Diff for /imach/src/imach.c between versions 1.203 and 1.224

version 1.203, 2015/09/30 17:45:14 version 1.224, 2016/07/01 13:16:01
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.224  2016/07/01 13:16:01  brouard
     Summary: Fixes
   
     Revision 1.223  2016/02/19 09:23:35  brouard
     Summary: temporary
   
     Revision 1.222  2016/02/17 08:14:50  brouard
     Summary: Probably last 0.98 stable version 0.98r6
   
     Revision 1.221  2016/02/15 23:35:36  brouard
     Summary: minor bug
   
     Revision 1.219  2016/02/15 00:48:12  brouard
     *** empty log message ***
   
     Revision 1.218  2016/02/12 11:29:23  brouard
     Summary: 0.99 Back projections
   
     Revision 1.217  2015/12/23 17:18:31  brouard
     Summary: Experimental backcast
   
     Revision 1.216  2015/12/18 17:32:11  brouard
     Summary: 0.98r4 Warning and status=-2
   
     Version 0.98r4 is now:
      - displaying an error when status is -1, date of interview unknown and date of death known;
      - permitting a status -2 when the vital status is unknown at a known date of right truncation.
     Older changes concerning s=-2, dating from 2005 have been supersed.
   
     Revision 1.215  2015/12/16 08:52:24  brouard
     Summary: 0.98r4 working
   
     Revision 1.214  2015/12/16 06:57:54  brouard
     Summary: temporary not working
   
     Revision 1.213  2015/12/11 18:22:17  brouard
     Summary: 0.98r4
   
     Revision 1.212  2015/11/21 12:47:24  brouard
     Summary: minor typo
   
     Revision 1.211  2015/11/21 12:41:11  brouard
     Summary: 0.98r3 with some graph of projected cross-sectional
   
     Author: Nicolas Brouard
   
     Revision 1.210  2015/11/18 17:41:20  brouard
     Summary: Start working on projected prevalences
   
     Revision 1.209  2015/11/17 22:12:03  brouard
     Summary: Adding ftolpl parameter
     Author: N Brouard
   
     We had difficulties to get smoothed confidence intervals. It was due
     to the period prevalence which wasn't computed accurately. The inner
     parameter ftolpl is now an outer parameter of the .imach parameter
     file after estepm. If ftolpl is small 1.e-4 and estepm too,
     computation are long.
   
     Revision 1.208  2015/11/17 14:31:57  brouard
     Summary: temporary
   
     Revision 1.207  2015/10/27 17:36:57  brouard
     *** empty log message ***
   
     Revision 1.206  2015/10/24 07:14:11  brouard
     *** empty log message ***
   
     Revision 1.205  2015/10/23 15:50:53  brouard
     Summary: 0.98r3 some clarification for graphs on likelihood contributions
   
     Revision 1.204  2015/10/01 16:20:26  brouard
     Summary: Some new graphs of contribution to likelihood
   
   Revision 1.203  2015/09/30 17:45:14  brouard    Revision 1.203  2015/09/30 17:45:14  brouard
   Summary: looking at better estimation of the hessian    Summary: looking at better estimation of the hessian
   
Line 595 Line 669
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.     of the life expectancies. It also computes the period (stable) prevalence.
     
   Back prevalence and projections:
    - back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj)
       Computes the back prevalence limit  for any combination     of covariate values k
       at any age between ageminpar and agemaxpar and returns it in **bprlim. In the loops,
      - **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm, **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k);
    - hBijx Back Probability to be in state i at age x-h being in j at x
      Computes for any combination of covariates k and any age between bage and fage 
      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                           oldm=oldms;savm=savms;
            - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
        Computes the transition matrix starting at age 'age' over
        'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
        nhstepm*hstepm matrices. Returns p3mat[i][j][h] after calling 
        p3mat[i][j][h]=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\
                                                                            1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
Line 657 Line 748
 /* #define DEBUGLINMIN */  /* #define DEBUGLINMIN */
 /* #define DEBUGHESS */  /* #define DEBUGHESS */
 #define DEBUGHESSIJ  #define DEBUGHESSIJ
 /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan)*\/ */  /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan) *\/ */
 #define POWELL /* Instead of NLOPT */  #define POWELL /* Instead of NLOPT */
 #define POWELLF1F3 /* Skip test */  #define POWELLNOF3INFF1TEST /* Skip test */
 /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
 /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
   
Line 729  typedef struct { Line 820  typedef struct {
 #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
   /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
   #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
 #define MAXN 20000  #define MAXN 20000
 #define YEARM 12. /**< Number of months per year */  #define YEARM 12. /**< Number of months per year */
 #define AGESUP 130  /* #define AGESUP 130 */
   #define AGESUP 150
   #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
 #define AGEBASE 40  #define AGEBASE 40
 #define AGEOVERFLOW 1.e20  #define AGEOVERFLOW 1.e20
 #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
Line 749  typedef struct { Line 844  typedef struct {
 /* $State$ */  /* $State$ */
 #include "version.h"  #include "version.h"
 char version[]=__IMACH_VERSION__;  char version[]=__IMACH_VERSION__;
 char copyright[]="September 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";  char copyright[]="February 2016,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018";
 char fullversion[]="$Revision$ $Date$";   char fullversion[]="$Revision$ $Date$"; 
 char strstart[80];  char strstart[80];
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
Line 762  int cptcovs=0; /**< cptcovs number of si Line 857  int cptcovs=0; /**< cptcovs number of si
 int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 int cptcovprodnoage=0; /**< Number of covariate products without age */     int cptcovprodnoage=0; /**< Number of covariate products without age */   
 int cptcoveff=0; /* Total number of covariates to vary for printing results */  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   int ncoveff=0; /* Total number of effective covariates in the model */
   int nqveff=0; /**< nqveff number of effective quantitative variables */
   int ntveff=0; /**< ntveff number of effective time varying variables */
   int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */
 int cptcov=0; /* Working variable */  int cptcov=0; /* Working variable */
   int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
 int npar=NPARMAX;  int npar=NPARMAX;
 int nlstate=2; /* Number of live states */  int nlstate=2; /* Number of live states */
 int ndeath=1; /* Number of dead states */  int ndeath=1; /* Number of dead states */
 int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int  nqv=0, ntv=0, nqtv=0;    /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ 
 int popbased=0;  int popbased=0;
   
 int *wav; /* Number of waves for this individuual 0 is possible */  int *wav; /* Number of waves for this individuual 0 is possible */
Line 785  double jmean=1; /* Mean space between 2 Line 886  double jmean=1; /* Mean space between 2
 double **matprod2(); /* test */  double **matprod2(); /* test */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double   **ddnewms, **ddoldms, **ddsavms; /* for freeing later */
   
 /*FILE *fic ; */ /* Used in readdata only */  /*FILE *fic ; */ /* Used in readdata only */
 FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop;
 FILE *ficlog, *ficrespow;  FILE *ficlog, *ficrespow;
 int globpr=0; /* Global variable for printing or not */  int globpr=0; /* Global variable for printing or not */
 double fretone; /* Only one call to likelihood */  double fretone; /* Only one call to likelihood */
Line 809  char fileresv[FILENAMELENGTH]; Line 912  char fileresv[FILENAMELENGTH];
 FILE  *ficresvpl;  FILE  *ficresvpl;
 char fileresvpl[FILENAMELENGTH];  char fileresvpl[FILENAMELENGTH];
 char title[MAXLINE];  char title[MAXLINE];
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 char command[FILENAMELENGTH];  char command[FILENAMELENGTH];
 int  outcmd=0;  int  outcmd=0;
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 char fileresu[FILENAMELENGTH]; /* fileres without r in front */  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
 char filelog[FILENAMELENGTH]; /* Log file */  char filelog[FILENAMELENGTH]; /* Log file */
 char filerest[FILENAMELENGTH];  char filerest[FILENAMELENGTH];
Line 892  int *ncodemaxwundef;  /* ncodemax[j]= Nu Line 995  int *ncodemaxwundef;  /* ncodemax[j]= Nu
                              covariate for which somebody answered including                                covariate for which somebody answered including 
                              undefined. Usually 3: -1, 0 and 1. */                               undefined. Usually 3: -1, 0 and 1. */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double **pmmij, ***probs;  double **pmmij, ***probs; /* Global pointer */
   double ***mobaverage, ***mobaverages; /* New global variable */
 double *ageexmed,*agecens;  double *ageexmed,*agecens;
 double dateintmean=0;  double dateintmean=0;
   
Line 902  double *agedc; Line 1006  double *agedc;
 double  **covar; /**< covar[j,i], value of jth covariate for individual i,  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
                   * covar=matrix(0,NCOVMAX,1,n);                     * covar=matrix(0,NCOVMAX,1,n); 
                   * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   double **coqvar; /* Fixed quantitative covariate */
   double ***cotvar; /* Time varying covariate */
   double ***cotqvar; /* Time varying quantitative covariate */
 double  idx;   double  idx; 
 int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 int *Tage;  int *Tage;
 int *Ndum; /** Freq of modality (tricode */  int *Ndum; /** Freq of modality (tricode */
 /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
 int **Tvard, *Tprod, cptcovprod, *Tvaraff;  int **Tvard, *Tprod, cptcovprod, *Tvaraff, *invalidvarcomb;
 double *lsurv, *lpop, *tpop;  double *lsurv, *lpop, *tpop;
   
 double ftol=FTOL; /**< Tolerance for computing Max Likelihood */  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
Line 940  static int split( char *path, char *dirc Line 1047  static int split( char *path, char *dirc
     }      }
     /* got dirc from getcwd*/      /* got dirc from getcwd*/
     printf(" DIRC = %s \n",dirc);      printf(" DIRC = %s \n",dirc);
   } else {                              /* strip direcotry from path */    } else {                              /* strip directory from path */
     ss++;                               /* after this, the filename */      ss++;                               /* after this, the filename */
     l2 = strlen( ss );                  /* length of filename */      l2 = strlen( ss );                  /* length of filename */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
Line 1348  char *subdirf3(char fileres[], char *pre Line 1455  char *subdirf3(char fileres[], char *pre
   strcat(tmpout,fileres);    strcat(tmpout,fileres);
   return tmpout;    return tmpout;
 }  }
    
   /*************** function subdirfext ***********/
   char *subdirfext(char fileres[], char *preop, char *postop)
   {
     
     strcpy(tmpout,preop);
     strcat(tmpout,fileres);
     strcat(tmpout,postop);
     return tmpout;
   }
   
   /*************** function subdirfext3 ***********/
   char *subdirfext3(char fileres[], char *preop, char *postop)
   {
     
     /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
     strcat(tmpout,preop);
     strcat(tmpout,fileres);
     strcat(tmpout,postop);
     return tmpout;
   }
    
 char *asc_diff_time(long time_sec, char ascdiff[])  char *asc_diff_time(long time_sec, char ascdiff[])
 {  {
   long sec_left, days, hours, minutes;    long sec_left, days, hours, minutes;
Line 1426  double brent(double ax, double bx, doubl Line 1556  double brent(double ax, double bx, doubl
       etemp=e;         etemp=e; 
       e=d;         e=d; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));                                   d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       else {         else { 
         d=p/q;                                   d=p/q; 
         u=x+d;                                   u=x+d; 
         if (u-a < tol2 || b-u < tol2)                                   if (u-a < tol2 || b-u < tol2) 
           d=SIGN(tol1,xm-x);                                           d=SIGN(tol1,xm-x); 
       }         } 
     } else {       } else { 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
Line 1445  double brent(double ax, double bx, doubl Line 1575  double brent(double ax, double bx, doubl
     } else {       } else { 
       if (u < x) a=u; else b=u;         if (u < x) a=u; else b=u; 
       if (fu <= fw || w == x) {         if (fu <= fw || w == x) { 
         v=w;                                   v=w; 
         w=u;                                   w=u; 
         fv=fw;                                   fv=fw; 
         fw=fu;                                   fw=fu; 
       } else if (fu <= fv || v == x || v == w) {         } else if (fu <= fv || v == x || v == w) { 
         v=u;                                   v=u; 
         fv=fu;                                   fv=fu; 
       }         } 
     }       } 
   }     } 
Line 1492  values at the three points, fa, fb , and Line 1622  values at the three points, fa, fb , and
   *cx=(*bx)+GOLD*(*bx-*ax);     *cx=(*bx)+GOLD*(*bx-*ax); 
   *fc=(*func)(*cx);     *fc=(*func)(*cx); 
 #ifdef DEBUG  #ifdef DEBUG
   printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);    printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
   fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);    fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
 #endif  #endif
   while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/
     r=(*bx-*ax)*(*fb-*fc);       r=(*bx-*ax)*(*fb-*fc); 
     q=(*bx-*cx)*(*fb-*fa);       q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
Line 1508  values at the three points, fa, fb , and Line 1638  values at the three points, fa, fb , and
       double A, fparabu;         double A, fparabu; 
       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
       fparabu= *fa - A*(*ax-u)*(*ax-u);        fparabu= *fa - A*(*ax-u)*(*ax-u);
       printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);        printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
       fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);        fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
       /* And thus,it can be that fu > *fc even if fparabu < *fc */        /* And thus,it can be that fu > *fc even if fparabu < *fc */
       /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
         (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
Line 1542  values at the three points, fa, fb , and Line 1672  values at the three points, fa, fb , and
 /*      fu = *fc; */  /*      fu = *fc; */
 /*      *fc =dum; */  /*      *fc =dum; */
 /*       } */  /*       } */
 #ifdef DEBUG  #ifdef DEBUGMNBRAK
       printf("mnbrak34  fu < or >= fc \n");                   double A, fparabu; 
       fprintf(ficlog, "mnbrak34 fu < fc\n");       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
        fparabu= *fa - A*(*ax-u)*(*ax-u);
        printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
        fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
 #endif  #endif
       dum=u; /* Shifting c and u */        dum=u; /* Shifting c and u */
       u = *cx;        u = *cx;
Line 1555  values at the three points, fa, fb , and Line 1688  values at the three points, fa, fb , and
 #endif  #endif
     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 #ifdef DEBUG  #ifdef DEBUG
       printf("mnbrak2  u after c but before ulim\n");        printf("\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
       fprintf(ficlog, "mnbrak2 u after c but before ulim\n");        fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
 #endif  #endif
       fu=(*func)(u);         fu=(*func)(u); 
       if (fu < *fc) {         if (fu < *fc) { 
 #ifdef DEBUG  #ifdef DEBUG
       printf("mnbrak2  u after c but before ulim AND fu < fc\n");                                  printf("\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
       fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");                            fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
   #endif
                             SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                                   SHFT(*fb,*fc,fu,(*func)(u)) 
   #ifdef DEBUG
                                           printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx));
 #endif  #endif
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   
         SHFT(*fb,*fc,fu,(*func)(u))   
       }         } 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
 #ifdef DEBUG  #ifdef DEBUG
       printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");        printf("\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
       fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");        fprintf(ficlog,"\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
 #endif  #endif
       u=ulim;         u=ulim; 
       fu=(*func)(u);         fu=(*func)(u); 
     } else { /* u could be left to b (if r > q parabola has a maximum) */      } else { /* u could be left to b (if r > q parabola has a maximum) */
 #ifdef DEBUG  #ifdef DEBUG
       printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");        printf("\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
       fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");        fprintf(ficlog,"\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
 #endif  #endif
       u=(*cx)+GOLD*(*cx-*bx);         u=(*cx)+GOLD*(*cx-*bx); 
       fu=(*func)(u);         fu=(*func)(u); 
   #ifdef DEBUG
         printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
         fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
   #endif
     } /* end tests */      } /* end tests */
     SHFT(*ax,*bx,*cx,u)       SHFT(*ax,*bx,*cx,u) 
     SHFT(*fa,*fb,*fc,fu)       SHFT(*fa,*fb,*fc,fu) 
 #ifdef DEBUG  #ifdef DEBUG
       printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);        printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
       fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);        fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
 #endif  #endif
   } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
 }   } 
Line 1601  int ncom; Line 1741  int ncom;
 double *pcom,*xicom;  double *pcom,*xicom;
 double (*nrfunc)(double []);   double (*nrfunc)(double []); 
     
   #ifdef LINMINORIGINAL
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   #else
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) 
   #endif
 {   { 
   double brent(double ax, double bx, double cx,     double brent(double ax, double bx, double cx, 
                double (*f)(double), double tol, double *xmin);                  double (*f)(double), double tol, double *xmin); 
Line 1645  void linmin(double p[], double xi[], int Line 1789  void linmin(double p[], double xi[], int
 #ifdef LINMINORIGINAL  #ifdef LINMINORIGINAL
 #else  #else
     if (fx != fx){      if (fx != fx){
         xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */                          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
         printf("|");                          printf("|");
         fprintf(ficlog,"|");                          fprintf(ficlog,"|");
 #ifdef DEBUGLINMIN  #ifdef DEBUGLINMIN
         printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);                          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
 #endif  #endif
     }      }
   }while(fx != fx);    }while(fx != fx && xxs > 1.e-5);
 #endif  #endif
       
 #ifdef DEBUGLINMIN  #ifdef DEBUGLINMIN
   printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
 #endif  #endif
   #ifdef LINMINORIGINAL
   #else
           if(fb == fx){ /* Flat function in the direction */
                   xmin=xx;
       *flat=1;
           }else{
       *flat=0;
   #endif
                   /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
   /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
   /* fmin = f(p[j] + xmin * xi[j]) */    /* fmin = f(p[j] + xmin * xi[j]) */
   /* P+lambda n in that direction (lambdamin), with TOL between abscisses */    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
   /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
 #ifdef DEBUG  #ifdef DEBUG
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
   #endif
   #ifdef LINMINORIGINAL
   #else
                           }
 #endif  #endif
 #ifdef DEBUGLINMIN  #ifdef DEBUGLINMIN
   printf("linmin end ");    printf("linmin end ");
Line 1716  such that failure to decrease by more th Line 1873  such that failure to decrease by more th
 output, p is set to the best point found, xi is the then-current direction set, fret is the returned  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
 function value at p , and iter is the number of iterations taken. The routine linmin is used.  function value at p , and iter is the number of iterations taken. The routine linmin is used.
  */   */
   #ifdef LINMINORIGINAL
   #else
           int *flatdir; /* Function is vanishing in that direction */
           int flat=0; /* Function is vanishing in that direction */
   #endif
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
             double (*func)(double []))               double (*func)(double [])) 
 {   { 
   void linmin(double p[], double xi[], int n, double *fret,   #ifdef LINMINORIGINAL
    void linmin(double p[], double xi[], int n, double *fret, 
               double (*func)(double []));                 double (*func)(double [])); 
   #else 
    void linmin(double p[], double xi[], int n, double *fret, 
                                                    double (*func)(double []),int *flat); 
   #endif
   int i,ibig,j;     int i,ibig,j; 
   double del,t,*pt,*ptt,*xit;    double del,t,*pt,*ptt,*xit;
   double directest;    double directest;
   double fp,fptt;    double fp,fptt;
   double *xits;    double *xits;
   int niterf, itmp;    int niterf, itmp;
   #ifdef LINMINORIGINAL
   #else
   
     flatdir=ivector(1,n); 
     for (j=1;j<=n;j++) flatdir[j]=0; 
   #endif
   
   pt=vector(1,n);     pt=vector(1,n); 
   ptt=vector(1,n);     ptt=vector(1,n); 
Line 1760  void powell(double p[], double **xi, int Line 1933  void powell(double p[], double **xi, int
       rforecast_time=rcurr_time;         rforecast_time=rcurr_time; 
       itmp = strlen(strcurr);        itmp = strlen(strcurr);
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         strcurr[itmp-1]='\0';                                  strcurr[itmp-1]='\0';
       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       for(niterf=10;niterf<=30;niterf+=10){        for(niterf=10;niterf<=30;niterf+=10){
         rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);                                  rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
         forecast_time = *localtime(&rforecast_time);                                  forecast_time = *localtime(&rforecast_time);
         strcpy(strfor,asctime(&forecast_time));                                  strcpy(strfor,asctime(&forecast_time));
         itmp = strlen(strfor);                                  itmp = strlen(strfor);
         if(strfor[itmp-1]=='\n')                                  if(strfor[itmp-1]=='\n')
         strfor[itmp-1]='\0';                                          strfor[itmp-1]='\0';
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);                                  printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);                                  fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       }        }
     }      }
     for (i=1;i<=n;i++) { /* For each direction i */      for (i=1;i<=n;i++) { /* For each direction i */
Line 1783  void powell(double p[], double **xi, int Line 1956  void powell(double p[], double **xi, int
 #endif  #endif
       printf("%d",i);fflush(stdout); /* print direction (parameter) i */        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
       fprintf(ficlog,"%d",i);fflush(ficlog);        fprintf(ficlog,"%d",i);fflush(ficlog);
   #ifdef LINMINORIGINAL
       linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
                                     /* Outputs are fret(new point p) p is updated and xit rescaled */  #else
         linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
                           flatdir[i]=flat; /* Function is vanishing in that direction i */
   #endif
                           /* Outputs are fret(new point p) p is updated and xit rescaled */
       if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
         /* because that direction will be replaced unless the gain del is small */                                  /* because that direction will be replaced unless the gain del is small */
         /* in comparison with the 'probable' gain, mu^2, with the last average direction. */                                  /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
         /* Unless the n directions are conjugate some gain in the determinant may be obtained */                                  /* Unless the n directions are conjugate some gain in the determinant may be obtained */
         /* with the new direction. */                                  /* with the new direction. */
         del=fabs(fptt-(*fret));                                   del=fabs(fptt-(*fret)); 
         ibig=i;                                   ibig=i; 
       }         } 
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %.12e",i,(*fret));        printf("%d %.12e",i,(*fret));
       fprintf(ficlog,"%d %.12e",i,(*fret));        fprintf(ficlog,"%d %.12e",i,(*fret));
       for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);                                  xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         printf(" x(%d)=%.12e",j,xit[j]);                                  printf(" x(%d)=%.12e",j,xit[j]);
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);                                  fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       for(j=1;j<=n;j++) {        for(j=1;j<=n;j++) {
         printf(" p(%d)=%.12e",j,p[j]);                          printf(" p(%d)=%lf ",j,p[j]);
         fprintf(ficlog," p(%d)=%.12e",j,p[j]);                          fprintf(ficlog," p(%d)=%lf ",j,p[j]);
       }        }
       printf("\n");        printf("\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
Line 1812  void powell(double p[], double **xi, int Line 1990  void powell(double p[], double **xi, int
     /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */       /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
     /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
     /* New value of last point Pn is not computed, P(n-1) */      /* New value of last point Pn is not computed, P(n-1) */
         for(j=1;j<=n;j++) {
                             printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
                             fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
         }
         printf("\n");
         fprintf(ficlog,"\n");
   
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
       /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
       /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
Line 1820  void powell(double p[], double **xi, int Line 2005  void powell(double p[], double **xi, int
       /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
       /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
       /* By adding 10 parameters more the gain should be 18.31 */        /* By adding 10 parameters more the gain should be 18.31 */
                           
       /* Starting the program with initial values given by a former maximization will simply change */        /* Starting the program with initial values given by a former maximization will simply change */
       /* the scales of the directions and the directions, because the are reset to canonical directions */        /* the scales of the directions and the directions, because the are reset to canonical directions */
       /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
Line 1848  void powell(double p[], double **xi, int Line 2033  void powell(double p[], double **xi, int
       }        }
 #endif  #endif
   
   #ifdef LINMINORIGINAL
   #else
         free_ivector(flatdir,1,n); 
   #endif
       free_vector(xit,1,n);         free_vector(xit,1,n); 
       free_vector(xits,1,n);         free_vector(xits,1,n); 
       free_vector(ptt,1,n);         free_vector(ptt,1,n); 
Line 1862  void powell(double p[], double **xi, int Line 2050  void powell(double p[], double **xi, int
       pt[j]=p[j];         pt[j]=p[j]; 
     }       } 
     fptt=(*func)(ptt); /* f_3 */      fptt=(*func)(ptt); /* f_3 */
 #ifdef POWELLF1F3  #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
                   if (*iter <=4) {
   #else                   
   #ifdef POWELLNOF3INFF1TEST    /* skips test F3 <F1 */
 #else  #else
     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
 #endif  #endif
Line 1871  void powell(double p[], double **xi, int Line 2062  void powell(double p[], double **xi, int
       /* Let f"(x2) be the 2nd derivative equal everywhere.  */        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
       /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */
         /* also  lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */
         /* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */
       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
         /*  Even if f3 <f1, directest can be negative and t >0 */
         /* mu² and del² are equal when f3=f1 */
                           /* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */
                           /* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */
                           /* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0  */
                           /* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0  */
 #ifdef NRCORIGINAL  #ifdef NRCORIGINAL
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
 #else  #else
Line 1894  void powell(double p[], double **xi, int Line 2093  void powell(double p[], double **xi, int
       if (t < 0.0) { /* Then we use it for new direction */        if (t < 0.0) { /* Then we use it for new direction */
 #else  #else
       if (directest*t < 0.0) { /* Contradiction between both tests */        if (directest*t < 0.0) { /* Contradiction between both tests */
         printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);                                  printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
         printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
         fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);          fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
         fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
       }         } 
       if (directest < 0.0) { /* Then we use it for new direction */        if (directest < 0.0) { /* Then we use it for new direction */
 #endif  #endif
 #ifdef DEBUGLINMIN  #ifdef DEBUGLINMIN
         printf("Before linmin in direction P%d-P0\n",n);                                  printf("Before linmin in direction P%d-P0\n",n);
         for (j=1;j<=n;j++) {                                   for (j=1;j<=n;j++) {
           printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);                                          printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
           fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);                                          fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
           if(j % ncovmodel == 0){                                          if(j % ncovmodel == 0){
             printf("\n");                                                  printf("\n");
             fprintf(ficlog,"\n");                                                  fprintf(ficlog,"\n");
           }                                          }
         }                                  }
 #endif  #endif
         linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/  #ifdef LINMINORIGINAL
 #ifdef DEBUGLINMIN                                  linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
         for (j=1;j<=n;j++) {   #else
           printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);                                  linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
           fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);                                  flatdir[i]=flat; /* Function is vanishing in that direction i */
           if(j % ncovmodel == 0){  
             printf("\n");  
             fprintf(ficlog,"\n");  
           }  
         }  
 #endif  #endif
         for (j=1;j<=n;j++) {   
           xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */  
           xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */  
         }  
         printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);  
         fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);  
   
   #ifdef DEBUGLINMIN
                                   for (j=1;j<=n;j++) { 
                                           printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                                           fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                                           if(j % ncovmodel == 0){
                                                   printf("\n");
                                                   fprintf(ficlog,"\n");
                                           }
                                   }
   #endif
                                   for (j=1;j<=n;j++) { 
                                           xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
                                           xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
                                   }
   #ifdef LINMINORIGINAL
   #else
                                   printf("Flat directions\n");
                                   fprintf(ficlog,"Flat directions\n");
                                   for (j=1;j<=n;j++) { 
                                           printf("flatdir[%d]=%d ",j,flatdir[j]);
                                           fprintf(ficlog,"flatdir[%d]=%d ",j,flatdir[j]);
           }
                                   printf("\n");
                                   fprintf(ficlog,"\n");
   #endif
                                   printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                                   fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                                   
 #ifdef DEBUG  #ifdef DEBUG
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);                                  printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);                                  fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for(j=1;j<=n;j++){                                  for(j=1;j<=n;j++){
           printf(" %.12e",xit[j]);                                          printf(" %lf",xit[j]);
           fprintf(ficlog," %.12e",xit[j]);                                          fprintf(ficlog," %lf",xit[j]);
         }                                  }
         printf("\n");                                  printf("\n");
         fprintf(ficlog,"\n");                                  fprintf(ficlog,"\n");
 #endif  #endif
       } /* end of t or directest negative */        } /* end of t or directest negative */
 #ifdef POWELLF1F3  #ifdef POWELLNOF3INFF1TEST
 #else  #else
     } /* end if (fptt < fp)  */      } /* end if (fptt < fp)  */
 #endif  #endif
                   } /*NODIRECTIONCHANGEDUNTILNITER  No change in drections until some iterations are done */
   #endif
   } /* loop iteration */     } /* loop iteration */ 
 }   } 
   
Line 1952  void powell(double p[], double **xi, int Line 2170  void powell(double p[], double **xi, int
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    /* Computes the prevalence limit in each live state at age x and for covariate ij by left multiplying the unit
      matrix by transitions matrix until convergence is reached with precision ftolpl */       matrix by transitions matrix until convergence is reached with precision ftolpl */
       /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
     /* Wx is row vector: population in state 1, population in state 2, population dead */
     /* or prevalence in state 1, prevalence in state 2, 0 */
     /* newm is the matrix after multiplications, its rows are identical at a factor */
     /* Initial matrix pimij */
     /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
     /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
     /*  0,                   0                  , 1} */
     /*
      * and after some iteration: */
     /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
     /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
     /*  0,                   0                  , 1} */
     /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
     /* {0.51571254859325999, 0.4842874514067399, */
     /*  0.51326036147820708, 0.48673963852179264} */
     /* If we start from prlim again, prlim tends to a constant matrix */
   
   int i, ii,j,k;    int i, ii,j,k;
   double min, max, maxmin, maxmax,sumnew=0.;    double *min, *max, *meandiff, maxmax,sumnew=0.;
   /* double **matprod2(); */ /* test */    /* double **matprod2(); */ /* test */
   double **out, cov[NCOVMAX+1], **pmij();    double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
   double **newm;    double **newm;
   double agefin, delaymax=100 ; /* Max number of years to converge */    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
   int ncvloop=0;    int ncvloop=0;
       
     min=vector(1,nlstate);
     max=vector(1,nlstate);
     meandiff=vector(1,nlstate);
   
           /* Starting with matrix unity */
   for (ii=1;ii<=nlstate+ndeath;ii++)    for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=nlstate+ndeath;j++){
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
Line 1981  double **prevalim(double **prlim, int nl Line 2221  double **prevalim(double **prlim, int nl
       cov[3]= agefin*agefin;;        cov[3]= agefin*agefin;;
     for (k=1; k<=cptcovn;k++) {      for (k=1; k<=cptcovn;k++) {
       /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
                           /* Here comes the value of the covariate 'ij' */
       cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
       /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
     }      }
Line 1996  double **prevalim(double **prlim, int nl Line 2237  double **prevalim(double **prlim, int nl
     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
                   /* age and covariate values of ij are in 'cov' */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
           
     savm=oldm;      savm=oldm;
     oldm=newm;      oldm=newm;
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){      for(j=1; j<=nlstate; j++){
       min=1.;        max[j]=0.;
       max=0.;        min[j]=1.;
       for(i=1; i<=nlstate; i++) {      }
         sumnew=0;      for(i=1;i<=nlstate;i++){
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        sumnew=0;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         for(j=1; j<=nlstate; j++){ 
         prlim[i][j]= newm[i][j]/(1-sumnew);          prlim[i][j]= newm[i][j]/(1-sumnew);
         max=FMAX(max,prlim[i][j]);          max[j]=FMAX(max[j],prlim[i][j]);
         min=FMIN(min,prlim[i][j]);          min[j]=FMIN(min[j],prlim[i][j]);
         /* printf(" age= %d prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d max=%f min=%f\n", (int)age, i, j, i, j, prlim[i][j],(int)agefin, max, min); */  
       }        }
       maxmin=(max-min)/(max+min)*2;      }
       maxmax=FMAX(maxmax,maxmin);  
       maxmax=0.;
       for(j=1; j<=nlstate; j++){
         meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
         maxmax=FMAX(maxmax,meandiff[j]);
         /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
     } /* j loop */      } /* j loop */
     *ncvyear= (int)age- (int)agefin;      *ncvyear= (int)age- (int)agefin;
     /* printf("maxmax=%lf maxmin=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */      /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
     if(maxmax < ftolpl){      if(maxmax < ftolpl){
       /* printf("maxmax=%lf maxmin=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */        /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
         free_vector(min,1,nlstate);
         free_vector(max,1,nlstate);
         free_vector(meandiff,1,nlstate);
       return prlim;        return prlim;
     }      }
   } /* age loop */    } /* age loop */
   printf("Warning: the stable prevalence at age %d did not converge with the required precision %g > ftolpl=%g. \n\      /* After some age loop it doesn't converge */
 Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);    printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
 /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
     /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
     free_vector(min,1,nlstate);
     free_vector(max,1,nlstate);
     free_vector(meandiff,1,nlstate);
     
   return prlim; /* should not reach here */    return prlim; /* should not reach here */
 }  }
   
