Diff for /imach/src/imach.c between versions 1.227 and 1.338

version 1.227, 2016/07/21 08:43:33 version 1.338, 2022/09/04 17:40:33
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.227  2016/07/21 08:43:33  brouard    Revision 1.338  2022/09/04 17:40:33  brouard
   Summary: 0.99 working (more or less) for Asian Workshop on multitate methods    Summary: 0.99r36
   
     * imach.c (Module): Now the easy runs i.e. without result or
     model=1+age only did not work. The defautl combination should be 1
     and not 0 because everything hasn't been tranformed yet.
   
     Revision 1.337  2022/09/02 14:26:02  brouard
     Summary: version 0.99r35
   
     * src/imach.c: Version 0.99r35 because it outputs same results with
     1+age+V1+V1*age for females and 1+age for females only
     (education=1 noweight)
   
     Revision 1.336  2022/08/31 09:52:36  brouard
     *** empty log message ***
   
     Revision 1.335  2022/08/31 08:23:16  brouard
     Summary: improvements...
   
     Revision 1.334  2022/08/25 09:08:41  brouard
     Summary: In progress for quantitative
   
     Revision 1.333  2022/08/21 09:10:30  brouard
     * src/imach.c (Module): Version 0.99r33 A lot of changes in
     reassigning covariates: my first idea was that people will always
     use the first covariate V1 into the model but in fact they are
     producing data with many covariates and can use an equation model
     with some of the covariate; it means that in a model V2+V3 instead
     of codtabm(k,Tvaraff[j]) which calculates for combination k, for
     three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact
     the equation model is restricted to two variables only (V2, V3)
     and the combination for V2 should be codtabm(k,1) instead of
     (codtabm(k,2), and the code should be
     codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been
     made. All of these should be simplified once a day like we did in
     hpxij() for example by using precov[nres] which is computed in
     decoderesult for each nres of each resultline. Loop should be done
     on the equation model globally by distinguishing only product with
     age (which are changing with age) and no more on type of
     covariates, single dummies, single covariates.
   
     Revision 1.332  2022/08/21 09:06:25  brouard
     Summary: Version 0.99r33
   
     * src/imach.c (Module): Version 0.99r33 A lot of changes in
     reassigning covariates: my first idea was that people will always
     use the first covariate V1 into the model but in fact they are
     producing data with many covariates and can use an equation model
     with some of the covariate; it means that in a model V2+V3 instead
     of codtabm(k,Tvaraff[j]) which calculates for combination k, for
     three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact
     the equation model is restricted to two variables only (V2, V3)
     and the combination for V2 should be codtabm(k,1) instead of
     (codtabm(k,2), and the code should be
     codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been
     made. All of these should be simplified once a day like we did in
     hpxij() for example by using precov[nres] which is computed in
     decoderesult for each nres of each resultline. Loop should be done
     on the equation model globally by distinguishing only product with
     age (which are changing with age) and no more on type of
     covariates, single dummies, single covariates.
   
     Revision 1.331  2022/08/07 05:40:09  brouard
     *** empty log message ***
   
     Revision 1.330  2022/08/06 07:18:25  brouard
     Summary: last 0.99r31
   
     *  imach.c (Module): Version of imach using partly decoderesult to rebuild xpxij function
   
     Revision 1.329  2022/08/03 17:29:54  brouard
     *  imach.c (Module): Many errors in graphs fixed with Vn*age covariates.
   
     Revision 1.328  2022/07/27 17:40:48  brouard
     Summary: valgrind bug fixed by initializing to zero DummyV as well as Tage
   
     Revision 1.327  2022/07/27 14:47:35  brouard
     Summary: Still a problem for one-step probabilities in case of quantitative variables
   
     Revision 1.326  2022/07/26 17:33:55  brouard
     Summary: some test with nres=1
   
     Revision 1.325  2022/07/25 14:27:23  brouard
     Summary: r30
   
     * imach.c (Module): Error cptcovn instead of nsd in bmij (was
     coredumped, revealed by Feiuno, thank you.
   
     Revision 1.324  2022/07/23 17:44:26  brouard
     *** empty log message ***
   
     Revision 1.323  2022/07/22 12:30:08  brouard
     *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
   
     Revision 1.322  2022/07/22 12:27:48  brouard
     *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
   
     Revision 1.321  2022/07/22 12:04:24  brouard
     Summary: r28
   
     *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
   
     Revision 1.320  2022/06/02 05:10:11  brouard
     *** empty log message ***
   
     Revision 1.319  2022/06/02 04:45:11  brouard
     * imach.c (Module): Adding the Wald tests from the log to the main
     htm for better display of the maximum likelihood estimators.
   
     Revision 1.318  2022/05/24 08:10:59  brouard
     * imach.c (Module): Some attempts to find a bug of wrong estimates
     of confidencce intervals with product in the equation modelC
   
     Revision 1.317  2022/05/15 15:06:23  brouard
     * imach.c (Module):  Some minor improvements
   
     Revision 1.316  2022/05/11 15:11:31  brouard
     Summary: r27
   
     Revision 1.315  2022/05/11 15:06:32  brouard
     *** empty log message ***
   
     Revision 1.314  2022/04/13 17:43:09  brouard
     * imach.c (Module): Adding link to text data files
   
     Revision 1.313  2022/04/11 15:57:42  brouard
     * imach.c (Module): Error in rewriting the 'r' file with yearsfproj or yearsbproj fixed
   
     Revision 1.312  2022/04/05 21:24:39  brouard
     *** empty log message ***
   
     Revision 1.311  2022/04/05 21:03:51  brouard
     Summary: Fixed quantitative covariates
   
             Fixed covariates (dummy or quantitative)
           with missing values have never been allowed but are ERRORS and
           program quits. Standard deviations of fixed covariates were
           wrongly computed. Mean and standard deviations of time varying
           covariates are still not computed.
   
     Revision 1.310  2022/03/17 08:45:53  brouard
     Summary: 99r25
   
     Improving detection of errors: result lines should be compatible with
     the model.
   
     Revision 1.309  2021/05/20 12:39:14  brouard
     Summary: Version 0.99r24
   
     Revision 1.308  2021/03/31 13:11:57  brouard
     Summary: Version 0.99r23
   
   
     * imach.c (Module): Still bugs in the result loop. Thank to Holly Benett
   
     Revision 1.307  2021/03/08 18:11:32  brouard
     Summary: 0.99r22 fixed bug on result:
   
     Revision 1.306  2021/02/20 15:44:02  brouard
     Summary: Version 0.99r21
   
     * imach.c (Module): Fix bug on quitting after result lines!
     (Module): Version 0.99r21
   
     Revision 1.305  2021/02/20 15:28:30  brouard
     * imach.c (Module): Fix bug on quitting after result lines!
   
     Revision 1.304  2021/02/12 11:34:20  brouard
     * imach.c (Module): The use of a Windows BOM (huge) file is now an error
   
     Revision 1.303  2021/02/11 19:50:15  brouard
     *  (Module): imach.c Someone entered 'results:' instead of 'result:'. Now it is an error which is printed.
   
     Revision 1.302  2020/02/22 21:00:05  brouard
     *  (Module): imach.c Update mle=-3 (for computing Life expectancy
     and life table from the data without any state)
   
     Revision 1.301  2019/06/04 13:51:20  brouard
     Summary: Error in 'r'parameter file backcast yearsbproj instead of yearsfproj
   
     Revision 1.300  2019/05/22 19:09:45  brouard
     Summary: version 0.99r19 of May 2019
   
     Revision 1.299  2019/05/22 18:37:08  brouard
     Summary: Cleaned 0.99r19
   
     Revision 1.298  2019/05/22 18:19:56  brouard
     *** empty log message ***
   
     Revision 1.297  2019/05/22 17:56:10  brouard
     Summary: Fix bug by moving date2dmy and nhstepm which gaefin=-1
   
     Revision 1.296  2019/05/20 13:03:18  brouard
     Summary: Projection syntax simplified
   
   
     We can now start projections, forward or backward, from the mean date
     of inteviews up to or down to a number of years of projection:
     prevforecast=1 yearsfproj=15.3 mobil_average=0
     or
     prevforecast=1 starting-proj-date=1/1/2007 final-proj-date=12/31/2017 mobil_average=0
     or
     prevbackcast=1 yearsbproj=12.3 mobil_average=1
     or
     prevbackcast=1 starting-back-date=1/10/1999 final-back-date=1/1/1985 mobil_average=1
   
     Revision 1.295  2019/05/18 09:52:50  brouard
     Summary: doxygen tex bug
   
     Revision 1.294  2019/05/16 14:54:33  brouard
     Summary: There was some wrong lines added
   
     Revision 1.293  2019/05/09 15:17:34  brouard
     *** empty log message ***
   
     Revision 1.292  2019/05/09 14:17:20  brouard
     Summary: Some updates
   
     Revision 1.291  2019/05/09 13:44:18  brouard
     Summary: Before ncovmax
   
     Revision 1.290  2019/05/09 13:39:37  brouard
     Summary: 0.99r18 unlimited number of individuals
   
     The number n which was limited to 20,000 cases is now unlimited, from firstobs to lastobs. If the number is too for the virtual memory, probably an error will occur.
   
     Revision 1.289  2018/12/13 09:16:26  brouard
     Summary: Bug for young ages (<-30) will be in r17
   
     Revision 1.288  2018/05/02 20:58:27  brouard
     Summary: Some bugs fixed
   
     Revision 1.287  2018/05/01 17:57:25  brouard
     Summary: Bug fixed by providing frequencies only for non missing covariates
   
     Revision 1.286  2018/04/27 14:27:04  brouard
     Summary: some minor bugs
   
     Revision 1.285  2018/04/21 21:02:16  brouard
     Summary: Some bugs fixed, valgrind tested
   
     Revision 1.284  2018/04/20 05:22:13  brouard
     Summary: Computing mean and stdeviation of fixed quantitative variables
   
     Revision 1.283  2018/04/19 14:49:16  brouard
     Summary: Some minor bugs fixed
   
     Revision 1.282  2018/02/27 22:50:02  brouard
     *** empty log message ***
   
     Revision 1.281  2018/02/27 19:25:23  brouard
     Summary: Adding second argument for quitting
   
     Revision 1.280  2018/02/21 07:58:13  brouard
     Summary: 0.99r15
   
     New Makefile with recent VirtualBox 5.26. Bug in sqrt negatve in imach.c
   
     Revision 1.279  2017/07/20 13:35:01  brouard
     Summary: temporary working
   
     Revision 1.278  2017/07/19 14:09:02  brouard
     Summary: Bug for mobil_average=0 and prevforecast fixed(?)
   
     Revision 1.277  2017/07/17 08:53:49  brouard
     Summary: BOM files can be read now
   
     Revision 1.276  2017/06/30 15:48:31  brouard
     Summary: Graphs improvements
   
     Revision 1.275  2017/06/30 13:39:33  brouard
     Summary: Saito's color
   
     Revision 1.274  2017/06/29 09:47:08  brouard
     Summary: Version 0.99r14
   
     Revision 1.273  2017/06/27 11:06:02  brouard
     Summary: More documentation on projections
   
     Revision 1.272  2017/06/27 10:22:40  brouard
     Summary: Color of backprojection changed from 6 to 5(yellow)
   
     Revision 1.271  2017/06/27 10:17:50  brouard
     Summary: Some bug with rint
   
     Revision 1.270  2017/05/24 05:45:29  brouard
     *** empty log message ***
   
     Revision 1.269  2017/05/23 08:39:25  brouard
     Summary: Code into subroutine, cleanings
   
     Revision 1.268  2017/05/18 20:09:32  brouard
     Summary: backprojection and confidence intervals of backprevalence
   
     Revision 1.267  2017/05/13 10:25:05  brouard
     Summary: temporary save for backprojection
   
     Revision 1.266  2017/05/13 07:26:12  brouard
     Summary: Version 0.99r13 (improvements and bugs fixed)
   
     Revision 1.265  2017/04/26 16:22:11  brouard
     Summary: imach 0.99r13 Some bugs fixed
   
     Revision 1.264  2017/04/26 06:01:29  brouard
     Summary: Labels in graphs
   
     Revision 1.263  2017/04/24 15:23:15  brouard
     Summary: to save
   
     Revision 1.262  2017/04/18 16:48:12  brouard
     *** empty log message ***
   
     Revision 1.261  2017/04/05 10:14:09  brouard
     Summary: Bug in E_ as well as in T_ fixed nres-1 vs k1-1
   
     Revision 1.260  2017/04/04 17:46:59  brouard
     Summary: Gnuplot indexations fixed (humm)
   
     Revision 1.259  2017/04/04 13:01:16  brouard
     Summary: Some errors to warnings only if date of death is unknown but status is death we could set to pi3
   
     Revision 1.258  2017/04/03 10:17:47  brouard
     Summary: Version 0.99r12
   
     Some cleanings, conformed with updated documentation.
   
     Revision 1.257  2017/03/29 16:53:30  brouard
     Summary: Temp
   
     Revision 1.256  2017/03/27 05:50:23  brouard
     Summary: Temporary
   
     Revision 1.255  2017/03/08 16:02:28  brouard
     Summary: IMaCh version 0.99r10 bugs in gnuplot fixed
   
     Revision 1.254  2017/03/08 07:13:00  brouard
     Summary: Fixing data parameter line
   
     Revision 1.253  2016/12/15 11:59:41  brouard
     Summary: 0.99 in progress
   
     Revision 1.252  2016/09/15 21:15:37  brouard
     *** empty log message ***
   
     Revision 1.251  2016/09/15 15:01:13  brouard
     Summary: not working
   
     Revision 1.250  2016/09/08 16:07:27  brouard
     Summary: continue
   
     Revision 1.249  2016/09/07 17:14:18  brouard
     Summary: Starting values from frequencies
   
     Revision 1.248  2016/09/07 14:10:18  brouard
     *** empty log message ***
   
     Revision 1.247  2016/09/02 11:11:21  brouard
     *** empty log message ***
   
     Revision 1.246  2016/09/02 08:49:22  brouard
     *** empty log message ***
   
     Revision 1.245  2016/09/02 07:25:01  brouard
     *** empty log message ***
   
     Revision 1.244  2016/09/02 07:17:34  brouard
     *** empty log message ***
   
     Revision 1.243  2016/09/02 06:45:35  brouard
     *** empty log message ***
   
     Revision 1.242  2016/08/30 15:01:20  brouard
     Summary: Fixing a lots
   
     Revision 1.241  2016/08/29 17:17:25  brouard
     Summary: gnuplot problem in Back projection to fix
   
     Revision 1.240  2016/08/29 07:53:18  brouard
     Summary: Better
   
     Revision 1.239  2016/08/26 15:51:03  brouard
     Summary: Improvement in Powell output in order to copy and paste
   
     Author:
   
     Revision 1.238  2016/08/26 14:23:35  brouard
     Summary: Starting tests of 0.99
   
     Revision 1.237  2016/08/26 09:20:19  brouard
     Summary: to valgrind
   
     Revision 1.236  2016/08/25 10:50:18  brouard
     *** empty log message ***
   
     Revision 1.235  2016/08/25 06:59:23  brouard
     *** empty log message ***
   
     Revision 1.234  2016/08/23 16:51:20  brouard
     *** empty log message ***
   
     Revision 1.233  2016/08/23 07:40:50  brouard
     Summary: not working
   
     Revision 1.232  2016/08/22 14:20:21  brouard
     Summary: not working
   
     Revision 1.231  2016/08/22 07:17:15  brouard
     Summary: not working
   
     Revision 1.230  2016/08/22 06:55:53  brouard
     Summary: Not working
   
     Revision 1.229  2016/07/23 09:45:53  brouard
     Summary: Completing for func too
   
     Revision 1.228  2016/07/22 17:45:30  brouard
     Summary: Fixing some arrays, still debugging
   
   Revision 1.226  2016/07/12 18:42:34  brouard    Revision 1.226  2016/07/12 18:42:34  brouard
   Summary: temp    Summary: temp
Line 57 Line 473
   Author: Nicolas Brouard    Author: Nicolas Brouard
   
   Revision 1.210  2015/11/18 17:41:20  brouard    Revision 1.210  2015/11/18 17:41:20  brouard
   Summary: Start working on projected prevalences    Summary: Start working on projected prevalences  Revision 1.209  2015/11/17 22:12:03  brouard
   
   Revision 1.209  2015/11/17 22:12:03  brouard  
   Summary: Adding ftolpl parameter    Summary: Adding ftolpl parameter
   Author: N Brouard    Author: N Brouard
   
Line 547 Line 961
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
Line 702  Back prevalence and projections: Line 1116  Back prevalence and projections:
    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                         oldm=oldms;savm=savms;                          oldm=oldms;savm=savms;
   
    - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);
      Computes the transition matrix starting at age 'age' over       Computes the transition matrix starting at age 'age' over
      'nhstepm*hstepm*stepm' months (i.e. until       'nhstepm*hstepm*stepm' months (i.e. until
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
Line 726  Important routines Line 1140  Important routines
 - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)  - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)
   and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.    and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.
 - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables  - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables
   o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if    o There are 2**cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if
     race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.      race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.
   
   
       
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
Line 796  Important routines Line 1210  Important routines
 #define POWELLNOF3INFF1TEST /* Skip test */  #define POWELLNOF3INFF1TEST /* Skip test */
 /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
 /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
   /* #define FLATSUP  *//* Suppresses directions where likelihood is flat */
   
 #include <math.h>  #include <math.h>
 #include <stdio.h>  #include <stdio.h>
Line 847  typedef struct { Line 1262  typedef struct {
 /* #include <libintl.h> */  /* #include <libintl.h> */
 /* #define _(String) gettext (String) */  /* #define _(String) gettext (String) */
   
 #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */  #define MAXLINE 2048 /* Was 256 and 1024. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   
 #define GNUPLOTPROGRAM "gnuplot"  #define GNUPLOTPROGRAM "gnuplot"
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define FILENAMELENGTH 132  #define FILENAMELENGTH 256
   
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
Line 862  typedef struct { Line 1277  typedef struct {
 #define NINTERVMAX 8  #define NINTERVMAX 8
 #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */  #define NCOVMAX 30  /**< Maximum number of covariates used in the model, including generated covariates V1*V2 or V1*age */
 #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
 /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/  /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
 #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1   #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
 #define MAXN 20000  /*#define MAXN 20000 */ /* Should by replaced by nobs, real number of observations and unlimited */
 #define YEARM 12. /**< Number of months per year */  #define YEARM 12. /**< Number of months per year */
 /* #define AGESUP 130 */  /* #define AGESUP 130 */
 #define AGESUP 150  /* #define AGESUP 150 */
   #define AGESUP 200
   #define AGEINF 0
 #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */  #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
 #define AGEBASE 40  #define AGEBASE 40
 #define AGEOVERFLOW 1.e20  #define AGEOVERFLOW 1.e20
Line 888  typedef struct { Line 1305  typedef struct {
 /* $State$ */  /* $State$ */
 #include "version.h"  #include "version.h"
 char version[]=__IMACH_VERSION__;  char version[]=__IMACH_VERSION__;
 char copyright[]="February 2016,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018";  char copyright[]="September 2022,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2020, Nihon University 2021-202, INED 2000-2022";
 char fullversion[]="$Revision$ $Date$";   char fullversion[]="$Revision$ $Date$"; 
 char strstart[80];  char strstart[80];
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
 /* Number of covariates model=V2+V1+ V3*age+V2*V4 */  /* Number of covariates model (1)=V2+V1+ V3*age+V2*V4 */
 int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */  /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
 int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */  int cptcovn=0; /**< cptcovn decodemodel: number of covariates k of the models excluding age*products =6 and age*age but including products */
 int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */  int cptcovt=0; /**< cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
 int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */  int cptcovs=0; /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
   int cptcovsnq=0; /**< cptcovsnq number of SIMPLE covariates in the model but non quantitative V2+V1 =2 */
 int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 int cptcovprodnoage=0; /**< Number of covariate products without age */     int cptcovprodnoage=0; /**< Number of covariate products without age */   
 int cptcoveff=0; /* Total number of covariates to vary for printing results */  int cptcoveff=0; /* Total number of single dummy covariates (fixed or time varying) to vary for printing results (2**cptcoveff combinations of dummies)(computed in tricode as cptcov) */
 int ncoveff=0; /* Total number of effective covariates in the model */  int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */
   int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */
   int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */
   int nsd=0; /**< Total number of single dummy variables (output) */
   int nsq=0; /**< Total number of single quantitative variables (output) */
   int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */
 int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */  int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */
 int ntveff=0; /**< ntveff number of effective time varying variables */  int ntveff=0; /**< ntveff number of effective time varying variables */
 int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */  int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */
 int cptcov=0; /* Working variable */  int cptcov=0; /* Working variable */
   int firstobs=1, lastobs=10; /* nobs = lastobs-firstobs+1 declared globally ;*/
   int nobs=10;  /* Number of observations in the data lastobs-firstobs */
 int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */  int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
 int npar=NPARMAX;  int npar=NPARMAX; /* Number of parameters (nlstate+ndeath-1)*nlstate*ncovmodel; */
 int nlstate=2; /* Number of live states */  int nlstate=2; /* Number of live states */
 int ndeath=1; /* Number of dead states */  int ndeath=1; /* Number of dead states */
 int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
Line 927  int **dh; /* dh[mi][i] is number of step Line 1352  int **dh; /* dh[mi][i] is number of step
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
            * wave mi and wave mi+1 is not an exact multiple of stepm. */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 int countcallfunc=0;  /* Count the number of calls to func */  int countcallfunc=0;  /* Count the number of calls to func */
   int selected(int kvar); /* Is covariate kvar selected for printing results */
   
 double jmean=1; /* Mean space between 2 waves */  double jmean=1; /* Mean space between 2 waves */
 double **matprod2(); /* test */  double **matprod2(); /* test */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  double **oldm, **newm, **savm; /* Working pointers to matrices */
Line 954  FILE *ficrescveij; Line 1381  FILE *ficrescveij;
 char filerescve[FILENAMELENGTH];  char filerescve[FILENAMELENGTH];
 FILE  *ficresvij;  FILE  *ficresvij;
 char fileresv[FILENAMELENGTH];  char fileresv[FILENAMELENGTH];
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];  char title[MAXLINE];
   char model[MAXLINE]; /**< The model line */
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
Line 994  double dval; Line 1421  double dval;
 #define FTOL 1.0e-10  #define FTOL 1.0e-10
   
 #define NRANSI   #define NRANSI 
 #define ITMAX 200   #define ITMAX 200
   #define ITPOWMAX 20 /* This is now multiplied by the number of parameters */ 
   
 #define TOL 2.0e-4   #define TOL 2.0e-4 
   
Line 1042  int *ncodemaxwundef;  /* ncodemax[j]= Nu Line 1470  int *ncodemaxwundef;  /* ncodemax[j]= Nu
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double **pmmij, ***probs; /* Global pointer */  double **pmmij, ***probs; /* Global pointer */
 double ***mobaverage, ***mobaverages; /* New global variable */  double ***mobaverage, ***mobaverages; /* New global variable */
   double **precov; /* New global variable to store for each resultline, values of model covariates given by the resultlines (in order to speed up)  */
 double *ageexmed,*agecens;  double *ageexmed,*agecens;
 double dateintmean=0;  double dateintmean=0;
     double anprojd, mprojd, jprojd; /* For eventual projections */
     double anprojf, mprojf, jprojf;
   
     double anbackd, mbackd, jbackd; /* For eventual backprojections */
     double anbackf, mbackf, jbackf;
     double jintmean,mintmean,aintmean;  
 double *weight;  double *weight;
 int **s; /* Status */  int **s; /* Status */
 double *agedc;  double *agedc;
 double  **covar; /**< covar[j,i], value of jth covariate for individual i,  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
                   * covar=matrix(0,NCOVMAX,1,n);                     * covar=matrix(0,NCOVMAX,1,n); 
                   * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
 double **coqvar; /* Fixed quantitative covariate iqv */  double **coqvar; /* Fixed quantitative covariate nqv */
 double ***cotvar; /* Time varying covariate itv */  double ***cotvar; /* Time varying covariate ntv */
 double ***cotqvar; /* Time varying quantitative covariate itqv */  double ***cotqvar; /* Time varying quantitative covariate itqv */
 double  idx;   double  idx; 
 int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   /* Some documentation */
         /*   Design original data
          *  V1   V2   V3   V4  V5  V6  V7  V8  Weight ddb ddth d1st s1 V9 V10 V11 V12 s2 V9 V10 V11 V12 
          *  <          ncovcol=6   >   nqv=2 (V7 V8)                   dv dv  dv  qtv    dv dv  dvv qtv
          *                                                             ntv=3     nqtv=1
          *  cptcovn number of covariates (not including constant and age or age*age) = number of plus sign + 1 = 10+1=11
          * For time varying covariate, quanti or dummies
          *       cotqvar[wav][iv(1 to nqtv)][i]= [1][12][i]=(V12) quanti
          *       cotvar[wav][ntv+iv][i]= [3+(1 to nqtv)][i]=(V12) quanti
          *       cotvar[wav][iv(1 to ntv)][i]= [1][1][i]=(V9) dummies at wav 1
          *       cotvar[wav][iv(1 to ntv)][i]= [1][2][i]=(V10) dummies at wav 1
          *       covar[Vk,i], value of the Vkth fixed covariate dummy or quanti for individual i:
          *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 + V9 + V9*age + V10
          *   k=  1    2      3       4     5       6      7        8   9     10       11 
          */
   /* According to the model, more columns can be added to covar by the product of covariates */
   /* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1
     # States 1=Coresidence, 2 Living alone, 3 Institution
     # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi
   */
   /*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   /*    k        1  2   3   4     5    6    7     8    9 */
   /*Typevar[k]=  0  0   0   2     1    0    2     1    0 *//*0 for simple covariate (dummy, quantitative,*/
                                                            /* fixed or varying), 1 for age product, 2 for*/
                                                            /* product */
   /*Dummy[k]=    1  0   0   1     3    1    1     2    0 *//*Dummy[k] 0=dummy (0 1), 1 quantitative */
                                                            /*(single or product without age), 2 dummy*/
                                                            /* with age product, 3 quant with age product*/
   /*Tvar[k]=     5  4   3   6     5    2    7     1    1 */
   /*    nsd         1   2                              3 */ /* Counting single dummies covar fixed or tv */
   /*TnsdVar[Tvar]   1   2                              3 */ 
   /*Tvaraff[nsd]     4   3                              1 */ /* ID of single dummy cova fixed or timevary*/
   /*TvarsD[nsd]     4   3                              1 */ /* ID of single dummy cova fixed or timevary*/
   /*TvarsDind[nsd]  2   3                              9 */ /* position K of single dummy cova */
   /*    nsq      1                     2                 */ /* Counting single quantit tv */
   /* TvarsQ[k]   5                     2                 */ /* Number of single quantitative cova */
   /* TvarsQind   1                     6                 */ /* position K of single quantitative cova */
   /* Tprod[i]=k             1               2            */ /* Position in model of the ith prod without age */
   /* cptcovage                    1               2      */ /* Counting cov*age in the model equation */
   /* Tage[cptcovage]=k            5               8      */ /* Position in the model of ith cov*age */
   /* Tvard[1][1]@4={4,3,1,2}    V4*V3 V1*V2              */ /* Position in model of the ith prod without age */
   /* Tvardk[4][1]=4;Tvardk[4][2]=3;Tvardk[7][1]=1;Tvardk[7][2]=2 */ /* Variables of a prod at position in the model equation*/
   /* TvarF TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  ID of fixed covariates or product V2, V1*V2, V1 */
   /* TvarFind;  TvarFind[1]=6,  TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod)  */
   /* Type                    */
   /* V         1  2  3  4  5 */
   /*           F  F  V  V  V */
   /*           D  Q  D  D  Q */
   /*                         */
   int *TvarsD;
   int *TnsdVar;
   int *TvarsDind;
   int *TvarsQ;
   int *TvarsQind;
   
   #define MAXRESULTLINESPONE 10+1
   int nresult=0;
   int parameterline=0; /* # of the parameter (type) line */
   int TKresult[MAXRESULTLINESPONE]; /* TKresult[nres]=k for each resultline nres give the corresponding combination of dummies */
   int resultmodel[MAXRESULTLINESPONE][NCOVMAX];/* resultmodel[k1]=k3: k1th position in the model corresponds to the k3 position in the resultline */
   int modelresult[MAXRESULTLINESPONE][NCOVMAX];/* modelresult[k3]=k1: k1th position in the model corresponds to the k3 position in the resultline */
   int Tresult[MAXRESULTLINESPONE][NCOVMAX];/* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline */
   int Tinvresult[MAXRESULTLINESPONE][NCOVMAX];/* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line  */
   double TinvDoQresult[MAXRESULTLINESPONE][NCOVMAX];/* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line */
   int Tvresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline */
   double Tqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */
   double Tqinvresult[MAXRESULTLINESPONE][NCOVMAX]; /* For quantitative variable , value (output) */
   int Tvqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline */
   
   /* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1
     # States 1=Coresidence, 2 Living alone, 3 Institution
     # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi
   */
   /* int *TDvar; /\**< TDvar[1]=4,  TDvarF[2]=3, TDvar[3]=6  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
   int *TvarF; /**< TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarFind; /**< TvarFind[1]=6,  TvarFind[2]=7, Tvarind[3]=9  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
   int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
   
   int *Tvarsel; /**< Selected covariates for output */
   double *Tvalsel; /**< Selected modality value of covariate for output */
 int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */  int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
 int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */   int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ 
 int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */   int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
   int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */
   int *FixedV; /** FixedV[v] 0 fixed, 1 varying */
 int *Tage;  int *Tage;
 int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */   int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ 
 int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/  int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
   int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ 
   int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1  */
 int *Ndum; /** Freq of modality (tricode */  int *Ndum; /** Freq of modality (tricode */
 /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
 int **Tvard;  int **Tvard;
   int **Tvardk;
 int *Tprod;/**< Gives the k position of the k1 product */  int *Tprod;/**< Gives the k position of the k1 product */
   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3  */
 int *Tposprod; /**< Gives the k1 product from the k position */  int *Tposprod; /**< Gives the k1 product from the k position */
 /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3     /* if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2) */
    if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)     /* Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5(V3*V2)]=2 (2nd product without age) */
    Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2   
 */  
 int cptcovprod, *Tvaraff, *invalidvarcomb;  int cptcovprod, *Tvaraff, *invalidvarcomb;
 double *lsurv, *lpop, *tpop;  double *lsurv, *lpop, *tpop;
   
   #define FD 1; /* Fixed dummy covariate */
   #define FQ 2; /* Fixed quantitative covariate */
   #define FP 3; /* Fixed product covariate */
   #define FPDD 7; /* Fixed product dummy*dummy covariate */
   #define FPDQ 8; /* Fixed product dummy*quantitative covariate */
   #define FPQQ 9; /* Fixed product quantitative*quantitative covariate */
   #define VD 10; /* Varying dummy covariate */
   #define VQ 11; /* Varying quantitative covariate */
   #define VP 12; /* Varying product covariate */
   #define VPDD 13; /* Varying product dummy*dummy covariate */
   #define VPDQ 14; /* Varying product dummy*quantitative covariate */
   #define VPQQ 15; /* Varying product quantitative*quantitative covariate */
   #define APFD 16; /* Age product * fixed dummy covariate */
   #define APFQ 17; /* Age product * fixed quantitative covariate */
   #define APVD 18; /* Age product * varying dummy covariate */
   #define APVQ 19; /* Age product * varying quantitative covariate */
   
   #define FTYPE 1; /* Fixed covariate */
   #define VTYPE 2; /* Varying covariate (loop in wave) */
   #define ATYPE 2; /* Age product covariate (loop in dh within wave)*/
   
   struct kmodel{
           int maintype; /* main type */
           int subtype; /* subtype */
   };
   struct kmodel modell[NCOVMAX];
   
 double ftol=FTOL; /**< Tolerance for computing Max Likelihood */  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
 double ftolhess; /**< Tolerance for computing hessian */  double ftolhess; /**< Tolerance for computing hessian */
   
Line 1209  char *cutl(char *blocc, char *alocc, cha Line 1766  char *cutl(char *blocc, char *alocc, cha
 {  {
   /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ'     /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
      gives blocc="abcdef" and alocc="ghi2j".       gives alocc="abcdef" and blocc="ghi2j".
      If occ is not found blocc is null and alocc is equal to in. Returns blocc       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   */    */
   char *s, *t;    char *s, *t;
Line 1269  int nbocc(char *s, char occ) Line 1826  int nbocc(char *s, char occ)
   i=0;    i=0;
   lg=strlen(s);    lg=strlen(s);
   for(i=0; i<= lg; i++) {    for(i=0; i<= lg; i++) {
   if  (s[i] == occ ) j++;      if  (s[i] == occ ) j++;
   }    }
   return j;    return j;
 }  }
Line 1491  char *subdirf(char fileres[]) Line 2048  char *subdirf(char fileres[])
 /*************** function subdirf2 ***********/  /*************** function subdirf2 ***********/
 char *subdirf2(char fileres[], char *preop)  char *subdirf2(char fileres[], char *preop)
 {  {
       /* Example subdirf2(optionfilefiname,"FB_") with optionfilefiname="texte", result="texte/FB_texte"
    Errors in subdirf, 2, 3 while printing tmpout is
    rewritten within the same printf. Workaround: many printfs */
   /* Caution optionfilefiname is hidden */    /* Caution optionfilefiname is hidden */
   strcpy(tmpout,optionfilefiname);    strcpy(tmpout,optionfilefiname);
   strcat(tmpout,"/");    strcat(tmpout,"/");
Line 1862  void linmin(double p[], double xi[], int Line 2421  void linmin(double p[], double xi[], int
 #endif  #endif
 #ifdef LINMINORIGINAL  #ifdef LINMINORIGINAL
 #else  #else
         if(fb == fx){ /* Flat function in the direction */    if(fb == fx){ /* Flat function in the direction */
                 xmin=xx;      xmin=xx;
     *flat=1;      *flat=1;
         }else{    }else{
     *flat=0;      *flat=0;
 #endif  #endif
                 /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */                  /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
Line 1923  void linmin(double p[], double xi[], int Line 2482  void linmin(double p[], double xi[], int
   
 /*************** powell ************************/  /*************** powell ************************/
 /*  /*
 Minimization of a function func of n variables. Input consists of an initial starting point  Minimization of a function func of n variables. Input consists in an initial starting point
 p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-  p[1..n] ; an initial matrix xi[1..n][1..n]  whose columns contain the initial set of di-
 rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value  rections (usually the n unit vectors); and ftol, the fractional tolerance in the function value
 such that failure to decrease by more than this amount on one iteration signals doneness. On  such that failure to decrease by more than this amount in one iteration signals doneness. On
 output, p is set to the best point found, xi is the then-current direction set, fret is the returned  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
 function value at p , and iter is the number of iterations taken. The routine linmin is used.  function value at p , and iter is the number of iterations taken. The routine linmin is used.
  */   */
Line 1942  void powell(double p[], double **xi, int Line 2501  void powell(double p[], double **xi, int
  void linmin(double p[], double xi[], int n, double *fret,    void linmin(double p[], double xi[], int n, double *fret, 
               double (*func)(double []));                 double (*func)(double [])); 
 #else   #else 
  void linmin(double p[], double xi[], int n, double *fret,    void linmin(double p[], double xi[], int n, double *fret,
                                                  double (*func)(double []),int *flat);                double (*func)(double []),int *flat); 
 #endif  #endif
   int i,ibig,j;    int i,ibig,j,jk,k; 
   double del,t,*pt,*ptt,*xit;    double del,t,*pt,*ptt,*xit;
   double directest;    double directest;
   double fp,fptt;    double fp,fptt;
   double *xits;    double *xits;
   int niterf, itmp;    int niterf, itmp;
 #ifdef LINMINORIGINAL  
 #else  
   
   flatdir=ivector(1,n);   
   for (j=1;j<=n;j++) flatdir[j]=0;   
 #endif  
   
   pt=vector(1,n);     pt=vector(1,n); 
   ptt=vector(1,n);     ptt=vector(1,n); 
Line 1964  void powell(double p[], double **xi, int Line 2517  void powell(double p[], double **xi, int
   xits=vector(1,n);     xits=vector(1,n); 
   *fret=(*func)(p);     *fret=(*func)(p); 
   for (j=1;j<=n;j++) pt[j]=p[j];     for (j=1;j<=n;j++) pt[j]=p[j]; 
   rcurr_time = time(NULL);      rcurr_time = time(NULL);
     fp=(*fret); /* Initialisation */
   for (*iter=1;;++(*iter)) {     for (*iter=1;;++(*iter)) { 
     fp=(*fret); /* From former iteration or initial value */  
     ibig=0;       ibig=0; 
     del=0.0;       del=0.0; 
     rlast_time=rcurr_time;      rlast_time=rcurr_time;
     /* (void) gettimeofday(&curr_time,&tzp); */      /* (void) gettimeofday(&curr_time,&tzp); */
     rcurr_time = time(NULL);        rcurr_time = time(NULL);  
     curr_time = *localtime(&rcurr_time);      curr_time = *localtime(&rcurr_time);
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);      /* printf("\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); */
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);      /* fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); */
       printf("\nPowell iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       fp=(*fret); /* From former iteration or initial value */
     for (i=1;i<=n;i++) {      for (i=1;i<=n;i++) {
       printf(" %d %.12f",i, p[i]);  
       fprintf(ficlog," %d %.12lf",i, p[i]);  
       fprintf(ficrespow," %.12lf", p[i]);        fprintf(ficrespow," %.12lf", p[i]);
     }      }
       fprintf(ficrespow,"\n");fflush(ficrespow);
       printf("\n#model=  1      +     age ");
       fprintf(ficlog,"\n#model=  1      +     age ");
       if(nagesqr==1){
           printf("  + age*age  ");
           fprintf(ficlog,"  + age*age  ");
       }
       for(j=1;j <=ncovmodel-2;j++){
         if(Typevar[j]==0) {
           printf("  +      V%d  ",Tvar[j]);
           fprintf(ficlog,"  +      V%d  ",Tvar[j]);
         }else if(Typevar[j]==1) {
           printf("  +    V%d*age ",Tvar[j]);
           fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
         }else if(Typevar[j]==2) {
           printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
           fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
         }
       }
     printf("\n");      printf("\n");
   /*     printf("12   47.0114589    0.0154322   33.2424412    0.3279905    2.3731903  */
   /* 13  -21.5392400    0.1118147    1.2680506    1.2973408   -1.0663662  */
     fprintf(ficlog,"\n");      fprintf(ficlog,"\n");
     fprintf(ficrespow,"\n");fflush(ficrespow);      for(i=1,jk=1; i <=nlstate; i++){
     if(*iter <=3){        for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
           }
         }
       }
       if(*iter <=3 && *iter >1){
       tml = *localtime(&rcurr_time);        tml = *localtime(&rcurr_time);
       strcpy(strcurr,asctime(&tml));        strcpy(strcurr,asctime(&tml));
       rforecast_time=rcurr_time;         rforecast_time=rcurr_time; 
       itmp = strlen(strcurr);        itmp = strlen(strcurr);
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
                                 strcurr[itmp-1]='\0';          strcurr[itmp-1]='\0';
       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       for(niterf=10;niterf<=30;niterf+=10){        for(niterf=10;niterf<=30;niterf+=10){
                                 rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
                                 forecast_time = *localtime(&rforecast_time);          forecast_time = *localtime(&rforecast_time);
                                 strcpy(strfor,asctime(&forecast_time));          strcpy(strfor,asctime(&forecast_time));
                                 itmp = strlen(strfor);          itmp = strlen(strfor);
                                 if(strfor[itmp-1]=='\n')          if(strfor[itmp-1]=='\n')
                                         strfor[itmp-1]='\0';            strfor[itmp-1]='\0';
                                 printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
                                 fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       }        }
     }      }
     for (i=1;i<=n;i++) { /* For each direction i */      for (i=1;i<=n;i++) { /* For each direction i */
Line 2047  void powell(double p[], double **xi, int Line 2636  void powell(double p[], double **xi, int
     /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */       /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
     /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
     /* New value of last point Pn is not computed, P(n-1) */      /* New value of last point Pn is not computed, P(n-1) */
       for(j=1;j<=n;j++) {      for(j=1;j<=n;j++) {
                                 if(flatdir[j] >0){        if(flatdir[j] >0){
                                         printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);          printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
                                         fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);          fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
                                 }        }
                                 /* printf("\n"); */        /* printf("\n"); */
                                 /* fprintf(ficlog,"\n"); */        /* fprintf(ficlog,"\n"); */
                         }      }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */      /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */
       if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */
       /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
       /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
       /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
Line 2091  void powell(double p[], double **xi, int Line 2681  void powell(double p[], double **xi, int
       }        }
 #endif  #endif
   
 #ifdef LINMINORIGINAL  
 #else  
       free_ivector(flatdir,1,n);   
 #endif  
       free_vector(xit,1,n);         free_vector(xit,1,n); 
       free_vector(xits,1,n);         free_vector(xits,1,n); 
       free_vector(ptt,1,n);         free_vector(ptt,1,n); 
       free_vector(pt,1,n);         free_vector(pt,1,n); 
       return;         return; 
     } /* enough precision */       } /* enough precision */ 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");       if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); 
     for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
       ptt[j]=2.0*p[j]-pt[j];         ptt[j]=2.0*p[j]-pt[j]; 
       xit[j]=p[j]-pt[j];         xit[j]=p[j]-pt[j]; 
Line 2160  void powell(double p[], double **xi, int Line 2746  void powell(double p[], double **xi, int
       if (directest < 0.0) { /* Then we use it for new direction */        if (directest < 0.0) { /* Then we use it for new direction */
 #endif  #endif
 #ifdef DEBUGLINMIN  #ifdef DEBUGLINMIN
                                 printf("Before linmin in direction P%d-P0\n",n);          printf("Before linmin in direction P%d-P0\n",n);
                                 for (j=1;j<=n;j++) {          for (j=1;j<=n;j++) {
                                         printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                                         fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                                         if(j % ncovmodel == 0){            if(j % ncovmodel == 0){
                                                 printf("\n");              printf("\n");
                                                 fprintf(ficlog,"\n");              fprintf(ficlog,"\n");
                                         }            }
                                 }          }
 #endif  #endif
 #ifdef LINMINORIGINAL  #ifdef LINMINORIGINAL
                                 linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
 #else  #else
                                 linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/          linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
                                 flatdir[i]=flat; /* Function is vanishing in that direction i */          flatdir[i]=flat; /* Function is vanishing in that direction i */
 #endif  #endif
           
