[m][i] == nlstate+1) {      exit(0);
             if(agedc[i]>0)    }
               if(moisdc[i]!=99 && andc[i]!=9999)    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
               agev[m][i]=agedc[i];    j1=0;
             else{    
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    j=cptcoveff;
               agev[m][i]=-1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             }  
           }    first=1;
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    for(k1=1; k1<=j;k1++){
             if(mint[m][i]==99 || anint[m][i]==9999){      for(i1=1; i1<=ncodemax[k1];i1++){
               agev[m][i]=1;        j1++;
               /* printf("i=%d m=%d agev=%lf \n",i,m, agev[m][i]);    */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             }          scanf("%d", i);*/
             else if(agev[m][i] <agemin){        for (i=-1; i<=nlstate+ndeath; i++)  
               agemin=agev[m][i];          for (jk=-1; jk<=nlstate+ndeath; jk++)  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            for(m=iagemin; m <= iagemax+3; m++)
             }              freq[i][jk][m]=0;
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];      for (i=1; i<=nlstate; i++)  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        for(m=iagemin; m <= iagemax+3; m++)
             }          prop[i][m]=0;
             /*agev[m][i]=anint[m][i]-annais[i];*/        
             /*   agev[m][i] = age[i]+2*m;*/        dateintsum=0;
           }        k2cpt=0;
           else { /* =9 */        for (i=1; i<=imx; i++) {
             agev[m][i]=1;          bool=1;
             s[m][i]=-1;          if  (cptcovn>0) {
           }            for (z1=1; z1<=cptcoveff; z1++) 
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         else /*= 0 Unknown */                bool=0;
           agev[m][i]=1;          }
       }          if (bool==1){
                for(m=firstpass; m<=lastpass; m++){
     }              k2=anint[m][i]+(mint[m][i]/12.);
     for (i=1; i<=imx; i++)  {              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for(m=1; (m<= maxwav); m++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         if (s[m][i] > (nlstate+ndeath)) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           printf("Error: Wrong value in nlstate or ndeath\n");                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           goto end;                if (m<lastpass) {
         }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     }                }
                 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
     free_vector(severity,1,maxwav);                  k2cpt++;
     free_imatrix(outcome,1,maxwav+1,1,n);                }
     free_vector(moisnais,1,n);                /*}*/
     free_vector(annais,1,n);            }
     free_matrix(mint,1,maxwav,1,n);          }
     free_matrix(anint,1,maxwav,1,n);        }
     free_vector(moisdc,1,n);         
     free_vector(andc,1,n);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
            if  (cptcovn>0) {
     wav=ivector(1,imx);          fprintf(ficresp, "\n#********** Variable "); 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          fprintf(ficresp, "**********\n#");
            }
     /* Concatenates waves */        for(i=1; i<=nlstate;i++) 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
         
 Tcode=ivector(1,100);        for(i=iagemin; i <= iagemax+3; i++){
    nbcode=imatrix(1,nvar,1,8);            if(i==iagemax+3){
    ncodemax[1]=1;            fprintf(ficlog,"Total");
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);          }else{
              if(first==1){
    codtab=imatrix(1,100,1,10);              first=0;
    h=0;              printf("See log file for details...\n");
    m=pow(2,cptcovn);            }
              fprintf(ficlog,"Age %d", i);
    for(k=1;k<=cptcovn; k++){          }
      for(i=1; i <=(m/pow(2,k));i++){          for(jk=1; jk <=nlstate ; jk++){
        for(j=1; j <= ncodemax[k]; j++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){              pp[jk] += freq[jk][m][i]; 
            h++;          }
            if (h>m) h=1;codtab[h][k]=j;          for(jk=1; jk <=nlstate ; jk++){
          }            for(m=-1, pos=0; m <=0 ; m++)
        }              pos += freq[jk][m][i];
      }            if(pp[jk]>=1.e-10){
    }              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    /*for(i=1; i <=m ;i++){              }
      for(k=1; k <=cptcovn; k++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);            }else{
      }              if(first==1)
      printf("\n");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
    }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   scanf("%d",i);*/            }
              }
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */          for(jk=1; jk <=nlstate ; jk++){
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }       
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            pos += pp[jk];
