Diff for /imach/src/imach.c between versions 1.35 and 1.201

version 1.35, 2002/03/26 17:08:39 version 1.201, 2015/09/15 17:34:58
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.201  2015/09/15 17:34:58  brouard
      Summary: 0.98r0
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    - Some new graphs like suvival functions
   first survey ("cross") where individuals from different ages are    - Some bugs fixed like model=1+age+V2.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.200  2015/09/09 16:53:55  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: Big bug thanks to Flavia
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Even model=1+age+V2. did not work anymore
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.199  2015/09/07 14:09:23  brouard
   simplest model is the multinomial logistic model where pij is the    Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   probabibility to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.198  2015/09/03 07:14:39  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: 0.98q5 Flavia
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.197  2015/09/01 18:24:39  brouard
   where the markup *Covariates have to be included here again* invites    *** empty log message ***
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.196  2015/08/18 23:17:52  brouard
     Summary: 0.98q5
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.195  2015/08/18 16:28:39  brouard
   identical for each individual. Also, if a individual missed an    Summary: Adding a hack for testing purpose
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      After reading the title, ftol and model lines, if the comment line has
     a q, starting with #q, the answer at the end of the run is quit. It
   hPijx is the probability to be observed in state i at age x+h    permits to run test files in batch with ctest. The former workaround was
   conditional to the observed state i at age x. The delay 'h' can be    $ echo q | imach foo.imach
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.194  2015/08/18 13:32:00  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.193  2015/08/04 07:17:42  brouard
   hPijx.    Summary: 0.98q4
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.192  2015/07/16 16:49:02  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: Fixing some outputs
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.191  2015/07/14 10:00:33  brouard
            Institut national d'études démographiques, Paris.    Summary: Some fixes
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.190  2015/05/05 08:51:13  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Summary: Adding digits in output parameters (7 digits instead of 6)
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Fix 1+age+.
   **********************************************************************/  
      Revision 1.189  2015/04/30 14:45:16  brouard
 #include <math.h>    Summary: 0.98q2
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.188  2015/04/30 08:27:53  brouard
 #include <unistd.h>    *** empty log message ***
   
 #define MAXLINE 256    Revision 1.187  2015/04/29 09:11:15  brouard
 #define GNUPLOTPROGRAM "wgnuplot"    *** empty log message ***
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.186  2015/04/23 12:01:52  brouard
 /*#define DEBUG*/    Summary: V1*age is working now, version 0.98q1
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Some codes had been disabled in order to simplify and Vn*age was
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    working in the optimization phase, ie, giving correct MLE parameters,
     but, as usual, outputs were not correct and program core dumped.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.185  2015/03/11 13:26:42  brouard
     Summary: Inclusion of compile and links command line for Intel Compiler
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.184  2015/03/11 11:52:39  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Summary: Back from Windows 8. Intel Compiler
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.183  2015/03/10 20:34:32  brouard
 #define YEARM 12. /* Number of months per year */    Summary: 0.98q0, trying with directest, mnbrak fixed
 #define AGESUP 130  
 #define AGEBASE 40    We use directest instead of original Powell test; probably no
     incidence on the results, but better justifications;
     We fixed Numerical Recipes mnbrak routine which was wrong and gave
 int erreur; /* Error number */    wrong results.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.182  2015/02/12 08:19:57  brouard
 int npar=NPARMAX;    Summary: Trying to keep directest which seems simpler and more general
 int nlstate=2; /* Number of live states */    Author: Nicolas Brouard
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.181  2015/02/11 23:22:24  brouard
 int popbased=0;    Summary: Comments on Powell added
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Author:
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.180  2015/02/11 17:33:45  brouard
 int mle, weightopt;    Summary: Finishing move from main to function (hpijx and prevalence_limit)
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.179  2015/01/04 09:57:06  brouard
 double jmean; /* Mean space between 2 waves */    Summary: back to OS/X
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.178  2015/01/04 09:35:48  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    *** empty log message ***
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.177  2015/01/03 18:40:56  brouard
   char filerese[FILENAMELENGTH];    Summary: Still testing ilc32 on OSX
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.176  2015/01/03 16:45:04  brouard
  FILE  *ficresvpl;    *** empty log message ***
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.175  2015/01/03 16:33:42  brouard
 #define NR_END 1    *** empty log message ***
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.174  2015/01/03 16:15:49  brouard
     Summary: Still in cross-compilation
 #define NRANSI  
 #define ITMAX 200    Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
 #define TOL 2.0e-4  
     Revision 1.172  2014/12/27 12:07:47  brouard
 #define CGOLD 0.3819660    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.171  2014/12/23 13:26:59  brouard
     Summary: Back from Visual C
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Still problem with utsname.h on Windows
 #define TINY 1.0e-20  
     Revision 1.170  2014/12/23 11:17:12  brouard
 static double maxarg1,maxarg2;    Summary: Cleaning some \%% back to %%
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    The escape was mandatory for a specific compiler (which one?), but too many warnings.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.169  2014/12/22 23:08:31  brouard
 #define rint(a) floor(a+0.5)    Summary: 0.98p
   
 static double sqrarg;    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.168  2014/12/22 15:17:42  brouard
     Summary: update
 int imx;  
 int stepm;    Revision 1.167  2014/12/22 13:50:56  brouard
 /* Stepm, step in month: minimum step interpolation*/    Summary: Testing uname and compiler version and if compiled 32 or 64
   
 int m,nb;    Testing on Linux 64
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.166  2014/12/22 11:40:47  brouard
 double **pmmij, ***probs, ***mobaverage;    *** empty log message ***
 double dateintmean=0;  
     Revision 1.165  2014/12/16 11:20:36  brouard
 double *weight;    Summary: After compiling on Visual C
 int **s; /* Status */  
 double *agedc, **covar, idx;    * imach.c (Module): Merging 1.61 to 1.162
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.164  2014/12/16 10:52:11  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 double ftolhess; /* Tolerance for computing hessian */  
     * imach.c (Module): Merging 1.61 to 1.162
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.163  2014/12/16 10:30:11  brouard
 {    * imach.c (Module): Merging 1.61 to 1.162
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.1  2014/09/16 11:06:58  brouard
 #ifdef windows    Summary: With some code (wrong) for nlopt
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Author:
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.161  2014/09/15 20:41:41  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    Summary: Problem with macro SQR on Intel compiler
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.159  2014/09/01 10:34:10  brouard
       extern char       *getcwd( );    Summary: WIN32
     Author: Brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.158  2014/08/27 17:11:51  brouard
          return( GLOCK_ERROR_GETCWD );    *** empty log message ***
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.157  2014/08/27 16:26:55  brouard
    } else {                             /* strip direcotry from path */    Summary: Preparing windows Visual studio version
       s++;                              /* after this, the filename */    Author: Brouard
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    In order to compile on Visual studio, time.h is now correct and time_t
       strcpy( name, s );                /* save file name */    and tm struct should be used. difftime should be used but sometimes I
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    just make the differences in raw time format (time(&now).
       dirc[l1-l2] = 0;                  /* add zero */    Trying to suppress #ifdef LINUX
    }    Add xdg-open for __linux in order to open default browser.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.156  2014/08/25 20:10:10  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    *** empty log message ***
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.155  2014/08/25 18:32:34  brouard
 #endif    Summary: New compile, minor changes
    s = strrchr( name, '.' );            /* find last / */    Author: Brouard
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.154  2014/06/20 17:32:08  brouard
    l1= strlen( name);    Summary: Outputs now all graphs of convergence to period prevalence
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.153  2014/06/20 16:45:46  brouard
    finame[l1-l2]= 0;    Summary: If 3 live state, convergence to period prevalence on same graph
    return( 0 );                         /* we're done */    Author: Brouard
 }  
     Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
 /******************************************/  
     Revision 1.151  2014/06/18 16:43:30  brouard
 void replace(char *s, char*t)    *** empty log message ***
 {  
   int i;    Revision 1.150  2014/06/18 16:42:35  brouard
   int lg=20;    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   i=0;    Author: brouard
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.149  2014/06/18 15:51:14  brouard
     (s[i] = t[i]);    Summary: Some fixes in parameter files errors
     if (t[i]== '\\') s[i]='/';    Author: Nicolas Brouard
   }  
 }    Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
 int nbocc(char *s, char occ)    Author: Brouard
 {  
   int i,j=0;    Just a new packaging for OS/X version 0.98nS
   int lg=20;  
   i=0;    Revision 1.147  2014/06/16 10:33:11  brouard
   lg=strlen(s);    *** empty log message ***
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.146  2014/06/16 10:20:28  brouard
   }    Summary: Merge
   return j;    Author: Brouard
 }  
     Merge, before building revised version.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.145  2014/06/10 21:23:15  brouard
   int i,lg,j,p=0;    Summary: Debugging with valgrind
   i=0;    Author: Nicolas Brouard
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Lot of changes in order to output the results with some covariates
   }    After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
   lg=strlen(t);    No more memory valgrind error but a lot has to be done in order to
   for(j=0; j<p; j++) {    continue the work of splitting the code into subroutines.
     (u[j] = t[j]);    Also, decodemodel has been improved. Tricode is still not
   }    optimal. nbcode should be improved. Documentation has been added in
      u[p]='\0';    the source code.
   
    for(j=0; j<= lg; j++) {    Revision 1.143  2014/01/26 09:45:38  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   }  
 }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 /********************** nrerror ********************/  
     Revision 1.142  2014/01/26 03:57:36  brouard
 void nrerror(char error_text[])    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 {  
   fprintf(stderr,"ERREUR ...\n");    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.141  2014/01/26 02:42:01  brouard
 }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.140  2011/09/02 10:37:54  brouard
 {    Summary: times.h is ok with mingw32 now.
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Revision 1.139  2010/06/14 07:50:17  brouard
   if (!v) nrerror("allocation failure in vector");    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   return v-nl+NR_END;    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 }  
     Revision 1.138  2010/04/30 18:19:40  brouard
 /************************ free vector ******************/    *** empty log message ***
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.137  2010/04/29 18:11:38  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): Checking covariates for more complex models
 }    than V1+V2. A lot of change to be done. Unstable.
   
 /************************ivector *******************************/    Revision 1.136  2010/04/26 20:30:53  brouard
 int *ivector(long nl,long nh)    (Module): merging some libgsl code. Fixing computation
 {    of likelione (using inter/intrapolation if mle = 0) in order to
   int *v;    get same likelihood as if mle=1.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Some cleaning of code and comments added.
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.135  2009/10/29 15:33:14  brouard
 }    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
 /******************free ivector **************************/    Revision 1.134  2009/10/29 13:18:53  brouard
 void free_ivector(int *v, long nl, long nh)    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.133  2009/07/06 10:21:25  brouard
 }    just nforces
   
 /******************* imatrix *******************************/    Revision 1.132  2009/07/06 08:22:05  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Many tings
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.131  2009/06/20 16:22:47  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Some dimensions resccaled
   int **m;  
      Revision 1.130  2009/05/26 06:44:34  brouard
   /* allocate pointers to rows */    (Module): Max Covariate is now set to 20 instead of 8. A
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    lot of cleaning with variables initialized to 0. Trying to make
   if (!m) nrerror("allocation failure 1 in matrix()");    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   m += NR_END;  
   m -= nrl;    Revision 1.129  2007/08/31 13:49:27  lievre
      Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
    
   /* allocate rows and set pointers to them */    Revision 1.128  2006/06/30 13:02:05  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Module): Clarifications on computing e.j
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.127  2006/04/28 18:11:50  brouard
   m[nrl] -= ncl;    (Module): Yes the sum of survivors was wrong since
      imach-114 because nhstepm was no more computed in the age
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    loop. Now we define nhstepma in the age loop.
      (Module): In order to speed up (in case of numerous covariates) we
   /* return pointer to array of pointers to rows */    compute health expectancies (without variances) in a first step
   return m;    and then all the health expectancies with variances or standard
 }    deviation (needs data from the Hessian matrices) which slows the
     computation.
 /****************** free_imatrix *************************/    In the future we should be able to stop the program is only health
 void free_imatrix(m,nrl,nrh,ncl,nch)    expectancies and graph are needed without standard deviations.
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.126  2006/04/28 17:23:28  brouard
      /* free an int matrix allocated by imatrix() */    (Module): Yes the sum of survivors was wrong since
 {    imach-114 because nhstepm was no more computed in the age
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    loop. Now we define nhstepma in the age loop.
   free((FREE_ARG) (m+nrl-NR_END));    Version 0.98h
 }  
     Revision 1.125  2006/04/04 15:20:31  lievre
 /******************* matrix *******************************/    Errors in calculation of health expectancies. Age was not initialized.
 double **matrix(long nrl, long nrh, long ncl, long nch)    Forecasting file added.
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Revision 1.124  2006/03/22 17:13:53  lievre
   double **m;    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.123  2006/03/20 10:52:43  brouard
   m += NR_END;    * imach.c (Module): <title> changed, corresponds to .htm file
   m -= nrl;    name. <head> headers where missing.
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    * imach.c (Module): Weights can have a decimal point as for
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    English (a comma might work with a correct LC_NUMERIC environment,
   m[nrl] += NR_END;    otherwise the weight is truncated).
   m[nrl] -= ncl;    Modification of warning when the covariates values are not 0 or
     1.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Version 0.98g
   return m;  
 }    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
 /*************************free matrix ************************/    English (a comma might work with a correct LC_NUMERIC environment,
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    otherwise the weight is truncated).
 {    Modification of warning when the covariates values are not 0 or
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    1.
   free((FREE_ARG)(m+nrl-NR_END));    Version 0.98g
 }  
     Revision 1.121  2006/03/16 17:45:01  lievre
 /******************* ma3x *******************************/    * imach.c (Module): Comments concerning covariates added
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    * imach.c (Module): refinements in the computation of lli if
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    status=-2 in order to have more reliable computation if stepm is
   double ***m;    not 1 month. Version 0.98f
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.120  2006/03/16 15:10:38  lievre
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): refinements in the computation of lli if
   m += NR_END;    status=-2 in order to have more reliable computation if stepm is
   m -= nrl;    not 1 month. Version 0.98f
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.119  2006/03/15 17:42:26  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): Bug if status = -2, the loglikelihood was
   m[nrl] += NR_END;    computed as likelihood omitting the logarithm. Version O.98e
   m[nrl] -= ncl;  
     Revision 1.118  2006/03/14 18:20:07  brouard
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    (Module): Function pstamp added
   m[nrl][ncl] += NR_END;    (Module): Version 0.98d
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    Revision 1.117  2006/03/14 17:16:22  brouard
     m[nrl][j]=m[nrl][j-1]+nlay;    (Module): varevsij Comments added explaining the second
      table of variances if popbased=1 .
   for (i=nrl+1; i<=nrh; i++) {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    (Module): Function pstamp added
     for (j=ncl+1; j<=nch; j++)    (Module): Version 0.98d
       m[i][j]=m[i][j-1]+nlay;  
   }    Revision 1.116  2006/03/06 10:29:27  brouard
   return m;    (Module): Variance-covariance wrong links and
 }    varian-covariance of ej. is needed (Saito).
   
 /*************************free ma3x ************************/    Revision 1.115  2006/02/27 12:17:45  brouard
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    (Module): One freematrix added in mlikeli! 0.98c
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Revision 1.114  2006/02/26 12:57:58  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): Some improvements in processing parameter
   free((FREE_ARG)(m+nrl-NR_END));    filename with strsep.
 }  
     Revision 1.113  2006/02/24 14:20:24  brouard
 /***************** f1dim *************************/    (Module): Memory leaks checks with valgrind and:
 extern int ncom;    datafile was not closed, some imatrix were not freed and on matrix
 extern double *pcom,*xicom;    allocation too.
 extern double (*nrfunc)(double []);  
      Revision 1.112  2006/01/30 09:55:26  brouard
 double f1dim(double x)    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 {  
   int j;    Revision 1.111  2006/01/25 20:38:18  brouard
   double f;    (Module): Lots of cleaning and bugs added (Gompertz)
   double *xt;    (Module): Comments can be added in data file. Missing date values
      can be a simple dot '.'.
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Revision 1.110  2006/01/25 00:51:50  brouard
   f=(*nrfunc)(xt);    (Module): Lots of cleaning and bugs added (Gompertz)
   free_vector(xt,1,ncom);  
   return f;    Revision 1.109  2006/01/24 19:37:15  brouard
 }    (Module): Comments (lines starting with a #) are allowed in data.
   