 #ifdef DEBUGLINMIN  #ifdef DEBUGLINMIN
                                 for (j=1;j<=n;j++) {           for (j=1;j<=n;j++) { 
                                         printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                                         fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                                         if(j % ncovmodel == 0){            if(j % ncovmodel == 0){
                                                 printf("\n");              printf("\n");
                                                 fprintf(ficlog,"\n");              fprintf(ficlog,"\n");
                                         }            }
                                 }          }
 #endif  #endif
                                 for (j=1;j<=n;j++) {           for (j=1;j<=n;j++) { 
                                         xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
                                         xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
                                 }          }
 #ifdef LINMINORIGINAL  #ifdef LINMINORIGINAL
 #else  #else
                                 for (j=1, flatd=0;j<=n;j++) {          for (j=1, flatd=0;j<=n;j++) {
                                         if(flatdir[j]>0)            if(flatdir[j]>0)
                                                 flatd++;              flatd++;
                                 }          }
                                 if(flatd >0){          if(flatd >0){
                                         printf("%d flat directions\n",flatd);            printf("%d flat directions: ",flatd);
                                         fprintf(ficlog,"%d flat directions\n",flatd);            fprintf(ficlog,"%d flat directions :",flatd);
                                         for (j=1;j<=n;j++) {             for (j=1;j<=n;j++) { 
                                                 if(flatdir[j]>0){              if(flatdir[j]>0){
                                                         printf("%d ",j);                printf("%d ",j);
                                                         fprintf(ficlog,"%d ",j);                fprintf(ficlog,"%d ",j);
                                                 }              }
                                         }            }
                                         printf("\n");            printf("\n");
                                         fprintf(ficlog,"\n");            fprintf(ficlog,"\n");
                                 }  #ifdef FLATSUP
             free_vector(xit,1,n); 
             free_vector(xits,1,n); 
             free_vector(ptt,1,n); 
             free_vector(pt,1,n); 
             return;
 #endif  #endif
                                 printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);          }
                                 fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);  #endif
                                           printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           
 #ifdef DEBUG  #ifdef DEBUG
                                 printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                                 fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                                 for(j=1;j<=n;j++){          for(j=1;j<=n;j++){
                                         printf(" %lf",xit[j]);            printf(" %lf",xit[j]);
                                         fprintf(ficlog," %lf",xit[j]);            fprintf(ficlog," %lf",xit[j]);
                                 }          }
                                 printf("\n");          printf("\n");
                                 fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
 #endif  #endif
       } /* end of t or directest negative */        } /* end of t or directest negative */
 #ifdef POWELLNOF3INFF1TEST  #ifdef POWELLNOF3INFF1TEST
 #else  #else
     } /* end if (fptt < fp)  */        } /* end if (fptt < fp)  */
 #endif  #endif
 #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */  #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
                 } /*NODIRECTIONCHANGEDUNTILNITER  No change in drections until some iterations are done */      } /*NODIRECTIONCHANGEDUNTILNITER  No change in drections until some iterations are done */
 #else  #else
 #endif  #endif
   } /* loop iteration */                   } /* loop iteration */ 
 }   } 
     
 /**** Prevalence limit (stable or period prevalence)  ****************/  /**** Prevalence limit (stable or period prevalence)  ****************/
     
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres)
 {    {
   /* Computes the prevalence limit in each live state at age x and for covariate ij by left multiplying the unit      /**< Computes the prevalence limit in each live state at age x and for covariate combination ij . Nicely done
      matrix by transitions matrix until convergence is reached with precision ftolpl */       *   (and selected quantitative values in nres)
   /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */       *  by left multiplying the unit
   /* Wx is row vector: population in state 1, population in state 2, population dead */       *  matrix by transitions matrix until convergence is reached with precision ftolpl 
   /* or prevalence in state 1, prevalence in state 2, 0 */       * Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I
   /* newm is the matrix after multiplications, its rows are identical at a factor */       * Wx is row vector: population in state 1, population in state 2, population dead
   /* Initial matrix pimij */       * or prevalence in state 1, prevalence in state 2, 0
        * newm is the matrix after multiplications, its rows are identical at a factor.
        * Inputs are the parameter, age, a tolerance for the prevalence limit ftolpl.
        * Output is prlim.
        * Initial matrix pimij 
        */
   /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
   /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
   /*  0,                   0                  , 1} */    /*  0,                   0                  , 1} */
Line 2258  double **prevalim(double **prlim, int nl Line 2856  double **prevalim(double **prlim, int nl
   /* {0.51571254859325999, 0.4842874514067399, */    /* {0.51571254859325999, 0.4842874514067399, */
   /*  0.51326036147820708, 0.48673963852179264} */    /*  0.51326036147820708, 0.48673963852179264} */
   /* If we start from prlim again, prlim tends to a constant matrix */    /* If we start from prlim again, prlim tends to a constant matrix */
       
   int i, ii,j,k;      int i, ii,j,k, k1;
   double *min, *max, *meandiff, maxmax,sumnew=0.;    double *min, *max, *meandiff, maxmax,sumnew=0.;
   /* double **matprod2(); */ /* test */    /* double **matprod2(); */ /* test */
   double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */    double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
   double **newm;    double **newm;
   double agefin, delaymax=200. ; /* 100 Max number of years to converge */    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
   int ncvloop=0;    int ncvloop=0;
     int first=0;
       
   min=vector(1,nlstate);    min=vector(1,nlstate);
   max=vector(1,nlstate);    max=vector(1,nlstate);
Line 2286  double **prevalim(double **prlim, int nl Line 2885  double **prevalim(double **prlim, int nl
     newm=savm;      newm=savm;
     /* Covariates have to be included here again */      /* Covariates have to be included here again */
     cov[2]=agefin;      cov[2]=agefin;
     if(nagesqr==1)       if(nagesqr==1){
       cov[3]= agefin*agefin;;        cov[3]= agefin*agefin;
     for (k=1; k<=cptcovn;k++) {       }
       /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */       /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
                         /* Here comes the value of the covariate 'ij' */       /* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */
       cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];       for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
       /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */         if(Typevar[k1]==1){ /* A product with age */
     }           cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
     /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */         }else{
     /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */           cov[2+nagesqr+k1]=precov[nres][k1];
     for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];         }
     for (k=1; k<=cptcovprod;k++) /* Useless */       }/* End of loop on model equation */
       /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */       
       cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];  /* Start of old code (replaced by a loop on position in the model equation */
           /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only of the model *\/ */
       /*                  /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */
       /*   /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; *\/ */
       /*   cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])]; */
       /*   /\* model = 1 +age + V1*V3 + age*V1 + V2 + V1 + age*V2 + V3 + V3*age + V1*V2  */
       /*    * k                  1        2      3    4      5      6     7        8 */
       /*    *cov[]   1    2      3        4      5    6      7      8     9       10 */
       /*    *TypeVar[k]          2        1      0    0      1      0     1        2 */
       /*    *Dummy[k]            0        2      0    0      2      0     2        0 */
       /*    *Tvar[k]             4        1      2    1      2      3     3        5 */
       /*    *nsd=3                              (1)  (2)           (3) */
       /*    *TvarsD[nsd]                      [1]=2    1             3 */
       /*    *TnsdVar                          [2]=2 [1]=1         [3]=3 */
       /*    *TvarsDind[nsd](=k)               [1]=3 [2]=4         [3]=6 */
       /*    *Tage[]                  [1]=1                  [2]=2      [3]=3 */
       /*    *Tvard[]       [1][1]=1                                           [2][1]=1 */
       /*    *                   [1][2]=3                                           [2][2]=2 */
       /*    *Tprod[](=k)     [1]=1                                              [2]=8 */
       /*    *TvarsDp(=Tvar)   [1]=1            [2]=2             [3]=3          [4]=5 */
       /*    *TvarD (=k)       [1]=1            [2]=3 [3]=4       [3]=6          [4]=6 */
       /*    *TvarsDpType */
       /*    *si model= 1 + age + V3 + V2*age + V2 + V3*age */
       /*    * nsd=1              (1)           (2) */
       /*    *TvarsD[nsd]          3             2 */
       /*    *TnsdVar           (3)=1          (2)=2 */
       /*    *TvarsDind[nsd](=k)  [1]=1        [2]=3 */
       /*    *Tage[]                  [1]=2           [2]= 3    */
       /*    *\/ */
       /*   /\* cov[++k1]=nbcode[TvarsD[k]][codtabm(ij,k)]; *\/ */
       /*   /\* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
       /* } */
       /* for (k=1; k<=nsq;k++) { /\* For single quantitative varying covariates only of the model *\/ */
       /*                  /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
       /*   /\* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline                                 *\/ */
       /*   /\* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */
       /*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][resultmodel[nres][k1]] */
       /*   /\* cov[++k1]=Tqresult[nres][k];  *\/ */
       /*   /\* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
       /* } */
       /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
       /*   if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */
       /*  cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
       /*  /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
       /*   } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */
       /*  cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */
       /*  /\* cov[++k1]=Tqresult[nres][k];  *\/ */
       /*   } */
       /*   /\* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
       /* } */
       /* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */
       /*   /\* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */
       /*   if(Dummy[Tvard[k][1]]==0){ */
       /*  if(Dummy[Tvard[k][2]]==0){ */
       /*    cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
       /*    /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
       /*  }else{ */
       /*    cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
       /*    /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */
       /*  } */
       /*   }else{ */
       /*  if(Dummy[Tvard[k][2]]==0){ */
       /*    cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
       /*    /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */
       /*  }else{ */
       /*    cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
       /*    /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\/ */
       /*  } */
       /*   } */
       /* } /\* End product without age *\/ */
   /* ENd of old code */
     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
                 /* age and covariate values of ij are in 'cov' */      /* age and covariate values of ij are in 'cov' */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
           
     savm=oldm;      savm=oldm;
Line 2341  double **prevalim(double **prlim, int nl Line 3009  double **prevalim(double **prlim, int nl
       free_vector(meandiff,1,nlstate);        free_vector(meandiff,1,nlstate);
       return prlim;        return prlim;
     }      }
   } /* age loop */    } /* agefin loop */
     /* After some age loop it doesn't converge */      /* After some age loop it doesn't converge */
   printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\    if(!first){
 Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);      first=1;
       printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d). Others in log file only...\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
       fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
     }else if (first >=1 && first <10){
       fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
       first++;
     }else if (first ==10){
       fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
       printf("Warning: the stable prevalence dit not converge. This warning came too often, IMaCh will stop notifying, even in its log file. Look at the graphs to appreciate the non convergence.\n");
       fprintf(ficlog,"Warning: the stable prevalence no convergence; too many cases, giving up noticing, even in log file\n");
       first++;
     }
   
   /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
   free_vector(min,1,nlstate);    free_vector(min,1,nlstate);
   free_vector(max,1,nlstate);    free_vector(max,1,nlstate);
Line 2358  Earliest age to start was %d-%d=%d, ncvl Line 3038  Earliest age to start was %d-%d=%d, ncvl
   
  /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */   /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
  /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */   /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
  double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij)    double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres)
 {  {
   /* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit    /* Computes the prevalence limit in each live state at age x and for covariate combination ij (<=2**cptcoveff) by left multiplying the unit
      matrix by transitions matrix until convergence is reached with precision ftolpl */       matrix by transitions matrix until convergence is reached with precision ftolpl */
   /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */    /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
   /* Wx is row vector: population in state 1, population in state 2, population dead */    /* Wx is row vector: population in state 1, population in state 2, population dead */
Line 2380  Earliest age to start was %d-%d=%d, ncvl Line 3060  Earliest age to start was %d-%d=%d, ncvl
   /*  0.51326036147820708, 0.48673963852179264} */    /*  0.51326036147820708, 0.48673963852179264} */
   /* If we start from prlim again, prlim tends to a constant matrix */    /* If we start from prlim again, prlim tends to a constant matrix */
   
   int i, ii,j,k;    int i, ii,j,k, k1;
     int first=0;
   double *min, *max, *meandiff, maxmax,sumnew=0.;    double *min, *max, *meandiff, maxmax,sumnew=0.;
   /* double **matprod2(); */ /* test */    /* double **matprod2(); */ /* test */
   double **out, cov[NCOVMAX+1], **bmij();    double **out, cov[NCOVMAX+1], **bmij();
Line 2395  Earliest age to start was %d-%d=%d, ncvl Line 3076  Earliest age to start was %d-%d=%d, ncvl
   max=vector(1,nlstate);    max=vector(1,nlstate);
   meandiff=vector(1,nlstate);    meandiff=vector(1,nlstate);
   
         dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;    dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
         oldm=oldms; savm=savms;    oldm=oldms; savm=savms;
     
         /* Starting with matrix unity */    /* Starting with matrix unity */
         for (ii=1;ii<=nlstate+ndeath;ii++)    for (ii=1;ii<=nlstate+ndeath;ii++)
                 for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=nlstate+ndeath;j++){
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
       
Line 2409  Earliest age to start was %d-%d=%d, ncvl Line 3090  Earliest age to start was %d-%d=%d, ncvl
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
   /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */    /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
   for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */    /* for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
     for(agefin=age; agefin<FMIN(AGESUP,age+delaymax); agefin=agefin+stepm/YEARM){ /* A changer en age */
     ncvloop++;      ncvloop++;
     newm=savm; /* oldm should be kept from previous iteration or unity at start */      newm=savm; /* oldm should be kept from previous iteration or unity at start */
                 /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */                  /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
     /* Covariates have to be included here again */      /* Covariates have to be included here again */
     cov[2]=agefin;      cov[2]=agefin;
     if(nagesqr==1)      if(nagesqr==1){
       cov[3]= agefin*agefin;;        cov[3]= agefin*agefin;;
     for (k=1; k<=cptcovn;k++) {      }
       /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */      for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
       cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];        if(Typevar[k1]==1){ /* A product with age */
       /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */          cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
     }        }else{
     /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */          cov[2+nagesqr+k1]=precov[nres][k1];
     /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */        }
     for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];      }/* End of loop on model equation */
     for (k=1; k<=cptcovprod;k++) /* Useless */  
       /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */  /* Old code */ 
       cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];  
           /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */
     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      /*                  /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */
     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      /*   cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; */
     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      /*   /\* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */      /* } */
     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */      /* /\* for (k=1; k<=cptcovn;k++) { *\/ */
       /* /\*   /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */
       /* /\*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */
       /* /\*   /\\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\\/ *\/ */
       /* /\* } *\/ */
       /* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */
       /*                  /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
       /*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];  */
       /*   /\* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
       /* } */
       /* /\* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; *\/ */
       /* /\* for (k=1; k<=cptcovprod;k++) /\\* Useless *\\/ *\/ */
       /* /\*   /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\\/ *\/ */
       /* /\*   cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
       /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
       /*   /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age *\\/ ERROR ???*\/ */
       /*   if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */
       /*  cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
       /*   } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */
       /*  cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */
       /*   } */
       /*   /\* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
       /* } */
       /* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */
       /*   /\* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */
       /*   if(Dummy[Tvard[k][1]]==0){ */
       /*  if(Dummy[Tvard[k][2]]==0){ */
       /*    cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
       /*  }else{ */
       /*    cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
       /*  } */
       /*   }else{ */
       /*  if(Dummy[Tvard[k][2]]==0){ */
       /*    cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
       /*  }else{ */
       /*    cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
       /*  } */
       /*   } */
       /* } */
       
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
                 /* ij should be linked to the correct index of cov */                  /* ij should be linked to the correct index of cov */
                 /* age and covariate values ij are in 'cov', but we need to pass                  /* age and covariate values ij are in 'cov', but we need to pass
                  * ij for the observed prevalence at age and status and covariate                   * ij for the observed prevalence at age and status and covariate
Line 2442  Earliest age to start was %d-%d=%d, ncvl Line 3168  Earliest age to start was %d-%d=%d, ncvl
     /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */      /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
     /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */      /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
     out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */      out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */
       /* if((int)age == 86 || (int)age == 87){ */
       /*   printf(" Backward prevalim age=%d agefin=%d \n", (int) age, (int) agefin); */
       /*   for(i=1; i<=nlstate+ndeath; i++) { */
       /*  printf("%d newm= ",i); */
       /*  for(j=1;j<=nlstate+ndeath;j++) { */
       /*    printf("%f ",newm[i][j]); */
       /*  } */
       /*  printf("oldm * "); */
       /*  for(j=1;j<=nlstate+ndeath;j++) { */
       /*    printf("%f ",oldm[i][j]); */
       /*  } */
       /*  printf(" bmmij "); */
       /*  for(j=1;j<=nlstate+ndeath;j++) { */
       /*    printf("%f ",pmmij[i][j]); */
       /*  } */
       /*  printf("\n"); */
       /*   } */
       /* } */
     savm=oldm;      savm=oldm;
     oldm=newm;      oldm=newm;
   
     for(j=1; j<=nlstate; j++){      for(j=1; j<=nlstate; j++){
       max[j]=0.;        max[j]=0.;
       min[j]=1.;        min[j]=1.;
     }      }
     for(j=1; j<=nlstate; j++){       for(j=1; j<=nlstate; j++){ 
       for(i=1;i<=nlstate;i++){        for(i=1;i<=nlstate;i++){
                                 /* bprlim[i][j]= newm[i][j]/(1-sumnew); */          /* bprlim[i][j]= newm[i][j]/(1-sumnew); */
                                 bprlim[i][j]= newm[i][j];          bprlim[i][j]= newm[i][j];
                                 max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */          max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */
                                 min[i]=FMIN(min[i],bprlim[i][j]);          min[i]=FMIN(min[i],bprlim[i][j]);
       }        }
     }      }
                                   
     maxmax=0.;      maxmax=0.;
     for(i=1; i<=nlstate; i++){      for(i=1; i<=nlstate; i++){
       meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */        meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column, could be nan! */
       maxmax=FMAX(maxmax,meandiff[i]);        maxmax=FMAX(maxmax,meandiff[i]);
       /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */        /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
     } /* j loop */      } /* i loop */
     *ncvyear= -( (int)age- (int)agefin);      *ncvyear= -( (int)age- (int)agefin);
     /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);*/      /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
     if(maxmax < ftolpl){      if(maxmax < ftolpl){
       /* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */        /* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
       free_vector(min,1,nlstate);        free_vector(min,1,nlstate);
Line 2472  Earliest age to start was %d-%d=%d, ncvl Line 3217  Earliest age to start was %d-%d=%d, ncvl
       free_vector(meandiff,1,nlstate);        free_vector(meandiff,1,nlstate);
       return bprlim;        return bprlim;
     }      }
   } /* age loop */    } /* agefin loop */
     /* After some age loop it doesn't converge */      /* After some age loop it doesn't converge */
   printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\    if(!first){
       first=1;
       printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\
   Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
     }
     fprintf(ficlog,"Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
 Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);  Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
   /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
   free_vector(min,1,nlstate);    free_vector(min,1,nlstate);
Line 2489  Oldest age to start was %d-%d=%d, ncvloo Line 3239  Oldest age to start was %d-%d=%d, ncvloo
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 {  {
   /* According to parameters values stored in x and the covariate's values stored in cov,    /* According to parameters values stored in x and the covariate's values stored in cov,
      computes the probability to be observed in state j being in state i by appying the       computes the probability to be observed in state j (after stepm years) being in state i by appying the
      model to the ncovmodel covariates (including constant and age).       model to the ncovmodel covariates (including constant and age).
      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
      and, according on how parameters are entered, the position of the coefficient xij(nc) of the       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
Line 2498  double **pmij(double **ps, double *cov, Line 3248  double **pmij(double **ps, double *cov,
      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
      Outputs ps[i][j] the probability to be observed in j being in j according to       Outputs ps[i][j] or probability to be observed in j being in i according to
      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
        Sum on j ps[i][j] should equal to 1.
   */    */
   double s1, lnpijopii;    double s1, lnpijopii;
   /*double t34;*/    /*double t34;*/
Line 2513  double **pmij(double **ps, double *cov, Line 3264  double **pmij(double **ps, double *cov,
         /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */          /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       }        }
       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */        /* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */
     }      }
     for(j=i+1; j<=nlstate+ndeath;j++){      for(j=i+1; j<=nlstate+ndeath;j++){
       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
Line 2522  double **pmij(double **ps, double *cov, Line 3273  double **pmij(double **ps, double *cov,
         /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
       }        }
       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         /* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */
     }      }
   }    }
       
Line 2529  double **pmij(double **ps, double *cov, Line 3281  double **pmij(double **ps, double *cov,
     s1=0;      s1=0;
     for(j=1; j<i; j++){      for(j=1; j<i; j++){
       s1+=exp(ps[i][j]); /* In fact sums pij/pii */        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */        /* printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     }      }
     for(j=i+1; j<=nlstate+ndeath; j++){      for(j=i+1; j<=nlstate+ndeath; j++){
       s1+=exp(ps[i][j]); /* In fact sums pij/pii */        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */        /* printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     }      }
     /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */      /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     ps[i][i]=1./(s1+1.);      ps[i][i]=1./(s1+1.);
     /* Computing other pijs */      /* Computing other pijs */
     for(j=1; j<i; j++)      for(j=1; j<i; j++)
       ps[i][j]= exp(ps[i][j])*ps[i][i];        ps[i][j]= exp(ps[i][j])*ps[i][i];/* Bug valgrind */
     for(j=i+1; j<=nlstate+ndeath; j++)      for(j=i+1; j<=nlstate+ndeath; j++)
       ps[i][j]= exp(ps[i][j])*ps[i][i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
Line 2551  double **pmij(double **ps, double *cov, Line 3303  double **pmij(double **ps, double *cov,
       ps[ii][ii]=1;        ps[ii][ii]=1;
     }      }
   }    }
     
     
   /* for(ii=1; ii<= nlstate+ndeath; ii++){ */    /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */    /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */    /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
Line 2563  double **pmij(double **ps, double *cov, Line 3315  double **pmij(double **ps, double *cov,
   /*    /*
     for(i=1; i<= npar; i++) printf("%f ",x[i]);      for(i=1; i<= npar; i++) printf("%f ",x[i]);
                 goto end;*/                  goto end;*/
   return ps;    return ps; /* Pointer is unchanged since its call */
 }  }
   
 /*************** backward transition probabilities ***************/   /*************** backward transition probabilities ***************/ 
Line 2572  double **pmij(double **ps, double *cov, Line 3324  double **pmij(double **ps, double *cov,
 /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */  /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
  double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )   double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
 {  {
   /* Computes the backward probability at age agefin and covariate ij    /* Computes the backward probability at age agefin, cov[2], and covariate combination 'ij'. In fact cov is already filled and x too.
    * and returns in **ps as well as **bmij.     * Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij.
    */     */
   int i, ii, j,k;    int i, ii, j,k;
       
   double **out, **pmij();    double **out, **pmij();
   double sumnew=0.;    double sumnew=0.;
   double agefin;    double agefin;
       double k3=0.; /* constant of the w_x diagonal matrix (in order for B to sum to 1 even for death state) */
   double **dnewm, **dsavm, **doldm;    double **dnewm, **dsavm, **doldm;
   double **bbmij;    double **bbmij;
       
   doldm=ddoldms; /* global pointers */    doldm=ddoldms; /* global pointers */
   dnewm=ddnewms;    dnewm=ddnewms;
   dsavm=ddsavms;    dsavm=ddsavms;
     
     /* Debug */
     /* printf("Bmij ij=%d, cov[2}=%f\n", ij, cov[2]); */
   agefin=cov[2];    agefin=cov[2];
     /* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */
   /* bmij *//* age is cov[2], ij is included in cov, but we need for    /* bmij *//* age is cov[2], ij is included in cov, but we need for
      the observed prevalence (with this covariate ij) */       the observed prevalence (with this covariate ij) at beginning of transition */
   dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate);    /* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   /* We do have the matrix Px in savm  and we need pij */  
     /* P_x */
     pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm *//* Bug valgrind */
     /* outputs pmmij which is a stochastic matrix in row */
   
     /* Diag(w_x) */
     /* Rescaling the cross-sectional prevalence: Problem with prevacurrent which can be zero */
     sumnew=0.;
     /*for (ii=1;ii<=nlstate+ndeath;ii++){*/
     for (ii=1;ii<=nlstate;ii++){ /* Only on live states */
       /* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]); */
       sumnew+=prevacurrent[(int)agefin][ii][ij];
     }
     if(sumnew >0.01){  /* At least some value in the prevalence */
       for (ii=1;ii<=nlstate+ndeath;ii++){
         for (j=1;j<=nlstate+ndeath;j++)
           doldm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij]/sumnew : 0.0);
       }
     }else{
       for (ii=1;ii<=nlstate+ndeath;ii++){
         for (j=1;j<=nlstate+ndeath;j++)
         doldm[ii][j]=(ii==j ? 1./nlstate : 0.0);
       }
       /* if(sumnew <0.9){ */
       /*   printf("Problem internal bmij B: sum on i wi <0.9: j=%d, sum_i wi=%lf,agefin=%d\n",j,sumnew, (int)agefin); */
       /* } */
     }
     k3=0.0;  /* We put the last diagonal to 0 */
     for (ii=nlstate+1;ii<=nlstate+ndeath;ii++){
         doldm[ii][ii]= k3;
     }
     /* End doldm, At the end doldm is diag[(w_i)] */
     
     /* Left product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm): diag[(w_i)*Px */
     bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* was a Bug Valgrind */
   
     /* Diag(Sum_i w^i_x p^ij_x, should be the prevalence at age x+stepm */
     /* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */
   for (j=1;j<=nlstate+ndeath;j++){    for (j=1;j<=nlstate+ndeath;j++){
     sumnew=0.; /* w1 p11 + w2 p21 only on live states */      sumnew=0.;
     for (ii=1;ii<=nlstate;ii++){      for (ii=1;ii<=nlstate;ii++){
       sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij];        /* sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; */
         sumnew+=pmmij[ii][j]*doldm[ii][ii]; /* Yes prevalence at beginning of transition */
     } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */      } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */
     for (ii=1;ii<=nlstate+ndeath;ii++){      for (ii=1;ii<=nlstate+ndeath;ii++){
       if(sumnew >= 1.e-10){  
         /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */          /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
         /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */          /*      dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
         /* }else if(agefin >= agemaxpar+stepm/YEARM){ */          /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
         /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */          /*      dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
         /* }else */          /* }else */
         doldm[ii][j]=(ii==j ? 1./sumnew : 0.0);        dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0);
       }else{  
         printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin);  
       }  
     } /*End ii */      } /*End ii */
   } /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */    } /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */
   /* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */  
   bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */    ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* was a Bug Valgrind */
   /* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */    /* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
   /* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */  
   /* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */  
   /* left Product of this matrix by diag matrix of prevalences (savm) */  
   for (j=1;j<=nlstate+ndeath;j++){  
     for (ii=1;ii<=nlstate+ndeath;ii++){  
       dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0);  
     }  
   } /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */  
   ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */  
   /* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */  
   /* end bmij */    /* end bmij */
   return ps;     return ps; /*pointer is unchanged */
 }  }
 /*************** transition probabilities ***************/   /*************** transition probabilities ***************/ 
   
Line 2648  double **bpmij(double **ps, double *cov, Line 3427  double **bpmij(double **ps, double *cov,
   /*double t34;*/    /*double t34;*/
   int i,j, nc, ii, jj;    int i,j, nc, ii, jj;
   
         for(i=1; i<= nlstate; i++){    for(i=1; i<= nlstate; i++){
                 for(j=1; j<i;j++){      for(j=1; j<i;j++){
                         for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                                 /*lnpijopii += param[i][j][nc]*cov[nc];*/          /*lnpijopii += param[i][j][nc]*cov[nc];*/
                                 lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];          lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                                 /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */          /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                         }        }
                         ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                         /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */        /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                 }      }
                 for(j=i+1; j<=nlstate+ndeath;j++){      for(j=i+1; j<=nlstate+ndeath;j++){
                         for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                                 /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/          /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                                 lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];          lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                                 /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
                         }        }
                         ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                 }      }
         }    }
             
         for(i=1; i<= nlstate; i++){    for(i=1; i<= nlstate; i++){
                 s1=0;      s1=0;
                 for(j=1; j<i; j++){      for(j=1; j<i; j++){
                         s1+=exp(ps[i][j]); /* In fact sums pij/pii */        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                         /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */        /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                 }      }
                 for(j=i+1; j<=nlstate+ndeath; j++){      for(j=i+1; j<=nlstate+ndeath; j++){
                         s1+=exp(ps[i][j]); /* In fact sums pij/pii */        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                         /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */        /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                 }      }
                 /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */      /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                 ps[i][i]=1./(s1+1.);      ps[i][i]=1./(s1+1.);
                 /* Computing other pijs */      /* Computing other pijs */
                 for(j=1; j<i; j++)      for(j=1; j<i; j++)
                         ps[i][j]= exp(ps[i][j])*ps[i][i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
                 for(j=i+1; j<=nlstate+ndeath; j++)      for(j=i+1; j<=nlstate+ndeath; j++)
                         ps[i][j]= exp(ps[i][j])*ps[i][i];        ps[i][j]= exp(ps[i][j])*ps[i][i];
                 /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         } /* end i */    } /* end i */
             
         for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                 for(jj=1; jj<= nlstate+ndeath; jj++){      for(jj=1; jj<= nlstate+ndeath; jj++){
                         ps[ii][jj]=0;        ps[ii][jj]=0;
                         ps[ii][ii]=1;        ps[ii][ii]=1;
                 }      }
         }    }
         /* Added for backcast */ /* Transposed matrix too */    /* Added for prevbcast */ /* Transposed matrix too */
         for(jj=1; jj<= nlstate+ndeath; jj++){    for(jj=1; jj<= nlstate+ndeath; jj++){
                 s1=0.;      s1=0.;
                 for(ii=1; ii<= nlstate+ndeath; ii++){      for(ii=1; ii<= nlstate+ndeath; ii++){
                         s1+=ps[ii][jj];        s1+=ps[ii][jj];
                 }      }
                 for(ii=1; ii<= nlstate; ii++){      for(ii=1; ii<= nlstate; ii++){
                         ps[ii][jj]=ps[ii][jj]/s1;        ps[ii][jj]=ps[ii][jj]/s1;
                 }      }
         }    }
         /* Transposition */    /* Transposition */
         for(jj=1; jj<= nlstate+ndeath; jj++){    for(jj=1; jj<= nlstate+ndeath; jj++){
                 for(ii=jj; ii<= nlstate+ndeath; ii++){      for(ii=jj; ii<= nlstate+ndeath; ii++){
                         s1=ps[ii][jj];        s1=ps[ii][jj];
                         ps[ii][jj]=ps[jj][ii];        ps[ii][jj]=ps[jj][ii];
                         ps[jj][ii]=s1;        ps[jj][ii]=s1;
                 }      }
         }    }
         /* for(ii=1; ii<= nlstate+ndeath; ii++){ */    /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */    /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         /*      printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */    /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         /*   } */    /*   } */
         /*   printf("\n "); */    /*   printf("\n "); */
         /* } */    /* } */
         /* printf("\n ");printf("%lf ",cov[2]);*/    /* printf("\n ");printf("%lf ",cov[2]);*/
         /*    /*
                 for(i=1; i<= npar; i++) printf("%f ",x[i]);      for(i=1; i<= npar; i++) printf("%f ",x[i]);
                 goto end;*/      goto end;*/
         return ps;    return ps;
 }  }
   
   
Line 2748  double **matprod2(double **out, double * Line 3527  double **matprod2(double **out, double *
   
 /************* Higher Matrix Product ***************/  /************* Higher Matrix Product ***************/
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres )
 {  {
   /* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over     /* Already optimized with precov.
        Computes the transition matrix starting at age 'age' and dummies values in each resultline (loop on ij to find the corresponding combination) to over 
      'nhstepm*hstepm*stepm' months (i.e. until       'nhstepm*hstepm*stepm' months (i.e. until
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
      nhstepm*hstepm matrices.        nhstepm*hstepm matrices. 
Line 2762  double ***hpxij(double ***po, int nhstep Line 3542  double ***hpxij(double ***po, int nhstep
   
      */       */
   
   int i, j, d, h, k;    int i, j, d, h, k, k1;
   double **out, cov[NCOVMAX+1];    double **out, cov[NCOVMAX+1];
   double **newm;    double **newm;
   double agexact;    double agexact;
Line 2782  double ***hpxij(double ***po, int nhstep Line 3562  double ***hpxij(double ***po, int nhstep
       cov[1]=1.;        cov[1]=1.;
       agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
       cov[2]=agexact;        cov[2]=agexact;
       if(nagesqr==1)        if(nagesqr==1){
         cov[3]= agexact*agexact;          cov[3]= agexact*agexact;
       for (k=1; k<=cptcovn;k++)         }
         cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];        /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
       /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */        /* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */
       for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */        for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
         /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */          if(Typevar[k1]==1){ /* A product with age */
         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];            cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
       /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */          }else{
       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */            cov[2+nagesqr+k1]=precov[nres][k1];
         cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];          }
       /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */        }/* End of loop on model equation */
           /* Old code */ 
   /*      if( Dummy[k1]==0 && Typevar[k1]==0 ){ /\* Single dummy  *\/ */
   /* /\*     V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) *\/ */
   /* /\*       for (k=1; k<=nsd;k++) { /\\* For single dummy covariates only *\\/ *\/ */
   /* /\* /\\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\\/ *\/ */
   /*      /\* codtabm(ij,k)  (1 & (ij-1) >> (k-1))+1 *\/ */
   /* /\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
   /* /\*    k        1  2   3   4     5    6    7     8    9 *\/ */
   /* /\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\/ */
   /* /\*    nsd         1   2                              3 *\/ /\* Counting single dummies covar fixed or tv *\/ */
   /* /\*TvarsD[nsd]     4   3                              1 *\/ /\* ID of single dummy cova fixed or timevary*\/ */
   /* /\*TvarsDind[k]    2   3                              9 *\/ /\* position K of single dummy cova *\/ */
   /*        /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];or [codtabm(ij,TnsdVar[TvarsD[k]] *\/ */
   /*        cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; */
   /*        /\* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,TnsdVar[TvarsD[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,TnsdVar[TvarsD[k]])); *\/ */
   /*        printf("hpxij Dummy combi=%d k1=%d Tvar[%d]=V%d cov[2+%d+%d]=%lf resultmodel[nres][%d]=%d nres/nresult=%d/%d \n",ij,k1,k1, Tvar[k1],nagesqr,k1,cov[2+nagesqr+k1],k1,resultmodel[nres][k1],nres,nresult); */
   /*        printf("hpxij new Dummy precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
   /*      }else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /\* Single quantitative variables  *\/ */
   /*        /\* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline *\/ */
   /*        cov[2+nagesqr+k1]=Tqresult[nres][resultmodel[nres][k1]];  */
   /*        /\* for (k=1; k<=nsq;k++) { /\\* For single varying covariates only *\\/ *\/ */
   /*        /\*   /\\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\\/ *\/ */
   /*        /\*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */
   /*        printf("hPxij Quantitative k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */
   /*        printf("hpxij new Quanti precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
   /*      }else if( Dummy[k1]==2 ){ /\* For dummy with age product *\/ */
   /*        /\* Tvar[k1] Variable in the age product age*V1 is 1 *\/ */
   /*        /\* [Tinvresult[nres][V1] is its value in the resultline nres *\/ */
   /*        cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvar[k1]]*cov[2]; */
   /*        printf("DhPxij Dummy with age k1=%d Tvar[%d]=%d TinvDoQresult[nres=%d][%d]=%.f age=%.2f,cov[2+%d+%d]=%.3f\n",k1,k1,Tvar[k1],nres,TinvDoQresult[nres][Tvar[k1]],cov[2],nagesqr,k1,cov[2+nagesqr+k1]); */
   /*        printf("hpxij new Dummy with age product precov[nres=%d][k1=%d]=%.4f * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */
   
   /*        /\* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]];    *\/ */
   /*        /\* for (k=1; k<=cptcovage;k++){ /\\* For product with age V1+V1*age +V4 +age*V3 *\\/ *\/ */
   /*        /\* 1+2 Tage[1]=2 TVar[2]=1 Dummy[2]=2, Tage[2]=4 TVar[4]=3 Dummy[4]=3 quant*\/ */
   /*        /\* *\/ */
   /* /\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
   /* /\*    k        1  2   3   4     5    6    7     8    9 *\/ */
   /* /\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\/ */
   /* /\*cptcovage=2                   1               2      *\/ */
   /* /\*Tage[k]=                      5               8      *\/   */
   /*      }else if( Dummy[k1]==3 ){ /\* For quant with age product *\/ */
   /*        cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]];        */
   /*        printf("QhPxij Quant with age k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */
   /*        printf("hpxij new Quanti with age product precov[nres=%d][k1=%d] * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */
   /*        /\* if(Dummy[Tage[k]]== 2){ /\\* dummy with age *\\/ *\/ */
   /*        /\* /\\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\\* dummy with age *\\\/ *\\/ *\/ */
   /*        /\*   /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\\/ *\/ */
   /*        /\*   /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\\/ *\/ */
   /*        /\*   cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\/ */
   /*        /\*   printf("hPxij Age combi=%d k=%d cptcovage=%d Tage[%d]=%d Tvar[Tage[%d]]=V%d nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]]])]=%d nres=%d\n",ij,k,cptcovage,k,Tage[k],k,Tvar[Tage[k]], nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]])],nres); *\/ */
   /*        /\* } else if(Dummy[Tage[k]]== 3){ /\\* quantitative with age *\\/ *\/ */
   /*        /\*   cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; *\/ */
   /*        /\* } *\/ */
   /*        /\* printf("hPxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
   /*      }else if(Typevar[k1]==2 ){ /\* For product (not with age) *\/ */
   /* /\*       for (k=1; k<=cptcovprod;k++){ /\\*  For product without age *\\/ *\/ */
   /* /\* /\\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\\/ *\/ */
   /* /\* /\\*    k        1  2   3   4     5    6    7     8    9 *\\/ *\/ */
   /* /\* /\\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\\/ *\/ */
   /* /\* /\\*cptcovprod=1            1               2            *\\/ *\/ */
   /* /\* /\\*Tprod[]=                4               7            *\\/ *\/ */
   /* /\* /\\*Tvard[][1]             4               1             *\\/ *\/ */
   /* /\* /\\*Tvard[][2]               3               2           *\\/ *\/ */
             
   /*        /\* printf("hPxij Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]=%d nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]=%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2],nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])],nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]); *\/ */
   /*        /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
   /*        cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];     */
   /*        printf("hPxij Prod ij=%d k1=%d  cov[2+%d+%d]=%.5f Tvard[%d][1]=V%d * Tvard[%d][2]=V%d ; TinvDoQresult[nres][Tvardk[k1][1]]=%.4f * TinvDoQresult[nres][Tvardk[k1][1]]=%.4f\n",ij,k1,nagesqr,k1,cov[2+nagesqr+k1],k1,Tvardk[k1][1], k1,Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][1]], TinvDoQresult[nres][Tvardk[k1][2]]); */
   /*        printf("hpxij new Product no age product precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
   
   /*        /\* if(Dummy[Tvardk[k1][1]]==0){ *\/ */
   /*        /\*   if(Dummy[Tvardk[k1][2]]==0){ /\\* Product of dummies *\\/ *\/ */
   /*            /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
   /*            /\* cov[2+nagesqr+k1]=Tinvresult[nres][Tvardk[k1][1]] * Tinvresult[nres][Tvardk[k1][2]];   *\/ */
   /*            /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])]; *\/ */
   /*          /\* }else{ /\\* Product of dummy by quantitative *\\/ *\/ */
   /*            /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * Tqresult[nres][k]; *\/ */
   /*            /\* cov[2+nagesqr+k1]=Tresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]]; *\/ */
   /*        /\*   } *\/ */
   /*        /\* }else{ /\\* Product of quantitative by...*\\/ *\/ */
   /*        /\*   if(Dummy[Tvard[k][2]]==0){  /\\* quant by dummy *\\/ *\/ */
   /*        /\*     /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][Tvard[k][1]]; *\\/ *\/ */
   /*        /\*     cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tresult[nres][Tinvresult[nres][Tvardk[k1][2]]]  ; *\/ */
   /*        /\*   }else{ /\\* Product of two quant *\\/ *\/ */
   /*        /\*     /\\* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\\/ *\/ */
   /*        /\*     cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]]  ; *\/ */
   /*        /\*   } *\/ */
   /*        /\* }/\\*end of products quantitative *\\/ *\/ */
   /*      }/\*end of products *\/ */
         /* } /\* End of loop on model equation *\/ */
         /* for (k=1; k<=cptcovn;k++)  */
         /*        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
         /* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */
         /*        cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */
         /* for (k=1; k<=cptcovprod;k++) /\* Useless because included in cptcovn *\/ */
         /*        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; */
               
               
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                         /* right multiplication of oldm by the current matrix */        /* right multiplication of oldm by the current matrix */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       /* if((int)age == 70){ */        /* if((int)age == 70){ */
Line 2820  double ***hpxij(double ***po, int nhstep Line 3697  double ***hpxij(double ***po, int nhstep
     }      }
     for(i=1; i<=nlstate+ndeath; i++)      for(i=1; i<=nlstate+ndeath; i++)
       for(j=1;j<=nlstate+ndeath;j++) {        for(j=1;j<=nlstate+ndeath;j++) {
                                 po[i][j][h]=newm[i][j];          po[i][j][h]=newm[i][j];
                                 /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
       }        }
     /*printf("h=%d ",h);*/      /*printf("h=%d ",h);*/
   } /* end h */    } /* end h */
         /*     printf("\n H=%d \n",h); */    /*     printf("\n H=%d \n",h); */
   return po;    return po;
 }  }
   