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            posprop += prop[jk][i];
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          }
              for(jk=1; jk <=nlstate ; jk++){
     /* For Powell, parameters are in a vector p[] starting at p[1]            if(pos>=1.e-5){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              if(first==1)
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     /*scanf("%d",i);*/              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            }else{
               if(first==1)
                    printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     /*--------- results files --------------*/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);            }
                if( i <= iagemax){
    jk=1;              if(pos>=1.e-5){
    fprintf(ficres,"# Parameters\n");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
    printf("# Parameters\n");                /*probs[i][jk][j1]= pp[jk]/pos;*/
    for(i=1,jk=1; i <=nlstate; i++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
      for(k=1; k <=(nlstate+ndeath); k++){              }
        if (k != i)              else
          {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
            printf("%d%d ",i,k);            }
            fprintf(ficres,"%1d%1d ",i,k);          }
            for(j=1; j <=ncovmodel; j++){          
              printf("%f ",p[jk]);          for(jk=-1; jk <=nlstate+ndeath; jk++)
              fprintf(ficres,"%f ",p[jk]);            for(m=-1; m <=nlstate+ndeath; m++)
              jk++;              if(freq[jk][m][i] !=0 ) {
            }              if(first==1)
            printf("\n");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
            fprintf(ficres,"\n");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
          }              }
      }          if(i <= iagemax)
    }            fprintf(ficresp,"\n");
           if(first==1)
     /* Computing hessian and covariance matrix */            printf("Others in log...\n");
     ftolhess=ftol; /* Usually correct */          fprintf(ficlog,"\n");
     hesscov(matcov, p, npar, delti, ftolhess, func);        }
     fprintf(ficres,"# Scales\n");      }
     printf("# Scales\n");    }
      for(i=1,jk=1; i <=nlstate; i++){    dateintmean=dateintsum/k2cpt; 
       for(j=1; j <=nlstate+ndeath; j++){   
         if (j!=i) {    fclose(ficresp);
           fprintf(ficres,"%1d%1d",i,j);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
           printf("%1d%1d",i,j);    free_vector(pp,1,nlstate);
           for(k=1; k<=ncovmodel;k++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             printf(" %.5e",delti[jk]);    /* End of Freq */
             fprintf(ficres," %.5e",delti[jk]);  }
             jk++;  
           }  /************ Prevalence ********************/
           printf("\n");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           fprintf(ficres,"\n");  {  
         }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       }       in each health status at the date of interview (if between dateprev1 and dateprev2).
       }       We still use firstpass and lastpass as another selection.
        */
     k=1;   
     fprintf(ficres,"# Covariance\n");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     printf("# Covariance\n");    double ***freq; /* Frequencies */
     for(i=1;i<=npar;i++){    double *pp, **prop;
       /*  if (k>nlstate) k=1;    double pos,posprop; 
       i1=(i-1)/(ncovmodel*nlstate)+1;    double  y2; /* in fractional years */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    int iagemin, iagemax;
       printf("%s%d%d",alph[k],i1,tab[i]);*/  
       fprintf(ficres,"%3d",i);    iagemin= (int) agemin;
       printf("%3d",i);    iagemax= (int) agemax;
       for(j=1; j<=i;j++){    /*pp=vector(1,nlstate);*/
         fprintf(ficres," %.5e",matcov[i][j]);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         printf(" %.5e",matcov[i][j]);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       }    j1=0;
       fprintf(ficres,"\n");    
       printf("\n");    j=cptcoveff;
       k++;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     }    
        for(k1=1; k1<=j;k1++){
     while((c=getc(ficpar))=='#' && c!= EOF){      for(i1=1; i1<=ncodemax[k1];i1++){
       ungetc(c,ficpar);        j1++;
       fgets(line, MAXLINE, ficpar);        
       puts(line);        for (i=1; i<=nlstate; i++)  
       fputs(line,ficparo);          for(m=iagemin; m <= iagemax+3; m++)
     }            prop[i][m]=0.0;
     ungetc(c,ficpar);       
          for (i=1; i<=imx; i++) { /* Each individual */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          bool=1;
              if  (cptcovn>0) {
     if (fage <= 2) {            for (z1=1; z1<=cptcoveff; z1++) 
       bage = agemin;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       fage = agemax;                bool=0;
     }          } 