   
    /**** Back Prevalence limit (stable or period prevalence)  ****************/
   
    /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
    /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
    double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij)
   {
     /* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit
        matrix by transitions matrix until convergence is reached with precision ftolpl */
     /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
     /* Wx is row vector: population in state 1, population in state 2, population dead */
     /* or prevalence in state 1, prevalence in state 2, 0 */
     /* newm is the matrix after multiplications, its rows are identical at a factor */
     /* Initial matrix pimij */
     /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
     /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
     /*  0,                   0                  , 1} */
     /*
      * and after some iteration: */
     /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
     /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
     /*  0,                   0                  , 1} */
     /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
     /* {0.51571254859325999, 0.4842874514067399, */
     /*  0.51326036147820708, 0.48673963852179264} */
     /* If we start from prlim again, prlim tends to a constant matrix */
   
     int i, ii,j,k;
     double *min, *max, *meandiff, maxmax,sumnew=0.;
     /* double **matprod2(); */ /* test */
     double **out, cov[NCOVMAX+1], **bmij();
     double **newm;
     double         **dnewm, **doldm, **dsavm;  /* for use */
     double         **oldm, **savm;  /* for use */
   
     double agefin, delaymax=200. ; /* 100 Max number of years to converge */
     int ncvloop=0;
     
     min=vector(1,nlstate);
     max=vector(1,nlstate);
     meandiff=vector(1,nlstate);
   
           dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
           oldm=oldms; savm=savms;
   
           /* Starting with matrix unity */
           for (ii=1;ii<=nlstate+ndeath;ii++)
                   for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
     
     cov[1]=1.;
     
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
     /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
     for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */
       ncvloop++;
       newm=savm; /* oldm should be kept from previous iteration or unity at start */
                   /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
       /* Covariates have to be included here again */
       cov[2]=agefin;
       if(nagesqr==1)
         cov[3]= agefin*agefin;;
       for (k=1; k<=cptcovn;k++) {
         /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
         /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
       }
       /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
       for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
       for (k=1; k<=cptcovprod;k++) /* Useless */
         /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
         cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
       
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
                   /* ij should be linked to the correct index of cov */
                   /* age and covariate values ij are in 'cov', but we need to pass
                    * ij for the observed prevalence at age and status and covariate
                    * number:  prevacurrent[(int)agefin][ii][ij]
                    */
       /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
       /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */
       savm=oldm;
       oldm=newm;
       for(j=1; j<=nlstate; j++){
         max[j]=0.;
         min[j]=1.;
       }
       for(j=1; j<=nlstate; j++){ 
         for(i=1;i<=nlstate;i++){
                                   /* bprlim[i][j]= newm[i][j]/(1-sumnew); */
                                   bprlim[i][j]= newm[i][j];
                                   max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */
                                   min[i]=FMIN(min[i],bprlim[i][j]);
         }
       }
                   
       maxmax=0.;
       for(i=1; i<=nlstate; i++){
         meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */
         maxmax=FMAX(maxmax,meandiff[i]);
         /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
       } /* j loop */
       *ncvyear= -( (int)age- (int)agefin);
       /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);*/
       if(maxmax < ftolpl){
         /* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
         free_vector(min,1,nlstate);
         free_vector(max,1,nlstate);
         free_vector(meandiff,1,nlstate);
         return bprlim;
       }
     } /* age loop */
       /* After some age loop it doesn't converge */
     printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
   Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
     /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
     free_vector(min,1,nlstate);
     free_vector(max,1,nlstate);
     free_vector(meandiff,1,nlstate);
     
     return bprlim; /* should not reach here */
   }
   
 /*************** transition probabilities ***************/   /*************** transition probabilities ***************/ 
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
Line 2049  double **pmij(double **ps, double *cov, Line 2436  double **pmij(double **ps, double *cov,
   /*double t34;*/    /*double t34;*/
   int i,j, nc, ii, jj;    int i,j, nc, ii, jj;
   
     for(i=1; i<= nlstate; i++){    for(i=1; i<= nlstate; i++){
       for(j=1; j<i;j++){      for(j=1; j<i;j++){
         for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           /*lnpijopii += param[i][j][nc]*cov[nc];*/          /*lnpijopii += param[i][j][nc]*cov[nc];*/
           lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];          lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */          /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }  
         ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */  
 /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */  
       }  
       for(j=i+1; j<=nlstate+ndeath;j++){  
         for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){  
           /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/  
           lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];  
 /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */  
         }  
         ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */  
       }        }
         ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     }      }
           for(j=i+1; j<=nlstate+ndeath;j++){
     for(i=1; i<= nlstate; i++){        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       s1=0;          /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
       for(j=1; j<i; j++){          lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
         s1+=exp(ps[i][j]); /* In fact sums pij/pii */          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */  
       }  
       for(j=i+1; j<=nlstate+ndeath; j++){  
         s1+=exp(ps[i][j]); /* In fact sums pij/pii */  
         /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */  
       }  
       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */  
       ps[i][i]=1./(s1+1.);  
       /* Computing other pijs */  
       for(j=1; j<i; j++)  
         ps[i][j]= exp(ps[i][j])*ps[i][i];  
       for(j=i+1; j<=nlstate+ndeath; j++)  
         ps[i][j]= exp(ps[i][j])*ps[i][i];  
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
     } /* end i */  
       
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
       for(jj=1; jj<= nlstate+ndeath; jj++){  
         ps[ii][jj]=0;  
         ps[ii][ii]=1;  
       }        }
         ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     }      }
         }
         
     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */    for(i=1; i<= nlstate; i++){
     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */      s1=0;
     /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */      for(j=1; j<i; j++){
     /*   } */        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     /*   printf("\n "); */        /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     /* } */      }
     /* printf("\n ");printf("%lf ",cov[2]);*/      for(j=i+1; j<=nlstate+ndeath; j++){
     /*        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       for(i=1; i<= npar; i++) printf("%f ",x[i]);        /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       goto end;*/      }
     return ps;      /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       ps[i][i]=1./(s1+1.);
       /* Computing other pijs */
       for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
     
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for(jj=1; jj<= nlstate+ndeath; jj++){
         ps[ii][jj]=0;
         ps[ii][ii]=1;
       }
     }
     
     
     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
     /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     /*   } */
     /*   printf("\n "); */
     /* } */
     /* printf("\n ");printf("%lf ",cov[2]);*/
     /*
       for(i=1; i<= npar; i++) printf("%f ",x[i]);
                   goto end;*/
     return ps;
   }
   
   /*************** backward transition probabilities ***************/ 
   
    /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */
   /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
    double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
   {
     /* Computes the backward probability at age agefin and covariate ij
      * and returns in **ps as well as **bmij.
      */
     int i, ii, j,k;
     
     double **out, **pmij();
     double sumnew=0.;
     double agefin;
     
     double **dnewm, **dsavm, **doldm;
     double **bbmij;
     
     doldm=ddoldms; /* global pointers */
     dnewm=ddnewms;
     dsavm=ddsavms;
     
     agefin=cov[2];
     /* bmij *//* age is cov[2], ij is included in cov, but we need for
        the observed prevalence (with this covariate ij) */
     dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate);
     /* We do have the matrix Px in savm  and we need pij */
     for (j=1;j<=nlstate+ndeath;j++){
       sumnew=0.; /* w1 p11 + w2 p21 only on live states */
       for (ii=1;ii<=nlstate;ii++){
         sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij];
       } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */
       for (ii=1;ii<=nlstate+ndeath;ii++){
         if(sumnew >= 1.e-10){
           /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
           /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
           /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
           /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
           /* }else */
           doldm[ii][j]=(ii==j ? 1./sumnew : 0.0);
         }else{
           printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin);
         }
       } /*End ii */
     } /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */
     /* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */
     bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */
     /* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */
     /* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
     /* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
     /* left Product of this matrix by diag matrix of prevalences (savm) */
     for (j=1;j<=nlstate+ndeath;j++){
       for (ii=1;ii<=nlstate+ndeath;ii++){
         dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0);
       }
     } /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */
     ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */
     /* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
     /* end bmij */
     return ps; 
   }
   /*************** transition probabilities ***************/ 
   
   double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
     /* According to parameters values stored in x and the covariate's values stored in cov,
        computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
        lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
        and, according on how parameters are entered, the position of the coefficient xij(nc) of the
        ncth covariate in the global vector x is given by the formula:
        j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
        j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
        sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
        Outputs ps[i][j] the probability to be observed in j being in j according to
        the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     */
     double s1, lnpijopii;
     /*double t34;*/
     int i,j, nc, ii, jj;
   
           for(i=1; i<= nlstate; i++){
                   for(j=1; j<i;j++){
                           for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                                   /*lnpijopii += param[i][j][nc]*cov[nc];*/
                                   lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                                   /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                           }
                           ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                           /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   }
                   for(j=i+1; j<=nlstate+ndeath;j++){
                           for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                                   /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                                   lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                                   /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
                           }
                           ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                   }
           }
           
           for(i=1; i<= nlstate; i++){
                   s1=0;
                   for(j=1; j<i; j++){
                           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                           /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   }
                   for(j=i+1; j<=nlstate+ndeath; j++){
                           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                           /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   }
                   /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                   ps[i][i]=1./(s1+1.);
                   /* Computing other pijs */
                   for(j=1; j<i; j++)
                           ps[i][j]= exp(ps[i][j])*ps[i][i];
                   for(j=i+1; j<=nlstate+ndeath; j++)
                           ps[i][j]= exp(ps[i][j])*ps[i][i];
                   /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           } /* end i */
           
           for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   for(jj=1; jj<= nlstate+ndeath; jj++){
                           ps[ii][jj]=0;
                           ps[ii][ii]=1;
                   }
           }
           /* Added for backcast */ /* Transposed matrix too */
           for(jj=1; jj<= nlstate+ndeath; jj++){
                   s1=0.;
                   for(ii=1; ii<= nlstate+ndeath; ii++){
                           s1+=ps[ii][jj];
                   }
                   for(ii=1; ii<= nlstate; ii++){
                           ps[ii][jj]=ps[ii][jj]/s1;
                   }
           }
           /* Transposition */
           for(jj=1; jj<= nlstate+ndeath; jj++){
                   for(ii=jj; ii<= nlstate+ndeath; ii++){
                           s1=ps[ii][jj];
                           ps[ii][jj]=ps[jj][ii];
                           ps[jj][ii]=s1;
                   }
           }
           /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
           /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
           /*      printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
           /*   } */
           /*   printf("\n "); */
           /* } */
           /* printf("\n ");printf("%lf ",cov[2]);*/
           /*
                   for(i=1; i<= npar; i++) printf("%f ",x[i]);
                   goto end;*/
           return ps;
 }  }
   
   
 /**************** Product of 2 matrices ******************/  /**************** Product of 2 matrices ******************/
   
 double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
Line 2134  double **matprod2(double **out, double * Line 2681  double **matprod2(double **out, double *
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 {  {
   /* Computes the transition matrix starting at age 'age' over     /* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over 
      'nhstepm*hstepm*stepm' months (i.e. until       'nhstepm*hstepm*stepm' months (i.e. until
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
      nhstepm*hstepm matrices.        nhstepm*hstepm matrices. 
Line 2150  double ***hpxij(double ***po, int nhstep Line 2697  double ***hpxij(double ***po, int nhstep
   double **out, cov[NCOVMAX+1];    double **out, cov[NCOVMAX+1];
   double **newm;    double **newm;
   double agexact;    double agexact;
     double agebegin, ageend;
   
   /* Hstepm could be zero and should return the unit matrix */    /* Hstepm could be zero and should return the unit matrix */
   for (i=1;i<=nlstate+ndeath;i++)    for (i=1;i<=nlstate+ndeath;i++)
Line 2163  double ***hpxij(double ***po, int nhstep Line 2711  double ***hpxij(double ***po, int nhstep
       newm=savm;        newm=savm;
       /* Covariates have to be included here again */        /* Covariates have to be included here again */
       cov[1]=1.;        cov[1]=1.;
       agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
       cov[2]=agexact;        cov[2]=agexact;
       if(nagesqr==1)        if(nagesqr==1)
         cov[3]= agexact*agexact;                                  cov[3]= agexact*agexact;
       for (k=1; k<=cptcovn;k++)         for (k=1; k<=cptcovn;k++) 
         cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];                                  cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
         /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */                          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
       for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
         /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */                                  /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];                                  cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
         /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */                          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];                                  cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
         /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */                          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
   
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                           /* right multiplication of oldm by the current matrix */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         /* if((int)age == 70){ */
         /*        printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
         /*        for(i=1; i<=nlstate+ndeath; i++) { */
         /*          printf("%d pmmij ",i); */
         /*          for(j=1;j<=nlstate+ndeath;j++) { */
         /*            printf("%f ",pmmij[i][j]); */
         /*          } */
         /*          printf(" oldm "); */
         /*          for(j=1;j<=nlstate+ndeath;j++) { */
         /*            printf("%f ",oldm[i][j]); */
         /*          } */
         /*          printf("\n"); */
         /*        } */
         /* } */
       savm=oldm;        savm=oldm;
       oldm=newm;        oldm=newm;
     }      }
     for(i=1; i<=nlstate+ndeath; i++)      for(i=1; i<=nlstate+ndeath; i++)
       for(j=1;j<=nlstate+ndeath;j++) {        for(j=1;j<=nlstate+ndeath;j++) {
         po[i][j][h]=newm[i][j];                                  po[i][j][h]=newm[i][j];
         /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/                                  /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
       }        }
     /*printf("h=%d ",h);*/      /*printf("h=%d ",h);*/
   } /* end h */    } /* end h */
 /*     printf("\n H=%d \n",h); */          /*     printf("\n H=%d \n",h); */
   return po;    return po;
 }  }
   
 #ifdef NLOPT  /************* Higher Back Matrix Product ***************/
   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){  /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
   double fret;  double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij )
   double *xt;  {
   int j;    /* Computes the transition matrix starting at age 'age' over
   myfunc_data *d2 = (myfunc_data *) pd;       'nhstepm*hstepm*stepm' months (i.e. until
 /* xt = (p1-1); */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
   xt=vector(1,n);        nhstepm*hstepm matrices.
   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
        (typically every 2 years instead of every month which is too big
        for the memory).
        Model is determined by parameters x and covariates have to be
        included manually here.
   
   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */    */
   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */  
   printf("Function = %.12lf ",fret);    int i, j, d, h, k;
   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]);     double **out, cov[NCOVMAX+1];
   printf("\n");    double **newm;
  free_vector(xt,1,n);    double agexact;
   return fret;    double agebegin, ageend;
 }    double **oldm, **savm;
   
     oldm=oldms;savm=savms;
     /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
         newm=savm;
         /* Covariates have to be included here again */
         cov[1]=1.;
         agexact=age-((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
         /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
         cov[2]=agexact;
         if(nagesqr==1)
           cov[3]= agexact*agexact;
         for (k=1; k<=cptcovn;k++)
           cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
         /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
           /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
         /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
         for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
         /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
                           
                           
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         /* Careful transposed matrix */
         /* age is in cov[2] */
         /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
         /*                                                 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
         out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
                      1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         /* if((int)age == 70){ */
         /*        printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
         /*        for(i=1; i<=nlstate+ndeath; i++) { */
         /*          printf("%d pmmij ",i); */
         /*          for(j=1;j<=nlstate+ndeath;j++) { */
         /*            printf("%f ",pmmij[i][j]); */
         /*          } */
         /*          printf(" oldm "); */
         /*          for(j=1;j<=nlstate+ndeath;j++) { */
         /*            printf("%f ",oldm[i][j]); */
         /*          } */
         /*          printf("\n"); */
         /*        } */
         /* } */
         savm=oldm;
         oldm=newm;
       }
       for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
           /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
       /*printf("h=%d ",h);*/
     } /* end h */
     /*     printf("\n H=%d \n",h); */
     return po;
   }
   
   
   #ifdef NLOPT
     double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     double fret;
     double *xt;
     int j;
     myfunc_data *d2 = (myfunc_data *) pd;
   /* xt = (p1-1); */
     xt=vector(1,n); 
     for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   
     fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
     /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
     printf("Function = %.12lf ",fret);
     for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
     printf("\n");
    free_vector(xt,1,n);
     return fret;
   }
 #endif  #endif
   
 /*************** log-likelihood *************/  /*************** log-likelihood *************/
 double func( double *x)  double func( double *x)
 {  {
   int i, ii, j, k, mi, d, kk;          int i, ii, j, k, mi, d, kk;
   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];          int ioffset=0;
   double **out;          double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double sw; /* Sum of weights */          double **out;
   double lli; /* Individual log likelihood */          double sw; /* Sum of weights */
   int s1, s2;          double lli; /* Individual log likelihood */
   double bbh, survp;          int s1, s2;
   long ipmx;          int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate */
   double agexact;          double bbh, survp;
   /*extern weight */          long ipmx;
   /* We are differentiating ll according to initial status */          double agexact;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          /*extern weight */
   /*for(i=1;i<imx;i++)           /* We are differentiating ll according to initial status */
     printf(" %d\n",s[4][i]);          /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   */          /*for(i=1;i<imx;i++) 
                   printf(" %d\n",s[4][i]);
   ++countcallfunc;          */
   
   cov[1]=1.;          ++countcallfunc;
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;          cov[1]=1.;
   
   if(mle==1){          for(k=1; k<=nlstate; k++) ll[k]=0.;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    ioffset=0;
       /* Computes the values of the ncovmodel covariates of the model          if(mle==1){
          depending if the covariates are fixed or variying (age dependent) and stores them in cov[]                  for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          Then computes with function pmij which return a matrix p[i][j] giving the elementary probability                          /* Computes the values of the ncovmodel covariates of the model
          to be observed in j being in i according to the model.                                   depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
        */                                   Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */                                   to be observed in j being in i according to the model.
           cov[2+nagesqr+k]=covar[Tvar[k]][i];                          */
       }                          ioffset=2+nagesqr+cptcovage;
       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4]                           /* for (k=1; k<=cptcovn;k++){ /\* Simple and product covariates without age* products *\/ */
          is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]                           for (k=1; k<=ncoveff;k++){ /* Simple and product covariates without age* products */
          has been calculated etc */                                  cov[++ioffset]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){                          }
         for (ii=1;ii<=nlstate+ndeath;ii++)                          for(iqv=1; iqv <= nqveff; iqv++){ /* Quantitatives covariates */
           for (j=1;j<=nlstate+ndeath;j++){                                  cov[++ioffset]=coqvar[iqv][i];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);                          }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }                          /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
         for(d=0; d<dh[mi][i]; d++){                                   is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
           newm=savm;                                   has been calculated etc */
           agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;                          /* For an individual i, wav[i] gives the number of effective waves */
           cov[2]=agexact;                          /* We compute the contribution to Likelihood of each effective transition
           if(nagesqr==1)                                   mw[mi][i] is real wave of the mi th effectve wave */
             cov[3]= agexact*agexact;                          /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
           for (kk=1; kk<=cptcovage;kk++) {                                   s2=s[mw[mi+1][i]][i];
             cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */                                   And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i]
           }                                   But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                                   meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                          */
           savm=oldm;                          for(mi=1; mi<= wav[i]-1; mi++){
           oldm=newm;                                  for(itv=1; itv <= ntveff; itv++){ /* Varying dummy covariates */
         } /* end mult */                                          cov[ioffset+itv]=cotvar[mw[mi][i]][itv][i];
                                         }
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */                                  for(iqtv=1; iqtv <= nqtveff; iqtv++){ /* Varying quantitatives covariates */
         /* But now since version 0.9 we anticipate for bias at large stepm.                                          cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][iqtv][i];
          * If stepm is larger than one month (smallest stepm) and if the exact delay                                   }
          * (in months) between two waves is not a multiple of stepm, we rounded to                                   /* ioffset=2+nagesqr+cptcovn+nqv+ntv+nqtv; */
          * the nearest (and in case of equal distance, to the lowest) interval but now                                  for (ii=1;ii<=nlstate+ndeath;ii++)
          * we keep into memory the bias bh[mi][i] and also the previous matrix product                                          for (j=1;j<=nlstate+ndeath;j++){
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the                                                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          * probability in order to take into account the bias as a fraction of the way                                                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies                                          }
          * -stepm/2 to stepm/2 .                                  for(d=0; d<dh[mi][i]; d++){
          * For stepm=1 the results are the same as for previous versions of Imach.                                          newm=savm;
          * For stepm > 1 the results are less biased than in previous versions.                                           agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
          */                                          cov[2]=agexact;
         s1=s[mw[mi][i]][i];                                          if(nagesqr==1)
         s2=s[mw[mi+1][i]][i];                                                  cov[3]= agexact*agexact;  /* Should be changed here */
         bbh=(double)bh[mi][i]/(double)stepm;                                           for (kk=1; kk<=cptcovage;kk++) {
         /* bias bh is positive if real duration                                                  cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
          * is higher than the multiple of stepm and negative otherwise.                                          }
          */                                          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/                                                                                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if( s2 > nlstate){                                           savm=oldm;
           /* i.e. if s2 is a death state and if the date of death is known                                           oldm=newm;
              then the contribution to the likelihood is the probability to                                   } /* end mult */
              die between last step unit time and current  step unit time,                                   
              which is also equal to probability to die before dh                                           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
              minus probability to die before dh-stepm .                                   /* But now since version 0.9 we anticipate for bias at large stepm.
              In version up to 0.92 likelihood was computed                                   * If stepm is larger than one month (smallest stepm) and if the exact delay 
         as if date of death was unknown. Death was treated as any other                                   * (in months) between two waves is not a multiple of stepm, we rounded to 
         health state: the date of the interview describes the actual state                                   * the nearest (and in case of equal distance, to the lowest) interval but now
         and not the date of a change in health state. The former idea was                                   * we keep into memory the bias bh[mi][i] and also the previous matrix product
         to consider that at each interview the state was recorded                                   * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         (healthy, disable or death) and IMaCh was corrected; but when we                                   * probability in order to take into account the bias as a fraction of the way
         introduced the exact date of death then we should have modified                                   * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         the contribution of an exact death to the likelihood. This new                                   * -stepm/2 to stepm/2 .
         contribution is smaller and very dependent of the step unit                                   * For stepm=1 the results are the same as for previous versions of Imach.
         stepm. It is no more the probability to die between last interview                                   * For stepm > 1 the results are less biased than in previous versions. 
         and month of death but the probability to survive from last                                   */
         interview up to one month before death multiplied by the                                  s1=s[mw[mi][i]][i];
         probability to die within a month. Thanks to Chris                                  s2=s[mw[mi+1][i]][i];
         Jackson for correcting this bug.  Former versions increased                                  bbh=(double)bh[mi][i]/(double)stepm; 
         mortality artificially. The bad side is that we add another loop                                  /* bias bh is positive if real duration
         which slows down the processing. The difference can be up to 10%                                   * is higher than the multiple of stepm and negative otherwise.
         lower mortality.                                   */
           */                                  /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         /* If, at the beginning of the maximization mostly, the                                  if( s2 > nlstate){ 
            cumulative probability or probability to be dead is                                          /* i.e. if s2 is a death state and if the date of death is known 
            constant (ie = 1) over time d, the difference is equal to                                                   then the contribution to the likelihood is the probability to 
            0.  out[s1][3] = savm[s1][3]: probability, being at state                                                   die between last step unit time and current  step unit time, 
            s1 at precedent wave, to be dead a month before current                                                   which is also equal to probability to die before dh 
            wave is equal to probability, being at state s1 at                                                   minus probability to die before dh-stepm . 
            precedent wave, to be dead at mont of the current                                                   In version up to 0.92 likelihood was computed
            wave. Then the observed probability (that this person died)                                                   as if date of death was unknown. Death was treated as any other
            is null according to current estimated parameter. In fact,                                                   health state: the date of the interview describes the actual state
            it should be very low but not zero otherwise the log go to                                                   and not the date of a change in health state. The former idea was
            infinity.                                                   to consider that at each interview the state was recorded
         */                                                   (healthy, disable or death) and IMaCh was corrected; but when we
                                                    introduced the exact date of death then we should have modified
                                                    the contribution of an exact death to the likelihood. This new
                                                    contribution is smaller and very dependent of the step unit
                                                    stepm. It is no more the probability to die between last interview
                                                    and month of death but the probability to survive from last
                                                    interview up to one month before death multiplied by the
                                                    probability to die within a month. Thanks to Chris
                                                    Jackson for correcting this bug.  Former versions increased
                                                    mortality artificially. The bad side is that we add another loop
                                                    which slows down the processing. The difference can be up to 10%
                                                    lower mortality.
                                           */
                                           /* If, at the beginning of the maximization mostly, the
                                                    cumulative probability or probability to be dead is
                                                    constant (ie = 1) over time d, the difference is equal to
                                                    0.  out[s1][3] = savm[s1][3]: probability, being at state
                                                    s1 at precedent wave, to be dead a month before current
                                                    wave is equal to probability, being at state s1 at
                                                    precedent wave, to be dead at mont of the current
                                                    wave. Then the observed probability (that this person died)
                                                    is null according to current estimated parameter. In fact,
                                                    it should be very low but not zero otherwise the log go to
                                                    infinity.
                                           */
 /* #ifdef INFINITYORIGINAL */  /* #ifdef INFINITYORIGINAL */
 /*          lli=log(out[s1][s2] - savm[s1][s2]); */  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
 /* #else */  /* #else */
Line 2340  double func( double *x) Line 3017  double func( double *x)
 /*        else */  /*        else */
 /*          lli=log(out[s1][s2] - savm[s1][s2]); */  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
 /* #endif */  /* #endif */
             lli=log(out[s1][s2] - savm[s1][s2]);                                          lli=log(out[s1][s2] - savm[s1][s2]);
             
         } else if  (s2==-2) {                                  } else if  ( s2==-1 ) { /* alive */
           for (j=1,survp=0. ; j<=nlstate; j++)                                           for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];                                                  survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           /*survp += out[s1][j]; */                                          /*survp += out[s1][j]; */
           lli= log(survp);                                          lli= log(survp);
         }                                  }
                                           else if  (s2==-4) { 
         else if  (s2==-4) {                                           for (j=3,survp=0. ; j<=nlstate; j++)  
           for (j=3,survp=0. ; j<=nlstate; j++)                                                    survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];                                          lli= log(survp); 
           lli= log(survp);                                   } 
         }                                   else if  (s2==-5) { 
                                           for (j=1,survp=0. ; j<=2; j++)  
         else if  (s2==-5) {                                                   survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for (j=1,survp=0. ; j<=2; j++)                                            lli= log(survp); 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];                                  } 
           lli= log(survp);                                   else{
         }                                           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                                                   /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         else{                                  } 
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */                                  /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */                                  /*if(lli ==000.0)*/
         }                                   /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/                                  ipmx +=1;
         /*if(lli ==000.0)*/                                  sw += weight[i];
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */                                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         ipmx +=1;                                  /* if (lli < log(mytinydouble)){ */
         sw += weight[i];                                  /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;                                  /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
         /* if (lli < log(mytinydouble)){ */                                  /* } */
         /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */                          } /* end of wave */
         /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */                  } /* end of individual */
         /* } */          }  else if(mle==2){
       } /* end of wave */                  for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     } /* end of individual */                          for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   }  else if(mle==2){                          for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){                                  for (ii=1;ii<=nlstate+ndeath;ii++)
       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];                                          for (j=1;j<=nlstate+ndeath;j++){
       for(mi=1; mi<= wav[i]-1; mi++){                                                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (ii=1;ii<=nlstate+ndeath;ii++)                                                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (j=1;j<=nlstate+ndeath;j++){                                          }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);                                  for(d=0; d<=dh[mi][i]; d++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);                                          newm=savm;
           }                                          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(d=0; d<=dh[mi][i]; d++){                                          cov[2]=agexact;
           newm=savm;                                          if(nagesqr==1)
           agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;                                                  cov[3]= agexact*agexact;
           cov[2]=agexact;                                          for (kk=1; kk<=cptcovage;kk++) {
           if(nagesqr==1)                                                  cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             cov[3]= agexact*agexact;                                          }
           for (kk=1; kk<=cptcovage;kk++) {                                          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;                                                                                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }                                          savm=oldm;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                                          oldm=newm;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                                  } /* end mult */
           savm=oldm;        
           oldm=newm;                                  s1=s[mw[mi][i]][i];
         } /* end mult */                                  s2=s[mw[mi+1][i]][i];
                                         bbh=(double)bh[mi][i]/(double)stepm; 
         s1=s[mw[mi][i]][i];                                  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         s2=s[mw[mi+1][i]][i];                                  ipmx +=1;
         bbh=(double)bh[mi][i]/(double)stepm;                                   sw += weight[i];
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */                                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         ipmx +=1;                          } /* end of wave */
         sw += weight[i];                  } /* end of individual */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          }  else if(mle==3){  /* exponential inter-extrapolation */
       } /* end of wave */                  for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     } /* end of individual */                          for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   }  else if(mle==3){  /* exponential inter-extrapolation */                          for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){                                  for (ii=1;ii<=nlstate+ndeath;ii++)
       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];                                          for (j=1;j<=nlstate+ndeath;j++){
       for(mi=1; mi<= wav[i]-1; mi++){                                                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (ii=1;ii<=nlstate+ndeath;ii++)                                                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (j=1;j<=nlstate+ndeath;j++){                                          }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);                                  for(d=0; d<dh[mi][i]; d++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);                                          newm=savm;
           }                                          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(d=0; d<dh[mi][i]; d++){                                          cov[2]=agexact;
           newm=savm;                                          if(nagesqr==1)
           agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;                                                  cov[3]= agexact*agexact;
           cov[2]=agexact;                                          for (kk=1; kk<=cptcovage;kk++) {
           if(nagesqr==1)                                                  cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             cov[3]= agexact*agexact;                                          }
           for (kk=1; kk<=cptcovage;kk++) {                                          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;                                                                                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }                                          savm=oldm;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                                          oldm=newm;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                                  } /* end mult */
           savm=oldm;        
           oldm=newm;                                  s1=s[mw[mi][i]][i];
         } /* end mult */                                  s2=s[mw[mi+1][i]][i];
                                         bbh=(double)bh[mi][i]/(double)stepm; 
         s1=s[mw[mi][i]][i];                                  lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         s2=s[mw[mi+1][i]][i];                                  ipmx +=1;
         bbh=(double)bh[mi][i]/(double)stepm;                                   sw += weight[i];
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */                                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         ipmx +=1;                          } /* end of wave */
         sw += weight[i];                  } /* end of individual */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          }else if (mle==4){  /* ml=4 no inter-extrapolation */
       } /* end of wave */                  for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     } /* end of individual */                          for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   }else if (mle==4){  /* ml=4 no inter-extrapolation */                          for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){                                  for (ii=1;ii<=nlstate+ndeath;ii++)
       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];                                          for (j=1;j<=nlstate+ndeath;j++){
       for(mi=1; mi<= wav[i]-1; mi++){                                                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (ii=1;ii<=nlstate+ndeath;ii++)                                                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (j=1;j<=nlstate+ndeath;j++){                                          }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);                                  for(d=0; d<dh[mi][i]; d++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);                                          newm=savm;
           }                                          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(d=0; d<dh[mi][i]; d++){                                          cov[2]=agexact;
           newm=savm;                                          if(nagesqr==1)
           agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;                                                  cov[3]= agexact*agexact;
           cov[2]=agexact;                                          for (kk=1; kk<=cptcovage;kk++) {
           if(nagesqr==1)                                                  cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             cov[3]= agexact*agexact;                                          }
           for (kk=1; kk<=cptcovage;kk++) {  
             cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;  
           }  
                   
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                                          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                                                                                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;                                          savm=oldm;
           oldm=newm;                                          oldm=newm;
         } /* end mult */                                  } /* end mult */
               
         s1=s[mw[mi][i]][i];                                  s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];                                  s2=s[mw[mi+1][i]][i];
         if( s2 > nlstate){                                   if( s2 > nlstate){ 
           lli=log(out[s1][s2] - savm[s1][s2]);                                          lli=log(out[s1][s2] - savm[s1][s2]);
         }else{                                  } else if  ( s2==-1 ) { /* alive */
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */                                          for (j=1,survp=0. ; j<=nlstate; j++) 
         }                                                  survp += out[s1][j];
         ipmx +=1;                                          lli= log(survp);
         sw += weight[i];                                  }else{
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;                                          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                                   }
                                   ipmx +=1;
                                   sw += weight[i];
                                   ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       } /* end of wave */                          } /* end of wave */
     } /* end of individual */                  } /* end of individual */
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */          }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){                  for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];                          for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){                          for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)                                  for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){                                          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);                                                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);                                                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }                                          }
         for(d=0; d<dh[mi][i]; d++){                                  for(d=0; d<dh[mi][i]; d++){
           newm=savm;                                          newm=savm;
           agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;                                          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
           cov[2]=agexact;                                          cov[2]=agexact;
           if(nagesqr==1)                                          if(nagesqr==1)
             cov[3]= agexact*agexact;                                                  cov[3]= agexact*agexact;
           for (kk=1; kk<=cptcovage;kk++) {                                          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;                                                  cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
           }                                          }
                   
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                                          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                                                                                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;                                          savm=oldm;
           oldm=newm;                                          oldm=newm;
         } /* end mult */                                  } /* end mult */
               
         s1=s[mw[mi][i]][i];                                  s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];                                  s2=s[mw[mi+1][i]][i];
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */                                  lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         ipmx +=1;                                  ipmx +=1;
         sw += weight[i];                                  sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;                                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/                                  /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       } /* end of wave */                          } /* end of wave */
     } /* end of individual */                  } /* end of individual */
   } /* End of if */          } /* End of if */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   return -l;          return -l;
 }  }
   