 /************* Higher Back Matrix Product ***************/  /************* Higher Back Matrix Product ***************/
 /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */  /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
 double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij )  double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres )
 {  {
   /* Computes the transition matrix starting at age 'age' over    /* For dummy covariates given in each resultline (for historical, computes the corresponding combination ij),
        computes the transition matrix starting at age 'age' over
      'nhstepm*hstepm*stepm' months (i.e. until       'nhstepm*hstepm*stepm' months (i.e. until
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
      nhstepm*hstepm matrices.       nhstepm*hstepm matrices.
Line 2841  double ***hbxij(double ***po, int nhstep Line 3719  double ***hbxij(double ***po, int nhstep
      (typically every 2 years instead of every month which is too big       (typically every 2 years instead of every month which is too big
      for the memory).       for the memory).
      Model is determined by parameters x and covariates have to be       Model is determined by parameters x and covariates have to be
      included manually here.       included manually here. Then we use a call to bmij(x and cov)
        The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output
   */    */
   
   int i, j, d, h, k;    int i, j, d, h, k, k1;
   double **out, cov[NCOVMAX+1];    double **out, cov[NCOVMAX+1], **bmij();
   double **newm;    double **newm, ***newmm;
   double agexact;    double agexact;
   double agebegin, ageend;    double agebegin, ageend;
   double **oldm, **savm;    double **oldm, **savm;
   
   oldm=oldms;savm=savms;    newmm=po; /* To be saved */
     oldm=oldms;savm=savms; /* Global pointers */
   /* Hstepm could be zero and should return the unit matrix */    /* Hstepm could be zero and should return the unit matrix */
   for (i=1;i<=nlstate+ndeath;i++)    for (i=1;i<=nlstate+ndeath;i++)
     for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=nlstate+ndeath;j++){
Line 2865  double ***hbxij(double ***po, int nhstep Line 3744  double ***hbxij(double ***po, int nhstep
       newm=savm;        newm=savm;
       /* Covariates have to be included here again */        /* Covariates have to be included here again */
       cov[1]=1.;        cov[1]=1.;
       agexact=age-((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */        agexact=age-( (h-1)*hstepm + (d)  )*stepm/YEARM; /* age just before transition, d or d-1? */
       /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */        /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
           /* Debug */
         /* printf("hBxij age=%lf, agexact=%lf\n", age, agexact); */
       cov[2]=agexact;        cov[2]=agexact;
       if(nagesqr==1)        if(nagesqr==1){
         cov[3]= agexact*agexact;          cov[3]= agexact*agexact;
       for (k=1; k<=cptcovn;k++)        }
         cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];        /** New code */
       /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */        for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
       for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */          if(Typevar[k1]==1){ /* A product with age */
         /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */            cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];          }else{
       /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */            cov[2+nagesqr+k1]=precov[nres][k1];
       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */          }
         cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];        }/* End of loop on model equation */
       /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */        /** End of new code */
                             /** This was old code */
                                 /* for (k=1; k<=nsd;k++){ /\* For single dummy covariates only *\//\* cptcovn error *\/ */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        /* /\*    cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        /* /\* /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */
         /*        cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])];/\* Bug valgrind *\/ */
         /*   /\* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
         /* } */
         /* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */
         /*        /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
         /*        cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];  */
         /*        /\* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
         /* } */
         /* for (k=1; k<=cptcovage;k++){ /\* Should start at cptcovn+1 *\//\* For product with age *\/ */
         /*        /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age error!!!*\\/ *\/ */
         /*        if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */
         /*          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
         /*        } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */
         /*          cov[2+nagesqr+Tage[k]]=Tqresult[nres][k];  */
         /*        } */
         /*        /\* printf("hBxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
         /* } */
         /* for (k=1; k<=cptcovprod;k++){ /\* Useless because included in cptcovn *\/ */
         /*        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
         /*        if(Dummy[Tvard[k][1]]==0){ */
         /*          if(Dummy[Tvard[k][2]]==0){ */
         /*            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]; */
         /*          }else{ */
         /*            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
         /*          } */
         /*        }else{ */
         /*          if(Dummy[Tvard[k][2]]==0){ */
         /*            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
         /*          }else{ */
         /*            cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
         /*          } */
         /*        } */
         /* }                       */
         /* /\*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*\/ */
         /* /\*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*\/ */
   /** End of old code */
         
       /* Careful transposed matrix */        /* Careful transposed matrix */
       /* age is in cov[2] */        /* age is in cov[2], prevacurrent at beginning of transition. */
       /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */        /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
       /*                                                 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */        /*                                                 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
       out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\        out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
                    1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);                     1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);/* Bug valgrind */
       /* if((int)age == 70){ */        /* if((int)age == 70){ */
       /*        printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */        /*        printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
       /*        for(i=1; i<=nlstate+ndeath; i++) { */        /*        for(i=1; i<=nlstate+ndeath; i++) { */
Line 2910  double ***hbxij(double ***po, int nhstep Line 3828  double ***hbxij(double ***po, int nhstep
     for(i=1; i<=nlstate+ndeath; i++)      for(i=1; i<=nlstate+ndeath; i++)
       for(j=1;j<=nlstate+ndeath;j++) {        for(j=1;j<=nlstate+ndeath;j++) {
         po[i][j][h]=newm[i][j];          po[i][j][h]=newm[i][j];
         /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/          /* if(h==nhstepm) */
           /*   printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]); */
       }        }
     /*printf("h=%d ",h);*/      /* printf("h=%d %.1f ",h, agexact); */
   } /* end h */    } /* end h */
   /*     printf("\n H=%d \n",h); */    /* printf("\n H=%d nhs=%d \n",h, nhstepm); */
   return po;    return po;
 }  }
   
Line 2942  double ***hbxij(double ***po, int nhstep Line 3861  double ***hbxij(double ***po, int nhstep
 /*************** log-likelihood *************/  /*************** log-likelihood *************/
 double func( double *x)  double func( double *x)
 {  {
   int i, ii, j, k, mi, d, kk;    int i, ii, j, k, mi, d, kk, kf=0;
   int ioffset=0;    int ioffset=0;
   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double **out;    double **out;
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */    double lli; /* Individual log likelihood */
   int s1, s2;    int s1, s2;
   int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quatitative time varying covariate */    int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
   
   double bbh, survp;    double bbh, survp;
   long ipmx;  
   double agexact;    double agexact;
     double agebegin, ageend;
   /*extern weight */    /*extern weight */
   /* We are differentiating ll according to initial status */    /* We are differentiating ll according to initial status */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
Line 2973  double func( double *x) Line 3892  double func( double *x)
          Then computes with function pmij which return a matrix p[i][j] giving the elementary probability           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
          to be observed in j being in i according to the model.           to be observed in j being in i according to the model.
       */        */
       ioffset=2+nagesqr+cptcovage;        ioffset=2+nagesqr ;
       /* for (k=1; k<=cptcovn;k++){ /\* Simple and product covariates without age* products *\/ */     /* Fixed */
       for (k=1; k<=ncoveff;k++){ /* Simple and product covariates without age* products */        for (kf=1; kf<=ncovf;kf++){ /* For each fixed covariate dummu or quant or prod */
         cov[++ioffset]=covar[Tvar[k]][i];          /* # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi */
       }          /*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       for(iqv=1; iqv <= nqfveff; iqv++){ /* Quantitatives and Fixed covariates */          /*  TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  ID of fixed covariates or product V2, V1*V2, V1 */
         cov[++ioffset]=coqvar[iqv][i];          /* TvarFind;  TvarFind[1]=6,  TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod)  */
           cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (TvarFind[1]=6)*/
           /* V1*V2 (7)  TvarFind[2]=7, TvarFind[3]=9 */
       }        }
   
       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4]         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
          is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]            is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 
          has been calculated etc */           has been calculated etc */
       /* For an individual i, wav[i] gives the number of effective waves */        /* For an individual i, wav[i] gives the number of effective waves */
       /* We compute the contribution to Likelihood of each effective transition        /* We compute the contribution to Likelihood of each effective transition
Line 2994  double func( double *x) Line 3914  double func( double *x)
          But if the variable is not in the model TTvar[iv] is the real variable effective in the model:           But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
          meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]           meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
       */        */
       for(mi=1; mi<= wav[i]-1; mi++){        for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
         for(itv=1; itv <= ntveff; itv++){ /* Varying dummy covariates */        /* Wave varying (but not age varying) */
           cov[ioffset+itv]=cotvar[mw[mi][i]][itv][i];          for(k=1; k <= ncovv ; k++){ /* Varying  covariates in the model (single and product but no age )"V5+V4+V3+V4*V3+V5*age+V1*age+V1" +TvarVind 1,2,3,4(V4*V3)  Tvar[1]@7{5, 4, 3, 6, 5, 1, 1 ; 6 because the created covar is after V5 and is 6, minus 1+1, 3,2,1,4 positions in cotvar*/
         }            /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; but where is the crossproduct? */
         for(iqtv=1; iqtv <= nqtveff; iqtv++){ /* Varying quantitatives covariates */            cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
           if(cotqvar[mw[mi][i]][iqtv][i] == -1){  
             printf("i=%d, mi=%d, iqtv=%d, cotqvar[mw[mi][i]][iqtv][i]=%f",i,mi,iqtv,cotqvar[mw[mi][i]][iqtv][i]);  
           }  
           cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][iqtv][i];  
         }          }
         /* ioffset=2+nagesqr+cptcovn+nqv+ntv+nqtv; */  
         for (ii=1;ii<=nlstate+ndeath;ii++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){            for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
   
           agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
           ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
         for(d=0; d<dh[mi][i]; d++){          for(d=0; d<dh[mi][i]; d++){
           newm=savm;            newm=savm;
           agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
Line 3017  double func( double *x) Line 3935  double func( double *x)
           if(nagesqr==1)            if(nagesqr==1)
             cov[3]= agexact*agexact;  /* Should be changed here */              cov[3]= agexact*agexact;  /* Should be changed here */
           for (kk=1; kk<=cptcovage;kk++) {            for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */              if(!FixedV[Tvar[Tage[kk]]])
                 cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
               else
                 cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact;
           }            }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;            savm=oldm;
           oldm=newm;            oldm=newm;
         } /* end mult */          } /* end mult */
                                           
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         /* But now since version 0.9 we anticipate for bias at large stepm.          /* But now since version 0.9 we anticipate for bias at large stepm.
          * If stepm is larger than one month (smallest stepm) and if the exact delay            * If stepm is larger than one month (smallest stepm) and if the exact delay 
Line 3033  double func( double *x) Line 3954  double func( double *x)
          * we keep into memory the bias bh[mi][i] and also the previous matrix product           * we keep into memory the bias bh[mi][i] and also the previous matrix product
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
          * probability in order to take into account the bias as a fraction of the way           * probability in order to take into account the bias as a fraction of the way
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies                                   * from savm to out if bh is negative or even beyond if bh is positive. bh varies
          * -stepm/2 to stepm/2 .                                   * -stepm/2 to stepm/2 .
          * For stepm=1 the results are the same as for previous versions of Imach.                                   * For stepm=1 the results are the same as for previous versions of Imach.
          * For stepm > 1 the results are less biased than in previous versions.                                    * For stepm > 1 the results are less biased than in previous versions. 
          */                                   */
         s1=s[mw[mi][i]][i];          s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];          s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm;           bbh=(double)bh[mi][i]/(double)stepm; 
Line 3097  double func( double *x) Line 4018  double func( double *x)
           /*survp += out[s1][j]; */            /*survp += out[s1][j]; */
           lli= log(survp);            lli= log(survp);
         }          }
         else if  (s2==-4) {           /* else if  (s2==-4) {  */
           for (j=3,survp=0. ; j<=nlstate; j++)            /*   for (j=3,survp=0. ; j<=nlstate; j++)   */
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          /*     survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */
           lli= log(survp);           /*   lli= log(survp);  */
         }           /* }  */
         else if  (s2==-5) {           /* else if  (s2==-5) {  */
           for (j=1,survp=0. ; j<=2; j++)            /*   for (j=1,survp=0. ; j<=2; j++)   */
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          /*     survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */
           lli= log(survp);           /*   lli= log(survp);  */
         }           /* }  */
         else{          else{
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
Line 3125  double func( double *x) Line 4046  double func( double *x)
     } /* end of individual */      } /* end of individual */
   }  else if(mle==2){    }  else if(mle==2){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];        ioffset=2+nagesqr ;
         for (k=1; k<=ncovf;k++)
           cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];
       for(mi=1; mi<= wav[i]-1; mi++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(k=1; k <= ncovv ; k++){
             cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
           }
         for (ii=1;ii<=nlstate+ndeath;ii++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){            for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
Line 3275  double func( double *x) Line 4201  double func( double *x)
 /*************** log-likelihood *************/  /*************** log-likelihood *************/
 double funcone( double *x)  double funcone( double *x)
 {  {
   /* Same as likeli but slower because of a lot of printf and if */    /* Same as func but slower because of a lot of printf and if */
   int i, ii, j, k, mi, d, kk;    int i, ii, j, k, mi, d, kk, kf=0;
         int ioffset=0;    int ioffset=0;
   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double **out;    double **out;
   double lli; /* Individual log likelihood */    double lli; /* Individual log likelihood */
   double llt;    double llt;
   int s1, s2;    int s1, s2;
         int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate */    int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
   
   double bbh, survp;    double bbh, survp;
   double agexact;    double agexact;
   double agebegin, ageend;    double agebegin, ageend;
Line 3298  double funcone( double *x) Line 4225  double funcone( double *x)
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   ioffset=0;    ioffset=0;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     ioffset=2+nagesqr+cptcovage;      /* Computes the values of the ncovmodel covariates of the model
          depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
          Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
          to be observed in j being in i according to the model.
       */
       /* ioffset=2+nagesqr+cptcovage; */
       ioffset=2+nagesqr;
       /* Fixed */
     /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */      /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */
     for (k=1; k<=ncoveff+nqfveff;k++){ /* Simple and product fixed covariates without age* products */      /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */
       cov[++ioffset]=covar[Tvar[k]][i];      for (kf=1; kf<=ncovf;kf++){ /* Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */
     }        cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
     for(iqv=1; iqv <= nqfveff; iqv++){ /* Quantitative fixed covariates */  /*    cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i];  */
       cov[++ioffset]=coqvar[Tvar[iqv]][i];  /*    cov[2+6]=covar[Tvar[6]][i];  */
   /*    cov[2+6]=covar[2][i]; V2  */
   /*    cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i];  */
   /*    cov[2+7]=covar[Tvar[7]][i];  */
   /*    cov[2+7]=covar[7][i]; V7=V1*V2  */
   /*    cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i];  */
   /*    cov[2+9]=covar[Tvar[9]][i];  */
   /*    cov[2+9]=covar[1][i]; V1  */
     }      }
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 
            has been calculated etc */
         /* For an individual i, wav[i] gives the number of effective waves */
         /* We compute the contribution to Likelihood of each effective transition
            mw[mi][i] is real wave of the mi th effectve wave */
         /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
            s2=s[mw[mi+1][i]][i];
            And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i]
            But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
            meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
         */
       /* This part may be useless now because everythin should be in covar */
       /* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */
       /*   cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */
       /* } */
       /* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */
       /*   cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */
       /* } */
           
   
     for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */      for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
       for(itv=1; itv <= ntveff; itv++){ /* Varying dummy covariates */      /* Wave varying (but not age varying) */
         cov[ioffset+itv]=cotvar[mw[mi][i]][itv][i];        for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
       }          /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */
       for(iqtv=1; iqtv <= nqtveff; iqtv++){ /* Varying quantitatives covariates */          cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
         cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][iqtv][i];        }
       }        /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */
         /* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */
         /* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */
         /* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */
         /* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */
         /* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */
         /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */
         /*        iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */
         /*        /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */
         /*        cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */
         /* } */
       for (ii=1;ii<=nlstate+ndeath;ii++)        for (ii=1;ii<=nlstate+ndeath;ii++)
         for (j=1;j<=nlstate+ndeath;j++){          for (j=1;j<=nlstate+ndeath;j++){
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
Line 3323  double funcone( double *x) Line 4294  double funcone( double *x)
       agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */        agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
       ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
       for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */        for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
         /* for(d=0; d<=0; d++){  /\* Delay between two effective waves Only one matrix to speed up*\/ */
         /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]          /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           and mw[mi+1][i]. dh depends on stepm.*/            and mw[mi+1][i]. dh depends on stepm.*/
         newm=savm;          newm=savm;
         agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;  /* Here d is needed */
         cov[2]=agexact;          cov[2]=agexact;
         if(nagesqr==1)          if(nagesqr==1)
           cov[3]= agexact*agexact;            cov[3]= agexact*agexact;
         for (kk=1; kk<=cptcovage;kk++) {          for (kk=1; kk<=cptcovage;kk++) {
           cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;            if(!FixedV[Tvar[Tage[kk]]])
               cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             else
               cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact;
         }          }
         /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */          /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */
         /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
Line 3342  double funcone( double *x) Line 4317  double funcone( double *x)
         savm=oldm;          savm=oldm;
         oldm=newm;          oldm=newm;
       } /* end mult */        } /* end mult */
                 /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
                                    * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                                    * -stepm/2 to stepm/2 .
                                    * For stepm=1 the results are the same as for previous versions of Imach.
                                    * For stepm > 1 the results are less biased than in previous versions. 
                                    */
       s1=s[mw[mi][i]][i];        s1=s[mw[mi][i]][i];
       s2=s[mw[mi+1][i]][i];        s2=s[mw[mi+1][i]][i];
       /* if(s2==-1){ */        /* if(s2==-1){ */
       /*        printf(" s1=%d, s2=%d i=%d \n", s1, s2, i); */        /*        printf(" ERROR s1=%d, s2=%d i=%d \n", s1, s2, i); */
       /*        /\* exit(1); *\/ */        /*        /\* exit(1); *\/ */
       /* } */        /* } */
       bbh=(double)bh[mi][i]/(double)stepm;         bbh=(double)bh[mi][i]/(double)stepm; 
Line 3374  double funcone( double *x) Line 4361  double funcone( double *x)
       ipmx +=1;        ipmx +=1;
       sw += weight[i];        sw += weight[i];
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        /* printf("Funcone i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */
       if(globpr){        if(globpr){
         fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\          fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
  %11.6f %11.6f %11.6f ", \   %11.6f %11.6f %11.6f ", \
                 num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,                  num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);                  2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2]));
    /*     printf("%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ */
    /* %11.6f %11.6f %11.6f ", \ */
    /*             num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, */
    /*             2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           llt +=ll[k]*gipmx/gsw;            llt +=ll[k]*gipmx/gsw;
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
             /* printf(" %10.6f",-ll[k]*gipmx/gsw); */
         }          }
         fprintf(ficresilk," %10.6f\n", -llt);          fprintf(ficresilk," %10.6f\n", -llt);
           /* printf(" %10.6f\n", -llt); */
       }        }
     } /* end of wave */      } /* end of wave */
   } /* end of individual */    } /* end of individual */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   if(globpr==0){ /* First time we count the contributions and weights */    if(globpr==0){ /* First time we count the contributions and weights */
     gipmx=ipmx;      gipmx=ipmx;
     gsw=sw;      gsw=sw;
   }    }
   return -l;  return -l;
 }  }
   
   
 /*************** function likelione ***********/  /*************** function likelione ***********/
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*func)(double []))
 {  {
   /* This routine should help understanding what is done with     /* This routine should help understanding what is done with 
      the selection of individuals/waves and       the selection of individuals/waves and
Line 3424  void likelione(FILE *ficres,double p[], Line 4417  void likelione(FILE *ficres,double p[],
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   }    }
   
   *fretone=(*funcone)(p);    *fretone=(*func)(p);
   if(*globpri !=0){    if(*globpri !=0){
     fclose(ficresilk);      fclose(ficresilk);
     if (mle ==0)      if (mle ==0)
Line 3432  void likelione(FILE *ficres,double p[], Line 4425  void likelione(FILE *ficres,double p[],
     else if(mle >=1)      else if(mle >=1)
       fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
     fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));      fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           fprintf(fichtm,"\n<br>Equation of the model: <b>model=1+age+%s</b><br>\n",model); 
               
     for (k=1; k<= nlstate ; k++) {      for (k=1; k<= nlstate ; k++) {
       fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \        fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
Line 3452  void likelione(FILE *ficres,double p[], Line 4445  void likelione(FILE *ficres,double p[],
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 {  {
   int i,j, iter=0;    int i,j,k, jk, jkk=0, iter=0;
   double **xi;    double **xi;
   double fret;    double fret;
   double fretone; /* Only one call to likelihood */    double fretone; /* Only one call to likelihood */
Line 3486  void mlikeli(FILE *ficres,double p[], in Line 4479  void mlikeli(FILE *ficres,double p[], in
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficrespow,"\n");    fprintf(ficrespow,"\n");
 #ifdef POWELL  #ifdef POWELL
   #ifdef LINMINORIGINAL
   #else /* LINMINORIGINAL */
     
     flatdir=ivector(1,npar); 
     for (j=1;j<=npar;j++) flatdir[j]=0; 
   #endif /*LINMINORIGINAL */
   
   #ifdef FLATSUP
     powell(p,xi,npar,ftol,&iter,&fret,flatdir,func);
     /* reorganizing p by suppressing flat directions */
     for(i=1, jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]);
           if(flatdir[jk]==1){
             printf(" To be skipped %d%d flatdir[%d]=%d ",i,k,jk, flatdir[jk]);
           }
           for(j=1; j <=ncovmodel; j++){
             printf("%12.7f ",p[jk]);
             jk++; 
           }
           printf("\n");
         }
       }
     }
   /* skipping */
     /* for(i=1, jk=1, jkk=1;(flatdir[jk]==0)&& (i <=nlstate); i++){ */
     for(i=1, jk=1, jkk=1;i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]);
           if(flatdir[jk]==1){
             printf(" To be skipped %d%d flatdir[%d]=%d jk=%d p[%d] ",i,k,jk, flatdir[jk],jk, jk);
             for(j=1; j <=ncovmodel;  jk++,j++){
               printf(" p[%d]=%12.7f",jk, p[jk]);
               /*q[jjk]=p[jk];*/
             }
           }else{
             printf(" To be kept %d%d flatdir[%d]=%d jk=%d q[%d]=p[%d] ",i,k,jk, flatdir[jk],jk, jkk, jk);
             for(j=1; j <=ncovmodel;  jk++,jkk++,j++){
               printf(" p[%d]=%12.7f=q[%d]",jk, p[jk],jkk);
               /*q[jjk]=p[jk];*/
             }
           }
           printf("\n");
         }
         fflush(stdout);
       }
     }
     powell(p,xi,npar,ftol,&iter,&fret,flatdir,func);
   #else  /* FLATSUP */
   powell(p,xi,npar,ftol,&iter,&fret,func);    powell(p,xi,npar,ftol,&iter,&fret,func);
 #endif  #endif  /* FLATSUP */
   
   #ifdef LINMINORIGINAL
   #else
         free_ivector(flatdir,1,npar); 
   #endif  /* LINMINORIGINAL*/
   #endif /* POWELL */
   
 #ifdef NLOPT  #ifdef NLOPT
 #ifdef NEWUOA  #ifdef NEWUOA
Line 3515  void mlikeli(FILE *ficres,double p[], in Line 4565  void mlikeli(FILE *ficres,double p[], in
   }    }
   nlopt_destroy(opt);    nlopt_destroy(opt);
 #endif  #endif
   #ifdef FLATSUP
     /* npared = npar -flatd/ncovmodel; */
     /* xired= matrix(1,npared,1,npared); */
     /* paramred= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */
     /* powell(pred,xired,npared,ftol,&iter,&fret,flatdir,func); */
     /* free_matrix(xire,1,npared,1,npared); */
   #else  /* FLATSUP */
   #endif /* FLATSUP */
   free_matrix(xi,1,npar,1,npar);    free_matrix(xi,1,npar,1,npar);
   fclose(ficrespow);    fclose(ficrespow);
   printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
Line 3734  double hessij( double x[], double **hess Line 4792  double hessij( double x[], double **hess
       kmax=kmax+10;        kmax=kmax+10;
     }      }
     if(kmax >=10 || firstime ==1){      if(kmax >=10 || firstime ==1){
       printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);        printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
       fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);        fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     }      }
Line 3824  void ludcmp(double **a, int n, int *indx Line 4882  void ludcmp(double **a, int n, int *indx
     big=0.0;       big=0.0; 
     for (j=1;j<=n;j++)       for (j=1;j<=n;j++) 
       if ((temp=fabs(a[i][j])) > big) big=temp;         if ((temp=fabs(a[i][j])) > big) big=temp; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");       if (big == 0.0){
         printf(" Singular Hessian matrix at row %d:\n",i);
         for (j=1;j<=n;j++) {
           printf(" a[%d][%d]=%f,",i,j,a[i][j]);
           fprintf(ficlog," a[%d][%d]=%f,",i,j,a[i][j]);
         }
         fflush(ficlog);
         fclose(ficlog);
         nrerror("Singular matrix in routine ludcmp"); 
       }
     vv[i]=1.0/big;       vv[i]=1.0/big; 
   }     } 
   for (j=1;j<=n;j++) {     for (j=1;j<=n;j++) { 
Line 3890  void pstamp(FILE *fichier) Line 4957  void pstamp(FILE *fichier)
   fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
 }  }
   
   void date2dmy(double date,double *day, double *month, double *year){
     double yp=0., yp1=0., yp2=0.;
     
     yp1=modf(date,&yp);/* extracts integral of date in yp  and
                           fractional in yp1 */
     *year=yp;
     yp2=modf((yp1*12),&yp);
     *month=yp;
     yp1=modf((yp2*30.5),&yp);
     *day=yp;
     if(*day==0) *day=1;
     if(*month==0) *month=1;
   }
   
   
   
 /************ Frequencies ********************/  /************ Frequencies ********************/
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \  void  freqsummary(char fileres[], double p[], double pstart[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
                   int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \                    int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \
                   int firstpass,  int lastpass, int stepm, int weightopt, char model[])                    int firstpass,  int lastpass, int stepm, int weightopt, char model[])
 {  /* Some frequencies */  {  /* Some frequencies as well as proposing some starting values */
       /* Frequencies of any combination of dummy covariate used in the model equation */ 
   int i, m, jk, j1, bool, z1,j, k, iv;    int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1;
   int iind=0, iage=0;    int iind=0, iage=0;
   int mi; /* Effective wave */    int mi; /* Effective wave */
   int first;    int first;
   double ***freq; /* Frequencies */    double ***freq; /* Frequencies */
   double *meanq;    double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */
     int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb);
     double *meanq, *stdq, *idq;
   double **meanqt;    double **meanqt;
   double *pp, **prop, *posprop, *pospropt;    double *pp, **prop, *posprop, *pospropt;
   double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;    double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
Line 3909  void  freqsummary(char fileres[], int ia Line 4994  void  freqsummary(char fileres[], int ia
   double agebegin, ageend;    double agebegin, ageend;
           
   pp=vector(1,nlstate);    pp=vector(1,nlstate);
   prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE);     prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); 
   posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */     posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ 
   pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */     pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ 
   /* prop=matrix(1,nlstate,iagemin,iagemax+3); */    /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
   meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */    meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
     stdq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
     idq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
   meanqt=matrix(1,lastpass,1,nqtveff);    meanqt=matrix(1,lastpass,1,nqtveff);
   strcpy(fileresp,"P_");    strcpy(fileresp,"P_");
   strcat(fileresp,fileresu);    strcat(fileresp,fileresu);
Line 3923  void  freqsummary(char fileres[], int ia Line 5010  void  freqsummary(char fileres[], int ia
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     exit(0);      exit(0);
   }    }
     
   strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));    strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
   if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {    if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
     printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));      printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
Line 3933  void  freqsummary(char fileres[], int ia Line 5020  void  freqsummary(char fileres[], int ia
   }    }
   else{    else{
     fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \      fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  <hr size=\"2\" color=\"#EC5E5E\"> \n                                    \
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);              fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
   }    }
   fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition</h4>\n",fileresphtm, fileresphtm);    fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies (weight=%d) and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm, weightopt);
         
   strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));    strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
   if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {    if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
     printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));      printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
     fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));      fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
     fflush(ficlog);      fflush(ficlog);
     exit(70);       exit(70); 
   }    } else{
   else{  
     fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \      fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  ,<hr size=\"2\" color=\"#EC5E5E\"> \n                                   \
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);              fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
   }    }
   fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions by age at begin of transition </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);    fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>(weight=%d) frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr,weightopt);
     
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE);    y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
     x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+4+AGEMARGE);
   j1=0;    j1=0;
       
   /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */    /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */
   j=cptcoveff;  /* Only dummy covariates of the model */    j=cptcoveff;  /* Only simple dummy covariates used in the model */
     /* j=cptcovn;  /\* Only dummy covariates of the model *\/ */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
   first=1;    
   
   /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:    /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
      reference=low_education V1=0,V2=0       reference=low_education V1=0,V2=0
      med_educ                V1=1 V2=0,        med_educ                V1=1 V2=0, 
      high_educ               V1=0 V2=1       high_educ               V1=0 V2=1
      Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff        Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcovn 
   */    */
     dateintsum=0;
     k2cpt=0;
   
   for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination in order of model, excluding quantitatives V4=0, V3=0 for example, fixed or varying covariates */    if(cptcoveff == 0 )
     posproptt=0.;      nl=1;  /* Constant and age model only */
     /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    else
       scanf("%d", i);*/      nl=2;
     for (i=-5; i<=nlstate+ndeath; i++)    
       for (jk=-5; jk<=nlstate+ndeath; jk++)      /* if a constant only model, one pass to compute frequency tables and to write it on ficresp */
         for(m=iagemin; m <= iagemax+3; m++)    /* Loop on nj=1 or 2 if dummy covariates j!=0
           freq[i][jk][m]=0;     *   Loop on j1(1 to 2**cptcoveff) covariate combination
            *     freq[s1][s2][iage] =0.
     for (i=1; i<=nlstate; i++)  {     *     Loop on iind
       for(m=iagemin; m <= iagemax+3; m++)     *       ++freq[s1][s2][iage] weighted
         prop[i][m]=0;     *     end iind
       posprop[i]=0;     *     if covariate and j!0
       pospropt[i]=0;     *       headers Variable on one line
     }     *     endif cov j!=0
     /* for (z1=1; z1<= nqfveff; z1++) {   */     *     header of frequency table by age
     /*   meanq[z1]+=0.; */     *     Loop on age
     /*   for(m=1;m<=lastpass;m++){ */     *       pp[s1]+=freq[s1][s2][iage] weighted
     /*  meanqt[m][z1]=0.; */     *       pos+=freq[s1][s2][iage] weighted
     /*   } */     *       Loop on s1 initial state
     /* } */     *         fprintf(ficresp
      *       end s1
      *     end age
      *     if j!=0 computes starting values
      *     end compute starting values
      *   end j1
      * end nl 
      */
     for (nj = 1; nj <= nl; nj++){   /* nj= 1 constant model, nl number of loops. */
       if(nj==1)
         j=0;  /* First pass for the constant */
       else{
         j=cptcoveff; /* Other passes for the covariate values number of simple covariates in the model V2+V1 =2 (simple dummy fixed or time varying) */
       }
       first=1;
       for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all dummy covariates combination of the model, ie excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */
         posproptt=0.;
         /*printf("cptcovn=%d Tvaraff=%d", cptcovn,Tvaraff[1]);
           scanf("%d", i);*/
         for (i=-5; i<=nlstate+ndeath; i++)  
           for (s2=-5; s2<=nlstate+ndeath; s2++)  
             for(m=iagemin; m <= iagemax+3; m++)
               freq[i][s2][m]=0;
               
     dateintsum=0;        for (i=1; i<=nlstate; i++)  {
     k2cpt=0;          for(m=iagemin; m <= iagemax+3; m++)
     /* For that combination of covariate j1, we count and print the frequencies in one pass */            prop[i][m]=0;
     for (iind=1; iind<=imx; iind++) { /* For each individual iind */          posprop[i]=0;
       bool=1;          pospropt[i]=0;
       if(anyvaryingduminmodel==0){ /* If All fixed covariates */        }
         if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */        for (z1=1; z1<= nqfveff; z1++) { /* zeroing for each combination j1 as well as for the total */
           /* for (z1=1; z1<= nqfveff; z1++) {   */          idq[z1]=0.;
           /*   meanq[z1]+=coqvar[Tvar[z1]][iind];  /\* Computes mean of quantitative with selected filter *\/ */          meanq[z1]=0.;
           /* } */          stdq[z1]=0.;
           for (z1=1; z1<=cptcoveff; z1++) {          }
             /* if(Tvaraff[z1] ==-20){ */        /* for (z1=1; z1<= nqtveff; z1++) { */
             /*   /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */        /*   for(m=1;m<=lastpass;m++){ */
             /* }else  if(Tvaraff[z1] ==-10){ */        /*          meanqt[m][z1]=0.; */
             /*   /\* sumnew+=coqvar[z1][iind]; *\/ */        /*        } */
             /* }else  */        /* }       */
             if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){        /* dateintsum=0; */
               /* Tests if this individual iind responded to j1 (V4=1 V3=0) */        /* k2cpt=0; */
               bool=0;        
               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n",         /* For that combination of covariates j1 (V4=1 V3=0 for example), we count and print the frequencies in one pass */
                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),        for (iind=1; iind<=imx; iind++) { /* For each individual iind */
                  j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/          bool=1;
               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/          if(j !=0){
             } /* Onlyf fixed */            if(anyvaryingduminmodel==0){ /* If All fixed covariates */
           } /* end z1 */              if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
         } /* cptcovn > 0 */                for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */
       } /* end any */                  /* if(Tvaraff[z1] ==-20){ */
       if (bool==1){ /* We selected an individual iind satisfying combination j1 or all fixed */                  /*       /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
         /* for(m=firstpass; m<=lastpass; m++){ */                  /* }else  if(Tvaraff[z1] ==-10){ */
         for(mi=1; mi<wav[iind];mi++){ /* For that wave */                  /*       /\* sumnew+=coqvar[z1][iind]; *\/ */
           m=mw[mi][iind];                  /* }else  */ /* TODO TODO codtabm(j1,z1) or codtabm(j1,Tvaraff[z1]]z1)*/
           if(anyvaryingduminmodel==1){ /* Some are varying covariates */                  /* if( iind >=imx-3) printf("Searching error iind=%d Tvaraff[z1]=%d covar[Tvaraff[z1]][iind]=%.f TnsdVar[Tvaraff[z1]]=%d, cptcoveff=%d, cptcovs=%d \n",iind, Tvaraff[z1], covar[Tvaraff[z1]][iind],TnsdVar[Tvaraff[z1]],cptcoveff, cptcovs); */
             for (z1=1; z1<=cptcoveff; z1++) {                  if(Tvaraff[z1]<1 || Tvaraff[z1]>=NCOVMAX)
               if( Fixed[Tmodelind[z1]]==1){                    printf("Error Tvaraff[z1]=%d<1 or >=%d, cptcoveff=%d model=1+age+%s\n",Tvaraff[z1],NCOVMAX, cptcoveff, model);
                 iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;                  if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]){ /* for combination j1 of covariates */
                 if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */                    /* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */
                   bool=0;                    bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */
               }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */                    /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", */
                 if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {                    /*   bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),*/
                   bool=0;                    /*   j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
                     /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
                   } /* Onlyf fixed */
                 } /* end z1 */
               } /* cptcoveff > 0 */
             } /* end any */
           }/* end j==0 */
           if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */
             /* for(m=firstpass; m<=lastpass; m++){ */
             for(mi=1; mi<wav[iind];mi++){ /* For each wave */
               m=mw[mi][iind];
               if(j!=0){
                 if(anyvaryingduminmodel==1){ /* Some are varying covariates */
                   for (z1=1; z1<=cptcoveff; z1++) {
                     if( Fixed[Tmodelind[z1]]==1){
                       iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
                       if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality. If covariate's 
                                                                                         value is -1, we don't select. It differs from the 
                                                                                         constant and age model which counts them. */
                         bool=0; /* not selected */
                     }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */
                       /* i1=Tvaraff[z1]; */
                       /* i2=TnsdVar[i1]; */
                       /* i3=nbcode[i1][i2]; */
                       /* i4=covar[i1][iind]; */
                       /* if(i4 != i3){ */
                       if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) { /* Bug valgrind */
                         bool=0;
                       }
                     }
                 }                  }
                 }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */
               } /* end j==0 */
               /* bool =0 we keep that guy which corresponds to the combination of dummy values */
               if(bool==1){ /*Selected */
                 /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
                    and mw[mi+1][iind]. dh depends on stepm. */
                 agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
                 ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */
                 if(m >=firstpass && m <=lastpass){
                   k2=anint[m][iind]+(mint[m][iind]/12.);
                   /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                   if(agev[m][iind]==0) agev[m][iind]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
                   if(agev[m][iind]==1) agev[m][iind]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
                   if (s[m][iind]>0 && s[m][iind]<=nlstate)  /* If status at wave m is known and a live state */
                     prop[s[m][iind]][(int)agev[m][iind]] += weight[iind];  /* At age of beginning of transition, where status is known */
                   if (m<lastpass) {
                     /* if(s[m][iind]==4 && s[m+1][iind]==4) */
                     /*   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */
                     if(s[m][iind]==-1)
                       printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));
                     freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
                     for (z1=1; z1<= nqfveff; z1++) { /* Quantitative variables, calculating mean on known values only */
                       if(!isnan(covar[ncovcol+z1][iind])){
                         idq[z1]=idq[z1]+weight[iind];
                         meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /* Computes mean of quantitative with selected filter */
                         /* stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; *//*error*/
                         stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]; /* *weight[iind];*/  /* Computes mean of quantitative with selected filter */
                       }
                     }
                     /* if((int)agev[m][iind] == 55) */
                     /*   printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */
                     /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */
                     freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
                   }
                 } /* end if between passes */  
                 if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99) && (j==0)) {
                   dateintsum=dateintsum+k2; /* on all covariates ?*/
                   k2cpt++;
                   /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
               }                }
             }              }else{
           }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */                bool=1;
           /* bool =0 we keep that guy which corresponds to the combination of dummy values */              }/* end bool 2 */
           if(bool==1){            } /* end m */
             /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]            /* for (z1=1; z1<= nqfveff; z1++) { /\* Quantitative variables, calculating mean *\/ */
                and mw[mi+1][iind]. dh depends on stepm. */            /*   idq[z1]=idq[z1]+weight[iind]; */
             agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/            /*   meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /\* Computes mean of quantitative with selected filter *\/ */
             ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */            /*   stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; /\* *weight[iind];*\/  /\* Computes mean of quantitative with selected filter *\/ */
             if(m >=firstpass && m <=lastpass){            /* } */
               k2=anint[m][iind]+(mint[m][iind]/12.);          } /* end bool */
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/        } /* end iind = 1 to imx */
               if(agev[m][iind]==0) agev[m][iind]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */        /* prop[s][age] is fed for any initial and valid live state as well as
               if(agev[m][iind]==1) agev[m][iind]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */           freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
               if (s[m][iind]>0 && s[m][iind]<=nlstate)  /* If status at wave m is known and a live state */        
                 prop[s[m][iind]][(int)agev[m][iind]] += weight[iind];  /* At age of beginning of transition, where status is known */        
               if (m<lastpass) {        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                 /* if(s[m][iind]==4 && s[m+1][iind]==4) */        if(cptcoveff==0 && nj==1) /* no covariate and first pass */
                 /*   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */          pstamp(ficresp);
                 if(s[m][iind]==-1)        if  (cptcoveff>0 && j!=0){
                   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));          pstamp(ficresp);
                 freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */          printf( "\n#********** Variable "); 
                 /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */          fprintf(ficresp, "\n#********** Variable "); 
                 freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */          fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
               }          fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
             } /* end if between passes */            fprintf(ficlog, "\n#********** Variable "); 
             if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) {          for (z1=1; z1<=cptcovs; z1++){
               dateintsum=dateintsum+k2;            if(!FixedV[Tvaraff[z1]]){
               k2cpt++;              printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
               /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */              fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
             }              fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
           } /* end bool 2 */              fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
         } /* end m */              fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
       } /* end bool */            }else{
     } /* end iind = 1 to imx */              printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
     /* prop[s][age] is feeded for any initial and valid live state as well as              fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
        freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */              fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
               fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
               fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
     /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/  
     pstamp(ficresp);  
     /* if  (ncoveff>0) { */  
     if  (cptcoveff>0) {  
       fprintf(ficresp, "\n#********** Variable ");   
       fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable ");   
       fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable ");   
       for (z1=1; z1<=cptcoveff; z1++){  
         fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);  
         fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);  
         fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);  
       }  
       fprintf(ficresp, "**********\n#");  
       fprintf(ficresphtm, "**********</h3>\n");  
       fprintf(ficresphtmfr, "**********</h3>\n");  
       fprintf(ficlog, "\n#********** Variable ");   
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);  
       fprintf(ficlog, "**********\n");  
     }  
     fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");  
     for(i=1; i<=nlstate;i++) {  
       fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);  
     }  
     fprintf(ficresp, "\n");  
     fprintf(ficresphtm, "\n");  
         
     /* Header of frequency table by age */  
     fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");  
     fprintf(ficresphtmfr,"<th>Age</th> ");  
     for(jk=-1; jk <=nlstate+ndeath; jk++){  
       for(m=-1; m <=nlstate+ndeath; m++){  
         if(jk!=0 && m!=0)  
           fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m);  
       }  
     }  
     fprintf(ficresphtmfr, "\n");  
         