           if (bool==1) { 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 /*------------ gnuplot -------------*/              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 chdir(pathcd);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   if((ficgp=fopen("graph.plt","w"))==NULL) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     printf("Problem with file graph.gp");goto end;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 #ifdef windows                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   fprintf(ficgp,"cd \"%s\" \n",pathc);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 #endif                  prop[s[m][i]][iagemax+3] += weight[i]; 
 m=pow(2,cptcovn);                } 
                }
  /* 1eme*/            } /* end selection of waves */
   for (cpt=1; cpt<= nlstate ; cpt ++) {          }
    for (k1=1; k1<= m ; k1 ++) {        }
         for(i=iagemin; i <= iagemax+3; i++){  
 #ifdef windows          
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 #endif            posprop += prop[jk][i]; 
 #ifdef unix          } 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);  
 #endif          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
 for (i=1; i<= nlstate ; i ++) {              if(posprop>=1.e-5){ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                probs[i][jk][j1]= prop[jk][i]/posprop;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              } 
 }            } 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          }/* end jk */ 
     for (i=1; i<= nlstate ; i ++) {        }/* end i */ 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      } /* end i1 */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    } /* end k1 */
 }    
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      for (i=1; i<= nlstate ; i ++) {    /*free_vector(pp,1,nlstate);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }  /* End of prevalence */
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  /************* Waves Concatenation ***************/
 #ifdef unix  
 fprintf(ficgp,"\nset ter gif small size 400,300");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 #endif  {
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
    }       Death is a valid wave (if date is known).
   }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   /*2 eme*/       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
   for (k1=1; k1<= m ; k1 ++) {       */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
        int i, mi, m;
     for (i=1; i<= nlstate+1 ; i ++) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       k=2*i;       double sum=0., jmean=0.;*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    int first;
       for (j=1; j<= nlstate+1 ; j ++) {    int j, k=0,jk, ju, jl;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double sum=0.;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    first=0;
 }      jmin=1e+5;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    jmax=-1;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    jmean=0.;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    for(i=1; i<=imx; i++){
       for (j=1; j<= nlstate+1 ; j ++) {      mi=0;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      m=firstpass;
         else fprintf(ficgp," \%%*lf (\%%*lf)");      while(s[m][i] <= nlstate){
 }          if(s[m][i]>=1)
       fprintf(ficgp,"\" t\"\" w l 0,");          mw[++mi][i]=m;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        if(m >=lastpass)
       for (j=1; j<= nlstate+1 ; j ++) {          break;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        else
   else fprintf(ficgp," \%%*lf (\%%*lf)");          m++;
 }        }/* end while */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      if (s[m][i] > nlstate){
       else fprintf(ficgp,"\" t\"\" w l 0,");        mi++;     /* Death is another wave */
     }        /* if(mi==0)  never been interviewed correctly before death */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);           /* Only death is a correct wave */
   }        mw[mi][i]=m;
        }
   /*3eme*/  
       wav[i]=mi;
   for (k1=1; k1<= m ; k1 ++) {      if(mi==0){
     for (cpt=1; cpt<= nlstate ; cpt ++) {        nbwarn++;
       k=2+nlstate*(cpt-1);        if(first==0){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       for (i=1; i< nlstate ; i ++) {          first=1;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        }
       }        if(first==1){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
     }        }
   }      } /* end mi==0 */
      } /* End individuals */
   /* CV preval stat */  
   for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=imx; i++){
     for (cpt=1; cpt<nlstate ; cpt ++) {      for(mi=1; mi<wav[i];mi++){
       k=3;        if (stepm <=0)
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);          dh[mi][i]=1;
       for (i=1; i< nlstate ; i ++)        else{
         fprintf(ficgp,"+$%d",k+i+1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            if (agedc[i] < 2*AGESUP) {