 /*****************brent *************************/    Revision 1.108  2006/01/19 18:05:42  lievre
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Gnuplot problem appeared...
 {    To be fixed
   int iter;  
   double a,b,d,etemp;    Revision 1.107  2006/01/19 16:20:37  brouard
   double fu,fv,fw,fx;    Test existence of gnuplot in imach path
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.106  2006/01/19 13:24:36  brouard
   double e=0.0;    Some cleaning and links added in html output
    
   a=(ax < cx ? ax : cx);    Revision 1.105  2006/01/05 20:23:19  lievre
   b=(ax > cx ? ax : cx);    *** empty log message ***
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);    Revision 1.104  2005/09/30 16:11:43  lievre
   for (iter=1;iter<=ITMAX;iter++) {    (Module): sump fixed, loop imx fixed, and simplifications.
     xm=0.5*(a+b);    (Module): If the status is missing at the last wave but we know
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    that the person is alive, then we can code his/her status as -2
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    (instead of missing=-1 in earlier versions) and his/her
     printf(".");fflush(stdout);    contributions to the likelihood is 1 - Prob of dying from last
 #ifdef DEBUG    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    the healthy state at last known wave). Version is 0.98
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    Revision 1.103  2005/09/30 15:54:49  lievre
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    (Module): sump fixed, loop imx fixed, and simplifications.
       *xmin=x;  
       return fx;    Revision 1.102  2004/09/15 17:31:30  brouard
     }    Add the possibility to read data file including tab characters.
     ftemp=fu;  
     if (fabs(e) > tol1) {    Revision 1.101  2004/09/15 10:38:38  brouard
       r=(x-w)*(fx-fv);    Fix on curr_time
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Revision 1.100  2004/07/12 18:29:06  brouard
       q=2.0*(q-r);    Add version for Mac OS X. Just define UNIX in Makefile
       if (q > 0.0) p = -p;  
       q=fabs(q);    Revision 1.99  2004/06/05 08:57:40  brouard
       etemp=e;    *** empty log message ***
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    Revision 1.98  2004/05/16 15:05:56  brouard
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    New version 0.97 . First attempt to estimate force of mortality
       else {    directly from the data i.e. without the need of knowing the health
         d=p/q;    state at each age, but using a Gompertz model: log u =a + b*age .
         u=x+d;    This is the basic analysis of mortality and should be done before any
         if (u-a < tol2 || b-u < tol2)    other analysis, in order to test if the mortality estimated from the
           d=SIGN(tol1,xm-x);    cross-longitudinal survey is different from the mortality estimated
       }    from other sources like vital statistic data.
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    The same imach parameter file can be used but the option for mle should be -3.
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    Agnès, who wrote this part of the code, tried to keep most of the
     fu=(*f)(u);    former routines in order to include the new code within the former code.
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;    The output is very simple: only an estimate of the intercept and of
       SHFT(v,w,x,u)    the slope with 95% confident intervals.
         SHFT(fv,fw,fx,fu)  
         } else {    Current limitations:
           if (u < x) a=u; else b=u;    A) Even if you enter covariates, i.e. with the
           if (fu <= fw || w == x) {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
             v=w;    B) There is no computation of Life Expectancy nor Life Table.
             w=u;  
             fv=fw;    Revision 1.97  2004/02/20 13:25:42  lievre
             fw=fu;    Version 0.96d. Population forecasting command line is (temporarily)
           } else if (fu <= fv || v == x || v == w) {    suppressed.
             v=u;  
             fv=fu;    Revision 1.96  2003/07/15 15:38:55  brouard
           }    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
         }    rewritten within the same printf. Workaround: many printfs.
   }  
   nrerror("Too many iterations in brent");    Revision 1.95  2003/07/08 07:54:34  brouard
   *xmin=x;    * imach.c (Repository):
   return fx;    (Repository): Using imachwizard code to output a more meaningful covariance
 }    matrix (cov(a12,c31) instead of numbers.
   
 /****************** mnbrak ***********************/    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))    Revision 1.93  2003/06/25 16:33:55  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   double ulim,u,r,q, dum;    exist so I changed back to asctime which exists.
   double fu;    (Module): Version 0.96b
    
   *fa=(*func)(*ax);    Revision 1.92  2003/06/25 16:30:45  brouard
   *fb=(*func)(*bx);    (Module): On windows (cygwin) function asctime_r doesn't
   if (*fb > *fa) {    exist so I changed back to asctime which exists.
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    Revision 1.91  2003/06/25 15:30:29  brouard
       }    * imach.c (Repository): Duplicated warning errors corrected.
   *cx=(*bx)+GOLD*(*bx-*ax);    (Repository): Elapsed time after each iteration is now output. It
   *fc=(*func)(*cx);    helps to forecast when convergence will be reached. Elapsed time
   while (*fb > *fc) {    is stamped in powell.  We created a new html file for the graphs
     r=(*bx-*ax)*(*fb-*fc);    concerning matrix of covariance. It has extension -cov.htm.
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    Revision 1.90  2003/06/24 12:34:15  brouard
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    (Module): Some bugs corrected for windows. Also, when
     ulim=(*bx)+GLIMIT*(*cx-*bx);    mle=-1 a template is output in file "or"mypar.txt with the design
     if ((*bx-u)*(u-*cx) > 0.0) {    of the covariance matrix to be input.
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {    Revision 1.89  2003/06/24 12:30:52  brouard
       fu=(*func)(u);    (Module): Some bugs corrected for windows. Also, when
       if (fu < *fc) {    mle=-1 a template is output in file "or"mypar.txt with the design
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    of the covariance matrix to be input.
           SHFT(*fb,*fc,fu,(*func)(u))  
           }    Revision 1.88  2003/06/23 17:54:56  brouard
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       u=ulim;  
       fu=(*func)(u);    Revision 1.87  2003/06/18 12:26:01  brouard
     } else {    Version 0.96
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    Revision 1.86  2003/06/17 20:04:08  brouard
     }    (Module): Change position of html and gnuplot routines and added
     SHFT(*ax,*bx,*cx,u)    routine fileappend.
       SHFT(*fa,*fb,*fc,fu)  
       }    Revision 1.85  2003/06/17 13:12:43  brouard
 }    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 /*************** linmin ************************/    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 int ncom;    assuming that the date of death was just one stepm after the
 double *pcom,*xicom;    interview.
 double (*nrfunc)(double []);    (Repository): Because some people have very long ID (first column)
      we changed int to long in num[] and we added a new lvector for
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    memory allocation. But we also truncated to 8 characters (left
 {    truncation)
   double brent(double ax, double bx, double cx,    (Repository): No more line truncation errors.
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);    Revision 1.84  2003/06/13 21:44:43  brouard
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    * imach.c (Repository): Replace "freqsummary" at a correct
               double *fc, double (*func)(double));    place. It differs from routine "prevalence" which may be called
   int j;    many times. Probs is memory consuming and must be used with
   double xx,xmin,bx,ax;    parcimony.
   double fx,fb,fa;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    
   ncom=n;    Revision 1.83  2003/06/10 13:39:11  lievre
   pcom=vector(1,n);    *** empty log message ***
   xicom=vector(1,n);  
   nrfunc=func;    Revision 1.82  2003/06/05 15:57:20  brouard
   for (j=1;j<=n;j++) {    Add log in  imach.c and  fullversion number is now printed.
     pcom[j]=p[j];  
     xicom[j]=xi[j];  */
   }  /*
   ax=0.0;     Interpolated Markov Chain
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    Short summary of the programme:
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    
 #ifdef DEBUG    This program computes Healthy Life Expectancies from
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #endif    first survey ("cross") where individuals from different ages are
   for (j=1;j<=n;j++) {    interviewed on their health status or degree of disability (in the
     xi[j] *= xmin;    case of a health survey which is our main interest) -2- at least a
     p[j] += xi[j];    second wave of interviews ("longitudinal") which measure each change
   }    (if any) in individual health status.  Health expectancies are
   free_vector(xicom,1,n);    computed from the time spent in each health state according to a
   free_vector(pcom,1,n);    model. More health states you consider, more time is necessary to reach the
 }    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 /*************** powell ************************/    probability to be observed in state j at the second wave
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    conditional to be observed in state i at the first wave. Therefore
             double (*func)(double []))    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 {    'age' is age and 'sex' is a covariate. If you want to have a more
   void linmin(double p[], double xi[], int n, double *fret,    complex model than "constant and age", you should modify the program
               double (*func)(double []));    where the markup *Covariates have to be included here again* invites
   int i,ibig,j;    you to do it.  More covariates you add, slower the
   double del,t,*pt,*ptt,*xit;    convergence.
   double fp,fptt;  
   double *xits;    The advantage of this computer programme, compared to a simple
   pt=vector(1,n);    multinomial logistic model, is clear when the delay between waves is not
   ptt=vector(1,n);    identical for each individual. Also, if a individual missed an
   xit=vector(1,n);    intermediate interview, the information is lost, but taken into
   xits=vector(1,n);    account using an interpolation or extrapolation.  
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];    hPijx is the probability to be observed in state i at age x+h
   for (*iter=1;;++(*iter)) {    conditional to the observed state i at age x. The delay 'h' can be
     fp=(*fret);    split into an exact number (nh*stepm) of unobserved intermediate
     ibig=0;    states. This elementary transition (by month, quarter,
     del=0.0;    semester or year) is modelled as a multinomial logistic.  The hPx
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    matrix is simply the matrix product of nh*stepm elementary matrices
     for (i=1;i<=n;i++)    and the contribution of each individual to the likelihood is simply
       printf(" %d %.12f",i, p[i]);    hPijx.
     printf("\n");  
     for (i=1;i<=n;i++) {    Also this programme outputs the covariance matrix of the parameters but also
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    of the life expectancies. It also computes the period (stable) prevalence. 
       fptt=(*fret);    
 #ifdef DEBUG    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       printf("fret=%lf \n",*fret);             Institut national d'études démographiques, Paris.
 #endif    This software have been partly granted by Euro-REVES, a concerted action
       printf("%d",i);fflush(stdout);    from the European Union.
       linmin(p,xit,n,fret,func);    It is copyrighted identically to a GNU software product, ie programme and
       if (fabs(fptt-(*fret)) > del) {    software can be distributed freely for non commercial use. Latest version
         del=fabs(fptt-(*fret));    can be accessed at http://euroreves.ined.fr/imach .
         ibig=i;  
       }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #ifdef DEBUG    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
       printf("%d %.12e",i,(*fret));    
       for (j=1;j<=n;j++) {    **********************************************************************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /*
         printf(" x(%d)=%.12e",j,xit[j]);    main
       }    read parameterfile
       for(j=1;j<=n;j++)    read datafile
         printf(" p=%.12e",p[j]);    concatwav
       printf("\n");    freqsummary
 #endif    if (mle >= 1)
     }      mlikeli
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    print results files
 #ifdef DEBUG    if mle==1 
       int k[2],l;       computes hessian
       k[0]=1;    read end of parameter file: agemin, agemax, bage, fage, estepm
       k[1]=-1;        begin-prev-date,...
       printf("Max: %.12e",(*func)(p));    open gnuplot file
       for (j=1;j<=n;j++)    open html file
         printf(" %.12e",p[j]);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       printf("\n");     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
       for(l=0;l<=1;l++) {                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
         for (j=1;j<=n;j++) {      freexexit2 possible for memory heap.
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    h Pij x                         | pij_nom  ficrestpij
         }     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       }         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 #endif  
          1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
          1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       free_vector(xit,1,n);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       free_vector(xits,1,n);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       free_vector(ptt,1,n);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
       free_vector(pt,1,n);  
       return;    forecasting if prevfcast==1 prevforecast call prevalence()
     }    health expectancies
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    Variance-covariance of DFLE
     for (j=1;j<=n;j++) {    prevalence()
       ptt[j]=2.0*p[j]-pt[j];     movingaverage()
       xit[j]=p[j]-pt[j];    varevsij() 
       pt[j]=p[j];    if popbased==1 varevsij(,popbased)
     }    total life expectancies
     fptt=(*func)(ptt);    Variance of period (stable) prevalence
     if (fptt < fp) {   end
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  */
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /* #define DEBUG */
         for (j=1;j<=n;j++) {  /* #define DEBUGBRENT */
           xi[j][ibig]=xi[j][n];  #define POWELL /* Instead of NLOPT */
           xi[j][n]=xit[j];  #define POWELLF1F3 /* Skip test */
         }  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
 #ifdef DEBUG  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  #include <math.h>
           printf(" %.12e",xit[j]);  #include <stdio.h>
         printf("\n");  #include <stdlib.h>
 #endif  #include <string.h>
       }  
     }  #ifdef _WIN32
   }  #include <io.h>
 }  #include <windows.h>
   #include <tchar.h>
 /**** Prevalence limit ****************/  #else
   #include <unistd.h>
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #endif
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #include <limits.h>
      matrix by transitions matrix until convergence is reached */  #include <sys/types.h>
   
   int i, ii,j,k;  #if defined(__GNUC__)
   double min, max, maxmin, maxmax,sumnew=0.;  #include <sys/utsname.h> /* Doesn't work on Windows */
   double **matprod2();  #endif
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  #include <sys/stat.h>
   double agefin, delaymax=50 ; /* Max number of years to converge */  #include <errno.h>
   /* extern int errno; */
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /* #ifdef LINUX */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /* #include <time.h> */
     }  /* #include "timeval.h" */
   /* #else */
    cov[1]=1.;  /* #include <sys/time.h> */
    /* #endif */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #include <time.h>
     newm=savm;  
     /* Covariates have to be included here again */  #ifdef GSL
      cov[2]=agefin;  #include <gsl/gsl_errno.h>
    #include <gsl/gsl_multimin.h>
       for (k=1; k<=cptcovn;k++) {  #endif
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  #ifdef NLOPT
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #include <nlopt.h>
       for (k=1; k<=cptcovprod;k++)  typedef struct {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double (* function)(double [] );
   } myfunc_data ;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #endif
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /* #include <libintl.h> */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /* #define _(String) gettext (String) */
   
     savm=oldm;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
     oldm=newm;  
     maxmax=0.;  #define GNUPLOTPROGRAM "gnuplot"
     for(j=1;j<=nlstate;j++){  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       min=1.;  #define FILENAMELENGTH 132
       max=0.;  
       for(i=1; i<=nlstate; i++) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
         sumnew=0;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
         max=FMAX(max,prlim[i][j]);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
         min=FMIN(min,prlim[i][j]);  
       }  #define NINTERVMAX 8
       maxmin=max-min;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       maxmax=FMAX(maxmax,maxmin);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     }  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     if(maxmax < ftolpl){  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
       return prlim;  #define MAXN 20000
     }  #define YEARM 12. /**< Number of months per year */
   }  #define AGESUP 130
 }  #define AGEBASE 40
   #define AGEOVERFLOW 1.e20
 /*************** transition probabilities ***************/  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
   #ifdef _WIN32
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #define DIRSEPARATOR '\\'
 {  #define CHARSEPARATOR "\\"
   double s1, s2;  #define ODIRSEPARATOR '/'
   /*double t34;*/  #else
   int i,j,j1, nc, ii, jj;  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
     for(i=1; i<= nlstate; i++){  #define ODIRSEPARATOR '\\'
     for(j=1; j<i;j++){  #endif
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  /* $Id$ */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /* $State$ */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  #include "version.h"
       }  char version[]=__IMACH_VERSION__;
       ps[i][j]=s2;  char copyright[]="September 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  char fullversion[]="$Revision$ $Date$"; 
     }  char strstart[80];
     for(j=i+1; j<=nlstate+ndeath;j++){  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       }  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       ps[i][j]=s2;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
     }  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   }  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     /*ps[3][2]=1;*/  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   int cptcoveff=0; /* Total number of covariates to vary for printing results */
   for(i=1; i<= nlstate; i++){  int cptcov=0; /* Working variable */
      s1=0;  int npar=NPARMAX;
     for(j=1; j<i; j++)  int nlstate=2; /* Number of live states */
       s1+=exp(ps[i][j]);  int ndeath=1; /* Number of dead states */
     for(j=i+1; j<=nlstate+ndeath; j++)  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       s1+=exp(ps[i][j]);  int popbased=0;
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  int *wav; /* Number of waves for this individuual 0 is possible */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  int maxwav=0; /* Maxim number of waves */
     for(j=i+1; j<=nlstate+ndeath; j++)  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   } /* end i */                     to the likelihood and the sum of weights (done by funcone)*/
   int mle=1, weightopt=0;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     for(jj=1; jj<= nlstate+ndeath; jj++){  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       ps[ii][jj]=0;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       ps[ii][ii]=1;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     }  int countcallfunc=0;  /* Count the number of calls to func */
   }  double jmean=1; /* Mean space between 2 waves */
   double **matprod2(); /* test */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*FILE *fic ; */ /* Used in readdata only */
      printf("%lf ",ps[ii][jj]);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    }  FILE *ficlog, *ficrespow;
     printf("\n ");  int globpr=0; /* Global variable for printing or not */
     }  double fretone; /* Only one call to likelihood */
     printf("\n ");printf("%lf ",cov[2]);*/  long ipmx=0; /* Number of contributions */
 /*  double sw; /* Sum of weights */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  char filerespow[FILENAMELENGTH];
   goto end;*/  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     return ps;  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /**************** Product of 2 matrices ******************/  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  char filerese[FILENAMELENGTH];
 {  FILE *ficresstdeij;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  char fileresstde[FILENAMELENGTH];
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  FILE *ficrescveij;
   /* in, b, out are matrice of pointers which should have been initialized  char filerescve[FILENAMELENGTH];
      before: only the contents of out is modified. The function returns  FILE  *ficresvij;
      a pointer to pointers identical to out */  char fileresv[FILENAMELENGTH];
   long i, j, k;  FILE  *ficresvpl;
   for(i=nrl; i<= nrh; i++)  char fileresvpl[FILENAMELENGTH];
     for(k=ncolol; k<=ncoloh; k++)  char title[MAXLINE];
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         out[i][k] +=in[i][j]*b[j][k];  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   return out;  char command[FILENAMELENGTH];
 }  int  outcmd=0;
   