 /*************** log-likelihood *************/  /*************** log-likelihood *************/
Line 2527  double funcone( double *x) Line 3205  double funcone( double *x)
 {  {
   /* Same as likeli but slower because of a lot of printf and if */    /* Same as likeli but slower because of a lot of printf and if */
   int i, ii, j, k, mi, d, kk;    int i, ii, j, k, mi, d, kk;
           int ioffset=0;
   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double **out;    double **out;
   double lli; /* Individual log likelihood */    double lli; /* Individual log likelihood */
   double llt;    double llt;
   int s1, s2;    int s1, s2;
           int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate */
   double bbh, survp;    double bbh, survp;
   double agexact;    double agexact;
     double agebegin, ageend;
   /*extern weight */    /*extern weight */
   /* We are differentiating ll according to initial status */    /* We are differentiating ll according to initial status */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
Line 2543  double funcone( double *x) Line 3224  double funcone( double *x)
   cov[1]=1.;    cov[1]=1.;
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     ioffset=0;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];                  ioffset=2+nagesqr+cptcovage;
       /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */
                   for (k=1; k<=ncoveff;k++){ /* Simple and product covariates without age* products */
                           cov[++ioffset]=covar[Tvar[k]][i];
                   }
                   for(iqv=1; iqv <= nqveff; iqv++){ /* Quantitatives covariates */
                           cov[++ioffset]=coqvar[iqv][i];
                   }
   
     for(mi=1; mi<= wav[i]-1; mi++){      for(mi=1; mi<= wav[i]-1; mi++){
                           for(itv=1; itv <= ntveff; itv++){ /* Varying dummy covariates */
                                   cov[ioffset+itv]=cotvar[mw[mi][i]][itv][i];
                           }
                           for(iqtv=1; iqtv <= nqtveff; iqtv++){ /* Varying quantitatives covariates */
                                   cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][iqtv][i];
                           }
       for (ii=1;ii<=nlstate+ndeath;ii++)        for (ii=1;ii<=nlstate+ndeath;ii++)
         for (j=1;j<=nlstate+ndeath;j++){                                  for (j=1;j<=nlstate+ndeath;j++){
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);                                          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           savm[ii][j]=(ii==j ? 1.0 : 0.0);                                          savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }                                  }
       for(d=0; d<dh[mi][i]; d++){        
         newm=savm;        agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
         agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
         cov[2]=agexact;        for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
         if(nagesqr==1)                                  /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           cov[3]= agexact*agexact;                                          and mw[mi+1][i]. dh depends on stepm.*/
         for (kk=1; kk<=cptcovage;kk++) {                                  newm=savm;
           cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;                                  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }                                  cov[2]=agexact;
                                   if(nagesqr==1)
         /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */                                          cov[3]= agexact*agexact;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                                  for (kk=1; kk<=cptcovage;kk++) {
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                                          cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
         /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */                                  }
         /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */                                  
         savm=oldm;                                  /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         oldm=newm;                                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                                                                    1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                                   /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
                                   /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
                                   savm=oldm;
                                   oldm=newm;
       } /* end mult */        } /* end mult */
               
       s1=s[mw[mi][i]][i];        s1=s[mw[mi][i]][i];
       s2=s[mw[mi+1][i]][i];        s2=s[mw[mi+1][i]][i];
         /* if(s2==-1){ */
         /*        printf(" s1=%d, s2=%d i=%d \n", s1, s2, i); */
         /*        /\* exit(1); *\/ */
         /* } */
       bbh=(double)bh[mi][i]/(double)stepm;         bbh=(double)bh[mi][i]/(double)stepm; 
       /* bias is positive if real duration        /* bias is positive if real duration
        * is higher than the multiple of stepm and negative otherwise.         * is higher than the multiple of stepm and negative otherwise.
        */         */
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         lli=log(out[s1][s2] - savm[s1][s2]);                                  lli=log(out[s1][s2] - savm[s1][s2]);
       } else if  (s2==-2) {        } else if  ( s2==-1 ) { /* alive */
         for (j=1,survp=0. ; j<=nlstate; j++)                                   for (j=1,survp=0. ; j<=nlstate; j++) 
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];                                          survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         lli= log(survp);                                  lli= log(survp);
       }else if (mle==1){        }else if (mle==1){
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */                                  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       } else if(mle==2){        } else if(mle==2){
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */                                  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       } else if(mle==3){  /* exponential inter-extrapolation */        } else if(mle==3){  /* exponential inter-extrapolation */
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */                                  lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       } else if (mle==4){  /* mle=4 no inter-extrapolation */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         lli=log(out[s1][s2]); /* Original formula */                                  lli=log(out[s1][s2]); /* Original formula */
       } else{  /* mle=0 back to 1 */        } else{  /* mle=0 back to 1 */
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */                                  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         /*lli=log(out[s1][s2]); */ /* Original formula */                                  /*lli=log(out[s1][s2]); */ /* Original formula */
       } /* End of if */        } /* End of if */
       ipmx +=1;        ipmx +=1;
       sw += weight[i];        sw += weight[i];
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if(globpr){        if(globpr){
         fprintf(ficresilk,"%9ld %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f\                                  fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
  %11.6f %11.6f %11.6f ", \   %11.6f %11.6f %11.6f ", \
                 num[i], agexact, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],                                                                  num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);                                                                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){                                  for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           llt +=ll[k]*gipmx/gsw;                                          llt +=ll[k]*gipmx/gsw;
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);                                          fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         }                                  }
         fprintf(ficresilk," %10.6f\n", -llt);                                  fprintf(ficresilk," %10.6f\n", -llt);
       }        }
     } /* end of wave */      } /* end of wave */
   } /* end of individual */    } /* end of individual */
Line 2640  void likelione(FILE *ficres,double p[], Line 3344  void likelione(FILE *ficres,double p[],
       printf("Problem with resultfile: %s\n", fileresilk);        printf("Problem with resultfile: %s\n", fileresilk);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     }      }
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");      fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     fprintf(ficresilk, "#num_i age i s1 s2 mi mw dh likeli weight 2wlli out sav ");      fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     for(k=1; k<=nlstate; k++)       for(k=1; k<=nlstate; k++) 
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
Line 2651  void likelione(FILE *ficres,double p[], Line 3355  void likelione(FILE *ficres,double p[],
   *fretone=(*funcone)(p);    *fretone=(*funcone)(p);
   if(*globpri !=0){    if(*globpri !=0){
     fclose(ficresilk);      fclose(ficresilk);
     fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle >= 1. You should at least run with mle >= 1 and starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));      if (mle ==0)
     fprintf(fichtm,"<br>- The first 3 individuals are drawn with lines. The function drawn is -2Log(L) in log scale: <a href=\"%s.png\">%s.png</a><br> \        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
 <img src=\"%s.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));      else if(mle >=1)
         fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
       fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       
         
       for (k=1; k<= nlstate ; k++) {
         fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
   <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
       }
       fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
   <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
       fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
   <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
     fflush(fichtm);      fflush(fichtm);
   }     }
   return;    return;
 }  }
   
Line 2919  double hessij( double x[], double **hess Line 3635  double hessij( double x[], double **hess
   double p2[MAXPARM+1];    double p2[MAXPARM+1];
   int k, kmax=1;    int k, kmax=1;
   double v1, v2, cv12, lc1, lc2;    double v1, v2, cv12, lc1, lc2;
   
     int firstime=0;
       
   fx=func(x);    fx=func(x);
   for (k=1; k<=kmax; k=k+10) {    for (k=1; k<=kmax; k=k+10) {
Line 2940  double hessij( double x[], double **hess Line 3658  double hessij( double x[], double **hess
     k4=func(p2)-fx;      k4=func(p2)-fx;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */      res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
     if(k1*k2*k3*k4 <0.){      if(k1*k2*k3*k4 <0.){
         firstime=1;
       kmax=kmax+10;        kmax=kmax+10;
       if(kmax >=10){      }
       printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);      if(kmax >=10 || firstime ==1){
       fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);        printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);
         fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       }  
     }      }
 #ifdef DEBUGHESSIJ  #ifdef DEBUGHESSIJ
     v1=hess[thetai][thetai];      v1=hess[thetai][thetai];
Line 3100  void pstamp(FILE *fichier) Line 3819  void pstamp(FILE *fichier)
 }  }
   
 /************ Frequencies ********************/  /************ Frequencies ********************/
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
 {  /* Some frequencies */                                                                           int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[],  \
                                                                              int firstpass,  int lastpass, int stepm, int weightopt, char model[])
   int i, m, jk, j1, bool, z1,j;   {  /* Some frequencies */
   int first;    
   double ***freq; /* Frequencies */           int i, m, jk, j1, bool, z1,j;
   double *pp, **prop;           int iind=0, iage=0;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;           int mi; /* Effective wave */
   char fileresp[FILENAMELENGTH];           int first;
              double ***freq; /* Frequencies */
   pp=vector(1,nlstate);           double *meanq;
   prop=matrix(1,nlstate,iagemin,iagemax+3);           double **meanqt;
   strcpy(fileresp,"P_");           double *pp, **prop, *posprop, *pospropt;
   strcat(fileresp,fileresu);           double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
   if((ficresp=fopen(fileresp,"w"))==NULL) {           char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
     printf("Problem with prevalence resultfile: %s\n", fileresp);           double agebegin, ageend;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      
     exit(0);           pp=vector(1,nlstate);
   }           prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);           posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ 
   j1=0;           pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ 
              /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
   j=cptcoveff;           meanq=vector(1,nqveff);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           meanqt=matrix(1,lastpass,1,nqtveff);
            strcpy(fileresp,"P_");
   first=1;           strcat(fileresp,fileresu);
            /*strcat(fileresphtm,fileresu);*/
            if((ficresp=fopen(fileresp,"w"))==NULL) {
                    printf("Problem with prevalence resultfile: %s\n", fileresp);
                    fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                    exit(0);
            }
   
            strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
            if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
                    printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
                    fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
                    fflush(ficlog);
                    exit(70); 
            }
            else{
                    fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
                                                    fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
            }
            fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition</h4>\n",fileresphtm, fileresphtm);
       
            strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
            if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
                    printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
                    fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
                    fflush(ficlog);
                    exit(70); 
            }
            else{
                    fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
                                                    fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
            }
            fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions by age at begin of transition </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);
   
            freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE);
            j1=0;
     
            j=ncoveff;
            if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
            first=1;
   
            /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
                           reference=low_education V1=0,V2=0
                           med_educ                V1=1 V2=0, 
                           high_educ               V1=0 V2=1
                           Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff 
            */
   
   /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */           for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination excluding varying and quantitatives */
   /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */                   posproptt=0.;
   /*    j1++; */                   /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){                           scanf("%d", i);*/
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);                   for (i=-5; i<=nlstate+ndeath; i++)  
         scanf("%d", i);*/                           for (jk=-5; jk<=nlstate+ndeath; jk++)  
       for (i=-5; i<=nlstate+ndeath; i++)                                     for(m=iagemin; m <= iagemax+3; m++)
         for (jk=-5; jk<=nlstate+ndeath; jk++)                                             freq[i][jk][m]=0;
           for(m=iagemin; m <= iagemax+3; m++)        
             freq[i][jk][m]=0;                   for (i=1; i<=nlstate; i++)  {
                                  for(m=iagemin; m <= iagemax+3; m++)
       for (i=1; i<=nlstate; i++)                                     prop[i][m]=0;
         for(m=iagemin; m <= iagemax+3; m++)                           posprop[i]=0;
           prop[i][m]=0;                           pospropt[i]=0;
                          }
       dateintsum=0;                   for (z1=1; z1<= nqveff; z1++) {  
       k2cpt=0;                           meanq[z1]+=0.;
       for (i=1; i<=imx; i++) {                           for(m=1;m<=lastpass;m++){
         bool=1;                                   meanqt[m][z1]=0.;
         if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */                           }
           for (z1=1; z1<=cptcoveff; z1++)                          }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){        
                 /* Tests if the value of each of the covariates of i is equal to filter j1 */                   dateintsum=0;
               bool=0;                   k2cpt=0;
               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n",        /* For that comination of covariate j1, we count and print the frequencies */
                    for (iind=1; iind<=imx; iind++) { /* For each individual iind */
                            bool=1;
                            if (nqveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                                    for (z1=1; z1<= nqveff; z1++) {  
                                            meanq[z1]+=coqvar[Tvar[z1]][iind];
                                    }
                                    for (z1=1; z1<=ncoveff; z1++) {  
                                            /* if(Tvaraff[z1] ==-20){ */
                                            /*      /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
                                            /* }else  if(Tvaraff[z1] ==-10){ */
                                            /*      /\* sumnew+=coqvar[z1][iind]; *\/ */
                                            /* }else  */
                                            if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
                                                    /* Tests if this individual i responded to j1 (V4=1 V3=0) */
                                                    bool=0;
                                                    /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
                 j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/                  j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/                                                   /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
             }                                            } 
         }                                   } /* end z1 */
                             } /* cptcovn > 0 */
         if (bool==1){  
           for(m=firstpass; m<=lastpass; m++){                           if (bool==1){ /* We selected an individual iin satisfying combination j1 */
             k2=anint[m][i]+(mint[m][i]/12.);                                   /* for(m=firstpass; m<=lastpass; m++){ */
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/                                   for(mi=1; mi<wav[iind];mi++){
               if(agev[m][i]==0) agev[m][i]=iagemax+1;                                           m=mw[mi][iind];
               if(agev[m][i]==1) agev[m][i]=iagemax+2;                                           /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];                                                          and mw[mi+1][iind]. dh depends on stepm. */
               if (m<lastpass) {                                           agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];                                           ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];                                           if(m >=firstpass && m <=lastpass){
               }                                                   k2=anint[m][iind]+(mint[m][iind]/12.);
                                                                  /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {                                                   if(agev[m][iind]==0) agev[m][iind]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
                 dateintsum=dateintsum+k2;                                                   if(agev[m][iind]==1) agev[m][iind]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
                 k2cpt++;                                                   if (s[m][iind]>0 && s[m][iind]<=nlstate)  /* If status at wave m is known and a live state */
               }                                                           prop[s[m][iind]][(int)agev[m][iind]] += weight[iind];  /* At age of beginning of transition, where status is known */
               /*}*/                                                   if (m<lastpass) {
           }                                                           /* if(s[m][iind]==4 && s[m+1][iind]==4) */
         }                                                           /*   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */
       } /* end i */                                                           if(s[m][iind]==-1)
                                                                           printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/                                                           freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
       pstamp(ficresp);                                                           /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */
       if  (cptcovn>0) {                                                           freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
         fprintf(ficresp, "\n#********** Variable ");                                                    }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);                                           }  
         fprintf(ficresp, "**********\n#");                                           if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) {
         fprintf(ficlog, "\n#********** Variable ");                                                    dateintsum=dateintsum+k2;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);                                                   k2cpt++;
         fprintf(ficlog, "**********\n#");                                                   /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
       }                                           }
       for(i=1; i<=nlstate;i++)                                            /*}*/
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);                                   } /* end m */
       fprintf(ficresp, "\n");                           } /* end bool */
                          } /* end iind = 1 to imx */
       for(i=iagemin; i <= iagemax+3; i++){         /* prop[s][age] is feeded for any initial and valid live state as well as
         if(i==iagemax+3){                                          freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
           fprintf(ficlog,"Total");  
         }else{  
           if(first==1){                   /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             first=0;                   pstamp(ficresp);
             printf("See log file for details...\n");                   if  (ncoveff>0) {
           }                           fprintf(ficresp, "\n#********** Variable "); 
           fprintf(ficlog,"Age %d", i);                           fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
         }                           fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
         for(jk=1; jk <=nlstate ; jk++){                           for (z1=1; z1<=ncoveff; z1++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)                                   fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             pp[jk] += freq[jk][m][i];                                    fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         }                                   fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         for(jk=1; jk <=nlstate ; jk++){                           }
           for(m=-1, pos=0; m <=0 ; m++)                           fprintf(ficresp, "**********\n#");
             pos += freq[jk][m][i];                           fprintf(ficresphtm, "**********</h3>\n");
           if(pp[jk]>=1.e-10){                           fprintf(ficresphtmfr, "**********</h3>\n");
             if(first==1){                           fprintf(ficlog, "\n#********** Variable "); 
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);                           for (z1=1; z1<=ncoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             }                           fprintf(ficlog, "**********\n");
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);                   }
           }else{                   fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
             if(first==1)                   for(i=1; i<=nlstate;i++) {
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                           fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
           }                   }
         }                   fprintf(ficresp, "\n");
                    fprintf(ficresphtm, "\n");
         for(jk=1; jk <=nlstate ; jk++){        
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)                   /* Header of frequency table by age */
             pp[jk] += freq[jk][m][i];                   fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
         }                          fprintf(ficresphtmfr,"<th>Age</th> ");
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){                   for(jk=-1; jk <=nlstate+ndeath; jk++){
           pos += pp[jk];                           for(m=-1; m <=nlstate+ndeath; m++){
           posprop += prop[jk][i];                                   if(jk!=0 && m!=0)
         }                                           fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m);
         for(jk=1; jk <=nlstate ; jk++){                           }
           if(pos>=1.e-5){                   }
             if(first==1)                   fprintf(ficresphtmfr, "\n");
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);                   /* For each age */
           }else{                   for(iage=iagemin; iage <= iagemax+3; iage++){
             if(first==1)                           fprintf(ficresphtm,"<tr>");
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                           if(iage==iagemax+1){
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                                   fprintf(ficlog,"1");
           }                                   fprintf(ficresphtmfr,"<tr><th>0</th> ");
           if( i <= iagemax){                           }else if(iage==iagemax+2){
             if(pos>=1.e-5){                                   fprintf(ficlog,"0");
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);                                   fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
               /*probs[i][jk][j1]= pp[jk]/pos;*/                           }else if(iage==iagemax+3){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/                                   fprintf(ficlog,"Total");
             }                                   fprintf(ficresphtmfr,"<tr><th>Total</th> ");
             else                           }else{
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);                                   if(first==1){
           }                                           first=0;
         }                                           printf("See log file for details...\n");
                                            }
         for(jk=-1; jk <=nlstate+ndeath; jk++)                                   fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage);
           for(m=-1; m <=nlstate+ndeath; m++)                                   fprintf(ficlog,"Age %d", iage);
             if(freq[jk][m][i] !=0 ) {                           }
             if(first==1)                           for(jk=1; jk <=nlstate ; jk++){
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);                                   for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);                                           pp[jk] += freq[jk][m][iage]; 
             }                           }
         if(i <= iagemax)                           for(jk=1; jk <=nlstate ; jk++){
           fprintf(ficresp,"\n");                                   for(m=-1, pos=0; m <=0 ; m++)
         if(first==1)                                           pos += freq[jk][m][iage];
           printf("Others in log...\n");                                   if(pp[jk]>=1.e-10){
         fprintf(ficlog,"\n");                                           if(first==1){
       }                                                   printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       /*}*/                                           }
   }                                           fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   dateintmean=dateintsum/k2cpt;                                    }else{
                                             if(first==1)
   fclose(ficresp);                                                   printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);                                           fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   free_vector(pp,1,nlstate);                                   }
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);                           }
   /* End of Freq */  
 }                           for(jk=1; jk <=nlstate ; jk++){ 
                                    /* posprop[jk]=0; */
                                    for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
                                            pp[jk] += freq[jk][m][iage];
                            }      /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */
   
                            for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){
                                    pos += pp[jk]; /* pos is the total number of transitions until this age */
                                    posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state
                                                                                                                                                                            from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
                                    pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state
                                                                                                                                                                            from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
                            }
                            for(jk=1; jk <=nlstate ; jk++){
                                    if(pos>=1.e-5){
                                            if(first==1)
                                                    printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                                            fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                                    }else{
                                            if(first==1)
                                                    printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                                            fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                                    }
                                    if( iage <= iagemax){
                                            if(pos>=1.e-5){
                                                    fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
                                                    fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
                                                    /*probs[iage][jk][j1]= pp[jk]/pos;*/
                                                    /*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/
                                            }
                                            else{
                                                    fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta);
                                                    fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[jk][iage],pospropta);
                                            }
                                    }
                                    pospropt[jk] +=posprop[jk];
                            } /* end loop jk */
                            /* pospropt=0.; */
                            for(jk=-1; jk <=nlstate+ndeath; jk++){
                                    for(m=-1; m <=nlstate+ndeath; m++){
                                            if(freq[jk][m][iage] !=0 ) { /* minimizing output */
                                                    if(first==1){
                                                            printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]);
                                                    }
                                                    fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]);
                                            }
                                            if(jk!=0 && m!=0)
                                                    fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][iage]);
                                    }
                            } /* end loop jk */
                            posproptt=0.; 
                            for(jk=1; jk <=nlstate; jk++){
                                    posproptt += pospropt[jk];
                            }
                            fprintf(ficresphtmfr,"</tr>\n ");
                            if(iage <= iagemax){
                                    fprintf(ficresp,"\n");
                                    fprintf(ficresphtm,"</tr>\n");
                            }
                            if(first==1)
                                    printf("Others in log...\n");
                            fprintf(ficlog,"\n");
                    } /* end loop age iage */
                    fprintf(ficresphtm,"<tr><th>Tot</th>");
                    for(jk=1; jk <=nlstate ; jk++){
                            if(posproptt < 1.e-5){
                                    fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[jk],posproptt);  
                            }else{
                                    fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[jk]/posproptt,pospropt[jk],posproptt);   
                            }
                    }
                    fprintf(ficresphtm,"</tr>\n");
                    fprintf(ficresphtm,"</table>\n");
                    fprintf(ficresphtmfr,"</table>\n");
                    if(posproptt < 1.e-5){
                            fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
                            fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
                            fprintf(ficres,"\n  This combination (%d) is not valid and no result will be produced\n\n",j1);
                            invalidvarcomb[j1]=1;
                    }else{
                            fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1);
                            invalidvarcomb[j1]=0;
                    }
                    fprintf(ficresphtmfr,"</table>\n");
            } /* end selected combination of covariate j1 */
            dateintmean=dateintsum/k2cpt; 
                    
            fclose(ficresp);
            fclose(ficresphtm);
            fclose(ficresphtmfr);
            free_vector(meanq,1,nqveff);
            free_matrix(meanqt,1,lastpass,1,nqtveff);
            free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE);
            free_vector(pospropt,1,nlstate);
            free_vector(posprop,1,nlstate);
            free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE);
            free_vector(pp,1,nlstate);
            /* End of freqsummary */
    }
   
 /************ Prevalence ********************/  /************ Prevalence ********************/
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 {     {  
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
      in each health status at the date of interview (if between dateprev1 and dateprev2).        in each health status at the date of interview (if between dateprev1 and dateprev2).
      We still use firstpass and lastpass as another selection.        We still use firstpass and lastpass as another selection.
   */     */
     
   int i, m, jk, j1, bool, z1,j;     int i, m, jk, j1, bool, z1,j;
      int mi; /* Effective wave */
   double **prop;     int iage;
   double posprop;      double agebegin, ageend;
   double  y2; /* in fractional years */  
   int iagemin, iagemax;     double **prop;
   int first; /** to stop verbosity which is redirected to log file */     double posprop; 
      double  y2; /* in fractional years */
   iagemin= (int) agemin;     int iagemin, iagemax;
   iagemax= (int) agemax;     int first; /** to stop verbosity which is redirected to log file */
   /*pp=vector(1,nlstate);*/  
   prop=matrix(1,nlstate,iagemin,iagemax+3);      iagemin= (int) agemin;
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/     iagemax= (int) agemax;
   j1=0;     /*pp=vector(1,nlstate);*/
        prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
   /*j=cptcoveff;*/     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}     j1=0;
       
   first=1;     /*j=cptcoveff;*/
   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     /*for(i1=1; i1<=ncodemax[k1];i1++){    
       j1++;*/     first=1;
            for(j1=1; j1<= (int) pow(2,nqveff);j1++){ /* For each combination of covariate */
       for (i=1; i<=nlstate; i++)         for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)         for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++)
           prop[i][m]=0.0;           prop[i][iage]=0.0;
            
       for (i=1; i<=imx; i++) { /* Each individual */       for (i=1; i<=imx; i++) { /* Each individual */
         bool=1;         bool=1;
         if  (cptcovn>0) {         if  (cptcovn>0) {  /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
           for (z1=1; z1<=cptcoveff; z1++)            for (z1=1; z1<=nqveff; z1++) /* For each covariate, look at the value for individual i and checks if it is equal to the corresponding value of this covariate according to current combination j1*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)])              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
               bool=0;               bool=0;
         }          } 
         if (bool==1) {          if (bool==1) { /* For this combination of covariates values, this individual fits */
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/           /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */           for(mi=1; mi<wav[i];mi++){
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */             m=mw[mi][i];
               if(agev[m][i]==0) agev[m][i]=iagemax+1;             agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
               if(agev[m][i]==1) agev[m][i]=iagemax+2;             /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);              if(m >=firstpass && m <=lastpass){
               if (s[m][i]>0 && s[m][i]<=nlstate) {                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 prop[s[m][i]][iagemax+3] += weight[i];                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
               }                  if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+3+AGEMARGE){
             }                   printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); 
           } /* end selection of waves */                   exit(1);
         }                 }
       }                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
       for(i=iagemin; i <= iagemax+3; i++){                     /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {                    prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
           posprop += prop[jk][i];                    prop[s[m][i]][iagemax+3] += weight[i]; 
         }                  } /* end valid statuses */ 
                        } /* end selection of dates */
         for(jk=1; jk <=nlstate ; jk++){                  } /* end selection of waves */
           if( i <=  iagemax){            } /* end effective waves */
             if(posprop>=1.e-5){          } /* end bool */
               probs[i][jk][j1]= prop[jk][i]/posprop;       }
             } else{       for(i=iagemin; i <= iagemax+3; i++){  
               if(first==1){         for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                 first=0;           posprop += prop[jk][i]; 
                 printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);         } 
               }        
             }         for(jk=1; jk <=nlstate ; jk++){      
           }            if( i <=  iagemax){ 
         }/* end jk */              if(posprop>=1.e-5){ 
       }/* end i */                probs[i][jk][j1]= prop[jk][i]/posprop;
     /*} *//* end i1 */             } else{
   } /* end j1 */               if(first==1){
                    first=0;
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/                 printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   /*free_vector(pp,1,nlstate);*/               }
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);             }
 }  /* End of prevalence */           } 
          }/* end jk */ 
        }/* end i */ 
        /*} *//* end i1 */
      } /* end j1 */
     
      /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      /*free_vector(pp,1,nlstate);*/
      free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE);
    }  /* End of prevalence */
   
 /************* Waves Concatenation ***************/  /************* Waves Concatenation ***************/
   
Line 3370  void  concatwav(int wav[], int **dh, int Line 4263  void  concatwav(int wav[], int **dh, int
      and mw[mi+1][i]. dh depends on stepm.       and mw[mi+1][i]. dh depends on stepm.
      */       */
   
   int i, mi, m;    int i=0, mi=0, m=0, mli=0;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
      double sum=0., jmean=0.;*/       double sum=0., jmean=0.;*/
   int first;    int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0;
   int j, k=0,jk, ju, jl;    int j, k=0,jk, ju, jl;
   double sum=0.;    double sum=0.;
   first=0;    first=0;
     firstwo=0;
     firsthree=0;
     firstfour=0;
   jmin=100000;    jmin=100000;
   jmax=-1;    jmax=-1;
   jmean=0.;    jmean=0.;
   for(i=1; i<=imx; i++){  
     mi=0;  /* Treating live states */
     for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
       mi=0;  /* First valid wave */
                   mli=0; /* Last valid wave */
     m=firstpass;      m=firstpass;
     while(s[m][i] <= nlstate){      while(s[m][i] <= nlstate){  /* a live state */
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)                          if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
         mw[++mi][i]=m;                                  mli=m-1;/* mw[++mi][i]=m-1; */
       if(m >=lastpass)                          }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
         break;                                  mw[++mi][i]=m;
       else                                  mli=m;
         m++;        } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */
         if(m < lastpass){ /* m < lastpass, standard case */
                                   m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
         }
                           else{ /* m >= lastpass, eventual special issue with warning */
   #ifdef UNKNOWNSTATUSNOTCONTRIBUTING
                                   break;
   #else
                                   if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){
                                           if(firsthree == 0){
                                                   printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
                                                   firsthree=1;
                                           }
                                           fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
                                           mw[++mi][i]=m;
                                           mli=m;
                                   }
                                   if(s[m][i]==-2){ /* Vital status is really unknown */
                                           nbwarn++;
                                           if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified? */
                                                   printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
                                                   fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
                                           }
                                           break;
                                   }
                                   break;
   #endif
                           }/* End m >= lastpass */
     }/* end while */      }/* end while */
     if (s[m][i] > nlstate){  
           /* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */
       /* After last pass */
   /* Treating death states */
       if (s[m][i] > nlstate){  /* In a death state */
                           /* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */
                           /* } */
       mi++;     /* Death is another wave */        mi++;     /* Death is another wave */
       /* if(mi==0)  never been interviewed correctly before death */        /* if(mi==0)  never been interviewed correctly before death */
          /* Only death is a correct wave */                          /* Only death is a correct wave */
       mw[mi][i]=m;        mw[mi][i]=m;
     }      }
   #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
     wav[i]=mi;                  else if ((int) andc[i] != 9999) { /* Status is negative. A death occured after lastpass, we can't take it into account because of potential bias */
         /* m++; */
         /* mi++; */
         /* s[m][i]=nlstate+1;  /\* We are setting the status to the last of non live state *\/ */
         /* mw[mi][i]=m; */
         if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
                                   if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */
                                           nbwarn++;
                                           if(firstfiv==0){
                                                   printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
                                                   firstfiv=1;
                                           }else{
                                                   fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
                                           }
                                   }else{ /* Death occured afer last wave potential bias */
                                           nberr++;
                                           if(firstwo==0){
                                                   printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
                                                   firstwo=1;
                                           }
                                           fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
                                   }
         }else{ /* end date of interview is known */
                                   /* death is known but not confirmed by death status at any wave */
                                   if(firstfour==0){
                                           printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
                                           firstfour=1;
                                   }
                                   fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
         }
       } /* end if date of death is known */
   #endif
       wav[i]=mi; /* mi should be the last effective wave (or mli) */
       /* wav[i]=mw[mi][i]; */
     if(mi==0){      if(mi==0){
       nbwarn++;        nbwarn++;
       if(first==0){        if(first==0){
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);                                  printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         first=1;                                  first=1;
       }        }
       if(first==1){        if(first==1){
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);                                  fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       }        }
     } /* end mi==0 */      } /* end mi==0 */
   } /* End individuals */    } /* End individuals */
     /* wav and mw are no more changed */
           
     
   for(i=1; i<=imx; i++){    for(i=1; i<=imx; i++){
     for(mi=1; mi<wav[i];mi++){      for(mi=1; mi<wav[i];mi++){
       if (stepm <=0)        if (stepm <=0)
         dh[mi][i]=1;                                  dh[mi][i]=1;
       else{        else{
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */                                  if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           if (agedc[i] < 2*AGESUP) {                                          if (agedc[i] < 2*AGESUP) {
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                                                   j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             if(j==0) j=1;  /* Survives at least one month after exam */                                                  if(j==0) j=1;  /* Survives at least one month after exam */
             else if(j<0){                                                  else if(j<0){
               nberr++;                                                          nberr++;
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                                                          printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               j=1; /* Temporary Dangerous patch */                                                          j=1; /* Temporary Dangerous patch */
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);                                                          printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                                                          fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);                                                          fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             }                                                  }
             k=k+1;                                                  k=k+1;
             if (j >= jmax){                                                  if (j >= jmax){
               jmax=j;                                                          jmax=j;
               ijmax=i;                                                          ijmax=i;
             }                                                  }
             if (j <= jmin){                                                  if (j <= jmin){
               jmin=j;                                                          jmin=j;
               ijmin=i;                                                          ijmin=i;
             }                                                  }
             sum=sum+j;                                                  sum=sum+j;
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/                                                  /*if (j<0) printf("j=%d num=%d \n",j,i);*/
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/                                                  /*        printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           }                                          }
         }                                  }
         else{                                  else{
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));                                          j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
                                           
           k=k+1;                                          k=k+1;
           if (j >= jmax) {                                          if (j >= jmax) {
             jmax=j;                                                  jmax=j;
             ijmax=i;                                                  ijmax=i;
           }                                          }
           else if (j <= jmin){                                          else if (j <= jmin){
             jmin=j;                                                  jmin=j;
             ijmin=i;                                                  ijmin=i;
           }                                          }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                                          /*          if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/                                          /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           if(j<0){                                          if(j<0){
             nberr++;                                                  nberr++;
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                                                  printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                                                  fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                                          }
           sum=sum+j;                                          sum=sum+j;
         }                                  }
         jk= j/stepm;                                  jk= j/stepm;
         jl= j -jk*stepm;                                  jl= j -jk*stepm;
         ju= j -(jk+1)*stepm;                                  ju= j -(jk+1)*stepm;
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */                                  if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           if(jl==0){                                          if(jl==0){
             dh[mi][i]=jk;                                                  dh[mi][i]=jk;
             bh[mi][i]=0;                                                  bh[mi][i]=0;
           }else{ /* We want a negative bias in order to only have interpolation ie                                          }else{ /* We want a negative bias in order to only have interpolation ie
                   * to avoid the price of an extra matrix product in likelihood */                                                                          * to avoid the price of an extra matrix product in likelihood */
             dh[mi][i]=jk+1;                                                  dh[mi][i]=jk+1;
             bh[mi][i]=ju;                                                  bh[mi][i]=ju;
           }                                          }
         }else{                                  }else{
           if(jl <= -ju){                                          if(jl <= -ju){
             dh[mi][i]=jk;                                                  dh[mi][i]=jk;
             bh[mi][i]=jl;       /* bias is positive if real duration                                                  bh[mi][i]=jl;   /* bias is positive if real duration
                                  * is higher than the multiple of stepm and negative otherwise.                                                                                                           * is higher than the multiple of stepm and negative otherwise.
                                  */                                                                                                           */
           }                                          }
           else{                                          else{
             dh[mi][i]=jk+1;                                                  dh[mi][i]=jk+1;
             bh[mi][i]=ju;                                                  bh[mi][i]=ju;
           }                                          }
           if(dh[mi][i]==0){                                          if(dh[mi][i]==0){
             dh[mi][i]=1; /* At least one step */                                                  dh[mi][i]=1; /* At least one step */
             bh[mi][i]=ju; /* At least one step */                                                  bh[mi][i]=ju; /* At least one step */
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/                                                  /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           }                                          }
         } /* end if mle */                                  } /* end if mle */
       }        }
     } /* end wave */      } /* end wave */
   }    }
Line 3502  void  concatwav(int wav[], int **dh, int Line 4469  void  concatwav(int wav[], int **dh, int
  }   }
   