     /* For each age */  
     for(iage=iagemin; iage <= iagemax+3; iage++){  
       fprintf(ficresphtm,"<tr>");  
       if(iage==iagemax+1){  
         fprintf(ficlog,"1");  
         fprintf(ficresphtmfr,"<tr><th>0</th> ");  
       }else if(iage==iagemax+2){  
         fprintf(ficlog,"0");  
         fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");  
       }else if(iage==iagemax+3){  
         fprintf(ficlog,"Total");  
         fprintf(ficresphtmfr,"<tr><th>Total</th> ");  
       }else{  
         if(first==1){  
           first=0;  
           printf("See log file for details...\n");  
         }  
         fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage);  
         fprintf(ficlog,"Age %d", iage);  
       }  
       for(jk=1; jk <=nlstate ; jk++){  
         for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
           pp[jk] += freq[jk][m][iage];   
       }  
       for(jk=1; jk <=nlstate ; jk++){  
         for(m=-1, pos=0; m <=0 ; m++)  
           pos += freq[jk][m][iage];  
         if(pp[jk]>=1.e-10){  
           if(first==1){  
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           }            }
           fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
         }else{  
           if(first==1)  
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
           fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
         }          }
           printf( "**********\n#");
           fprintf(ficresp, "**********\n#");
           fprintf(ficresphtm, "**********</h3>\n");
           fprintf(ficresphtmfr, "**********</h3>\n");
           fprintf(ficlog, "**********\n");
       }        }
         /*
           Printing means of quantitative variables if any
         */
         for (z1=1; z1<= nqfveff; z1++) {
           fprintf(ficlog,"Mean of fixed quantitative variable V%d on %.3g (weighted) individuals sum=%f", ncovcol+z1, idq[z1], meanq[z1]);
           fprintf(ficlog,", mean=%.3g\n",meanq[z1]/idq[z1]);
           if(weightopt==1){
             printf(" Weighted mean and standard deviation of");
             fprintf(ficlog," Weighted mean and standard deviation of");
             fprintf(ficresphtmfr," Weighted mean and standard deviation of");
           }
           /* mu = \frac{w x}{\sum w}
              var = \frac{\sum w (x-mu)^2}{\sum w} = \frac{w x^2}{\sum w} - mu^2 
           */
           printf(" fixed quantitative variable V%d on  %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
           fprintf(ficlog," fixed quantitative variable V%d on  %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
           fprintf(ficresphtmfr," fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)<p>\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
         }
         /* for (z1=1; z1<= nqtveff; z1++) { */
         /*        for(m=1;m<=lastpass;m++){ */
         /*          fprintf(ficresphtmfr,"V quantitative id %d, pass id=%d, mean=%f<p>\n", z1, m, meanqt[m][z1]); */
         /*   } */
         /* } */
   
       for(jk=1; jk <=nlstate ; jk++){         fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
         /* posprop[jk]=0; */        if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */
         for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */          fprintf(ficresp, " Age");
           pp[jk] += freq[jk][m][iage];        if(nj==2) for (z1=1; z1<=cptcoveff; z1++) {
       } /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */            printf(" V%d=%d, z1=%d, Tvaraff[z1]=%d, j1=%d, TnsdVar[Tvaraff[%d]]=%d |",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])], z1, Tvaraff[z1], j1,z1,TnsdVar[Tvaraff[z1]]);
             fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
       for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){          }
         pos += pp[jk]; /* pos is the total number of transitions until this age */        for(i=1; i<=nlstate;i++) {
         posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state          if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d)  N(%d)  N  ",i,i);
                                           from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */          fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
         pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state        }
                                         from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */        if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp, "\n");
       }        fprintf(ficresphtm, "\n");
       for(jk=1; jk <=nlstate ; jk++){        
         if(pos>=1.e-5){        /* Header of frequency table by age */
           if(first==1)        fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        fprintf(ficresphtmfr,"<th>Age</th> ");
           fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(s2=-1; s2 <=nlstate+ndeath; s2++){
         }else{          for(m=-1; m <=nlstate+ndeath; m++){
           if(first==1)            if(s2!=0 && m!=0)
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              fprintf(ficresphtmfr,"<th>%d%d</th> ",s2,m);
           fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
         }          }
         if( iage <= iagemax){        }
           if(pos>=1.e-5){        fprintf(ficresphtmfr, "\n");
             fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);      
             fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);        /* For each age */
             /*probs[iage][jk][j1]= pp[jk]/pos;*/        for(iage=iagemin; iage <= iagemax+3; iage++){
             /*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/          fprintf(ficresphtm,"<tr>");
           }          if(iage==iagemax+1){
           else{            fprintf(ficlog,"1");
             fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta);            fprintf(ficresphtmfr,"<tr><th>0</th> ");
             fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[jk][iage],pospropta);          }else if(iage==iagemax+2){
             fprintf(ficlog,"0");
             fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
           }else if(iage==iagemax+3){
             fprintf(ficlog,"Total");
             fprintf(ficresphtmfr,"<tr><th>Total</th> ");
           }else{
             if(first==1){
               first=0;
               printf("See log file for details...\n");
           }            }
             fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage);
             fprintf(ficlog,"Age %d", iage);
         }          }
         pospropt[jk] +=posprop[jk];          for(s1=1; s1 <=nlstate ; s1++){
       } /* end loop jk */            for(m=-1, pp[s1]=0; m <=nlstate+ndeath ; m++)
       /* pospropt=0.; */              pp[s1] += freq[s1][m][iage]; 
       for(jk=-1; jk <=nlstate+ndeath; jk++){          }
         for(m=-1; m <=nlstate+ndeath; m++){          for(s1=1; s1 <=nlstate ; s1++){
           if(freq[jk][m][iage] !=0 ) { /* minimizing output */            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[s1][m][iage];
             if(pp[s1]>=1.e-10){
             if(first==1){              if(first==1){
               printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]);                printf(" %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]);
               }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]);
             }else{
               if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1);
             }
           }
         
           for(s1=1; s1 <=nlstate ; s1++){ 
             /* posprop[s1]=0; */
             for(m=0, pp[s1]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
               pp[s1] += freq[s1][m][iage];
           }       /* pp[s1] is the total number of transitions starting from state s1 and any ending status until this age */
         
           for(s1=1,pos=0, pospropta=0.; s1 <=nlstate ; s1++){
             pos += pp[s1]; /* pos is the total number of transitions until this age */
             posprop[s1] += prop[s1][iage]; /* prop is the number of transitions from a live state
                                               from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
             pospropta += prop[s1][iage]; /* prop is the number of transitions from a live state
                                             from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
           }
           
           /* Writing ficresp */
           if(cptcoveff==0 && nj==1){ /* no covariate and first pass */
             if( iage <= iagemax){
               fprintf(ficresp," %d",iage);
             }
           }else if( nj==2){
             if( iage <= iagemax){
               fprintf(ficresp," %d",iage);
               for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
             }
           }
           for(s1=1; s1 <=nlstate ; s1++){
             if(pos>=1.e-5){
               if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos);
             }else{
               if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1);
             }
             if( iage <= iagemax){
               if(pos>=1.e-5){
                 if(cptcoveff==0 && nj==1){ /* no covariate and first pass */
                   fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                 }else if( nj==2){
                   fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                 }
                 fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                 /*probs[iage][s1][j1]= pp[s1]/pos;*/
                 /*printf("\niage=%d s1=%d j1=%d %.5f %.0f %.0f %f",iage,s1,j1,pp[s1]/pos, pp[s1],pos,probs[iage][s1][j1]);*/
               } else{
                 if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," NaNq %.0f %.0f",prop[s1][iage],pospropta);
                 fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[s1][iage],pospropta);
               }
             }
             pospropt[s1] +=posprop[s1];
           } /* end loop s1 */
           /* pospropt=0.; */
           for(s1=-1; s1 <=nlstate+ndeath; s1++){
             for(m=-1; m <=nlstate+ndeath; m++){
               if(freq[s1][m][iage] !=0 ) { /* minimizing output */
                 if(first==1){
                   printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]);
                 }
                 /* printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); */
                 fprintf(ficlog," %d%d=%.0f",s1,m,freq[s1][m][iage]);
             }              }
             fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]);              if(s1!=0 && m!=0)
                 fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[s1][m][iage]);
           }            }
           if(jk!=0 && m!=0)          } /* end loop s1 */
             fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][iage]);          posproptt=0.; 
           for(s1=1; s1 <=nlstate; s1++){
             posproptt += pospropt[s1];
         }          }
       } /* end loop jk */          fprintf(ficresphtmfr,"</tr>\n ");
       posproptt=0.;   
       for(jk=1; jk <=nlstate; jk++){  
         posproptt += pospropt[jk];  
       }  
       fprintf(ficresphtmfr,"</tr>\n ");  
       if(iage <= iagemax){  
         fprintf(ficresp,"\n");  
         fprintf(ficresphtm,"</tr>\n");          fprintf(ficresphtm,"</tr>\n");
           if((cptcoveff==0 && nj==1)|| nj==2 ) {
             if(iage <= iagemax)
               fprintf(ficresp,"\n");
           }
           if(first==1)
             printf("Others in log...\n");
           fprintf(ficlog,"\n");
         } /* end loop age iage */
         
         fprintf(ficresphtm,"<tr><th>Tot</th>");
         for(s1=1; s1 <=nlstate ; s1++){
           if(posproptt < 1.e-5){
             fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[s1],posproptt); 
           }else{
             fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[s1]/posproptt,pospropt[s1],posproptt);  
           }
       }        }
       if(first==1)        fprintf(ficresphtm,"</tr>\n");
         printf("Others in log...\n");        fprintf(ficresphtm,"</table>\n");
       fprintf(ficlog,"\n");        fprintf(ficresphtmfr,"</table>\n");
     } /* end loop age iage */  
     fprintf(ficresphtm,"<tr><th>Tot</th>");  
     for(jk=1; jk <=nlstate ; jk++){  
       if(posproptt < 1.e-5){        if(posproptt < 1.e-5){
         fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[jk],posproptt);             fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
           fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
           fprintf(ficlog,"#  This combination (%d) is not valid and no result will be produced\n",j1);
           printf("#  This combination (%d) is not valid and no result will be produced\n",j1);
           invalidvarcomb[j1]=1;
       }else{        }else{
         fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[jk]/posproptt,pospropt[jk],posproptt);              fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced (or no resultline).</p>",j1);
           invalidvarcomb[j1]=0;
         }
         fprintf(ficresphtmfr,"</table>\n");
         fprintf(ficlog,"\n");
         if(j!=0){
           printf("#Freqsummary: Starting values for combination j1=%d:\n", j1);
           for(i=1,s1=1; i <=nlstate; i++){
             for(k=1; k <=(nlstate+ndeath); k++){
               if (k != i) {
                 for(jj=1; jj <=ncovmodel; jj++){ /* For counting s1 */
                   if(jj==1){  /* Constant case (in fact cste + age) */
                     if(j1==1){ /* All dummy covariates to zero */
                       freq[i][k][iagemax+4]=freq[i][k][iagemax+3]; /* Stores case 0 0 0 */
                       freq[i][i][iagemax+4]=freq[i][i][iagemax+3]; /* Stores case 0 0 0 */
                       printf("%d%d ",i,k);
                       fprintf(ficlog,"%d%d ",i,k);
                       printf("%12.7f ln(%.0f/%.0f)= %f, OR=%f sd=%f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]),freq[i][k][iagemax+3]/freq[i][i][iagemax+3], sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]));
                       fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
                       pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]);
                     }
                   }else if((j1==1) && (jj==2 || nagesqr==1)){ /* age or age*age parameter without covariate V4*age (to be done later) */
                     for(iage=iagemin; iage <= iagemax+3; iage++){
                       x[iage]= (double)iage;
                       y[iage]= log(freq[i][k][iage]/freq[i][i][iage]);
                       /* printf("i=%d, k=%d, s1=%d, j1=%d, jj=%d, y[%d]=%f\n",i,k,s1,j1,jj, iage, y[iage]); */
                     }
                     /* Some are not finite, but linreg will ignore these ages */
                     no=0;
                     linreg(iagemin,iagemax,&no,x,y,&a,&b,&r, &sa, &sb ); /* y= a+b*x with standard errors */
                     pstart[s1]=b;
                     pstart[s1-1]=a;
                   }else if( j1!=1 && (j1==2 || (log(j1-1.)/log(2.)-(int)(log(j1-1.)/log(2.))) <0.010) && ( TvarsDind[(int)(log(j1-1.)/log(2.))+1]+2+nagesqr == jj)  && Dummy[jj-2-nagesqr]==0){ /* We want only if the position, jj, in model corresponds to unique covariate equal to 1 in j1 combination */ 
                     printf("j1=%d, jj=%d, (int)(log(j1-1.)/log(2.))+1=%d, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(int)(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]);
                     printf("j1=%d, jj=%d, (log(j1-1.)/log(2.))+1=%f, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]);
                     pstart[s1]= log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]));
                     printf("%d%d ",i,k);
                     fprintf(ficlog,"%d%d ",i,k);
                     printf("s1=%d,i=%d,k=%d,p[%d]=%12.7f ln((%.0f/%.0f)/(%.0f/%.0f))= %f, OR=%f sd=%f \n",s1,i,k,s1,p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3],freq[i][k][iagemax+4],freq[i][i][iagemax+4], log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])),(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]), sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]+1/freq[i][k][iagemax+4]+1/freq[i][i][iagemax+4]));
                   }else{ /* Other cases, like quantitative fixed or varying covariates */
                     ;
                   }
                   /* printf("%12.7f )", param[i][jj][k]); */
                   /* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */
                   s1++; 
                 } /* end jj */
               } /* end k!= i */
             } /* end k */
           } /* end i, s1 */
         } /* end j !=0 */
       } /* end selected combination of covariate j1 */
       if(j==0){ /* We can estimate starting values from the occurences in each case */
         printf("#Freqsummary: Starting values for the constants:\n");
         fprintf(ficlog,"\n");
         for(i=1,s1=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(jj=1; jj <=ncovmodel; jj++){
                 pstart[s1]=p[s1]; /* Setting pstart to p values by default */
                 if(jj==1){ /* Age has to be done */
                   pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]);
                   printf("%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
                   fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
                 }
                 /* printf("%12.7f )", param[i][jj][k]); */
                 /* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */
                 s1++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         } /* end of state i */
         printf("#Freqsummary\n");
         fprintf(ficlog,"\n");
         for(s1=-1; s1 <=nlstate+ndeath; s1++){
           for(s2=-1; s2 <=nlstate+ndeath; s2++){
             /* param[i]|j][k]= freq[s1][s2][iagemax+3] */
             printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]);
             fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]);
             /* if(freq[s1][s2][iage] !=0 ) { /\* minimizing output *\/ */
             /*   printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */
             /*   fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */
             /* } */
           }
         } /* end loop s1 */
         
         printf("\n");
         fprintf(ficlog,"\n");
       } /* end j=0 */
     } /* end j */
   
     if(mle == -2){  /* We want to use these values as starting values */
       for(i=1, jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j!=i){
             /*ca[0]= k+'a'-1;ca[1]='\0';*/
             printf("%1d%1d",i,j);
             fprintf(ficparo,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               /*    printf(" %lf",param[i][j][k]); */
               /*    fprintf(ficparo," %lf",param[i][j][k]); */
               p[jk]=pstart[jk];
               printf(" %f ",pstart[jk]);
               fprintf(ficparo," %f ",pstart[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficparo,"\n");
           }
       }        }
     }      }
     fprintf(ficresphtm,"</tr>\n");    } /* end mle=-2 */
     fprintf(ficresphtm,"</table>\n");  
     fprintf(ficresphtmfr,"</table>\n");  
     if(posproptt < 1.e-5){  
       fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);  
       fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);  
       fprintf(ficres,"\n  This combination (%d) is not valid and no result will be produced\n\n",j1);  
       invalidvarcomb[j1]=1;  
     }else{  
       fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1);  
       invalidvarcomb[j1]=0;  
     }  
     fprintf(ficresphtmfr,"</table>\n");  
   } /* end selected combination of covariate j1 */  
   dateintmean=dateintsum/k2cpt;     dateintmean=dateintsum/k2cpt; 
                      date2dmy(dateintmean,&jintmean,&mintmean,&aintmean);
     
   fclose(ficresp);    fclose(ficresp);
   fclose(ficresphtm);    fclose(ficresphtm);
   fclose(ficresphtmfr);    fclose(ficresphtmfr);
     free_vector(idq,1,nqfveff);
   free_vector(meanq,1,nqfveff);    free_vector(meanq,1,nqfveff);
     free_vector(stdq,1,nqfveff);
   free_matrix(meanqt,1,lastpass,1,nqtveff);    free_matrix(meanqt,1,lastpass,1,nqtveff);
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE);    free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
     free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
   free_vector(pospropt,1,nlstate);    free_vector(pospropt,1,nlstate);
   free_vector(posprop,1,nlstate);    free_vector(posprop,1,nlstate);
   free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE);    free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+4+AGEMARGE);
   free_vector(pp,1,nlstate);    free_vector(pp,1,nlstate);
   /* End of freqsummary */    /* End of freqsummary */
 }  }
   
   /* Simple linear regression */
   int linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb) {
   
     /* y=a+bx regression */
     double   sumx = 0.0;                        /* sum of x                      */
     double   sumx2 = 0.0;                       /* sum of x**2                   */
     double   sumxy = 0.0;                       /* sum of x * y                  */
     double   sumy = 0.0;                        /* sum of y                      */
     double   sumy2 = 0.0;                       /* sum of y**2                   */
     double   sume2 = 0.0;                       /* sum of square or residuals */
     double yhat;
     
     double denom=0;
     int i;
     int ne=*no;
     
     for ( i=ifi, ne=0;i<=ila;i++) {
       if(!isfinite(x[i]) || !isfinite(y[i])){
         /* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */
         continue;
       }
       ne=ne+1;
       sumx  += x[i];       
       sumx2 += x[i]*x[i];  
       sumxy += x[i] * y[i];
       sumy  += y[i];      
       sumy2 += y[i]*y[i]; 
       denom = (ne * sumx2 - sumx*sumx);
       /* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */
     } 
     
     denom = (ne * sumx2 - sumx*sumx);
     if (denom == 0) {
       // vertical, slope m is infinity
       *b = INFINITY;
       *a = 0;
       if (r) *r = 0;
       return 1;
     }
     
     *b = (ne * sumxy  -  sumx * sumy) / denom;
     *a = (sumy * sumx2  -  sumx * sumxy) / denom;
     if (r!=NULL) {
       *r = (sumxy - sumx * sumy / ne) /          /* compute correlation coeff     */
         sqrt((sumx2 - sumx*sumx/ne) *
              (sumy2 - sumy*sumy/ne));
     }
     *no=ne;
     for ( i=ifi, ne=0;i<=ila;i++) {
       if(!isfinite(x[i]) || !isfinite(y[i])){
         /* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */
         continue;
       }
       ne=ne+1;
       yhat = y[i] - *a -*b* x[i];
       sume2  += yhat * yhat ;       
       
       denom = (ne * sumx2 - sumx*sumx);
       /* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */
     } 
     *sb = sqrt(sume2/(double)(ne-2)/(sumx2 - sumx * sumx /(double)ne));
     *sa= *sb * sqrt(sumx2/ne);
     
     return 0; 
   }
   
 /************ Prevalence ********************/  /************ Prevalence ********************/
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 {    {  
Line 4271  void prevalence(double ***probs, double Line 5670  void prevalence(double ***probs, double
   iagemin= (int) agemin;    iagemin= (int) agemin;
   iagemax= (int) agemax;    iagemax= (int) agemax;
   /*pp=vector(1,nlstate);*/    /*pp=vector(1,nlstate);*/
   prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE);     prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); 
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   j1=0;    j1=0;
       
   /*j=cptcoveff;*/    /*j=cptcoveff;*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       
   first=1;    first=0;
   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of simple dummy covariates */
     for (i=1; i<=nlstate; i++)        for (i=1; i<=nlstate; i++)  
       for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++)        for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++)
         prop[i][iage]=0.0;          prop[i][iage]=0.0;
     printf("Prevalence combination of varying and fixed dummies %d\n",j1);      printf("Prevalence combination of varying and fixed dummies %d\n",j1);
     /* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */      /* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */
Line 4297  void prevalence(double ***probs, double Line 5696  void prevalence(double ***probs, double
         for (z1=1; z1<=cptcoveff; z1++){          for (z1=1; z1<=cptcoveff; z1++){
           if( Fixed[Tmodelind[z1]]==1){            if( Fixed[Tmodelind[z1]]==1){
             iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;              iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
             if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */              if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality */
               bool=0;                bool=0;
           }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */            }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) {
               bool=0;                bool=0;
             }              }
         }          }
Line 4312  void prevalence(double ***probs, double Line 5711  void prevalence(double ***probs, double
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
               if(agev[m][i]==0) agev[m][i]=iagemax+1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+3+AGEMARGE){                if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+4+AGEMARGE){
                 printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m);                   printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); 
                 exit(1);                  exit(1);
               }                }
Line 4336  void prevalence(double ***probs, double Line 5735  void prevalence(double ***probs, double
           if(posprop>=1.e-5){             if(posprop>=1.e-5){ 
             probs[i][jk][j1]= prop[jk][i]/posprop;              probs[i][jk][j1]= prop[jk][i]/posprop;
           } else{            } else{
             if(first==1){              if(!first){
               first=0;                first=1;
               printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,j1,probs[i][jk][j1]);                printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]);
               }else{
                 fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases.\n",jk,i,jk, j1,probs[i][jk][j1]);
             }              }
           }            }
         }           } 
Line 4349  void prevalence(double ***probs, double Line 5750  void prevalence(double ***probs, double
       
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   /*free_vector(pp,1,nlstate);*/    /*free_vector(pp,1,nlstate);*/
   free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE);    free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+4+AGEMARGE);
 }  /* End of prevalence */  }  /* End of prevalence */
   
 /************* Waves Concatenation ***************/  /************* Waves Concatenation ***************/
   
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 {  {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    /* Concatenates waves: wav[i] is the number of effective (useful waves in the sense that a non interview is useless) of individual i.
      Death is a valid wave (if date is known).       Death is a valid wave (if date is known).
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      and mw[mi+1][i]. dh depends on stepm.       and mw[mi+1][i]. dh depends on stepm. s[m][i] exists for any wave from firstpass to lastpass
   */    */
   
   int i=0, mi=0, m=0, mli=0;    int i=0, mi=0, m=0, mli=0;
Line 4381  void  concatwav(int wav[], int **dh, int Line 5782  void  concatwav(int wav[], int **dh, int
   for(i=1; i<=imx; i++){  /* For simple cases and if state is death */    for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
     mi=0;  /* First valid wave */      mi=0;  /* First valid wave */
     mli=0; /* Last valid wave */      mli=0; /* Last valid wave */
     m=firstpass;      m=firstpass;  /* Loop on waves */
     while(s[m][i] <= nlstate){  /* a live state */      while(s[m][i] <= nlstate){  /* a live state or unknown state  */
       if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */        if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
         mli=m-1;/* mw[++mi][i]=m-1; */          mli=m-1;/* mw[++mi][i]=m-1; */
       }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */        }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
         mw[++mi][i]=m;          mw[++mi][i]=m; /* Valid wave: incrementing mi and updating mi; mw[mi] is the wave number of mi_th valid transition   */
         mli=m;          mli=m;
       } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */        } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */
       if(m < lastpass){ /* m < lastpass, standard case */        if(m < lastpass){ /* m < lastpass, standard case */
         m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */          m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
       }        }
       else{ /* m >= lastpass, eventual special issue with warning */        else{ /* m = lastpass, eventual special issue with warning */
 #ifdef UNKNOWNSTATUSNOTCONTRIBUTING  #ifdef UNKNOWNSTATUSNOTCONTRIBUTING
         break;          break;
 #else  #else
         if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){          if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ /* no death date and known date of interview, case -2 (vital status unknown is warned later */
           if(firsthree == 0){            if(firsthree == 0){
             printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);              printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
             firsthree=1;              firsthree=1;
             }else if(firsthree >=1 && firsthree < 10){
               fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
               firsthree++;
             }else if(firsthree == 10){
               printf("Information, too many Information flags: no more reported to log either\n");
               fprintf(ficlog,"Information, too many Information flags: no more reported to log either\n");
               firsthree++;
             }else{
               firsthree++;
           }            }
           fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);            mw[++mi][i]=m; /* Valid transition with unknown status */
           mw[++mi][i]=m;  
           mli=m;            mli=m;
         }          }
         if(s[m][i]==-2){ /* Vital status is really unknown */          if(s[m][i]==-2){ /* Vital status is really unknown */
           nbwarn++;            nbwarn++;
           if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified? */            if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified?not a transition */
             printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);              printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
             fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);              fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
           }            }
Line 4428  void  concatwav(int wav[], int **dh, int Line 5837  void  concatwav(int wav[], int **dh, int
       /* if(mi==0)  never been interviewed correctly before death */        /* if(mi==0)  never been interviewed correctly before death */
       /* Only death is a correct wave */        /* Only death is a correct wave */
       mw[mi][i]=m;        mw[mi][i]=m;
     }      } /* else not in a death state */
 #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE  #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
     else if ((int) andc[i] != 9999) { /* Status is negative. A death occured after lastpass, we can't take it into account because of potential bias */      else if ((int) andc[i] != 9999) {  /* Date of death is known */
       /* m++; */  
       /* mi++; */  
       /* s[m][i]=nlstate+1;  /\* We are setting the status to the last of non live state *\/ */  
       /* mw[mi][i]=m; */  
       if ((int)anint[m][i]!= 9999) { /* date of last interview is known */        if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
         if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */          if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* month of death occured before last wave month and status should have been death instead of -1 */
           nbwarn++;            nbwarn++;
           if(firstfiv==0){            if(firstfiv==0){
             printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );              printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
             firstfiv=1;              firstfiv=1;
           }else{            }else{
             fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );              fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
           }            }
         }else{ /* Death occured afer last wave potential bias */              s[m][i]=nlstate+1; /* Fixing the status as death. Be careful if multiple death states */
           }else{ /* Month of Death occured afer last wave month, potential bias */
           nberr++;            nberr++;
           if(firstwo==0){            if(firstwo==0){
             printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );              printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
             firstwo=1;              firstwo=1;
           }            }
           fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );            fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
         }          }
       }else{ /* end date of interview is known */        }else{ /* if date of interview is unknown */
         /* death is known but not confirmed by death status at any wave */          /* death is known but not confirmed by death status at any wave */
         if(firstfour==0){          if(firstfour==0){
           printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );            printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
           firstfour=1;            firstfour=1;
         }          }
         fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );          fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d  with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
       }        }
     } /* end if date of death is known */      } /* end if date of death is known */
 #endif  #endif
     wav[i]=mi; /* mi should be the last effective wave (or mli) */      wav[i]=mi; /* mi should be the last effective wave (or mli),  */
     /* wav[i]=mw[mi][i]; */      /* wav[i]=mw[mi][i];   */
     if(mi==0){      if(mi==0){
       nbwarn++;        nbwarn++;
       if(first==0){        if(first==0){
Line 4477  void  concatwav(int wav[], int **dh, int Line 5883  void  concatwav(int wav[], int **dh, int
   } /* End individuals */    } /* End individuals */
   /* wav and mw are no more changed */    /* wav and mw are no more changed */
                   
       printf("Information, you have to check %d informations which haven't been logged!\n",firsthree);
     fprintf(ficlog,"Information, you have to check %d informations which haven't been logged!\n",firsthree);
   
   
   for(i=1; i<=imx; i++){    for(i=1; i<=imx; i++){
     for(mi=1; mi<wav[i];mi++){      for(mi=1; mi<wav[i];mi++){
       if (stepm <=0)        if (stepm <=0)
         dh[mi][i]=1;          dh[mi][i]=1;
       else{        else{
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death, but what if date is unknown? */
           if (agedc[i] < 2*AGESUP) {            if (agedc[i] < 2*AGESUP) {
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             if(j==0) j=1;  /* Survives at least one month after exam */              if(j==0) j=1;  /* Survives at least one month after exam */
Line 4570  void  concatwav(int wav[], int **dh, int Line 5979  void  concatwav(int wav[], int **dh, int
   
 /*********** Tricode ****************************/  /*********** Tricode ****************************/
  void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum)   void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum)
 {   {
   /**< Uses cptcovn+2*cptcovprod as the number of covariates */     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1      /*     Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
    * Boring subroutine which should only output nbcode[Tvar[j]][k]      * Boring subroutine which should only output nbcode[Tvar[j]][k]
    * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable      * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable
    * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually);      * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually);
   */      */
   
   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   int modmaxcovj=0; /* Modality max of covariates j */     int modmaxcovj=0; /* Modality max of covariates j */
   int cptcode=0; /* Modality max of covariates j */     int cptcode=0; /* Modality max of covariates j */
   int modmincovj=0; /* Modality min of covariates j */     int modmincovj=0; /* Modality min of covariates j */
   
   
   /* cptcoveff=0;  */     /* cptcoveff=0;  */
         /* *cptcov=0; */     /* *cptcov=0; */
     
   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
      for (k=1; k <= maxncov; k++)
   /* Loop on covariates without age and products and no quantitative variable */       for(j=1; j<=2; j++)
   /* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */         nbcode[k][j]=0; /* Valgrind */
   for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */  
     for (j=-1; (j < maxncov); j++) Ndum[j]=0;     /* Loop on covariates without age and products and no quantitative variable */
     if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */      for (k=1; k<=cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
       switch(Fixed[k]) {       for (j=-1; (j < maxncov); j++) Ndum[j]=0;
       case 0: /* Testing on fixed dummy covariate, simple or product of fixed */       if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ 
         for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/         switch(Fixed[k]) {
           ij=(int)(covar[Tvar[k]][i]);         case 0: /* Testing on fixed dummy covariate, simple or product of fixed */
           /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i           modmaxcovj=0;
            * If product of Vn*Vm, still boolean *:           modmincovj=0;
            * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables           for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
            * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */             ij=(int)(covar[Tvar[k]][i]);
           /* Finds for covariate j, n=Tvar[j] of Vn . ij is the             /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
              modality of the nth covariate of individual i. */              * If product of Vn*Vm, still boolean *:
           if (ij > modmaxcovj)              * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
             modmaxcovj=ij;               * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
           else if (ij < modmincovj)              /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
             modmincovj=ij;                 modality of the nth covariate of individual i. */
           if ((ij < -1) && (ij > NCOVMAX)){             if (ij > modmaxcovj)
             printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );               modmaxcovj=ij; 
             exit(1);             else if (ij < modmincovj) 
           }else               modmincovj=ij; 
             Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/             if (ij <0 || ij >1 ){
           /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */               printf("ERROR, IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i);
           /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/               fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i);
           /* getting the maximum value of the modality of the covariate               fflush(ficlog);
              (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and               exit(1);
              female ies 1, then modmaxcovj=1.             }
           */             if ((ij < -1) || (ij > NCOVMAX)){
         } /* end for loop on individuals i */               printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
         printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);               exit(1);
         fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);             }else
         cptcode=modmaxcovj;               Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */             /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
         /*for (i=0; i<=cptcode; i++) {*/             /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         for (j=modmincovj;  j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */             /* getting the maximum value of the modality of the covariate
           printf("Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);                (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
           fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);                female ies 1, then modmaxcovj=1.
           if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */             */
             if( j != -1){           } /* end for loop on individuals i */
               ncodemax[k]++;  /* ncodemax[k]= Number of modalities of the k th           printf(" Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                                  covariate for which somebody answered excluding            fprintf(ficlog," Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                                  undefined. Usually 2: 0 and 1. */           cptcode=modmaxcovj;
             }           /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
             ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th           /*for (i=0; i<=cptcode; i++) {*/
                                     covariate for which somebody answered including            for (j=modmincovj;  j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */
                                     undefined. Usually 3: -1, 0 and 1. */             printf("Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
           }             fprintf(ficlog, "Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
           /* In fact  ncodemax[k]=2 (dichotom. variables only) but it could be more for             if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */
            * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */               if( j != -1){
         } /* Ndum[-1] number of undefined modalities */                 ncodemax[k]++;  /* ncodemax[k]= Number of modalities of the k th
                                             covariate for which somebody answered excluding 
         /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */                                    undefined. Usually 2: 0 and 1. */
         /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7.                }
            If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;               ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th
            modmincovj=3; modmaxcovj = 7;                                       covariate for which somebody answered including 
            There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;                                       undefined. Usually 3: -1, 0 and 1. */
            which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;             }    /* In fact  ncodemax[k]=2 (dichotom. variables only) but it could be more for
            defining two dummy variables: variables V1_1 and V1_2.                   * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
            nbcode[Tvar[j]][ij]=k;           } /* Ndum[-1] number of undefined modalities */
            nbcode[Tvar[j]][1]=0;                          
            nbcode[Tvar[j]][2]=1;           /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
            nbcode[Tvar[j]][3]=2;           /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */
            To be continued (not working yet).           /* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */
         */           /* modmincovj=3; modmaxcovj = 7; */
         ij=0; /* ij is similar to i but can jump over null modalities */           /* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */
         for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/           /* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */
           if (Ndum[i] == 0) { /* If nobody responded to this modality k */           /*              defining two dummy variables: variables V1_1 and V1_2.*/
             break;           /* nbcode[Tvar[j]][ij]=k; */
           }           /* nbcode[Tvar[j]][1]=0; */
           ij++;           /* nbcode[Tvar[j]][2]=1; */
           nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/           /* nbcode[Tvar[j]][3]=2; */
           cptcode = ij; /* New max modality for covar j */           /* To be continued (not working yet). */
         } /* end of loop on modality i=-1 to 1 or more */           ij=0; /* ij is similar to i but can jump over null modalities */
         break;  
       case 1: /* Testing on varying covariate, could be simple and           /* for (i=modmincovj; i<=modmaxcovj; i++) { */ /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
                * should look at waves or product of fixed *           /* Skipping the case of missing values by reducing nbcode to 0 and 1 and not -1, 0, 1 */
                * varying. No time to test -1, assuming 0 and 1 only */           /* model=V1+V2+V3, if V2=-1, 0 or 1, then nbcode[2][1]=0 and nbcode[2][2]=1 instead of
         ij=0;            * nbcode[2][1]=-1, nbcode[2][2]=0 and nbcode[2][3]=1 */
         for(i=0; i<=1;i++){           /*, could be restored in the future */
           nbcode[Tvar[k]][++ij]=i;           for (i=0; i<=1; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
         }             if (Ndum[i] == 0) { /* If nobody responded to this modality k */
         break;               break;
       default:             }
         break;             ij++;
       } /* end switch */             nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1 . Could be -1*/
     } /* end dummy test */             cptcode = ij; /* New max modality for covar j */
                } /* end of loop on modality i=-1 to 1 or more */
     /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */           break;
     /*  /\*recode from 0 *\/ */         case 1: /* Testing on varying covariate, could be simple and
     /*                               k is a modality. If we have model=V1+V1*sex  */                  * should look at waves or product of fixed *
     /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */                  * varying. No time to test -1, assuming 0 and 1 only */
     /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */           ij=0;
     /*  } */           for(i=0; i<=1;i++){
     /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */             nbcode[Tvar[k]][++ij]=i;
     /*  if (ij > ncodemax[j]) { */           }
     /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */           break;
     /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */         default:
     /*    break; */           break;
     /*  } */         } /* end switch */
     /*   }  /\* end of loop on modality k *\/ */       } /* end dummy test */
   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/         if(Dummy[k]==1 && Typevar[k] !=1){ /* Quantitative covariate and not age product */ 
          for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
            if(Tvar[k]<=0 || Tvar[k]>=NCOVMAX){
              printf("Error k=%d \n",k);
              exit(1);
            }
            if(isnan(covar[Tvar[k]][i])){
              printf("ERROR, IMaCh doesn't treat fixed quantitative covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i);
              fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i);
              fflush(ficlog);
              exit(1);
            }
          }
        } /* end Quanti */
      } /* end of loop on model-covariate k. nbcode[Tvark][1]=-1, nbcode[Tvark][1]=0 and nbcode[Tvark][2]=1 sets the value of covariate k*/  
       
   for (k=-1; k< maxncov; k++) Ndum[k]=0;      for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   /* Look at fixed dummy (single or product) covariates to check empty modalities */     /* Look at fixed dummy (single or product) covariates to check empty modalities */
   for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */      for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/        /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
     ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */        ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ 
     Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */       Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */
     /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1,  {2, 1, 1, 1, 2, 1, 1, 0, 0} */       /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1,  {2, 1, 1, 1, 2, 1, 1, 0, 0} */
   } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */     } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */
       
   ij=0;     ij=0;
   /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */     /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */
   for (k=1; k<=  cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */     for (k=1; k<=  cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/       /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
     /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */       /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
     if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy and non empty in the model */       /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */
       /* If product not in single variable we don't print results */       if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy simple and non empty in the model */
       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/         /* Typevar[k] =0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */
       ++ij;         /* Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product*/
       Tvaraff[ij]=Tvar[k]; /*For printing */         /* If product not in single variable we don't print results */
       Tmodelind[ij]=k;         /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
       if(Fixed[k]!=0)         ++ij;/*    V5 + V4 + V3 + V4*V3 + V5*age + V2 +  V1*V2 + V1*age + V1, *//* V5 quanti, V2 quanti, V4, V3, V1 dummies */
         anyvaryingduminmodel=1;         /* k=       1    2   3     4       5       6      7       8        9  */
     /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */         /* Tvar[k]= 5    4    3    6       5       2      7       1        1  */
     /*   Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */         /* ij            1    2                                            3  */  
     /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */         /* Tvaraff[ij]=  4    3                                            1  */
     /*   Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */         /* Tmodelind[ij]=2    3                                            9  */
     /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */         /* TmodelInvind[ij]=2 1                                            1  */
     /*   Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */         Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/
     }          Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */
   } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */         TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */
   /* ij--; */         if(Fixed[k]!=0)
   /* cptcoveff=ij; /\*Number of total covariates*\/ */           anyvaryingduminmodel=1;
   *cptcov=ij; /*Number of total real effective covariates: effective         /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */
                * because they can be excluded from the model and real         /*   Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */
                * if in the model but excluded because missing values, but how to get k from ij?*/         /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */
   for(j=ij+1; j<= cptcovt; j++){         /*   Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */
     Tvaraff[j]=0;         /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */
     Tmodelind[j]=0;         /*   Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */
   }       } 
   /* To be sorted */     } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
   ;     /* ij--; */
 }     /* cptcoveff=ij; /\*Number of total covariates*\/ */
      *cptcov=ij; /* cptcov= Number of total real effective simple dummies (fixed or time  arying) effective (used as cptcoveff in other functions)
                   * because they can be excluded from the model and real
                   * if in the model but excluded because missing values, but how to get k from ij?*/
      for(j=ij+1; j<= cptcovt; j++){
        Tvaraff[j]=0;
        Tmodelind[j]=0;
      }
      for(j=ntveff+1; j<= cptcovt; j++){
        TmodelInvind[j]=0;
      }
      /* To be sorted */
      ;
    }
   
   
 /*********** Health Expectancies ****************/  /*********** Health Expectancies ****************/
   
 void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres )
   
 {  {
   /* Health expectancies, no variances */    /* Health expectancies, no variances */
     /* cij is the combination in the list of combination of dummy covariates */
     /* strstart is a string of time at start of computing */
   int i, j, nhstepm, hstepm, h, nstepm;    int i, j, nhstepm, hstepm, h, nstepm;
   int nhstepma, nstepma; /* Decreasing with age */    int nhstepma, nstepma; /* Decreasing with age */
   double age, agelim, hf;    double age, agelim, hf;
   double ***p3mat;    double ***p3mat;
   double eip;    double eip;
   
   pstamp(ficreseij);    /* pstamp(ficreseij); */
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   fprintf(ficreseij,"# Age");    fprintf(ficreseij,"# Age");
   for(i=1; i<=nlstate;i++){    for(i=1; i<=nlstate;i++){
Line 4780  void evsij(double ***eij, double x[], in Line 6218  void evsij(double ***eij, double x[], in
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      nhstepm is the number of hstepm from age to agelim        nhstepm is the number of hstepm from age to agelim 
      nstepm is the number of stepm from age to agelin.        nstepm is the number of stepm from age to agelin. 
      Look at hpijx to understand the reason of that which relies in memory size       Look at hpijx to understand the reason which relies in memory size consideration
      and note for a fixed period like estepm months */       and note for a fixed period like estepm months */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      survival function given by stepm (the optimization length). Unfortunately it       survival function given by stepm (the optimization length). Unfortunately it
Line 4811  void evsij(double ***eij, double x[], in Line 6249  void evsij(double ***eij, double x[], in
     /* If stepm=6 months */      /* If stepm=6 months */
     /* Computed by stepm unit matrices, product of hstepma matrices, stored      /* Computed by stepm unit matrices, product of hstepma matrices, stored
        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           /* printf("HELLO evsij Entering hpxij age=%d cij=%d hstepm=%d x[1]=%f nres=%d\n",(int) age, cij, hstepm, x[1], nres); */
     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);        hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres);  
           
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           
Line 4847  void evsij(double ***eij, double x[], in Line 6285  void evsij(double ***eij, double x[], in
       
 }  }
   
 void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres )
   
 {  {
   /* Covariances of health expectancies eij and of total life expectancies according    /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .       to initial status i, ei. .
   */    */
     /* Very time consuming function, but already optimized with precov */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   int nhstepma, nstepma; /* Decreasing with age */    int nhstepma, nstepma; /* Decreasing with age */
   double age, agelim, hf;    double age, agelim, hf;
Line 4960  void cvevsij(double ***eij, double x[], Line 6399  void cvevsij(double ***eij, double x[],
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         xm[i] = x[i] - (i==theta ?delti[theta]:0);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       }        }
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);          hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres);  
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);          hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres);  
                                                   
       for(j=1; j<= nlstate; j++){        for(j=1; j<= nlstate; j++){
         for(i=1; i<=nlstate; i++){          for(i=1; i<=nlstate; i++){
Line 5000  void cvevsij(double ***eij, double x[], Line 6439  void cvevsij(double ***eij, double x[],
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       }        }
     }      }
                       /* if((int)age ==50){ */
       /*   printf(" age=%d cij=%d nres=%d varhe[%d][%d]=%f ",(int)age, cij, nres, 1,2,varhe[1][2]); */
       /* } */
     /* Computing expectancies */      /* Computing expectancies */
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);        hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres);  
     for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)        for(j=1; j<=nlstate;j++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
Line 5011  void cvevsij(double ***eij, double x[], Line 6452  void cvevsij(double ***eij, double x[],
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                                                                                   
         }          }
                   
       /* Standard deviation of expectancies ij */         
     fprintf(ficresstdeij,"%3.0f",age );      fprintf(ficresstdeij,"%3.0f",age );
     for(i=1; i<=nlstate;i++){      for(i=1; i<=nlstate;i++){
       eip=0.;        eip=0.;
Line 5026  void cvevsij(double ***eij, double x[], Line 6468  void cvevsij(double ***eij, double x[],
     }      }
     fprintf(ficresstdeij,"\n");      fprintf(ficresstdeij,"\n");
                                   