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /************* Higher Matrix Product ***************/  char fileresu[FILENAMELENGTH]; /* Without r in front */
   char filelog[FILENAMELENGTH]; /* Log file */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  char filerest[FILENAMELENGTH];
 {  char fileregp[FILENAMELENGTH];
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  char popfile[FILENAMELENGTH];
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
      Model is determined by parameters x and covariates have to be  /* struct timezone tzp; */
      included manually here.  /* extern int gettimeofday(); */
   struct tm tml, *gmtime(), *localtime();
      */  
   extern time_t time();
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   double **newm;  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
   struct tm tm;
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  char strcurr[80], strfor[80];
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);  char *endptr;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  long lval;
     }  double dval;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  #define NR_END 1
     for(d=1; d <=hstepm; d++){  #define FREE_ARG char*
       newm=savm;  #define FTOL 1.0e-10
       /* Covariates have to be included here again */  
       cov[1]=1.;  #define NRANSI 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  #define ITMAX 200 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  #define TOL 2.0e-4 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  #define CGOLD 0.3819660 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  #define GOLD 1.618034 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  #define GLIMIT 100.0 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  #define TINY 1.0e-20 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  static double maxarg1,maxarg2;
       oldm=newm;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     for(i=1; i<=nlstate+ndeath; i++)    
       for(j=1;j<=nlstate+ndeath;j++) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
         po[i][j][h]=newm[i][j];  #define rint(a) floor(a+0.5)
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
          */  #define mytinydouble 1.0e-16
       }  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   } /* end h */  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   return po;  /* static double dsqrarg; */
 }  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 /*************** log-likelihood *************/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 double func( double *x)  int agegomp= AGEGOMP;
 {  
   int i, ii, j, k, mi, d, kk;  int imx; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  int stepm=1;
   double **out;  /* Stepm, step in month: minimum step interpolation*/
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  int estepm;
   long ipmx;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   /*extern weight */  
   /* We are differentiating ll according to initial status */  int m,nb;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  long *num;
   /*for(i=1;i<imx;i++)  int firstpass=0, lastpass=4,*cod, *cens;
     printf(" %d\n",s[4][i]);  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
   */                     covariate for which somebody answered excluding 
   cov[1]=1.;                     undefined. Usually 2: 0 and 1. */
   int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
   for(k=1; k<=nlstate; k++) ll[k]=0.;                               covariate for which somebody answered including 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){                               undefined. Usually 3: -1, 0 and 1. */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     for(mi=1; mi<= wav[i]-1; mi++){  double **pmmij, ***probs;
       for (ii=1;ii<=nlstate+ndeath;ii++)  double *ageexmed,*agecens;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double dateintmean=0;
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  double *weight;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  int **s; /* Status */
         for (kk=1; kk<=cptcovage;kk++) {  double *agedc;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
         }                    * covar=matrix(0,NCOVMAX,1,n); 
                            * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  double  idx; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         savm=oldm;  int *Tage;
         oldm=newm;  int *Ndum; /** Freq of modality (tricode */
          /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
          int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       } /* end mult */  double *lsurv, *lpop, *tpop;
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  double ftolhess; /**< Tolerance for computing hessian */
       ipmx +=1;  
       sw += weight[i];  /**************** split *************************/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     } /* end of wave */  {
   } /* end of individual */    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    */ 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    char  *ss;                            /* pointer */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    int   l1=0, l2=0;                             /* length counters */
   return -l;  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /*********** Maximum Likelihood Estimation ***************/    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   int i,j, iter;      /* get current working directory */
   double **xi,*delti;      /*    extern  char* getcwd ( char *buf , int len);*/
   double fret;  #ifdef WIN32
   xi=matrix(1,npar,1,npar);      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
   for (i=1;i<=npar;i++)  #else
     for (j=1;j<=npar;j++)          if (getcwd(dirc, FILENAME_MAX) == NULL) {
       xi[i][j]=(i==j ? 1.0 : 0.0);  #endif
   printf("Powell\n");        return( GLOCK_ERROR_GETCWD );
   powell(p,xi,npar,ftol,&iter,&fret,func);      }
       /* got dirc from getcwd*/
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      printf(" DIRC = %s \n",dirc);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 /**** Computes Hessian and covariance matrix ***/      strcpy( name, ss );         /* save file name */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {      dirc[l1-l2] = '\0';                 /* add zero */
   double  **a,**y,*x,pd;      printf(" DIRC2 = %s \n",dirc);
   double **hess;    }
   int i, j,jk;    /* We add a separator at the end of dirc if not exists */
   int *indx;    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
   double hessii(double p[], double delta, int theta, double delti[]);      dirc[l1] =  DIRSEPARATOR;
   double hessij(double p[], double delti[], int i, int j);      dirc[l1+1] = 0; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      printf(" DIRC3 = %s \n",dirc);
   void ludcmp(double **a, int npar, int *indx, double *d) ;    }
     ss = strrchr( name, '.' );            /* find last / */
   hess=matrix(1,npar,1,npar);    if (ss >0){
       ss++;
   printf("\nCalculation of the hessian matrix. Wait...\n");      strcpy(ext,ss);                     /* save extension */
   for (i=1;i<=npar;i++){      l1= strlen( name);
     printf("%d",i);fflush(stdout);      l2= strlen(ss)+1;
     hess[i][i]=hessii(p,ftolhess,i,delti);      strncpy( finame, name, l1-l2);
     /*printf(" %f ",p[i]);*/      finame[l1-l2]= 0;
     /*printf(" %lf ",hess[i][i]);*/    }
   }  
      return( 0 );                          /* we're done */
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++)  {  
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /******************************************/
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      void replace_back_to_slash(char *s, char*t)
         /*printf(" %lf ",hess[i][j]);*/  {
       }    int i;
     }    int lg=0;
   }    i=0;
   printf("\n");    lg=strlen(t);
     for(i=0; i<= lg; i++) {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      (s[i] = t[i]);
        if (t[i]== '\\') s[i]='/';
   a=matrix(1,npar,1,npar);    }
   y=matrix(1,npar,1,npar);  }
   x=vector(1,npar);  
   indx=ivector(1,npar);  char *trimbb(char *out, char *in)
   for (i=1;i<=npar;i++)  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    char *s;
   ludcmp(a,npar,indx,&pd);    s=out;
     while (*in != '\0'){
   for (j=1;j<=npar;j++) {      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     for (i=1;i<=npar;i++) x[i]=0;        in++;
     x[j]=1;      }
     lubksb(a,npar,indx,x);      *out++ = *in++;
     for (i=1;i<=npar;i++){    }
       matcov[i][j]=x[i];    *out='\0';
     }    return s;
   }  }
   
   printf("\n#Hessian matrix#\n");  /* char *substrchaine(char *out, char *in, char *chain) */
   for (i=1;i<=npar;i++) {  /* { */
     for (j=1;j<=npar;j++) {  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
       printf("%.3e ",hess[i][j]);  /*   char *s, *t; */
     }  /*   t=in;s=out; */
     printf("\n");  /*   while ((*in != *chain) && (*in != '\0')){ */
   }  /*     *out++ = *in++; */
   /*   } */
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  /*   /\* *in matches *chain *\/ */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
   ludcmp(a,npar,indx,&pd);  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   /*   } */
   /*  printf("\n#Hessian matrix recomputed#\n");  /*   in--; chain--; */
   /*   while ( (*in != '\0')){ */
   for (j=1;j<=npar;j++) {  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
     for (i=1;i<=npar;i++) x[i]=0;  /*     *out++ = *in++; */
     x[j]=1;  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
     lubksb(a,npar,indx,x);  /*   } */
     for (i=1;i<=npar;i++){  /*   *out='\0'; */
       y[i][j]=x[i];  /*   out=s; */
       printf("%.3e ",y[i][j]);  /*   return out; */
     }  /* } */
     printf("\n");  char *substrchaine(char *out, char *in, char *chain)
   }  {
   */    /* Substract chain 'chain' from 'in', return and output 'out' */
     /* in="V1+V1*age+age*age+V2", chain="age*age" */
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);    char *strloc;
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);    strcpy (out, in); 
   free_matrix(hess,1,npar,1,npar);    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
     printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
     if(strloc != NULL){ 
 }      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
       memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
 /*************** hessian matrix ****************/      /* strcpy (strloc, strloc +strlen(chain));*/
 double hessii( double x[], double delta, int theta, double delti[])    }
 {    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
   int i;    return out;
   int l=1, lmax=20;  }
   double k1,k2;  
   double p2[NPARMAX+1];  
   double res;  char *cutl(char *blocc, char *alocc, char *in, char occ)
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  {
   double fx;    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
   int k=0,kmax=10;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   double l1;       gives blocc="abcdef" and alocc="ghi2j".
        If occ is not found blocc is null and alocc is equal to in. Returns blocc
   fx=func(x);    */
   for (i=1;i<=npar;i++) p2[i]=x[i];    char *s, *t;
   for(l=0 ; l <=lmax; l++){    t=in;s=in;
     l1=pow(10,l);    while ((*in != occ) && (*in != '\0')){
     delts=delt;      *alocc++ = *in++;
     for(k=1 ; k <kmax; k=k+1){    }
       delt = delta*(l1*k);    if( *in == occ){
       p2[theta]=x[theta] +delt;      *(alocc)='\0';
       k1=func(p2)-fx;      s=++in;
       p2[theta]=x[theta]-delt;    }
       k2=func(p2)-fx;   
       /*res= (k1-2.0*fx+k2)/delt/delt; */    if (s == t) {/* occ not found */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      *(alocc-(in-s))='\0';
            in=s;
 #ifdef DEBUG    }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    while ( *in != '\0'){
 #endif      *blocc++ = *in++;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;    *blocc='\0';
       }    return t;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  }
         k=kmax; l=lmax*10.;  char *cutv(char *blocc, char *alocc, char *in, char occ)
       }  {
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
         delts=delt;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       }       gives blocc="abcdef2ghi" and alocc="j".
     }       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   }    */
   delti[theta]=delts;    char *s, *t;
   return res;    t=in;s=in;
      while (*in != '\0'){
 }      while( *in == occ){
         *blocc++ = *in++;
 double hessij( double x[], double delti[], int thetai,int thetaj)        s=in;
 {      }
   int i;      *blocc++ = *in++;
   int l=1, l1, lmax=20;    }
   double k1,k2,k3,k4,res,fx;    if (s == t) /* occ not found */
   double p2[NPARMAX+1];      *(blocc-(in-s))='\0';
   int k;    else
       *(blocc-(in-s)-1)='\0';
   fx=func(x);    in=s;
   for (k=1; k<=2; k++) {    while ( *in != '\0'){
     for (i=1;i<=npar;i++) p2[i]=x[i];      *alocc++ = *in++;
     p2[thetai]=x[thetai]+delti[thetai]/k;    }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;    *alocc='\0';
      return s;
     p2[thetai]=x[thetai]+delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  int nbocc(char *s, char occ)
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    int i,j=0;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int lg=20;
     k3=func(p2)-fx;    i=0;
      lg=strlen(s);
     p2[thetai]=x[thetai]-delti[thetai]/k;    for(i=0; i<= lg; i++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    if  (s[i] == occ ) j++;
     k4=func(p2)-fx;    }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    return j;
 #ifdef DEBUG  }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /* void cutv(char *u,char *v, char*t, char occ) */
   }  /* { */
   return res;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
 }  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   /*      gives u="abcdef2ghi" and v="j" *\/ */
 /************** Inverse of matrix **************/  /*   int i,lg,j,p=0; */
 void ludcmp(double **a, int n, int *indx, double *d)  /*   i=0; */
 {  /*   lg=strlen(t); */
   int i,imax,j,k;  /*   for(j=0; j<=lg-1; j++) { */
   double big,dum,sum,temp;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   double *vv;  /*   } */
    
   vv=vector(1,n);  /*   for(j=0; j<p; j++) { */
   *d=1.0;  /*     (u[j] = t[j]); */
   for (i=1;i<=n;i++) {  /*   } */
     big=0.0;  /*      u[p]='\0'; */
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*    for(j=0; j<= lg; j++) { */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     vv[i]=1.0/big;  /*   } */
   }  /* } */
   for (j=1;j<=n;j++) {  
     for (i=1;i<j;i++) {  #ifdef _WIN32
       sum=a[i][j];  char * strsep(char **pp, const char *delim)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    char *p, *q;
     }           
     big=0.0;    if ((p = *pp) == NULL)
     for (i=j;i<=n;i++) {      return 0;
       sum=a[i][j];    if ((q = strpbrk (p, delim)) != NULL)
       for (k=1;k<j;k++)    {
         sum -= a[i][k]*a[k][j];      *pp = q + 1;
       a[i][j]=sum;      *q = '\0';
       if ( (dum=vv[i]*fabs(sum)) >= big) {    }
         big=dum;    else
         imax=i;      *pp = 0;
       }    return p;
     }  }
     if (j != imax) {  #endif
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];  /********************** nrerror ********************/
         a[imax][k]=a[j][k];  
         a[j][k]=dum;  void nrerror(char error_text[])
       }  {
       *d = -(*d);    fprintf(stderr,"ERREUR ...\n");
       vv[imax]=vv[j];    fprintf(stderr,"%s\n",error_text);
     }    exit(EXIT_FAILURE);
     indx[j]=imax;  }
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*********************** vector *******************/
     if (j != n) {  double *vector(int nl, int nh)
       dum=1.0/(a[j][j]);  {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double *v;
     }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   }    if (!v) nrerror("allocation failure in vector");
   free_vector(vv,1,n);  /* Doesn't work */    return v-nl+NR_END;
 ;  }
 }  
   /************************ free vector ******************/
 void lubksb(double **a, int n, int *indx, double b[])  void free_vector(double*v, int nl, int nh)
 {  {
   int i,ii=0,ip,j;    free((FREE_ARG)(v+nl-NR_END));
   double sum;  }
    
   for (i=1;i<=n;i++) {  /************************ivector *******************************/
     ip=indx[i];  int *ivector(long nl,long nh)
     sum=b[ip];  {
     b[ip]=b[i];    int *v;
     if (ii)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    if (!v) nrerror("allocation failure in ivector");
     else if (sum) ii=i;    return v-nl+NR_END;
     b[i]=sum;  }
   }  
   for (i=n;i>=1;i--) {  /******************free ivector **************************/
     sum=b[i];  void free_ivector(int *v, long nl, long nh)
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  {
     b[i]=sum/a[i][i];    free((FREE_ARG)(v+nl-NR_END));
   }  }
 }  
   /************************lvector *******************************/
 /************ Frequencies ********************/  long *lvector(long nl,long nh)
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  {
 {  /* Some frequencies */    long *v;
      v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    if (!v) nrerror("allocation failure in ivector");
   double ***freq; /* Frequencies */    return v-nl+NR_END;
   double *pp;  }
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;  /******************free lvector **************************/
   char fileresp[FILENAMELENGTH];  void free_lvector(long *v, long nl, long nh)
    {
   pp=vector(1,nlstate);    free((FREE_ARG)(v+nl-NR_END));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  /******************* imatrix *******************************/
   if((ficresp=fopen(fileresp,"w"))==NULL) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     printf("Problem with prevalence resultfile: %s\n", fileresp);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     exit(0);  { 
   }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    int **m; 
   j1=0;    
      /* allocate pointers to rows */ 
   j=cptcoveff;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (!m) nrerror("allocation failure 1 in matrix()"); 
      m += NR_END; 
   for(k1=1; k1<=j;k1++){    m -= nrl; 
     for(i1=1; i1<=ncodemax[k1];i1++){    
       j1++;    
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    /* allocate rows and set pointers to them */ 
         scanf("%d", i);*/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       for (i=-1; i<=nlstate+ndeath; i++)      if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)      m[nrl] += NR_END; 
           for(m=agemin; m <= agemax+3; m++)    m[nrl] -= ncl; 
             freq[i][jk][m]=0;    
          for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       dateintsum=0;    
       k2cpt=0;    /* return pointer to array of pointers to rows */ 
       for (i=1; i<=imx; i++) {    return m; 
         bool=1;  } 
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)  /****************** free_imatrix *************************/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  void free_imatrix(m,nrl,nrh,ncl,nch)
               bool=0;        int **m;
         }        long nch,ncl,nrh,nrl; 
         if (bool==1) {       /* free an int matrix allocated by imatrix() */ 
           for(m=firstpass; m<=lastpass; m++){  { 
             k2=anint[m][i]+(mint[m][i]/12.);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    free((FREE_ARG) (m+nrl-NR_END)); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;  } 
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  /******************* matrix *******************************/
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  double **matrix(long nrl, long nrh, long ncl, long nch)
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  {
               }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
                  double **m;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                 k2cpt++;    if (!m) nrerror("allocation failure 1 in matrix()");
               }    m += NR_END;
             }    m -= nrl;
           }  
         }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
            m[nrl] += NR_END;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    m[nrl] -= ncl;
   