 /*********** Tricode ****************************/  /*********** Tricode ****************************/
 void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)   void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum)
 {  {
   /**< Uses cptcovn+2*cptcovprod as the number of covariates */    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1     /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
    * Boring subroutine which should only output nbcode[Tvar[j]][k]     * Boring subroutine which should only output nbcode[Tvar[j]][k]
    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)     * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable
    * nbcode[Tvar[j]][1]=      * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually);
   */    */
   
   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
Line 3517  void tricode(int *Tvar, int **nbcode, in Line 4484  void tricode(int *Tvar, int **nbcode, in
   int modmincovj=0; /* Modality min of covariates j */    int modmincovj=0; /* Modality min of covariates j */
   
   
   cptcoveff=0;     /* cptcoveff=0;  */
           /* *cptcov=0; */
     
   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
   /* Loop on covariates without age and products */    /* Loop on covariates without age and products and no quantitative variable */
   for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */    /* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */
     for (j=1; j<=(*cptcov); j++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */
     for (k=-1; k < maxncov; k++) Ndum[k]=0;      for (k=-1; k < maxncov; k++) Ndum[k]=0;
     for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the       for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
                                modality of this covariate Vj*/                                                                                                                                   modality of this covariate Vj*/
       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i                          if(Tvar[j]  >=1 && Tvar[j]  <= *cptcov){ /* A real fixed covariate */
                                     * If product of Vn*Vm, still boolean *:                                  ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                     * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables                                                                                                                                                          * If product of Vn*Vm, still boolean *:
                                     * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */                                                                                                                                                          * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the                                                                                                                                                          * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
                                       modality of the nth covariate of individual i. */                                  /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
       if (ij > modmaxcovj)                                           modality of the nth covariate of individual i. */
         modmaxcovj=ij;                                   if (ij > modmaxcovj)
       else if (ij < modmincovj)                                           modmaxcovj=ij; 
         modmincovj=ij;                                   else if (ij < modmincovj) 
       if ((ij < -1) && (ij > NCOVMAX)){                                          modmincovj=ij; 
         printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );                                  if ((ij < -1) && (ij > NCOVMAX)){
         exit(1);                                          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
       }else                                          exit(1);
       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/                                  }else
                                           Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       /* getting the maximum value of the modality of the covariate        /* getting the maximum value of the modality of the covariate
          (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and                                   (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
          female is 1, then modmaxcovj=1.*/                                   female ies 1, then modmaxcovj=1.*/
     } /* end for loop on individuals i */                          }
                   } /* end for loop on individuals i */
     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);      fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     cptcode=modmaxcovj;      cptcode=modmaxcovj;
     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
    /*for (i=0; i<=cptcode; i++) {*/                  /*for (i=0; i<=cptcode; i++) {*/
     for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
       printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
       fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);        fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
       if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */        if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
         if( k != -1){                                  if( k != -1){
           ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th                                          ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
                              covariate for which somebody answered excluding                                                                                                                    covariate for which somebody answered excluding 
                              undefined. Usually 2: 0 and 1. */                                                                                                                   undefined. Usually 2: 0 and 1. */
         }                                  }
         ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th                                  ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
                              covariate for which somebody answered including                                                                                                                                   covariate for which somebody answered including 
                              undefined. Usually 3: -1, 0 and 1. */                                                                                                                                  undefined. Usually 3: -1, 0 and 1. */
       }        }
       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
          historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */                           * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
     } /* Ndum[-1] number of undefined modalities */      } /* Ndum[-1] number of undefined modalities */
                   
     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7.       /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
        If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
Line 3585  void tricode(int *Tvar, int **nbcode, in Line 4556  void tricode(int *Tvar, int **nbcode, in
     ij=0; /* ij is similar to i but can jump over null modalities */      ij=0; /* ij is similar to i but can jump over null modalities */
     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
         if (Ndum[i] == 0) { /* If nobody responded to this modality k */          if (Ndum[i] == 0) { /* If nobody responded to this modality k */
           break;                                  break;
         }                          }
         ij++;                          ij++;
         nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/                          nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
         cptcode = ij; /* New max modality for covar j */                          cptcode = ij; /* New max modality for covar j */
     } /* end of loop on modality i=-1 to 1 or more */      } /* end of loop on modality i=-1 to 1 or more */
                         
     /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
     /*  /\*recode from 0 *\/ */      /*  /\*recode from 0 *\/ */
     /*                               k is a modality. If we have model=V1+V1*sex  */      /*                               k is a modality. If we have model=V1+V1*sex  */
Line 3607  void tricode(int *Tvar, int **nbcode, in Line 4578  void tricode(int *Tvar, int **nbcode, in
     /*   }  /\* end of loop on modality k *\/ */      /*   }  /\* end of loop on modality k *\/ */
   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/      } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       
  for (k=-1; k< maxncov; k++) Ndum[k]=0;           for (k=-1; k< maxncov; k++) Ndum[k]=0; 
       
   for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */     for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/                   /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */                   ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
    Ndum[ij]++; /* Might be supersed V1 + V1*age */                  Ndum[ij]++; /* Might be supersed V1 + V1*age */
  }           } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */
           
  ij=0;          ij=0;
  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */          for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/                  /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
    if((Ndum[i]!=0) && (i<=ncovcol)){                  if((Ndum[i]!=0) && (i<=ncovcol)){
      ij++;                          /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/                          Tvaraff[++ij]=i; /*For printing (unclear) */
      Tvaraff[ij]=i; /*For printing (unclear) */                  }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){
    }else{                          Tvaraff[++ij]=-10; /* Dont'n know how to treat quantitative variables yet */
        /* Tvaraff[ij]=0; */                  }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){
    }                          Tvaraff[++ij]=i; /*For printing (unclear) */
  }                  }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){
  /* ij--; */                   Tvaraff[++ij]=-20; /* Dont'n know how to treat quantitative variables yet */
  cptcoveff=ij; /*Number of total covariates*/                  }
           } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
           /* ij--; */
           /* cptcoveff=ij; /\*Number of total covariates*\/ */
           *cptcov=ij; /*Number of total real effective covariates: effective
                                                            * because they can be excluded from the model and real
                                                            * if in the model but excluded because missing values*/
 }  }
   
   
Line 3746  void cvevsij(double ***eij, double x[], Line 4722  void cvevsij(double ***eij, double x[],
   
 {  {
   /* Covariances of health expectancies eij and of total life expectancies according    /* Covariances of health expectancies eij and of total life expectancies according
    to initial status i, ei. .       to initial status i, ei. .
   */    */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   int nhstepma, nstepma; /* Decreasing with age */    int nhstepma, nstepma; /* Decreasing with age */
Line 3840  void cvevsij(double ***eij, double x[], Line 4816  void cvevsij(double ***eij, double x[],
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/      /* if (stepm >= YEARM) hstepm=1;*/
     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   
     /* If stepm=6 months */      /* If stepm=6 months */
     /* Computed by stepm unit matrices, product of hstepma matrices, stored      /* Computed by stepm unit matrices, product of hstepma matrices, stored
        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   
     /* Computing  Variances of health expectancies */      /* Computing  Variances of health expectancies */
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
        decrease memory allocation */         decrease memory allocation */
Line 3857  void cvevsij(double ***eij, double x[], Line 4833  void cvevsij(double ***eij, double x[],
       }        }
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);          hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);          hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
                             
       for(j=1; j<= nlstate; j++){        for(j=1; j<= nlstate; j++){
         for(i=1; i<=nlstate; i++){          for(i=1; i<=nlstate; i++){
           for(h=0; h<=nhstepm-1; h++){            for(h=0; h<=nhstepm-1; h++){
Line 3866  void cvevsij(double ***eij, double x[], Line 4842  void cvevsij(double ***eij, double x[],
           }            }
         }          }
       }        }
                                
       for(ij=1; ij<= nlstate*nlstate; ij++)        for(ij=1; ij<= nlstate*nlstate; ij++)
         for(h=0; h<=nhstepm-1; h++){          for(h=0; h<=nhstepm-1; h++){
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
Line 3879  void cvevsij(double ***eij, double x[], Line 4855  void cvevsij(double ***eij, double x[],
         for(theta=1; theta <=npar; theta++)          for(theta=1; theta <=npar; theta++)
           trgradg[h][j][theta]=gradg[h][theta][j];            trgradg[h][j][theta]=gradg[h][theta][j];
           
                   
      for(ij=1;ij<=nlstate*nlstate;ij++)      for(ij=1;ij<=nlstate*nlstate;ij++)
       for(ji=1;ji<=nlstate*nlstate;ji++)        for(ji=1;ji<=nlstate*nlstate;ji++)
         varhe[ij][ji][(int)age] =0.;          varhe[ij][ji][(int)age] =0.;
                   
      printf("%d|",(int)age);fflush(stdout);      printf("%d|",(int)age);fflush(stdout);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      for(h=0;h<=nhstepm-1;h++){      for(h=0;h<=nhstepm-1;h++){
       for(k=0;k<=nhstepm-1;k++){        for(k=0;k<=nhstepm-1;k++){
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
Line 3895  void cvevsij(double ***eij, double x[], Line 4871  void cvevsij(double ***eij, double x[],
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       }        }
     }      }
                   
     /* Computing expectancies */      /* Computing expectancies */
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);        hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)        for(j=1; j<=nlstate;j++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                                                     
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                                           
         }          }
                   
     fprintf(ficresstdeij,"%3.0f",age );      fprintf(ficresstdeij,"%3.0f",age );
     for(i=1; i<=nlstate;i++){      for(i=1; i<=nlstate;i++){
       eip=0.;        eip=0.;
Line 3920  void cvevsij(double ***eij, double x[], Line 4896  void cvevsij(double ***eij, double x[],
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     }      }
     fprintf(ficresstdeij,"\n");      fprintf(ficresstdeij,"\n");
                   
     fprintf(ficrescveij,"%3.0f",age );      fprintf(ficrescveij,"%3.0f",age );
     for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){        for(j=1; j<=nlstate;j++){
Line 3933  void cvevsij(double ***eij, double x[], Line 4909  void cvevsij(double ***eij, double x[],
           }            }
       }        }
     fprintf(ficrescveij,"\n");      fprintf(ficrescveij,"\n");
                      
   }    }
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
Line 3943  void cvevsij(double ***eij, double x[], Line 4919  void cvevsij(double ***eij, double x[],
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("\n");    printf("\n");
   fprintf(ficlog,"\n");    fprintf(ficlog,"\n");
           
   free_vector(xm,1,npar);    free_vector(xm,1,npar);
   free_vector(xp,1,npar);    free_vector(xp,1,npar);
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 }  }
   
 /************ Variance ******************/  
  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyear, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])  
 {  
   /* Variance of health expectancies */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   /* double **newm;*/  
   /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/  
     
   int movingaverage();  
   double **dnewm,**doldm;  
   double **dnewmp,**doldmp;  
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k;  
   double *xp;  
   double **gp, **gm;  /* for var eij */  
   double ***gradg, ***trgradg; /*for var eij */  
   double **gradgp, **trgradgp; /* for var p point j */  
   double *gpp, *gmp; /* for var p point j */  
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  
   double ***p3mat;  
   double age,agelim, hf;  
   double ***mobaverage;  
   int theta;  
   char digit[4];  
   char digitp[25];  
   
   char fileresprobmorprev[FILENAMELENGTH];  
   
   if(popbased==1){  
     if(mobilav!=0)  
       strcpy(digitp,"-POPULBASED-MOBILAV_");  
     else strcpy(digitp,"-POPULBASED-NOMOBIL_");  
   }  
   else   
     strcpy(digitp,"-STABLBASED_");  
   
   if (mobilav!=0) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){  
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }  
   }  
   
   strcpy(fileresprobmorprev,"PRMORPREV-");   
   sprintf(digit,"%-d",ij);  
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/  
   strcat(fileresprobmorprev,digit); /* Tvar to be done */  
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */  
   strcat(fileresprobmorprev,fileresu);  
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobmorprev);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  
   }  
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
     
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  /************ Variance ******************/
   pstamp(ficresprobmorprev);   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);   {
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);     /* Variance of health expectancies */
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     fprintf(ficresprobmorprev," p.%-d SE",j);     /* double **newm;*/
     for(i=1; i<=nlstate;i++)     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    
   }       /* int movingaverage(); */
   fprintf(ficresprobmorprev,"\n");     double **dnewm,**doldm;
   fprintf(ficgp,"\n# Routine varevsij");     double **dnewmp,**doldmp;
   fprintf(ficgp,"\nunset title \n");     int i, j, nhstepm, hstepm, h, nstepm ;
 /* fprintf(fichtm, "#Local time at start: %s", strstart);*/     int k;
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");     double *xp;
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);     double **gp, **gm;  /* for var eij */
 /*   } */     double ***gradg, ***trgradg; /*for var eij */
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     double **gradgp, **trgradgp; /* for var p point j */
   pstamp(ficresvij);     double *gpp, *gmp; /* for var p point j */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   if(popbased==1)     double ***p3mat;
     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);     double age,agelim, hf;
   else     /* double ***mobaverage; */
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");     int theta;
   fprintf(ficresvij,"# Age");     char digit[4];
   for(i=1; i<=nlstate;i++)     char digitp[25];
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);     char fileresprobmorprev[FILENAMELENGTH];
   fprintf(ficresvij,"\n");  
      if(popbased==1){
   xp=vector(1,npar);       if(mobilav!=0)
   dnewm=matrix(1,nlstate,1,npar);         strcpy(digitp,"-POPULBASED-MOBILAV_");
   doldm=matrix(1,nlstate,1,nlstate);       else strcpy(digitp,"-POPULBASED-NOMOBIL_");
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);     }
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     else 
        strcpy(digitp,"-STABLBASED_");
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);  
   gpp=vector(nlstate+1,nlstate+ndeath);  
   gmp=vector(nlstate+1,nlstate+ndeath);  
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
     
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  
   else  hstepm=estepm;     
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.   
      nhstepm is the number of hstepm from age to agelim   
      nstepm is the number of stepm from age to agelin.   
      Look at function hpijx to understand why (it is linked to memory size questions) */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed every two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   
      results. So we changed our mind and took the option of the best precision.  
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */   
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);  
   
   
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);  
   
       if (popbased==1) {  
         if(mobilav ==0){  
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];  
         }else{ /* mobilav */   
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=mobaverage[(int)age][i][ij];  
         }  
       }  
     
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  
       }  
       /* This for computing probability of death (h=1 means  
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.  
       */  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){  
         for(i=1,gpp[j]=0.; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];  
       }      
       /* end probability of death */  
   
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear, ij);  
    
       if (popbased==1) {  
         if(mobilav ==0){  
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];  
         }else{ /* mobilav */   
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=mobaverage[(int)age][i][ij];  
         }  
       }  
   
       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */  
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  
       }  
       /* This for computing probability of death (h=1 means  
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.  
       */  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){  
         for(i=1,gmp[j]=0.; i<= nlstate; i++)  
          gmp[j] += prlim[i][i]*p3mat[i][j][1];  
       }      
       /* end probability of death */  
   
       for(j=1; j<= nlstate; j++) /* vareij */  
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  
   
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  
       }  
   
     } /* End theta */  
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  
   
     for(h=0; h<=nhstepm; h++) /* veij */  
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];  
   
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */  
       for(theta=1; theta <=npar; theta++)  
         trgradgp[j][theta]=gradgp[theta][j];  
     
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;  
   
     for(h=0;h<=nhstepm;h++){     /* if (mobilav!=0) { */
       for(k=0;k<=nhstepm;k++){     /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);     /*   if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);     /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
         for(i=1;i<=nlstate;i++)     /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
           for(j=1;j<=nlstate;j++)     /*   } */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;     /* } */
       }  
     }     strcpy(fileresprobmorprev,"PRMORPREV-"); 
      sprintf(digit,"%-d",ij);
      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      strcat(fileresprobmorprev,digit); /* Tvar to be done */
      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileresu);
      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobmorprev);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      pstamp(ficresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
        for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
      fprintf(ficresprobmorprev,"\n");
     
      fprintf(ficgp,"\n# Routine varevsij");
      fprintf(ficgp,"\nunset title \n");
      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      /*   } */
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
      if(popbased==1)
        fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
      else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
   
      xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       
     /* pptj */     if(estepm < stepm){
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);       printf ("Problem %d lower than %d\n",estepm, stepm);
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);     }
     for(j=nlstate+1;j<=nlstate+ndeath;j++)     else  hstepm=estepm;   
       for(i=nlstate+1;i<=nlstate+ndeath;i++)     /* For example we decided to compute the life expectancy with the smallest unit */
         varppt[j][i]=doldmp[j][i];     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     /* end ppptj */        nhstepm is the number of hstepm from age to agelim 
     /*  x centered again */        nstepm is the number of stepm from age to agelim. 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          Look at function hpijx to understand why because of memory size limitations, 
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyear,ij);        we decided (b) to get a life expectancy respecting the most precise curvature of the
          survival function given by stepm (the optimization length). Unfortunately it
     if (popbased==1) {        means that if the survival funtion is printed every two years of age and if
       if(mobilav ==0){        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         for(i=1; i<=nlstate;i++)        results. So we changed our mind and took the option of the best precision.
           prlim[i][i]=probs[(int)age][i][ij];     */
       }else{ /* mobilav */      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for(i=1; i<=nlstate;i++)     agelim = AGESUP;
           prlim[i][i]=mobaverage[(int)age][i][ij];     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     }       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* This for computing probability of death (h=1 means       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        computed over hstepm (estepm) matrices product = hstepm*stepm months)        gp=matrix(0,nhstepm,1,nlstate);
        as a weighted average of prlim.       gm=matrix(0,nhstepm,1,nlstate);
                   
                   
        for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
                           
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
                           
          if (popbased==1) {
            if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
            }
          }
                           
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */
          for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
          }
          /* Next for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
          */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
          /* end probability of death */
                           
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
                           
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij);
                           
          if (popbased==1) {
            if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
            }
          }
                           
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                           
          for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
            for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
          }
          /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
          */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gmp[j]=0.; i<= nlstate; i++)
              gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
          /* end probability of death */
                           
          for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
                           
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
                           
        } /* End theta */
                   
        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   
        for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
                   
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
          for(theta=1; theta <=npar; theta++)
            trgradgp[j][theta]=gradgp[theta][j];
                   
                   
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
            vareij[i][j][(int)age] =0.;
                   
        for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
            matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            for(i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
        }
                   
        /* pptj */
        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
          for(i=nlstate+1;i<=nlstate+ndeath;i++)
            varppt[j][i]=doldmp[j][i];
        /* end ppptj */
        /*  x centered again */
                   
        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij);
                   
        if (popbased==1) {
          if(mobilav ==0){
            for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
              prlim[i][i]=mobaverage[(int)age][i][ij];
          }
        }
                   
        /* This for computing probability of death (h=1 means
           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
        */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
        /* end probability of death */
                   
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
        } 
        fprintf(ficresprobmorprev,"\n");
                   
        fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
        fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      } /* End age */
      free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
      fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
      fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
      /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
     */      */
     for(j=nlstate+1;j<=nlstate+ndeath;j++){     /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
       for(i=1,gmp[j]=0.;i<= nlstate; i++)      fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];   
     }      
     /* end probability of death */  
   
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);  
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));  
       for(i=1; i<=nlstate;i++){  
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }  
     }   
     fprintf(ficresprobmorprev,"\n");  
   
     fprintf(ficresvij,"%.0f ",age );     free_vector(xp,1,npar);
     for(i=1; i<=nlstate;i++)     free_matrix(doldm,1,nlstate,1,nlstate);
       for(j=1; j<=nlstate;j++){     free_matrix(dnewm,1,nlstate,1,npar);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     fprintf(ficresvij,"\n");     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(gp,0,nhstepm,1,nlstate);     /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
     free_matrix(gm,0,nhstepm,1,nlstate);     fclose(ficresprobmorprev);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);     fflush(ficgp);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);     fflush(fichtm); 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   }  /* end varevsij */
   } /* End age */  
   free_vector(gpp,nlstate+1,nlstate+ndeath);  
   free_vector(gmp,nlstate+1,nlstate+ndeath);  
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
   /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */  
   fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");  
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  
   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");  
   fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);  
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */  
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */  
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */  
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));  
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));  
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);  
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);  
 */  
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */  
   fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);  
   
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,nlstate);  
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficresprobmorprev);  
   fflush(ficgp);  
   fflush(fichtm);   
 }  /* end varevsij */  
   
 /************ Variance of prevlim ******************/  /************ Variance of prevlim ******************/
  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyear, int ij, char strstart[])   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[])
 {  {
   /* Variance of prevalence limit */    /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
   double **dnewm,**doldm;    double **dnewm,**doldm;
Line 4272  void cvevsij(double ***eij, double x[], Line 5252  void cvevsij(double ***eij, double x[],
   double *xp;    double *xp;
   double *gp, *gm;    double *gp, *gm;
   double **gradg, **trgradg;    double **gradg, **trgradg;
     double **mgm, **mgp;
   double age,agelim;    double age,agelim;
   int theta;    int theta;
       
Line 4294  void cvevsij(double ***eij, double x[], Line 5275  void cvevsij(double ***eij, double x[],
     if (stepm >= YEARM) hstepm=1;      if (stepm >= YEARM) hstepm=1;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     gradg=matrix(1,npar,1,nlstate);      gradg=matrix(1,npar,1,nlstate);
       mgp=matrix(1,npar,1,nlstate);
       mgm=matrix(1,npar,1,nlstate);
     gp=vector(1,nlstate);      gp=vector(1,nlstate);
     gm=vector(1,nlstate);      gm=vector(1,nlstate);
   
Line 4301  void cvevsij(double ***eij, double x[], Line 5284  void cvevsij(double ***eij, double x[],
       for(i=1; i<=npar; i++){ /* Computes gradient */        for(i=1; i<=npar; i++){ /* Computes gradient */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);        if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
       for(i=1;i<=nlstate;i++)          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
         gp[i] = prlim[i][i];          gp[i] = prlim[i][i];
               mgp[theta][i] = prlim[i][i];
         }
       for(i=1; i<=npar; i++) /* Computes gradient */        for(i=1; i<=npar; i++) /* Computes gradient */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyear,ij);        if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
       for(i=1;i<=nlstate;i++)          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
         gm[i] = prlim[i][i];          gm[i] = prlim[i][i];
           mgm[theta][i] = prlim[i][i];
         }
       for(i=1;i<=nlstate;i++)        for(i=1;i<=nlstate;i++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
     } /* End theta */      } /* End theta */
   
     trgradg =matrix(1,nlstate,1,npar);      trgradg =matrix(1,nlstate,1,npar);
Line 4320  void cvevsij(double ***eij, double x[], Line 5312  void cvevsij(double ***eij, double x[],
     for(j=1; j<=nlstate;j++)      for(j=1; j<=nlstate;j++)
       for(theta=1; theta <=npar; theta++)        for(theta=1; theta <=npar; theta++)
         trgradg[j][theta]=gradg[theta][j];          trgradg[j][theta]=gradg[theta][j];
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\nmgm mgp %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf(" %d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\n gradg %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf("%d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf("%d %lf ",theta,gradg[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
   
     for(i=1;i<=nlstate;i++)      for(i=1;i<=nlstate;i++)
       varpl[i][(int)age] =0.;        varpl[i][(int)age] =0.;
       if((int)age==79 ||(int)age== 80  ||(int)age== 81){
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }else{
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }
     for(i=1;i<=nlstate;i++)      for(i=1;i<=nlstate;i++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
Line 4334  void cvevsij(double ***eij, double x[], Line 5349  void cvevsij(double ***eij, double x[],
     fprintf(ficresvpl,"\n");      fprintf(ficresvpl,"\n");
     free_vector(gp,1,nlstate);      free_vector(gp,1,nlstate);
     free_vector(gm,1,nlstate);      free_vector(gm,1,nlstate);
       free_matrix(mgm,1,npar,1,nlstate);
       free_matrix(mgp,1,npar,1,nlstate);
     free_matrix(gradg,1,npar,1,nlstate);      free_matrix(gradg,1,npar,1,nlstate);
     free_matrix(trgradg,1,nlstate,1,npar);      free_matrix(trgradg,1,nlstate,1,npar);
   } /* End age */    } /* End age */
Line 4346  void cvevsij(double ***eij, double x[], Line 5363  void cvevsij(double ***eij, double x[],
   
 /************ Variance of one-step probabilities  ******************/  /************ Variance of one-step probabilities  ******************/
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 {   {
   int i, j=0,  k1, l1, tj;     int i, j=0,  k1, l1, tj;
   int k2, l2, j1,  z1;     int k2, l2, j1,  z1;
   int k=0, l;     int k=0, l;
   int first=1, first1, first2;     int first=1, first1, first2;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   double **dnewm,**doldm;     double **dnewm,**doldm;
   double *xp;     double *xp;
   double *gp, *gm;     double *gp, *gm;
   double **gradg, **trgradg;     double **gradg, **trgradg;
   double **mu;     double **mu;
   double age, cov[NCOVMAX+1];     double age, cov[NCOVMAX+1];
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   int theta;     int theta;
   char fileresprob[FILENAMELENGTH];     char fileresprob[FILENAMELENGTH];
   char fileresprobcov[FILENAMELENGTH];     char fileresprobcov[FILENAMELENGTH];
   char fileresprobcor[FILENAMELENGTH];     char fileresprobcor[FILENAMELENGTH];
   double ***varpij;     double ***varpij;
   
   strcpy(fileresprob,"PROB_");      strcpy(fileresprob,"PROB_"); 
   strcat(fileresprob,fileres);     strcat(fileresprob,fileres);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     printf("Problem with resultfile: %s\n", fileresprob);       printf("Problem with resultfile: %s\n", fileresprob);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   }     }
   strcpy(fileresprobcov,"PROBCOV_");      strcpy(fileresprobcov,"PROBCOV_"); 
   strcat(fileresprobcov,fileresu);     strcat(fileresprobcov,fileresu);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     printf("Problem with resultfile: %s\n", fileresprobcov);       printf("Problem with resultfile: %s\n", fileresprobcov);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   }     }
   strcpy(fileresprobcor,"PROBCOR_");      strcpy(fileresprobcor,"PROBCOR_"); 
   strcat(fileresprobcor,fileresu);     strcat(fileresprobcor,fileresu);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     printf("Problem with resultfile: %s\n", fileresprobcor);       printf("Problem with resultfile: %s\n", fileresprobcor);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   }     }
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   pstamp(ficresprob);     pstamp(ficresprob);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   fprintf(ficresprob,"# Age");     fprintf(ficresprob,"# Age");
   pstamp(ficresprobcov);     pstamp(ficresprobcov);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   fprintf(ficresprobcov,"# Age");     fprintf(ficresprobcov,"# Age");
   pstamp(ficresprobcor);     pstamp(ficresprobcor);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   fprintf(ficresprobcor,"# Age");     fprintf(ficresprobcor,"# Age");
   
   
   for(i=1; i<=nlstate;i++)     for(i=1; i<=nlstate;i++)
     for(j=1; j<=(nlstate+ndeath);j++){       for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);         fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);         fprintf(ficresprobcor," p%1d-%1d ",i,j);
     }         }  
  /* fprintf(ficresprob,"\n");     /* fprintf(ficresprob,"\n");
   fprintf(ficresprobcov,"\n");        fprintf(ficresprobcov,"\n");
   fprintf(ficresprobcor,"\n");        fprintf(ficresprobcor,"\n");
  */     */
   xp=vector(1,npar);     xp=vector(1,npar);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   first=1;     first=1;
   fprintf(ficgp,"\n# Routine varprob");     fprintf(ficgp,"\n# Routine varprob");
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   fprintf(fichtm,"\n");     fprintf(fichtm,"\n");
   
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
   fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
 and drawn. It helps understanding how is the covariance between two incidences.\  and drawn. It helps understanding how is the covariance between two incidences.\
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 standard deviations wide on each axis. <br>\  standard deviations wide on each axis. <br>\
Line 4433  standard deviations wide on each axis. < Line 5450  standard deviations wide on each axis. <
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
   cov[1]=1;     cov[1]=1;
   /* tj=cptcoveff; */     /* tj=cptcoveff; */
   tj = (int) pow(2,cptcoveff);     tj = (int) pow(2,nqveff);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   j1=0;     j1=0;
   for(j1=1; j1<=tj;j1++){     for(j1=1; j1<=tj;j1++){  /* For each valid combination of covariates or only once*/
     /*for(i1=1; i1<=ncodemax[t];i1++){ */       if  (cptcovn>0) {
     /*j1++;*/         fprintf(ficresprob, "\n#********** Variable "); 
       if  (cptcovn>0) {         for (z1=1; z1<=nqveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         fprintf(ficresprob, "\n#********** Variable ");          fprintf(ficresprob, "**********\n#\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);         fprintf(ficresprobcov, "\n#********** Variable "); 
         fprintf(ficresprob, "**********\n#\n");         for (z1=1; z1<=nqveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         fprintf(ficresprobcov, "\n#********** Variable ");          fprintf(ficresprobcov, "**********\n#\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);                          
         fprintf(ficresprobcov, "**********\n#\n");         fprintf(ficgp, "\n#********** Variable "); 
                  for (z1=1; z1<=nqveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         fprintf(ficgp, "\n#********** Variable ");          fprintf(ficgp, "**********\n#\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);                          
         fprintf(ficgp, "**********\n#\n");                          
                  fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                  for (z1=1; z1<=nqveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);                          
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");         fprintf(ficresprobcor, "\n#********** Variable ");    
                  for (z1=1; z1<=nqveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         fprintf(ficresprobcor, "\n#********** Variable ");             fprintf(ficresprobcor, "**********\n#");    
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);         if(invalidvarcomb[j1]){
         fprintf(ficresprobcor, "**********\n#");               fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); 
       }           fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); 
                  continue;
       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));         }
       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);       }
       gp=vector(1,(nlstate)*(nlstate+ndeath));       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
       gm=vector(1,(nlstate)*(nlstate+ndeath));       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for (age=bage; age<=fage; age ++){        gp=vector(1,(nlstate)*(nlstate+ndeath));
         cov[2]=age;       gm=vector(1,(nlstate)*(nlstate+ndeath));
         if(nagesqr==1)       for (age=bage; age<=fage; age ++){ 
           cov[3]= age*age;         cov[2]=age;
         for (k=1; k<=cptcovn;k++) {         if(nagesqr==1)
           cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];           cov[3]= age*age;
           /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4         for (k=1; k<=cptcovn;k++) {
                                                          * 1  1 1 1 1           cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
                                                          * 2  2 1 1 1           /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                          * 3  1 2 1 1                                                                      * 1  1 1 1 1
                                                          */                                                                      * 2  2 1 1 1
           /* nbcode[1][1]=0 nbcode[1][2]=1;*/                                                                      * 3  1 2 1 1
         }                                                                      */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */           /* nbcode[1][1]=0 nbcode[1][2]=1;*/
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];         }
         for (k=1; k<=cptcovprod;k++)         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
                  for (k=1; k<=cptcovprod;k++)
                cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
         for(theta=1; theta <=npar; theta++){                          
           for(i=1; i<=npar; i++)                          
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);         for(theta=1; theta <=npar; theta++){
                      for(i=1; i<=npar; i++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                                             
           k=0;           pmij(pmmij,cov,ncovmodel,xp,nlstate);
           for(i=1; i<= (nlstate); i++){                                  
             for(j=1; j<=(nlstate+ndeath);j++){           k=0;
               k=k+1;           for(i=1; i<= (nlstate); i++){
               gp[k]=pmmij[i][j];             for(j=1; j<=(nlstate+ndeath);j++){
             }               k=k+1;
           }               gp[k]=pmmij[i][j];
                        }
           for(i=1; i<=npar; i++)           }
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);                                  
                for(i=1; i<=npar; i++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           k=0;                                  
           for(i=1; i<=(nlstate); i++){           pmij(pmmij,cov,ncovmodel,xp,nlstate);
             for(j=1; j<=(nlstate+ndeath);j++){           k=0;
               k=k+1;           for(i=1; i<=(nlstate); i++){
               gm[k]=pmmij[i][j];             for(j=1; j<=(nlstate+ndeath);j++){
             }               k=k+1;
           }               gm[k]=pmmij[i][j];
                   }
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)            }
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];                                    
         }           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)         }
           for(theta=1; theta <=npar; theta++)  
             trgradg[j][theta]=gradg[theta][j];  
           