       /* Variance of expectancies ij */           
     fprintf(ficrescveij,"%3.0f",age );      fprintf(ficrescveij,"%3.0f",age );
     for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){        for(j=1; j<=nlstate;j++){
Line 5057  void cvevsij(double ***eij, double x[], Line 6500  void cvevsij(double ***eij, double x[],
 }  }
     
 /************ Variance ******************/  /************ Variance ******************/
  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres)
  {   {
    /* Variance of health expectancies */     /** Variance of health expectancies 
    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      *  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);
    /* double **newm;*/      * double **newm;
    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/      * int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav) 
       */
       
    /* int movingaverage(); */     /* int movingaverage(); */
    double **dnewm,**doldm;     double **dnewm,**doldm;
    double **dnewmp,**doldmp;     double **dnewmp,**doldmp;
    int i, j, nhstepm, hstepm, h, nstepm ;     int i, j, nhstepm, hstepm, h, nstepm ;
      int first=0;
    int k;     int k;
    double *xp;     double *xp;
    double **gp, **gm;  /* for var eij */     double **gp, **gm;  /**< for var eij */
    double ***gradg, ***trgradg; /*for var eij */     double ***gradg, ***trgradg; /**< for var eij */
    double **gradgp, **trgradgp; /* for var p point j */     double **gradgp, **trgradgp; /**< for var p point j */
    double *gpp, *gmp; /* for var p point j */     double *gpp, *gmp; /**< for var p point j */
    double **varppt; /* for var p point j nlstate to nlstate+ndeath */     double **varppt; /**< for var p point j nlstate to nlstate+ndeath */
    double ***p3mat;     double ***p3mat;
    double age,agelim, hf;     double age,agelim, hf;
    /* double ***mobaverage; */     /* double ***mobaverage; */
Line 5114  void cvevsij(double ***eij, double x[], Line 6559  void cvevsij(double ***eij, double x[],
    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    pstamp(ficresprobmorprev);     pstamp(ficresprobmorprev);
    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies");
   
      /* We use TinvDoQresult[nres][resultmodel[nres][j] we sort according to the equation model and the resultline: it is a choice */
      /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ /\* To be done*\/ */
      /*   fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
      /* } */
      for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */ /* To be done*/
        fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
      }
      /* for(j=1;j<=cptcoveff;j++)  */
      /*   fprintf(ficresprobmorprev," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,TnsdVar[Tvaraff[j]])]); */
      fprintf(ficresprobmorprev,"\n");
   
    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
    for(j=nlstate+1; j<=(nlstate+ndeath);j++){     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      fprintf(ficresprobmorprev," p.%-d SE",j);       fprintf(ficresprobmorprev," p.%-d SE",j);
Line 5127  void cvevsij(double ***eij, double x[], Line 6585  void cvevsij(double ***eij, double x[],
    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    /*   } */  
    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    pstamp(ficresvij);     pstamp(ficresvij);
    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
Line 5182  void cvevsij(double ***eij, double x[], Line 6640  void cvevsij(double ***eij, double x[],
        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
          xp[i] = x[i] + (i==theta ?delti[theta]:0);           xp[i] = x[i] + (i==theta ?delti[theta]:0);
        }         }
                                  /**< Computes the prevalence limit with parameter theta shifted of delta up to ftolpl precision and 
        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);          * returns into prlim .
                                   */
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
   
          /* If popbased = 1 we use crossection prevalences. Previous step is useless but prlim is created */
        if (popbased==1) {         if (popbased==1) {
          if(mobilav ==0){           if(mobilav ==0){
            for(i=1; i<=nlstate;i++)             for(i=1; i<=nlstate;i++)
Line 5194  void cvevsij(double ***eij, double x[], Line 6655  void cvevsij(double ***eij, double x[],
              prlim[i][i]=mobaverage[(int)age][i][ij];               prlim[i][i]=mobaverage[(int)age][i][ij];
          }           }
        }         }
                                  /**< Computes the shifted transition matrix \f$ {}{h}_p^{ij}x\f$ at horizon h.
        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */          */                      
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  /* Returns p3mat[i][j][h] for h=0 to nhstepm */
          /**< And for each alive state j, sums over i \f$ w^i_x {}{h}_p^{ij}x\f$, which are the probability
           * at horizon h in state j including mortality.
           */
        for(j=1; j<= nlstate; j++){         for(j=1; j<= nlstate; j++){
          for(h=0; h<=nhstepm; h++){           for(h=0; h<=nhstepm; h++){
            for(i=1, gp[h][j]=0.;i<=nlstate;i++)             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
              gp[h][j] += prlim[i][i]*p3mat[i][j][h];               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
          }           }
        }         }
        /* Next for computing probability of death (h=1 means         /* Next for computing shifted+ probability of death (h=1 means
           computed over hstepm matrices product = hstepm*stepm months)             computed over hstepm matrices product = hstepm*stepm months) 
           as a weighted average of prlim.            as a weighted average of prlim(i) * p(i,j) p.3=w1*p13 + w2*p23 .
        */         */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){         for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gpp[j]=0.; i<= nlstate; i++)           for(i=1,gpp[j]=0.; i<= nlstate; i++)
            gpp[j] += prlim[i][i]*p3mat[i][j][1];             gpp[j] += prlim[i][i]*p3mat[i][j][1];
        }             }
        /* end probability of death */         
          /* Again with minus shift */
                                                   
        for(i=1; i<=npar; i++) /* Computes gradient x - delta */         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
          xp[i] = x[i] - (i==theta ?delti[theta]:0);           xp[i] = x[i] - (i==theta ?delti[theta]:0);
                           
        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij);         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres);
                                                   
        if (popbased==1) {         if (popbased==1) {
          if(mobilav ==0){           if(mobilav ==0){
Line 5227  void cvevsij(double ***eij, double x[], Line 6693  void cvevsij(double ***eij, double x[],
          }           }
        }         }
                                                   
        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);           hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  
                                                   
        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
          for(h=0; h<=nhstepm; h++){           for(h=0; h<=nhstepm; h++){
Line 5243  void cvevsij(double ***eij, double x[], Line 6709  void cvevsij(double ***eij, double x[],
          for(i=1,gmp[j]=0.; i<= nlstate; i++)           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];             gmp[j] += prlim[i][i]*p3mat[i][j][1];
        }             }    
        /* end probability of death */         /* end shifting computations */
                           
          /**< Computing gradient matrix at horizon h 
           */
        for(j=1; j<= nlstate; j++) /* vareij */         for(j=1; j<= nlstate; j++) /* vareij */
          for(h=0; h<=nhstepm; h++){           for(h=0; h<=nhstepm; h++){
            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
          }           }
                                  /**< Gradient of overall mortality p.3 (or p.j) 
        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */          */
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu mortality from j */
          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
        }         }
                                                   
      } /* End theta */       } /* End theta */
                        
        /* We got the gradient matrix for each theta and state j */                
      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                                   
      for(h=0; h<=nhstepm; h++) /* veij */       for(h=0; h<=nhstepm; h++) /* veij */
Line 5266  void cvevsij(double ***eij, double x[], Line 6736  void cvevsij(double ***eij, double x[],
      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
        for(theta=1; theta <=npar; theta++)         for(theta=1; theta <=npar; theta++)
          trgradgp[j][theta]=gradgp[theta][j];           trgradgp[j][theta]=gradgp[theta][j];
                        /**< as well as its transposed matrix 
         */                
                                   
      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      for(i=1;i<=nlstate;i++)       for(i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate;j++)         for(j=1;j<=nlstate;j++)
          vareij[i][j][(int)age] =0.;           vareij[i][j][(int)age] =0.;
                   
        /* Computing trgradg by matcov by gradg at age and summing over h
         * and k (nhstepm) formula 15 of article
         * Lievre-Brouard-Heathcote
         */
        
      for(h=0;h<=nhstepm;h++){       for(h=0;h<=nhstepm;h++){
        for(k=0;k<=nhstepm;k++){         for(k=0;k<=nhstepm;k++){
          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
Line 5283  void cvevsij(double ***eij, double x[], Line 6759  void cvevsij(double ***eij, double x[],
        }         }
      }       }
                                   
      /* pptj */       /* pptj is p.3 or p.j = trgradgp by cov by gradgp, variance of
         * p.j overall mortality formula 49 but computed directly because
         * we compute the grad (wix pijx) instead of grad (pijx),even if
         * wix is independent of theta.
         */
      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
      for(j=nlstate+1;j<=nlstate+ndeath;j++)       for(j=nlstate+1;j<=nlstate+ndeath;j++)
Line 5292  void cvevsij(double ***eij, double x[], Line 6772  void cvevsij(double ***eij, double x[],
      /* end ppptj */       /* end ppptj */
      /*  x centered again */       /*  x centered again */
                                   
      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij);       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
                                   
      if (popbased==1) {       if (popbased==1) {
        if(mobilav ==0){         if(mobilav ==0){
Line 5308  void cvevsij(double ***eij, double x[], Line 6788  void cvevsij(double ***eij, double x[],
         computed over hstepm (estepm) matrices product = hstepm*stepm months)           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         as a weighted average of prlim.          as a weighted average of prlim.
      */       */
      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);         hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres);  
      for(j=nlstate+1;j<=nlstate+ndeath;j++){       for(j=nlstate+1;j<=nlstate+ndeath;j++){
        for(i=1,gmp[j]=0.;i<= nlstate; i++)          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
          gmp[j] += prlim[i][i]*p3mat[i][j][1];            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
Line 5371  void cvevsij(double ***eij, double x[], Line 6851  void cvevsij(double ***eij, double x[],
  }  /* end varevsij */   }  /* end varevsij */
   
 /************ Variance of prevlim ******************/  /************ Variance of prevlim ******************/
  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[])   void varprevlim(char fileresvpl[], FILE *ficresvpl, double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres)
 {  {
   /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/    /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
   double **dnewm,**doldm;    double **dnewmpar,**doldm;
   int i, j, nhstepm, hstepm;    int i, j, nhstepm, hstepm;
   double *xp;    double *xp;
   double *gp, *gm;    double *gp, *gm;
Line 5386  void cvevsij(double ***eij, double x[], Line 6866  void cvevsij(double ***eij, double x[],
   int theta;    int theta;
       
   pstamp(ficresvpl);    pstamp(ficresvpl);
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");    fprintf(ficresvpl,"# Standard deviation of period (forward stable) prevalences \n");
   fprintf(ficresvpl,"# Age");    fprintf(ficresvpl,"# Age ");
     if(nresult >=1)
       fprintf(ficresvpl," Result# ");
   for(i=1; i<=nlstate;i++)    for(i=1; i<=nlstate;i++)
       fprintf(ficresvpl," %1d-%1d",i,i);        fprintf(ficresvpl," %1d-%1d",i,i);
   fprintf(ficresvpl,"\n");    fprintf(ficresvpl,"\n");
   
   xp=vector(1,npar);    xp=vector(1,npar);
   dnewm=matrix(1,nlstate,1,npar);    dnewmpar=matrix(1,nlstate,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    doldm=matrix(1,nlstate,1,nlstate);
       
   hstepm=1*YEARM; /* Every year of age */    hstepm=1*YEARM; /* Every year of age */
Line 5413  void cvevsij(double ***eij, double x[], Line 6895  void cvevsij(double ***eij, double x[],
       for(i=1; i<=npar; i++){ /* Computes gradient */        for(i=1; i<=npar; i++){ /* Computes gradient */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
       if((int)age==79 ||(int)age== 80 ||(int)age== 81 )        /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);        /*        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
       else        /* else */
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
       for(i=1;i<=nlstate;i++){        for(i=1;i<=nlstate;i++){
         gp[i] = prlim[i][i];          gp[i] = prlim[i][i];
         mgp[theta][i] = prlim[i][i];          mgp[theta][i] = prlim[i][i];
       }        }
       for(i=1; i<=npar; i++) /* Computes gradient */        for(i=1; i<=npar; i++) /* Computes gradient */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       if((int)age==79 ||(int)age== 80 ||(int)age== 81 )        /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);        /*        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
       else        /* else */
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
       for(i=1;i<=nlstate;i++){        for(i=1;i<=nlstate;i++){
         gm[i] = prlim[i][i];          gm[i] = prlim[i][i];
         mgm[theta][i] = prlim[i][i];          mgm[theta][i] = prlim[i][i];
Line 5463  void cvevsij(double ***eij, double x[], Line 6945  void cvevsij(double ***eij, double x[],
     for(i=1;i<=nlstate;i++)      for(i=1;i<=nlstate;i++)
       varpl[i][(int)age] =0.;        varpl[i][(int)age] =0.;
     if((int)age==79 ||(int)age== 80  ||(int)age== 81){      if((int)age==79 ||(int)age== 80  ||(int)age== 81){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
     }else{      }else{
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
     }      }
     for(i=1;i<=nlstate;i++)      for(i=1;i<=nlstate;i++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
     fprintf(ficresvpl,"%.0f ",age );      fprintf(ficresvpl,"%.0f ",age );
     for(i=1; i<=nlstate;i++)      if(nresult >=1)
         fprintf(ficresvpl,"%d ",nres );
       for(i=1; i<=nlstate;i++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         /* for(j=1;j<=nlstate;j++) */
         /*        fprintf(ficresvpl," %d %.5f ",j,prlim[j][i]); */
       }
     fprintf(ficresvpl,"\n");      fprintf(ficresvpl,"\n");
     free_vector(gp,1,nlstate);      free_vector(gp,1,nlstate);
     free_vector(gm,1,nlstate);      free_vector(gm,1,nlstate);
Line 5486  void cvevsij(double ***eij, double x[], Line 6973  void cvevsij(double ***eij, double x[],
   
   free_vector(xp,1,npar);    free_vector(xp,1,npar);
   free_matrix(doldm,1,nlstate,1,npar);    free_matrix(doldm,1,nlstate,1,npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);    free_matrix(dnewmpar,1,nlstate,1,nlstate);
   
 }  }
   
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])  /************ Variance of backprevalence limit ******************/
  {   void varbrevlim(char fileresvbl[], FILE  *ficresvbl, double **varbpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **bprlim, double ftolpl, int mobilavproj, int *ncvyearp, int ij, char strstart[], int nres)
    int i, j=0,  k1, l1, tj;  {
    int k2, l2, j1,  z1;    /* Variance of backward prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
    int k=0, l;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
    int first=1, first1, first2;  
    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    double **dnewmpar,**doldm;
    double **dnewm,**doldm;    int i, j, nhstepm, hstepm;
    double *xp;    double *xp;
    double *gp, *gm;    double *gp, *gm;
    double **gradg, **trgradg;    double **gradg, **trgradg;
    double **mu;    double **mgm, **mgp;
    double age, cov[NCOVMAX+1];    double age,agelim;
    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    int theta;
    int theta;    
    char fileresprob[FILENAMELENGTH];    pstamp(ficresvbl);
    char fileresprobcov[FILENAMELENGTH];    fprintf(ficresvbl,"# Standard deviation of back (stable) prevalences \n");
    char fileresprobcor[FILENAMELENGTH];    fprintf(ficresvbl,"# Age ");
    double ***varpij;    if(nresult >=1)
       fprintf(ficresvbl," Result# ");
    strcpy(fileresprob,"PROB_");     for(i=1; i<=nlstate;i++)
    strcat(fileresprob,fileres);        fprintf(ficresvbl," %1d-%1d",i,i);
    if((ficresprob=fopen(fileresprob,"w"))==NULL) {    fprintf(ficresvbl,"\n");
      printf("Problem with resultfile: %s\n", fileresprob);  
      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    xp=vector(1,npar);
    }    dnewmpar=matrix(1,nlstate,1,npar);
    strcpy(fileresprobcov,"PROBCOV_");     doldm=matrix(1,nlstate,1,nlstate);
    strcat(fileresprobcov,fileresu);    
    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    hstepm=1*YEARM; /* Every year of age */
      printf("Problem with resultfile: %s\n", fileresprobcov);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    agelim = AGEINF;
    }    for (age=fage; age>=bage; age --){ /* If stepm=6 months */
    strcpy(fileresprobcor,"PROBCOR_");       nhstepm=(int) rint((age-agelim)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    strcat(fileresprobcor,fileresu);      if (stepm >= YEARM) hstepm=1;
    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
      printf("Problem with resultfile: %s\n", fileresprobcor);      gradg=matrix(1,npar,1,nlstate);
      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      mgp=matrix(1,npar,1,nlstate);
    }      mgm=matrix(1,npar,1,nlstate);
    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      gp=vector(1,nlstate);
    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      gm=vector(1,nlstate);
    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  
    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for(theta=1; theta <=npar; theta++){
    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        for(i=1; i<=npar; i++){ /* Computes gradient */
    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
    pstamp(ficresprob);        }
    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        if(mobilavproj > 0 )
    fprintf(ficresprob,"# Age");          bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
    pstamp(ficresprobcov);        else
    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
    fprintf(ficresprobcov,"# Age");        for(i=1;i<=nlstate;i++){
    pstamp(ficresprobcor);          gp[i] = bprlim[i][i];
    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          mgp[theta][i] = bprlim[i][i];
    fprintf(ficresprobcor,"# Age");        }
        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
          if(mobilavproj > 0 )
           bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
          else
           bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
         for(i=1;i<=nlstate;i++){
           gm[i] = bprlim[i][i];
           mgm[theta][i] = bprlim[i][i];
         }
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\nmgm mgp %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf(" %d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\n gradg %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf("%d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf("%d %lf ",theta,gradg[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
   
       for(i=1;i<=nlstate;i++)
         varbpl[i][(int)age] =0.;
       if((int)age==79 ||(int)age== 80  ||(int)age== 81){
       matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
       }else{
       matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
       }
       for(i=1;i<=nlstate;i++)
         varbpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvbl,"%.0f ",age );
       if(nresult >=1)
         fprintf(ficresvbl,"%d ",nres );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvbl," %.5f (%.5f)",bprlim[i][i],sqrt(varbpl[i][(int)age]));
       fprintf(ficresvbl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(mgm,1,npar,1,nlstate);
       free_matrix(mgp,1,npar,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewmpar,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
    {
      int i, j=0,  k1, l1, tj;
      int k2, l2, j1,  z1;
      int k=0, l;
      int first=1, first1, first2;
      int nres=0; /* New */
      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
      double *xp;
      double *gp, *gm;
      double **gradg, **trgradg;
      double **mu;
      double age, cov[NCOVMAX+1];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      int theta;
      char fileresprob[FILENAMELENGTH];
      char fileresprobcov[FILENAMELENGTH];
      char fileresprobcor[FILENAMELENGTH];
      double ***varpij;
   
      strcpy(fileresprob,"PROB_"); 
      strcat(fileresprob,fileres);
      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprob);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
      }
      strcpy(fileresprobcov,"PROBCOV_"); 
      strcat(fileresprobcov,fileresu);
      if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      }
      strcpy(fileresprobcor,"PROBCOR_"); 
      strcat(fileresprobcor,fileresu);
      if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcor);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
      }
      printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      pstamp(ficresprob);
      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      fprintf(ficresprob,"# Age");
      pstamp(ficresprobcov);
      fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      fprintf(ficresprobcov,"# Age");
      pstamp(ficresprobcor);
      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
      fprintf(ficresprobcor,"# Age");
   
   
    for(i=1; i<=nlstate;i++)     for(i=1; i<=nlstate;i++)
Line 5566  void varprob(char optionfilefiname[], do Line 7179  void varprob(char optionfilefiname[], do
    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
    fprintf(fichtm,"\n");     fprintf(fichtm,"\n");
   
    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. File %s</li>\n",optionfilehtmcov,optionfilehtmcov);
    fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
 and drawn. It helps understanding how is the covariance between two incidences.\  and drawn. It helps understanding how is the covariance between two incidences.\
Line 5584  To be simple, these graphs help to under Line 7197  To be simple, these graphs help to under
    tj = (int) pow(2,cptcoveff);     tj = (int) pow(2,cptcoveff);
    if (cptcovn<1) {tj=1;ncodemax[1]=1;}     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
    j1=0;     j1=0;
    for(j1=1; j1<=tj;j1++){  /* For each valid combination of covariates or only once*/  
      for(nres=1;nres <=nresult; nres++){ /* For each resultline */
      for(j1=1; j1<=tj;j1++){ /* For any combination of dummy covariates, fixed and varying */
        printf("Varprob  TKresult[nres]=%d j1=%d, nres=%d, cptcovn=%d, cptcoveff=%d tj=%d cptcovs=%d\n",  TKresult[nres], j1, nres, cptcovn, cptcoveff, tj, cptcovs);
        if(tj != 1 && TKresult[nres]!= j1)
          continue;
   
      /* for(j1=1; j1<=tj;j1++){  /\* For each valid combination of covariates or only once*\/ */
        /* for(nres=1;nres <=1; nres++){ /\* For each resultline *\/ */
        /* /\* for(nres=1;nres <=nresult; nres++){ /\\* For each resultline *\\/ *\/ */
      if  (cptcovn>0) {       if  (cptcovn>0) {
        fprintf(ficresprob, "\n#********** Variable ");          fprintf(ficresprob, "\n#********** Variable ");
        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);  
        fprintf(ficresprob, "**********\n#\n");  
        fprintf(ficresprobcov, "\n#********** Variable ");          fprintf(ficresprobcov, "\n#********** Variable "); 
        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);         fprintf(ficgp, "\n#********** Variable ");
          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
          fprintf(ficresprobcor, "\n#********** Variable ");    
   
          /* Including quantitative variables of the resultline to be done */
          for (z1=1; z1<=cptcovs; z1++){ /* Loop on each variable of this resultline  */
            printf("Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model);
            fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model);
            /* fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s resultline[%d]=%s \n",nres, z1, modelresult[nres][z1], model, nres, resultline[nres]); */
            if(Dummy[modelresult[nres][z1]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to z1 in resultline  */
              if(Fixed[modelresult[nres][z1]]==0){ /* Fixed referenced to model equation */
                fprintf(ficresprob,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                fprintf(ficresprobcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                fprintf(ficgp,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                fprintf(fichtmcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                fprintf(ficresprobcor,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                fprintf(ficresprob,"fixed ");
                fprintf(ficresprobcov,"fixed ");
                fprintf(ficgp,"fixed ");
                fprintf(fichtmcov,"fixed ");
                fprintf(ficresprobcor,"fixed ");
              }else{
                fprintf(ficresprob,"varyi ");
                fprintf(ficresprobcov,"varyi ");
                fprintf(ficgp,"varyi ");
                fprintf(fichtmcov,"varyi ");
                fprintf(ficresprobcor,"varyi ");
              }
            }else if(Dummy[modelresult[nres][z1]]==1){ /* Quanti variable */
              /* For each selected (single) quantitative value */
              fprintf(ficresprob," V%d=%lg ",Tvqresult[nres][z1],Tqresult[nres][z1]);
              if(Fixed[modelresult[nres][z1]]==0){ /* Fixed */
                fprintf(ficresprob,"fixed ");
                fprintf(ficresprobcov,"fixed ");
                fprintf(ficgp,"fixed ");
                fprintf(fichtmcov,"fixed ");
                fprintf(ficresprobcor,"fixed ");
              }else{
                fprintf(ficresprob,"varyi ");
                fprintf(ficresprobcov,"varyi ");
                fprintf(ficgp,"varyi ");
                fprintf(fichtmcov,"varyi ");
                fprintf(ficresprobcor,"varyi ");
              }
            }else{
              printf("Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff);  /* end if dummy  or quanti */
              fprintf(ficlog,"Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff);  /* end if dummy  or quanti */
              exit(1);
            }
          } /* End loop on variable of this resultline */
          /* for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); */
          fprintf(ficresprob, "**********\n#\n");
        fprintf(ficresprobcov, "**********\n#\n");         fprintf(ficresprobcov, "**********\n#\n");
                           
        fprintf(ficgp, "\n#********** Variable ");   
        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);  
        fprintf(ficgp, "**********\n#\n");         fprintf(ficgp, "**********\n#\n");
                           
                           
        fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");   
        for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);  
        fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                           
        fprintf(ficresprobcor, "\n#********** Variable ");      
        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);  
        fprintf(ficresprobcor, "**********\n#");             fprintf(ficresprobcor, "**********\n#");    
        if(invalidvarcomb[j1]){         if(invalidvarcomb[j1]){
          fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1);            fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); 
Line 5615  To be simple, these graphs help to under Line 7276  To be simple, these graphs help to under
      trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      gp=vector(1,(nlstate)*(nlstate+ndeath));       gp=vector(1,(nlstate)*(nlstate+ndeath));
      gm=vector(1,(nlstate)*(nlstate+ndeath));       gm=vector(1,(nlstate)*(nlstate+ndeath));
      for (age=bage; age<=fage; age ++){        for (age=bage; age<=fage; age ++){ /* Fo each age we feed the model equation with covariates, using precov as in hpxij() ? */
        cov[2]=age;         cov[2]=age;
        if(nagesqr==1)         if(nagesqr==1)
          cov[3]= age*age;           cov[3]= age*age;
        for (k=1; k<=cptcovn;k++) {         /* New code end of combination but for each resultline */
          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];         for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
          /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4           if(Typevar[k1]==1){ /* A product with age */
                                                                     * 1  1 1 1 1             cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
                                                                     * 2  2 1 1 1           }else{
                                                                     * 3  1 2 1 1             cov[2+nagesqr+k1]=precov[nres][k1];
                                                                     */           }
          /* nbcode[1][1]=0 nbcode[1][2]=1;*/         }/* End of loop on model equation */
        }  /* Old code */
        /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */         /* /\* for (k=1; k<=cptcovn;k++) { *\/ */
        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];         /* /\*    cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; *\/ */
        for (k=1; k<=cptcovprod;k++)         /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */
          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];         /*        /\* Here comes the value of the covariate 'j1' after renumbering k with single dummy covariates *\/ */
                                  /*        cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(j1,TnsdVar[TvarsD[k]])]; */
                                  /*        /\*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*\//\* j1 1 2 3 4 */
          /*                                                                   * 1  1 1 1 1 */
          /*                                                                   * 2  2 1 1 1 */
          /*                                                                   * 3  1 2 1 1 */
          /*                                                                   *\/ */
          /*        /\* nbcode[1][1]=0 nbcode[1][2]=1;*\/ */
          /* } */
          /* /\* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 *\/ */
          /* /\* ) p nbcode[Tvar[Tage[k]]][(1 & (ij-1) >> (k-1))+1] *\/ */
          /* /\*for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; *\/ */
          /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
          /*        if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */
          /*          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(j1,TnsdVar[Tvar[Tage[k]]])]*cov[2]; */
          /*          /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
          /*        } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */
          /*          printf("Internal IMaCh error, don't know which value for quantitative covariate with age, Tage[k]%d, k=%d, Tvar[Tage[k]]=V%d, age=%d\n",Tage[k],k ,Tvar[Tage[k]], (int)cov[2]); */
          /*          /\* cov[2+nagesqr+Tage[k]]=meanq[k]/idq[k]*cov[2];/\\* Using the mean of quantitative variable Tvar[Tage[k]] /\\* Tqresult[nres][k]; *\\/ *\/ */
          /*          /\* exit(1); *\/ */
          /*          /\* cov[++k1]=Tqresult[nres][k];  *\/ */
          /*        } */
          /*        /\* cov[2+Tage[k]+nagesqr]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
          /* } */
          /* for (k=1; k<=cptcovprod;k++){/\* For product without age *\/ */
          /*        if(Dummy[Tvard[k][1]]==0){ */
          /*          if(Dummy[Tvard[k][2]]==0){ */
          /*            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])]; */
          /*            /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
          /*          }else{ /\* Should we use the mean of the quantitative variables? *\/ */
          /*            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * Tqresult[nres][resultmodel[nres][k]]; */
          /*            /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */
          /*          } */
          /*        }else{ */
          /*          if(Dummy[Tvard[k][2]]==0){ */
          /*            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][TnsdVar[Tvard[k][1]]]; */
          /*            /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */
          /*          }else{ */
          /*            cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][TnsdVar[Tvard[k][1]]]*  Tqinvresult[nres][TnsdVar[Tvard[k][2]]]; */
          /*            /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\/ */
          /*          } */
          /*        } */
          /*        /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
          /* } */                  
   /* For each age and combination of dummy covariates we slightly move the parameters of delti in order to get the gradient*/                     
        for(theta=1; theta <=npar; theta++){         for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++)           for(i=1; i<=npar; i++)
            xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
Line 5763  To be simple, these graphs help to under Line 7466  To be simple, these graphs help to under
                  }                   }
                                                                                                                                   
                  /* Eigen vectors */                   /* Eigen vectors */
                  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));                   if(1+(v1-lc1)*(v1-lc1)/cv12/cv12 <1.e-5){
                      printf(" Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                      fprintf(ficlog," Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                      v11=(1./sqrt(fabs(1+(v1-lc1)*(v1-lc1)/cv12/cv12)));
                    }else
                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                  /*v21=sqrt(1.-v11*v11); *//* error */                   /*v21=sqrt(1.-v11*v11); *//* error */
                  v21=(lc1-v1)/cv12*v11;                   v21=(lc1-v1)/cv12*v11;
                  v12=-v21;                   v12=-v21;
Line 5783  To be simple, these graphs help to under Line 7491  To be simple, these graphs help to under
                    fprintf(ficgp,"\nset parametric;unset label");                     fprintf(ficgp,"\nset parametric;unset label");
                    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                    fprintf(ficgp,"\nset ter svg size 640, 480");                     fprintf(ficgp,"\nset ter svg size 640, 480");
                    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\                     fprintf(fichtmcov,"\n<p><br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
  :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">                                                                                                                                           \   :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">                                                                                                                                           \
 %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\  %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                            subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,      \                             subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,      \
Line 5794  To be simple, these graphs help to under Line 7502  To be simple, these graphs help to under
                    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \
                            mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                                                         \                             mu1,std,v11,sqrt(fabs(lc1)),v12,sqrt(fabs(lc2)), \
                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                             mu2,std,v21,sqrt(fabs(lc1)),v22,sqrt(fabs(lc2))); /* For gnuplot only */
                  }else{                   }else{
                    first=0;                     first=0;
                    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
                            mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                 \                             mu1,std,v11,sqrt(lc1),v12,sqrt(fabs(lc2)),   \
                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                             mu2,std,v21,sqrt(lc1),v22,sqrt(fabs(lc2)));
                  }/* if first */                   }/* if first */
                } /* age mod 5 */                 } /* age mod 5 */
              } /* end loop age */               } /* end loop age */
Line 5814  To be simple, these graphs help to under Line 7522  To be simple, these graphs help to under
        } /*l1 */         } /*l1 */
      }/* k1 */       }/* k1 */
    }  /* loop on combination of covariates j1 */     }  /* loop on combination of covariates j1 */
      } /* loop on nres */
    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
Line 5831  To be simple, these graphs help to under Line 7540  To be simple, these graphs help to under
 void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \  void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                   int lastpass, int stepm, int weightopt, char model[],\                    int lastpass, int stepm, int weightopt, char model[],\
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                   int popforecast, int prevfcast, int backcast, int estepm , \                    int popforecast, int mobilav, int prevfcast, int mobilavproj, int prevbcast, int estepm , \
                   double jprev1, double mprev1,double anprev1, double dateprev1, \                    double jprev1, double mprev1,double anprev1, double dateprev1, double dateprojd, double dateback1, \
                   double jprev2, double mprev2,double anprev2, double dateprev2){                    double jprev2, double mprev2,double anprev2, double dateprev2, double dateprojf, double dateback2){
   int jj1, k1, i1, cpt;    int jj1, k1, i1, cpt, k4, nres;
     /* In fact some results are already printed in fichtm which is open */
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 </ul>");  </ul>");
   /*    fprintf(fichtm,"<ul><li> model=1+age+%s\n \ */
   /* </ul>", model); */
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
    fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",     fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
    fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",     fprintf(fichtm,"<li> - Observed prevalence (cross-sectional prevalence) in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
    fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));     fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
Line 5852  void printinghtml(char fileresu[], char Line 7563  void printinghtml(char fileresu[], char
  - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",   - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
            stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));             stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",   - Period (forward) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));             subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",   - Backward prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));             subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \   - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
Line 5867  void printinghtml(char fileresu[], char Line 7578  void printinghtml(char fileresu[], char
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
    }     }
   
    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");  
   
    m=pow(2,cptcoveff);     m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
      fprintf(fichtm," \n<ul><li><b>Graphs (first order)</b></li><p>");
   
    jj1=0;     jj1=0;
    for(k1=1; k1<=m;k1++){  
      fprintf(fichtm," \n<ul>");
      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
        /* k1=nres; */
        k1=TKresult[nres];
        if(TKresult[nres]==0)k1=1; /* To be checked for no result */
      /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
      /*   if(m != 1 && TKresult[nres]!= k1) */
      /*     continue; */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"\n<li><a  size=\"1\" color=\"#EC5E5E\" href=\"#rescov");
          for (cpt=1; cpt<=cptcovs;cpt++){ /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
            fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
          }
          /* for (cpt=1; cpt<=cptcoveff;cpt++){  */
          /*        fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */
          /* } */
          /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
          /*        fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */
          /* } */
          fprintf(fichtm,"\">");
          
          /* if(nqfveff+nqtveff 0) */ /* Test to be done */
          fprintf(fichtm,"************ Results for covariates");
          for (cpt=1; cpt<=cptcovs;cpt++){ 
            fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
          }
          /* fprintf(fichtm,"************ Results for covariates"); */
          /* for (cpt=1; cpt<=cptcoveff;cpt++){  */
          /*        fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */
          /* } */
          /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
          /*        fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
          /* } */
          if(invalidvarcomb[k1]){
            fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); 
            continue;
          }
          fprintf(fichtm,"</a></li>");
        } /* cptcovn >0 */
      }
      fprintf(fichtm," \n</ul>");
   
      jj1=0;
   
      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
        /* k1=nres; */
        k1=TKresult[nres];
        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
      /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
      /*   if(m != 1 && TKresult[nres]!= k1) */
      /*     continue; */
   
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */       /* for(i1=1; i1<=ncodemax[k1];i1++){ */
      jj1++;       jj1++;
      if (cptcovn > 0) {       if (cptcovn > 0) {
          fprintf(fichtm,"\n<p><a name=\"rescov");
          for (cpt=1; cpt<=cptcovs;cpt++){ 
            fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
          }
          /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
          /*        fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */
          /* } */
          fprintf(fichtm,"\"</a>");
    
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        for (cpt=1; cpt<=cptcoveff;cpt++){          for (cpt=1; cpt<=cptcovs;cpt++){ 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);           fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
          printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);           printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
            /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
            /* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */
        }         }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");         /* if(nqfveff+nqtveff 0) */ /* Test to be done */
          fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model);
        if(invalidvarcomb[k1]){         if(invalidvarcomb[k1]){
          fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1);            fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); 
          printf("\nCombination (%d) ignored because no cases \n",k1);            printf("\nCombination (%d) ignored because no cases \n",k1); 
Line 5891  void printinghtml(char fileresu[], char Line 7667  void printinghtml(char fileresu[], char
        }         }
      }       }
      /* aij, bij */       /* aij, bij */
      fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \       fprintf(fichtm,"<br>- Logit model (yours is: logit(pij)=log(pij/pii)= aij+ bij age+%s) as a function of age: <a href=\"%s_%d-1-%d.svg\">%s_%d-1-%d.svg</a><br> \
 <img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);  <img src=\"%s_%d-1-%d.svg\">",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);
      /* Pij */       /* Pij */
      fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \       fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2-%d.svg\">%s_%d-2-%d.svg</a><br> \
 <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);       <img src=\"%s_%d-2-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);     
      /* Quasi-incidences */       /* Quasi-incidences */
      fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\       fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
  incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \   incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
 divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \  divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3-%d.svg\">%s_%d-3-%d.svg</a><br> \
 <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);   <img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); 
      /* Survival functions (period) in state j */       /* Survival functions (period) in state j */
      for(cpt=1; cpt<=nlstate;cpt++){       for(cpt=1; cpt<=nlstate;cpt++){
        fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \         fprintf(fichtm,"<br>\n- Survival functions in state %d. And probability to be observed in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
 <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);         fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
          fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
      }       }
      /* State specific survival functions (period) */       /* State specific survival functions (period) */
      for(cpt=1; cpt<=nlstate;cpt++){       for(cpt=1; cpt<=nlstate;cpt++){
        fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\         fprintf(fichtm,"<br>\n- Survival functions in state %d and in any other live state (total).\
  Or probability to survive in various states (1 to %d) being in state %d at different ages.     \   And probability to be observed in various states (up to %d) being in state %d at different ages.       \
  <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);   <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> ", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
          fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
          fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
      }       }
      /* Period (stable) prevalence in each health state */       /* Period (forward stable) prevalence in each health state */
      for(cpt=1; cpt<=nlstate;cpt++){       for(cpt=1; cpt<=nlstate;cpt++){
        fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \         fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
 <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);         fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
         fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
      }       }
      if(backcast==1){       if(prevbcast==1){
        /* Period (stable) back prevalence in each health state */         /* Backward prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){         for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \           fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
 <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1);           fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJB_"),subdirf2(optionfilefiname,"PIJB_"));
            fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
        }         }
      }       }
      if(prevfcast==1){       if(prevfcast==1){
        /* Projection of prevalence up to period (stable) prevalence in each health state */         /* Projection of prevalence up to period (forward stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) forward prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateprojd, dateprojf, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
            fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"F_"),subdirf2(optionfilefiname,"F_"));
            fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",
                    subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
          }
        }
        if(prevbcast==1){
         /* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){         for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \           fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \
 <img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1);   from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d (randomness in cross-sectional prevalence is not taken into \
    account but can visually be appreciated). Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \
   with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
            fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"FB_"),subdirf2(optionfilefiname,"FB_"));
            fprintf(fichtm," <img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
        }         }
      }       }
                     
      for(cpt=1; cpt<=nlstate;cpt++) {       for(cpt=1; cpt<=nlstate;cpt++) {
        fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
 <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);         fprintf(fichtm," (data from text file  <a href=\"%s.txt\"> %s.txt</a>)\n<br>",subdirf2(optionfilefiname,"E_"),subdirf2(optionfilefiname,"E_"));
          fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres );
      }       }
      /* } /\* end i1 *\/ */       /* } /\* end i1 *\/ */
    }/* End k1 */     }/* End k1=nres */
    fprintf(fichtm,"</ul>");     fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\     fprintf(fichtm,"\
Line 5971  See page 'Matrix of variance-covariance Line 7766  See page 'Matrix of variance-covariance
    <a href=\"%s\">%s</a> <br>\n</li>",     <a href=\"%s\">%s</a> <br>\n</li>",
            estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));             estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the forward (period) prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));             estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));             estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
    fprintf(fichtm,"\     fprintf(fichtm,"\
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\   - Standard deviation of forward (period) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));             subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
 /*  if(popforecast==1) fprintf(fichtm,"\n */  /*  if(popforecast==1) fprintf(fichtm,"\n */
Line 5985  See page 'Matrix of variance-covariance Line 7780  See page 'Matrix of variance-covariance
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 /*      <br>",fileres,fileres,fileres,fileres); */  /*      <br>",fileres,fileres,fileres,fileres); */
 /*  else  */  /*  else  */
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=1+age+%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);     fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");  
   
    m=pow(2,cptcoveff);     m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
      fprintf(fichtm," <ul><li><b>Graphs (second order)</b></li><p>");
   
     jj1=0;
   
      fprintf(fichtm," \n<ul>");
      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
        /* k1=nres; */
        k1=TKresult[nres];
        /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
        /* if(m != 1 && TKresult[nres]!= k1) */
        /*   continue; */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"\n<li><a  size=\"1\" color=\"#EC5E5E\" href=\"#rescovsecond");
          for (cpt=1; cpt<=cptcovs;cpt++){ 
            fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
          }
          fprintf(fichtm,"\">");
          
          /* if(nqfveff+nqtveff 0) */ /* Test to be done */
          fprintf(fichtm,"************ Results for covariates");
          for (cpt=1; cpt<=cptcovs;cpt++){ 
            fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
          }
          if(invalidvarcomb[k1]){
            fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); 
            continue;
          }
          fprintf(fichtm,"</a></li>");
        } /* cptcovn >0 */
      } /* End nres */
      fprintf(fichtm," \n</ul>");
   
    jj1=0;     jj1=0;
    for(k1=1; k1<=m;k1++){  
      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
        /* k1=nres; */
        k1=TKresult[nres];
        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
        /* for(k1=1; k1<=m;k1++){ */
        /* if(m != 1 && TKresult[nres]!= k1) */
        /*   continue; */
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */       /* for(i1=1; i1<=ncodemax[k1];i1++){ */
      jj1++;       jj1++;
      if (cptcovn > 0) {       if (cptcovn > 0) {
          fprintf(fichtm,"\n<p><a name=\"rescovsecond");
          for (cpt=1; cpt<=cptcovs;cpt++){ 
            fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
          }
          fprintf(fichtm,"\"</a>");
          
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
        for (cpt=1; cpt<=cptcoveff;cpt++)  /**< cptcoveff number of variables */         for (cpt=1; cpt<=cptcovs;cpt++){  /**< cptcoveff number of variables */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);           fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");           printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
            /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
          }
   
          fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model);
   
        if(invalidvarcomb[k1]){         if(invalidvarcomb[k1]){
          fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1);            fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); 
          continue;           continue;
        }         }
      }       } /* If cptcovn >0 */
      for(cpt=1; cpt<=nlstate;cpt++) {       for(cpt=1; cpt<=nlstate;cpt++) {
        fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \         fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \
 prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d.svg\"> %s_%d-%d.svg</a>\n <br>\  prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
 <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);           fprintf(fichtm," (data from text file  <a href=\"%s\">%s</a>)\n <br>",subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
          fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"V_"), cpt,k1,nres);
      }       }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \  health expectancies in each live states (1 to %d). If popbased=1 the smooth (due to the model) \
 true period expectancies (those weighted with period prevalences are also\  true period expectancies (those weighted with period prevalences are also\
  drawn in addition to the population based expectancies computed using\   drawn in addition to the population based expectancies computed using\
  observed and cahotic prevalences:  <a href=\"%s_%d.svg\">%s_%d.svg</a>\n<br>\   observed and cahotic prevalences:  <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>",nlstate, subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres);
 <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);       fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>) \n<br>",subdirf2(optionfilefiname,"T_"),subdirf2(optionfilefiname,"T_"));
        fprintf(fichtm,"<img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres);
      /* } /\* end i1 *\/ */       /* } /\* end i1 *\/ */
    }/* End k1 */    }/* End nres */
    fprintf(fichtm,"</ul>");     fprintf(fichtm,"</ul>");
    fflush(fichtm);     fflush(fichtm);
 }  }
   