       if  (cptcovn>0) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         fprintf(ficresp, "\n#********** Variable ");    return m;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
         fprintf(ficresp, "**********\n#");  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       }  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
       for(i=1; i<=nlstate;i++)     */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  }
       fprintf(ficresp, "\n");  
        /*************************free matrix ************************/
       for(i=(int)agemin; i <= (int)agemax+3; i++){  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         if(i==(int)agemax+3)  {
           printf("Total");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         else    free((FREE_ARG)(m+nrl-NR_END));
           printf("Age %d", i);  }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /******************* ma3x *******************************/
             pp[jk] += freq[jk][m][i];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         }  {
         for(jk=1; jk <=nlstate ; jk++){    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
           for(m=-1, pos=0; m <=0 ; m++)    double ***m;
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    if (!m) nrerror("allocation failure 1 in matrix()");
           else    m += NR_END;
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    m -= nrl;
         }  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         for(jk=1; jk <=nlstate ; jk++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    m[nrl] += NR_END;
             pp[jk] += freq[jk][m][i];    m[nrl] -= ncl;
         }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         for(jk=1; jk <=nlstate ; jk++){    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           if(pos>=1.e-5)    m[nrl][ncl] += NR_END;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    m[nrl][ncl] -= nll;
           else    for (j=ncl+1; j<=nch; j++) 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      m[nrl][j]=m[nrl][j-1]+nlay;
           if( i <= (int) agemax){    
             if(pos>=1.e-5){    for (i=nrl+1; i<=nrh; i++) {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
               probs[i][jk][j1]= pp[jk]/pos;      for (j=ncl+1; j<=nch; j++) 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        m[i][j]=m[i][j-1]+nlay;
             }    }
             else    return m; 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
           }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         }    */
          }
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)  /*************************free ma3x ************************/
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         if(i <= (int) agemax)  {
           fprintf(ficresp,"\n");    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         printf("\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
     }  }
   }  
   dateintmean=dateintsum/k2cpt;  /*************** function subdirf ***********/
    char *subdirf(char fileres[])
   fclose(ficresp);  {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /* Caution optionfilefiname is hidden */
   free_vector(pp,1,nlstate);    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/"); /* Add to the right */
   /* End of Freq */    strcat(tmpout,fileres);
 }    return tmpout;
   }
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  /*************** function subdirf2 ***********/
 {  /* Some frequencies */  char *subdirf2(char fileres[], char *preop)
    {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    
   double ***freq; /* Frequencies */    /* Caution optionfilefiname is hidden */
   double *pp;    strcpy(tmpout,optionfilefiname);
   double pos, k2;    strcat(tmpout,"/");
     strcat(tmpout,preop);
   pp=vector(1,nlstate);    strcat(tmpout,fileres);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    return tmpout;
    }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  
   j1=0;  /*************** function subdirf3 ***********/
    char *subdirf3(char fileres[], char *preop, char *preop2)
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    
      /* Caution optionfilefiname is hidden */
  for(k1=1; k1<=j;k1++){    strcpy(tmpout,optionfilefiname);
     for(i1=1; i1<=ncodemax[k1];i1++){    strcat(tmpout,"/");
       j1++;    strcat(tmpout,preop);
      strcat(tmpout,preop2);
       for (i=-1; i<=nlstate+ndeath; i++)      strcat(tmpout,fileres);
         for (jk=-1; jk<=nlstate+ndeath; jk++)      return tmpout;
           for(m=agemin; m <= agemax+3; m++)  }
             freq[i][jk][m]=0;  
        char *asc_diff_time(long time_sec, char ascdiff[])
       for (i=1; i<=imx; i++) {  {
         bool=1;    long sec_left, days, hours, minutes;
         if  (cptcovn>0) {    days = (time_sec) / (60*60*24);
           for (z1=1; z1<=cptcoveff; z1++)    sec_left = (time_sec) % (60*60*24);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    hours = (sec_left) / (60*60) ;
               bool=0;    sec_left = (sec_left) %(60*60);
         }    minutes = (sec_left) /60;
         if (bool==1) {    sec_left = (sec_left) % (60);
           for(m=firstpass; m<=lastpass; m++){    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
             k2=anint[m][i]+(mint[m][i]/12.);    return ascdiff;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  }
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /***************** f1dim *************************/
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  extern int ncom; 
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */  extern double *pcom,*xicom;
             }  extern double (*nrfunc)(double []); 
           }   
         }  double f1dim(double x) 
       }  { 
         for(i=(int)agemin; i <= (int)agemax+3; i++){    int j; 
           for(jk=1; jk <=nlstate ; jk++){    double f;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double *xt; 
               pp[jk] += freq[jk][m][i];   
           }    xt=vector(1,ncom); 
           for(jk=1; jk <=nlstate ; jk++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
             for(m=-1, pos=0; m <=0 ; m++)    f=(*nrfunc)(xt); 
             pos += freq[jk][m][i];    free_vector(xt,1,ncom); 
         }    return f; 
          } 
          for(jk=1; jk <=nlstate ; jk++){  
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*****************brent *************************/
              pp[jk] += freq[jk][m][i];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
          }  {
              /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
      * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
          for(jk=1; jk <=nlstate ; jk++){               * the minimum is returned as xmin, and the minimum function value is returned as brent , the
            if( i <= (int) agemax){     * returned function value. 
              if(pos>=1.e-5){    */
                probs[i][jk][j1]= pp[jk]/pos;    int iter; 
              }    double a,b,d,etemp;
            }    double fu=0,fv,fw,fx;
          }    double ftemp=0.;
              double p,q,r,tol1,tol2,u,v,w,x,xm; 
         }    double e=0.0; 
     }   
   }    a=(ax < cx ? ax : cx); 
      b=(ax > cx ? ax : cx); 
      x=w=v=bx; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    fw=fv=fx=(*f)(x); 
   free_vector(pp,1,nlstate);    for (iter=1;iter<=ITMAX;iter++) { 
        xm=0.5*(a+b); 
 }  /* End of Freq */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 /************* Waves Concatenation ***************/      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  #ifdef DEBUGBRENT
 {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
      Death is a valid wave (if date is known).      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  #endif
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      and mw[mi+1][i]. dh depends on stepm.        *xmin=x; 
      */        return fx; 
       } 
   int i, mi, m;      ftemp=fu;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      if (fabs(e) > tol1) { 
      double sum=0., jmean=0.;*/        r=(x-w)*(fx-fv); 
         q=(x-v)*(fx-fw); 
   int j, k=0,jk, ju, jl;        p=(x-v)*q-(x-w)*r; 
   double sum=0.;        q=2.0*(q-r); 
   jmin=1e+5;        if (q > 0.0) p = -p; 
   jmax=-1;        q=fabs(q); 
   jmean=0.;        etemp=e; 
   for(i=1; i<=imx; i++){        e=d; 
     mi=0;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     m=firstpass;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     while(s[m][i] <= nlstate){        else { 
       if(s[m][i]>=1)          d=p/q; 
         mw[++mi][i]=m;          u=x+d; 
       if(m >=lastpass)          if (u-a < tol2 || b-u < tol2) 
         break;            d=SIGN(tol1,xm-x); 
       else        } 
         m++;      } else { 
     }/* end while */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     if (s[m][i] > nlstate){      } 
       mi++;     /* Death is another wave */      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       /* if(mi==0)  never been interviewed correctly before death */      fu=(*f)(u); 
          /* Only death is a correct wave */      if (fu <= fx) { 
       mw[mi][i]=m;        if (u >= x) a=x; else b=x; 
     }        SHFT(v,w,x,u) 
         SHFT(fv,fw,fx,fu) 
     wav[i]=mi;      } else { 
     if(mi==0)        if (u < x) a=u; else b=u; 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        if (fu <= fw || w == x) { 
   }          v=w; 
           w=u; 
   for(i=1; i<=imx; i++){          fv=fw; 
     for(mi=1; mi<wav[i];mi++){          fw=fu; 
       if (stepm <=0)        } else if (fu <= fv || v == x || v == w) { 
         dh[mi][i]=1;          v=u; 
       else{          fv=fu; 
         if (s[mw[mi+1][i]][i] > nlstate) {        } 
           if (agedc[i] < 2*AGESUP) {      } 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    } 
           if(j==0) j=1;  /* Survives at least one month after exam */    nrerror("Too many iterations in brent"); 
           k=k+1;    *xmin=x; 
           if (j >= jmax) jmax=j;    return fx; 
           if (j <= jmin) jmin=j;  } 
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  /****************** mnbrak ***********************/
           }  
         }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         else{              double (*func)(double)) 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
           k=k+1;  the downhill direction (defined by the function as evaluated at the initial points) and returns
           if (j >= jmax) jmax=j;  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
           else if (j <= jmin)jmin=j;  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */     */
           sum=sum+j;    double ulim,u,r,q, dum;
         }    double fu; 
         jk= j/stepm;  
         jl= j -jk*stepm;    double scale=10.;
         ju= j -(jk+1)*stepm;    int iterscale=0;
         if(jl <= -ju)  
           dh[mi][i]=jk;    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
         else    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)  
           dh[mi][i]=1; /* At least one step */    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
       }    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
     }    /*   *bx = *ax - (*ax - *bx)/scale; */
   }    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
   jmean=sum/k;    /* } */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
  }    if (*fb > *fa) { 
 /*********** Tricode ****************************/      SHFT(dum,*ax,*bx,dum) 
 void tricode(int *Tvar, int **nbcode, int imx)      SHFT(dum,*fb,*fa,dum) 
 {    } 
   int Ndum[20],ij=1, k, j, i;    *cx=(*bx)+GOLD*(*bx-*ax); 
   int cptcode=0;    *fc=(*func)(*cx); 
   cptcoveff=0;  #ifdef DEBUG
      printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   for (k=0; k<19; k++) Ndum[k]=0;    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   for (k=1; k<=7; k++) ncodemax[k]=0;  #endif
     while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      r=(*bx-*ax)*(*fb-*fc); 
     for (i=1; i<=imx; i++) {      q=(*bx-*cx)*(*fb-*fa); 
       ij=(int)(covar[Tvar[j]][i]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       Ndum[ij]++;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
       if (ij > cptcode) cptcode=ij;      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
     }        fu=(*func)(u); 
   #ifdef DEBUG
     for (i=0; i<=cptcode; i++) {        /* f(x)=A(x-u)**2+f(u) */
       if(Ndum[i]!=0) ncodemax[j]++;        double A, fparabu; 
     }        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
     ij=1;        fparabu= *fa - A*(*ax-u)*(*ax-u);
         printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
     for (i=1; i<=ncodemax[j]; i++) {        /* And thus,it can be that fu > *fc even if fparabu < *fc */
       for (k=0; k<=19; k++) {        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
         if (Ndum[k] != 0) {          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
           nbcode[Tvar[j]][ij]=k;        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
           /*     printf("nbcodeaaaaaaaaaaa=%d Tvar[j]=%d ij=%d j=%d",nbcode[Tvar[j]][ij],Tvar[j],ij,j);*/  #endif 
           ij++;  #ifdef MNBRAKORIGINAL
         }  #else
         if (ij > ncodemax[j]) break;  /*       if (fu > *fc) { */
       }    /* #ifdef DEBUG */
     }  /*       printf("mnbrak4  fu > fc \n"); */
   }    /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
   /* #endif */
  for (k=0; k<19; k++) Ndum[k]=0;  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
   /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
  for (i=1; i<=ncovmodel-2; i++) {  /*      dum=u; /\* Shifting c and u *\/ */
       ij=Tvar[i];  /*      u = *cx; */
       Ndum[ij]++;  /*      *cx = dum; */
     }  /*      dum = fu; */
   /*      fu = *fc; */
  ij=1;  /*      *fc =dum; */
  for (i=1; i<=10; i++) {  /*       } else { /\* end *\/ */
    if((Ndum[i]!=0) && (i<=ncovcol)){  /* #ifdef DEBUG */
      Tvaraff[ij]=i;  /*       printf("mnbrak3  fu < fc \n"); */
      ij++;  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
    }  /* #endif */
  }  /*      dum=u; /\* Shifting c and u *\/ */
    /*      u = *cx; */
     cptcoveff=ij-1;  /*      *cx = dum; */
 }  /*      dum = fu; */
   /*      fu = *fc; */
 /*********** Health Expectancies ****************/  /*      *fc =dum; */
   /*       } */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  #ifdef DEBUG
 {        printf("mnbrak34  fu < or >= fc \n");
   /* Health expectancies */        fprintf(ficlog, "mnbrak34 fu < fc\n");
   int i, j, nhstepm, hstepm, h, nstepm, k;  #endif
   double age, agelim, hf;        dum=u; /* Shifting c and u */
   double ***p3mat;        u = *cx;
          *cx = dum;
   fprintf(ficreseij,"# Health expectancies\n");        dum = fu;
   fprintf(ficreseij,"# Age");        fu = *fc;
   for(i=1; i<=nlstate;i++)        *fc =dum;
     for(j=1; j<=nlstate;j++)  #endif
       fprintf(ficreseij," %1d-%1d",i,j);      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
   fprintf(ficreseij,"\n");  #ifdef DEBUG
         printf("mnbrak2  u after c but before ulim\n");
   k=1;             /* For example stepm=6 months */        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */  #endif
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */        fu=(*func)(u); 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        if (fu < *fc) { 
      nhstepm is the number of hstepm from age to agelim  #ifdef DEBUG
      nstepm is the number of stepm from age to agelin.        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
      Look at hpijx to understand the reason of that which relies in memory size        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
      and note for a fixed period like k years */  #endif
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
      survival function given by stepm (the optimization length). Unfortunately it          SHFT(*fb,*fc,fu,(*func)(u)) 
      means that if the survival funtion is printed only each two years of age and if        } 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
      results. So we changed our mind and took the option of the best precision.  #ifdef DEBUG
   */        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
   #endif
   agelim=AGESUP;        u=ulim; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fu=(*func)(u); 
     /* nhstepm age range expressed in number of stepm */      } else { /* u could be left to b (if r > q parabola has a maximum) */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  #ifdef DEBUG
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
     /* if (stepm >= YEARM) hstepm=1;*/        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  #endif
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        u=(*cx)+GOLD*(*cx-*bx); 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        fu=(*func)(u); 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      } /* end tests */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        SHFT(*ax,*bx,*cx,u) 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      SHFT(*fa,*fb,*fc,fu) 
     for(i=1; i<=nlstate;i++)  #ifdef DEBUG
       for(j=1; j<=nlstate;j++)        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  #endif
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
         }  } 
     fprintf(ficreseij,"%3.0f",age );  
     for(i=1; i<=nlstate;i++)  /*************** linmin ************************/
       for(j=1; j<=nlstate;j++){  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
       }  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
     fprintf(ficreseij,"\n");  the value of func at the returned location p . This is actually all accomplished by calling the
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  routines mnbrak and brent .*/
   }  int ncom; 
 }  double *pcom,*xicom;
   double (*nrfunc)(double []); 
 /************ Variance ******************/   
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 {  { 
   /* Variance of health expectancies */    double brent(double ax, double bx, double cx, 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                 double (*f)(double), double tol, double *xmin); 
   double **newm;    double f1dim(double x); 
   double **dnewm,**doldm;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   int i, j, nhstepm, hstepm, h, nstepm, kk;                double *fc, double (*func)(double)); 
   int k, cptcode;    int j; 
   double *xp;    double xx,xmin,bx,ax; 
   double **gp, **gm;    double fx,fb,fa;
   double ***gradg, ***trgradg;  
   double ***p3mat;    double scale=10., axs, xxs, xxss; /* Scale added for infinity */
   double age,agelim, hf;   
   int theta;    ncom=n; 
     pcom=vector(1,n); 
    fprintf(ficresvij,"# Covariances of life expectancies\n");    xicom=vector(1,n); 
   fprintf(ficresvij,"# Age");    nrfunc=func; 
   for(i=1; i<=nlstate;i++)    for (j=1;j<=n;j++) { 
     for(j=1; j<=nlstate;j++)      pcom[j]=p[j]; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      xicom[j]=xi[j]; 
   fprintf(ficresvij,"\n");    } 
   