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  
   
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
           
         k=0;  
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){  
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];  
           }  
         }  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  
             varpij[i][j][(int)age] = doldm[i][j];  
   
         /*printf("\n%d ",(int)age);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           }*/  
   
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);  
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }  
         i=0;  
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){   
             i++;  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){  
               /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  
             }  
           }  
         }/* end of loop for state */  
       } /* end of loop for age */  
       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
         
       /* Confidence intervalle of pij  */  
       /*  
         fprintf(ficgp,"\nunset parametric;unset label");  
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  
       */  
   
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  
       first1=1;first2=2;  
       for (k2=1; k2<=(nlstate);k2++){  
         for (l2=1; l2<=(nlstate+ndeath);l2++){   
           if(l2==k2) continue;  
           j=(k2-1)*(nlstate+ndeath)+l2;  
           for (k1=1; k1<=(nlstate);k1++){  
             for (l1=1; l1<=(nlstate+ndeath);l1++){   
               if(l1==k1) continue;  
               i=(k1-1)*(nlstate+ndeath)+l1;  
               if(i<=j) continue;  
               for (age=bage; age<=fage; age ++){   
                 if ((int)age %5==0){  
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;  
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   c12=cv12/sqrt(v1*v2);  
                   /* Computing eigen value of matrix of covariance */  
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   if ((lc2 <0) || (lc1 <0) ){  
                     if(first2==1){  
                       first1=0;  
                     printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);  
                     }  
                     fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);  
                     /* lc1=fabs(lc1); */ /* If we want to have them positive */  
                     /* lc2=fabs(lc2); */  
                   }  
   
                   /* Eigen vectors */         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));           for(theta=1; theta <=npar; theta++)
                   /*v21=sqrt(1.-v11*v11); *//* error */             trgradg[j][theta]=gradg[theta][j];
                   v21=(lc1-v1)/cv12*v11;                          
                   v12=-v21;         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                   v22=v11;         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                   tnalp=v21/v11;                          
                   if(first1==1){         pmij(pmmij,cov,ncovmodel,x,nlstate);
                     first1=0;                          
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);         k=0;
                   }         for(i=1; i<=(nlstate); i++){
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);           for(j=1; j<=(nlstate+ndeath);j++){
                   /*printf(fignu*/             k=k+1;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */             mu[k][(int) age]=pmmij[i][j];
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */           }
                   if(first==1){         }
                     first=0;         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                     fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                     fprintf(ficgp,"\nset parametric;unset label");             varpij[i][j][(int)age] = doldm[i][j];
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);                          
                     fprintf(ficgp,"\nset ter svg size 640, 480");         /*printf("\n%d ",(int)age);
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
            }*/
                           
          fprintf(ficresprob,"\n%d ",(int)age);
          fprintf(ficresprobcov,"\n%d ",(int)age);
          fprintf(ficresprobcor,"\n%d ",(int)age);
                           
          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
          }
          i=0;
          for (k=1; k<=(nlstate);k++){
            for (l=1; l<=(nlstate+ndeath);l++){ 
              i++;
              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
              for (j=1; j<=i;j++){
                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
              }
            }
          }/* end of loop for state */
        } /* end of loop for age */
        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       
        /* Confidence intervalle of pij  */
        /*
          fprintf(ficgp,"\nunset parametric;unset label");
          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
        */
                   
        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
        first1=1;first2=2;
        for (k2=1; k2<=(nlstate);k2++){
          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
            if(l2==k2) continue;
            j=(k2-1)*(nlstate+ndeath)+l2;
            for (k1=1; k1<=(nlstate);k1++){
              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                if(l1==k1) continue;
                i=(k1-1)*(nlstate+ndeath)+l1;
                if(i<=j) continue;
                for (age=bage; age<=fage; age ++){ 
                  if ((int)age %5==0){
                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                    mu1=mu[i][(int) age]/stepm*YEARM ;
                    mu2=mu[j][(int) age]/stepm*YEARM;
                    c12=cv12/sqrt(v1*v2);
                    /* Computing eigen value of matrix of covariance */
                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                    if ((lc2 <0) || (lc1 <0) ){
                      if(first2==1){
                        first1=0;
                        printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                      }
                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
                      /* lc2=fabs(lc2); */
                    }
                                                                   
                    /* Eigen vectors */
                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                    /*v21=sqrt(1.-v11*v11); *//* error */
                    v21=(lc1-v1)/cv12*v11;
                    v12=-v21;
                    v22=v11;
                    tnalp=v21/v11;
                    if(first1==1){
                      first1=0;
                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                    }
                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                    /*printf(fignu*/
                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                    if(first==1){
                      first=0;
                      fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                      fprintf(ficgp,"\nset parametric;unset label");
                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                      fprintf(ficgp,"\nset ter svg size 640, 480");
                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">                                                                                                                                           \
 %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\  %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                             subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\                             subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,      \
                             subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);                             subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                     fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);                     fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                     fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);                     fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                                                         \
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   }else{                   }else{
                     first=0;                     first=0;
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                 \
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   }/* if first */                   }/* if first */
                 } /* age mod 5 */                 } /* age mod 5 */
               } /* end loop age */               } /* end loop age */
               fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);               fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
               first=1;               first=1;
             } /*l12 */             } /*l12 */
           } /* k12 */           } /* k12 */
         } /*l1 */         } /*l1 */
       }/* k1 */       }/* k1 */
       /* } */ /* loop covariates */     }  /* loop on combination of covariates j1 */
   }     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);     free_vector(xp,1,npar);
   free_vector(xp,1,npar);     fclose(ficresprob);
   fclose(ficresprob);     fclose(ficresprobcov);
   fclose(ficresprobcov);     fclose(ficresprobcor);
   fclose(ficresprobcor);     fflush(ficgp);
   fflush(ficgp);     fflush(fichtmcov);
   fflush(fichtmcov);   }
 }  
   
   
 /******************* Printing html file ***********/  /******************* Printing html file ***********/
 void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \  void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                   int lastpass, int stepm, int weightopt, char model[],\                    int lastpass, int stepm, int weightopt, char model[],\
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                   int popforecast, int estepm ,\                    int popforecast, int prevfcast, int backcast, int estepm , \
                   double jprev1, double mprev1,double anprev1, \                    double jprev1, double mprev1,double anprev1, double dateprev1, \
                   double jprev2, double mprev2,double anprev2){                    double jprev2, double mprev2,double anprev2, double dateprev2){
   int jj1, k1, i1, cpt;    int jj1, k1, i1, cpt;
   
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 </ul>");  </ul>");
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",     fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
      fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
      fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
            stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));             stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
    - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
      fprintf(fichtm,"\
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));             subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \   - Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
    <a href=\"%s\">%s</a> <br>\n",     <a href=\"%s\">%s</a> <br>\n",
            estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));             estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
    fprintf(fichtm,"\     if(prevfcast==1){
  - Population projections by age and states: \       fprintf(fichtm,"\
    - Prevalence projections by age and states:                            \
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
      }
   
      fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");     m=pow(2,nqveff);
      if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
  m=pow(2,cptcoveff);     jj1=0;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}     for(k1=1; k1<=m;k1++){
   
  jj1=0;       /* for(i1=1; i1<=ncodemax[k1];i1++){ */
  for(k1=1; k1<=m;k1++){  
    /* for(i1=1; i1<=ncodemax[k1];i1++){ */  
      jj1++;       jj1++;
      if (cptcovn > 0) {       if (cptcovn > 0) {
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        for (cpt=1; cpt<=cptcoveff;cpt++){          for (cpt=1; cpt<=nqveff;cpt++){ 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);           printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
        }         }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
          if(invalidvarcomb[k1]){
            fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); 
            printf("\nCombination (%d) ignored because no cases \n",k1); 
            continue;
          }
      }       }
      /* aij, bij */       /* aij, bij */
      fprintf(fichtm,"<br>- Logit model, for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \       fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
 <img src=\"%s_%d-1.svg\">",subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);  <img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
      /* Pij */       /* Pij */
      fprintf(fichtm,"<br>\n- Pij or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \       fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
 <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);       <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
      /* Quasi-incidences */       /* Quasi-incidences */
      fprintf(fichtm,"<br>\n- Iij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\       fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
  incidence (rates) are the limit when h tends to zero of the ratio of the probability hPij \   incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
 divided by h: hPij/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \  divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
 <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
      /* Survival functions (period) in state j */       /* Survival functions (period) in state j */
      for(cpt=1; cpt<=nlstate;cpt++){       for(cpt=1; cpt<=nlstate;cpt++){
Line 4745  divided by h: hPij/h : <a href=\"%s_%d-3 Line 5780  divided by h: hPij/h : <a href=\"%s_%d-3
      }       }
      /* State specific survival functions (period) */       /* State specific survival functions (period) */
      for(cpt=1; cpt<=nlstate;cpt++){       for(cpt=1; cpt<=nlstate;cpt++){
        fprintf(fichtm,"<br>\n- Survival functions from state %d in any different live states and total.\         fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
  Or probability to survive in various states (1 to %d) being in state %d at different ages.\   Or probability to survive in various states (1 to %d) being in state %d at different ages.     \
  <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);   <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
      }       }
      /* Period (stable) prevalence in each health state */       /* Period (stable) prevalence in each health state */
      for(cpt=1; cpt<=nlstate;cpt++){       for(cpt=1; cpt<=nlstate;cpt++){
        fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \         fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \
 <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);  <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
      }       }
        if(backcast==1){
          /* Period (stable) back prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1);
          }
        }
        if(prevfcast==1){
          /* Projection of prevalence up to period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1);
          }
        }
            
      for(cpt=1; cpt<=nlstate;cpt++) {       for(cpt=1; cpt<=nlstate;cpt++) {
        fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s%d%d.svg\">%s%d%d.svg</a> <br> \         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \
 <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);  <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
      }       }
    /* } /\* end i1 *\/ */       /* } /\* end i1 *\/ */
  }/* End k1 */     }/* End k1 */
  fprintf(fichtm,"</ul>");     fprintf(fichtm,"</ul>");
   
  fprintf(fichtm,"\     fprintf(fichtm,"\
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
  - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \   - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
Line 4774  variances but at the covariance matrix. Line 5824  variances but at the covariance matrix.
 covariance matrix of the one-step probabilities. \  covariance matrix of the one-step probabilities. \
 See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);  See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
  fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",     fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
          subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));             subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
          subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));             subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
          subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));             subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
    <a href=\"%s\">%s</a> <br>\n</li>",     <a href=\"%s\">%s</a> <br>\n</li>",
            estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));             estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
    <a href=\"%s\">%s</a> <br>\n</li>",     <a href=\"%s\">%s</a> <br>\n</li>",
            estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));             estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
          estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));             estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
          estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));             estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
  fprintf(fichtm,"\     fprintf(fichtm,"\
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
          subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));             subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
 /*  if(popforecast==1) fprintf(fichtm,"\n */  /*  if(popforecast==1) fprintf(fichtm,"\n */
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
Line 4807  See page 'Matrix of variance-covariance Line 5857  See page 'Matrix of variance-covariance
 /*      <br>",fileres,fileres,fileres,fileres); */  /*      <br>",fileres,fileres,fileres,fileres); */
 /*  else  */  /*  else  */
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
  fflush(fichtm);     fflush(fichtm);
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
  m=pow(2,cptcoveff);     m=pow(2,nqveff);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
  jj1=0;     jj1=0;
  for(k1=1; k1<=m;k1++){     for(k1=1; k1<=m;k1++){
    /* for(i1=1; i1<=ncodemax[k1];i1++){ */       /* for(i1=1; i1<=ncodemax[k1];i1++){ */
      jj1++;       jj1++;
      if (cptcovn > 0) {       if (cptcovn > 0) {
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        for (cpt=1; cpt<=cptcoveff;cpt++)          for (cpt=1; cpt<=nqveff;cpt++) 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   
          if(invalidvarcomb[k1]){
            fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); 
            continue;
          }
      }       }
      for(cpt=1; cpt<=nlstate;cpt++) {       for(cpt=1; cpt<=nlstate;cpt++) {
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \         fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \
 prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.svg <br>\  prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d.svg\"> %s_%d-%d.svg</a>\n <br>\
 <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);    <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
      }       }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 true period expectancies (those weighted with period prevalences are also\  true period expectancies (those weighted with period prevalences are also\
  drawn in addition to the population based expectancies computed using\   drawn in addition to the population based expectancies computed using\
  observed and cahotic prevalences: %s_%d.svg<br>\   observed and cahotic prevalences:  <a href=\"%s_%d.svg\">%s_%d.svg</a>\n<br>\
 <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);  <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
    /* } /\* end i1 *\/ */       /* } /\* end i1 *\/ */
  }/* End k1 */     }/* End k1 */
  fprintf(fichtm,"</ul>");     fprintf(fichtm,"</ul>");
  fflush(fichtm);     fflush(fichtm);
 }  }
   
 /******************* Gnuplot file **************/  /******************* Gnuplot file **************/
 void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){
   
   char dirfileres[132],optfileres[132];    char dirfileres[132],optfileres[132];
     char gplotcondition[132];
   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;    int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int lv=0, vlv=0, kl=0;
   int ng=0;    int ng=0;
   int vpopbased;    int vpopbased;
     int ioffset; /* variable offset for columns */
   
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 /*     printf("Problem with file %s",optionfilegnuplot); */  /*     printf("Problem with file %s",optionfilegnuplot); */
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
Line 4854  void printinggnuplot(char fileresu[], ch Line 5913  void printinggnuplot(char fileresu[], ch
   
   /*#ifdef windows */    /*#ifdef windows */
   fprintf(ficgp,"cd \"%s\" \n",pathc);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     /*#endif */    /*#endif */
   m=pow(2,cptcoveff);    m=pow(2,nqveff);
   
   /* Contribution to likelihood */    /* Contribution to likelihood */
   /* Plot the probability implied in the likelihood */    /* Plot the probability implied in the likelihood */
     fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");    fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
     /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */    /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
     fprintf(ficgp,"\nset ter png size 640, 480");    fprintf(ficgp,"\nset ter pngcairo size 640, 480");
 /* good for mle=4 plot by number of matrix products.  /* nice for mle=4 plot by number of matrix products.
    replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */     replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
 /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */  /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
     /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */    /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
     fprintf(ficgp,"\nset out \"%s.png\";",subdirf2(optionfilefiname,"ILK_"));    fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
     fprintf(ficgp,"\nplot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk));    fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
     fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk));    fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
     fprintf(ficgp,"\nset out;unset log\n");    fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
     /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */    for (i=1; i<= nlstate ; i ++) {
       fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
       fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
       fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
       for (j=2; j<= nlstate+ndeath ; j ++) {
         fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
       }
       fprintf(ficgp,";\nset out; unset ylabel;\n"); 
     }
     /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */                
     /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
     /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
     fprintf(ficgp,"\nset out;unset log\n");
     /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
   strcpy(dirfileres,optionfilefiname);    strcpy(dirfileres,optionfilefiname);
   strcpy(optfileres,"vpl");    strcpy(optfileres,"vpl");
  /* 1eme*/    /* 1eme*/
   fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files\n");    for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */
   for (cpt=1; cpt<= nlstate ; cpt ++) {      for (k1=1; k1<= m ; k1 ++) { /* For each valid combination of covariate */
     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */        /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
      fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);        fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files ");
      fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);        for (k=1; k<=nqveff; k++){    /* For each covariate k get corresponding value lv for combination k1 */
      fprintf(ficgp,"set xlabel \"Age\" \n\          lv= decodtabm(k1,k,nqveff); /* Should be the value of the covariate corresponding to k1 combination */
 set ylabel \"Probability\" \n\          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
 set ter svg size 640, 480\n\          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */
           /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
         fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n   \
   set ter svg size 640, 480\n     \
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
                           
      for (i=1; i<= nlstate ; i ++) {        for (i=1; i<= nlstate ; i ++) {
        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
        else        fprintf(ficgp," %%*lf (%%*lf)");          else        fprintf(ficgp," %%*lf (%%*lf)");
      }        }
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
      for (i=1; i<= nlstate ; i ++) {        for (i=1; i<= nlstate ; i ++) {
        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
        else fprintf(ficgp," %%*lf (%%*lf)");          else fprintf(ficgp," %%*lf (%%*lf)");
      }         } 
      fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);         fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
      for (i=1; i<= nlstate ; i ++) {        for (i=1; i<= nlstate ; i ++) {
        if (i==cpt) fprintf(ficgp," %%lf (%%lf)");          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
        else fprintf(ficgp," %%*lf (%%*lf)");          else fprintf(ficgp," %%*lf (%%*lf)");
      }          }  
      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
      fprintf(ficgp,"\nset out \n");        if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
           /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
           fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1 */
           if(nqveff ==0){
             fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line ",  2+(cpt-1),  cpt );
           }else{
             kl=0;
             for (k=1; k<=nqveff; k++){    /* For each combination of covariate  */
               lv= decodtabm(k1,k,nqveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
               /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
               /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
               /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
               vlv= nbcode[Tvaraff[k]][lv];
               kl++;
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
               /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
               if(k==nqveff){
                 fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' with line ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
                         6+(cpt-1),  cpt );
               }else{
                 fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
                 kl++;
               }
             } /* end covariate */
           } /* end if no covariate */
         } /* end if backcast */
         fprintf(ficgp,"\nset out \n");
     } /* k1 */      } /* k1 */
   } /* cpt */    } /* cpt */
   /*2 eme*/    /*2 eme*/
   fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");  
   for (k1=1; k1<= m ; k1 ++) {     for (k1=1; k1<= m ; k1 ++) { 
   
       fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
       for (k=1; k<=nqveff; k++){    /* For each covariate and each value */
         lv= decodtabm(k1,k,nqveff); /* Should be the covariate number corresponding to k1 combination */
         /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
         /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
         /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
         vlv= nbcode[Tvaraff[k]][lv];
         fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
       }
       fprintf(ficgp,"\n#\n");
       if(invalidvarcomb[k1]){
         fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
         continue;
       }
                           
     fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);      fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
     for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/      for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
       if(vpopbased==0)        if(vpopbased==0)
Line 4939  plot [%.f:%.f] \"%s\" every :::%d::%d u Line 6070  plot [%.f:%.f] \"%s\" every :::%d::%d u
     } /* vpopbased */      } /* vpopbased */
     fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */      fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
   } /* k1 */    } /* k1 */
           
           
   /*3eme*/    /*3eme*/
     
   for (k1=1; k1<= m ; k1 ++) {     for (k1=1; k1<= m ; k1 ++) { 
   
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files:  cov=%d state=%d",k1, cpt);
         for (k=1; k<=nqveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,nqveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
                           
       /*       k=2+nlstate*(2*cpt-2); */        /*       k=2+nlstate*(2*cpt-2); */
       k=2+(nlstate+1)*(cpt-1);        k=2+(nlstate+1)*(cpt-1);
       fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);        fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
Line 4954  plot [%.f:%.f] \"%s\" every :::%d::%d u Line 6102  plot [%.f:%.f] \"%s\" every :::%d::%d u
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                                           
       */        */
       for (i=1; i< nlstate ; i ++) {        for (i=1; i< nlstate ; i ++) {
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                                           
       }         } 
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
     }      }
   }    }
       
     /* 4eme */
   /* Survival functions (period) from state i in state j by initial state i */    /* Survival functions (period) from state i in state j by initial state i */
   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */    for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
   
     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
       k=3;        fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
       fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'lij' files, cov=%d state=%d",k1, cpt);        for (k=1; k<=nqveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,nqveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
                           
       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
 set ter svg size 640, 480\n\  set ter svg size 640, 480\n                                                                                                                                                                                     \
 unset log y\n\  unset log y\n                                                                                                                                                                                                                                           \
 plot [%.f:%.f]  ", ageminpar, agemaxpar);  plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
       for (i=1; i<= nlstate ; i ++){        for (i=1; i<= nlstate ; i ++){
         if(i==1)          if(i==1){
           fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
         else          }else{
           fprintf(ficgp,", '' ");            fprintf(ficgp,", '' ");
           }
         l=(nlstate+ndeath)*(i-1)+1;          l=(nlstate+ndeath)*(i-1)+1;
         fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
         for (j=2; j<= nlstate+ndeath ; j ++)          for (j=2; j<= nlstate+ndeath ; j ++)
Line 4989  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 6154  plot [%.f:%.f]  ", ageminpar, agemaxpar)
       fprintf(ficgp,"\nset out\n");        fprintf(ficgp,"\nset out\n");
     } /* end cpt state*/       } /* end cpt state*/ 
   } /* end covariate */      } /* end covariate */  
           
   /* 5eme */
   /* Survival functions (period) from state i in state j by final state j */    /* Survival functions (period) from state i in state j by final state j */
   for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */    for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
       k=3;                          
       fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);        fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=nqveff; k++){    /* For each covariate and each value */
                                   lv= decodtabm(k1,k,nqveff); /* Should be the covariate number corresponding to k1 combination */
                                   /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                                   /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                                   /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                                   vlv= nbcode[Tvaraff[k]][lv];
                                   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
                                   fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                                   continue;
         }
                           
       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
 set ter svg size 640, 480\n\  set ter svg size 640, 480\n                                                                                                                                                                                     \
 unset log y\n\  unset log y\n                                                                                                                                                                                                                                           \
 plot [%.f:%.f]  ", ageminpar, agemaxpar);  plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
       for (j=1; j<= nlstate ; j ++){ /* Lived in state j */        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
         if(j==1)                                  if(j==1)
           fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));                                          fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
         else                                  else
           fprintf(ficgp,", '' ");                                          fprintf(ficgp,", '' ");
         l=(nlstate+ndeath)*(cpt-1) +j;                                  l=(nlstate+ndeath)*(cpt-1) +j;
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);                                  fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
         /* for (i=2; i<= nlstate+ndeath ; i ++) */                                  /* for (i=2; i<= nlstate+ndeath ; i ++) */
         /*   fprintf(ficgp,"+$%d",k+l+i-1); */                                  /*   fprintf(ficgp,"+$%d",k+l+i-1); */
         fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);                                  fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
       } /* nlstate */        } /* nlstate */
       fprintf(ficgp,", '' ");        fprintf(ficgp,", '' ");
       fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);        fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
       for (j=1; j<= nlstate ; j ++){ /* Lived in state j */        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
         l=(nlstate+ndeath)*(cpt-1) +j;                                  l=(nlstate+ndeath)*(cpt-1) +j;
         if(j < nlstate)                                  if(j < nlstate)
           fprintf(ficgp,"$%d +",k+l);                                          fprintf(ficgp,"$%d +",k+l);
         else                                  else
           fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);                                          fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
       }        }
       fprintf(ficgp,"\nset out\n");        fprintf(ficgp,"\nset out\n");
     } /* end cpt state*/       } /* end cpt state*/ 
   } /* end covariate */      } /* end covariate */  
           
   /* 6eme */
   /* CV preval stable (period) for each covariate */    /* CV preval stable (period) for each covariate */
   for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */    for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
       k=3;                          
       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);        fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=nqveff; k++){    /* For each covariate and each value */
                                   lv= decodtabm(k1,k,nqveff); /* Should be the covariate number corresponding to k1 combination */
                                   /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                                   /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                                   /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                                   vlv= nbcode[Tvaraff[k]][lv];
                                   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
                                   fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                                   continue;
         }
                           
       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 set ter svg size 640, 480\n\  set ter svg size 640, 480\n                                                                                                                                                                              \
 unset log y\n\  unset log y\n                                                                                                                                                                                                                                    \
 plot [%.f:%.f]  ", ageminpar, agemaxpar);  plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3; /* Offset */
       for (i=1; i<= nlstate ; i ++){        for (i=1; i<= nlstate ; i ++){
         if(i==1)                                  if(i==1)
           fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));                                          fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
         else                                  else
           fprintf(ficgp,", '' ");                                          fprintf(ficgp,", '' ");
         l=(nlstate+ndeath)*(i-1)+1;                                  l=(nlstate+ndeath)*(i-1)+1;
         fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);                                  fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
         for (j=2; j<= nlstate ; j ++)                                  for (j=2; j<= nlstate ; j ++)
           fprintf(ficgp,"+$%d",k+l+j-1);                                          fprintf(ficgp,"+$%d",k+l+j-1);
         fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);                                  fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
       } /* nlstate */        } /* nlstate */
       fprintf(ficgp,"\nset out\n");        fprintf(ficgp,"\nset out\n");
     } /* end cpt state*/       } /* end cpt state*/ 
   } /* end covariate */      } /* end covariate */  
           
           
   /* 7eme */
     if(backcast == 1){
       /* CV back preval stable (period) for each covariate */
       for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
                                   fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
                                   for (k=1; k<=nqveff; k++){    /* For each covariate and each value */
                                           lv= decodtabm(k1,k,nqveff); /* Should be the covariate number corresponding to k1 combination */
                                           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                                           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                                           vlv= nbcode[Tvaraff[k]][lv];
                                           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
                                   }
                                   fprintf(ficgp,"\n#\n");
                                   if(invalidvarcomb[k1]){
                                           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                                           continue;
                                   }
                                   
                                   fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1);
                                   fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n                                                                                                                                                                                     \
   unset log y\n                                                                                                                                                                                                                                           \
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
                                   k=3; /* Offset */
                                   for (i=1; i<= nlstate ; i ++){
                                           if(i==1)
                                                   fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
                                           else
                                                   fprintf(ficgp,", '' ");
                                           /* l=(nlstate+ndeath)*(i-1)+1; */
                                           l=(nlstate+ndeath)*(cpt-1)+1;
                                           /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
                                           /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
                                           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */
                                           /* for (j=2; j<= nlstate ; j ++) */
                                           /*      fprintf(ficgp,"+$%d",k+l+j-1); */
                                           /*      /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
                                           fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt);
                                   } /* nlstate */
                                   fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/ 
       } /* end covariate */  
     } /* End if backcast */
     
     /* 8eme */
     if(prevfcast==1){
       /* Projection from cross-sectional to stable (period) for each covariate */
       
       for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
                                   fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
                                   for (k=1; k<=nqveff; k++){    /* For each correspondig covariate value  */
                                           lv= decodtabm(k1,k,nqveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
                                           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                                           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                                           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                                           vlv= nbcode[Tvaraff[k]][lv];
                                           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
                                   }
                                   fprintf(ficgp,"\n#\n");
                                   if(invalidvarcomb[k1]){
                                           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                                           continue;
                                   }
                                   
                                   fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
                                   fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1);
                                   fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\n                                                                                                                                                                                     \
   unset log y\n                                                                                                                                                                                                                                           \
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
                                   for (i=1; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
                                           /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                                           /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                                           /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                                           /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                                           if(i==1){
                                                   fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
                                           }else{
                                                   fprintf(ficgp,",\\\n '' ");
                                           }
                                           if(nqveff ==0){ /* No covariate */
                                                   ioffset=2; /* Age is in 2 */
                                                   /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                                                   /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                                                   /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                                                   /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                                                   fprintf(ficgp," u %d:(", ioffset); 
                                                   if(i==nlstate+1)
                                                           fprintf(ficgp," $%d/(1.-$%d)) t 'pw.%d' with line ",                    \
                                                                                           ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                                                   else
                                                           fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ",                    \
                                                                                           ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                                           }else{ /* more than 2 covariates */
                                                   if(nqveff ==1){
                                                           ioffset=4; /* Age is in 4 */
                                                   }else{
                                                           ioffset=6; /* Age is in 6 */
                                                           /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                                                           /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
                                                   }   
                                                   fprintf(ficgp," u %d:(",ioffset); 
                                                   kl=0;
                                                   strcpy(gplotcondition,"(");
                                                   for (k=1; k<=nqveff; k++){    /* For each covariate writing the chain of conditions */
                                                           lv= decodtabm(k1,k,nqveff); /* Should be the covariate value corresponding to combination k1 and covariate k */
                                                           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                                                           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                                                           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                                                           vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */
                                                           kl++;
                                                           sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
                                                           kl++;
                                                           if(k <nqveff && nqveff>1)
                                                                   sprintf(gplotcondition+strlen(gplotcondition)," && ");
                                                   }
                                                   strcpy(gplotcondition+strlen(gplotcondition),")");
                                                   /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                                                   /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                                                   /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                                                   /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                                                   if(i==nlstate+1){
                                                           fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ", gplotcondition, \
                                                                                           ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                                                   }else{
                                                           fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \
                                                                                           ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                                                   }
                                           } /* end if covariate */
                                   } /* nlstate */
                                   fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevfcast */
           
           
   /* proba elementaires */    /* proba elementaires */
   fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");    fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
   for(i=1,jk=1; i <=nlstate; i++){    for(i=1,jk=1; i <=nlstate; i++){
     fprintf(ficgp,"# initial state %d\n",i);      fprintf(ficgp,"# initial state %d\n",i);
     for(k=1; k <=(nlstate+ndeath); k++){      for(k=1; k <=(nlstate+ndeath); k++){
       if (k != i) {        if (k != i) {
         fprintf(ficgp,"#   current state %d\n",k);                                  fprintf(ficgp,"#   current state %d\n",k);
         for(j=1; j <=ncovmodel; j++){                                  for(j=1; j <=ncovmodel; j++){
           fprintf(ficgp,"p%d=%f; ",jk,p[jk]);                                          fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
           jk++;                                           jk++; 
         }                                  }
         fprintf(ficgp,"\n");                                  fprintf(ficgp,"\n");
       }        }
     }      }
    }    }
   fprintf(ficgp,"##############\n#\n");    fprintf(ficgp,"##############\n#\n");
           