                    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       l=3+(nlstate+ndeath)*cpt;              if(j==0) j=1;  /* Survives at least one month after exam */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              else if(j<0){
       for (i=1; i< nlstate ; i ++) {                nberr++;
         l=3+(nlstate+ndeath)*cpt;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficgp,"+$%d",l+i+1);                j=1; /* Temporary Dangerous patch */
       }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     }              }
   }              k=k+1;
               if (j >= jmax) jmax=j;
   /* proba elementaires */              if (j <= jmin) jmin=j;
   for(i=1,jk=1; i <=nlstate; i++){              sum=sum+j;
     for(k=1; k <=(nlstate+ndeath); k++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       if (k != i) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/            }
         for(j=1; j <=ncovmodel; j++){          }
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);          else{
           jk++;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           fprintf(ficgp,"\n");            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         }            k=k+1;
       }            if (j >= jmax) jmax=j;
     }            else if (j <= jmin)jmin=j;
   }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   for(jk=1; jk <=m; jk++) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);            if(j<0){
   for(i=1; i <=nlstate; i++) {              nberr++;
     for(k=1; k <=(nlstate+ndeath); k++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       if (k != i) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);            }
         for(j=3; j <=ncovmodel; j++)            sum=sum+j;
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }
         fprintf(ficgp,")/(1");          jk= j/stepm;
         for(k1=1; k1 <=(nlstate+ndeath); k1++)          jl= j -jk*stepm;
           if (k1 != i) {          ju= j -(jk+1)*stepm;
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             for(j=3; j <=ncovmodel; j++)            if(jl==0){
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              dh[mi][i]=jk;
             fprintf(ficgp,")");              bh[mi][i]=0;
           }            }else{ /* We want a negative bias in order to only have interpolation ie
         fprintf(ficgp,") t \"p%d%d\" ", i,k);                    * at the price of an extra matrix product in likelihood */
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              dh[mi][i]=jk+1;
       }              bh[mi][i]=ju;
     }            }
   }          }else{
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              if(jl <= -ju){
   }              dh[mi][i]=jk;
   fclose(ficgp);              bh[mi][i]=jl;       /* bias is positive if real duration
                                       * is higher than the multiple of stepm and negative otherwise.
 chdir(path);                                   */
     free_matrix(agev,1,maxwav,1,imx);            }
     free_ivector(wav,1,imx);            else{
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              dh[mi][i]=jk+1;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              bh[mi][i]=ju;
                }
     free_imatrix(s,1,maxwav+1,1,n);            if(dh[mi][i]==0){
                  dh[mi][i]=1; /* At least one step */
                  bh[mi][i]=ju; /* At least one step */
     free_ivector(num,1,n);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     free_vector(agedc,1,n);            }
     free_vector(weight,1,n);          } /* end if mle */
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        }
     fclose(ficparo);      } /* end wave */
     fclose(ficres);    }
    }    jmean=sum/k;
        printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    /*________fin mle=1_________*/    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       }
   
    /*********** Tricode ****************************/
     /* No more information from the sample is required now */  void tricode(int *Tvar, int **nbcode, int imx)
   /* Reads comments: lines beginning with '#' */  {
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    int Ndum[20],ij=1, k, j, i, maxncov=19;
     fgets(line, MAXLINE, ficpar);    int cptcode=0;
     puts(line);    cptcoveff=0; 
     fputs(line,ficparo);   
   }    for (k=0; k<maxncov; k++) Ndum[k]=0;
   ungetc(c,ficpar);    for (k=1; k<=7; k++) ncodemax[k]=0;
    
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);                                 modality*/ 
 /*--------- index.htm --------*/        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
   if((fichtm=fopen("index.htm","w"))==NULL)    {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     printf("Problem with index.htm \n");goto end;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   }                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n      }
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>      for (i=0; i<=cptcode; i++) {