   xp=vector(1,npar);    /* axs=0.0; */
   dnewm=matrix(1,nlstate,1,npar);    /* xxss=1; /\* 1 and using scale *\/ */
   doldm=matrix(1,nlstate,1,nlstate);    xxs=1;
      /* do{ */
   kk=1;             /* For example stepm=6 months */      ax=0.;
   hstepm=kk*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */      xx= xxs;
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
      nhstepm is the number of hstepm from age to agelim      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
      nstepm is the number of stepm from age to agelin.      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
      Look at hpijx to understand the reason of that which relies in memory size      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
      and note for a fixed period like k years */      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
      survival function given by stepm (the optimization length). Unfortunately it    /*   if (fx != fx){ */
      means that if the survival funtion is printed only each two years of age and if    /*    xxs=xxs/scale; /\* Trying a smaller xx, closer to initial ax=0 *\/ */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    /*    printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx); */
      results. So we changed our mind and took the option of the best precision.    /*   } */
   */    /* }while(fx != fx); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  #ifdef DEBUGLINMIN
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  #endif
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* fmin = f(p[j] + xmin * xi[j]) */
     gp=matrix(0,nhstepm,1,nlstate);    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
     gm=matrix(0,nhstepm,1,nlstate);    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
   #ifdef DEBUG
     for(theta=1; theta <=npar; theta++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for(i=1; i<=npar; i++){ /* Computes gradient */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  #endif
       }  #ifdef DEBUGLINMIN
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("linmin end ");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  #endif
     for (j=1;j<=n;j++) { 
       if (popbased==1) {      /* printf(" before xi[%d]=%12.8f", j,xi[j]); */
         for(i=1; i<=nlstate;i++)      xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
           prlim[i][i]=probs[(int)age][i][ij];      /* if(xxs <1.0) */
       }      /*   printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */
        p[j] += xi[j]; /* Parameters values are updated accordingly */
       for(j=1; j<= nlstate; j++){    } 
         for(h=0; h<=nhstepm; h++){    /* printf("\n"); */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  #ifdef DEBUGLINMIN
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
         }    for (j=1;j<=n;j++) { 
       }      printf(" xi[%d]= %12.7f p[%d]= %12.7f",j,xi[j],j,p[j]);
          if(j % ncovmodel == 0)
       for(i=1; i<=npar; i++) /* Computes gradient */        printf("\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #endif
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_vector(xicom,1,n); 
      free_vector(pcom,1,n); 
       if (popbased==1) {  } 
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  
       }  /*************** powell ************************/
   /*
       for(j=1; j<= nlstate; j++){  Minimization of a function func of n variables. Input consists of an initial starting point
         for(h=0; h<=nhstepm; h++){  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  such that failure to decrease by more than this amount on one iteration signals doneness. On
         }  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
       }  function value at p , and iter is the number of iterations taken. The routine linmin is used.
    */
       for(j=1; j<= nlstate; j++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         for(h=0; h<=nhstepm; h++){              double (*func)(double [])) 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  { 
         }    void linmin(double p[], double xi[], int n, double *fret, 
     } /* End theta */                double (*func)(double [])); 
     int i,ibig,j; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double del,t,*pt,*ptt,*xit;
     double directest;
     for(h=0; h<=nhstepm; h++)    double fp,fptt;
       for(j=1; j<=nlstate;j++)    double *xits;
         for(theta=1; theta <=npar; theta++)    int niterf, itmp;
           trgradg[h][j][theta]=gradg[h][theta][j];  
     pt=vector(1,n); 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    ptt=vector(1,n); 
     for(i=1;i<=nlstate;i++)    xit=vector(1,n); 
       for(j=1;j<=nlstate;j++)    xits=vector(1,n); 
         vareij[i][j][(int)age] =0.;    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
     for(h=0;h<=nhstepm;h++){      rcurr_time = time(NULL);  
       for(k=0;k<=nhstepm;k++){    for (*iter=1;;++(*iter)) { 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      fp=(*fret); /* From former iteration or initial value */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      ibig=0; 
         for(i=1;i<=nlstate;i++)      del=0.0; 
           for(j=1;j<=nlstate;j++)      rlast_time=rcurr_time;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      /* (void) gettimeofday(&curr_time,&tzp); */
       }      rcurr_time = time(NULL);  
     }      curr_time = *localtime(&rcurr_time);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
     fprintf(ficresvij,"%.0f ",age );      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
     for(i=1; i<=nlstate;i++)  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       for(j=1; j<=nlstate;j++){      for (i=1;i<=n;i++) {
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        printf(" %d %.12f",i, p[i]);
       }        fprintf(ficlog," %d %.12lf",i, p[i]);
     fprintf(ficresvij,"\n");        fprintf(ficrespow," %.12lf", p[i]);
     free_matrix(gp,0,nhstepm,1,nlstate);      }
     free_matrix(gm,0,nhstepm,1,nlstate);      printf("\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      fprintf(ficlog,"\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      fprintf(ficrespow,"\n");fflush(ficrespow);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if(*iter <=3){
   } /* End age */        tml = *localtime(&rcurr_time);
          strcpy(strcurr,asctime(&tml));
   free_vector(xp,1,npar);        rforecast_time=rcurr_time; 
   free_matrix(doldm,1,nlstate,1,npar);        itmp = strlen(strcurr);
   free_matrix(dnewm,1,nlstate,1,nlstate);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
 }        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 /************ Variance of prevlim ******************/        for(niterf=10;niterf<=30;niterf+=10){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
 {          forecast_time = *localtime(&rforecast_time);
   /* Variance of prevalence limit */          strcpy(strfor,asctime(&forecast_time));
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          itmp = strlen(strfor);
   double **newm;          if(strfor[itmp-1]=='\n')
   double **dnewm,**doldm;          strfor[itmp-1]='\0';
   int i, j, nhstepm, hstepm;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   int k, cptcode;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   double *xp;        }
   double *gp, *gm;      }
   double **gradg, **trgradg;      for (i=1;i<=n;i++) { /* For each direction i */
   double age,agelim;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
   int theta;        fptt=(*fret); 
      #ifdef DEBUG
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   fprintf(ficresvpl,"# Age");            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   for(i=1; i<=nlstate;i++)  #endif
       fprintf(ficresvpl," %1d-%1d",i,i);            printf("%d",i);fflush(stdout); /* print direction (parameter) i */
   fprintf(ficresvpl,"\n");        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
   xp=vector(1,npar);                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
   dnewm=matrix(1,nlstate,1,npar);        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
   doldm=matrix(1,nlstate,1,nlstate);          /* because that direction will be replaced unless the gain del is small */
            /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
   hstepm=1*YEARM; /* Every year of age */          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          /* with the new direction. */
   agelim = AGESUP;          del=fabs(fptt-(*fret)); 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          ibig=i; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        } 
     if (stepm >= YEARM) hstepm=1;  #ifdef DEBUG
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        printf("%d %.12e",i,(*fret));
     gradg=matrix(1,npar,1,nlstate);        fprintf(ficlog,"%d %.12e",i,(*fret));
     gp=vector(1,nlstate);        for (j=1;j<=n;j++) {
     gm=vector(1,nlstate);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
     for(theta=1; theta <=npar; theta++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(j=1;j<=n;j++) {
       }          printf(" p(%d)=%.12e",j,p[j]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
       for(i=1;i<=nlstate;i++)        }
         gp[i] = prlim[i][i];        printf("\n");
            fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++) /* Computes gradient */  #endif
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      } /* end loop on each direction i */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
       for(i=1;i<=nlstate;i++)      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
         gm[i] = prlim[i][i];      /* New value of last point Pn is not computed, P(n-1) */
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
       for(i=1;i<=nlstate;i++)        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
     } /* End theta */        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
         /* decreased of more than 3.84  */
     trgradg =matrix(1,nlstate,1,npar);        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
         /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
     for(j=1; j<=nlstate;j++)        /* By adding 10 parameters more the gain should be 18.31 */
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];        /* Starting the program with initial values given by a former maximization will simply change */
         /* the scales of the directions and the directions, because the are reset to canonical directions */
     for(i=1;i<=nlstate;i++)        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
       varpl[i][(int)age] =0.;        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  #ifdef DEBUG
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        int k[2],l;
     for(i=1;i<=nlstate;i++)        k[0]=1;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
     fprintf(ficresvpl,"%.0f ",age );        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for(i=1; i<=nlstate;i++)        for (j=1;j<=n;j++) {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          printf(" %.12e",p[j]);
     fprintf(ficresvpl,"\n");          fprintf(ficlog," %.12e",p[j]);
     free_vector(gp,1,nlstate);        }
     free_vector(gm,1,nlstate);        printf("\n");
     free_matrix(gradg,1,npar,1,nlstate);        fprintf(ficlog,"\n");
     free_matrix(trgradg,1,nlstate,1,npar);        for(l=0;l<=1;l++) {
   } /* End age */          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   free_vector(xp,1,npar);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   free_matrix(doldm,1,nlstate,1,npar);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   free_matrix(dnewm,1,nlstate,1,nlstate);          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
 /************ Variance of one-step probabilities  ******************/  #endif
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  
 {  
   int i, j;        free_vector(xit,1,n); 
   int k=0, cptcode;        free_vector(xits,1,n); 
   double **dnewm,**doldm;        free_vector(ptt,1,n); 
   double *xp;        free_vector(pt,1,n); 
   double *gp, *gm;        return; 
   double **gradg, **trgradg;      } /* enough precision */ 
   double age,agelim, cov[NCOVMAX];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   int theta;      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
   char fileresprob[FILENAMELENGTH];        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
   strcpy(fileresprob,"prob");        pt[j]=p[j]; 
   strcat(fileresprob,fileres);      } 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      fptt=(*func)(ptt); /* f_3 */
     printf("Problem with resultfile: %s\n", fileresprob);  #ifdef POWELLF1F3
   }  #else
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
    #endif
         /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
   xp=vector(1,npar);        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
          /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   cov[1]=1;        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
   for (age=bage; age<=fage; age ++){        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
     cov[2]=age;  #ifdef NRCORIGINAL
     gradg=matrix(1,npar,1,9);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
     trgradg=matrix(1,9,1,npar);  #else
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        t= t- del*SQR(fp-fptt);
      #endif
     for(theta=1; theta <=npar; theta++){        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
       for(i=1; i<=npar; i++)  #ifdef DEBUG
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
              fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                   (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       k=0;        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       for(i=1; i<= (nlstate+ndeath); i++){               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         for(j=1; j<=(nlstate+ndeath);j++){        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
            k=k+1;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
           gp[k]=pmmij[i][j];  #endif
         }  #ifdef POWELLORIGINAL
       }        if (t < 0.0) { /* Then we use it for new direction */
   #else
       for(i=1; i<=npar; i++)        if (directest*t < 0.0) { /* Contradiction between both tests */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
              printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
           fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
       k=0;        } 
       for(i=1; i<=(nlstate+ndeath); i++){        if (directest < 0.0) { /* Then we use it for new direction */
         for(j=1; j<=(nlstate+ndeath);j++){  #endif
           k=k+1;  #ifdef DEBUGLINMIN
           gm[k]=pmmij[i][j];          printf("Before linmin in direction P%d-P0\n",n);
         }          for (j=1;j<=n;j++) { 
       }            printf("Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                  if(j % ncovmodel == 0)
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              printf("\n");
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            }
     }  #endif
           linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  #ifdef DEBUGLINMIN
       for(theta=1; theta <=npar; theta++)          for (j=1;j<=n;j++) { 
       trgradg[j][theta]=gradg[theta][j];            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
              if(j % ncovmodel == 0)
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              printf("\n");
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          }
   #endif
      pmij(pmmij,cov,ncovmodel,x,nlstate);          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
      k=0;            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
      for(i=1; i<=(nlstate+ndeath); i++){          }
        for(j=1; j<=(nlstate+ndeath);j++){          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
          k=k+1;          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
          gm[k]=pmmij[i][j];  
         }  #ifdef DEBUG
      }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      /*printf("\n%d ",(int)age);          for(j=1;j<=n;j++){
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            printf(" %.12e",xit[j]);
                    fprintf(ficlog," %.12e",xit[j]);
           }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          printf("\n");
      }*/          fprintf(ficlog,"\n");
   #endif
   fprintf(ficresprob,"\n%d ",(int)age);        } /* end of t or directest negative */
   #ifdef POWELLF1F3
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  #else
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      } /* end if (fptt < fp)  */
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);  #endif
   }    } /* loop iteration */ 
   } 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  /**** Prevalence limit (stable or period prevalence)  ****************/
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 }  {
  free_vector(xp,1,npar);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 fclose(ficresprob);       matrix by transitions matrix until convergence is reached */
     
 }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
 /******************* Printing html file ***********/    /* double **matprod2(); */ /* test */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    double **out, cov[NCOVMAX+1], **pmij();
  int lastpass, int stepm, int weightopt, char model[],\    double **newm;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    double agefin, delaymax=50 ; /* Max number of years to converge */
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    
  char version[], int popforecast ){    for (ii=1;ii<=nlstate+ndeath;ii++)
   int jj1, k1, i1, cpt;      for (j=1;j<=nlstate+ndeath;j++){
   FILE *fichtm;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*char optionfilehtm[FILENAMELENGTH];*/      }
     
   strcpy(optionfilehtm,optionfile);    cov[1]=1.;
   strcat(optionfilehtm,".htm");    
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     printf("Problem with %s \n",optionfilehtm), exit(0);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   }      newm=savm;
       /* Covariates have to be included here again */
  fprintf(fichtm,"<body> <font size=\"2\">Imach, Version %s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      cov[2]=agefin;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      if(nagesqr==1)
 \n        cov[3]= agefin*agefin;;
 Total number of observations=%d <br>\n      for (k=1; k<=cptcovn;k++) {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
 <hr  size=\"2\" color=\"#EC5E5E\">        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
  <ul><li>Outputs files<br>\n        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      for (k=1; k<=cptcovprod;k++) /* Useless */
  - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
         cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
  fprintf(fichtm,"\n      
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
  - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>\n      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres);      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
  if(popforecast==1) fprintf(fichtm,"\n      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      savm=oldm;
         <br>",fileres,fileres,fileres,fileres);      oldm=newm;
  else      maxmax=0.;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      for(j=1;j<=nlstate;j++){
 fprintf(fichtm," <li>Graphs</li><p>");        min=1.;
         max=0.;
  m=cptcoveff;        for(i=1; i<=nlstate; i++) {
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
  jj1=0;          prlim[i][j]= newm[i][j]/(1-sumnew);
  for(k1=1; k1<=m;k1++){          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
    for(i1=1; i1<=ncodemax[k1];i1++){          max=FMAX(max,prlim[i][j]);
        jj1++;          min=FMIN(min,prlim[i][j]);
        if (cptcovn > 0) {        }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        maxmin=max-min;
          for (cpt=1; cpt<=cptcoveff;cpt++)        maxmax=FMAX(maxmax,maxmin);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      } /* j loop */
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      if(maxmax < ftolpl){
        }        return prlim;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      }
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        } /* age loop */
        for(cpt=1; cpt<nlstate;cpt++){    return prlim; /* should not reach here */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  }
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }  /*************** transition probabilities ***************/ 
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 interval) in state (%d): v%s%d%d.gif <br>  {
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      /* According to parameters values stored in x and the covariate's values stored in cov,
      }       computes the probability to be observed in state j being in state i by appying the
      for(cpt=1; cpt<=nlstate;cpt++) {       model to the ncovmodel covariates (including constant and age).
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
      }       ncth covariate in the global vector x is given by the formula:
      fprintf(fichtm,"\n<br>- Total life expectancy by age and       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 health expectancies in states (1) and (2): e%s%d.gif<br>       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 fprintf(fichtm,"\n</body>");       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
    }       Outputs ps[i][j] the probability to be observed in j being in j according to
    }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 fclose(fichtm);    */
 }    double s1, lnpijopii;
     /*double t34;*/
 /******************* Gnuplot file **************/    int i,j, nc, ii, jj;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
       for(i=1; i<= nlstate; i++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        for(j=1; j<i;j++){
           for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   strcpy(optionfilegnuplot,optionfilefiname);            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   strcat(optionfilegnuplot,".gp.txt");            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     printf("Problem with file %s",optionfilegnuplot);          }
   }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
 #ifdef windows        }
     fprintf(ficgp,"cd \"%s\" \n",pathc);        for(j=i+1; j<=nlstate+ndeath;j++){
 #endif          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 m=pow(2,cptcoveff);            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
              lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
  /* 1eme*/  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   for (cpt=1; cpt<= nlstate ; cpt ++) {          }
    for (k1=1; k1<= m ; k1 ++) {          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }
 #ifdef windows      }
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      
 #endif      for(i=1; i<= nlstate; i++){
 #ifdef unix        s1=0;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        for(j=1; j<i; j++){
 #endif          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(j=i+1; j<=nlstate+ndeath; j++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 }          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        }
     for (i=1; i<= nlstate ; i ++) {        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        ps[i][i]=1./(s1+1.);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        /* Computing other pijs */
 }        for(j=1; j<i; j++)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          ps[i][j]= exp(ps[i][j])*ps[i][i];
      for (i=1; i<= nlstate ; i ++) {        for(j=i+1; j<=nlstate+ndeath; j++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          ps[i][j]= exp(ps[i][j])*ps[i][i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 }        } /* end i */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      
 #ifdef unix      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 fprintf(ficgp,"\nset ter gif small size 400,300");        for(jj=1; jj<= nlstate+ndeath; jj++){
 #endif          ps[ii][jj]=0;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          ps[ii][ii]=1;
    }        }
   }      }
   /*2 eme*/      
       
   for (k1=1; k1<= m ; k1 ++) {      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
          /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     for (i=1; i<= nlstate+1 ; i ++) {      /*   } */
       k=2*i;      /*   printf("\n "); */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      /* } */
       for (j=1; j<= nlstate+1 ; j ++) {      /* printf("\n ");printf("%lf ",cov[2]);*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      /*
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1; i<= npar; i++) printf("%f ",x[i]);
 }          goto end;*/
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      return ps;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  /**************** Product of 2 matrices ******************/
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 }    {
       fprintf(ficgp,"\" t\"\" w l 0,");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       for (j=1; j<= nlstate+1 ; j ++) {    /* in, b, out are matrice of pointers which should have been initialized 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       before: only the contents of out is modified. The function returns
   else fprintf(ficgp," \%%*lf (\%%*lf)");       a pointer to pointers identical to out */
 }      int i, j, k;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    for(i=nrl; i<= nrh; i++)
       else fprintf(ficgp,"\" t\"\" w l 0,");      for(k=ncolol; k<=ncoloh; k++){
     }        out[i][k]=0.;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        for(j=ncl; j<=nch; j++)
   }          out[i][k] +=in[i][j]*b[j][k];
        }
   /*3eme*/    return out;
   }
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(cpt-1);  /************* Higher Matrix Product ***************/
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       for (i=1; i< nlstate ; i ++) {  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  {
       }    /* Computes the transition matrix starting at age 'age' over 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       'nhstepm*hstepm*stepm' months (i.e. until
     }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
         Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   /* CV preval stat */       (typically every 2 years instead of every month which is too big 
     for (k1=1; k1<= m ; k1 ++) {       for the memory).
     for (cpt=1; cpt<nlstate ; cpt ++) {       Model is determined by parameters x and covariates have to be 
       k=3;       included manually here. 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
        */
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);    int i, j, d, h, k;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    double **out, cov[NCOVMAX+1];
          double **newm;
       l=3+(nlstate+ndeath)*cpt;    double agexact;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {    /* Hstepm could be zero and should return the unit matrix */
         l=3+(nlstate+ndeath)*cpt;    for (i=1;i<=nlstate+ndeath;i++)
         fprintf(ficgp,"+$%d",l+i+1);      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[i][j]=(i==j ? 1.0 : 0.0);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          po[i][j][0]=(i==j ? 1.0 : 0.0);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }      for(h=1; h <=nhstepm; h++){
        for(d=1; d <=hstepm; d++){
   /* proba elementaires */        newm=savm;
    for(i=1,jk=1; i <=nlstate; i++){        /* Covariates have to be included here again */
     for(k=1; k <=(nlstate+ndeath); k++){        cov[1]=1.;
       if (k != i) {        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for(j=1; j <=ncovmodel; j++){        cov[2]=agexact;
                if(nagesqr==1)
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          cov[3]= agexact*agexact;
           jk++;        for (k=1; k<=cptcovn;k++) 
           fprintf(ficgp,"\n");          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
         }          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
       }        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
     }          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     }          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
     for(jk=1; jk <=m; jk++) {        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
    i=1;          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
    for(k2=1; k2<=nlstate; k2++) {  
      k3=i;  
      for(k=1; k<=(nlstate+ndeath); k++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
        if (k != k2){        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 ij=1;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(j=3; j <=ncovmodel; j++) {        savm=oldm;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        oldm=newm;
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      }
             ij++;      for(i=1; i<=nlstate+ndeath; i++)
           }        for(j=1;j<=nlstate+ndeath;j++) {
           else          po[i][j][h]=newm[i][j];
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }        }
           fprintf(ficgp,")/(1");      /*printf("h=%d ",h);*/
            } /* end h */
         for(k1=1; k1 <=nlstate; k1++){    /*     printf("\n H=%d \n",h); */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    return po;
 ij=1;  }
           for(j=3; j <=ncovmodel; j++){  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  #ifdef NLOPT
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
             ij++;    double fret;
           }    double *xt;
           else    int j;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    myfunc_data *d2 = (myfunc_data *) pd;
           }  /* xt = (p1-1); */
           fprintf(ficgp,")");    xt=vector(1,n); 
         }    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
         i=i+ncovmodel;    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
        }    printf("Function = %.12lf ",fret);
      }    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
    }    printf("\n");
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);   free_vector(xt,1,n);
    }    return fret;
      }
   fclose(ficgp);  #endif
 }  /* end gnuplot */  
   /*************** log-likelihood *************/
   double func( double *x)
 /*************** Moving average **************/  {
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   int i, cpt, cptcod;    double **out;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    double sw; /* Sum of weights */
       for (i=1; i<=nlstate;i++)    double lli; /* Individual log likelihood */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    int s1, s2;
           mobaverage[(int)agedeb][i][cptcod]=0.;    double bbh, survp;
        long ipmx;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    double agexact;
       for (i=1; i<=nlstate;i++){    /*extern weight */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* We are differentiating ll according to initial status */
           for (cpt=0;cpt<=4;cpt++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    /*for(i=1;i<imx;i++) 
           }      printf(" %d\n",s[4][i]);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    */
         }  
       }    ++countcallfunc;
     }  
        cov[1]=1.;
 }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 /************** Forecasting ******************/    if(mle==1){
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          /* Computes the values of the ncovmodel covariates of the model
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   int *popage;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;           to be observed in j being in i according to the model.
   double *popeffectif,*popcount;         */
   double ***p3mat;        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   char fileresf[FILENAMELENGTH];            cov[2+nagesqr+k]=covar[Tvar[k]][i];
         }
  agelim=AGESUP;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   strcpy(fileresf,"f");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresf,fileres);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficresf=fopen(fileresf,"w"))==NULL) {            }
     printf("Problem with forecast resultfile: %s\n", fileresf);          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   printf("Computing forecasting: result on file '%s' \n", fileresf);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[2]=agexact;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            if(nagesqr==1)
               cov[3]= agexact*agexact;
   if (mobilav==1) {            for (kk=1; kk<=cptcovage;kk++) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
     movingaverage(agedeb, fage, ageminpar, mobaverage);            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   stepsize=(int) (stepm+YEARM-1)/YEARM;            savm=oldm;
   if (stepm<=12) stepsize=1;            oldm=newm;
            } /* end mult */
   agelim=AGESUP;        
            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   hstepm=1;          /* But now since version 0.9 we anticipate for bias at large stepm.
   hstepm=hstepm/stepm;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   yp1=modf(dateintmean,&yp);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   anprojmean=yp;           * the nearest (and in case of equal distance, to the lowest) interval but now
   yp2=modf((yp1*12),&yp);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   mprojmean=yp;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   yp1=modf((yp2*30.5),&yp);           * probability in order to take into account the bias as a fraction of the way
   jprojmean=yp;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   if(jprojmean==0) jprojmean=1;           * -stepm/2 to stepm/2 .
   if(mprojmean==0) jprojmean=1;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);           */
            s1=s[mw[mi][i]][i];
   for(cptcov=1;cptcov<=i2;cptcov++){          s2=s[mw[mi+1][i]][i];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          bbh=(double)bh[mi][i]/(double)stepm; 
       k=k+1;          /* bias bh is positive if real duration
       fprintf(ficresf,"\n#******");           * is higher than the multiple of stepm and negative otherwise.
       for(j=1;j<=cptcoveff;j++) {           */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       }          if( s2 > nlstate){ 
       fprintf(ficresf,"******\n");            /* i.e. if s2 is a death state and if the date of death is known 
       fprintf(ficresf,"# StartingAge FinalAge");               then the contribution to the likelihood is the probability to 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);               die between last step unit time and current  step unit time, 
                     which is also equal to probability to die before dh 
                     minus probability to die before dh-stepm . 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {               In version up to 0.92 likelihood was computed
         fprintf(ficresf,"\n");          as if date of death was unknown. Death was treated as any other
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          to consider that at each interview the state was recorded
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          (healthy, disable or death) and IMaCh was corrected; but when we
           nhstepm = nhstepm/hstepm;          introduced the exact date of death then we should have modified
                    the contribution of an exact death to the likelihood. This new
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          contribution is smaller and very dependent of the step unit
           oldm=oldms;savm=savms;          stepm. It is no more the probability to die between last interview
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            and month of death but the probability to survive from last
                  interview up to one month before death multiplied by the
           for (h=0; h<=nhstepm; h++){          probability to die within a month. Thanks to Chris
             if (h==(int) (calagedate+YEARM*cpt)) {          Jackson for correcting this bug.  Former versions increased
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          mortality artificially. The bad side is that we add another loop
             }          which slows down the processing. The difference can be up to 10%
             for(j=1; j<=nlstate+ndeath;j++) {          lower mortality.
               kk1=0.;kk2=0;            */
               for(i=1; i<=nlstate;i++) {                        /* If, at the beginning of the maximization mostly, the
                 if (mobilav==1)             cumulative probability or probability to be dead is
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];             constant (ie = 1) over time d, the difference is equal to
                 else {             0.  out[s1][3] = savm[s1][3]: probability, being at state
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];             s1 at precedent wave, to be dead a month before current
                 }             wave is equal to probability, being at state s1 at
                             precedent wave, to be dead at mont of the current
               }             wave. Then the observed probability (that this person died)
               if (h==(int)(calagedate+12*cpt)){             is null according to current estimated parameter. In fact,
                 fprintf(ficresf," %.3f", kk1);             it should be very low but not zero otherwise the log go to
                                     infinity.
               }          */
             }  /* #ifdef INFINITYORIGINAL */
           }  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /* #else */
         }  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
       }  /*          lli=log(mytinydouble); */
     }  /*        else */
   }  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
          /* #endif */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              lli=log(out[s1][s2] - savm[s1][s2]);
   