   /*goto avoid;*/    /*goto avoid;*/
   fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");    fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
   fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");    fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
Line 5081  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 6418  plot [%.f:%.f]  ", ageminpar, agemaxpar)
   fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");    fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
   fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");    fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
   fprintf(ficgp,"#\n");    fprintf(ficgp,"#\n");
    for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/    for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
      fprintf(ficgp,"# ng=%d\n",ng);      fprintf(ficgp,"# ng=%d\n",ng);
      fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);      fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",nqveff,m);
      for(jk=1; jk <=m; jk++) {      for(jk=1; jk <=m; jk++) {
        fprintf(ficgp,"#    jk=%d\n",jk);        fprintf(ficgp,"#    jk=%d\n",jk);
        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
        fprintf(ficgp,"\nset ter svg size 640, 480 ");        fprintf(ficgp,"\nset ter svg size 640, 480 ");
        if (ng==1){        if (ng==1){
          fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */          fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
          fprintf(ficgp,"\nunset log y");          fprintf(ficgp,"\nunset log y");
        }else if (ng==2){        }else if (ng==2){
          fprintf(ficgp,"\nset ylabel \"Probability\"\n");          fprintf(ficgp,"\nset ylabel \"Probability\"\n");
          fprintf(ficgp,"\nset log y");          fprintf(ficgp,"\nset log y");
        }else if (ng==3){        }else if (ng==3){
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          fprintf(ficgp,"\nset log y");          fprintf(ficgp,"\nset log y");
        }else        }else
          fprintf(ficgp,"\nunset title ");          fprintf(ficgp,"\nunset title ");
        fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
        i=1;        i=1;
        for(k2=1; k2<=nlstate; k2++) {        for(k2=1; k2<=nlstate; k2++) {
          k3=i;          k3=i;
          for(k=1; k<=(nlstate+ndeath); k++) {          for(k=1; k<=(nlstate+ndeath); k++) {
            if (k != k2){            if (k != k2){
              switch( ng) {              switch( ng) {
              case 1:              case 1:
                if(nagesqr==0)                if(nagesqr==0)
                  fprintf(ficgp," p%d+p%d*x",i,i+1);                  fprintf(ficgp," p%d+p%d*x",i,i+1);
                else /* nagesqr =1 */                else /* nagesqr =1 */
                  fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);                  fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                break;                break;
              case 2: /* ng=2 */              case 2: /* ng=2 */
                if(nagesqr==0)                if(nagesqr==0)
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                else /* nagesqr =1 */                else /* nagesqr =1 */
                    fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);                  fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                break;                break;
              case 3:              case 3:
                if(nagesqr==0)                if(nagesqr==0)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else /* nagesqr =1 */                else /* nagesqr =1 */
                  fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);                  fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                break;                break;
              }              }
              ij=1;/* To be checked else nbcode[0][0] wrong */              ij=1;/* To be checked else nbcode[0][0] wrong */
              for(j=3; j <=ncovmodel-nagesqr; j++) {              for(j=3; j <=ncovmodel-nagesqr; j++) {
                /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */                /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                if(ij <=cptcovage) { /* Bug valgrind */                if(ij <=cptcovage) { /* Bug valgrind */
                  if((j-2)==Tage[ij]) { /* Bug valgrind */                  if((j-2)==Tage[ij]) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);                    fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                    /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */                    /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                    ij++;                    ij++;
                  }                  }
                }                }
                else                else
                  fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);                  fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
              }              }
              if(ng != 1){            }else{
                fprintf(ficgp,")/(1");              i=i-ncovmodel;
               if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */
                 fprintf(ficgp," (1.");
             }
              
             if(ng != 1){
               fprintf(ficgp,")/(1");
                             
                for(k1=1; k1 <=nlstate; k1++){               for(k1=1; k1 <=nlstate; k1++){ 
                  if(nagesqr==0)                if(nagesqr==0)
                    fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  else /* nagesqr =1 */                else /* nagesqr =1 */
                    fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);                  fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                                   
                  ij=1;                ij=1;
                  for(j=3; j <=ncovmodel-nagesqr; j++){                for(j=3; j <=ncovmodel-nagesqr; j++){
                    if(ij <=cptcovage) { /* Bug valgrind */                  if(ij <=cptcovage) { /* Bug valgrind */
                      if((j-2)==Tage[ij]) { /* Bug valgrind */                    if((j-2)==Tage[ij]) { /* Bug valgrind */
                        fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                        /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */                      /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                        ij++;                      ij++;
                      }                    }
                    }                  }
                    else                  else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                  }                }
                  fprintf(ficgp,")");                fprintf(ficgp,")");
                }              }
                fprintf(ficgp,")");              fprintf(ficgp,")");
                if(ng ==2)              if(ng ==2)
                  fprintf(ficgp," t \"p%d%d\" ", k2,k);                fprintf(ficgp," t \"p%d%d\" ", k2,k);
                else /* ng= 3 */              else /* ng= 3 */
                  fprintf(ficgp," t \"i%d%d\" ", k2,k);                fprintf(ficgp," t \"i%d%d\" ", k2,k);
              }else{ /* end ng <> 1 */            }else{ /* end ng <> 1 */
                fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);              if( k !=k2) /* logit p11 is hard to draw */
              }                fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            }
              i=i+ncovmodel;            if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
            }              fprintf(ficgp,",");
          } /* end k */            if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath))
        } /* end k2 */              fprintf(ficgp,",");
        fprintf(ficgp,"\n set out\n");            i=i+ncovmodel;
      } /* end jk */          } /* end k */
    } /* end ng */        } /* end k2 */
  /* avoid: */        fprintf(ficgp,"\n set out\n");
    fflush(ficgp);       } /* end jk */
     } /* end ng */
     /* avoid: */
     fflush(ficgp); 
 }  /* end gnuplot */  }  /* end gnuplot */
   
   
 /*************** Moving average **************/  /*************** Moving average **************/
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){  /* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */
    int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){
   int i, cpt, cptcod;     
   int modcovmax =1;     int i, cpt, cptcod;
   int mobilavrange, mob;     int modcovmax =1;
   double age;     int mobilavrange, mob;
      int iage=0;
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose   
                            a covariate has 2 modalities */     double sum=0.;
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */     double age;
      double *sumnewp, *sumnewm;
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){     double *agemingood, *agemaxgood; /* Currently identical for all covariates */
     if(mobilav==1) mobilavrange=5; /* default */    
     else mobilavrange=mobilav;    
     for (age=bage; age<=fage; age++)     /* modcovmax=2*nqveff;/\* Max number of modalities. We suppose  */
       for (i=1; i<=nlstate;i++)     /*              a covariate has 2 modalities, should be equal to ncovcombmax  *\/ */
         for (cptcod=1;cptcod<=modcovmax;cptcod++)  
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];     sumnewp = vector(1,ncovcombmax);
     /* We keep the original values on the extreme ages bage, fage and for      sumnewm = vector(1,ncovcombmax);
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2     agemingood = vector(1,ncovcombmax);  
        we use a 5 terms etc. until the borders are no more concerned.      agemaxgood = vector(1,ncovcombmax);
     */   
     for (mob=3;mob <=mobilavrange;mob=mob+2){     for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){       sumnewm[cptcod]=0.;
         for (i=1; i<=nlstate;i++){       sumnewp[cptcod]=0.;
           for (cptcod=1;cptcod<=modcovmax;cptcod++){       agemingood[cptcod]=0;
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];       agemaxgood[cptcod]=0;
               for (cpt=1;cpt<=(mob-1)/2;cpt++){     }
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];     if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];    
               }     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;       if(mobilav==1) mobilavrange=5; /* default */
           }       else mobilavrange=mobilav;
         }       for (age=bage; age<=fage; age++)
       }/* end age */         for (i=1; i<=nlstate;i++)
     }/* end mob */           for (cptcod=1;cptcod<=ncovcombmax;cptcod++)
   }else return -1;             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   return 0;       /* We keep the original values on the extreme ages bage, fage and for 
 }/* End movingaverage */          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           we use a 5 terms etc. until the borders are no more concerned. 
        */ 
        for (mob=3;mob <=mobilavrange;mob=mob+2){
          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
            for (i=1; i<=nlstate;i++){
              for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                }
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
              }
            }
          }/* end age */
        }/* end mob */
      }else
        return -1;
      for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
        /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
        if(invalidvarcomb[cptcod]){
          printf("\nCombination (%d) ignored because no cases \n",cptcod); 
          continue;
        }
   
        agemingood[cptcod]=fage-(mob-1)/2;
        for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
          }
          if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
            agemingood[cptcod]=age;
          }else{ /* bad */
            for (i=1; i<=nlstate;i++){
              mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
            } /* i */
          } /* end bad */
        }/* age */
        sum=0.;
        for (i=1; i<=nlstate;i++){
          sum+=mobaverage[(int)agemingood[cptcod]][i][cptcod];
        }
        if(fabs(sum - 1.) > 1.e-3) { /* bad */
          printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any descending age!\n",cptcod);
          /* for (i=1; i<=nlstate;i++){ */
          /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
          /* } /\* i *\/ */
        } /* end bad */
        /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
        /* From youngest, finding the oldest wrong */
        agemaxgood[cptcod]=bage+(mob-1)/2;
        for (age=bage+(mob-1)/2; age<=fage; age++){
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
          }
          if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
            agemaxgood[cptcod]=age;
          }else{ /* bad */
            for (i=1; i<=nlstate;i++){
              mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
            } /* i */
          } /* end bad */
        }/* age */
        sum=0.;
        for (i=1; i<=nlstate;i++){
          sum+=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
        }
        if(fabs(sum - 1.) > 1.e-3) { /* bad */
          printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any ascending age!\n",cptcod);
          /* for (i=1; i<=nlstate;i++){ */
          /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
          /* } /\* i *\/ */
        } /* end bad */
                   
        for (age=bage; age<=fage; age++){
          printf("%d %d ", cptcod, (int)age);
          sumnewp[cptcod]=0.;
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewp[cptcod]+=probs[(int)age][i][cptcod];
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            /* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */
          }
          /* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */
        }
        /* printf("\n"); */
        /* } */
        /* brutal averaging */
        for (i=1; i<=nlstate;i++){
          for (age=1; age<=bage; age++){
            mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
            /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
          }        
          for (age=fage; age<=AGESUP; age++){
            mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
            /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
          }
        } /* end i status */
        for (i=nlstate+1; i<=nlstate+ndeath;i++){
          for (age=1; age<=AGESUP; age++){
            /*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/
            mobaverage[(int)age][i][cptcod]=0.;
          }
        }
      }/* end cptcod */
      free_vector(sumnewm,1, ncovcombmax);
      free_vector(sumnewp,1, ncovcombmax);
      free_vector(agemaxgood,1, ncovcombmax);
      free_vector(agemingood,1, ncovcombmax);
      return 0;
    }/* End movingaverage */
    
   
 /************** Forecasting ******************/  /************** Forecasting ******************/
 void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int nqveff){
   /* proj1, year, month, day of starting projection     /* proj1, year, month, day of starting projection 
      agemin, agemax range of age       agemin, agemax range of age
      dateprev1 dateprev2 range of dates during which prevalence is computed       dateprev1 dateprev2 range of dates during which prevalence is computed
Line 5236  void prevforecast(char fileres[], double Line 6695  void prevforecast(char fileres[], double
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   double *popeffectif,*popcount;    double *popeffectif,*popcount;
   double ***p3mat;    double ***p3mat;
   double ***mobaverage;    /* double ***mobaverage; */
   char fileresf[FILENAMELENGTH];    char fileresf[FILENAMELENGTH];
   
   agelim=AGESUP;    agelim=AGESUP;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     /*          firstpass, lastpass,  stepm,  weightopt, model); */
     
   strcpy(fileresf,"F_");     strcpy(fileresf,"F_"); 
   strcat(fileresf,fileresu);    strcat(fileresf,fileresu);
Line 5248  void prevforecast(char fileres[], double Line 6712  void prevforecast(char fileres[], double
     printf("Problem with forecast resultfile: %s\n", fileresf);      printf("Problem with forecast resultfile: %s\n", fileresf);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   }    }
   printf("Computing forecasting: result on file '%s' \n", fileresf);    printf("Computing forecasting: result on file '%s', please wait... \n", fileresf);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficlog,"Computing forecasting: result on file '%s', please wait... \n", fileresf);
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    if (nqveff==0) ncodemax[nqveff]=1;
   
   if (mobilav!=0) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }  
   }  
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   if (stepm<=12) stepsize=1;    if (stepm<=12) stepsize=1;
Line 5279  void prevforecast(char fileres[], double Line 6736  void prevforecast(char fileres[], double
   if(jprojmean==0) jprojmean=1;    if(jprojmean==0) jprojmean=1;
   if(mprojmean==0) jprojmean=1;    if(mprojmean==0) jprojmean=1;
   
   i1=cptcoveff;    i1=nqveff;
   if (cptcovn < 1){i1=1;}    if (cptcovn < 1){i1=1;}
       
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
Line 5288  void prevforecast(char fileres[], double Line 6745  void prevforecast(char fileres[], double
   
 /*            if (h==(int)(YEARM*yearp)){ */  /*            if (h==(int)(YEARM*yearp)){ */
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(cptcod=1;cptcod<=ncodemax[nqveff];cptcod++){
       k=k+1;        k=k+1;
       fprintf(ficresf,"\n#******");        fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
       for(j=1;j<=cptcoveff;j++) {        for(j=1;j<=nqveff;j++) {
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);                                  fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }        }
       fprintf(ficresf,"******\n");        fprintf(ficresf," yearproj age");
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");  
       for(j=1; j<=nlstate+ndeath;j++){         for(j=1; j<=nlstate+ndeath;j++){ 
         for(i=1; i<=nlstate;i++)                                                for(i=1; i<=nlstate;i++)              
           fprintf(ficresf," p%d%d",i,j);            fprintf(ficresf," p%d%d",i,j);
         fprintf(ficresf," p.%d",j);                                  fprintf(ficresf," wp.%d",j);
       }        }
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
         fprintf(ficresf,"\n");                                  fprintf(ficresf,"\n");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);                                     fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
                                   for (agec=fage; agec>=(ageminpar-1); agec--){ 
         for (agec=fage; agec>=(ageminpar-1); agec--){                                           nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);                                           nhstepm = nhstepm/hstepm; 
           nhstepm = nhstepm/hstepm;                                           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                                          oldm=oldms;savm=savms;
           oldm=oldms;savm=savms;                                          hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);                                            
                                                   for (h=0; h<=nhstepm; h++){
           for (h=0; h<=nhstepm; h++){                                                  if (h*hstepm/YEARM*stepm ==yearp) {
             if (h*hstepm/YEARM*stepm ==yearp) {  
               fprintf(ficresf,"\n");                fprintf(ficresf,"\n");
               for(j=1;j<=cptcoveff;j++)                 for(j=1;j<=nqveff;j++) 
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);                                                          fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
             }                                                   } 
             for(j=1; j<=nlstate+ndeath;j++) {                                                  for(j=1; j<=nlstate+ndeath;j++) {
               ppij=0.;                                                          ppij=0.;
               for(i=1; i<=nlstate;i++) {                                                          for(i=1; i<=nlstate;i++) {
                 if (mobilav==1)                                                                   if (mobilav==1) 
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];                                                                          ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                 else {                                                                  else {
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];                                                                          ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                 }                                                                  }
                 if (h*hstepm/YEARM*stepm== yearp) {                                                                  if (h*hstepm/YEARM*stepm== yearp) {
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);                                                                          fprintf(ficresf," %.3f", p3mat[i][j][h]);
                 }                                                                  }
               } /* end i */                                                          } /* end i */
               if (h*hstepm/YEARM*stepm==yearp) {                                                          if (h*hstepm/YEARM*stepm==yearp) {
                 fprintf(ficresf," %.3f", ppij);                                                                  fprintf(ficresf," %.3f", ppij);
               }                                                          }
             }/* end j */                                                  }/* end j */
           } /* end h */                                          } /* end h */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                                          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         } /* end agec */                                  } /* end agec */
       } /* end yearp */        } /* end yearp */
     } /* end cptcod */      } /* end cptcod */
   } /* end  cptcov */    } /* end  cptcov */
                  
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   
   fclose(ficresf);    fclose(ficresf);
     printf("End of Computing forecasting \n");
     fprintf(ficlog,"End of Computing forecasting\n");
   
 }  }
   
   /* /\************** Back Forecasting ******************\/ */
   /* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int nqveff){ */
   /*   /\* back1, year, month, day of starting backection  */
   /*      agemin, agemax range of age */
   /*      dateprev1 dateprev2 range of dates during which prevalence is computed */
   /*      anback2 year of en of backection (same day and month as back1). */
   /*   *\/ */
   /*   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */
   /*   double agec; /\* generic age *\/ */
   /*   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */
   /*   double *popeffectif,*popcount; */
   /*   double ***p3mat; */
   /*   /\* double ***mobaverage; *\/ */
   /*   char fileresfb[FILENAMELENGTH]; */
           
   /*   agelim=AGESUP; */
   /*   /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */
   /*      in each health status at the date of interview (if between dateprev1 and dateprev2). */
   /*      We still use firstpass and lastpass as another selection. */
   /*   *\/ */
   /*   /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */
   /*   /\*              firstpass, lastpass,  stepm,  weightopt, model); *\/ */
   /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
           
   /*   strcpy(fileresfb,"FB_");  */
   /*   strcat(fileresfb,fileresu); */
   /*   if((ficresfb=fopen(fileresfb,"w"))==NULL) { */
   /*     printf("Problem with back forecast resultfile: %s\n", fileresfb); */
   /*     fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */
   /*   } */
   /*   printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
   /*   fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
           
   /*   if (nqveff==0) ncodemax[nqveff]=1; */
           
   /*   /\* if (mobilav!=0) { *\/ */
   /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
   /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
   /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*   } *\/ */
   /*   /\* } *\/ */
           
   /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
   /*   if (stepm<=12) stepsize=1; */
   /*   if(estepm < stepm){ */
   /*     printf ("Problem %d lower than %d\n",estepm, stepm); */
   /*   } */
   /*   else  hstepm=estepm;    */
           
   /*   hstepm=hstepm/stepm;  */
   /*   yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
   /*                                fractional in yp1 *\/ */
   /*   anprojmean=yp; */
   /*   yp2=modf((yp1*12),&yp); */
   /*   mprojmean=yp; */
   /*   yp1=modf((yp2*30.5),&yp); */
   /*   jprojmean=yp; */
   /*   if(jprojmean==0) jprojmean=1; */
   /*   if(mprojmean==0) jprojmean=1; */
           
   /*   i1=nqveff; */
   /*   if (cptcovn < 1){i1=1;} */
     
   /*   fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);  */
     
   /*   fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */
           
   /*      /\*           if (h==(int)(YEARM*yearp)){ *\/ */
   /*   for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */
   /*     for(cptcod=1;cptcod<=ncodemax[nqveff];cptcod++){ */
   /*       k=k+1; */
   /*       fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */
   /*       for(j=1;j<=nqveff;j++) { */
   /*                              fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*       } */
   /*       fprintf(ficresfb," yearbproj age"); */
   /*       for(j=1; j<=nlstate+ndeath;j++){  */
   /*                              for(i=1; i<=nlstate;i++)               */
   /*           fprintf(ficresfb," p%d%d",i,j); */
   /*                              fprintf(ficresfb," p.%d",j); */
   /*       } */
   /*       for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) {  */
   /*                              /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  *\/ */
   /*                              fprintf(ficresfb,"\n"); */
   /*                              fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp);    */
   /*                              for (agec=fage; agec>=(ageminpar-1); agec--){  */
   /*                                      nhstepm=(int) rint((agelim-agec)*YEARM/stepm);  */
   /*                                      nhstepm = nhstepm/hstepm;  */
   /*                                      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*                                      oldm=oldms;savm=savms; */
   /*                                      hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k);       */
   /*                                      for (h=0; h<=nhstepm; h++){ */
   /*                                              if (h*hstepm/YEARM*stepm ==yearp) { */
   /*               fprintf(ficresfb,"\n"); */
   /*               for(j=1;j<=nqveff;j++)  */
   /*                 fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*                                                      fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */
   /*                                              }  */
   /*                                              for(j=1; j<=nlstate+ndeath;j++) { */
   /*                                                      ppij=0.; */
   /*                                                      for(i=1; i<=nlstate;i++) { */
   /*                                                              if (mobilav==1)  */
   /*                                                                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */
   /*                                                              else { */
   /*                                                                      ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */
   /*                                                              } */
   /*                                                              if (h*hstepm/YEARM*stepm== yearp) { */
   /*                                                                      fprintf(ficresfb," %.3f", p3mat[i][j][h]); */
   /*                                                              } */
   /*                                                      } /\* end i *\/ */
   /*                                                      if (h*hstepm/YEARM*stepm==yearp) { */
   /*                                                              fprintf(ficresfb," %.3f", ppij); */
   /*                                                      } */
   /*                                              }/\* end j *\/ */
   /*                                      } /\* end h *\/ */
   /*                                      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*                              } /\* end agec *\/ */
   /*       } /\* end yearp *\/ */
   /*     } /\* end cptcod *\/ */
   /*   } /\* end  cptcov *\/ */
           
   /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
           
   /*   fclose(ficresfb); */
   /*   printf("End of Computing Back forecasting \n"); */
   /*   fprintf(ficlog,"End of Computing Back forecasting\n"); */
           
   /* } */
   
 /************** Forecasting *****not tested NB*************/  /************** Forecasting *****not tested NB*************/
 void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       
Line 5355  void populforecast(char fileres[], doubl Line 6941  void populforecast(char fileres[], doubl
   double calagedatem, agelim, kk1, kk2;    double calagedatem, agelim, kk1, kk2;
   double *popeffectif,*popcount;    double *popeffectif,*popcount;
   double ***p3mat,***tabpop,***tabpopprev;    double ***p3mat,***tabpop,***tabpopprev;
   double ***mobaverage;    /* double ***mobaverage; */
   char filerespop[FILENAMELENGTH];    char filerespop[FILENAMELENGTH];
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
Line 5375  void populforecast(char fileres[], doubl Line 6961  void populforecast(char fileres[], doubl
   printf("Computing forecasting: result on file '%s' \n", filerespop);    printf("Computing forecasting: result on file '%s' \n", filerespop);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    if (nqveff==0) ncodemax[nqveff]=1;
   
   if (mobilav!=0) {    /* if (mobilav!=0) { */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    /*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ */
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
     }    /*   } */
   }    /* } */
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   if (stepm<=12) stepsize=1;    if (stepm<=12) stepsize=1;
Line 5392  void populforecast(char fileres[], doubl Line 6978  void populforecast(char fileres[], doubl
       
   hstepm=1;    hstepm=1;
   hstepm=hstepm/stepm;     hstepm=hstepm/stepm; 
             
   if (popforecast==1) {    if (popforecast==1) {
     if((ficpop=fopen(popfile,"r"))==NULL) {      if((ficpop=fopen(popfile,"r"))==NULL) {
       printf("Problem with population file : %s\n",popfile);exit(0);        printf("Problem with population file : %s\n",popfile);exit(0);
Line 5404  void populforecast(char fileres[], doubl Line 6990  void populforecast(char fileres[], doubl
           
     i=1;         i=1;   
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
          
     imx=i;      imx=i;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   }    }
     
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for(cptcod=1;cptcod<=ncodemax[nqveff];cptcod++){
       k=k+1;        k=k+1;
       fprintf(ficrespop,"\n#******");        fprintf(ficrespop,"\n#******");
       for(j=1;j<=cptcoveff;j++) {        for(j=1;j<=nqveff;j++) {
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }        }
       fprintf(ficrespop,"******\n");        fprintf(ficrespop,"******\n");
Line 5424  void populforecast(char fileres[], doubl Line 7010  void populforecast(char fileres[], doubl
       for (cpt=0; cpt<=0;cpt++) {         for (cpt=0; cpt<=0;cpt++) { 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
                   
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
           nhstepm = nhstepm/hstepm;             nhstepm = nhstepm/hstepm; 
                       
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;            oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                     
           for (h=0; h<=nhstepm; h++){            for (h=0; h<=nhstepm; h++){
             if (h==(int) (calagedatem+YEARM*cpt)) {              if (h==(int) (calagedatem+YEARM*cpt)) {
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
Line 5447  void populforecast(char fileres[], doubl Line 7033  void populforecast(char fileres[], doubl
               }                }
               if (h==(int)(calagedatem+12*cpt)){                if (h==(int)(calagedatem+12*cpt)){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                   /*fprintf(ficrespop," %.3f", kk1);                  /*fprintf(ficrespop," %.3f", kk1);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
               }                }
             }              }
             for(i=1; i<=nlstate;i++){              for(i=1; i<=nlstate;i++){
               kk1=0.;                kk1=0.;
                 for(j=1; j<=nlstate;j++){                for(j=1; j<=nlstate;j++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                 }                }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];                tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
             }              }
               
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)               if (h==(int)(calagedatem+12*cpt))
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                for(j=1; j<=nlstate;j++) 
                   fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
           }            }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }          }
       }        }
          
   /******/        /******/
         
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
Line 5492  void populforecast(char fileres[], doubl Line 7079  void populforecast(char fileres[], doubl
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }          }
       }        }
    }       } 
   }    }
      
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
     
   if (popforecast==1) {    if (popforecast==1) {
     free_ivector(popage,0,AGESUP);      free_ivector(popage,0,AGESUP);
     free_vector(popeffectif,0,AGESUP);      free_vector(popeffectif,0,AGESUP);
Line 5506  void populforecast(char fileres[], doubl Line 7093  void populforecast(char fileres[], doubl
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficrespop);    fclose(ficrespop);
 } /* End of popforecast */  } /* End of popforecast */
    
 int fileappend(FILE *fichier, char *optionfich)  int fileappend(FILE *fichier, char *optionfich)
 {  {
   if((fichier=fopen(optionfich,"a"))==NULL) {    if((fichier=fopen(optionfich,"a"))==NULL) {
Line 5647  double gompertz(double x[]) Line 7234  double gompertz(double x[])
   double A,B,L=0.0,sump=0.,num=0.;    double A,B,L=0.0,sump=0.,num=0.;
   int i,n=0; /* n is the size of the sample */    int i,n=0; /* n is the size of the sample */
   
   for (i=0;i<=imx-1 ; i++) {    for (i=1;i<=imx ; i++) {
     sump=sump+weight[i];      sump=sump+weight[i];
     /*    sump=sump+1;*/      /*    sump=sump+1;*/
     num=num+1;      num=num+1;
Line 5772  int readdata(char datafile[], int firsto Line 7359  int readdata(char datafile[], int firsto
   /*-------- data file ----------*/    /*-------- data file ----------*/
   FILE *fic;    FILE *fic;
   char dummy[]="                         ";    char dummy[]="                         ";
   int i=0, j=0, n=0;    int i=0, j=0, n=0, iv=0;
     int lstra;
   int linei, month, year,iout;    int linei, month, year,iout;
   char line[MAXLINE], linetmp[MAXLINE];    char line[MAXLINE], linetmp[MAXLINE];
   char stra[MAXLINE], strb[MAXLINE];    char stra[MAXLINE], strb[MAXLINE];
   char *stratrunc;    char *stratrunc;
   int lstra;  
   
   
   if((fic=fopen(datafile,"r"))==NULL)    {    if((fic=fopen(datafile,"r"))==NULL)    {
     printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);      printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;      fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
   }    }
   
   i=1;    i=1;
Line 5804  int readdata(char datafile[], int firsto Line 7392  int readdata(char datafile[], int firsto
     }      }
     trimbb(linetmp,line); /* Trims multiple blanks in line */      trimbb(linetmp,line); /* Trims multiple blanks in line */
     strcpy(line, linetmp);      strcpy(line, linetmp);
         
       /* Loops on waves */
     for (j=maxwav;j>=1;j--){      for (j=maxwav;j>=1;j--){
         for (iv=nqtv;iv>=1;iv--){  /* Loop  on time varying quantitative variables */
                                   cutv(stra, strb, line, ' '); 
                                   if(strb[0]=='.') { /* Missing value */
                                           lval=-1;
                                   }else{
                                           errno=0;
                                           /* what_kind_of_number(strb); */
                                           dval=strtod(strb,&endptr); 
                                           /* if( strb[0]=='\0' || (*endptr != '\0')){ */
                                           /* if(strb != endptr && *endptr == '\0') */
                                           /*    dval=dlval; */
                                           /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
                                           if( strb[0]=='\0' || (*endptr != '\0')){
                                                   printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav);
                                                   fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog);
                                                   return 1;
                                           }
                                           cotqvar[j][iv][i]=dval; 
                                   }
                                   strcpy(line,stra);
         }/* end loop ntqv */
                           
         for (iv=ntv;iv>=1;iv--){  /* Loop  on time varying dummies */
                                   cutv(stra, strb, line, ' '); 
                                   if(strb[0]=='.') { /* Missing value */
                                           lval=-1;
                                   }else{
                                           errno=0;
                                           lval=strtol(strb,&endptr,10); 
                                           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
                                           if( strb[0]=='\0' || (*endptr != '\0')){
                                                   printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav);
                                                   fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog);
                                                   return 1;
                                           }
                                   }
                                   if(lval <-1 || lval >1){
                                           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                                                                 \
    build V1=0 V2=0 for the reference value (1),\n                                                                                                 \
           V1=1 V2=0 for (2) \n                                                                                                                                                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                                                                                                                \
    Exiting.\n",lval,linei, i,line,j);
                                           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                                                                 \
    build V1=0 V2=0 for the reference value (1),\n                                                                                                 \
           V1=1 V2=0 for (2) \n                                                                                                                                                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
                                           return 1;
                                   }
                                   cotvar[j][iv][i]=(double)(lval);
                                   strcpy(line,stra);
         }/* end loop ntv */
   
         /* Statuses  at wave */
       cutv(stra, strb, line, ' ');         cutv(stra, strb, line, ' '); 
       if(strb[0]=='.') { /* Missing status */        if(strb[0]=='.') { /* Missing value */
         lval=-1;                                  lval=-1;
       }else{        }else{
         errno=0;                                  errno=0;
         lval=strtol(strb,&endptr,10);                                   lval=strtol(strb,&endptr,10); 
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/                                  /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){                                  if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);                                          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);                                          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
           return 1;                                          return 1;
         }                                  }
       }        }
        
       s[j][i]=lval;        s[j][i]=lval;
         
         /* Date of Interview */
       strcpy(line,stra);        strcpy(line,stra);
       cutv(stra, strb,line,' ');        cutv(stra, strb,line,' ');
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){        if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }        }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){        else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;                                  month=99;
         year=9999;                                  year=9999;
       }else{        }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);                                  printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);                                  fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
         return 1;                                  return 1;
       }        }
       anint[j][i]= (double) year;         anint[j][i]= (double) year; 
       mint[j][i]= (double)month;         mint[j][i]= (double)month; 
       strcpy(line,stra);        strcpy(line,stra);
     } /* ENd Waves */      } /* End loop on waves */
       
       /* Date of death */
     cutv(stra, strb,line,' ');       cutv(stra, strb,line,' '); 
     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){      if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
     }      }
Line 5847  int readdata(char datafile[], int firsto Line 7500  int readdata(char datafile[], int firsto
       year=9999;        year=9999;
     }else{      }else{
       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);                          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;                          return 1;
     }      }
     andc[i]=(double) year;       andc[i]=(double) year; 
     moisdc[i]=(double) month;       moisdc[i]=(double) month; 
     strcpy(line,stra);      strcpy(line,stra);
           
       /* Date of birth */
     cutv(stra, strb,line,' ');       cutv(stra, strb,line,' '); 
     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){      if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
     }      }
Line 5863  int readdata(char datafile[], int firsto Line 7517  int readdata(char datafile[], int firsto
     }else{      }else{
       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;                          return 1;
     }      }
     if (year==9999) {      if (year==9999) {
       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;                          return 1;
   
     }      }
     annais[i]=(double)(year);      annais[i]=(double)(year);
     moisnais[i]=(double)(month);       moisnais[i]=(double)(month); 
     strcpy(line,stra);      strcpy(line,stra);
       
       /* Sample weight */
     cutv(stra, strb,line,' ');       cutv(stra, strb,line,' '); 
     errno=0;      errno=0;
     dval=strtod(strb,&endptr);       dval=strtod(strb,&endptr); 
Line 5886  int readdata(char datafile[], int firsto Line 7541  int readdata(char datafile[], int firsto
     }      }
     weight[i]=dval;       weight[i]=dval; 
     strcpy(line,stra);      strcpy(line,stra);
   
       for (iv=nqv;iv>=1;iv--){  /* Loop  on fixed quantitative variables */
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing value */
                                   lval=-1;
         }else{
                                   errno=0;
                                   /* what_kind_of_number(strb); */
                                   dval=strtod(strb,&endptr);
                                   /* if(strb != endptr && *endptr == '\0') */
                                   /*   dval=dlval; */
                                   /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
                                   if( strb[0]=='\0' || (*endptr != '\0')){
                                           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);
                                           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog);
                                           return 1;
                                   }
                                   coqvar[iv][i]=dval; 
         }
         strcpy(line,stra);
       }/* end loop nqv */
           
       /* Covariate values */
     for (j=ncovcol;j>=1;j--){      for (j=ncovcol;j>=1;j--){
       cutv(stra, strb,line,' ');         cutv(stra, strb,line,' '); 
       if(strb[0]=='.') { /* Missing status */        if(strb[0]=='.') { /* Missing covariate value */
         lval=-1;                                  lval=-1;
       }else{        }else{
         errno=0;                                  errno=0;
         lval=strtol(strb,&endptr,10);                                   lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){                                  if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);                                          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);                                          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
           return 1;                                          return 1;
         }                                  }
       }        }
       if(lval <-1 || lval >1){        if(lval <-1 || lval >1){
         printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \                                  printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
  For example, for multinomial values like 1, 2 and 3,\n \   For example, for multinomial values like 1, 2 and 3,\n \
Line 5910  int readdata(char datafile[], int firsto Line 7587  int readdata(char datafile[], int firsto
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
  output of IMaCh is often meaningless.\n \   output of IMaCh is often meaningless.\n \
  Exiting.\n",lval,linei, i,line,j);   Exiting.\n",lval,linei, i,line,j);
         fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \                                  fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
  For example, for multinomial values like 1, 2 and 3,\n \   For example, for multinomial values like 1, 2 and 3,\n \
Line 5919  int readdata(char datafile[], int firsto Line 7596  int readdata(char datafile[], int firsto
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
  output of IMaCh is often meaningless.\n \   output of IMaCh is often meaningless.\n \
  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);   Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
         return 1;                                  return 1;
       }        }
       covar[j][i]=(double)(lval);        covar[j][i]=(double)(lval);
       strcpy(line,stra);        strcpy(line,stra);
Line 5943  int readdata(char datafile[], int firsto Line 7620  int readdata(char datafile[], int firsto
     
   return (0);    return (0);
   /* endread: */    /* endread: */
     printf("Exiting readdata: ");          printf("Exiting readdata: ");
     fclose(fic);          fclose(fic);
     return (1);          return (1);
   
   
   