 /******************* Gnuplot file **************/  /******************* Gnuplot file **************/
 void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){  void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int prevbcast, char pathc[], double p[], int offyear, int offbyear){
   
   char dirfileres[132],optfileres[132];    char dirfileres[132],optfileres[132];
   char gplotcondition[132];    char gplotcondition[132], gplotlabel[132];
   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;    int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,ij=0, ijp=0, l=0;
   int lv=0, vlv=0, kl=0;    int lv=0, vlv=0, kl=0;
   int ng=0;    int ng=0;
   int vpopbased;    int vpopbased;
   int ioffset; /* variable offset for columns */    int ioffset; /* variable offset for columns */
     int iyearc=1; /* variable column for year of projection  */
     int iagec=1; /* variable column for age of projection  */
     int nres=0; /* Index of resultline */
     int istart=1; /* For starting graphs in projections */
   
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 /*     printf("Problem with file %s",optionfilegnuplot); */  /*     printf("Problem with file %s",optionfilegnuplot); */
Line 6045  void printinggnuplot(char fileresu[], ch Line 7895  void printinggnuplot(char fileresu[], ch
   /*#endif */    /*#endif */
   m=pow(2,cptcoveff);    m=pow(2,cptcoveff);
   
     /* diagram of the model */
     fprintf(ficgp,"\n#Diagram of the model \n");
     fprintf(ficgp,"\ndelta=0.03;delta2=0.07;unset arrow;\n");
     fprintf(ficgp,"yoff=(%d > 2? 0:1);\n",nlstate);
     fprintf(ficgp,"\n#Peripheral arrows\nset for [i=1:%d] for [j=1:%d] arrow i*10+j from cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.95*(cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) - cos(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta2:0)), -0.95*(sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) - sin(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d))+( i!=j?(i-j)/abs(i-j)*delta2:0)) ls (i < j? 1:2)\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
   
     fprintf(ficgp,"\n#Centripete arrows (turning in other direction (1-i) instead of (i-1)) \nset for [i=1:%d] arrow (%d+1)*10+i from cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.80*(cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0)  ), -0.80*(sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) + yoff ) ls 4\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
     fprintf(ficgp,"\n#show arrow\nunset label\n");
     fprintf(ficgp,"\n#States labels, starting from 2 (2-i) instead of (1-i), was (i-1)\nset for [i=1:%d] label i sprintf(\"State %%d\",i) center at cos(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)), yoff+sin(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)) font \"helvetica, 16\" tc rgbcolor \"blue\"\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
     fprintf(ficgp,"\nset label %d+1 sprintf(\"State %%d\",%d+1) center at 0.,0.  font \"helvetica, 16\" tc rgbcolor \"red\"\n",nlstate,nlstate);
     fprintf(ficgp,"\n#show label\nunset border;unset xtics; unset ytics;\n");
     fprintf(ficgp,"\n\nset ter svg size 640, 480;set out \"%s_.svg\" \n",subdirf2(optionfilefiname,"D_"));
     fprintf(ficgp,"unset log y; plot [-1.2:1.2][yoff-1.2:1.2] 1/0 not; set out;reset;\n");
   
   /* Contribution to likelihood */    /* Contribution to likelihood */
   /* Plot the probability implied in the likelihood */    /* Plot the probability implied in the likelihood */
   fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");    fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
Line 6077  void printinggnuplot(char fileresu[], ch Line 7941  void printinggnuplot(char fileresu[], ch
   strcpy(dirfileres,optionfilefiname);    strcpy(dirfileres,optionfilefiname);
   strcpy(optfileres,"vpl");    strcpy(optfileres,"vpl");
   /* 1eme*/    /* 1eme*/
   for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */    for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */
     for (k1=1; k1<= m ; k1 ++) { /* For each valid combination of covariate */      /* for (k1=1; k1<= m ; k1 ++){ /\* For each valid combination of covariate *\/ */
       /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */        for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files ");          k1=TKresult[nres];
       for (k=1; k<=cptcoveff; k++){    /* For each covariate k get corresponding value lv for combination k1 */          if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
         lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */          /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */          /* if(m != 1 && TKresult[nres]!= k1) */
         /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */          /*   continue; */
         /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */          /* We are interested in selected combination by the resultline */
         vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */          /* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */
         /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */          fprintf(ficgp,"\n# 1st: Forward (stable period) prevalence with CI: 'VPL_' files  and live state =%d ", cpt);
         fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);          strcpy(gplotlabel,"(");
       }          for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
       fprintf(ficgp,"\n#\n");            fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
       if(invalidvarcomb[k1]){            sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
         fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);   
         continue;          /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate k get corresponding value lv for combination k1 *\/ */
       }          /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the value of the covariate corresponding to k1 combination *\\/ *\/ */
           /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);          /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
       fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);          /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
       fprintf(ficgp,"set xlabel \"Age\" \n\          /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
 set ylabel \"Probability\" \n   \          /*   vlv= nbcode[Tvaraff[k]][lv]; /\* vlv is the value of the covariate lv, 0 or 1 *\/ */
 set ter svg size 640, 480\n     \          /*   /\* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv *\/ */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);          /*   /\* printf(" V%d=%d ",Tvaraff[k],vlv); *\/ */
                                   /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
       for (i=1; i<= nlstate ; i ++) {          /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");          /* } */
         else        fprintf(ficgp," %%*lf (%%*lf)");          /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
       }          /*   /\* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); *\/ */
       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);          /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
       for (i=1; i<= nlstate ; i ++) {          /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");          }
         else fprintf(ficgp," %%*lf (%%*lf)");          strcpy(gplotlabel+strlen(gplotlabel),")");
       }           /* printf("\n#\n"); */
       fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);           fprintf(ficgp,"\n#\n");
       for (i=1; i<= nlstate ; i ++) {          if(invalidvarcomb[k1]){
         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");            /*k1=k1-1;*/ /* To be checked */
         else fprintf(ficgp," %%*lf (%%*lf)");            fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
       }              continue;
       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));          }
       if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */        
         /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */          fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
         fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1 */          fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres);
         if(cptcoveff ==0){          /* fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); */
           fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line ",  2+(cpt-1),  cpt );          fprintf(ficgp,"set title \"Alive state %d %s model=1+age+%s\" font \"Helvetica,12\"\n",cpt,gplotlabel,model);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
           /* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */
         /* k1-1 error should be nres-1*/
           for (i=1; i<= nlstate ; i ++) {
             if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
             else        fprintf(ficgp," %%*lf (%%*lf)");
           }
           fprintf(ficgp,"\" t\"Forward prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
           for (i=1; i<= nlstate ; i ++) {
             if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           } 
           fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); 
           for (i=1; i<= nlstate ; i ++) {
             if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }  
           /* fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); */
           
           fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" u 1:((",subdirf2(fileresu,"P_"));
           if(cptcoveff ==0){
             fprintf(ficgp,"$%d)) t 'Observed prevalence in state %d' with line lt 3",      2+3*(cpt-1),  cpt );
         }else{          }else{
           kl=0;            kl=0;
           for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */            for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */              /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */
               lv=codtabm(k1,TnsdVar[Tvaraff[k]]);
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */              /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */              /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */              /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
Line 6137  plot [%.f:%.f] \"%s\" every :::%d::%d u Line 8024  plot [%.f:%.f] \"%s\" every :::%d::%d u
             /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
             /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/              /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
             if(k==cptcoveff){              if(k==cptcoveff){
               fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \                fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Observed prevalence in state %d' w l lt 2",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
                       4+(cpt-1),  cpt );  /* 4 or 6 ?*/                        2+cptcoveff*2+3*(cpt-1),  cpt );  /* 4 or 6 ?*/
             }else{              }else{
               fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);                fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
               kl++;                kl++;
             }              }
           } /* end covariate */            } /* end covariate */
         } /* end if no covariate */          } /* end if no covariate */
       } /* end if backcast */  
       fprintf(ficgp,"\nset out \n");  
     } /* k1 */  
   } /* cpt */  
   /*2 eme*/  
   for (k1=1; k1<= m ; k1 ++) {   
   
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");          if(prevbcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
     for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */            /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
       lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */            fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */
       /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */            if(cptcoveff ==0){
       /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */              fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line lt 3",    2+(cpt-1),  cpt );
       /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */            }else{
       vlv= nbcode[Tvaraff[k]][lv];              kl=0;
       fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);              for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
     }                /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */
     fprintf(ficgp,"\n#\n");                lv=codtabm(k1,TnsdVar[Tvaraff[k]]);
     if(invalidvarcomb[k1]){                /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
       fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
       continue;                /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
     }                /* vlv= nbcode[Tvaraff[k]][lv]; */
                                         vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])];
     fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);                kl++;
     for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/                /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
       if(vpopbased==0)                /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
         fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);                /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
       else                /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
         fprintf(ficgp,"\nreplot ");                if(k==cptcoveff){
       for (i=1; i<= nlstate+1 ; i ++) {                  fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
         k=2*i;                          2+cptcoveff*2+(cpt-1),  cpt );  /* 4 or 6 ?*/
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);                }else{
         for (j=1; j<= nlstate+1 ; j ++) {                  fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]);
           if (j==i) fprintf(ficgp," %%lf (%%lf)");                  kl++;
           else fprintf(ficgp," %%*lf (%%*lf)");                }
         }                 } /* end covariate */
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);            } /* end if no covariate */
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);            if(prevbcast == 1){
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);              fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);
         for (j=1; j<= nlstate+1 ; j ++) {              /* k1-1 error should be nres-1*/
           if (j==i) fprintf(ficgp," %%lf (%%lf)");              for (i=1; i<= nlstate ; i ++) {
           else fprintf(ficgp," %%*lf (%%*lf)");                if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
         }                   else        fprintf(ficgp," %%*lf (%%*lf)");
         fprintf(ficgp,"\" t\"\" w l lt 0,");              }
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);              fprintf(ficgp,"\" t\"Backward (stable) prevalence\" w l lt 6 dt 3,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);
         for (j=1; j<= nlstate+1 ; j ++) {              for (i=1; i<= nlstate ; i ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");                if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");                else fprintf(ficgp," %%*lf (%%*lf)");
         }                 } 
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");              fprintf(ficgp,"\" t\"95%% CI\" w l lt 4,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); 
         else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");              for (i=1; i<= nlstate ; i ++) {
       } /* state */                if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
     } /* vpopbased */                else fprintf(ficgp," %%*lf (%%*lf)");
     fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */              } 
   } /* k1 */              fprintf(ficgp,"\" t\"\" w l lt 4");
                     } /* end if backprojcast */
                   } /* end if prevbcast */
   /*3eme*/          /* fprintf(ficgp,"\nset out ;unset label;\n"); */
   for (k1=1; k1<= m ; k1 ++) {           fprintf(ficgp,"\nset out ;unset title;\n");
         } /* nres */
       /* } /\* k1 *\/ */
     } /* cpt */
   
     for (cpt=1; cpt<= nlstate ; cpt ++) {    
       fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files:  cov=%d state=%d",k1, cpt);    /*2 eme*/
       for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */    /* for (k1=1; k1<= m ; k1 ++){   */
         lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */        k1=TKresult[nres];
         /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
         /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */        /* if(m != 1 && TKresult[nres]!= k1) */
         vlv= nbcode[Tvaraff[k]][lv];        /*        continue; */
         fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);        fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
         strcpy(gplotlabel,"(");
         for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
           fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
         /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
         /*        /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
         /*        lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
         /*        /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
         /*        /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
         /*        /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
         /*        /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
         /*        vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
         /*        fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
         /*        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
         /* } */
         /* /\* for(k=1; k <= ncovds; k++){ *\/ */
         /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
         /*        printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
         /*        fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
         /*        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
       }        }
         strcpy(gplotlabel+strlen(gplotlabel),")");
       fprintf(ficgp,"\n#\n");        fprintf(ficgp,"\n#\n");
       if(invalidvarcomb[k1]){        if(invalidvarcomb[k1]){
         fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
         continue;          continue;
       }        }
                                                   
       /*       k=2+nlstate*(2*cpt-2); */        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres);
       k=2+(nlstate+1)*(cpt-1);        for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
       fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);          fprintf(ficgp,"\nset label \"popbased %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",vpopbased,gplotlabel);
       fprintf(ficgp,"set ter svg size 640, 480\n\          if(vpopbased==0){
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);            fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          }else
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            fprintf(ficgp,"\nreplot ");
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          for (i=1; i<= nlstate+1 ; i ++) {
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            k=2*i;
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1, vpopbased);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");
             }   
             if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
             else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
             fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased);
             for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");
             }   
             fprintf(ficgp,"\" t\"\" w l lt 0,");
             fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased);
             for (j=1; j<= nlstate+1 ; j ++) {
               if (j==i) fprintf(ficgp," %%lf (%%lf)");
               else fprintf(ficgp," %%*lf (%%*lf)");
             }   
             if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
             else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
           } /* state */
         } /* vpopbased */
         fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */
       } /* end nres */
     /* } /\* k1 end 2 eme*\/ */
           
           
     /*3eme*/
     /* for (k1=1; k1<= m ; k1 ++){ */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         k1=TKresult[nres];
         if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
         /* if(m != 1 && TKresult[nres]!= k1) */
         /*        continue; */
   
         for (cpt=1; cpt<= nlstate ; cpt ++) { /* Fragile no verification of covariate values */
           fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files:  combination=%d state=%d",k1, cpt);
           strcpy(gplotlabel,"(");
           for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
             fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
           /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
           /*   lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
           /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
           /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
           /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
           /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
           /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
           /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
           /* } */
           /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
           /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */
           }
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
                           
           /*       k=2+nlstate*(2*cpt-2); */
           k=2+(nlstate+1)*(cpt-1);
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"%s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel);
           fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),nres-1,nres-1,k,cpt);
           /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                                                                   
       */          */
       for (i=1; i< nlstate ; i ++) {          for (i=1; i< nlstate ; i ++) {
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+i,cpt,i+1);
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/            /*    fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                                                                   
       }           } 
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+nlstate,cpt);
     }        }
   }        fprintf(ficgp,"\nunset label;\n");
         } /* end nres */
     /* } /\* end kl 3eme *\/ */
     
   /* 4eme */    /* 4eme */
   /* Survival functions (period) from state i in state j by initial state i */    /* Survival functions (period) from state i in state j by initial state i */
   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */    /* for (k1=1; k1<=m; k1++){    /\* For each covariate and each value *\/ */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */        k1=TKresult[nres];
       fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
       for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */        /* if(m != 1 && TKresult[nres]!= k1) */
         lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */        /*        continue; */
         /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */        for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/
         /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */          strcpy(gplotlabel,"(");
         /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */          fprintf(ficgp,"\n#\n#\n# Survival functions in state %d : 'LIJ_' files, cov=%d state=%d", cpt, k1, cpt);
         vlv= nbcode[Tvaraff[k]][lv];          for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
         fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);            fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
       }            sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
       fprintf(ficgp,"\n#\n");          /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
       if(invalidvarcomb[k1]){          /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
         fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);           /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
         continue;          /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
       }          /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                                   /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);          /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\          /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
 set ter svg size 640, 480\n                                                                                                                                                                                     \          /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
 unset log y\n                                                                                                                                                                                                                                           \          /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
 plot [%.f:%.f]  ", ageminpar, agemaxpar);          /* } */
       k=3;          /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
       for (i=1; i<= nlstate ; i ++){          /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
         if(i==1){          /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));          }       
         }else{          strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,", '' ");          fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
         }          }
         l=(nlstate+ndeath)*(i-1)+1;        
         fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);          fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
         for (j=2; j<= nlstate+ndeath ; j ++)          fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
           fprintf(ficgp,"+$%d",k+l+j-1);          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
         fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);  set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
       } /* nlstate */          k=3;
       fprintf(ficgp,"\nset out\n");          for (i=1; i<= nlstate ; i ++){
     } /* end cpt state*/             if(i==1){
   } /* end covariate */                fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
                     }else{
               fprintf(ficgp,", '' ");
             }
             l=(nlstate+ndeath)*(i-1)+1;
             fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
             for (j=2; j<= nlstate+ndeath ; j ++)
               fprintf(ficgp,"+$%d",k+l+j-1);
             fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
           } /* nlstate */
           fprintf(ficgp,"\nset out; unset label;\n");
         } /* end cpt state*/ 
       } /* end nres */
     /* } /\* end covariate k1 *\/   */
   
 /* 5eme */  /* 5eme */
   /* Survival functions (period) from state i in state j by final state j */    /* Survival functions (period) from state i in state j by final state j */
   for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */    /* for (k1=1; k1<= m ; k1++){ /\* For each covariate combination if any *\/ */
     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                                 k1=TKresult[nres];
       fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
       for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */        /* if(m != 1 && TKresult[nres]!= k1) */
         lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */        /*        continue; */
         /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */        for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
         /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */          strcpy(gplotlabel,"(");
         /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */          fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         vlv= nbcode[Tvaraff[k]][lv];          for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
         fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);            fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
       }            sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
       fprintf(ficgp,"\n#\n");          /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
       if(invalidvarcomb[k1]){          /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
         fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);           /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
         continue;          /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
       }          /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
           /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
           /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
           /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
           /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
           /* } */
           /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
           /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
               
       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);          fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\          fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
 set ter svg size 640, 480\n                                             \          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
 unset log y\n                                                           \  set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
 plot [%.f:%.f]  ", ageminpar, agemaxpar);          k=3;
       k=3;          for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
       for (j=1; j<= nlstate ; j ++){ /* Lived in state j */            if(j==1)
         if(j==1)              fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));            else
         else              fprintf(ficgp,", '' ");
           fprintf(ficgp,", '' ");            l=(nlstate+ndeath)*(cpt-1) +j;
         l=(nlstate+ndeath)*(cpt-1) +j;            fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);            /* for (i=2; i<= nlstate+ndeath ; i ++) */
         /* for (i=2; i<= nlstate+ndeath ; i ++) */            /*   fprintf(ficgp,"+$%d",k+l+i-1); */
         /*   fprintf(ficgp,"+$%d",k+l+i-1); */            fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
         fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);          } /* nlstate */
       } /* nlstate */          fprintf(ficgp,", '' ");
       fprintf(ficgp,", '' ");          fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
       fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);          for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
       for (j=1; j<= nlstate ; j ++){ /* Lived in state j */            l=(nlstate+ndeath)*(cpt-1) +j;
         l=(nlstate+ndeath)*(cpt-1) +j;            if(j < nlstate)
         if(j < nlstate)              fprintf(ficgp,"$%d +",k+l);
           fprintf(ficgp,"$%d +",k+l);            else
         else              fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
           fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);          }
       }          fprintf(ficgp,"\nset out; unset label;\n");
       fprintf(ficgp,"\nset out\n");        } /* end cpt state*/ 
     } /* end cpt state*/       /* } /\* end covariate *\/   */
   } /* end covariate */      } /* end nres */
       
 /* 6eme */  /* 6eme */
   /* CV preval stable (period) for each covariate */    /* CV preval stable (period) for each covariate */
   for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */    /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
              k1=TKresult[nres];
       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
       for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */       /* if(m != 1 && TKresult[nres]!= k1) */
         lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */       /*  continue; */
         /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */
         /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */        strcpy(gplotlabel,"(");      
         /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */        fprintf(ficgp,"\n#\n#\n#CV preval stable (forward): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
         vlv= nbcode[Tvaraff[k]][lv];        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
         fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
       }          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
         /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
         /*        /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
         /*        lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
         /*        /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
         /*        /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
         /*        /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
         /*        /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
         /*        vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
         /*        fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
         /*        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
         /* } */
         /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
         /*        fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
         /*        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
         } 
         strcpy(gplotlabel+strlen(gplotlabel),")");
       fprintf(ficgp,"\n#\n");        fprintf(ficgp,"\n#\n");
       if(invalidvarcomb[k1]){        if(invalidvarcomb[k1]){
         fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
         continue;          continue;
       }        }
               
       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
         fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 set ter svg size 640, 480\n                                             \  set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
 unset log y\n                                                           \  
 plot [%.f:%.f]  ", ageminpar, agemaxpar);  
       k=3; /* Offset */        k=3; /* Offset */
       for (i=1; i<= nlstate ; i ++){        for (i=1; i<= nlstate ; i ++){ /* State of origin */
         if(i==1)          if(i==1)
           fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
         else          else
           fprintf(ficgp,", '' ");            fprintf(ficgp,", '' ");
         l=(nlstate+ndeath)*(i-1)+1;          l=(nlstate+ndeath)*(i-1)+1; /* 1, 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */
         fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
         for (j=2; j<= nlstate ; j ++)          for (j=2; j<= nlstate ; j ++)
           fprintf(ficgp,"+$%d",k+l+j-1);            fprintf(ficgp,"+$%d",k+l+j-1);
         fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);          fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
       } /* nlstate */        } /* nlstate */
       fprintf(ficgp,"\nset out\n");        fprintf(ficgp,"\nset out; unset label;\n");
     } /* end cpt state*/       } /* end cpt state*/ 
   } /* end covariate */      } /* end covariate */  
       
       
 /* 7eme */  /* 7eme */
   if(backcast == 1){    if(prevbcast == 1){
     /* CV back preval stable (period) for each covariate */      /* CV backward prevalence  for each covariate */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */      /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);        k1=TKresult[nres];
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */        /* if(m != 1 && TKresult[nres]!= k1) */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */        /*        continue; */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */        for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */          strcpy(gplotlabel,"(");      
           vlv= nbcode[Tvaraff[k]][lv];          fprintf(ficgp,"\n#\n#\n#CV Backward stable prevalence: 'pijb' files, covariatecombination#=%d state=%d",k1, cpt);
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);          for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
         }            fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
           /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
           /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
           /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
           /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
           /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
           /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
           /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
           /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
           /* } */
           /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
           /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");          fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){          if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;            continue;
         }          }
                   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1);          fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
 set ter svg size 640, 480\n                                             \  set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
 unset log y\n                                                           \  
 plot [%.f:%.f]  ", ageminpar, agemaxpar);  
         k=3; /* Offset */          k=3; /* Offset */
         for (i=1; i<= nlstate ; i ++){          for (i=1; i<= nlstate ; i ++){ /* State of arrival */
           if(i==1)            if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));              fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
           else            else
             fprintf(ficgp,", '' ");              fprintf(ficgp,", '' ");
           /* l=(nlstate+ndeath)*(i-1)+1; */            /* l=(nlstate+ndeath)*(i-1)+1; */
           l=(nlstate+ndeath)*(cpt-1)+1;            l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */
           /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */            /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
           /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */            /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */            fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */
           /* for (j=2; j<= nlstate ; j ++) */            /* for (j=2; j<= nlstate ; j ++) */
           /*    fprintf(ficgp,"+$%d",k+l+j-1); */            /*    fprintf(ficgp,"+$%d",k+l+j-1); */
           /*    /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */            /*    /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
           fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt);            fprintf(ficgp,") t \"bprev(%d,%d)\" w l",cpt,i);
         } /* nlstate */          } /* nlstate */
         fprintf(ficgp,"\nset out\n");          fprintf(ficgp,"\nset out; unset label;\n");
       } /* end cpt state*/         } /* end cpt state*/ 
     } /* end covariate */        } /* end covariate */  
   } /* End if backcast */    } /* End if prevbcast */
       
   /* 8eme */    /* 8eme */
   if(prevfcast==1){    if(prevfcast==1){
     /* Projection from cross-sectional to stable (period) for each covariate */      /* Projection from cross-sectional to forward stable (period) prevalence for each covariate */
           
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */      /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
         k1=TKresult[nres];
         if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
         /* if(m != 1 && TKresult[nres]!= k1) */
         /*        continue; */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */        for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);          strcpy(gplotlabel,"(");      
         for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */          fprintf(ficgp,"\n#\n#\n#Projection of prevalence to forward stable prevalence (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */          for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */            fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */            sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */          /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
           vlv= nbcode[Tvaraff[k]][lv];          /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);          /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
         }          /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
           /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
           /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
           /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
           /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
           /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
           /* } */
           /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
           /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");          fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){          if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
Line 6444  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 8504  plot [%.f:%.f]  ", ageminpar, agemaxpar)
         }          }
                   
         fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");          fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1);          fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
 set ter svg size 640, 480\n                                             \  set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
 unset log y\n                                                           \  
 plot [%.f:%.f]  ", ageminpar, agemaxpar);          /* for (i=1; i<= nlstate+1 ; i ++){  /\* nlstate +1 p11 p21 p.1 *\/ */
         for (i=1; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */          istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */
           /*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */
           for (i=istart; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
           /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/            /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
           /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */               /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
           /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/            /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
           /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */               /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
           if(i==1){            if(i==istart){
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));              fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
           }else{            }else{
             fprintf(ficgp,",\\\n '' ");              fprintf(ficgp,",\\\n '' ");
Line 6466  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 8529  plot [%.f:%.f]  ", ageminpar, agemaxpar)
             /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/              /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
             /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */              /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
             fprintf(ficgp," u %d:(", ioffset);               fprintf(ficgp," u %d:(", ioffset); 
             if(i==nlstate+1)              if(i==nlstate+1){
               fprintf(ficgp," $%d/(1.-$%d)) t 'pw.%d' with line ",      \                fprintf(ficgp," $%d/(1.-$%d)):1 t 'pw.%d' with line lc variable ",        \
                       ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );                        ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
             else                fprintf(ficgp,",\\\n '' ");
                 fprintf(ficgp," u %d:(",ioffset); 
                 fprintf(ficgp," (($1-$2) == %d ) ? $%d/(1.-$%d) : 1/0):1 with labels center not ", \
                        offyear,                           \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate );
               }else
               fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ",      \                fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ",      \
                       ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );                        ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
           }else{ /* more than 2 covariates */            }else{ /* more than 2 covariates */
             if(cptcoveff ==1){              ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/
               ioffset=4; /* Age is in 4 */              /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             }else{              /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
               ioffset=6; /* Age is in 6 */              iyearc=ioffset-1;
               /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/              iagec=ioffset;
               /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */  
             }     
             fprintf(ficgp," u %d:(",ioffset);               fprintf(ficgp," u %d:(",ioffset); 
             kl=0;              kl=0;
             strcpy(gplotcondition,"(");              strcpy(gplotcondition,"(");
             for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */              for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */
               lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */                /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                 lv=codtabm(k1,TnsdVar[Tvaraff[k]]);
               /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */                /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
               /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */                /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
               /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */                /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
               vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */                /* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */
                 vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])];
               kl++;                kl++;
               sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);                sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
               kl++;                kl++;
Line 6501  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 8569  plot [%.f:%.f]  ", ageminpar, agemaxpar)
             /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
             /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/              /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
             if(i==nlstate+1){              if(i==nlstate+1){
               fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ", gplotcondition, \                fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0):%d t 'p.%d' with line lc variable", gplotcondition, \
                       ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );                        ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,iyearc, cpt );
                 fprintf(ficgp,",\\\n '' ");
                 fprintf(ficgp," u %d:(",iagec); 
                 fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d/(1.-$%d) : 1/0):%d with labels center not ", gplotcondition, \
                         iyearc, iagec, offyear,                           \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate, iyearc );
   /*  '' u 6:(($1==1 && $2==0  && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/
             }else{              }else{
               fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \                fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \
                       ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );                        ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );
             }              }
           } /* end if covariate */            } /* end if covariate */
         } /* nlstate */          } /* nlstate */
         fprintf(ficgp,"\nset out\n");          fprintf(ficgp,"\nset out; unset label;\n");
       } /* end cpt state*/        } /* end cpt state*/
     } /* end covariate */      } /* end covariate */
   } /* End if prevfcast */    } /* End if prevfcast */
       
     if(prevbcast==1){
       /* Back projection from cross-sectional to stable (mixed) for each covariate */
       
       /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
        k1=TKresult[nres];
        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
          /* if(m != 1 && TKresult[nres]!= k1) */
          /*       continue; */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           strcpy(gplotlabel,"(");      
           fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt);
           for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
             fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
             sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
           /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
           /*   lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
           /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
           /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
           /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
           /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
           /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
           /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
           /* } */
           /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
           /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
           }       
           strcpy(gplotlabel+strlen(gplotlabel),")");
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"# hbijx=backprobability over h years, hb.jx is weighted by observed prev at destination state\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
           fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
   
           /* for (i=1; i<= nlstate+1 ; i ++){  /\* nlstate +1 p11 p21 p.1 *\/ */
           istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */
           /*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */
           for (i=istart; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==istart){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"FB_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               ioffset=2; /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               fprintf(ficgp," u %d:(", ioffset); 
               if(i==nlstate+1){
                 fprintf(ficgp," $%d/(1.-$%d)):1 t 'bw%d' with line lc variable ", \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                 fprintf(ficgp,",\\\n '' ");
                 fprintf(ficgp," u %d:(",ioffset); 
                 fprintf(ficgp," (($1-$2) == %d ) ? $%d : 1/0):1 with labels center not ", \
                        offbyear,                          \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1) );
               }else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'b%d%d' with line ",      \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt,i );
             }else{ /* more than 2 covariates */
               ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/
               /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
               /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
               iyearc=ioffset-1;
               iagec=ioffset;
               fprintf(ficgp," u %d:(",ioffset); 
               kl=0;
               strcpy(gplotcondition,"(");
               for (k=1; k<=cptcovs; k++){    /* For each covariate k of the resultline, get corresponding value lv for combination k1 */
                 if(Dummy[modelresult[nres][k]]==0){  /* To be verified */
                   /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate writing the chain of conditions *\/ */
                   /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   /* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   lv=Tvresult[nres][k];
                   vlv=TinvDoQresult[nres][Tvresult[nres][k]];
                   /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   /* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */
                   /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   kl++;
                   /* sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); */
                   sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%lg " ,kl,Tvresult[nres][k], kl+1,TinvDoQresult[nres][Tvresult[nres][k]]);
                   kl++;
                   if(k <cptcovs && cptcovs>1)
                     sprintf(gplotcondition+strlen(gplotcondition)," && ");
                 }
               }
               strcpy(gplotcondition+strlen(gplotcondition),")");
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
               /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
               if(i==nlstate+1){
                 fprintf(ficgp,"%s ? $%d : 1/0):%d t 'bw%d' with line lc variable", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),iyearc,cpt );
                 fprintf(ficgp,",\\\n '' ");
                 fprintf(ficgp," u %d:(",iagec); 
                 /* fprintf(ficgp,"%s && (($5-$6) == %d ) ? $%d/(1.-$%d) : 1/0):5 with labels center not ", gplotcondition, \ */
                 fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d : 1/0):%d with labels center not ", gplotcondition, \
                         iyearc,iagec,offbyear,                            \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1), iyearc );
   /*  '' u 6:(($1==1 && $2==0  && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/
               }else{
                 /* fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ */
                 fprintf(ficgp,"%s ? $%d : 1/0) t 'b%d%d' with line ", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1), cpt,i );
               }
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out; unset label;\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevbcast */
     
       
   /* proba elementaires */    /* 9eme writing MLE parameters */
   fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");    fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n");
   for(i=1,jk=1; i <=nlstate; i++){    for(i=1,jk=1; i <=nlstate; i++){
     fprintf(ficgp,"# initial state %d\n",i);      fprintf(ficgp,"# initial state %d\n",i);
     for(k=1; k <=(nlstate+ndeath); k++){      for(k=1; k <=(nlstate+ndeath); k++){
Line 6533  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 8737  plot [%.f:%.f]  ", ageminpar, agemaxpar)
   fprintf(ficgp,"##############\n#\n");    fprintf(ficgp,"##############\n#\n");
       
   /*goto avoid;*/    /*goto avoid;*/
   fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");    /* 10eme Graphics of probabilities or incidences using written MLE parameters */
     fprintf(ficgp,"\n##############\n#10eme Graphics of probabilities or incidences\n#############\n");
   fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");    fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
   fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");    fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
   fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");    fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
Line 6548  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 8753  plot [%.f:%.f]  ", ageminpar, agemaxpar)
   fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");    fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
   fprintf(ficgp,"#\n");    fprintf(ficgp,"#\n");
   for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/    for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
     fprintf(ficgp,"# ng=%d\n",ng);      fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n");
     fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);      fprintf(ficgp,"#model=1+age+%s \n",model);
     for(jk=1; jk <=m; jk++) {      fprintf(ficgp,"# Type of graphic ng=%d\n",ng);
       fprintf(ficgp,"#    jk=%d\n",jk);      fprintf(ficgp,"#   k1=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */
       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);      /* for(k1=1; k1 <=m; k1++)  /\* For each combination of covariate *\/ */
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
        /* k1=nres; */
         k1=TKresult[nres];
         if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
         fprintf(ficgp,"\n\n# Resultline k1=%d ",k1);
         strcpy(gplotlabel,"(");
         /*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*/
         for (k=1; k<=cptcovs; k++){  /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
           /* for each resultline nres, and position k, Tvresult[nres][k] gives the name of the variable and
              TinvDoQresult[nres][Tvresult[nres][k]] gives its value double or integer) */
           fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
           sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
         }
         /* if(m != 1 && TKresult[nres]!= k1) */
         /*        continue; */
         /* fprintf(ficgp,"\n\n# Combination of dummy  k1=%d which is ",k1); */
         /* strcpy(gplotlabel,"("); */
         /* /\*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*\/ */
         /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
         /*        /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
         /*        lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
         /*        /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
         /*        /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
         /*        /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
         /*        /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
         /*        vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
         /*        fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
         /*        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
         /* } */
         /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
         /*        fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
         /*        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
         /* }       */
         strcpy(gplotlabel+strlen(gplotlabel),")");
         fprintf(ficgp,"\n#\n");
         fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres);
         fprintf(ficgp,"\nset key outside ");
         /* fprintf(ficgp,"\nset label \"%s\" at graph 1.2,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); */
         fprintf(ficgp,"\nset title \"%s\" font \"Helvetica,12\"\n",gplotlabel);
       fprintf(ficgp,"\nset ter svg size 640, 480 ");        fprintf(ficgp,"\nset ter svg size 640, 480 ");
       if (ng==1){        if (ng==1){
         fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */          fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
Line 6592  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 8836  plot [%.f:%.f]  ", ageminpar, agemaxpar)
               break;                break;
             }              }
             ij=1;/* To be checked else nbcode[0][0] wrong */              ij=1;/* To be checked else nbcode[0][0] wrong */
             for(j=3; j <=ncovmodel-nagesqr; j++) {              ijp=1; /* product no age */
               /* for(j=3; j <=ncovmodel-nagesqr; j++) { */
               for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
               /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */                /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
               if(ij <=cptcovage) { /* Bug valgrind */                switch(Typevar[j]){
                 if((j-2)==Tage[ij]) { /* Bug valgrind */                case 1:
                   fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);                  if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                   /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */                    if(j==Tage[ij]) { /* Product by age  To be looked at!!*//* Bug valgrind */
                   ij++;                      if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                         if(DummyV[j]==0){/* Bug valgrind */
                           fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);;
                         }else{ /* quantitative */
                           fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                           /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                         }
                         ij++;
                       }
                     }
                 }                  }
               }                  break;
               else                case 2:
                 fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); /* Valgrind bug nbcode */                  if(cptcovprod >0){
             }                    if(j==Tprod[ijp]) { /* */ 
           }else{                      /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
             i=i-ncovmodel;                      if(ijp <=cptcovprod) { /* Product */
             if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */                        if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
               fprintf(ficgp," (1.");                          if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                             /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                             fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                           }else{ /* Vn is dummy and Vm is quanti */
                             /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                             fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                           }
                         }else{ /* Vn*Vm Vn is quanti */
                           if(DummyV[Tvard[ijp][2]]==0){
                             fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                           }else{ /* Both quanti */
                             fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                           }
                         }
                         ijp++;
                       }
                     } /* end Tprod */
                   }
                   break;
                 case 0:
                   /* simple covariate */
                   /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */
                   if(Dummy[j]==0){
                     fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /*  */
                   }else{ /* quantitative */
                     fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */
                     /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   }
                  /* end simple */
                   break;
                 default:
                   break;
                 } /* end switch */
               } /* end j */
             }else{ /* k=k2 */
               if(ng !=1 ){ /* For logit formula of log p11 is more difficult to get */
                 fprintf(ficgp," (1.");i=i-ncovmodel;
               }else
                 i=i-ncovmodel;
           }            }
                       
           if(ng != 1){            if(ng != 1){
             fprintf(ficgp,")/(1");              fprintf(ficgp,")/(1");
                           
             for(k1=1; k1 <=nlstate; k1++){               for(cpt=1; cpt <=nlstate; cpt++){ 
               if(nagesqr==0)                if(nagesqr==0)
                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1);
               else /* nagesqr =1 */                else /* nagesqr =1 */
                 fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);                  fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr);
                                 
               ij=1;                ij=1;
               for(j=3; j <=ncovmodel-nagesqr; j++){                ijp=1;
                 if(ij <=cptcovage) { /* Bug valgrind */                /* for(j=3; j <=ncovmodel-nagesqr; j++){ */
                   if((j-2)==Tage[ij]) { /* Bug valgrind */                for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);                  switch(Typevar[j]){
                     /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */                  case 1:
                     ij++;                    if(cptcovage >0){ 
                       if(j==Tage[ij]) { /* Bug valgrind */
                         if(ij <=cptcovage) { /* Bug valgrind */
                           if(DummyV[j]==0){/* Bug valgrind */
                             /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]); */
                             /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,nbcode[Tvar[j]][codtabm(k1,j)]); */
                             fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]);
                             /* fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; */
                             /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                           }else{ /* quantitative */
                             /* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */
                             fprintf(ficgp,"+p%d*%f*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                             /* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */
                             /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                           }
                           ij++;
                         }
                       }
                   }                    }
                 }                    break;
                 else                  case 2:
                   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);/* Valgrind bug nbcode */                    if(cptcovprod >0){
                       if(j==Tprod[ijp]) { /* */ 
                         /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                         if(ijp <=cptcovprod) { /* Product */
                           if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                             if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                               /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                               fprintf(ficgp,"+p%d*%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                               /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); */
                             }else{ /* Vn is dummy and Vm is quanti */
                               /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                               fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                               /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                             }
                           }else{ /* Vn*Vm Vn is quanti */
                             if(DummyV[Tvard[ijp][2]]==0){
                               fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                               /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); */
                             }else{ /* Both quanti */
                               fprintf(ficgp,"+p%d*%f*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                               /* fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                             } 
                           }
                           ijp++;
                         }
                       } /* end Tprod */
                     } /* end if */
                     break;
                   case 0: 
                     /* simple covariate */
                     /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */
                     if(Dummy[j]==0){
                       /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\*  *\/ */
                       fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]); /*  */
                       /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\*  *\/ */
                     }else{ /* quantitative */
                       fprintf(ficgp,"+p%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* */
                       /* fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* *\/ */
                       /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                     }
                     /* end simple */
                     /* fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/\* Valgrind bug nbcode *\/ */
                     break;
                   default:
                     break;
                   } /* end switch */
               }                }
               fprintf(ficgp,")");                fprintf(ficgp,")");
             }              }
             fprintf(ficgp,")");              fprintf(ficgp,")");
             if(ng ==2)              if(ng ==2)
               fprintf(ficgp," t \"p%d%d\" ", k2,k);                fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"p%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
             else /* ng= 3 */              else /* ng= 3 */
               fprintf(ficgp," t \"i%d%d\" ", k2,k);                fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"i%d%d\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
           }else{ /* end ng <> 1 */            }else{ /* end ng <> 1 */
             if( k !=k2) /* logit p11 is hard to draw */              if( k !=k2) /* logit p11 is hard to draw */
               fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);                fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"logit(p%d%d)\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
           }            }
           if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)            if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
             fprintf(ficgp,",");              fprintf(ficgp,",");
Line 6649  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 9004  plot [%.f:%.f]  ", ageminpar, agemaxpar)
           i=i+ncovmodel;            i=i+ncovmodel;
         } /* end k */          } /* end k */
       } /* end k2 */        } /* end k2 */
       fprintf(ficgp,"\n set out\n");        /* fprintf(ficgp,"\n set out; unset label;set key default;\n"); */
     } /* end jk */        fprintf(ficgp,"\n set out; unset title;set key default;\n");
       } /* end resultline */
   } /* end ng */    } /* end ng */
   /* avoid: */    /* avoid: */
   fflush(ficgp);     fflush(ficgp); 
Line 6665  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 9021  plot [%.f:%.f]  ", ageminpar, agemaxpar)
    int modcovmax =1;     int modcovmax =1;
    int mobilavrange, mob;     int mobilavrange, mob;
    int iage=0;     int iage=0;
      int firstA1=0, firstA2=0;
   
    double sum=0.;     double sum=0., sumr=0.;
    double age;     double age;
    double *sumnewp, *sumnewm;     double *sumnewp, *sumnewm, *sumnewmr;
    double *agemingood, *agemaxgood; /* Currently identical for all covariates */     double *agemingood, *agemaxgood; 
      double *agemingoodr, *agemaxgoodr; 
       
       
    /* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose  */     /* modcovmax=2*cptcoveff;  Max number of modalities. We suppose  */
    /*              a covariate has 2 modalities, should be equal to ncovcombmax  *\/ */     /*              a covariate has 2 modalities, should be equal to ncovcombmax   */
   
    sumnewp = vector(1,ncovcombmax);     sumnewp = vector(1,ncovcombmax);
    sumnewm = vector(1,ncovcombmax);     sumnewm = vector(1,ncovcombmax);
      sumnewmr = vector(1,ncovcombmax);
    agemingood = vector(1,ncovcombmax);       agemingood = vector(1,ncovcombmax);  
      agemingoodr = vector(1,ncovcombmax); 
    agemaxgood = vector(1,ncovcombmax);     agemaxgood = vector(1,ncovcombmax);
      agemaxgoodr = vector(1,ncovcombmax);
   
    for (cptcod=1;cptcod<=ncovcombmax;cptcod++){     for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
      sumnewm[cptcod]=0.;       sumnewm[cptcod]=0.; sumnewmr[cptcod]=0.;
      sumnewp[cptcod]=0.;       sumnewp[cptcod]=0.;
      agemingood[cptcod]=0;       agemingood[cptcod]=0, agemingoodr[cptcod]=0;
      agemaxgood[cptcod]=0;       agemaxgood[cptcod]=0, agemaxgoodr[cptcod]=0;
    }     }
    if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */     if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */
       