   fclose(ficresf);          } else if  (s2==-2) {
 }            for (j=1,survp=0. ; j<=nlstate; j++) 
 /************** Forecasting ******************/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            /*survp += out[s1][j]; */
              lli= log(survp);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          }
   int *popage;          
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          else if  (s2==-4) { 
   double *popeffectif,*popcount;            for (j=3,survp=0. ; j<=nlstate; j++)  
   double ***p3mat,***tabpop,***tabpopprev;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   char filerespop[FILENAMELENGTH];            lli= log(survp); 
           } 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          else if  (s2==-5) { 
   agelim=AGESUP;            for (j=1,survp=0. ; j<=2; j++)  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              lli= log(survp); 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          } 
            
            else{
   strcpy(filerespop,"pop");            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   strcat(filerespop,fileres);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          } 
     printf("Problem with forecast resultfile: %s\n", filerespop);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }          /*if(lli ==000.0)*/
   printf("Computing forecasting: result on file '%s' \n", filerespop);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if (mobilav==1) {          /* if (lli < log(mytinydouble)){ */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
     movingaverage(agedeb, fage, ageminpar, mobaverage);          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
   }          /* } */
         } /* end of wave */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      } /* end of individual */
   if (stepm<=12) stepsize=1;    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   agelim=AGESUP;        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   hstepm=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
   hstepm=hstepm/stepm;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (popforecast==1) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if((ficpop=fopen(popfile,"r"))==NULL) {            }
       printf("Problem with population file : %s\n",popfile);exit(0);          for(d=0; d<=dh[mi][i]; d++){
     }            newm=savm;
     popage=ivector(0,AGESUP);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     popeffectif=vector(0,AGESUP);            cov[2]=agexact;
     popcount=vector(0,AGESUP);            if(nagesqr==1)
                  cov[3]= agexact*agexact;
     i=1;              for (kk=1; kk<=cptcovage;kk++) {
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                }
     imx=i;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
             oldm=newm;
   for(cptcov=1;cptcov<=i2;cptcov++){          } /* end mult */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        
       k=k+1;          s1=s[mw[mi][i]][i];
       fprintf(ficrespop,"\n#******");          s2=s[mw[mi+1][i]][i];
       for(j=1;j<=cptcoveff;j++) {          bbh=(double)bh[mi][i]/(double)stepm; 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       }          ipmx +=1;
       fprintf(ficrespop,"******\n");          sw += weight[i];
       fprintf(ficrespop,"# Age");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        } /* end of wave */
       if (popforecast==1)  fprintf(ficrespop," [Population]");      } /* end of individual */
          }  else if(mle==3){  /* exponential inter-extrapolation */
       for (cpt=0; cpt<=0;cpt++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for (ii=1;ii<=nlstate+ndeath;ii++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            for (j=1;j<=nlstate+ndeath;j++){
           nhstepm = nhstepm/hstepm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                        savm[ii][j]=(ii==j ? 1.0 : 0.0);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;          for(d=0; d<dh[mi][i]; d++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              newm=savm;
                    agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (h=0; h<=nhstepm; h++){            cov[2]=agexact;
             if (h==(int) (calagedate+YEARM*cpt)) {            if(nagesqr==1)
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              cov[3]= agexact*agexact;
             }            for (kk=1; kk<=cptcovage;kk++) {
             for(j=1; j<=nlstate+ndeath;j++) {              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
               kk1=0.;kk2=0;            }
               for(i=1; i<=nlstate;i++) {                          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                 if (mobilav==1)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            savm=oldm;
                 else {            oldm=newm;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          } /* end mult */
                 }        
               }          s1=s[mw[mi][i]][i];
               if (h==(int)(calagedate+12*cpt)){          s2=s[mw[mi+1][i]][i];
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          bbh=(double)bh[mi][i]/(double)stepm; 
                   /*fprintf(ficrespop," %.3f", kk1);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          ipmx +=1;
               }          sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             for(i=1; i<=nlstate;i++){        } /* end of wave */
               kk1=0.;      } /* end of individual */
                 for(j=1; j<=nlstate;j++){    }else if (mle==4){  /* ml=4 no inter-extrapolation */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                 }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        for(mi=1; mi<= wav[i]-1; mi++){
             }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
       }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
              cov[2]=agexact;
   /******/            if(nagesqr==1)
               cov[3]= agexact*agexact;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          
           nhstepm = nhstepm/hstepm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            savm=oldm;
           oldm=oldms;savm=savms;            oldm=newm;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            } /* end mult */
           for (h=0; h<=nhstepm; h++){        
             if (h==(int) (calagedate+YEARM*cpt)) {          s1=s[mw[mi][i]][i];
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          s2=s[mw[mi+1][i]][i];
             }          if( s2 > nlstate){ 
             for(j=1; j<=nlstate+ndeath;j++) {            lli=log(out[s1][s2] - savm[s1][s2]);
               kk1=0.;kk2=0;          }else{
               for(i=1; i<=nlstate;i++) {                          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              }
               }          ipmx +=1;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          sw += weight[i];
             }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } /* end of wave */
         }      } /* end of individual */
       }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
    }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   if (popforecast==1) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_ivector(popage,0,AGESUP);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_vector(popeffectif,0,AGESUP);            }
     free_vector(popcount,0,AGESUP);          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            cov[2]=agexact;
   fclose(ficrespop);            if(nagesqr==1)
 }              cov[3]= agexact*agexact;
             for (kk=1; kk<=cptcovage;kk++) {
 /***********************************************/              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 /**************** Main Program *****************/            }
 /***********************************************/          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 int main(int argc, char *argv[])                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
             oldm=newm;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          } /* end mult */
   double agedeb, agefin,hf;        
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   double fret;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double **xi,tmp,delta;          ipmx +=1;
           sw += weight[i];
   double dum; /* Dummy variable */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***p3mat;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int *indx;        } /* end of wave */
   char line[MAXLINE], linepar[MAXLINE];      } /* end of individual */
   char title[MAXLINE];    } /* End of if */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    return -l;
   }
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];  /*************** log-likelihood *************/
   char popfile[FILENAMELENGTH];  double funcone( double *x)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  {
   int firstobs=1, lastobs=10;    /* Same as likeli but slower because of a lot of printf and if */
   int sdeb, sfin; /* Status at beginning and end */    int i, ii, j, k, mi, d, kk;
   int c,  h , cpt,l;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   int ju,jl, mi;    double **out;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    double lli; /* Individual log likelihood */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    double llt;
   int mobilav=0,popforecast=0;    int s1, s2;
   int hstepm, nhstepm;    double bbh, survp;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;    double agexact;
     /*extern weight */
   double bage, fage, age, agelim, agebase;    /* We are differentiating ll according to initial status */
   double ftolpl=FTOL;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double **prlim;    /*for(i=1;i<imx;i++) 
   double *severity;      printf(" %d\n",s[4][i]);
   double ***param; /* Matrix of parameters */    */
   double  *p;    cov[1]=1.;
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double *delti; /* Scale */  
   double ***eij, ***vareij;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double **varpl; /* Variances of prevalence limits by age */      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   double *epj, vepp;      for(mi=1; mi<= wav[i]-1; mi++){
   double kk1, kk2;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
   char version[80]="Imach version 0.8a, March 2002, INED-EUROREVES ";          }
   char *alph[]={"a","a","b","c","d","e"}, str[4];        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
           agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   char z[1]="c", occ;          cov[2]=agexact;
 #include <sys/time.h>          if(nagesqr==1)
 #include <time.h>            cov[3]= agexact*agexact;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          for (kk=1; kk<=cptcovage;kk++) {
              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   /* long total_usecs;          }
   struct timeval start_time, end_time;  
            /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   getcwd(pathcd, size);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   printf("\n%s",version);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   if(argc <=1){          savm=oldm;
     printf("\nEnter the parameter file name: ");          oldm=newm;
     scanf("%s",pathtot);        } /* end mult */
   }        
   else{        s1=s[mw[mi][i]][i];
     strcpy(pathtot,argv[1]);        s2=s[mw[mi+1][i]][i];
   }        bbh=(double)bh[mi][i]/(double)stepm; 
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        /* bias is positive if real duration
   /*cygwin_split_path(pathtot,path,optionfile);         * is higher than the multiple of stepm and negative otherwise.
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/         */
   /* cutv(path,optionfile,pathtot,'\\');*/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        } else if  (s2==-2) {
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          for (j=1,survp=0. ; j<=nlstate; j++) 
   chdir(path);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   replace(pathc,path);          lli= log(survp);
         }else if (mle==1){
 /*-------- arguments in the command line --------*/          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
   strcpy(fileres,"r");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   strcat(fileres, optionfilefiname);        } else if(mle==3){  /* exponential inter-extrapolation */
   strcat(fileres,".txt");    /* Other files have txt extension */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
   /*---------arguments file --------*/          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* mle=0 back to 1 */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     printf("Problem with optionfile %s\n",optionfile);          /*lli=log(out[s1][s2]); */ /* Original formula */
     goto end;        } /* End of if */
   }        ipmx +=1;
         sw += weight[i];
   strcpy(filereso,"o");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcat(filereso,fileres);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   if((ficparo=fopen(filereso,"w"))==NULL) {        if(globpr){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   }   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   /* Reads comments: lines beginning with '#' */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   while((c=getc(ficpar))=='#' && c!= EOF){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     ungetc(c,ficpar);            llt +=ll[k]*gipmx/gsw;
     fgets(line, MAXLINE, ficpar);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     puts(line);          }
     fputs(line,ficparo);          fprintf(ficresilk," %10.6f\n", -llt);
   }        }
   ungetc(c,ficpar);      } /* end of wave */
     } /* end of individual */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 while((c=getc(ficpar))=='#' && c!= EOF){    if(globpr==0){ /* First time we count the contributions and weights */
     ungetc(c,ficpar);      gipmx=ipmx;
     fgets(line, MAXLINE, ficpar);      gsw=sw;
     puts(line);    }
     fputs(line,ficparo);    return -l;
   }  }
   ungetc(c,ficpar);  
    
      /*************** function likelione ***********/
   covar=matrix(0,NCOVMAX,1,n);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   cptcovn=0;  {
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
   ncovmodel=2+cptcovn;       to check the exact contribution to the likelihood.
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */       Plotting could be done.
       */
   /* Read guess parameters */    int k;
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    if(*globpri !=0){ /* Just counts and sums, no printings */
     ungetc(c,ficpar);      strcpy(fileresilk,"ILK_"); 
     fgets(line, MAXLINE, ficpar);      strcat(fileresilk,fileres);
     puts(line);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     fputs(line,ficparo);        printf("Problem with resultfile: %s\n", fileresilk);
   }        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   ungetc(c,ficpar);      }
        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     for(i=1; i <=nlstate; i++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     for(j=1; j <=nlstate+ndeath-1; j++){      for(k=1; k<=nlstate; k++) 
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficparo,"%1d%1d",i1,j1);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       printf("%1d%1d",i,j);    }
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    *fretone=(*funcone)(p);
         printf(" %lf",param[i][j][k]);    if(*globpri !=0){
         fprintf(ficparo," %lf",param[i][j][k]);      fclose(ficresilk);
       }      fprintf(fichtm,"\n<br>File of contributions to the likelihood (if mle=1): <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fscanf(ficpar,"\n");      fflush(fichtm); 
       printf("\n");    } 
       fprintf(ficparo,"\n");    return;
     }  }
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
   /*********** Maximum Likelihood Estimation ***************/
   p=param[1][1];  
    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   /* Reads comments: lines beginning with '#' */  {
   while((c=getc(ficpar))=='#' && c!= EOF){    int i,j, iter=0;
     ungetc(c,ficpar);    double **xi;
     fgets(line, MAXLINE, ficpar);    double fret;
     puts(line);    double fretone; /* Only one call to likelihood */
     fputs(line,ficparo);    /*  char filerespow[FILENAMELENGTH];*/
   }  
   ungetc(c,ficpar);  #ifdef NLOPT
     int creturn;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    nlopt_opt opt;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
   for(i=1; i <=nlstate; i++){    double *lb;
     for(j=1; j <=nlstate+ndeath-1; j++){    double minf; /* the minimum objective value, upon return */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double * p1; /* Shifted parameters from 0 instead of 1 */
       printf("%1d%1d",i,j);    myfunc_data dinst, *d = &dinst;
       fprintf(ficparo,"%1d%1d",i1,j1);  #endif
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);    xi=matrix(1,npar,1,npar);
         fprintf(ficparo," %le",delti3[i][j][k]);    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
       fscanf(ficpar,"\n");        xi[i][j]=(i==j ? 1.0 : 0.0);
       printf("\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       fprintf(ficparo,"\n");    strcpy(filerespow,"POW_"); 
     }    strcat(filerespow,fileres);
   }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   delti=delti3[1][1];      printf("Problem with resultfile: %s\n", filerespow);
        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     ungetc(c,ficpar);    for (i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);      for(j=1;j<=nlstate+ndeath;j++)
     puts(line);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fputs(line,ficparo);    fprintf(ficrespow,"\n");
   }  #ifdef POWELL
   ungetc(c,ficpar);    powell(p,xi,npar,ftol,&iter,&fret,func);
    #endif
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){  #ifdef NLOPT
     fscanf(ficpar,"%s",&str);  #ifdef NEWUOA
     printf("%s",str);    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
     fprintf(ficparo,"%s",str);  #else
     for(j=1; j <=i; j++){    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
       fscanf(ficpar," %le",&matcov[i][j]);  #endif
       printf(" %.5le",matcov[i][j]);    lb=vector(0,npar-1);
       fprintf(ficparo," %.5le",matcov[i][j]);    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     }    nlopt_set_lower_bounds(opt, lb);
     fscanf(ficpar,"\n");    nlopt_set_initial_step1(opt, 0.1);
     printf("\n");    
     fprintf(ficparo,"\n");    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   }    d->function = func;
   for(i=1; i <=npar; i++)    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     for(j=i+1;j<=npar;j++)    nlopt_set_min_objective(opt, myfunc, d);
       matcov[i][j]=matcov[j][i];    nlopt_set_xtol_rel(opt, ftol);
        if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   printf("\n");      printf("nlopt failed! %d\n",creturn); 
     }
     else {
     /*-------- Rewriting paramater file ----------*/      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
      strcpy(rfileres,"r");    /* "Rparameterfile */      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      iter=1; /* not equal */
      strcat(rfileres,".");    /* */    }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    nlopt_destroy(opt);
     if((ficres =fopen(rfileres,"w"))==NULL) {  #endif
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    free_matrix(xi,1,npar,1,npar);
     }    fclose(ficrespow);
     fprintf(ficres,"#%s\n",version);    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
        fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     /*-------- data file ----------*/    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;  }
     }  
   /**** Computes Hessian and covariance matrix ***/
     n= lastobs;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     severity = vector(1,maxwav);  {
     outcome=imatrix(1,maxwav+1,1,n);    double  **a,**y,*x,pd;
     num=ivector(1,n);    double **hess;
     moisnais=vector(1,n);    int i, j;
     annais=vector(1,n);    int *indx;
     moisdc=vector(1,n);  
     andc=vector(1,n);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     agedc=vector(1,n);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     cod=ivector(1,n);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     weight=vector(1,n);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    double gompertz(double p[]);
     mint=matrix(1,maxwav,1,n);    hess=matrix(1,npar,1,npar);
     anint=matrix(1,maxwav,1,n);  
     s=imatrix(1,maxwav+1,1,n);    printf("\nCalculation of the hessian matrix. Wait...\n");
     adl=imatrix(1,maxwav+1,1,n);        fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     tab=ivector(1,NCOVMAX);    for (i=1;i<=npar;i++){
     ncodemax=ivector(1,8);      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
     i=1;     
     while (fgets(line, MAXLINE, fic) != NULL)    {       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       if ((i >= firstobs) && (i <=lastobs)) {      
              /*  printf(" %f ",p[i]);
         for (j=maxwav;j>=1;j--){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    }
           strcpy(line,stra);    
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=npar;i++) {
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for (j=1;j<=npar;j++)  {
         }        if (j>i) { 
                  printf(".%d%d",i,j);fflush(stdout);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          hess[j][i]=hess[i][j];    
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          /*printf(" %lf ",hess[i][j]);*/
         }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      }
         for (j=ncovcol;j>=1;j--){    }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    printf("\n");
         }    fprintf(ficlog,"\n");
         num[i]=atol(stra);  
            printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    
     a=matrix(1,npar,1,npar);
         i=i+1;    y=matrix(1,npar,1,npar);
       }    x=vector(1,npar);
     }    indx=ivector(1,npar);
     /* printf("ii=%d", ij);    for (i=1;i<=npar;i++)
        scanf("%d",i);*/      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   imx=i-1; /* Number of individuals */    ludcmp(a,npar,indx,&pd);
   