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      }
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>  
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      ij=1; 
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      for (i=1; i<=ncodemax[j]; i++) {
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        for (k=0; k<= maxncov; k++) {
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
  fprintf(fichtm," <li>Graphs</li>\n<p>");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
  m=cptcovn;            ij++;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          }
           if (ij > ncodemax[j]) break; 
  j1=0;        }  
  for(k1=1; k1<=m;k1++){      } 
    for(i1=1; i1<=ncodemax[k1];i1++){    }  
        j1++;  
        if (cptcovn > 0) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
          fprintf(fichtm,"<hr>************ Results for covariates");  
          for (cpt=1; cpt<=cptcovn;cpt++)   for (i=1; i<=ncovmodel-2; i++) { 
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
          fprintf(fichtm," ************\n<hr>");     ij=Tvar[i];
        }     Ndum[ij]++;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>   }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      
        for(cpt=1; cpt<nlstate;cpt++){   ij=1;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>   for (i=1; i<= maxncov; i++) {
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);     if((Ndum[i]!=0) && (i<=ncovcol)){
        }       Tvaraff[ij]=i; /*For printing */
     for(cpt=1; cpt<=nlstate;cpt++) {       ij++;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident     }
 interval) in state (%d): v%s%d%d.gif <br>   }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);     
      }   cptcoveff=ij-1; /*Number of simple covariates*/
      for(cpt=1; cpt<=nlstate;cpt++) {  }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);  /*********** Health Expectancies ****************/
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);  {
 fprintf(fichtm,"\n</body>");    /* Health expectancies */
    }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
  }    double age, agelim, hf;
 fclose(fichtm);    double ***p3mat,***varhe;
     double **dnewm,**doldm;
   /*--------------- Prevalence limit --------------*/    double *xp;
      double **gp, **gm;
   strcpy(filerespl,"pl");    double ***gradg, ***trgradg;
   strcat(filerespl,fileres);    int theta;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   }    xp=vector(1,npar);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   fprintf(ficrespl,"#Prevalence limit\n");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficrespl,"#Age ");    
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    fprintf(ficreseij,"# Health expectancies\n");
   fprintf(ficrespl,"\n");    fprintf(ficreseij,"# Age");
      for(i=1; i<=nlstate;i++)
   prlim=matrix(1,nlstate,1,nlstate);      for(j=1; j<=nlstate;j++)
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficreseij,"\n");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if(estepm < stepm){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      printf ("Problem %d lower than %d\n",estepm, stepm);
   k=0;    }
   agebase=agemin;    else  hstepm=estepm;   
   agelim=agemax;    /* We compute the life expectancy from trapezoids spaced every estepm months
   ftolpl=1.e-10;     * This is mainly to measure the difference between two models: for example
   i1=cptcovn;     * if stepm=24 months pijx are given only every 2 years and by summing them
   if (cptcovn < 1){i1=1;}     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
   for(cptcov=1;cptcov<=i1;cptcov++){     * to the curvature of the survival function. If, for the same date, we 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         k=k+1;     * to compare the new estimate of Life expectancy with the same linear 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/     * hypothesis. A more precise result, taking into account a more precise
         fprintf(ficrespl,"\n#****** ");     * curvature will be obtained if estepm is as small as stepm. */
         for(j=1;j<=cptcovn;j++)  
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficrespl,"******\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               nhstepm is the number of hstepm from age to agelim 
         for (age=agebase; age<=agelim; age++){       nstepm is the number of stepm from age to agelin. 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       Look at hpijx to understand the reason of that which relies in memory size
           fprintf(ficrespl,"%.0f",age );       and note for a fixed period like estepm months */
           for(i=1; i<=nlstate;i++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           fprintf(ficrespl," %.5f", prlim[i][i]);       survival function given by stepm (the optimization length). Unfortunately it
           fprintf(ficrespl,"\n");       means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }       results. So we changed our mind and took the option of the best precision.