 }  }
   
 void removespace(char *str) {  void removespace(char *str) {
   char *p1 = str, *p2 = str;    char *p1 = str, *p2 = str;
   do    do
Line 5958  void removespace(char *str) { Line 7633  void removespace(char *str) {
   while (*p1++ == *p2++);    while (*p1++ == *p2++);
 }  }
   
 int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:  int decodemodel ( char model[], int lastobs)
    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age   /**< This routine decode the model and returns:
    * - nagesqr = 1 if age*age in the model, otherwise 0.          * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age          * - nagesqr = 1 if age*age in the model, otherwise 0.
    * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age          * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
    * - cptcovage number of covariates with age*products =2          * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
    * - cptcovs number of simple covariates          * - cptcovage number of covariates with age*products =2
    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10          * - cptcovs number of simple covariates
    *     which is a new column after the 9 (ncovcol) variables.           * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual          *     which is a new column after the 9 (ncovcol) variables. 
    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage          * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.          * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .          *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
  */          * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
           */
 {  {
   int i, j, k, ks;    int i, j, k, ks;
   int  j1, k1, k2;    int  j1, k1, k2;
Line 5996  int decodemodel ( char model[], int last Line 7672  int decodemodel ( char model[], int last
     if ((strpt=strstr(model,"age*age")) !=0){      if ((strpt=strstr(model,"age*age")) !=0){
       printf(" strpt=%s, model=%s\n",strpt, model);        printf(" strpt=%s, model=%s\n",strpt, model);
       if(strpt != model){        if(strpt != model){
       printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \                                  printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \   'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
  corresponding column of parameters.\n",model);   corresponding column of parameters.\n",model);
       fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \                                  fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \   'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
  corresponding column of parameters.\n",model); fflush(ficlog);   corresponding column of parameters.\n",model); fflush(ficlog);
       return 1;                                  return 1;
     }                          }
   
       nagesqr=1;        nagesqr=1;
       if (strstr(model,"+age*age") !=0)        if (strstr(model,"+age*age") !=0)
         substrchaine(modelsav, model, "+age*age");                                  substrchaine(modelsav, model, "+age*age");
       else if (strstr(model,"age*age+") !=0)        else if (strstr(model,"age*age+") !=0)
         substrchaine(modelsav, model, "age*age+");                                  substrchaine(modelsav, model, "age*age+");
       else         else 
         substrchaine(modelsav, model, "age*age");                                  substrchaine(modelsav, model, "age*age");
     }else      }else
       nagesqr=0;        nagesqr=0;
     if (strlen(modelsav) >1){      if (strlen(modelsav) >1){
       j=nbocc(modelsav,'+'); /**< j=Number of '+' */        j=nbocc(modelsav,'+'); /**< j=Number of '+' */
       j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */        j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */        cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2  */
       cptcovt= j+1; /* Number of total covariates in the model, not including        cptcovt= j+1; /* Number of total covariates in the model, not including
                    * cst, age and age*age                                                                                    * cst, age and age*age 
                    * V1+V1*age+ V3 + V3*V4+age*age=> 4*/                                                                                   * V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/
                   /* including age products which are counted in cptcovage.                          /* including age products which are counted in cptcovage.
                   * but the covariates which are products must be treated                            * but the covariates which are products must be treated 
                   * separately: ncovn=4- 2=2 (V1+V3). */                           * separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */        cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */        cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
Line 6035  int decodemodel ( char model[], int last Line 7711  int decodemodel ( char model[], int last
        *   k=  1    2      3       4     5       6      7        8         *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8         *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:         *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)         *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8         *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[2]=1 Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k         *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1         *       if products, new covar are created after ncovcol with k1
Line 6080  int decodemodel ( char model[], int last Line 7756  int decodemodel ( char model[], int last
         Tvar[k]=0;          Tvar[k]=0;
       cptcovage=0;        cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */        for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+'                                   cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                          modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */                                                                                                                                                                    modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */                                  if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                                  /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/                                  /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */                                  if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */                                          cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */                                          if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */                                                  /* covar is not filled and then is empty */
             cptcovprod--;                                                  cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */                                                  cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */                                                  Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
             cptcovage++; /* Sums the number of covariates which include age as a product */                                                  cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */                                                  Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
             /*printf("stre=%s ", stre);*/                                                  /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */                                          } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;                                                  cptcovprod--;
             cutl(stre,strb,strc,'V');                                                  cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);                                                  Tvar[k]=atoi(stre);
             cptcovage++;                                                  cptcovage++;
             Tage[cptcovage]=k;                                                  Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/                                          } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */                                                  /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;                                                  cptcovn++;
             cptcovprodnoage++;k1++;                                                  cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/                                                  cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but                                                  Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                    because this model-covariate is a construction we invent a new column                                                                                                                                           because this model-covariate is a construction we invent a new column
                                    ncovcol + k1                                                                                                                                           ncovcol + k1
                                    If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2                                                                                                                                           If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                    Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */                                                                                                                                           Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */                                                  cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */                                                  Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/                                                  Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/                                                  Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;                                                  k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */                                                  Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */                                                  Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){                                                  for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of                                                          /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */                                                                   covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];                                                          covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }                                                  }
           } /* End age is not in the model */                                          } /* End age is not in the model */
         } /* End if model includes a product */                                  } /* End if model includes a product */
         else { /* no more sum */                                  else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                                          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
           /*  scanf("%d",i);*/                                          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');                                          cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */                                          ks++; /**< Number of simple covariates */
           cptcovn++;                                          cptcovn++;
           Tvar[k]=atoi(strd);                                          Tvar[k]=atoi(strd);
         }                                  }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */                                   strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                                  /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/                                          scanf("%d",i);*/
       } /* end of loop + on total covariates */        } /* end of loop + on total covariates */
     } /* end if strlen(modelsave == 0) age*age might exist */      } /* end if strlen(modelsave == 0) age*age might exist */
   } /* end if strlen(model == 0) */    } /* end if strlen(model == 0) */
Line 6144  int decodemodel ( char model[], int last Line 7820  int decodemodel ( char model[], int last
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
   printf("cptcovprod=%d ", cptcovprod);                   printf("cptcovprod=%d ", cptcovprod);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
   scanf("%d ",i);*/                   scanf("%d ",i);*/
   /* Dispatching in quantitative and time varying covariates */
   
           for(k=1, ncoveff=0, nqveff=0, ntveff=0, nqtveff=0;k<=cptcovn; k++){ /* or cptocvt */
                   if (Tvar[k] <=ncovcol){
                           ncoveff++;
                   }else if( Tvar[k] <=ncovcol+nqv){
                           nqveff++;
                   }else if( Tvar[k] <=ncovcol+nqv+ntv){
                           ntveff++;
                   }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){
                           nqtveff++;
                   }else
                           printf("Error in effective covariates \n");
           }
   
   return (0); /* with covar[new additional covariate if product] and Tage if age */     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
   /*endread:*/    /*endread:*/
     printf("Exiting decodemodel: ");          printf("Exiting decodemodel: ");
     return (1);          return (1);
 }  }
   
 int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )  int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 {  {
   int i, m;    int i, m;
     int firstone=0;
     
   for (i=1; i<=imx; i++) {    for (i=1; i<=imx; i++) {
     for(m=2; (m<= maxwav); m++) {      for(m=2; (m<= maxwav); m++) {
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
         anint[m][i]=9999;          anint[m][i]=9999;
         s[m][i]=-1;          if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
             s[m][i]=-1;
       }        }
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
         *nberr = *nberr + 1;          *nberr = *nberr + 1;
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);          if(firstone == 0){
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);            firstone=1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
           }
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
         s[m][i]=-1;          s[m][i]=-1;
       }        }
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
Line 6184  int calandcheckages(int imx, int maxwav, Line 7878  int calandcheckages(int imx, int maxwav,
   for (i=1; i<=imx; i++)  {    for (i=1; i<=imx; i++)  {
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
     for(m=firstpass; (m<= lastpass); m++){      for(m=firstpass; (m<= lastpass); m++){
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){        if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
         if (s[m][i] >= nlstate+1) {          if (s[m][i] >= nlstate+1) {
           if(agedc[i]>0){            if(agedc[i]>0){
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999){              if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
               agev[m][i]=agedc[i];                agev[m][i]=agedc[i];
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
             }else {              }else {
               if ((int)andc[i]!=9999){                if ((int)andc[i]!=9999){
                 nbwarn++;                  nbwarn++;
Line 6199  int calandcheckages(int imx, int maxwav, Line 7893  int calandcheckages(int imx, int maxwav,
               }                }
             }              }
           } /* agedc > 0 */            } /* agedc > 0 */
         }          } /* end if */
         else if(s[m][i] !=9){ /* Standard case, age in fractional          else if(s[m][i] !=9){ /* Standard case, age in fractional
                                  years but with the precision of a month */                                   years but with the precision of a month */
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
Line 6215  int calandcheckages(int imx, int maxwav, Line 7909  int calandcheckages(int imx, int maxwav,
           }            }
           /*agev[m][i]=anint[m][i]-annais[i];*/            /*agev[m][i]=anint[m][i]-annais[i];*/
           /*     agev[m][i] = age[i]+2*m;*/            /*     agev[m][i] = age[i]+2*m;*/
         }          } /* en if 9*/
         else { /* =9 */          else { /* =9 */
             /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
           agev[m][i]=1;            agev[m][i]=1;
           s[m][i]=-1;            s[m][i]=-1;
         }          }
       }        }
       else /*= 0 Unknown */        else if(s[m][i]==0) /*= 0 Unknown */
         agev[m][i]=1;          agev[m][i]=1;
     }        else{
               printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           agev[m][i]=0;
         }
       } /* End for lastpass */
   }    }
       
   for (i=1; i<=imx; i++)  {    for (i=1; i<=imx; i++)  {
     for(m=firstpass; (m<=lastpass); m++){      for(m=firstpass; (m<=lastpass); m++){
       if (s[m][i] > (nlstate+ndeath)) {        if (s[m][i] > (nlstate+ndeath)) {
Line 6449  void syscompilerinfo(int logged) Line 8149  void syscompilerinfo(int logged)
 #endif  #endif
         
   
  }  }
   
  int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyear){  int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
   /*--------------- Prevalence limit  (period or stable prevalence) --------------*/    /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   int i, j, k, i1 ;    int i, j, k, i1 ;
   /* double ftolpl = 1.e-10; */    /* double ftolpl = 1.e-10; */
Line 6472  void syscompilerinfo(int logged) Line 8172  void syscompilerinfo(int logged)
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
   fprintf(ficrespl,"\n");    fprintf(ficrespl,"\n");
       
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */    /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
     agebase=ageminpar;
     agelim=agemaxpar;
   
     i1=pow(2,ncoveff);
     if (cptcovn < 1){i1=1;}
   
     for(k=1; k<=i1;k++){
     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
       /* k=k+1; */
       /* to clean */
       //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
       fprintf(ficrespl,"#******");
       printf("#******");
       fprintf(ficlog,"#******");
       for(j=1;j<=nqveff;j++) {
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       fprintf(ficrespl,"******\n");
       printf("******\n");
       fprintf(ficlog,"******\n");
                   if(invalidvarcomb[k]){
                                                   printf("\nCombination (%d) ignored because no cases \n",k); 
                                                   fprintf(ficrespl,"#Combination (%d) ignored because no cases \n",k); 
                                                   fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); 
                                                   continue;
                   }
   
       fprintf(ficrespl,"#Age ");
       for(j=1;j<=nqveff;j++) {
         fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
       fprintf(ficrespl,"Total Years_to_converge\n");
           
       for (age=agebase; age<=agelim; age++){
         /* for (age=agebase; age<=agebase; age++){ */
         prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k);
         fprintf(ficrespl,"%.0f ",age );
         for(j=1;j<=nqveff;j++)
                                                           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         tot=0.;
         for(i=1; i<=nlstate;i++){
                                                           tot +=  prlim[i][i];
                                                           fprintf(ficrespl," %.5f", prlim[i][i]);
         }
         fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
       } /* Age */
       /* was end of cptcod */
     } /* cptcov */
     return 0;
   }
   
     agebase=ageminpar;  int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
     agelim=agemaxpar;          /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
           
           /* Computes the back prevalence limit  for any combination      of covariate values 
      * at any age between ageminpar and agemaxpar
            */
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
     /* double ***mobaverage; */
     /* double      **dnewm, **doldm, **dsavm;  /\* for use *\/ */
   
     i1=pow(2,cptcoveff);    strcpy(fileresplb,"PLB_");
     if (cptcovn < 1){i1=1;}    strcat(fileresplb,fileresu);
     if((ficresplb=fopen(fileresplb,"w"))==NULL) {
       printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
       fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
     }
     printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
     fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
     pstamp(ficresplb);
     fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficresplb,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
     fprintf(ficresplb,"\n");
     
     
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
     
     agebase=ageminpar;
     agelim=agemaxpar;
     
     
     i1=pow(2,nqveff);
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){          for(k=1; k<=i1;k++){ 
     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
     /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */      /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;      /* k=k+1; */
         /* to clean */      /* to clean */
         //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));      //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
         fprintf(ficrespl,"#******");      fprintf(ficresplb,"#******");
         printf("#******");      printf("#******");
         fprintf(ficlog,"#******");      fprintf(ficlog,"#******");
         for(j=1;j<=cptcoveff;j++) {      for(j=1;j<=nqveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }      }
         fprintf(ficrespl,"******\n");      fprintf(ficresplb,"******\n");
         printf("******\n");      printf("******\n");
         fprintf(ficlog,"******\n");      fprintf(ficlog,"******\n");
                   if(invalidvarcomb[k]){
         fprintf(ficrespl,"#Age ");                                                  printf("\nCombination (%d) ignored because no cases \n",k); 
         for(j=1;j<=cptcoveff;j++) {                                                  fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); 
           fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);                                                  fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); 
         }                                                  continue;
         for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);                  }
         fprintf(ficrespl,"Total Years_to_converge\n");      
               fprintf(ficresplb,"#Age ");
         for (age=agebase; age<=agelim; age++){      for(j=1;j<=nqveff;j++) {
         /* for (age=agebase; age<=agebase; age++){ */        fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyear, k);      }
           fprintf(ficrespl,"%.0f ",age );      for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
           for(j=1;j<=cptcoveff;j++)      fprintf(ficresplb,"Total Years_to_converge\n");
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);      
           tot=0.;      
           for(i=1; i<=nlstate;i++){      for (age=agebase; age<=agelim; age++){
             tot +=  prlim[i][i];        /* for (age=agebase; age<=agebase; age++){ */
             fprintf(ficrespl," %.5f", prlim[i][i]);        if(mobilavproj > 0){
           }          /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
           fprintf(ficrespl," %.3f %d\n", tot, *ncvyear);          /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
         } /* Age */                                  bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k);
         /* was end of cptcod */        }else if (mobilavproj == 0){
     } /* cptcov */                                  printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
         return 0;                                  fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
                                   exit(1);
         }else{
                                   /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
                                   bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k);
         }
         fprintf(ficresplb,"%.0f ",age );
         for(j=1;j<=nqveff;j++)
                                   fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         tot=0.;
         for(i=1; i<=nlstate;i++){
                                   tot +=  bprlim[i][i];
                                   fprintf(ficresplb," %.5f", bprlim[i][i]);
         }
         fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
       } /* Age */
       /* was end of cptcod */
     } /* cptcov */
     
     /* hBijx(p, bage, fage); */
     /* fclose(ficrespijb); */
     
     return 0;
 }  }
    
 int hPijx(double *p, int bage, int fage){  int hPijx(double *p, int bage, int fage){
     /*------------- h Pij x at various ages ------------*/      /*------------- h Pij x at various ages ------------*/
   
Line 6549  int hPijx(double *p, int bage, int fage) Line 8359  int hPijx(double *p, int bage, int fage)
     agelim=AGESUP;      agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */      hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
                   
     /* hstepm=1;   aff par mois*/      /* hstepm=1;   aff par mois*/
     pstamp(ficrespij);      pstamp(ficrespij);
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     i1= pow(2,cptcoveff);      i1= pow(2,nqveff);
    /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */                  /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
    /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */                  /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
    /*   k=k+1;  */                  /*      k=k+1;  */
     for (k=1; k <= (int) pow(2,cptcoveff); k++){      for (k=1; k <= (int) pow(2,nqveff); k++){
       fprintf(ficrespij,"\n#****** ");        fprintf(ficrespij,"\n#****** ");
       for(j=1;j<=cptcoveff;j++)         for(j=1;j<=nqveff;j++) 
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       fprintf(ficrespij,"******\n");        fprintf(ficrespij,"******\n");
               
Line 6590  int hPijx(double *p, int bage, int fage) Line 8400  int hPijx(double *p, int bage, int fage)
       }        }
       /*}*/        /*}*/
     }      }
         return 0;      return 0;
 }  }
    
    int hBijx(double *p, int bage, int fage, double ***prevacurrent){
       /*------------- h Bij x at various ages ------------*/
   
     int stepsize;
     /* int agelim; */
           int ageminl;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
           
     double agedeb;
     double ***p3mat;
           
     strcpy(filerespijb,"PIJB_");  strcat(filerespijb,fileresu);
     if((ficrespijb=fopen(filerespijb,"w"))==NULL) {
       printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1;
       fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1;
     }
     printf("Computing pij back: result on file '%s' \n", filerespijb);
     fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
     
     /* agelim=AGESUP; */
     ageminl=30;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
     
     /* hstepm=1;   aff par mois*/
     pstamp(ficrespijb);
     fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x ");
     i1= pow(2,nqveff);
     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
     /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
     /*    k=k+1;  */
     for (k=1; k <= (int) pow(2,nqveff); k++){
       fprintf(ficrespijb,"\n#****** ");
       for(j=1;j<=nqveff;j++)
         fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       fprintf(ficrespijb,"******\n");
       if(invalidvarcomb[k]){
         fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); 
         continue;
       }
       
       /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
       for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
         /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
         nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */
         
         /*          nhstepm=nhstepm*YEARM; aff par mois*/
         
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         /* oldm=oldms;savm=savms; */
         /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
         hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k);
         /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
         fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j=");
         for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate+ndeath;j++)
             fprintf(ficrespijb," %1d-%1d",i,j);
         fprintf(ficrespijb,"\n");
         for (h=0; h<=nhstepm; h++){
           /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
           fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
           /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespijb," %.5f", p3mat[i][j][h]);
           fprintf(ficrespijb,"\n");
         }
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespijb,"\n");
       }
       /*}*/
     }
     return 0;
    } /*  hBijx */
   
   
 /***********************************************/  /***********************************************/
Line 6609  int main(int argc, char *argv[]) Line 8500  int main(int argc, char *argv[])
 #endif  #endif
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;    int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   int ncvyearnp=0;    int ncvyear=0; /* Number of years needed for the period prevalence to converge */
   int *ncvyear=&ncvyearnp; /* Number of years needed for the period prevalence to converge */  
   int jj, ll, li, lj, lk;    int jj, ll, li, lj, lk;
   int numlinepar=0; /* Current linenumber of parameter file */    int numlinepar=0; /* Current linenumber of parameter file */
   int num_filled;    int num_filled;
Line 6625  int main(int argc, char *argv[]) Line 8515  int main(int argc, char *argv[])
   double agedeb=0.;    double agedeb=0.;
   
   double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;    double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
     double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */
   
   double fret;    double fret;
   double dum=0.; /* Dummy variable */    double dum=0.; /* Dummy variable */
   double ***p3mat;    double ***p3mat;
   double ***mobaverage;    /* double ***mobaverage; */
   
   char line[MAXLINE];    char line[MAXLINE];
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
Line 6645  int main(int argc, char *argv[]) Line 8536  int main(int argc, char *argv[])
   
   int *tab;     int *tab; 
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int backcast=0;
   int mobilav=0,popforecast=0;    int mobilav=0,popforecast=0;
   int hstepm=0, nhstepm=0;    int hstepm=0, nhstepm=0;
   int agemortsup;    int agemortsup;
Line 6655  int main(int argc, char *argv[]) Line 8547  int main(int argc, char *argv[])
   double bage=0, fage=110., age, agelim=0., agebase=0.;    double bage=0, fage=110., age, agelim=0., agebase=0.;
   double ftolpl=FTOL;    double ftolpl=FTOL;
   double **prlim;    double **prlim;
     double **bprlim;
   double ***param; /* Matrix of parameters */    double ***param; /* Matrix of parameters */
   double  *p;    double  *p;
   double **matcov; /* Matrix of covariance */    double **matcov; /* Matrix of covariance */
Line 6666  int main(int argc, char *argv[]) Line 8559  int main(int argc, char *argv[])
   double *epj, vepp;    double *epj, vepp;
   
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000;
   
   double **ximort;    double **ximort;
   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";    char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
   int *dcwave;    int *dcwave;
Line 6718  int main(int argc, char *argv[]) Line 8613  int main(int argc, char *argv[])
   printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);    printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
   if(argc <=1){    if(argc <=1){
     printf("\nEnter the parameter file name: ");      printf("\nEnter the parameter file name: ");
     fgets(pathr,FILENAMELENGTH,stdin);      if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
     i=strlen(pathr);      i=strlen(pathr);
     if(pathr[i-1]=='\n')      if(pathr[i-1]=='\n')
       pathr[i-1]='\0';        pathr[i-1]='\0';
     i=strlen(pathr);      i=strlen(pathr);
     if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */      if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
       pathr[i-1]='\0';        pathr[i-1]='\0';
    for (tok = pathr; tok != NULL; ){      }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
       printf("Pathr |%s|\n",pathr);        printf("Pathr |%s|\n",pathr);
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
       printf("val= |%s| pathr=%s\n",val,pathr);        printf("val= |%s| pathr=%s\n",val,pathr);
Line 6858  int main(int argc, char *argv[]) Line 8762  int main(int argc, char *argv[])
     }else      }else
       break;        break;
   }    }
   if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \    if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                         &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){                          &ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
     if (num_filled != 8) {      if (num_filled != 11) {
       printf("Not 8\n");        printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         printf("but line=%s\n",line);
     }      }
     printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);      printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
   }    }
   /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */    /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
   ftolpl=6.e-3; /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */    /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
   /* Third parameter line */    /* Third parameter line */
   while(fgets(line, MAXLINE, ficpar)) {    while(fgets(line, MAXLINE, ficpar)) {
     /* If line starts with a # it is a comment */      /* If line starts with a # it is a comment */
Line 6901  int main(int argc, char *argv[]) Line 8806  int main(int argc, char *argv[])
   /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */    /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
   /* numlinepar=numlinepar+3; /\* In general *\/ */    /* numlinepar=numlinepar+3; /\* In general *\/ */
   /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */    /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
   fflush(ficlog);    fflush(ficlog);
   /* if(model[0]=='#'|| model[0]== '\0'){ */    /* if(model[0]=='#'|| model[0]== '\0'){ */
   if(model[0]=='#'){    if(model[0]=='#'){
Line 6931  int main(int argc, char *argv[]) Line 8836  int main(int argc, char *argv[])
   
         
   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */    covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     coqvar=matrix(1,nqv,1,n);  /**< used in readdata */
     cotvar=ma3x(1,maxwav,1,ntv,1,n);  /**< used in readdata */
     cotqvar=ma3x(1,maxwav,1,nqtv,1,n);  /**< used in readdata */
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5    /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
      v1+v2*age+v2*v3 makes cptcovn = 3       v1+v2*age+v2*v3 makes cptcovn = 3
Line 6960  int main(int argc, char *argv[]) Line 8868  int main(int argc, char *argv[])
     fclose (ficlog);      fclose (ficlog);
     goto end;      goto end;
     exit(0);      exit(0);
   }    }  else if(mle==-5) { /* Main Wizard */
   else if(mle==-3) { /* Main Wizard */  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);      printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);      fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     matcov=matrix(1,npar,1,npar);      matcov=matrix(1,npar,1,npar);
     hess=matrix(1,npar,1,npar);      hess=matrix(1,npar,1,npar);
   }    }  else{ /* Begin of mle != -1 or -5 */
   else{  
     /* Read guessed parameters */      /* Read guessed parameters */
     /* Reads comments: lines beginning with '#' */      /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){      while((c=getc(ficpar))=='#' && c!= EOF){
Line 6984  int main(int argc, char *argv[]) Line 8890  int main(int argc, char *argv[])
           
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){      for(i=1; i <=nlstate; i++){
       j=0;                          j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){        for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;                                  if(jj==i) continue;
         j++;                                  j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);                                  fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) || (j1 != jj)){                                  if ((i1 != i) || (j1 != jj)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \                                          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 It might be a problem of design; if ncovcol and the model are correct\n \  It might be a problem of design; if ncovcol and the model are correct\n \
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
           exit(1);                                          exit(1);
         }                                  }
         fprintf(ficparo,"%1d%1d",i1,j1);                                  fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)                                  if(mle==1)
           printf("%1d%1d",i,jj);                                          printf("%1d%1d",i,jj);
         fprintf(ficlog,"%1d%1d",i,jj);                                  fprintf(ficlog,"%1d%1d",i,jj);
         for(k=1; k<=ncovmodel;k++){                                  for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);                                          fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){                                          if(mle==1){
             printf(" %lf",param[i][j][k]);                                                  printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);                                                  fprintf(ficlog," %lf",param[i][j][k]);
           }                                          }
           else                                          else
             fprintf(ficlog," %lf",param[i][j][k]);                                                  fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);                                          fprintf(ficparo," %lf",param[i][j][k]);
         }                                  }
         fscanf(ficpar,"\n");                                  fscanf(ficpar,"\n");
         numlinepar++;                                  numlinepar++;
         if(mle==1)                                  if(mle==1)
           printf("\n");                                          printf("\n");
         fprintf(ficlog,"\n");                                  fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");                                  fprintf(ficparo,"\n");
       }        }
     }        }  
     fflush(ficlog);      fflush(ficlog);
Line 7035  run imach with mle=-1 to get a correct t Line 8941  run imach with mle=-1 to get a correct t
   
     for(i=1; i <=nlstate; i++){      for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){        for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);                                  fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ( (i1-i) * (j1-j) != 0){                                  if ( (i1-i) * (j1-j) != 0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);                                          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);                                          exit(1);
         }                                  }
         printf("%1d%1d",i,j);                                  printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);                                  fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);                                  fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){                                  for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);                                          fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);                                          printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);                                          fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);                                          fprintf(ficlog," %le",delti3[i][j][k]);
         }                                  }
         fscanf(ficpar,"\n");                                  fscanf(ficpar,"\n");
         numlinepar++;                                  numlinepar++;
         printf("\n");                                  printf("\n");
         fprintf(ficparo,"\n");                                  fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");                                  fprintf(ficlog,"\n");
       }        }
     }      }
     fflush(ficlog);      fflush(ficlog);
                   
     /* Reads covariance matrix */      /* Reads covariance matrix */
     delti=delti3[1][1];      delti=delti3[1][1];
                   
                   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
                     
     /* Reads comments: lines beginning with '#' */      /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){      while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);        ungetc(c,ficpar);
Line 7074  run imach with mle=-1 to get a correct t Line 8980  run imach with mle=-1 to get a correct t
       fputs(line,ficlog);        fputs(line,ficlog);
     }      }
     ungetc(c,ficpar);      ungetc(c,ficpar);
                     
     matcov=matrix(1,npar,1,npar);      matcov=matrix(1,npar,1,npar);
     hess=matrix(1,npar,1,npar);      hess=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++)      for(i=1; i <=npar; i++)
       for(j=1; j <=npar; j++) matcov[i][j]=0.;        for(j=1; j <=npar; j++) matcov[i][j]=0.;
                         
     /* Scans npar lines */      /* Scans npar lines */
     for(i=1; i <=npar; i++){      for(i=1; i <=npar; i++){
       count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);        count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
       if(count != 3){        if(count != 3){
         printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\                                  printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
 This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\  This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
 Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);  Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
         fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\                                  fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
 This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\  This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
 Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);  Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
         exit(1);                                  exit(1);
       }else        }else{
       if(mle==1)                                  if(mle==1)
         printf("%1d%1d%1d",i1,j1,jk);                                          printf("%1d%1d%1d",i1,j1,jk);
                           }
       fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);        fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
       fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);        fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
       for(j=1; j <=i; j++){        for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);                                  fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){                                  if(mle==1){
           printf(" %.5le",matcov[i][j]);                                          printf(" %.5le",matcov[i][j]);
         }                                  }
         fprintf(ficlog," %.5le",matcov[i][j]);                                  fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);                                  fprintf(ficparo," %.5le",matcov[i][j]);
       }        }
       fscanf(ficpar,"\n");        fscanf(ficpar,"\n");
       numlinepar++;        numlinepar++;
       if(mle==1)        if(mle==1)
         printf("\n");                                  printf("\n");
       fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");        fprintf(ficparo,"\n");
     }      }
     /* End of read covariance matrix npar lines */      /* End of read covariance matrix npar lines */
     for(i=1; i <=npar; i++)      for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)        for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];                                  matcov[i][j]=matcov[j][i];
           
     if(mle==1)      if(mle==1)
       printf("\n");        printf("\n");
Line 7133  Please run with mle=-1 to get a correct Line 9040  Please run with mle=-1 to get a correct
     }      }
     fprintf(ficres,"#%s\n",version);      fprintf(ficres,"#%s\n",version);
   }    /* End of mle != -3 */    }    /* End of mle != -3 */
     
   /*  Main data    /*  Main data
    */     */
   n= lastobs;    n= lastobs;
Line 7142  Please run with mle=-1 to get a correct Line 9049  Please run with mle=-1 to get a correct
   annais=vector(1,n);    annais=vector(1,n);
   moisdc=vector(1,n);    moisdc=vector(1,n);
   andc=vector(1,n);    andc=vector(1,n);
     weight=vector(1,n);
   agedc=vector(1,n);    agedc=vector(1,n);
   cod=ivector(1,n);    cod=ivector(1,n);
   weight=vector(1,n);    for(i=1;i<=n;i++){
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                  num[i]=0;
                   moisnais[i]=0;
                   annais[i]=0;
                   moisdc[i]=0;
                   andc[i]=0;
                   agedc[i]=0;
                   cod[i]=0;
                   weight[i]=1.0; /* Equal weights, 1 by default */
           }
   mint=matrix(1,maxwav,1,n);    mint=matrix(1,maxwav,1,n);
   anint=matrix(1,maxwav,1,n);    anint=matrix(1,maxwav,1,n);
   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
Line 7190  Please run with mle=-1 to get a correct Line 9106  Please run with mle=-1 to get a correct
 /* Main decodemodel */  /* Main decodemodel */
   
   
   if(decodemodel(model, lastobs) == 1)    if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3  = {4, 3, 5}*/
     goto end;      goto end;
   
   if((double)(lastobs-imx)/(double)imx > 1.10){    if((double)(lastobs-imx)/(double)imx > 1.10){
Line 7215  Please run with mle=-1 to get a correct Line 9131  Please run with mle=-1 to get a correct
   free_vector(annais,1,n);    free_vector(annais,1,n);
   /* free_matrix(mint,1,maxwav,1,n);    /* free_matrix(mint,1,maxwav,1,n);
      free_matrix(anint,1,maxwav,1,n);*/       free_matrix(anint,1,maxwav,1,n);*/
   free_vector(moisdc,1,n);    /* free_vector(moisdc,1,n); */
   free_vector(andc,1,n);    /* free_vector(andc,1,n); */
   /* */    /* */
       
   wav=ivector(1,imx);    wav=ivector(1,imx);
   dh=imatrix(1,lastpass-firstpass+1,1,imx);    /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
     dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
     bh=imatrix(1,lastpass-firstpass+2,1,imx);
     mw=imatrix(1,lastpass-firstpass+2,1,imx);
         
   /* Concatenates waves */    /* Concatenates waves */
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     */
   
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   /* */    /* */
     
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */    free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
   ncodemax[1]=1;    ncodemax[1]=1;
   Ndum =ivector(-1,NCOVMAX);      Ndum =ivector(-1,NCOVMAX);  
   if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */          cptcoveff=0;
     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */    if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
   /* Nbcode gives the value of the lth modality of jth covariate, in      tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
           }
           
           ncovcombmax=pow(2,cptcoveff);
           invalidvarcomb=ivector(1, ncovcombmax); 
           for(i=1;i<ncovcombmax;i++)
                   invalidvarcomb[i]=0;
   
     /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
      V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/       V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
   /* 1 to ncodemax[j] is the maximum value of this jth covariate */    /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
   
   /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */    /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/    /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
   /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/    /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
   h=0;    /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
      * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
      * (currently 0 or 1) in the data.
      * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
      * corresponding modality (h,j).
      */
   
     h=0;
   /*if (cptcovn > 0) */    /*if (cptcovn > 0) */
         
    
   m=pow(2,cptcoveff);    m=pow(2,cptcoveff);
     