   /* for (i=1; i<=imx; i++){    for (j=1;j<=npar;j++) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      for (i=1;i<=npar;i++) x[i]=0;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      x[j]=1;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      lubksb(a,npar,indx,x);
     }*/      for (i=1;i<=npar;i++){ 
          matcov[i][j]=x[i];
   /* for (i=1; i<=imx; i++){      }
      if (s[4][i]==9)  s[4][i]=-1;    }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}  
   */    printf("\n#Hessian matrix#\n");
      fprintf(ficlog,"\n#Hessian matrix#\n");
   /* Calculation of the number of parameter from char model*/    for (i=1;i<=npar;i++) { 
   Tvar=ivector(1,15);      for (j=1;j<=npar;j++) { 
   Tprod=ivector(1,15);        printf("%.3e ",hess[i][j]);
   Tvaraff=ivector(1,15);        fprintf(ficlog,"%.3e ",hess[i][j]);
   Tvard=imatrix(1,15,1,2);      }
   Tage=ivector(1,15);            printf("\n");
          fprintf(ficlog,"\n");
   if (strlen(model) >1){    }
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');    /* Recompute Inverse */
     j1=nbocc(model,'*');    for (i=1;i<=npar;i++)
     cptcovn=j+1;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     cptcovprod=j1;    ludcmp(a,npar,indx,&pd);
      
     strcpy(modelsav,model);    /*  printf("\n#Hessian matrix recomputed#\n");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);    for (j=1;j<=npar;j++) {
       goto end;      for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
          lubksb(a,npar,indx,x);
     for(i=(j+1); i>=1;i--){      for (i=1;i<=npar;i++){ 
       cutv(stra,strb,modelsav,'+');        y[i][j]=x[i];
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);        printf("%.3e ",y[i][j]);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        fprintf(ficlog,"%.3e ",y[i][j]);
       /*scanf("%d",i);*/      }
       if (strchr(strb,'*')) {      printf("\n");
         cutv(strd,strc,strb,'*');      fprintf(ficlog,"\n");
         if (strcmp(strc,"age")==0) {    }
           cptcovprod--;    */
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);    free_matrix(a,1,npar,1,npar);
           cptcovage++;    free_matrix(y,1,npar,1,npar);
             Tage[cptcovage]=i;    free_vector(x,1,npar);
             /*printf("stre=%s ", stre);*/    free_ivector(indx,1,npar);
         }    free_matrix(hess,1,npar,1,npar);
         else if (strcmp(strd,"age")==0) {  
           cptcovprod--;  
           cutv(strb,stre,strc,'V');  }
           Tvar[i]=atoi(stre);  
           cptcovage++;  /*************** hessian matrix ****************/
           Tage[cptcovage]=i;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         }  {
         else {    int i;
           cutv(strb,stre,strc,'V');    int l=1, lmax=20;
           Tvar[i]=ncovcol+k1;    double k1,k2;
           cutv(strb,strc,strd,'V');    double p2[MAXPARM+1]; /* identical to x */
           Tprod[k1]=i;    double res;
           Tvard[k1][1]=atoi(strc);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           Tvard[k1][2]=atoi(stre);    double fx;
           Tvar[cptcovn+k2]=Tvard[k1][1];    int k=0,kmax=10;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    double l1;
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    fx=func(x);
           k1++;    for (i=1;i<=npar;i++) p2[i]=x[i];
           k2=k2+2;    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
         }      l1=pow(10,l);
       }      delts=delt;
       else {      for(k=1 ; k <kmax; k=k+1){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        delt = delta*(l1*k);
        /*  scanf("%d",i);*/        p2[theta]=x[theta] +delt;
       cutv(strd,strc,strb,'V');        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
       Tvar[i]=atoi(strc);        p2[theta]=x[theta]-delt;
       }        k2=func(p2)-fx;
       strcpy(modelsav,stra);          /*res= (k1-2.0*fx+k2)/delt/delt; */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         scanf("%d",i);*/        
     }  #ifdef DEBUGHESS
 }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
          fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  #endif
   printf("cptcovprod=%d ", cptcovprod);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   scanf("%d ",i);*/        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     fclose(fic);          k=kmax;
         }
     /*  if(mle==1){*/        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     if (weightopt != 1) { /* Maximisation without weights*/          k=kmax; l=lmax*10;
       for(i=1;i<=n;i++) weight[i]=1.0;        }
     }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     /*-calculation of age at interview from date of interview and age at death -*/          delts=delt;
     agev=matrix(1,maxwav,1,imx);        }
       }
     for (i=1; i<=imx; i++) {    }
       for(m=2; (m<= maxwav); m++) {    delti[theta]=delts;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    return res; 
          anint[m][i]=9999;    
          s[m][i]=-1;  }
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       }  {
     }    int i;
     int l=1, lmax=20;
     for (i=1; i<=imx; i++)  {    double k1,k2,k3,k4,res,fx;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    double p2[MAXPARM+1];
       for(m=1; (m<= maxwav); m++){    int k;
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {    fx=func(x);
             if(agedc[i]>0)    for (k=1; k<=2; k++) {
               if(moisdc[i]!=99 && andc[i]!=9999)      for (i=1;i<=npar;i++) p2[i]=x[i];
                 agev[m][i]=agedc[i];      p2[thetai]=x[thetai]+delti[thetai]/k;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
            else {      k1=func(p2)-fx;
               if (andc[i]!=9999){    
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      p2[thetai]=x[thetai]+delti[thetai]/k;
               agev[m][i]=-1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               }      k2=func(p2)-fx;
             }    
           }      p2[thetai]=x[thetai]-delti[thetai]/k;
           else if(s[m][i] !=9){ /* Should no more exist */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      k3=func(p2)-fx;
             if(mint[m][i]==99 || anint[m][i]==9999)    
               agev[m][i]=1;      p2[thetai]=x[thetai]-delti[thetai]/k;
             else if(agev[m][i] <agemin){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               agemin=agev[m][i];      k4=func(p2)-fx;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
             }  #ifdef DEBUG
             else if(agev[m][i] >agemax){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               agemax=agev[m][i];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  #endif
             }    }
             /*agev[m][i]=anint[m][i]-annais[i];*/    return res;
             /*   agev[m][i] = age[i]+2*m;*/  }
           }  
           else { /* =9 */  /************** Inverse of matrix **************/
             agev[m][i]=1;  void ludcmp(double **a, int n, int *indx, double *d) 
             s[m][i]=-1;  { 
           }    int i,imax,j,k; 
         }    double big,dum,sum,temp; 
         else /*= 0 Unknown */    double *vv; 
           agev[m][i]=1;   
       }    vv=vector(1,n); 
        *d=1.0; 
     }    for (i=1;i<=n;i++) { 
     for (i=1; i<=imx; i++)  {      big=0.0; 
       for(m=1; (m<= maxwav); m++){      for (j=1;j<=n;j++) 
         if (s[m][i] > (nlstate+ndeath)) {        if ((temp=fabs(a[i][j])) > big) big=temp; 
           printf("Error: Wrong value in nlstate or ndeath\n");        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           goto end;      vv[i]=1.0/big; 
         }    } 
       }    for (j=1;j<=n;j++) { 
     }      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     free_vector(severity,1,maxwav);      } 
     free_imatrix(outcome,1,maxwav+1,1,n);      big=0.0; 
     free_vector(moisnais,1,n);      for (i=j;i<=n;i++) { 
     free_vector(annais,1,n);        sum=a[i][j]; 
     /* free_matrix(mint,1,maxwav,1,n);        for (k=1;k<j;k++) 
        free_matrix(anint,1,maxwav,1,n);*/          sum -= a[i][k]*a[k][j]; 
     free_vector(moisdc,1,n);        a[i][j]=sum; 
     free_vector(andc,1,n);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
              imax=i; 
     wav=ivector(1,imx);        } 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      } 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      if (j != imax) { 
            for (k=1;k<=n;k++) { 
     /* Concatenates waves */          dum=a[imax][k]; 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
         } 
       Tcode=ivector(1,100);        *d = -(*d); 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        vv[imax]=vv[j]; 
       ncodemax[1]=1;      } 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      indx[j]=imax; 
            if (a[j][j] == 0.0) a[j][j]=TINY; 
    codtab=imatrix(1,100,1,10);      if (j != n) { 
    h=0;        dum=1.0/(a[j][j]); 
    m=pow(2,cptcoveff);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
        } 
    for(k=1;k<=cptcoveff; k++){    } 
      for(i=1; i <=(m/pow(2,k));i++){    free_vector(vv,1,n);  /* Doesn't work */
        for(j=1; j <= ncodemax[k]; j++){  ;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  } 
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  void lubksb(double **a, int n, int *indx, double b[]) 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  { 
          }    int i,ii=0,ip,j; 
        }    double sum; 
      }   
    }    for (i=1;i<=n;i++) { 
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      ip=indx[i]; 
       codtab[1][2]=1;codtab[2][2]=2; */      sum=b[ip]; 
    /* for(i=1; i <=m ;i++){      b[ip]=b[i]; 
       for(k=1; k <=cptcovn; k++){      if (ii) 
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       }      else if (sum) ii=i; 
       printf("\n");      b[i]=sum; 
       }    } 
       scanf("%d",i);*/    for (i=n;i>=1;i--) { 
          sum=b[i]; 
    /* Calculates basic frequencies. Computes observed prevalence at single age      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        and prints on file fileres'p'. */      b[i]=sum/a[i][i]; 
     } 
      } 
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void pstamp(FILE *fichier)
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
        /************ Frequencies ********************/
     /* For Powell, parameters are in a vector p[] starting at p[1]  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  {  /* Some frequencies */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    
     int i, m, jk, j1, bool, z1,j;
     if(mle==1){    int first;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double ***freq; /* Frequencies */
     }    double *pp, **prop;
        double pos,posprop, k2, dateintsum=0,k2cpt=0;
     /*--------- results files --------------*/    char fileresp[FILENAMELENGTH];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    
      pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
    jk=1;    strcpy(fileresp,"P_");
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    strcat(fileresp,fileresu);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    if((ficresp=fopen(fileresp,"w"))==NULL) {
    for(i=1,jk=1; i <=nlstate; i++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
      for(k=1; k <=(nlstate+ndeath); k++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        if (k != i)      exit(0);
          {    }
            printf("%d%d ",i,k);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
            fprintf(ficres,"%1d%1d ",i,k);    j1=0;
            for(j=1; j <=ncovmodel; j++){    
              printf("%f ",p[jk]);    j=cptcoveff;
              fprintf(ficres,"%f ",p[jk]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
              jk++;  
            }    first=1;
            printf("\n");  
            fprintf(ficres,"\n");    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
          }    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
      }    /*    j1++; */
    }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
  if(mle==1){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     /* Computing hessian and covariance matrix */          scanf("%d", i);*/
     ftolhess=ftol; /* Usually correct */        for (i=-5; i<=nlstate+ndeath; i++)  
     hesscov(matcov, p, npar, delti, ftolhess, func);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
  }            for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");              freq[i][jk][m]=0;
     printf("# Scales (for hessian or gradient estimation)\n");        
      for(i=1,jk=1; i <=nlstate; i++){        for (i=1; i<=nlstate; i++)  
       for(j=1; j <=nlstate+ndeath; j++){          for(m=iagemin; m <= iagemax+3; m++)
         if (j!=i) {            prop[i][m]=0;
           fprintf(ficres,"%1d%1d",i,j);        
           printf("%1d%1d",i,j);        dateintsum=0;
           for(k=1; k<=ncovmodel;k++){        k2cpt=0;
             printf(" %.5e",delti[jk]);        for (i=1; i<=imx; i++) {
             fprintf(ficres," %.5e",delti[jk]);          bool=1;
             jk++;          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
           }            for (z1=1; z1<=cptcoveff; z1++)       
           printf("\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
           fprintf(ficres,"\n");                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
         }                bool=0;
       }                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
      }                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
                      j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
     k=1;                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              } 
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          }
     for(i=1;i<=npar;i++){   
       /*  if (k>nlstate) k=1;          if (bool==1){
       i1=(i-1)/(ncovmodel*nlstate)+1;            for(m=firstpass; m<=lastpass; m++){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);              k2=anint[m][i]+(mint[m][i]/12.);
       printf("%s%d%d",alph[k],i1,tab[i]);*/              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       fprintf(ficres,"%3d",i);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       printf("%3d",i);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       for(j=1; j<=i;j++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficres," %.5e",matcov[i][j]);                if (m<lastpass) {
         printf(" %.5e",matcov[i][j]);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       fprintf(ficres,"\n");                }
       printf("\n");                
       k++;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     }                  dateintsum=dateintsum+k2;
                      k2cpt++;
     while((c=getc(ficpar))=='#' && c!= EOF){                }
       ungetc(c,ficpar);                /*}*/
       fgets(line, MAXLINE, ficpar);            }
       puts(line);          }
       fputs(line,ficparo);        } /* end i */
     }         
     ungetc(c,ficpar);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
          pstamp(ficresp);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&ageminpar,&agemaxpar, &bage, &fage);        if  (cptcovn>0) {
              fprintf(ficresp, "\n#********** Variable "); 
     if (fage <= 2) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
       bage = ageminpar;          fprintf(ficresp, "**********\n#");
       fage = agemaxpar;          fprintf(ficlog, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
              fprintf(ficlog, "**********\n#");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);        for(i=1; i<=nlstate;i++) 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",ageminpar,agemaxpar,bage,fage);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
          fprintf(ficresp, "\n");
     while((c=getc(ficpar))=='#' && c!= EOF){        
     ungetc(c,ficpar);        for(i=iagemin; i <= iagemax+3; i++){
     fgets(line, MAXLINE, ficpar);          if(i==iagemax+3){
     puts(line);            fprintf(ficlog,"Total");
     fputs(line,ficparo);          }else{
   }            if(first==1){
   ungetc(c,ficpar);              first=0;
                printf("See log file for details...\n");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            fprintf(ficlog,"Age %d", i);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          }
                for(jk=1; jk <=nlstate ; jk++){
   while((c=getc(ficpar))=='#' && c!= EOF){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     ungetc(c,ficpar);              pp[jk] += freq[jk][m][i]; 
     fgets(line, MAXLINE, ficpar);          }
     puts(line);          for(jk=1; jk <=nlstate ; jk++){
     fputs(line,ficparo);            for(m=-1, pos=0; m <=0 ; m++)
   }              pos += freq[jk][m][i];
   ungetc(c,ficpar);            if(pp[jk]>=1.e-10){
                if(first==1){
                 printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;              }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
   fscanf(ficpar,"pop_based=%d\n",&popbased);              if(first==1)
   fprintf(ficparo,"pop_based=%d\n",popbased);                  printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   fprintf(ficres,"pop_based=%d\n",popbased);                fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
              }
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);          for(jk=1; jk <=nlstate ; jk++){
     puts(line);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     fputs(line,ficparo);              pp[jk] += freq[jk][m][i];
   }          }       
   ungetc(c,ficpar);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            posprop += prop[jk][i];
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
               if(first==1)
 while((c=getc(ficpar))=='#' && c!= EOF){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     ungetc(c,ficpar);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     fgets(line, MAXLINE, ficpar);            }else{
     puts(line);              if(first==1)
     fputs(line,ficparo);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   ungetc(c,ficpar);            }
             if( i <= iagemax){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);              if(pos>=1.e-5){
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              }
               else
 /*------------ gnuplot -------------*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);            }
            }
 /*------------ free_vector  -------------*/          
  chdir(path);          for(jk=-1; jk <=nlstate+ndeath; jk++)
              for(m=-1; m <=nlstate+ndeath; m++)
  free_ivector(wav,1,imx);              if(freq[jk][m][i] !=0 ) {
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);              if(first==1)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
  free_ivector(num,1,n);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
  free_vector(agedc,1,n);              }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          if(i <= iagemax)
  fclose(ficparo);            fprintf(ficresp,"\n");
  fclose(ficres);          if(first==1)
             printf("Others in log...\n");
 /*--------- index.htm --------*/          fprintf(ficlog,"\n");
         }
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast);        /*}*/
     }
      dateintmean=dateintsum/k2cpt; 
   /*--------------- Prevalence limit --------------*/   
      fclose(ficresp);
   strcpy(filerespl,"pl");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   strcat(filerespl,fileres);    free_vector(pp,1,nlstate);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    /* End of Freq */
   }  }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");  /************ Prevalence ********************/
   fprintf(ficrespl,"#Age ");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  {  
   fprintf(ficrespl,"\n");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
   prlim=matrix(1,nlstate,1,nlstate);       We still use firstpass and lastpass as another selection.
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int i, m, jk, j1, bool, z1,j;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double **prop;
   k=0;    double posprop; 
   agebase=ageminpar;    double  y2; /* in fractional years */
   agelim=agemaxpar;    int iagemin, iagemax;
   ftolpl=1.e-10;    int first; /** to stop verbosity which is redirected to log file */
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}    iagemin= (int) agemin;
     iagemax= (int) agemax;
   for(cptcov=1;cptcov<=i1;cptcov++){    /*pp=vector(1,nlstate);*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         k=k+1;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    j1=0;
         fprintf(ficrespl,"\n#******");    
         for(j=1;j<=cptcoveff;j++)    /*j=cptcoveff;*/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         fprintf(ficrespl,"******\n");    
            first=1;
         for (age=agebase; age<=agelim; age++){    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      /*for(i1=1; i1<=ncodemax[k1];i1++){
           fprintf(ficrespl,"%.0f",age );        j1++;*/
           for(i=1; i<=nlstate;i++)        
           fprintf(ficrespl," %.5f", prlim[i][i]);        for (i=1; i<=nlstate; i++)  
           fprintf(ficrespl,"\n");          for(m=iagemin; m <= iagemax+3; m++)
         }            prop[i][m]=0.0;
       }       
     }        for (i=1; i<=imx; i++) { /* Each individual */
   fclose(ficrespl);          bool=1;
           if  (cptcovn>0) {
   /*------------- h Pij x at various ages ------------*/            for (z1=1; z1<=cptcoveff; z1++) 
                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                bool=0;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          } 
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          if (bool==1) { 
   }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   printf("Computing pij: result on file '%s' \n", filerespij);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   stepsize=(int) (stepm+YEARM-1)/YEARM;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   /*if (stepm<=24) stepsize=2;*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   agelim=AGESUP;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   hstepm=stepsize*YEARM; /* Every year of age */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                    prop[s[m][i]][iagemax+3] += weight[i]; 
   k=0;                } 
   for(cptcov=1;cptcov<=i1;cptcov++){              }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            } /* end selection of waves */
       k=k+1;          }
         fprintf(ficrespij,"\n#****** ");        }
         for(j=1;j<=cptcoveff;j++)        for(i=iagemin; i <= iagemax+3; i++){  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         fprintf(ficrespij,"******\n");            posprop += prop[jk][i]; 
                  } 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for(jk=1; jk <=nlstate ; jk++){     
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            if( i <=  iagemax){ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if(posprop>=1.e-5){ 
           oldm=oldms;savm=savms;                probs[i][jk][j1]= prop[jk][i]/posprop;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                } else{
           fprintf(ficrespij,"# Age");                if(first==1){
           for(i=1; i<=nlstate;i++)                  first=0;
             for(j=1; j<=nlstate+ndeath;j++)                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
               fprintf(ficrespij," %1d-%1d",i,j);                }
           fprintf(ficrespij,"\n");              }
           for (h=0; h<=nhstepm; h++){            } 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          }/* end jk */ 
             for(i=1; i<=nlstate;i++)        }/* end i */ 
               for(j=1; j<=nlstate+ndeath;j++)      /*} *//* end i1 */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    } /* end j1 */
             fprintf(ficrespij,"\n");    
           }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*free_vector(pp,1,nlstate);*/
           fprintf(ficrespij,"\n");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         }  }  /* End of prevalence */
     }  
   }  /************* Waves Concatenation ***************/
   