     }    */
   fclose(ficrespl);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /*------------- h Pij x at various ages ------------*/  
      agelim=AGESUP;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      /* nhstepm age range expressed in number of stepm */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   printf("Computing pij: result on file '%s' \n", filerespij);      /* if (stepm >= YEARM) hstepm=1;*/
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (stepm<=24) stepsize=2;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
   agelim=AGESUP;      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   k=0;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   for(cptcov=1;cptcov<=i1;cptcov++){   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcovn;j++)      /* Computing  Variances of health expectancies */
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");       for(theta=1; theta <=npar; theta++){
                for(i=1; i<=npar; i++){ 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;        cptj=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(j=1; j<= nlstate; j++){
           fprintf(ficrespij,"# Age");          for(i=1; i<=nlstate; i++){
           for(i=1; i<=nlstate;i++)            cptj=cptj+1;
             for(j=1; j<=nlstate+ndeath;j++)            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               fprintf(ficrespij," %1d-%1d",i,j);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           fprintf(ficrespij,"\n");            }
           for (h=0; h<=nhstepm; h++){          }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        }
             for(i=1; i<=nlstate;i++)       
               for(j=1; j<=nlstate+ndeath;j++)       
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        for(i=1; i<=npar; i++) 
             fprintf(ficrespij,"\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
           fprintf(ficrespij,"\n");        cptj=0;
         }        for(j=1; j<= nlstate; j++){
     }          for(i=1;i<=nlstate;i++){
   }            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   fclose(ficrespij);  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   /*---------- Health expectancies and variances ------------*/            }
           }
   strcpy(filerest,"t");        }
   strcat(filerest,fileres);        for(j=1; j<= nlstate*nlstate; j++)
   if((ficrest=fopen(filerest,"w"))==NULL) {          for(h=0; h<=nhstepm-1; h++){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   }          }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       } 
      
   /* End theta */
   strcpy(filerese,"e");  
   strcat(filerese,fileres);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       for(h=0; h<=nhstepm-1; h++)
   }        for(j=1; j<=nlstate*nlstate;j++)
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
  strcpy(fileresv,"v");       
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {       for(i=1;i<=nlstate*nlstate;i++)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        for(j=1;j<=nlstate*nlstate;j++)
   }          varhe[i][j][(int)age] =0.;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
        printf("%d|",(int)age);fflush(stdout);
   k=0;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   for(cptcov=1;cptcov<=i1;cptcov++){       for(h=0;h<=nhstepm-1;h++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(k=0;k<=nhstepm-1;k++){
       k=k+1;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficrest,"\n#****** ");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       for(j=1;j<=cptcovn;j++)          for(i=1;i<=nlstate*nlstate;i++)
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);            for(j=1;j<=nlstate*nlstate;j++)
       fprintf(ficrest,"******\n");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       fprintf(ficreseij,"\n#****** ");      }
       for(j=1;j<=cptcovn;j++)      /* Computing expectancies */
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      for(i=1; i<=nlstate;i++)
       fprintf(ficreseij,"******\n");        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       fprintf(ficresvij,"\n#****** ");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       for(j=1;j<=cptcovn;j++)            
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficresvij,"******\n");  
           }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;      fprintf(ficreseij,"%3.0f",age );
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        cptj=0;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(i=1; i<=nlstate;i++)
       oldm=oldms;savm=savms;        for(j=1; j<=nlstate;j++){
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          cptj++;
                fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      fprintf(ficreseij,"\n");
       fprintf(ficrest,"\n");     
              free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       hf=1;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       if (stepm >= YEARM) hf=stepm/YEARM;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       epj=vector(1,nlstate+1);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       for(age=bage; age <=fage ;age++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