           /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1            /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
            * For k=4 covariates, h goes from 1 to 2**k             * For k=4 covariates, h goes from 1 to m=2**k
            * codtabm(h,k)=  1 & (h-1) >> (k-1) ;             * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
              * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
            *     h\k   1     2     3     4             *     h\k   1     2     3     4
            *______________________________               *______________________________  
            *     1 i=1 1 i=1 1 i=1 1 i=1 1             *     1 i=1 1 i=1 1 i=1 1 i=1 1
Line 7272  Please run with mle=-1 to get a correct Line 9212  Please run with mle=-1 to get a correct
            *    15 i=8 1     2     2     2             *    15 i=8 1     2     2     2
            *    16     2     2     2     2             *    16     2     2     2     2
            */             */
   /* /\* for(h=1; h <=100 ;h++){  *\/ */    /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
   /*   /\* printf("h=%2d ", h); *\/ */       /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
   /*    /\* for(k=1; k <=10; k++){ *\/ */       * and the value of each covariate?
   /*      /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */       * V1=1, V2=1, V3=2, V4=1 ?
   /*    /\*   codtab[h][k]=codtabm(h,k); *\/ */       * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
   /*    /\* } *\/ */       * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
   /*    /\* printf("\n"); *\/ */       * In order to get the real value in the data, we use nbcode
   /* } */       * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
   /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */       * We are keeping this crazy system in order to be able (in the future?) 
   /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */       * to have more than 2 values (0 or 1) for a covariate.
   /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */       * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
   /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */       * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
   /*      h++; */       *              bbbbbbbb
   /*      if (h>m)  */       *              76543210     
   /*        h=1; */       *   h-1        00000101 (6-1=5)
   /*      codtab[h][k]=j; */       *(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift
   /*      /\* codtab[12][3]=1; *\/ */       *           &
   /*      /\*codtab[h][Tvar[k]]=j;*\/ */       *     1        00000001 (1)
   /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */       *              00000000        = 1 & ((h-1) >> (k-1))
   /*    }  */       *          +1= 00000001 =1 
   /*     } */       *
   /*   } */       * h=14, k=3 => h'=h-1=13, k'=k-1=2
   /* }  */       *          h'      1101 =2^3+2^2+0x2^1+2^0
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        *    >>k'            11
      codtab[1][2]=1;codtab[2][2]=2; */       *          &   00000001
   /* for(i=1; i <=m ;i++){  */       *            = 00000001
   /*    for(k=1; k <=cptcovn; k++){ */       *      +1    = 00000010=2    =  codtabm(14,3)   
   /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */       * Reverse h=6 and m=16?
   /*    } */       * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
   /*    printf("\n"); */       * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
   /* } */       * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
   /*   scanf("%d",i);*/       * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
        * V3=decodtabm(14,3,2**4)=2
        *          h'=13   1101 =2^3+2^2+0x2^1+2^0
        *(h-1) >> (j-1)    0011 =13 >> 2
        *          &1 000000001
        *           = 000000001
        *         +1= 000000010 =2
        *                  2211
        *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
        *                  V3=2
                    * codtabm and decodtabm are identical
        */
   
   
  free_ivector(Ndum,-1,NCOVMAX);   free_ivector(Ndum,-1,NCOVMAX);
   
Line 7319  Please run with mle=-1 to get a correct Line 9271  Please run with mle=-1 to get a correct
     printf("Problem with file %s",optionfilegnuplot);      printf("Problem with file %s",optionfilegnuplot);
   }    }
   else{    else{
     fprintf(ficgp,"\n# %s\n", version);       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
     fprintf(ficgp,"# %s\n", optionfilegnuplot);       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
     //fprintf(ficgp,"set missing 'NaNq'\n");      //fprintf(ficgp,"set missing 'NaNq'\n");
     fprintf(ficgp,"set datafile missing 'NaNq'\n");      fprintf(ficgp,"set datafile missing 'NaNq'\n");
Line 7346  Please run with mle=-1 to get a correct Line 9298  Please run with mle=-1 to get a correct
   else{    else{
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  <hr size=\"2\" color=\"#EC5E5E\"> \n\
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
   }    }
   
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \    fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  <hr size=\"2\" color=\"#EC5E5E\"> \n\
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\  <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
 \n\  \n\
 <hr  size=\"2\" color=\"#EC5E5E\">\  <hr  size=\"2\" color=\"#EC5E5E\">\
  <ul><li><h4>Parameter files</h4>\n\   <ul><li><h4>Parameter files</h4>\n\
Line 7376  Title=%s <br>Datafile=%s Firstpass=%d La Line 9330  Title=%s <br>Datafile=%s Firstpass=%d La
 #endif  #endif
                       
       
   /* Calculates basic frequencies. Computes observed prevalence at single age    /* Calculates basic frequencies. Computes observed prevalence at single age 
                    and for any valid combination of covariates
      and prints on file fileres'p'. */       and prints on file fileres'p'. */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart,    \
                                                           firstpass, lastpass,  stepm,  weightopt, model);
   
   fprintf(fichtm,"\n");    fprintf(fichtm,"\n");
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
Line 7386  Youngest age at first (selected) pass %. Line 9342  Youngest age at first (selected) pass %.
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);            imx,agemin,agemax,jmin,jmax,jmean);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
   /* For Powell, parameters are in a vector p[] starting at p[1]    /* For Powell, parameters are in a vector p[] starting at p[1]
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
Line 7400  Interval (in months) between two waves: Line 9355  Interval (in months) between two waves:
   /* For mortality only */    /* For mortality only */
   if (mle==-3){    if (mle==-3){
     ximort=matrix(1,NDIM,1,NDIM);       ximort=matrix(1,NDIM,1,NDIM); 
                   for(i=1;i<=NDIM;i++)
                           for(j=1;j<=NDIM;j++)
                                   ximort[i][j]=0.;
     /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */      /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
     cens=ivector(1,n);      cens=ivector(1,n);
     ageexmed=vector(1,n);      ageexmed=vector(1,n);
     agecens=vector(1,n);      agecens=vector(1,n);
     dcwave=ivector(1,n);      dcwave=ivector(1,n);
                    
     for (i=1; i<=imx; i++){      for (i=1; i<=imx; i++){
       dcwave[i]=-1;        dcwave[i]=-1;
       for (m=firstpass; m<=lastpass; m++)        for (m=firstpass; m<=lastpass; m++)
         if (s[m][i]>nlstate) {                                  if (s[m][i]>nlstate) {
           dcwave[i]=m;                                          dcwave[i]=m;
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/                                          /*      printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
           break;                                          break;
         }                                  }
     }      }
                   
     for (i=1; i<=imx; i++) {      for (i=1; i<=imx; i++) {
       if (wav[i]>0){        if (wav[i]>0){
         ageexmed[i]=agev[mw[1][i]][i];                                  ageexmed[i]=agev[mw[1][i]][i];
         j=wav[i];                                  j=wav[i];
         agecens[i]=1.;                                   agecens[i]=1.; 
                                   
         if (ageexmed[i]> 1 && wav[i] > 0){                                  if (ageexmed[i]> 1 && wav[i] > 0){
           agecens[i]=agev[mw[j][i]][i];                                          agecens[i]=agev[mw[j][i]][i];
           cens[i]= 1;                                          cens[i]= 1;
         }else if (ageexmed[i]< 1)                                   }else if (ageexmed[i]< 1) 
           cens[i]= -1;                                          cens[i]= -1;
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)                                  if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
           cens[i]=0 ;                                          cens[i]=0 ;
       }        }
       else cens[i]=-1;        else cens[i]=-1;
     }      }
           
     for (i=1;i<=NDIM;i++) {      for (i=1;i<=NDIM;i++) {
       for (j=1;j<=NDIM;j++)        for (j=1;j<=NDIM;j++)
         ximort[i][j]=(i == j ? 1.0 : 0.0);                                  ximort[i][j]=(i == j ? 1.0 : 0.0);
     }      }
           
     /*p[1]=0.0268; p[NDIM]=0.083;*/      /*p[1]=0.0268; p[NDIM]=0.083;*/
Line 7548  Interval (in months) between two waves: Line 9506  Interval (in months) between two waves:
   
     for(i=1; i <=NDIM; i++)      for(i=1; i <=NDIM; i++)
       for(j=i+1;j<=NDIM;j++)        for(j=i+1;j<=NDIM;j++)
         matcov[i][j]=matcov[j][i];                                  matcov[i][j]=matcov[j][i];
           
     printf("\nCovariance matrix\n ");      printf("\nCovariance matrix\n ");
     fprintf(ficlog,"\nCovariance matrix\n ");      fprintf(ficlog,"\nCovariance matrix\n ");
     for(i=1; i <=NDIM; i++) {      for(i=1; i <=NDIM; i++) {
       for(j=1;j<=NDIM;j++){         for(j=1;j<=NDIM;j++){ 
         printf("%f ",matcov[i][j]);                                  printf("%f ",matcov[i][j]);
         fprintf(ficlog,"%f ",matcov[i][j]);                                  fprintf(ficlog,"%f ",matcov[i][j]);
       }        }
       printf("\n ");  fprintf(ficlog,"\n ");        printf("\n ");  fprintf(ficlog,"\n ");
     }      }
Line 7596  Interval (in months) between two waves: Line 9554  Interval (in months) between two waves:
           
           
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
                   ageminpar=50;
                   agemaxpar=100;
     if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){      if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
         printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\          printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
 This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\  This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
Line 7603  Please run with mle=-1 to get a correct Line 9563  Please run with mle=-1 to get a correct
         fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\          fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
 This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\  This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
 Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);  Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
     }else      }else{
                           printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
                           fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
       printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);        printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   }
     printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \      printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                      stepm, weightopt,\                       stepm, weightopt,\
                      model,imx,p,matcov,agemortsup);                       model,imx,p,matcov,agemortsup);
Line 7612  Please run with mle=-1 to get a correct Line 9575  Please run with mle=-1 to get a correct
     free_vector(lsurv,1,AGESUP);      free_vector(lsurv,1,AGESUP);
     free_vector(lpop,1,AGESUP);      free_vector(lpop,1,AGESUP);
     free_vector(tpop,1,AGESUP);      free_vector(tpop,1,AGESUP);
 #ifdef GSL      free_matrix(ximort,1,NDIM,1,NDIM);
     free_ivector(cens,1,n);      free_ivector(cens,1,n);
     free_vector(agecens,1,n);      free_vector(agecens,1,n);
     free_ivector(dcwave,1,n);      free_ivector(dcwave,1,n);
     free_matrix(ximort,1,NDIM,1,NDIM);  #ifdef GSL
 #endif  #endif
   } /* Endof if mle==-3 mortality only */    } /* Endof if mle==-3 mortality only */
   /* Standard maximisation */    /* Standard  */
   else{ /* For mle !=- 3 */    else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
     globpr=0;/* debug */      globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
     /* Computes likelihood for initial parameters */      /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)      for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);        printf(" %d %8.5f",k,p[k]);
     printf("\n");      printf("\n");
     globpr=1; /* again, to print the contributions */      if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)      for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);        printf(" %d %8.5f",k,p[k]);
     printf("\n");      printf("\n");
     if(mle>=1){ /* Could be 1 or 2, Real Maximisation */  
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }  
           
     /*--------- results files --------------*/      /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model);
           
           
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
Line 7647  Please run with mle=-1 to get a correct Line 9616  Please run with mle=-1 to get a correct
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){      for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){        for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {                                  if (k != i) {
           printf("%d%d ",i,k);                                          printf("%d%d ",i,k);
           fprintf(ficlog,"%d%d ",i,k);                                          fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d ",i,k);                                          fprintf(ficres,"%1d%1d ",i,k);
           for(j=1; j <=ncovmodel; j++){                                          for(j=1; j <=ncovmodel; j++){
             printf("%12.7f ",p[jk]);                                                  printf("%12.7f ",p[jk]);
             fprintf(ficlog,"%12.7f ",p[jk]);                                                  fprintf(ficlog,"%12.7f ",p[jk]);
             fprintf(ficres,"%12.7f ",p[jk]);                                                  fprintf(ficres,"%12.7f ",p[jk]);
             jk++;                                                   jk++; 
           }                                          }
           printf("\n");                                          printf("\n");
           fprintf(ficlog,"\n");                                          fprintf(ficlog,"\n");
           fprintf(ficres,"\n");                                          fprintf(ficres,"\n");
         }                                  }
       }        }
     }      }
     if(mle != 0){      if(mle != 0){
Line 7670  Please run with mle=-1 to get a correct Line 9639  Please run with mle=-1 to get a correct
       printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");        printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");        fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       for(i=1,jk=1; i <=nlstate; i++){        for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){                                  for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {                                          if (k != i) {
             printf("%d%d ",i,k);                                                  printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);                                                  fprintf(ficlog,"%d%d ",i,k);
             for(j=1; j <=ncovmodel; j++){                                                  for(j=1; j <=ncovmodel; j++){
               printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));                                                          printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));                                                          fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               jk++;                                                           jk++; 
             }                                                  }
             printf("\n");                                                  printf("\n");
             fprintf(ficlog,"\n");                                                  fprintf(ficlog,"\n");
           }                                          }
         }                                  }
       }        }
     } /* end of hesscov and Wald tests */      } /* end of hesscov and Wald tests */
                   
     /*  */      /*  */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");      printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){      for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){        for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {                                  if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);                                          fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);                                          printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);                                          fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){                                          for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);                                                  printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);                                                  fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);                                                  fprintf(ficres," %.5e",delti[jk]);
             jk++;                                                  jk++;
           }                                          }
           printf("\n");                                          printf("\n");
           fprintf(ficlog,"\n");                                          fprintf(ficlog,"\n");
           fprintf(ficres,"\n");                                          fprintf(ficres,"\n");
         }                                  }
       }        }
     }      }
           
Line 7729  Please run with mle=-1 to get a correct Line 9698  Please run with mle=-1 to get a correct
     for(itimes=1;itimes<=2;itimes++){      for(itimes=1;itimes<=2;itimes++){
       jj=0;        jj=0;
       for(i=1; i <=nlstate; i++){        for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){                                  for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;                                          if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){                                          for(k=1; k<=ncovmodel;k++){
             jj++;                                                  jj++;
             ca[0]= k+'a'-1;ca[1]='\0';                                                  ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){                                                  if(itimes==1){
               if(mle>=1)                                                          if(mle>=1)
                 printf("#%1d%1d%d",i,j,k);                                                                  printf("#%1d%1d%d",i,j,k);
               fprintf(ficlog,"#%1d%1d%d",i,j,k);                                                          fprintf(ficlog,"#%1d%1d%d",i,j,k);
               fprintf(ficres,"#%1d%1d%d",i,j,k);                                                          fprintf(ficres,"#%1d%1d%d",i,j,k);
             }else{                                                  }else{
               if(mle>=1)                                                          if(mle>=1)
                 printf("%1d%1d%d",i,j,k);                                                                  printf("%1d%1d%d",i,j,k);
               fprintf(ficlog,"%1d%1d%d",i,j,k);                                                          fprintf(ficlog,"%1d%1d%d",i,j,k);
               fprintf(ficres,"%1d%1d%d",i,j,k);                                                          fprintf(ficres,"%1d%1d%d",i,j,k);
             }                                                  }
             ll=0;                                                  ll=0;
             for(li=1;li <=nlstate; li++){                                                  for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){                                                          for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;                                                                  if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){                                                                  for(lk=1;lk<=ncovmodel;lk++){
                   ll++;                                                                          ll++;
                   if(ll<=jj){                                                                          if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';                                                                                  cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){                                                                                  if(ll<jj){
                       if(itimes==1){                                                                                          if(itimes==1){
                         if(mle>=1)                                                                                                  if(mle>=1)
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                                                                                                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                                                                                                  fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                                                                                                  fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{                                                                                          }else{
                         if(mle>=1)                                                                                                  if(mle>=1)
                           printf(" %.5e",matcov[jj][ll]);                                                                                                           printf(" %.5e",matcov[jj][ll]); 
                         fprintf(ficlog," %.5e",matcov[jj][ll]);                                                                                                   fprintf(ficlog," %.5e",matcov[jj][ll]); 
                         fprintf(ficres," %.5e",matcov[jj][ll]);                                                                                                   fprintf(ficres," %.5e",matcov[jj][ll]); 
                       }                                                                                          }
                     }else{                                                                                  }else{
                       if(itimes==1){                                                                                          if(itimes==1){
                         if(mle>=1)                                                                                                  if(mle>=1)
                           printf(" Var(%s%1d%1d)",ca,i,j);                                                                                                          printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);                                                                                                  fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);                                                                                                  fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                       }else{                                                                                          }else{
                         if(mle>=1)                                                                                                  if(mle>=1)
                           printf(" %.7e",matcov[jj][ll]);                                                                                                           printf(" %.7e",matcov[jj][ll]); 
                         fprintf(ficlog," %.7e",matcov[jj][ll]);                                                                                                   fprintf(ficlog," %.7e",matcov[jj][ll]); 
                         fprintf(ficres," %.7e",matcov[jj][ll]);                                                                                                   fprintf(ficres," %.7e",matcov[jj][ll]); 
                       }                                                                                          }
                     }                                                                                  }
                   }                                                                          }
                 } /* end lk */                                                                  } /* end lk */
               } /* end lj */                                                          } /* end lj */
             } /* end li */                                                  } /* end li */
             if(mle>=1)                                                  if(mle>=1)
               printf("\n");                                                          printf("\n");
             fprintf(ficlog,"\n");                                                  fprintf(ficlog,"\n");
             fprintf(ficres,"\n");                                                  fprintf(ficres,"\n");
             numlinepar++;                                                  numlinepar++;
           } /* end k*/                                          } /* end k*/
         } /*end j */                                  } /*end j */
       } /* end i */        } /* end i */
     } /* end itimes */      } /* end itimes */
           
     fflush(ficlog);      fflush(ficlog);
     fflush(ficres);      fflush(ficres);
                       while(fgets(line, MAXLINE, ficpar)) {
     while((c=getc(ficpar))=='#' && c!= EOF){                          /* If line starts with a # it is a comment */
       ungetc(c,ficpar);                          if (line[0] == '#') {
       fgets(line, MAXLINE, ficpar);                                  numlinepar++;
       fputs(line,stdout);                                  fputs(line,stdout);
       fputs(line,ficparo);                                  fputs(line,ficparo);
     }                                  fputs(line,ficlog);
     ungetc(c,ficpar);                                  continue;
                           }else
                                   break;
                   }
                   
       /* while((c=getc(ficpar))=='#' && c!= EOF){ */
       /*   ungetc(c,ficpar); */
       /*   fgets(line, MAXLINE, ficpar); */
       /*   fputs(line,stdout); */
       /*   fputs(line,ficparo); */
       /* } */
       /* ungetc(c,ficpar); */
           
     estepm=0;      estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
                           
                           if (num_filled != 6) {
                                   printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
                                   fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
                                   goto end;
                           }
                           printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
                   }
                   /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
                   /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
                   
       /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
     if (estepm==0 || estepm < stepm) estepm=stepm;      if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {      if (fage <= 2) {
       bage = ageminpar;        bage = ageminpar;
Line 7812  Please run with mle=-1 to get a correct Line 9804  Please run with mle=-1 to get a correct
     }      }
           
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
                   
     /* Other stuffs, more or less useful */          /* Other stuffs, more or less useful */    
     while((c=getc(ficpar))=='#' && c!= EOF){      while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);        ungetc(c,ficpar);
Line 7862  Please run with mle=-1 to get a correct Line 9854  Please run with mle=-1 to get a correct
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/      /* day and month of proj2 are not used but only year anproj2.*/
           
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);
       fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
           
           
      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */                  /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */      /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
           
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){      if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
         printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\                          printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
 This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\  This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
 Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);  Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
         fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\                          fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
 This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\  This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
 Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);  Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
     }else      }else{
       printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);        printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p);
           }
     printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\      printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\                                                                   model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                                                                   jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2);
                         
    /*------------ free_vector  -------------*/                  /*------------ free_vector  -------------*/
    /*  chdir(path); */                  /*  chdir(path); */
                    
     free_ivector(wav,1,imx);      /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
     free_lvector(num,1,n);      free_lvector(num,1,n);
     free_vector(agedc,1,n);      free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);      fclose(ficparo);
     fclose(ficres);      fclose(ficres);
                   
                   
     /* Other results (useful)*/      /* Other results (useful)*/
                   
                   
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */      /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
     prlim=matrix(1,nlstate,1,nlstate);      prlim=matrix(1,nlstate,1,nlstate);
     prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, ncvyear);      prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
     fclose(ficrespl);      fclose(ficrespl);
   
 #ifdef FREEEXIT2  
 #include "freeexit2.h"  
 #endif  
   
     /*------------- h Pij x at various ages ------------*/      /*------------- h Pij x at various ages ------------*/
     /*#include "hpijx.h"*/      /*#include "hpijx.h"*/
     hPijx(p, bage, fage);      hPijx(p, bage, fage);
     fclose(ficrespij);      fclose(ficrespij);
   
   /*-------------- Variance of one-step probabilities---*/      /* ncovcombmax=  pow(2,cptcoveff); */
       /*-------------- Variance of one-step probabilities---*/
     k=1;      k=1;
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       /* Prevalence for each covariates in probs[age][status][cov] */
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
     for(i=1;i<=AGESUP;i++)      for(i=1;i<=AGESUP;i++)
       for(j=1;j<=NCOVMAX;j++)        for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */
         for(k=1;k<=NCOVMAX;k++)                                  for(k=1;k<=ncovcombmax;k++)
           probs[i][j][k]=0.;                                          probs[i][j][k]=0.;
       prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       if (mobilav!=0 ||mobilavproj !=0 ) {
         mobaverages= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
                           for(i=1;i<=AGESUP;i++)
                                   for(j=1;j<=nlstate;j++)
                                           for(k=1;k<=ncovcombmax;k++)
                                                   mobaverages[i][j][k]=0.;
         mobaverage=mobaverages;
         if (mobilav!=0) {
                                   if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
                                           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                                           printf(" Error in movingaverage mobilav=%d\n",mobilav);
                                   }
         }
         /* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */
         /* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
         else if (mobilavproj !=0) {
                                   if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
                                           fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
                                           printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
                                   }
         }
       }/* end if moving average */
                   
     /*---------- Forecasting ------------------*/      /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/      /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){      if(prevfcast==1){
       /*    if(stepm ==1){*/        /*    if(stepm ==1){*/
       prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);        prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, nqveff);
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      }
       /*      }  */      if(backcast==1){
       /*      else{ */        ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
       /*        erreur=108; */        ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */        ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */  
       /*      } */        /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
   
         bprlim=matrix(1,nlstate,1,nlstate);
         back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
         fclose(ficresplb);
   
         hBijx(p, bage, fage, mobaverage);
         fclose(ficrespijb);
         free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
   
         /* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj,
            bage, fage, firstpass, lastpass, anback2, p, nqveff); */
         free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
     }      }
       
     
     /* ------ Other prevalence ratios------------ */      /* ------ Other prevalence ratios------------ */
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);                  
     */                  
   
     if (mobilav!=0) {  
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){  
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
         printf(" Error in movingaverage mobilav=%d\n",mobilav);  
       }  
     }  
   
   
     /*---------- Health expectancies, no variances ------------*/      /*---------- Health expectancies, no variances ------------*/
                   
     strcpy(filerese,"E_");      strcpy(filerese,"E_");
     strcat(filerese,fileresu);      strcat(filerese,fileresu);
     if((ficreseij=fopen(filerese,"w"))==NULL) {      if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }      }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);      printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);      fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){                  
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/      for (k=1; k <= (int) pow(2,nqveff); k++){
                   fprintf(ficreseij,"\n#****** ");
     for (k=1; k <= (int) pow(2,cptcoveff); k++){        for(j=1;j<=nqveff;j++) {
         fprintf(ficreseij,"\n#****** ");                                  fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for(j=1;j<=cptcoveff;j++) {        }
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        fprintf(ficreseij,"******\n");
         }  
         fprintf(ficreseij,"******\n");  
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
         oldm=oldms;savm=savms;  
         evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);    
               
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
       /*}*/        oldm=oldms;savm=savms;
         evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     }      }
     fclose(ficreseij);      fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
                   
     /*---------- Health expectancies and variances ------------*/      /*---------- Health expectancies and variances ------------*/
                   
                   
     strcpy(filerest,"T_");      strcpy(filerest,"T_");
     strcat(filerest,fileresu);      strcat(filerest,fileresu);
     if((ficrest=fopen(filerest,"w"))==NULL) {      if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;        printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;        fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }      }
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
                   
   
     strcpy(fileresstde,"STDE_");      strcpy(fileresstde,"STDE_");
     strcat(fileresstde,fileresu);      strcat(fileresstde,fileresu);
Line 8007  Please run with mle=-1 to get a correct Line 10035  Please run with mle=-1 to get a correct
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);        printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);        fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
     }      }
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);      printf("  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);      fprintf(ficlog,"  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
     strcpy(filerescve,"CVE_");      strcpy(filerescve,"CVE_");
     strcat(filerescve,fileresu);      strcat(filerescve,fileresu);
Line 8016  Please run with mle=-1 to get a correct Line 10044  Please run with mle=-1 to get a correct
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);        printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);        fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
     }      }
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      printf("    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      fprintf(ficlog,"    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
     strcpy(fileresv,"V_");      strcpy(fileresv,"V_");
     strcat(fileresv,fileresu);      strcat(fileresv,fileresu);
Line 8025  Please run with mle=-1 to get a correct Line 10053  Please run with mle=-1 to get a correct
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }      }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      printf("      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(stdout);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      fprintf(ficlog,"      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(ficlog);
   
     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){      /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
                       
     for (k=1; k <= (int) pow(2,cptcoveff); k++){      for (k=1; k <= (int) pow(2,nqveff); k++){
         fprintf(ficrest,"\n#****** ");        fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++)         for(j=1;j<=nqveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);                                  fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrest,"******\n");        fprintf(ficrest,"******\n");
         
         fprintf(ficresstdeij,"\n#****** ");        fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficrescveij,"\n#****** ");        fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {        for(j=1;j<=nqveff;j++) {
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);                                  fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);                                  fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }        }
         fprintf(ficresstdeij,"******\n");        fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");        fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");        fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++)         for(j=1;j<=nqveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);                                  fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficresvij,"******\n");        fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;        oldm=oldms;savm=savms;
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);          printf(" cvevsij %d, ",k);
         /*        fprintf(ficlog, " cvevsij %d, ",k);
          */        cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);
         /* goto endfree; */        printf(" end cvevsij \n ");
          fprintf(ficlog, " end cvevsij \n ");
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        
         pstamp(ficrest);        /*
          */
         /* goto endfree; */
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/        
           oldm=oldms;savm=savms; /* ZZ Segmentation fault */        vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           cptcod= 0; /* To be deleted */        pstamp(ficrest);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */        
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");        
           if(vpopbased==1)        for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);                                  oldm=oldms;savm=savms; /* ZZ Segmentation fault */
           else                                  cptcod= 0; /* To be deleted */
             fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");                                  printf("varevsij %d \n",vpopbased);
           fprintf(ficrest,"# Age popbased mobilav e.. (std) ");                                  fprintf(ficlog, "varevsij %d \n",vpopbased);
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                                  varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
           fprintf(ficrest,"\n");                                  fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */                                  if(vpopbased==1)
           epj=vector(1,nlstate+1);                                          fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
           for(age=bage; age <=fage ;age++){                                  else
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyear, k); /*ZZ Is it the correct prevalim */                                          fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             if (vpopbased==1) {                                  fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
               if(mobilav ==0){                                  for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
                 for(i=1; i<=nlstate;i++)                                  fprintf(ficrest,"\n");
                   prlim[i][i]=probs[(int)age][i][k];                                  /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
               }else{ /* mobilav */                                   epj=vector(1,nlstate+1);
                 for(i=1; i<=nlstate;i++)                                  printf("Computing age specific period (stable) prevalences in each health state \n");
                   prlim[i][i]=mobaverage[(int)age][i][k];                                  fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
               }                                  for(age=bage; age <=fage ;age++){
             }                                          prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */
                                                   if (vpopbased==1) {
             fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);                                                  if(mobilav ==0){
             /* printf(" age %4.0f ",age); */                                                          for(i=1; i<=nlstate;i++)
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                                                                  prlim[i][i]=probs[(int)age][i][k];
               for(i=1, epj[j]=0.;i <=nlstate;i++) {                                                  }else{ /* mobilav */ 
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];                                                          for(i=1; i<=nlstate;i++)
                 /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                                                                  prlim[i][i]=mobaverage[(int)age][i][k];
                 /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */                                                  }
               }                                          }
               epj[nlstate+1] +=epj[j];            
             }                                          fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
             /* printf(" age %4.0f \n",age); */                                          /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
                                           /* printf(" age %4.0f ",age); */
             for(i=1, vepp=0.;i <=nlstate;i++)                                          for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(j=1;j <=nlstate;j++)                                                  for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 vepp += vareij[i][j][(int)age];                                                          epj[j] += prlim[i][i]*eij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                                                          /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             for(j=1;j <=nlstate;j++){                                                          /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                                                  }
             }                                                  epj[nlstate+1] +=epj[j];
             fprintf(ficrest,"\n");                                          }
           }                                          /* printf(" age %4.0f \n",age); */
         }            
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                                          for(i=1, vepp=0.;i <=nlstate;i++)
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                                                  for(j=1;j <=nlstate;j++)
         free_vector(epj,1,nlstate+1);                                                          vepp += vareij[i][j][(int)age];
                                           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
                                           for(j=1;j <=nlstate;j++){
                                                   fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
                                           }
                                           fprintf(ficrest,"\n");
                                   }
         } /* End vpopbased */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
         printf("done \n");fflush(stdout);
         fprintf(ficlog,"done\n");fflush(ficlog);
         
       /*}*/        /*}*/
     }      } /* End k */
     free_vector(weight,1,n);      free_vector(weight,1,n);
     free_imatrix(Tvard,1,NCOVMAX,1,2);      free_imatrix(Tvard,1,NCOVMAX,1,2);
     free_imatrix(s,1,maxwav+1,1,n);      free_imatrix(s,1,maxwav+1,1,n);
Line 8126  Please run with mle=-1 to get a correct Line 10167  Please run with mle=-1 to get a correct
     fclose(ficrescveij);      fclose(ficrescveij);
     fclose(ficresvij);      fclose(ficresvij);
     fclose(ficrest);      fclose(ficrest);
       printf("done Health expectancies\n");fflush(stdout);
       fprintf(ficlog,"done Health expectancies\n");fflush(ficlog);
     fclose(ficpar);      fclose(ficpar);
       
     /*------- Variance of period (stable) prevalence------*/         /*------- Variance of period (stable) prevalence------*/   
Line 8136  Please run with mle=-1 to get a correct Line 10179  Please run with mle=-1 to get a correct
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);        printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
       exit(0);        exit(0);
     }      }
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);      printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
   
     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){      /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
                       
     for (k=1; k <= (int) pow(2,cptcoveff); k++){      for (k=1; k <= (int) pow(2,nqveff); k++){
         fprintf(ficresvpl,"\n#****** ");          fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++)                           for(j=1;j<=nqveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);                                  fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficresvpl,"******\n");                          fprintf(ficresvpl,"******\n");
               
         varpl=matrix(1,nlstate,(int) bage, (int) fage);                          varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;                          oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyear, k, strstart);                          varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                          free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       /*}*/        /*}*/
     }      }
                   
     fclose(ficresvpl);      fclose(ficresvpl);
       printf("done variance-covariance of period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
   
     /*---------- End : free ----------------*/      /*---------- End : free ----------------*/
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      if (mobilav!=0 ||mobilavproj !=0)
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        free_ma3x(mobaverages,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
   }  /* mle==-3 arrives here for freeing */      free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
  /* endfree:*/  
     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */      free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n);
       free_ma3x(cotvar,1,maxwav,1,ntv,1,n);
       free_matrix(coqvar,1,maxwav,1,n);
     free_matrix(covar,0,NCOVMAX,1,n);      free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);      free_matrix(matcov,1,npar,1,npar);
     free_matrix(hess,1,npar,1,npar);      free_matrix(hess,1,npar,1,npar);
Line 8179  Please run with mle=-1 to get a correct Line 10229  Please run with mle=-1 to get a correct
     free_ivector(Tvar,1,NCOVMAX);      free_ivector(Tvar,1,NCOVMAX);
     free_ivector(Tprod,1,NCOVMAX);      free_ivector(Tprod,1,NCOVMAX);
     free_ivector(Tvaraff,1,NCOVMAX);      free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(invalidvarcomb,1,ncovcombmax);
     free_ivector(Tage,1,NCOVMAX);      free_ivector(Tage,1,NCOVMAX);
   
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);      free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
Line 8188  Please run with mle=-1 to get a correct Line 10239  Please run with mle=-1 to get a correct
       
   
   if((nberr >0) || (nbwarn>0)){    if((nberr >0) || (nbwarn>0)){
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);      printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);      fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
   }else{    }else{
     printf("End of Imach\n");      printf("End of Imach\n");
     fprintf(ficlog,"End of Imach\n");      fprintf(ficlog,"End of Imach\n");

Removed from v.1.203  
changed lines
  Added in v.1.224


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>