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
   fclose(ficrespij);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   /*---------- Forecasting ------------------*/       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   if((stepm == 1) && (strcmp(model,".")==0)){       and mw[mi+1][i]. dh depends on stepm.
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);       */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
     free_matrix(mint,1,maxwav,1,n);    int i, mi, m;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     free_vector(weight,1,n);}       double sum=0., jmean=0.;*/
   else{    int first;
     erreur=108;    int j, k=0,jk, ju, jl;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    double sum=0.;
   }    first=0;
      jmin=100000;
     jmax=-1;
   /*---------- Health expectancies and variances ------------*/    jmean=0.;
     for(i=1; i<=imx; i++){
   strcpy(filerest,"t");      mi=0;
   strcat(filerest,fileres);      m=firstpass;
   if((ficrest=fopen(filerest,"w"))==NULL) {      while(s[m][i] <= nlstate){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   }          mw[++mi][i]=m;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        if(m >=lastpass)
           break;
         else
   strcpy(filerese,"e");          m++;
   strcat(filerese,fileres);      }/* end while */
   if((ficreseij=fopen(filerese,"w"))==NULL) {      if (s[m][i] > nlstate){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        mi++;     /* Death is another wave */
   }        /* if(mi==0)  never been interviewed correctly before death */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);           /* Only death is a correct wave */
         mw[mi][i]=m;
  strcpy(fileresv,"v");      }
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      wav[i]=mi;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      if(mi==0){
   }        nbwarn++;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   k=0;          first=1;
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if(first==1){
       k=k+1;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       fprintf(ficrest,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)      } /* end mi==0 */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    } /* End individuals */
       fprintf(ficrest,"******\n");  
     for(i=1; i<=imx; i++){
       fprintf(ficreseij,"\n#****** ");      for(mi=1; mi<wav[i];mi++){
       for(j=1;j<=cptcoveff;j++)        if (stepm <=0)
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          dh[mi][i]=1;
       fprintf(ficreseij,"******\n");        else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       fprintf(ficresvij,"\n#****** ");            if (agedc[i] < 2*AGESUP) {
       for(j=1;j<=cptcoveff;j++)              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              if(j==0) j=1;  /* Survives at least one month after exam */
       fprintf(ficresvij,"******\n");              else if(j<0){
                 nberr++;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       oldm=oldms;savm=savms;                j=1; /* Temporary Dangerous patch */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       oldm=oldms;savm=savms;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              }
                  k=k+1;
               if (j >= jmax){
                  jmax=j;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                ijmax=i;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);              }
       fprintf(ficrest,"\n");              if (j <= jmin){
                 jmin=j;
       epj=vector(1,nlstate+1);                ijmin=i;
       for(age=bage; age <=fage ;age++){              }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              sum=sum+j;
         if (popbased==1) {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           for(i=1; i<=nlstate;i++)              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             prlim[i][i]=probs[(int)age][i][k];            }
         }          }
                  else{
         fprintf(ficrest," %4.0f",age);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];            k=k+1;
           }            if (j >= jmax) {
           epj[nlstate+1] +=epj[j];              jmax=j;
         }              ijmax=i;
         for(i=1, vepp=0.;i <=nlstate;i++)            }
           for(j=1;j <=nlstate;j++)            else if (j <= jmin){
             vepp += vareij[i][j][(int)age];              jmin=j;
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));              ijmin=i;
         for(j=1;j <=nlstate;j++){            }
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         fprintf(ficrest,"\n");            if(j<0){
       }              nberr++;
     }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
   fclose(ficreseij);            sum=sum+j;
   fclose(ficresvij);          }
   fclose(ficrest);          jk= j/stepm;
   fclose(ficpar);          jl= j -jk*stepm;
   free_vector(epj,1,nlstate+1);          ju= j -(jk+1)*stepm;
            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   /*------- Variance limit prevalence------*/              if(jl==0){
               dh[mi][i]=jk;
   strcpy(fileresvpl,"vpl");              bh[mi][i]=0;
   strcat(fileresvpl,fileres);            }else{ /* We want a negative bias in order to only have interpolation ie
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                    * to avoid the price of an extra matrix product in likelihood */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              dh[mi][i]=jk+1;
     exit(0);              bh[mi][i]=ju;
   }            }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          }else{
             if(jl <= -ju){
   k=0;              dh[mi][i]=jk;
   for(cptcov=1;cptcov<=i1;cptcov++){              bh[mi][i]=jl;       /* bias is positive if real duration
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                                   * is higher than the multiple of stepm and negative otherwise.
       k=k+1;                                   */
       fprintf(ficresvpl,"\n#****** ");            }
       for(j=1;j<=cptcoveff;j++)            else{
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              dh[mi][i]=jk+1;
       fprintf(ficresvpl,"******\n");              bh[mi][i]=ju;
                  }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            if(dh[mi][i]==0){
       oldm=oldms;savm=savms;              dh[mi][i]=1; /* At least one step */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
  }            }
           } /* end if mle */
   fclose(ficresvpl);        }
       } /* end wave */
   /*---------- End : free ----------------*/    }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    jmean=sum/k;
      printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);   }
    
    /*********** Tricode ****************************/
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       * Boring subroutine which should only output nbcode[Tvar[j]][k]
   free_matrix(matcov,1,npar,1,npar);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   free_vector(delti,1,npar);     * nbcode[Tvar[j]][1]= 
   free_matrix(agev,1,maxwav,1,imx);    */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   if(erreur >0)    int modmaxcovj=0; /* Modality max of covariates j */
     printf("End of Imach with error or warning %d\n",erreur);    int cptcode=0; /* Modality max of covariates j */
   else   printf("End of Imach\n");    int modmincovj=0; /* Modality min of covariates j */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    cptcoveff=0; 
   /*printf("Total time was %d uSec.\n", total_usecs);*/   
   /*------ End -----------*/    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
     /* Loop on covariates without age and products */
  end:    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
 #ifdef windows      for (k=-1; k < maxncov; k++) Ndum[k]=0;
   /* chdir(pathcd);*/      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
 #endif                                 modality of this covariate Vj*/ 
  /*system("wgnuplot graph.plt");*/        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
  /*system("../gp37mgw/wgnuplot graph.plt");*/                                      * If product of Vn*Vm, still boolean *:
  /*system("cd ../gp37mgw");*/                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
  strcpy(plotcmd,GNUPLOTPROGRAM);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
  strcat(plotcmd," ");                                        modality of the nth covariate of individual i. */
  strcat(plotcmd,optionfilegnuplot);        if (ij > modmaxcovj)
  system(plotcmd);          modmaxcovj=ij; 
         else if (ij < modmincovj) 
 #ifdef windows          modmincovj=ij; 
   while (z[0] != 'q') {        if ((ij < -1) && (ij > NCOVMAX)){
     /* chdir(path); */          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          exit(1);
     scanf("%s",z);        }else
     if (z[0] == 'c') system("./imach");        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
     else if (z[0] == 'e') system(optionfilehtm);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     else if (z[0] == 'g') system(plotcmd);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     else if (z[0] == 'q') exit(0);        /* getting the maximum value of the modality of the covariate
   }           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 #endif           female is 1, then modmaxcovj=1.*/
 }      } /* end for loop on individuals i */
       printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       cptcode=modmaxcovj;
       /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      /*for (i=0; i<=cptcode; i++) {*/
       for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
         printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
         fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
         if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
           if( k != -1){
             ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered excluding 
                                undefined. Usually 2: 0 and 1. */
           }
           ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered including 
                                undefined. Usually 3: -1, 0 and 1. */
         }
         /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       } /* Ndum[-1] number of undefined modalities */
   
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
          If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
          There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
          which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
          defining two dummy variables: variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
          nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
          To be continued (not working yet).
       */
       ij=0; /* ij is similar to i but can jump over null modalities */
       for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
           if (Ndum[i] == 0) { /* If nobody responded to this modality k */
             break;
           }
           ij++;
           nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
           cptcode = ij; /* New max modality for covar j */
       } /* end of loop on modality i=-1 to 1 or more */
         
       /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
       /*  /\*recode from 0 *\/ */
       /*                               k is a modality. If we have model=V1+V1*sex  */
       /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
       /*  } */
       /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
       /*  if (ij > ncodemax[j]) { */
       /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
       /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
       /*    break; */
       /*  } */
       /*   }  /\* end of loop on modality k *\/ */
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     
     for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; /* Might be supersed V1 + V1*age */
    } 
   
    ij=0;
    for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      if((Ndum[i]!=0) && (i<=ncovcol)){
        ij++;
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
        Tvaraff[ij]=i; /*For printing (unclear) */
      }else{
          /* Tvaraff[ij]=0; */
      }
    }
    /* ij--; */
    cptcoveff=ij; /*Number of total covariates*/
   
   }
   
   
   /*********** Health Expectancies ****************/
   
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   {
     /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3mat;
     double eip;
   
     pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-POPULBASED-MOBILAV_");
       else strcpy(digitp,"-POPULBASED-NOMOBIL_");
     }
     else 
       strcpy(digitp,"-STABLBASED_");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"PRMORPREV-"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficgp,"\nunset title \n");
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
     fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"PROB_"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"PROBCOV_"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"PROBCOR_"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
             /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter svg size 640, 480");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model, for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
   <img src=\"%s_%d-1.svg\">",subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
        /* Pij */
        fprintf(fichtm,"<br>\n- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
   <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>\n- Iij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\
    incidence (rates) are the limit when h tends to zero of the ratio of the probability hPij \
   divided by h: hPij/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions from state %d in any different live states and total.\
    Or probability to survive in various states (1 to %d) being in state %d at different ages.\
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
        }
        /* Period (stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s%d%d.svg\">%s%d%d.svg</a> <br> \
   <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file.<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.svg <br>\
   <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s_%d.svg<br>\
   <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
     int vpopbased;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
        fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
        fprintf(ficgp,"\nset out \n");
       } /* k1 */
     } /* cpt */
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
         if(vpopbased==0)
           fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
         else
           fprintf(ficgp,"\nreplot ");
         for (i=1; i<= nlstate+1 ; i ++) {
           k=2*i;
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
           else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           fprintf(ficgp,"\" t\"\" w l lt 0,");
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
           else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
         } /* state */
       } /* vpopbased */
       fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
     } /* k1 */
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
         fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'lij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate+ndeath ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
         k=3;
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           if(j==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(cpt-1) +j;
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
           /* for (i=2; i<= nlstate+ndeath ; i ++) */
           /*   fprintf(ficgp,"+$%d",k+l+i-1); */
           fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
         } /* nlstate */
         fprintf(ficgp,", '' ");
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           l=(nlstate+ndeath)*(cpt-1) +j;
           if(j < nlstate)
             fprintf(ficgp,"$%d +",k+l);
           else
             fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
         }
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
          fprintf(ficgp,"\nset ter svg size 640, 480 ");
          if (ng==1){
            fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
            fprintf(ficgp,"\nunset log y");
          }else if (ng==2){
            fprintf(ficgp,"\nset ylabel \"Probability\"\n");
            fprintf(ficgp,"\nset log y");
          }else if (ng==3){
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
            fprintf(ficgp,"\nset log y");
          }else
            fprintf(ficgp,"\nunset title ");
          fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                switch( ng) {
                case 1:
                  if(nagesqr==0)
                    fprintf(ficgp," p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 2: /* ng=2 */
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                      fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 3:
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                  break;
                }
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                  if(ij <=cptcovage) { /* Bug valgrind */
                    if((j-2)==Tage[ij]) { /* Bug valgrind */
                      fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                      /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                      ij++;
                    }
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                }
                if(ng != 1){
                  fprintf(ficgp,")/(1");
                
                  for(k1=1; k1 <=nlstate; k1++){ 
                    if(nagesqr==0)
                      fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                    else /* nagesqr =1 */
                      fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                    
                    ij=1;
                    for(j=3; j <=ncovmodel-nagesqr; j++){
                      if(ij <=cptcovage) { /* Bug valgrind */
                        if((j-2)==Tage[ij]) { /* Bug valgrind */
                          fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                          /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                          ij++;
                        }
                      }
                      else
                        fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                    }
                    fprintf(ficgp,")");
                  }
                  fprintf(ficgp,")");
                  if(ng ==2)
                    fprintf(ficgp," t \"p%d%d\" ", k2,k);
                  else /* ng= 3 */
                    fprintf(ficgp," t \"i%d%d\" ", k2,k);
                }else{ /* end ng <> 1 */
                  fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
                }
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
          fprintf(ficgp,"\n set out\n");
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"POP_"); 
     strcat(filerespop,fileresu);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"PL_");
       strcat(filerespl,fileresu);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"#******");
           printf("#******");
           fprintf(ficlog,"#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8\n");
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
   
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
       model[strlen(model)-1]='\0';
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     for(h=1; h <=100 ;h++){ 
       /* printf("h=%2d ", h); */
        /* for(k=1; k <=10; k++){ */
          /* printf("k=%d %d ",k,codtabm(h,k)); */
        /*   codtab[h][k]=codtabm(h,k); */
        /* } */
        /* printf("\n"); */
     }
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
           }
         }
       }
   
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* ZZ Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
             /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); /*ZZ Is it the correct prevalim */
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
               /* printf(" age %4.0f ",age); */
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
                 }
                 epj[nlstate+1] +=epj[j];
               }
               /* printf(" age %4.0f \n",age); */
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.35  
changed lines
  Added in v.1.201


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>