         fprintf(ficrest," %.0f",age);    printf("\n");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    fprintf(ficlog,"\n");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    free_vector(xp,1,npar);
           }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           epj[nlstate+1] +=epj[j];    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         for(i=1, vepp=0.;i <=nlstate;i++)  }
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];  /************ Variance ******************/
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
         for(j=1;j <=nlstate;j++){  {
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    /* Variance of health expectancies */
         }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         fprintf(ficrest,"\n");    /* double **newm;*/
       }    double **dnewm,**doldm;
     }    double **dnewmp,**doldmp;
   }    int i, j, nhstepm, hstepm, h, nstepm ;
            int k, cptcode;
  fclose(ficreseij);    double *xp;
  fclose(ficresvij);    double **gp, **gm;  /* for var eij */
   fclose(ficrest);    double ***gradg, ***trgradg; /*for var eij */
   fclose(ficpar);    double **gradgp, **trgradgp; /* for var p point j */
   free_vector(epj,1,nlstate+1);    double *gpp, *gmp; /* for var p point j */
   /*  scanf("%d ",i); */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
   /*------- Variance limit prevalence------*/      double age,agelim, hf;
     double ***mobaverage;
 strcpy(fileresvpl,"vpl");    int theta;
   strcat(fileresvpl,fileres);    char digit[4];
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    char digitp[25];
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);    char fileresprobmorprev[FILENAMELENGTH];
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    if(popbased==1){
       if(mobilav!=0)
  k=0;        strcpy(digitp,"-populbased-mobilav-");
  for(cptcov=1;cptcov<=i1;cptcov++){      else strcpy(digitp,"-populbased-nomobil-");
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
      k=k+1;    else 
      fprintf(ficresvpl,"\n#****** ");      strcpy(digitp,"-stablbased-");
      for(j=1;j<=cptcovn;j++)  
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    if (mobilav!=0) {
      fprintf(ficresvpl,"******\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      oldm=oldms;savm=savms;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      }
    }    }
  }  
     strcpy(fileresprobmorprev,"prmorprev"); 
   fclose(ficresvpl);    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   /*---------- End : free ----------------*/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileres);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   free_matrix(matcov,1,npar,1,npar);      fprintf(ficresprobmorprev," p.%-d SE",j);
   free_vector(delti,1,npar);      for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    }  
     fprintf(ficresprobmorprev,"\n");
   printf("End of Imach\n");    fprintf(ficgp,"\n# Routine varevsij");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  /*   } */
   /*printf("Total time was %d uSec.\n", total_usecs);*/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /*------ End -----------*/  
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
  end:    fprintf(ficresvij,"# Age");
 #ifdef windows    for(i=1; i<=nlstate;i++)
  chdir(pathcd);      for(j=1; j<=nlstate;j++)
 #endif        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
  system("wgnuplot ../gp37mgw/graph.plt");    fprintf(ficresvij,"\n");
   
 #ifdef windows    xp=vector(1,npar);
   while (z[0] != 'q') {    dnewm=matrix(1,nlstate,1,npar);
     chdir(pathcd);    doldm=matrix(1,nlstate,1,nlstate);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     scanf("%s",z);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') {    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       chdir(path);    gpp=vector(nlstate+1,nlstate+ndeath);
       system("index.htm");    gmp=vector(nlstate+1,nlstate+ndeath);
     }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     else if (z[0] == 'q') exit(0);    
   }    if(estepm < stepm){
 #endif      printf ("Problem %d lower than %d\n",estepm, stepm);
 }    }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       sump=sump+1;
       num=num+1;
     }
    
    
     /* for (i=1; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=0;i<=imx-1 ; i++)
       {
         if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
         
         if (cens[i]==0 & wav[i]>1)
           A=-x[1]/(x[2])*
                (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
             +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
         
         if (wav[i]>1 & agecens[i]>15) {
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov){
     int i;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,"\"");
     strcat(plotcmd,pathimach);
     strcat(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd,"\"");
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.2  
changed lines
  Added in v.1.100


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>