    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){     if(mobilav==-1 || mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
      if(mobilav==1) mobilavrange=5; /* default */       if(mobilav==1 || mobilav==-1) mobilavrange=5; /* default */
      else mobilavrange=mobilav;       else mobilavrange=mobilav;
      for (age=bage; age<=fage; age++)       for (age=bage; age<=fage; age++)
        for (i=1; i<=nlstate;i++)         for (i=1; i<=nlstate;i++)
Line 6701  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 9062  plot [%.f:%.f]  ", ageminpar, agemaxpar)
      */        */ 
      for (mob=3;mob <=mobilavrange;mob=mob+2){       for (mob=3;mob <=mobilavrange;mob=mob+2){
        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
          for (i=1; i<=nlstate;i++){           for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
            for (cptcod=1;cptcod<=ncovcombmax;cptcod++){             sumnewm[cptcod]=0.;
              for (i=1; i<=nlstate;i++){
              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
              for (cpt=1;cpt<=(mob-1)/2;cpt++){               for (cpt=1;cpt<=(mob-1)/2;cpt++){
                mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
              }               }
              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
            }               sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
          }             } /* end i */
              if(sumnewm[cptcod] >1.e-3) mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/sumnewm[cptcod]; /* Rescaling to sum one */
            } /* end cptcod */
        }/* end age */         }/* end age */
      }/* end mob */       }/* end mob */
    }else     }else{
        printf("Error internal in movingaverage, mobilav=%d.\n",mobilav);
      return -1;       return -1;
    for (cptcod=1;cptcod<=ncovcombmax;cptcod++){     }
   
      for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ /* for each combination */
      /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */       /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
      if(invalidvarcomb[cptcod]){       if(invalidvarcomb[cptcod]){
        printf("\nCombination (%d) ignored because no cases \n",cptcod);          printf("\nCombination (%d) ignored because no cases \n",cptcod); 
        continue;         continue;
      }       }
   
      agemingood[cptcod]=fage-(mob-1)/2;       for (age=fage-(mob-1)/2; age>=bage+(mob-1)/2; age--){ /*looking for the youngest and oldest good age */
      for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */  
        sumnewm[cptcod]=0.;         sumnewm[cptcod]=0.;
          sumnewmr[cptcod]=0.;
        for (i=1; i<=nlstate;i++){         for (i=1; i<=nlstate;i++){
          sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];           sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
          }
          if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
            agemingoodr[cptcod]=age;
        }         }
        if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */         if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
          agemingood[cptcod]=age;             agemingood[cptcod]=age;
        }else{ /* bad */         }
          for (i=1; i<=nlstate;i++){       } /* age */
            mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ /*looking for the youngest and oldest good age */
          } /* i */  
        } /* end bad */  
      }/* age */  
      sum=0.;  
      for (i=1; i<=nlstate;i++){  
        sum+=mobaverage[(int)agemingood[cptcod]][i][cptcod];  
      }  
      if(fabs(sum - 1.) > 1.e-3) { /* bad */  
        printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any descending age!\n",cptcod);  
        /* for (i=1; i<=nlstate;i++){ */  
        /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */  
        /* } /\* i *\/ */  
      } /* end bad */  
      /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */  
      /* From youngest, finding the oldest wrong */  
      agemaxgood[cptcod]=bage+(mob-1)/2;  
      for (age=bage+(mob-1)/2; age<=fage; age++){  
        sumnewm[cptcod]=0.;         sumnewm[cptcod]=0.;
          sumnewmr[cptcod]=0.;
        for (i=1; i<=nlstate;i++){         for (i=1; i<=nlstate;i++){
          sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];           sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
          }
          if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
            agemaxgoodr[cptcod]=age;
        }         }
        if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */         if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
          agemaxgood[cptcod]=age;           agemaxgood[cptcod]=age;
        }else{ /* bad */         }
          for (i=1; i<=nlstate;i++){       } /* age */
            mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];       /* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */
          } /* i */       /* but they will change */
        firstA1=0;firstA2=0;
        for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */
          sumnewm[cptcod]=0.;
          sumnewmr[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
          }
          if(mobilav==-1){ /* Forcing raw ages if good else agemingood */
            if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
              agemaxgoodr[cptcod]=age;  /* age min */
              for (i=1; i<=nlstate;i++)
                mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
            }else{ /* bad we change the value with the values of good ages */
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgoodr[cptcod]][i][cptcod];
              } /* i */
            } /* end bad */
          }else{
            if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
              agemaxgood[cptcod]=age;
            }else{ /* bad we change the value with the values of good ages */
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
              } /* i */
            } /* end bad */
          }/* end else */
          sum=0.;sumr=0.;
          for (i=1; i<=nlstate;i++){
            sum+=mobaverage[(int)age][i][cptcod];
            sumr+=probs[(int)age][i][cptcod];
          }
          if(fabs(sum - 1.) > 1.e-3) { /* bad */
            if(!firstA1){
              firstA1=1;
              printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
            }
            fprintf(ficlog,"Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
          } /* end bad */
          /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
          if(fabs(sumr - 1.) > 1.e-3) { /* bad */
            if(!firstA2){
              firstA2=1;
              printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
            }
            fprintf(ficlog,"Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
        } /* end bad */         } /* end bad */
      }/* age */       }/* age */
      sum=0.;  
      for (i=1; i<=nlstate;i++){       for (age=bage+(mob-1)/2; age<=fage; age++){/* From youngest, finding the oldest wrong */
        sum+=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];         sumnewm[cptcod]=0.;
      }         sumnewmr[cptcod]=0.;
      if(fabs(sum - 1.) > 1.e-3) { /* bad */         for (i=1; i<=nlstate;i++){
        printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any ascending age!\n",cptcod);           sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
        /* for (i=1; i<=nlstate;i++){ */           sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
        /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */         } 
        /* } /\* i *\/ */         if(mobilav==-1){ /* Forcing raw ages if good else agemingood */
      } /* end bad */           if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good */
              agemingoodr[cptcod]=age;
              for (i=1; i<=nlstate;i++)
                mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
            }else{ /* bad we change the value with the values of good ages */
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingoodr[cptcod]][i][cptcod];
              } /* i */
            } /* end bad */
          }else{
            if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
              agemingood[cptcod]=age;
            }else{ /* bad */
              for (i=1; i<=nlstate;i++){
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
              } /* i */
            } /* end bad */
          }/* end else */
          sum=0.;sumr=0.;
          for (i=1; i<=nlstate;i++){
            sum+=mobaverage[(int)age][i][cptcod];
            sumr+=mobaverage[(int)age][i][cptcod];
          }
          if(fabs(sum - 1.) > 1.e-3) { /* bad */
            printf("Moving average B1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you decrease fage=%d?\n",cptcod, sum, (int) age, (int)fage);
          } /* end bad */
          /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
          if(fabs(sumr - 1.) > 1.e-3) { /* bad */
            printf("Moving average B2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase fage=%d\n",cptcod,sumr, (int)age, (int)fage);
          } /* end bad */
        }/* age */
   
                                   
      for (age=bage; age<=fage; age++){       for (age=bage; age<=fage; age++){
        printf("%d %d ", cptcod, (int)age);         /* printf("%d %d ", cptcod, (int)age); */
        sumnewp[cptcod]=0.;         sumnewp[cptcod]=0.;
        sumnewm[cptcod]=0.;         sumnewm[cptcod]=0.;
        for (i=1; i<=nlstate;i++){         for (i=1; i<=nlstate;i++){
Line 6786  plot [%.f:%.f]  ", ageminpar, agemaxpar) Line 9222  plot [%.f:%.f]  ", ageminpar, agemaxpar)
      }       }
      /* printf("\n"); */       /* printf("\n"); */
      /* } */       /* } */
   
      /* brutal averaging */       /* brutal averaging */
      for (i=1; i<=nlstate;i++){       /* for (i=1; i<=nlstate;i++){ */
        for (age=1; age<=bage; age++){       /*   for (age=1; age<=bage; age++){ */
          mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];       /*          mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
          /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */       /*          /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */
        }               /*   }      */
        for (age=fage; age<=AGESUP; age++){       /*   for (age=fage; age<=AGESUP; age++){ */
          mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];       /*          mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; */
          /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */       /*          /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */
        }       /*   } */
      } /* end i status */       /* } /\* end i status *\/ */
      for (i=nlstate+1; i<=nlstate+ndeath;i++){       /* for (i=nlstate+1; i<=nlstate+ndeath;i++){ */
        for (age=1; age<=AGESUP; age++){       /*   for (age=1; age<=AGESUP; age++){ */
          /*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/       /*          /\*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*\/ */
          mobaverage[(int)age][i][cptcod]=0.;       /*          mobaverage[(int)age][i][cptcod]=0.; */
        }       /*   } */
      }       /* } */
    }/* end cptcod */     }/* end cptcod */
    free_vector(sumnewm,1, ncovcombmax);     free_vector(agemaxgoodr,1, ncovcombmax);
    free_vector(sumnewp,1, ncovcombmax);  
    free_vector(agemaxgood,1, ncovcombmax);     free_vector(agemaxgood,1, ncovcombmax);
    free_vector(agemingood,1, ncovcombmax);     free_vector(agemingood,1, ncovcombmax);
      free_vector(agemingoodr,1, ncovcombmax);
      free_vector(sumnewmr,1, ncovcombmax);
      free_vector(sumnewm,1, ncovcombmax);
      free_vector(sumnewp,1, ncovcombmax);
    return 0;     return 0;
  }/* End movingaverage */   }/* End movingaverage */
     
   
    
 /************** Forecasting ******************/  /************** Forecasting ******************/
 void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  /* void prevforecast(char fileres[], double dateintmean, double anprojd, double mprojd, double jprojd, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anprojf, double p[], int cptcoveff)*/
   /* proj1, year, month, day of starting projection   void prevforecast(char fileres[], double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){
     /* dateintemean, mean date of interviews
        dateprojd, year, month, day of starting projection 
        dateprojf date of end of projection;year of end of projection (same day and month as proj1).
      agemin, agemax range of age       agemin, agemax range of age
      dateprev1 dateprev2 range of dates during which prevalence is computed       dateprev1 dateprev2 range of dates during which prevalence is computed
      anproj2 year of en of projection (same day and month as proj1).  
   */    */
   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;    /* double anprojd, mprojd, jprojd; */
     /* double anprojf, mprojf, jprojf; */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
   double agec; /* generic age */    double agec; /* generic age */
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double agelim, ppij, yp,yp1,yp2;
   double *popeffectif,*popcount;    double *popeffectif,*popcount;
   double ***p3mat;    double ***p3mat;
   /* double ***mobaverage; */    /* double ***mobaverage; */
Line 6841  void prevforecast(char fileres[], double Line 9286  void prevforecast(char fileres[], double
     printf("Problem with forecast resultfile: %s\n", fileresf);      printf("Problem with forecast resultfile: %s\n", fileresf);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   }    }
   printf("Computing forecasting: result on file '%s', please wait... \n", fileresf);    printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
   fprintf(ficlog,"Computing forecasting: result on file '%s', please wait... \n", fileresf);    fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
Line 6852  void prevforecast(char fileres[], double Line 9297  void prevforecast(char fileres[], double
   if(estepm < stepm){    if(estepm < stepm){
     printf ("Problem %d lower than %d\n",estepm, stepm);      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
   else  hstepm=estepm;       else{
       hstepm=estepm;   
     }
     if(estepm > stepm){ /* Yes every two year */
       stepsize=2;
     }
     hstepm=hstepm/stepm;
   
   hstepm=hstepm/stepm;     
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and    /* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
                                fractional in yp1 */    /*                              fractional in yp1 *\/ */
   anprojmean=yp;    /* aintmean=yp; */
   yp2=modf((yp1*12),&yp);    /* yp2=modf((yp1*12),&yp); */
   mprojmean=yp;    /* mintmean=yp; */
   yp1=modf((yp2*30.5),&yp);    /* yp1=modf((yp2*30.5),&yp); */
   jprojmean=yp;    /* jintmean=yp; */
   if(jprojmean==0) jprojmean=1;    /* if(jintmean==0) jintmean=1; */
   if(mprojmean==0) jprojmean=1;    /* if(mintmean==0) mintmean=1; */
   
   
     /* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */
     /* date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); */
     /* date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); */
   i1=pow(2,cptcoveff);    i1=pow(2,cptcoveff);
   if (cptcovn < 1){i1=1;}    if (cptcovn < 1){i1=1;}
       
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); 
       
   fprintf(ficresf,"#****** Routine prevforecast **\n");    fprintf(ficresf,"#****** Routine prevforecast **\n");
       
 /*            if (h==(int)(YEARM*yearp)){ */  /*            if (h==(int)(YEARM*yearp)){ */
   for(k=1;k<=i1;k++){    for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){ /* We want to find the combination k corresponding to the values of the dummies given in this resut line (to be cleaned one day) */
       if(i1 != 1 && TKresult[nres]!= k)
         continue;
     if(invalidvarcomb[k]){      if(invalidvarcomb[k]){
       printf("\nCombination (%d) projection ignored because no cases \n",k);         printf("\nCombination (%d) projection ignored because no cases \n",k); 
       continue;        continue;
     }      }
     fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");      fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
     for(j=1;j<=cptcoveff;j++) {      for(j=1;j<=cptcoveff;j++) {
       fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        /* fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); */
         fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
       }
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
         fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
     }      }
     fprintf(ficresf," yearproj age");      fprintf(ficresf," yearproj age");
     for(j=1; j<=nlstate+ndeath;j++){       for(j=1; j<=nlstate+ndeath;j++){ 
Line 6888  void prevforecast(char fileres[], double Line 9350  void prevforecast(char fileres[], double
         fprintf(ficresf," p%d%d",i,j);          fprintf(ficresf," p%d%d",i,j);
       fprintf(ficresf," wp.%d",j);        fprintf(ficresf," wp.%d",j);
     }      }
     for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {      for (yearp=0; yearp<=(anprojf-anprojd);yearp +=stepsize) {
       fprintf(ficresf,"\n");        fprintf(ficresf,"\n");
       fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jprojd,mprojd,anprojd+yearp);   
       for (agec=fage; agec>=(ageminpar-1); agec--){         /* for (agec=fage; agec>=(ageminpar-1); agec--){  */
         for (agec=fage; agec>=(bage); agec--){ 
         nhstepm=(int) rint((agelim-agec)*YEARM/stepm);           nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
         nhstepm = nhstepm/hstepm;           nhstepm = nhstepm/hstepm; 
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         oldm=oldms;savm=savms;          oldm=oldms;savm=savms;
         hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);          /* We compute pii at age agec over nhstepm);*/
                   hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres);
           /* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */
         for (h=0; h<=nhstepm; h++){          for (h=0; h<=nhstepm; h++){
           if (h*hstepm/YEARM*stepm ==yearp) {            if (h*hstepm/YEARM*stepm ==yearp) {
             fprintf(ficresf,"\n");              break;
             for(j=1;j<=cptcoveff;j++)             }
               fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          }
             fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);          fprintf(ficresf,"\n");
           }           for(j=1;j<=cptcoveff;j++) 
           for(j=1; j<=nlstate+ndeath;j++) {            /* fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Tvaraff not correct *\/ */
             ppij=0.;            fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /* TnsdVar[Tvaraff]  correct */
             for(i=1; i<=nlstate;i++) {          fprintf(ficresf,"%.f %.f ",anprojd+yearp,agec+h*hstepm/YEARM*stepm);
               if (mobilav==1)           
                 ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][k];          for(j=1; j<=nlstate+ndeath;j++) {
               else {            ppij=0.;
                 ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];            for(i=1; i<=nlstate;i++) {
               }              if (mobilav>=1)
               if (h*hstepm/YEARM*stepm== yearp) {               ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k];
                 fprintf(ficresf," %.3f", p3mat[i][j][h]);              else { /* even if mobilav==-1 we use mobaverage, probs may not sums to 1 */
               }                  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];
             } /* end i */  
             if (h*hstepm/YEARM*stepm==yearp) {  
               fprintf(ficresf," %.3f", ppij);  
             }              }
           }/* end j */              fprintf(ficresf," %.3f", p3mat[i][j][h]);
         } /* end h */            } /* end i */
             fprintf(ficresf," %.3f", ppij);
           }/* end j */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         } /* end agec */
         /* diffyear=(int) anproj1+yearp-ageminpar-1; */
         /*printf("Prevforecast %d+%d-%d=diffyear=%d\n",(int) anproj1, (int)yearp,(int)ageminpar,(int) anproj1-(int)ageminpar);*/
       } /* end yearp */
     } /* end  k */
           
     fclose(ficresf);
     printf("End of Computing forecasting \n");
     fprintf(ficlog,"End of Computing forecasting\n");
   
   }
   
   /************** Back Forecasting ******************/
    /* void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */
    void prevbackforecast(char fileres[], double ***prevacurrent, double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){
     /* back1, year, month, day of starting backprojection
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anback2 year of end of backprojection (same day and month as back1).
        prevacurrent and prev are prevalences.
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
     double agec; /* generic age */
     double agelim, ppij, ppi, yp,yp1,yp2; /* ,jintmean,mintmean,aintmean;*/
     double *popeffectif,*popcount;
     double ***p3mat;
     /* double ***mobaverage; */
     char fileresfb[FILENAMELENGTH];
    
     agelim=AGEINF;
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     /*          firstpass, lastpass,  stepm,  weightopt, model); */
   
     /*Do we need to compute prevalence again?*/
   
     /* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
     
     strcpy(fileresfb,"FB_");
     strcat(fileresfb,fileresu);
     if((ficresfb=fopen(fileresfb,"w"))==NULL) {
       printf("Problem with back forecast resultfile: %s\n", fileresfb);
       fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb);
     }
     printf("\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb);
     fprintf(ficlog,"\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb);
     
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
     
      
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else{
       hstepm=estepm;   
     }
     if(estepm >= stepm){ /* Yes every two year */
       stepsize=2;
     }
     
     hstepm=hstepm/stepm;
     /* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
     /*                              fractional in yp1 *\/ */
     /* aintmean=yp; */
     /* yp2=modf((yp1*12),&yp); */
     /* mintmean=yp; */
     /* yp1=modf((yp2*30.5),&yp); */
     /* jintmean=yp; */
     /* if(jintmean==0) jintmean=1; */
     /* if(mintmean==0) jintmean=1; */
     
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2);
     printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2);
     
     fprintf(ficresfb,"#****** Routine prevbackforecast **\n");
     
     for(nres=1; nres <= nresult; nres++) /* For each resultline */
     for(k=1; k<=i1;k++){
       if(i1 != 1 && TKresult[nres]!= k)
         continue;
       if(invalidvarcomb[k]){
         printf("\nCombination (%d) projection ignored because no cases \n",k); 
         continue;
       }
       fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
       }
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
         fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
       }
       fprintf(ficresfb," yearbproj age");
       for(j=1; j<=nlstate+ndeath;j++){
         for(i=1; i<=nlstate;i++)
           fprintf(ficresfb," b%d%d",i,j);
         fprintf(ficresfb," b.%d",j);
       }
       for (yearp=0; yearp>=(anbackf-anbackd);yearp -=stepsize) {
         /* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  */
         fprintf(ficresfb,"\n");
         fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jbackd,mbackd,anbackd+yearp);
         /* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */
         /* for (agec=bage; agec<=agemax-1; agec++){  /\* testing *\/ */
         for (agec=bage; agec<=fage; agec++){  /* testing */
           /* We compute bij at age agec over nhstepm, nhstepm decreases when agec increases because of agemax;*/
           nhstepm=(int) (agec-agelim) *YEARM/stepm;/*     nhstepm=(int) rint((agec-agelim)*YEARM/stepm);*/
           nhstepm = nhstepm/hstepm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           /* computes hbxij at age agec over 1 to nhstepm */
           /* printf("####prevbackforecast debug  agec=%.2f nhstepm=%d\n",agec, nhstepm);fflush(stdout); */
           hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm, k, nres);
           /* hpxij(p3mat,nhstepm,agec,hstepm,p,             nlstate,stepm,oldm,savm, k,nres); */
           /* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */
           /* printf(" agec=%.2f\n",agec);fflush(stdout); */
           for (h=0; h<=nhstepm; h++){
             if (h*hstepm/YEARM*stepm ==-yearp) {
               break;
             }
           }
           fprintf(ficresfb,"\n");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
           fprintf(ficresfb,"%.f %.f ",anbackd+yearp,agec-h*hstepm/YEARM*stepm);
           for(i=1; i<=nlstate+ndeath;i++) {
             ppij=0.;ppi=0.;
             for(j=1; j<=nlstate;j++) {
               /* if (mobilav==1) */
               ppij=ppij+p3mat[i][j][h]*prevacurrent[(int)agec][j][k];
               ppi=ppi+prevacurrent[(int)agec][j][k];
               /* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][j][k]; */
               /* ppi=ppi+mobaverage[(int)agec][j][k]; */
                 /* else { */
                 /*        ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; */
                 /* } */
               fprintf(ficresfb," %.3f", p3mat[i][j][h]);
             } /* end j */
             if(ppi <0.99){
               printf("Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi);
               fprintf(ficlog,"Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi);
             }
             fprintf(ficresfb," %.3f", ppij);
           }/* end j */
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       } /* end agec */        } /* end agec */
     } /* end yearp */      } /* end yearp */
   } /* end  k */    } /* end k */
           
   fclose(ficresf);  
   printf("End of Computing forecasting \n");  
   fprintf(ficlog,"End of Computing forecasting\n");  
   
 }  
   
 /* /\************** Back Forecasting ******************\/ */  
 /* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */  
 /*   /\* back1, year, month, day of starting backection  */  
 /*      agemin, agemax range of age */  
 /*      dateprev1 dateprev2 range of dates during which prevalence is computed */  
 /*      anback2 year of en of backection (same day and month as back1). */  
 /*   *\/ */  
 /*   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */  
 /*   double agec; /\* generic age *\/ */  
 /*   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */  
 /*   double *popeffectif,*popcount; */  
 /*   double ***p3mat; */  
 /*   /\* double ***mobaverage; *\/ */  
 /*   char fileresfb[FILENAMELENGTH]; */  
           
 /*   agelim=AGESUP; */  
 /*   /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */  
 /*      in each health status at the date of interview (if between dateprev1 and dateprev2). */  
 /*      We still use firstpass and lastpass as another selection. */  
 /*   *\/ */  
 /*   /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */  
 /*   /\*              firstpass, lastpass,  stepm,  weightopt, model); *\/ */  
 /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */  
           
 /*   strcpy(fileresfb,"FB_");  */  
 /*   strcat(fileresfb,fileresu); */  
 /*   if((ficresfb=fopen(fileresfb,"w"))==NULL) { */  
 /*     printf("Problem with back forecast resultfile: %s\n", fileresfb); */  
 /*     fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */  
 /*   } */  
 /*   printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */  
 /*   fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */  
           
 /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */  
           
 /*   /\* if (mobilav!=0) { *\/ */  
 /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */  
 /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */  
 /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */  
 /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */  
 /*   /\*   } *\/ */  
 /*   /\* } *\/ */  
           
 /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */  
 /*   if (stepm<=12) stepsize=1; */  
 /*   if(estepm < stepm){ */  
 /*     printf ("Problem %d lower than %d\n",estepm, stepm); */  
 /*   } */  
 /*   else  hstepm=estepm;    */  
           
 /*   hstepm=hstepm/stepm;  */  
 /*   yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */  
 /*                                fractional in yp1 *\/ */  
 /*   anprojmean=yp; */  
 /*   yp2=modf((yp1*12),&yp); */  
 /*   mprojmean=yp; */  
 /*   yp1=modf((yp2*30.5),&yp); */  
 /*   jprojmean=yp; */  
 /*   if(jprojmean==0) jprojmean=1; */  
 /*   if(mprojmean==0) jprojmean=1; */  
           
 /*   i1=cptcoveff; */  
 /*   if (cptcovn < 1){i1=1;} */  
       
 /*   fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);  */    /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
       
 /*   fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */    fclose(ficresfb);
             printf("End of Computing Back forecasting \n");
 /*      /\*           if (h==(int)(YEARM*yearp)){ *\/ */    fprintf(ficlog,"End of Computing Back forecasting\n");
 /*   for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */  
 /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */  
 /*       k=k+1; */  
 /*       fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */  
 /*       for(j=1;j<=cptcoveff;j++) { */  
 /*                              fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */  
 /*       } */  
 /*       fprintf(ficresfb," yearbproj age"); */  
 /*       for(j=1; j<=nlstate+ndeath;j++){  */  
 /*                              for(i=1; i<=nlstate;i++)               */  
 /*           fprintf(ficresfb," p%d%d",i,j); */  
 /*                              fprintf(ficresfb," p.%d",j); */  
 /*       } */  
 /*       for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) {  */  
 /*                              /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  *\/ */  
 /*                              fprintf(ficresfb,"\n"); */  
 /*                              fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp);    */  
 /*                              for (agec=fage; agec>=(ageminpar-1); agec--){  */  
 /*                                      nhstepm=(int) rint((agelim-agec)*YEARM/stepm);  */  
 /*                                      nhstepm = nhstepm/hstepm;  */  
 /*                                      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */  
 /*                                      oldm=oldms;savm=savms; */  
 /*                                      hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k);       */  
 /*                                      for (h=0; h<=nhstepm; h++){ */  
 /*                                              if (h*hstepm/YEARM*stepm ==yearp) { */  
 /*               fprintf(ficresfb,"\n"); */  
 /*               for(j=1;j<=cptcoveff;j++)  */  
 /*                 fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */  
 /*                                                      fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */  
 /*                                              }  */  
 /*                                              for(j=1; j<=nlstate+ndeath;j++) { */  
 /*                                                      ppij=0.; */  
 /*                                                      for(i=1; i<=nlstate;i++) { */  
 /*                                                              if (mobilav==1)  */  
 /*                                                                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */  
 /*                                                              else { */  
 /*                                                                      ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */  
 /*                                                              } */  
 /*                                                              if (h*hstepm/YEARM*stepm== yearp) { */  
 /*                                                                      fprintf(ficresfb," %.3f", p3mat[i][j][h]); */  
 /*                                                              } */  
 /*                                                      } /\* end i *\/ */  
 /*                                                      if (h*hstepm/YEARM*stepm==yearp) { */  
 /*                                                              fprintf(ficresfb," %.3f", ppij); */  
 /*                                                      } */  
 /*                                              }/\* end j *\/ */  
 /*                                      } /\* end h *\/ */  
 /*                                      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */  
 /*                              } /\* end agec *\/ */  
 /*       } /\* end yearp *\/ */  
 /*     } /\* end cptcod *\/ */  
 /*   } /\* end  cptcov *\/ */  
           
 /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */  
           
 /*   fclose(ficresfb); */  
 /*   printf("End of Computing Back forecasting \n"); */  
 /*   fprintf(ficlog,"End of Computing Back forecasting\n"); */  
                   
 /* } */  }
   
   /* Variance of prevalence limit: varprlim */
    void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){
       /*------- Variance of forward period (stable) prevalence------*/   
    
      char fileresvpl[FILENAMELENGTH];  
      FILE *ficresvpl;
      double **oldm, **savm;
      double **varpl; /* Variances of prevalence limits by age */   
      int i1, k, nres, j ;
      
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of forward period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
       
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
       
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
          k=TKresult[nres];
          if(TKresult[nres]==0) k=1; /* To be checked for noresult */
        /* for(k=1; k<=i1;k++){ /\* We find the combination equivalent to result line values of dummies *\/ */
         if(i1 != 1 && TKresult[nres]!= k)
           continue;
         fprintf(ficresvpl,"\n#****** ");
         printf("\n#****** ");
         fprintf(ficlog,"\n#****** ");
         for(j=1;j<=cptcovs;j++) {
           fprintf(ficresvpl,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
           fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
           printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
           /* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
           /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
         }
         /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
         /*        printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
         /*        fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
         /*        fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
         /* }       */
         fprintf(ficresvpl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileresvpl, ficresvpl, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyearp, k, strstart, nres);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       
       fclose(ficresvpl);
       printf("done variance-covariance of forward period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of forward period prevalence\n");fflush(ficlog);
   
    }
   /* Variance of back prevalence: varbprlim */
    void varbprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **bprlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){
         /*------- Variance of back (stable) prevalence------*/
   
      char fileresvbl[FILENAMELENGTH];  
      FILE  *ficresvbl;
   
      double **oldm, **savm;
      double **varbpl; /* Variances of back prevalence limits by age */   
      int i1, k, nres, j ;
   
      strcpy(fileresvbl,"VBL_");
      strcat(fileresvbl,fileresu);
      if((ficresvbl=fopen(fileresvbl,"w"))==NULL) {
        printf("Problem with variance of back (stable) prevalence  resultfile: %s\n", fileresvbl);
        exit(0);
      }
      printf("Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(stdout);
      fprintf(ficlog, "Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(ficlog);
      
      
      i1=pow(2,cptcoveff);
      if (cptcovn < 1){i1=1;}
      
      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
        k=TKresult[nres];
        if(TKresult[nres]==0) k=1; /* To be checked for noresult */
       /* for(k=1; k<=i1;k++){ */
       /*    if(i1 != 1 && TKresult[nres]!= k) */
       /*   continue; */
          fprintf(ficresvbl,"\n#****** ");
          printf("\n#****** ");
          fprintf(ficlog,"\n#****** ");
          for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */
            printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
            fprintf(ficresvbl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
            fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
          /* for(j=1;j<=cptcoveff;j++) { */
          /*        fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
          /*        fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
          /*        printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
          /* } */
          /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
          /*        printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
          /*        fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
          /*        fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
          }
          fprintf(ficresvbl,"******\n");
          printf("******\n");
          fprintf(ficlog,"******\n");
          
          varbpl=matrix(1,nlstate,(int) bage, (int) fage);
          oldm=oldms;savm=savms;
          
          varbrevlim(fileresvbl, ficresvbl, varbpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, bprlim, ftolpl, mobilavproj, ncvyearp, k, strstart, nres);
          free_matrix(varbpl,1,nlstate,(int) bage, (int)fage);
          /*}*/
        }
      
      fclose(ficresvbl);
      printf("done variance-covariance of back prevalence\n");fflush(stdout);
      fprintf(ficlog,"done variance-covariance of back prevalence\n");fflush(ficlog);
   
    } /* End of varbprlim */
   
 /************** Forecasting *****not tested NB*************/  /************** Forecasting *****not tested NB*************/
 /* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */  /* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */
Line 7361  void prwizard(int ncovmodel, int nlstate Line 9975  void prwizard(int ncovmodel, int nlstate
 /******************* Gompertz Likelihood ******************************/  /******************* Gompertz Likelihood ******************************/
 double gompertz(double x[])  double gompertz(double x[])
 {   { 
   double A,B,L=0.0,sump=0.,num=0.;    double A=0.0,B=0.,L=0.0,sump=0.,num=0.;
   int i,n=0; /* n is the size of the sample */    int i,n=0; /* n is the size of the sample */
   
   for (i=1;i<=imx ; i++) {    for (i=1;i<=imx ; i++) {
Line 7369  double gompertz(double x[]) Line 9983  double gompertz(double x[])
     /*    sump=sump+1;*/      /*    sump=sump+1;*/
     num=num+1;      num=num+1;
   }    }
      L=0.0;
      /* agegomp=AGEGOMP; */
   /* for (i=0; i<=imx; i++)     /* for (i=0; i<=imx; i++) 
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
   for (i=1;i<=imx ; i++)    for (i=1;i<=imx ; i++) {
     {      /* mu(a)=mu(agecomp)*exp(teta*(age-agegomp))
       if (cens[i] == 1 && wav[i]>1)         mu(a)=x[1]*exp(x[2]*(age-agegomp)); x[1] and x[2] are per year.
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));       * L= Product mu(agedeces)exp(-\int_ageexam^agedc mu(u) du ) for a death between agedc (in month) 
              *   and agedc +1 month, cens[i]=0: log(x[1]/YEARM)
       if (cens[i] == 0 && wav[i]>1)       * +
        * exp(-\int_ageexam^agecens mu(u) du ) when censored, cens[i]=1
        */
        if (wav[i] > 1 || agedc[i] < AGESUP) {
          if (cens[i] == 1){
            A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
          } else if (cens[i] == 0){
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);              +log(x[1]/YEARM) +x[2]*(agedc[i]-agegomp)+log(YEARM);
               } else
            printf("Gompertz cens[%d] neither 1 nor 0\n",i);
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
       if (wav[i] > 1 ) { /* ??? */         L=L+A*weight[i];
         L=L+A*weight[i];  
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
       }       }
     }    }
   
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     
   return -2*L*num/sump;    return -2*L*num/sump;
 }  }
Line 7399  double gompertz(double x[]) Line 10019  double gompertz(double x[])
 /******************* Gompertz_f Likelihood ******************************/  /******************* Gompertz_f Likelihood ******************************/
 double gompertz_f(const gsl_vector *v, void *params)  double gompertz_f(const gsl_vector *v, void *params)
 {   { 
   double A,B,LL=0.0,sump=0.,num=0.;    double A=0.,B=0.,LL=0.0,sump=0.,num=0.;
   double *x= (double *) v->data;    double *x= (double *) v->data;
   int i,n=0; /* n is the size of the sample */    int i,n=0; /* n is the size of the sample */
   
Line 7489  int readdata(char datafile[], int firsto Line 10109  int readdata(char datafile[], int firsto
   /*-------- data file ----------*/    /*-------- data file ----------*/
   FILE *fic;    FILE *fic;
   char dummy[]="                         ";    char dummy[]="                         ";
   int i=0, j=0, n=0, iv=0;    int i=0, j=0, n=0, iv=0, v;
   int lstra;    int lstra;
   int linei, month, year,iout;    int linei, month, year,iout;
     int noffset=0; /* This is the offset if BOM data file */
   char line[MAXLINE], linetmp[MAXLINE];    char line[MAXLINE], linetmp[MAXLINE];
   char stra[MAXLINE], strb[MAXLINE];    char stra[MAXLINE], strb[MAXLINE];
   char *stratrunc;    char *stratrunc;
   
     DummyV=ivector(1,NCOVMAX); /* 1 to 3 */
     FixedV=ivector(1,NCOVMAX); /* 1 to 3 */
     for(v=1;v<NCOVMAX;v++){
       DummyV[v]=0;
       FixedV[v]=0;
     }
   
     for(v=1; v <=ncovcol;v++){
       DummyV[v]=0;
       FixedV[v]=0;
     }
     for(v=ncovcol+1; v <=ncovcol+nqv;v++){
       DummyV[v]=1;
       FixedV[v]=0;
     }
     for(v=ncovcol+nqv+1; v <=ncovcol+nqv+ntv;v++){
       DummyV[v]=0;
       FixedV[v]=1;
     }
     for(v=ncovcol+nqv+ntv+1; v <=ncovcol+nqv+ntv+nqtv;v++){
       DummyV[v]=1;
       FixedV[v]=1;
     }
     for(v=1; v <=ncovcol+nqv+ntv+nqtv;v++){
       printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
       fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
     }
   
   if((fic=fopen(datafile,"r"))==NULL)    {    if((fic=fopen(datafile,"r"))==NULL)    {
     printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);      printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
     fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;      fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
   }    }
   
   i=1;      /* Is it a BOM UTF-8 Windows file? */
     /* First data line */
   linei=0;    linei=0;
     while(fgets(line, MAXLINE, fic)) {
       noffset=0;
       if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */
       {
         noffset=noffset+3;
         printf("# Data file '%s'  is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);fflush(stdout);
         fprintf(ficlog,"# Data file '%s'  is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);
         fflush(ficlog); return 1;
       }
       /*    else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/
       else if( line[0] == (char)0xFF && line[1] == (char)0xFE)
       {
         noffset=noffset+2;
         printf("# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout);
         fprintf(ficlog,"# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);
         fflush(ficlog); return 1;
       }
       else if( line[0] == 0 && line[1] == 0)
       {
         if( line[2] == (char)0xFE && line[3] == (char)0xFF){
           noffset=noffset+4;
           printf("# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout);
           fprintf(ficlog,"# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);
           fflush(ficlog); return 1;
         }
       } else{
         ;/*printf(" Not a BOM file\n");*/
       }
           /* If line starts with a # it is a comment */
       if (line[noffset] == '#') {
         linei=linei+1;
         break;
       }else{
         break;
       }
     }
     fclose(fic);
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
     }
     /* Not a Bom file */
     
     i=1;
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
     linei=linei+1;      linei=linei+1;
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
Line 7530  int readdata(char datafile[], int firsto Line 10222  int readdata(char datafile[], int firsto
         if(strb[0]=='.') { /* Missing value */          if(strb[0]=='.') { /* Missing value */
           lval=-1;            lval=-1;
           cotqvar[j][iv][i]=-1; /* 0.0/0.0 */            cotqvar[j][iv][i]=-1; /* 0.0/0.0 */
             cotvar[j][ntv+iv][i]=-1; /* For performance reasons */
           if(isalpha(strb[1])) { /* .m or .d Really Missing value */            if(isalpha(strb[1])) { /* .m or .d Really Missing value */
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);              printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);              fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);
Line 7549  int readdata(char datafile[], int firsto Line 10242  int readdata(char datafile[], int firsto
             return 1;              return 1;
           }            }
           cotqvar[j][iv][i]=dval;             cotqvar[j][iv][i]=dval; 
             cotvar[j][ntv+iv][i]=dval; 
         }          }
         strcpy(line,stra);          strcpy(line,stra);
       }/* end loop ntqv */        }/* end loop ntqv */
Line 7569  int readdata(char datafile[], int firsto Line 10263  int readdata(char datafile[], int firsto
         }          }
         if(lval <-1 || lval >1){          if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \            printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \   Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
  For example, for multinomial values like 1, 2 and 3,\n                 \   For example, for multinomial values like 1, 2 and 3,\n                 \
  build V1=0 V2=0 for the reference value (1),\n                         \   build V1=0 V2=0 for the reference value (1),\n                         \
         V1=1 V2=0 for (2) \n                                            \          V1=1 V2=0 for (2) \n                                            \
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
  output of IMaCh is often meaningless.\n                                \   output of IMaCh is often meaningless.\n                                \
  Exiting.\n",lval,linei, i,line,j);   Exiting.\n",lval,linei, i,line,iv,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \            fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \   Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
  For example, for multinomial values like 1, 2 and 3,\n                 \   For example, for multinomial values like 1, 2 and 3,\n                 \
  build V1=0 V2=0 for the reference value (1),\n                         \   build V1=0 V2=0 for the reference value (1),\n                         \
         V1=1 V2=0 for (2) \n                                            \          V1=1 V2=0 for (2) \n                                            \
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
  output of IMaCh is often meaningless.\n                                \   output of IMaCh is often meaningless.\n                                \
  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);   Exiting.\n",lval,linei, i,line,iv,j);fflush(ficlog);
           return 1;            return 1;
         }          }
         cotvar[j][iv][i]=(double)(lval);          cotvar[j][iv][i]=(double)(lval);
Line 7623  int readdata(char datafile[], int firsto Line 10317  int readdata(char datafile[], int firsto
         return 1;          return 1;
       }        }
       anint[j][i]= (double) year;         anint[j][i]= (double) year; 
       mint[j][i]= (double)month;         mint[j][i]= (double)month;
         /* if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){ */
         /*        printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */
         /*        fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */
         /* } */
       strcpy(line,stra);        strcpy(line,stra);
     } /* End loop on waves */      } /* End loop on waves */
           
Line 7662  int readdata(char datafile[], int firsto Line 10360  int readdata(char datafile[], int firsto
               
     }      }
     annais[i]=(double)(year);      annais[i]=(double)(year);
     moisnais[i]=(double)(month);       moisnais[i]=(double)(month);
       for (j=1;j<=maxwav;j++){
         if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){
           printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j,(int)moisnais[i],(int)annais[i]);
           fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j, (int)moisnais[i],(int)annais[i]);
         }
       }
   
     strcpy(line,stra);      strcpy(line,stra);
           
     /* Sample weight */      /* Sample weight */
Line 7682  int readdata(char datafile[], int firsto Line 10387  int readdata(char datafile[], int firsto
       cutv(stra, strb, line, ' ');         cutv(stra, strb, line, ' '); 
       if(strb[0]=='.') { /* Missing value */        if(strb[0]=='.') { /* Missing value */
         lval=-1;          lval=-1;
           coqvar[iv][i]=NAN; 
           covar[ncovcol+iv][i]=NAN; /* including qvar in standard covar for performance reasons */ 
       }else{        }else{
         errno=0;          errno=0;
         /* what_kind_of_number(strb); */          /* what_kind_of_number(strb); */
Line 7762  int readdata(char datafile[], int firsto Line 10469  int readdata(char datafile[], int firsto
   return (1);    return (1);
 }  }
   
 void removespace(char *str) {  void removefirstspace(char **stri){/*, char stro[]) {*/
   char *p1 = str, *p2 = str;    char *p1 = *stri, *p2 = *stri;
   do    while (*p2 == ' ')
     while (*p2 == ' ')      p2++; 
       p2++;    /* while ((*p1++ = *p2++) !=0) */
   while (*p1++ == *p2++);    /*   ; */
     /* do */
     /*   while (*p2 == ' ') */
     /*     p2++; */
     /* while (*p1++ == *p2++); */
     *stri=p2; 
   }
   
   int decoderesult( char resultline[], int nres)
   /**< This routine decode one result line and returns the combination # of dummy covariates only **/
   {
     int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0;
     char resultsav[MAXLINE];
     /* int resultmodel[MAXLINE]; */
     /* int modelresult[MAXLINE]; */
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     removefirstspace(&resultline);
     printf("decoderesult:%s\n",resultline);
   
     strcpy(resultsav,resultline);
     printf("Decoderesult resultsav=\"%s\" resultline=\"%s\"\n", resultsav, resultline);
     if (strlen(resultsav) >1){
       j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' in this resultline */
     }
     if(j == 0){ /* Resultline but no = */
       TKresult[nres]=0; /* Combination for the nresult and the model */
       return (0);
     }
     if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */
       printf("ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, %s.\n",j, cptcovs, model);
       fprintf(ficlog,"ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, %s.\n",j, cptcovs, model);
       /* return 1;*/
     }
     for(k=1; k<=j;k++){ /* Loop on any covariate of the RESULT LINE */
       if(nbocc(resultsav,'=') >1){
         cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' (stra is the rest of the resultline to be analyzed in the next loop *//*     resultsav= "V4=1 V5=25.1 V3=0" stra= "V5=25.1 V3=0" strb= "V4=1" */
         /* If resultsav= "V4= 1 V5=25.1 V3=0" with a blank then strb="V4=" and stra="1 V5=25.1 V3=0" */
         cutl(strc,strd,strb,'=');  /* strb:"V4=1" strc="1" strd="V4" */
         /* If a blank, then strc="V4=" and strd='\0' */
         if(strc[0]=='\0'){
         printf("Error in resultline, probably a blank after the \"%s\", \"result:%s\", stra=\"%s\" resultsav=\"%s\"\n",strb,resultline, stra, resultsav);
           fprintf(ficlog,"Error in resultline, probably a blank after the \"V%s=\", resultline=%s\n",strb,resultline);
           return 1;
         }
       }else
         cutl(strc,strd,resultsav,'=');
       Tvalsel[k]=atof(strc); /* 1 */ /* Tvalsel of k is the float value of the kth covariate appearing in this result line */
       
       cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */;
       Tvarsel[k]=atoi(strc);  /* 4 */ /* Tvarsel is the id of the kth covariate in the result line Tvarsel[1] in "V4=1.." is 4.*/
       /* Typevarsel[k]=1;  /\* 1 for age product *\/ */
       /* cptcovsel++;     */
       if (nbocc(stra,'=') >0)
         strcpy(resultsav,stra); /* and analyzes it */
     }
     /* Checking for missing or useless values in comparison of current model needs */
     /* Feeds resultmodel[nres][k1]=k2 for k1th product covariate with age in the model equation fed by the index k2 of the resutline*/
     for(k1=1; k1<= cptcovt ;k1++){ /* Loop on MODEL LINE V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       if(Typevar[k1]==0){ /* Single covariate in model */
         /* 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
         match=0;
         for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
           if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
             modelresult[nres][k2]=k1;/* modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
             match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
             break;
           }
         }
         if(match == 0){
           printf("Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s. Tvar[k1=%d]=%d is different from Tvarsel[k2=%d]=%d.\n",Tvar[k1], resultline, model,k1, Tvar[k1], k2, Tvarsel[k2]);
           fprintf(ficlog,"Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s\n",Tvar[k1], resultline, model);
           return 1;
         }
       }else if(Typevar[k1]==1){ /* Product with age We want to get the position k2 in the resultline of the product k1 in the model line*/
         /* We feed resultmodel[k1]=k2; */
         match=0;
         for(k2=1; k2 <=j;k2++){/* Loop on resultline.  jth occurence of = signs in the result line. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
           if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
             modelresult[nres][k2]=k1;/* we found a Vn=1 corrresponding to Vn*age in the model modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
             resultmodel[nres][k1]=k2; /* Added here */
             printf("Decoderesult first modelresult[k2=%d]=%d (k1) V%d*AGE\n",k2,k1,Tvar[k1]);
             match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
             break;
           }
         }
         if(match == 0){
           printf("Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]);
           fprintf(ficlog,"Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]);
         return 1;
         }
       }else if(Typevar[k1]==2){ /* Product No age We want to get the position in the resultline of the product in the model line*/
         /* resultmodel[nres][of such a Vn * Vm product k1] is not unique, so can't exist, we feed Tvard[k1][1] and [2] */ 
         match=0;
         printf("Decoderesult very first Product Tvardk[k1=%d][1]=%d Tvardk[k1=%d][2]=%d V%d * V%d\n",k1,Tvardk[k1][1],k1,Tvardk[k1][2],Tvardk[k1][1],Tvardk[k1][2]);
         for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
           if(Tvardk[k1][1]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
             /* modelresult[k2]=k1; */
             printf("Decoderesult first Product modelresult[k2=%d]=%d (k1) V%d * \n",k2,k1,Tvarsel[k2]);
             match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
           }
         }
         if(match == 0){
           printf("Error in result line (Product without age first variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model);
           fprintf(ficlog,"Error in result line (Product without age first variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model);
           return 1;
         }
         match=0;
         for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
           if(Tvardk[k1][2]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
             /* modelresult[k2]=k1;*/
             printf("Decoderesult second Product modelresult[k2=%d]=%d (k1) * V%d \n ",k2,k1,Tvarsel[k2]);
             match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
             break;
           }
         }
         if(match == 0){
           printf("Error in result line (Product without age second variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model);
           fprintf(ficlog,"Error in result line (Product without age second variable): V%d is missing in result : %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model);
           return 1;
         }
       }/* End of testing */
     }/* End loop cptcovt */
     /* Checking for missing or useless values in comparison of current model needs */
     /* Feeds resultmodel[nres][k1]=k2 for single covariate (k1) in the model equation */
     for(k2=1; k2 <=j;k2++){ /* j or cptcovs is the number of single covariates used either in the model line as well as in the result line (dummy or quantitative)
                              * Loop on resultline variables: result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
       match=0;
       for(k1=1; k1<= cptcovt ;k1++){ /* loop on model: model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         if(Typevar[k1]==0){ /* Single only */
           if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4   */
             resultmodel[nres][k1]=k2;  /* k1th position in the model equation corresponds to k2th position in the result line. resultmodel[2]=1 resultmodel[1]=2  resultmodel[3]=3  resultmodel[6]=4 resultmodel[9]=5 */
             modelresult[nres][k2]=k1; /* k1th position in the model equation corresponds to k2th position in the result line. modelresult[1]=2 modelresult[2]=1  modelresult[3]=3  remodelresult[4]=6 modelresult[5]=9 */
             ++match;
           }
         }
       }
       if(match == 0){
         printf("Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model);
         fprintf(ficlog,"Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model);
         return 1;
       }else if(match > 1){
         printf("Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model);
         fprintf(ficlog,"Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model);
         return 1;
       }
     }
     /* cptcovres=j /\* Number of variables in the resultline is equal to cptcovs and thus useless *\/     */
     /* We need to deduce which combination number is chosen and save quantitative values */
     /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
     /* nres=1st result line: V4=1 V5=25.1 V3=0  V2=8 V1=1 */
     /* should correspond to the combination 6 of dummy: V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 1*1 + 0*2 + 1*4 = 5 + (1offset) = 6*/
     /* nres=2nd result line: V4=1 V5=24.1 V3=1  V2=8 V1=0 */
     /* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/
     /*    1 0 0 0 */
     /*    2 1 0 0 */
     /*    3 0 1 0 */ 
     /*    4 1 1 0 */ /* V4=1, V3=1, V1=0 (nres=2)*/
     /*    5 0 0 1 */
     /*    6 1 0 1 */ /* V4=1, V3=0, V1=1 (nres=1)*/
     /*    7 0 1 1 */
     /*    8 1 1 1 */
     /* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */
     /* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */
     /* V5*age V5 known which value for nres?  */
     /* Tqinvresult[2]=8 Tqinvresult[1]=25.1  */
     for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* cptcovt number of covariates (excluding 1 and age or age*age) in the MODEL equation.
                                                      * loop on position k1 in the MODEL LINE */
       /* k counting number of combination of single dummies in the equation model */
       /* k4 counting single dummies in the equation model */
       /* k4q counting single quantitatives in the equation model */
       if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Dummy and Single, k1 is sorting according to MODEL, but k3 to resultline */
          /* k4+1= (not always if quant in model) position in the resultline V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) */
         /* modelresult[k3]=k1: k3th position in the result line corresponds to the k1 position in the model line (doesn't work with products)*/
         /* Value in the (current nres) resultline of the variable at the k1th position in the model equation resultmodel[nres][k1]= k3 */
         /* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline                        */
         /*      k3 is the position in the nres result line of the k1th variable of the model equation                                  */
         /* Tvarsel[k3]: Name of the variable at the k3th position in the result line.                                                  */
         /* Tvalsel[k3]: Value of the variable at the k3th position in the result line.                                                 */
         /* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline                   */
         /* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline                     */
         /* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line                                        */
         /* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line                                                      */
         k3= resultmodel[nres][k1]; /* From position k1 in model get position k3 in result line */
         /* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/
         k2=(int)Tvarsel[k3]; /* from position k3 in resultline get name k2: nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/
         k+=Tvalsel[k3]*pow(2,k4);  /* nres=1 k1=2 Tvalsel[1]=1 (V4=1); k1=3 k3=2 Tvalsel[2]=0 (V3=0) */
         TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][Name]=Value; stores the value into the name of the variable. */
         /* Tinvresult[nres][4]=1 */
         /* Tresult[nres][k4+1]=Tvalsel[k3];/\* Tresult[nres=2][1]=1(V4=1)  Tresult[nres=2][2]=0(V3=0) *\/ */
         Tresult[nres][k3]=Tvalsel[k3];/* Tresult[nres=2][1]=1(V4=1)  Tresult[nres=2][2]=0(V3=0) */
         /* Tvresult[nres][k4+1]=(int)Tvarsel[k3];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */
         Tvresult[nres][k3]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
         Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */
         precov[nres][k1]=Tvalsel[k3]; /* Value from resultline of the variable at the k1 position in the model */
         printf("Decoderesult Dummy k=%d, k1=%d precov[nres=%d][k1=%d]=%.f V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k1, nres, k1,precov[nres][k1], k2, k3, (int)Tvalsel[k3], k4);
         k4++;;
       }else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Quantitative and single */
         /* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline                                 */
         /* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline                                 */
         /* Tqinvresult[nres][Name of a quantitative variable]= value of the variable in the result line                                                      */
         k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 5 =k3q */
         k2q=(int)Tvarsel[k3q]; /*  Name of variable at k3q th position in the resultline */
         /* Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */
         /* Tqresult[nres][k4q+1]=Tvalsel[k3q]; /\* Tqresult[nres][1]=25.1 *\/ */
         /* Tvresult[nres][k4q+1]=(int)Tvarsel[k3q];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */
         /* Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /\* Tvqresult[nres][1]=5 *\/ */
         Tqresult[nres][k3q]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */
         Tvresult[nres][k3q]=(int)Tvarsel[k3q];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
         Tvqresult[nres][k3q]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */
         Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
         TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
         precov[nres][k1]=Tvalsel[k3q];
         printf("Decoderesult Quantitative nres=%d,precov[nres=%d][k1=%d]=%.f V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, nres, k1,precov[nres][k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);
         k4q++;;
       }else if( Dummy[k1]==2 ){ /* For dummy with age product */
         /* Tvar[k1]; */ /* Age variable */
         /* Wrong we want the value of variable name Tvar[k1] */
         
         k3= resultmodel[nres][k1]; /* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/
         k2=(int)Tvarsel[k3]; /* nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/
         TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][4]=1 */
         precov[nres][k1]=Tvalsel[k3];
         printf("Decoderesult Dummy with age k=%d, k1=%d precov[nres=%d][k1=%d]=%.f Tvar[%d]=V%d k2=Tvarsel[%d]=%d Tvalsel[%d]=%d\n",k, k1, nres, k1,precov[nres][k1], k1, Tvar[k1], k3,(int)Tvarsel[k3], k3, (int)Tvalsel[k3]);
       }else if( Dummy[k1]==3 ){ /* For quant with age product */
         k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 25.1=k3q */
         k2q=(int)Tvarsel[k3q]; /*  Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */
         TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* TinvDoQresult[nres][5]=25.1 */
         precov[nres][k1]=Tvalsel[k3q];
         printf("Decoderesult Quantitative with age nres=%d, k1=%d, precov[nres=%d][k1=%d]=%f Tvar[%d]=V%d V(k2q=%d)= Tvarsel[%d]=%d, Tvalsel[%d]=%f\n",nres, k1, nres, k1,precov[nres][k1], k1,  Tvar[k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);
       }else if(Typevar[k1]==2 ){ /* For product quant or dummy (not with age) */
         precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];      
         printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]);
       }else{
         printf("Error Decoderesult probably a product  Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]);
         fprintf(ficlog,"Error Decoderesult probably a product  Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]);
       }
     }
     
     TKresult[nres]=++k; /* Number of combinations of dummies for the nresult and the model =Tvalsel[k3]*pow(2,k4) + 1*/
     return (0);
 }  }
   
 int decodemodel ( char model[], int lastobs)  int decodemodel( char model[], int lastobs)
  /**< This routine decode the model and returns:   /**< This routine decodes the model and returns:
         * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age          * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
         * - nagesqr = 1 if age*age in the model, otherwise 0.          * - nagesqr = 1 if age*age in the model, otherwise 0.
         * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age          * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
Line 7780  int decodemodel ( char model[], int last Line 10727  int decodemodel ( char model[], int last
         * - cptcovs number of simple covariates          * - cptcovs number of simple covariates
         * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10          * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
         *     which is a new column after the 9 (ncovcol) variables.           *     which is a new column after the 9 (ncovcol) variables. 
         * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual          * - if k is a product Vn*Vm, covar[k][i] is filled with correct values for each individual
         * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage          * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
         *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.          *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
         * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .          * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
         */          */
   /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 */
 {  {
   int i, j, k, ks;    int i, j, k, ks, v;
   int  j1, k1, k2, k3, k4;    int  j1, k1, k2, k3, k4;
   char modelsav[80];    char modelsav[80];
   char stra[80], strb[80], strc[80], strd[80],stre[80];    char stra[80], strb[80], strc[80], strd[80],stre[80];
Line 7801  int decodemodel ( char model[], int last Line 10749  int decodemodel ( char model[], int last
       return 1;        return 1;
     }      }
     if (strstr(model,"v") !=0){      if (strstr(model,"v") !=0){
       printf("Error. 'v' must be in upper case 'V' model=%s ",model);        printf("Error. 'v' must be in upper case 'V' model=1+age+%s ",model);
       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);        fprintf(ficlog,"Error. 'v' must be in upper case model=1+age+%s ",model);fflush(ficlog);
       return 1;        return 1;
     }      }
     strcpy(modelsav,model);       strcpy(modelsav,model); 
     if ((strpt=strstr(model,"age*age")) !=0){      if ((strpt=strstr(model,"age*age")) !=0){
       printf(" strpt=%s, model=%s\n",strpt, model);        printf(" strpt=%s, model=1+age+%s\n",strpt, model);
       if(strpt != model){        if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \          printf("Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \
  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \   'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
  corresponding column of parameters.\n",model);   corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \          fprintf(ficlog,"Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \
  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \   'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
  corresponding column of parameters.\n",model); fflush(ficlog);   corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;          return 1;
Line 7862  int decodemodel ( char model[], int last Line 10810  int decodemodel ( char model[], int last
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2         *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12         *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8         *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}         * p Tvar[1]@12={2,   1,     3,      3,  11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}         * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}         *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8            * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];         *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?         *How to reorganize? Tvars(orted)
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age         * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}         * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}         *       {2,   1,     4,      8,    5,      6,     3,       7}
Line 7892  int decodemodel ( char model[], int last Line 10840  int decodemodel ( char model[], int last
         Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;          Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;
       }        }
       cptcovage=0;        cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */        for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model line */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+'           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' cutl from left to right
                                          modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */                                            modelsav==V2+V1+V5*age+V4+V3*age strb=V3*age stra=V2+V1V5*age+V4 */    /* <model> "V5+V4+V3+V4*V3+V5*age+V1*age+V1" strb="V5" stra="V4+V3+V4*V3+V5*age+V1*age+V1" */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */          if (nbocc(modelsav,'+')==0)
             strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/          /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */          if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V5*age+ V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */            cutl(strc,strd,strb,'*'); /**< k=1 strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */            if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */              /* covar is not filled and then is empty */
             cptcovprod--;              cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */              cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */              Tvar[k]=atoi(stre);  /* V2+V1+V5*age+V4+V3*age Tvar[5]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
             Typevar[k]=1;  /* 1 for age product */              Typevar[k]=1;  /* 1 for age product */
             cptcovage++; /* Sums the number of covariates which include age as a product */              cptcovage++; /* Counts the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */              Tage[cptcovage]=k;  /*  V2+V1+V4+V3*age Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
             /*printf("stre=%s ", stre);*/              /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */            } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;              cptcovprod--;
Line 7922  int decodemodel ( char model[], int last Line 10871  int decodemodel ( char model[], int last
             cptcovprodnoage++;k1++;              cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/              cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but              Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but
                                    because this model-covariate is a construction we invent a new column                                                  because this model-covariate is a construction we invent a new column
                                    which is after existing variables ncovcol+nqv+ntv+nqtv + k1                                                  which is after existing variables ncovcol+nqv+ntv+nqtv + k1
                                    If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2                                                  If already ncovcol=4 and model= V2 + V1 + V1*V4 + age*V3 + V3*V2
                                    Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */                                                  thus after V4 we invent V5 and V6 because age*V3 will be computed in 4
                                                   Tvar[3=V1*V4]=4+1=5 Tvar[5=V3*V2]=4 + 2= 6, Tvar[4=age*V3]=4 etc */
               /* Please remark that the new variables are model dependent */
               /* If we have 4 variable but the model uses only 3, like in
                * model= V1 + age*V1 + V2 + V3 + age*V2 + age*V3 + V1*V2 + V1*V3
                *  k=     1     2       3   4     5        6        7       8
                * Tvar[k]=1     1       2   3     2        3       (5       6) (and not 4 5 because of V4 missing)
                * Tage[kk]    [1]= 2           [2]=5      [3]=6                  kk=1 to cptcovage=3
                * Tvar[Tage[kk]][1]=2          [2]=2      [3]=3
                */
             Typevar[k]=2;  /* 2 for double fixed dummy covariates */              Typevar[k]=2;  /* 2 for double fixed dummy covariates */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */              cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */              Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */              Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/              Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvardk[k][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/              Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               Tvardk[k][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */              k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
             /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */              /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
             /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */              /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
Line 7944  int decodemodel ( char model[], int last Line 10904  int decodemodel ( char model[], int last
             }              }
           } /* End age is not in the model */            } /* End age is not in the model */
         } /* End if model includes a product */          } /* End if model includes a product */
         else { /* no more sum */          else { /* not a product */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
           /*  scanf("%d",i);*/            /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');            cutl(strd,strc,strb,'V');
Line 7969  int decodemodel ( char model[], int last Line 10929  int decodemodel ( char model[], int last
      scanf("%d ",i);*/       scanf("%d ",i);*/
   
   
 /* Decodemodel knows only the grammar (simple, product, age*) of the model but not what kind  /* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind
    of variable (dummy vs quantitative, fixed vs time varying) is behind */     of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */
 /* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1  = 5 possible variables data: 2 fixed 3, varying  /* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1  = 5 possible variables data: 2 fixed 3, varying
    model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place     model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place
    k =           1    2   3     4       5       6      7      8        9     k =           1    2   3     4       5       6      7      8        9
    Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5     Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5
    Typevar[k]=   0    0   0     2       1       0      2      1        1     Typevar[k]=   0    0   0     2       1       0      2      1        0
    Fixed[k]      1    1   1     1       3       0    0 or 2   2        3     Fixed[k]      1    1   1     1       3       0    0 or 2   2        3
    Dummy[k]      1    0   0     0       3       1      1      2        3     Dummy[k]      1    0   0     0       3       1      1      2        3
           Tmodelind[combination of covar]=k;            Tmodelind[combination of covar]=k;
Line 7984  int decodemodel ( char model[], int last Line 10944  int decodemodel ( char model[], int last
   /* If Tvar[k] >ncovcol it is a product */    /* If Tvar[k] >ncovcol it is a product */
   /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */    /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */
         /* Computing effective variables, ie used by the model, that is from the cptcovt variables */          /* Computing effective variables, ie used by the model, that is from the cptcovt variables */
   printf("Model=%s\n\    printf("Model=1+age+%s\n\
 Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\  Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
 Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\  Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
 Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);  Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
   fprintf(ficlog,"Model=%s\n\    fprintf(ficlog,"Model=1+age+%s\n\
 Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\  Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
 Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\  Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
 Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);  Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
     for(k=-1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;}
   for(k=1, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */    for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */
     if (Tvar[k] <=ncovcol && (Typevar[k]==0 || Typevar[k]==2)){ /* Simple or product fixed dummy covariatee */      if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */
         Fixed[k]= 0;
         Dummy[k]= 0;
         ncoveff++;
         ncovf++;
         nsd++;
         modell[k].maintype= FTYPE;
         TvarsD[nsd]=Tvar[k];
         TvarsDind[nsd]=k;
         TnsdVar[Tvar[k]]=nsd;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       }else if( Tvar[k] <=ncovcol &&  Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */
       Fixed[k]= 0;        Fixed[k]= 0;
       Dummy[k]= 0;        Dummy[k]= 0;
       ncoveff++;        ncoveff++;
     }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){ /* Remind that product Vn*Vm are added in k*/        ncovf++;
         modell[k].maintype= FTYPE;
         TvarF[ncovf]=Tvar[k];
         /* TnsdVar[Tvar[k]]=nsd; */ /* To be done */
         TvarFind[ncovf]=k;
         TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */
       Fixed[k]= 0;        Fixed[k]= 0;
       Dummy[k]= 1;        Dummy[k]= 1;
       nqfveff++;  /* Only simple fixed quantitative variable */        nqfveff++;
     }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){        modell[k].maintype= FTYPE;
         modell[k].subtype= FQ;
         nsq++;
         TvarsQ[nsq]=Tvar[k]; /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary see below */
         TvarsQind[nsq]=k;    /* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */
         ncovf++;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
         TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
       }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */
       Fixed[k]= 1;        Fixed[k]= 1;
       Dummy[k]= 0;        Dummy[k]= 0;
       ntveff++; /* Only simple time varying dummy variable */        ntveff++; /* Only simple time varying dummy variable */
     }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv  && Typevar[k]==0){        modell[k].maintype= VTYPE;
         Fixed[k]= 1;        modell[k].subtype= VD;
         Dummy[k]= 1;        nsd++;
         nqtveff++;/* Only simple time varying quantitative variable */        TvarsD[nsd]=Tvar[k];
         TvarsDind[nsd]=k;
         TnsdVar[Tvar[k]]=nsd; /* To be verified */
         ncovv++; /* Only simple time varying variables */
         TvarV[ncovv]=Tvar[k];
         TvarVind[ncovv]=k; /* TvarVind[2]=2  TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
         TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4  TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
         TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
         printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv);
         printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv);
       }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv  && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/
         Fixed[k]= 1;
         Dummy[k]= 1;
         nqtveff++;
         modell[k].maintype= VTYPE;
         modell[k].subtype= VQ;
         ncovv++; /* Only simple time varying variables */
         nsq++;
         TvarsQ[nsq]=Tvar[k]; /* k=1 Tvar=5 nsq=1 TvarsQ[1]=5 */ /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary here) */
         TvarsQind[nsq]=k; /* For single quantitative covariate gives the model position of each single quantitative covariate *//* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */
         TvarV[ncovv]=Tvar[k];
         TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
         TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
         TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
         TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */
         /* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */
         printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv);
         printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv);
     }else if (Typevar[k] == 1) {  /* product with age */      }else if (Typevar[k] == 1) {  /* product with age */
       if (Tvar[k] <=ncovcol ){ /* Simple or product fixed dummy covariatee */        ncova++;
         Fixed[k]= 2;        TvarA[ncova]=Tvar[k];
         Dummy[k]= 2;        TvarAind[ncova]=k;
         /* ncoveff++; */        if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */
           Fixed[k]= 2;
           Dummy[k]= 2;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APFD;
           /* ncoveff++; */
       }else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/        }else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/
         Fixed[k]= 2;          Fixed[k]= 2;
         Dummy[k]= 3;          Dummy[k]= 3;
         /* nqfveff++;  /\* Only simple fixed quantitative variable *\/ */          modell[k].maintype= ATYPE;
           modell[k].subtype= APFQ;                /*      Product age * fixed quantitative */
           /* nqfveff++;  /\* Only simple fixed quantitative variable *\/ */
       }else if( Tvar[k] <=ncovcol+nqv+ntv ){        }else if( Tvar[k] <=ncovcol+nqv+ntv ){
         Fixed[k]= 3;          Fixed[k]= 3;
         Dummy[k]= 2;          Dummy[k]= 2;
         /* ntveff++; /\* Only simple time varying dummy variable *\/ */          modell[k].maintype= ATYPE;
           modell[k].subtype= APVD;                /*      Product age * varying dummy */
           /* ntveff++; /\* Only simple time varying dummy variable *\/ */
       }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){        }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){
         Fixed[k]= 3;          Fixed[k]= 3;
         Dummy[k]= 3;          Dummy[k]= 3;
         /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */          modell[k].maintype= ATYPE;
           modell[k].subtype= APVQ;                /*      Product age * varying quantitative */
           /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */
       }        }
     }else if (Typevar[k] == 2) {  /* product without age */      }else if (Typevar[k] == 2) {  /* product without age */
       k1=Tposprod[k];        k1=Tposprod[k];
       if(Tvard[k1][1] <=ncovcol){        if(Tvard[k1][1] <=ncovcol){
         if(Tvard[k1][2] <=ncovcol){          if(Tvard[k1][2] <=ncovcol){
           Fixed[k]= 1;            Fixed[k]= 1;
           Dummy[k]= 0;            Dummy[k]= 0;
         }else if(Tvard[k1][2] <=ncovcol+nqv){            modell[k].maintype= FTYPE;
           Fixed[k]= 0;  /* or 2 ?*/            modell[k].subtype= FPDD;              /*      Product fixed dummy * fixed dummy */
           Dummy[k]= 1;            ncovf++; /* Fixed variables without age */
         }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){            TvarF[ncovf]=Tvar[k];
           Fixed[k]= 1;            TvarFind[ncovf]=k;
           Dummy[k]= 0;          }else if(Tvard[k1][2] <=ncovcol+nqv){
         }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){            Fixed[k]= 0;  /* or 2 ?*/
           Fixed[k]= 1;            Dummy[k]= 1;
           Dummy[k]= 1;            modell[k].maintype= FTYPE;
         }             modell[k].subtype= FPDQ;              /*      Product fixed dummy * fixed quantitative */
             ncovf++; /* Varying variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product fixed dummy * varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product fixed dummy * varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
       }else if(Tvard[k1][1] <=ncovcol+nqv){        }else if(Tvard[k1][1] <=ncovcol+nqv){
         if(Tvard[k1][2] <=ncovcol){          if(Tvard[k1][2] <=ncovcol){
           Fixed[k]= 0;  /* or 2 ?*/            Fixed[k]= 0;  /* or 2 ?*/
           Dummy[k]= 1;            Dummy[k]= 1;
         }else if(Tvard[k1][2] <=ncovcol+nqv){            modell[k].maintype= FTYPE;
           Fixed[k]= 0; /* or 2 ?*/            modell[k].subtype= FPDQ;              /*      Product fixed quantitative * fixed dummy */
           Dummy[k]= 1;            ncovf++; /* Fixed variables without age */
         }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){            TvarF[ncovf]=Tvar[k];
           Fixed[k]= 1;            TvarFind[ncovf]=k;
           Dummy[k]= 1;          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
         }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){            Fixed[k]= 1;
           Fixed[k]= 1;            Dummy[k]= 1;
           Dummy[k]= 1;            modell[k].maintype= VTYPE;
         }             modell[k].subtype= VPDQ;              /*      Product fixed quantitative * varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product fixed quantitative * varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
       }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){        }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){
         if(Tvard[k1][2] <=ncovcol){          if(Tvard[k1][2] <=ncovcol){
           Fixed[k]= 1;            Fixed[k]= 1;
           Dummy[k]= 1;            Dummy[k]= 1;
         }else if(Tvard[k1][2] <=ncovcol+nqv){            modell[k].maintype= VTYPE;
           Fixed[k]= 1;            modell[k].subtype= VPDD;              /*      Product time varying dummy * fixed dummy */
           Dummy[k]= 1;            ncovv++; /* Varying variables without age */
         }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){            TvarV[ncovv]=Tvar[k];
           Fixed[k]= 1;            TvarVind[ncovv]=k;
           Dummy[k]= 0;          }else if(Tvard[k1][2] <=ncovcol+nqv){
         }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){            Fixed[k]= 1;
           Fixed[k]= 1;            Dummy[k]= 1;
           Dummy[k]= 1;            modell[k].maintype= VTYPE;
         }             modell[k].subtype= VPDQ;              /*      Product time varying dummy * fixed quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product time varying dummy * time varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying dummy * time varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
       }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){        }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){
         if(Tvard[k1][2] <=ncovcol){          if(Tvard[k1][2] <=ncovcol){
           Fixed[k]= 1;            Fixed[k]= 1;
           Dummy[k]= 1;            Dummy[k]= 1;
         }else if(Tvard[k1][2] <=ncovcol+nqv){            modell[k].maintype= VTYPE;
           Fixed[k]= 1;            modell[k].subtype= VPDQ;              /*      Product time varying quantitative * fixed dummy */
           Dummy[k]= 1;            ncovv++; /* Varying variables without age */
         }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){            TvarV[ncovv]=Tvar[k];
           Fixed[k]= 1;            TvarVind[ncovv]=k;
           Dummy[k]= 1;          }else if(Tvard[k1][2] <=ncovcol+nqv){
         }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){            Fixed[k]= 1;
           Fixed[k]= 1;            Dummy[k]= 1;
           Dummy[k]= 1;            modell[k].maintype= VTYPE;
         }             modell[k].subtype= VPQQ;              /*      Product time varying quantitative * fixed quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying quantitative * time varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product time varying quantitative * time varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }
       }else{        }else{
         printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);          printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
         fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);          fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
       } /* end k1 */        } /*end k1*/
     }else{      }else{
       printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);        printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
       fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);        fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
     }      }
     printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);      printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
       printf("           modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype);
     fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);      fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
   }    }
   /* Searching for doublons in the model */    /* Searching for doublons in the model */
   for(k1=1; k1<= cptcovt;k1++){    for(k1=1; k1<= cptcovt;k1++){
     for(k2=1; k2 <k1;k2++){      for(k2=1; k2 <k1;k2++){
       if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){        /* if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ */
         if((Typevar[k1]==Typevar[k2]) && (Fixed[k1]==Fixed[k2]) && (Dummy[k1]==Dummy[k2] )){
         if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */          if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */
           if(Tvar[k1]==Tvar[k2]){            if(Tvar[k1]==Tvar[k2]){
             printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);              printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]);
             fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);              fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); fflush(ficlog);
             return(1);              return(1);
           }            }
         }else if (Typevar[k1] ==2){          }else if (Typevar[k1] ==2){
           k3=Tposprod[k1];            k3=Tposprod[k1];
           k4=Tposprod[k2];            k4=Tposprod[k2];
           if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){            if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){
             printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);              printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
             fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);              fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
             return(1);              return(1);
           }            }
         }          }
Line 8121  Dummy[k] 0=dummy (0 1), 1 quantitative ( Line 11227  Dummy[k] 0=dummy (0 1), 1 quantitative (
   }    }
   printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);    printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
   fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);    fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
     printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq);
     fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq);
   return (0); /* with covar[new additional covariate if product] and Tage if age */     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
   /*endread:*/    /*endread:*/
   printf("Exiting decodemodel: ");    printf("Exiting decodemodel: ");
Line 8128  Dummy[k] 0=dummy (0 1), 1 quantitative ( Line 11236  Dummy[k] 0=dummy (0 1), 1 quantitative (
 }  }
   
 int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )  int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
 {  {/* Check ages at death */
   int i, m;    int i, m;
   int firstone=0;    int firstone=0;
       
Line 8143  int calandcheckages(int imx, int maxwav, Line 11251  int calandcheckages(int imx, int maxwav,
         *nberr = *nberr + 1;          *nberr = *nberr + 1;
         if(firstone == 0){          if(firstone == 0){
           firstone=1;            firstone=1;
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);          printf("Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\nOther similar cases in log file\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m);
         }          }
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);          fprintf(ficlog,"Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m);
         s[m][i]=-1;          s[m][i]=-1;  /* Droping the death status */
       }        }
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
         (*nberr)++;          (*nberr)++;
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);           printf("Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\nOther similar cases in log file\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m);
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);           fprintf(ficlog,"Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m);
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */          s[m][i]=-2; /* We prefer to skip it (and to skip it in version 0.8a1 too */
       }        }
     }      }
   }    }
Line 8274  BOOL IsWow64() Line 11382  BOOL IsWow64()
 #endif  #endif
   
 void syscompilerinfo(int logged)  void syscompilerinfo(int logged)
  {  {
    /* #include "syscompilerinfo.h"*/  #include <stdint.h>
   
     /* #include "syscompilerinfo.h"*/
    /* command line Intel compiler 32bit windows, XP compatible:*/     /* command line Intel compiler 32bit windows, XP compatible:*/
    /* /GS /W3 /Gy     /* /GS /W3 /Gy
       /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D        /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
Line 8310  void syscompilerinfo(int logged) Line 11420  void syscompilerinfo(int logged)
       /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF        /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
       /NOLOGO /TLBID:1        /NOLOGO /TLBID:1
    */     */
   
   
 #if defined __INTEL_COMPILER  #if defined __INTEL_COMPILER
 #if defined(__GNUC__)  #if defined(__GNUC__)
         struct utsname sysInfo;  /* For Intel on Linux and OS/X */          struct utsname sysInfo;  /* For Intel on Linux and OS/X */
Line 8326  void syscompilerinfo(int logged) Line 11438  void syscompilerinfo(int logged)
    }     }
 #endif  #endif
   
 #include <stdint.h>  
   
    printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");     printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
 #if defined(__clang__)  #if defined(__clang__)
    printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */     printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
Line 8413  void syscompilerinfo(int logged) Line 11523  void syscompilerinfo(int logged)
 #endif  #endif
 #endif  #endif
   
    //   void main()     //   void main ()
    //   {     //   {
 #if defined(_MSC_VER)  #if defined(_MSC_VER)
    if (IsWow64()){     if (IsWow64()){
Line 8434  void syscompilerinfo(int logged) Line 11544  void syscompilerinfo(int logged)
 }  }
   
 int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){  int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
   /*--------------- Prevalence limit  (period or stable prevalence) --------------*/    /*--------------- Prevalence limit  (forward period or forward stable prevalence) --------------*/
   int i, j, k, i1 ;    /* Computes the prevalence limit for each combination of the dummy covariates */
     int i, j, k, i1, k4=0, nres=0 ;
   /* double ftolpl = 1.e-10; */    /* double ftolpl = 1.e-10; */
   double age, agebase, agelim;    double age, agebase, agelim;
   double tot;    double tot;
Line 8443  int prevalence_limit(double *p, double * Line 11554  int prevalence_limit(double *p, double *
   strcpy(filerespl,"PL_");    strcpy(filerespl,"PL_");
   strcat(filerespl,fileresu);    strcat(filerespl,fileresu);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    if((ficrespl=fopen(filerespl,"w"))==NULL) {
     printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;      printf("Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;      fprintf(ficlog,"Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
   }    }
   printf("\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);    printf("\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
   fprintf(ficlog,"\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);    fprintf(ficlog,"\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
   pstamp(ficrespl);    pstamp(ficrespl);
   fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);    fprintf(ficrespl,"# Forward period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
   fprintf(ficrespl,"#Age ");    fprintf(ficrespl,"#Age ");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
   fprintf(ficrespl,"\n");    fprintf(ficrespl,"\n");
Line 8460  int prevalence_limit(double *p, double * Line 11571  int prevalence_limit(double *p, double *
   agelim=agemaxpar;    agelim=agemaxpar;
   
   /* i1=pow(2,ncoveff); */    /* i1=pow(2,ncoveff); */
   i1=pow(2,cptcoveff); /* Number of dummy covariates */    i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
   if (cptcovn < 1){i1=1;}    if (cptcovn < 1){i1=1;}
   
   for(k=1; k<=i1;k++){    /* for(k=1; k<=i1;k++){ /\* For each combination k of dummy covariates in the model *\/ */
   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */      for(nres=1; nres <= nresult; nres++){ /* For each resultline */
     /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */        k=TKresult[nres];
     //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if(TKresult[nres]==0) k=1; /* To be checked for noresult */
     /* k=k+1; */        /* if(i1 != 1 && TKresult[nres]!= k) /\* We found the combination k corresponding to the resultline value of dummies *\/ */
     /* to clean */        /*        continue; */
     //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));  
     fprintf(ficrespl,"#******");        /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
     printf("#******");        /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
     fprintf(ficlog,"#******");        //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     for(j=1;j<=cptcoveff ;j++) {/* all covariates */        /* k=k+1; */
       fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/        /* to clean */
       printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        /*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*/
       fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        fprintf(ficrespl,"#******");
     }        printf("#******");
     fprintf(ficrespl,"******\n");        fprintf(ficlog,"#******");
     printf("******\n");        for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */
     fprintf(ficlog,"******\n");          /* fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Here problem for varying dummy*\/ */
     if(invalidvarcomb[k]){          /* printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
       printf("\nCombination (%d) ignored because no case \n",k);           /* fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
       fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k);           fprintf(ficrespl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
       fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k);           printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                                                 continue;          fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
     }        }
         /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
         /*        printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
         /*        fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
         /*        fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
         /* } */
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         if(invalidvarcomb[k]){
           printf("\nCombination (%d) ignored because no case \n",k); 
           fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); 
           fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); 
           continue;
         }
   
     fprintf(ficrespl,"#Age ");        fprintf(ficrespl,"#Age ");
     for(j=1;j<=cptcoveff;j++) {        /* for(j=1;j<=cptcoveff;j++) { */
       fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        /*        fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
     }        /* } */
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);        for(j=1;j<=cptcovs;j++) { /* New the quanti variable is added */
     fprintf(ficrespl,"Total Years_to_converge\n");          fprintf(ficrespl,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
         }
         for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
         fprintf(ficrespl,"Total Years_to_converge\n");
           
     for (age=agebase; age<=agelim; age++){        for (age=agebase; age<=agelim; age++){
       /* for (age=agebase; age<=agebase; age++){ */          /* for (age=agebase; age<=agebase; age++){ */
       prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k);          /**< Computes the prevalence limit in each live state at age x and for covariate combination (k and) nres */
       fprintf(ficrespl,"%.0f ",age );          prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); /* Nicely done */
       for(j=1;j<=cptcoveff;j++)          fprintf(ficrespl,"%.0f ",age );
         fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          /* for(j=1;j<=cptcoveff;j++) */
       tot=0.;          /*   fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
       for(i=1; i<=nlstate;i++){          for(j=1;j<=cptcovs;j++)
         tot +=  prlim[i][i];            fprintf(ficrespl,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
         fprintf(ficrespl," %.5f", prlim[i][i]);          tot=0.;
       }          for(i=1; i<=nlstate;i++){
       fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);            tot +=  prlim[i][i];
     } /* Age */            fprintf(ficrespl," %.5f", prlim[i][i]);
     /* was end of cptcod */          }
   } /* cptcov */          fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
         } /* Age */
         /* was end of cptcod */
       } /* nres */
     /* } /\* for each combination *\/ */
   return 0;    return 0;
 }  }
   
 int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){  int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
         /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/          /*--------------- Back Prevalence limit  (backward stable prevalence) --------------*/
                   
         /* Computes the back prevalence limit  for any combination      of covariate values           /* Computes the back prevalence limit  for any combination      of covariate values 
    * at any age between ageminpar and agemaxpar     * at any age between ageminpar and agemaxpar
          */           */
   int i, j, k, i1 ;    int i, j, k, i1, nres=0 ;
   /* double ftolpl = 1.e-10; */    /* double ftolpl = 1.e-10; */
   double age, agebase, agelim;    double age, agebase, agelim;
   double tot;    double tot;
Line 8529  int back_prevalence_limit(double *p, dou Line 11661  int back_prevalence_limit(double *p, dou
   strcpy(fileresplb,"PLB_");    strcpy(fileresplb,"PLB_");
   strcat(fileresplb,fileresu);    strcat(fileresplb,fileresu);
   if((ficresplb=fopen(fileresplb,"w"))==NULL) {    if((ficresplb=fopen(fileresplb,"w"))==NULL) {
     printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;      printf("Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
     fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;      fprintf(ficlog,"Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
   }    }
   printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);    printf("Computing backward prevalence: result on file '%s' \n", fileresplb);
   fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);    fprintf(ficlog,"Computing backward prevalence: result on file '%s' \n", fileresplb);
   pstamp(ficresplb);    pstamp(ficresplb);
   fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl);    fprintf(ficresplb,"# Backward prevalence. Precision given by ftolpl=%g \n", ftolpl);
   fprintf(ficresplb,"#Age ");    fprintf(ficresplb,"#Age ");
   for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);    for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
   fprintf(ficresplb,"\n");    fprintf(ficresplb,"\n");
Line 8550  int back_prevalence_limit(double *p, dou Line 11682  int back_prevalence_limit(double *p, dou
   i1=pow(2,cptcoveff);    i1=pow(2,cptcoveff);
   if (cptcovn < 1){i1=1;}    if (cptcovn < 1){i1=1;}
       
   for(k=1; k<=i1;k++){     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
     //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));      /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */
     fprintf(ficresplb,"#******");        k=TKresult[nres];
     printf("#******");        if(TKresult[nres]==0) k=1; /* To be checked for noresult */
     fprintf(ficlog,"#******");       /* if(i1 != 1 && TKresult[nres]!= k) */
     for(j=1;j<=cptcoveff ;j++) {/* all covariates */       /*         continue; */
       fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);       /* /\*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*\/ */
       printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        fprintf(ficresplb,"#******");
       fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        printf("#******");
     }        fprintf(ficlog,"#******");
     fprintf(ficresplb,"******\n");        for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */
     printf("******\n");          printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
     fprintf(ficlog,"******\n");          fprintf(ficresplb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
     if(invalidvarcomb[k]){          fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
       printf("\nCombination (%d) ignored because no cases \n",k);         }
       fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k);         /* for(j=1;j<=cptcoveff ;j++) {/\* all covariates *\/ */
       fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k);         /*        fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
       continue;        /*        printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
     }        /*        fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
             /* } */
     fprintf(ficresplb,"#Age ");        /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
     for(j=1;j<=cptcoveff;j++) {        /*        printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
       fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        /*        fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
     }        /*        fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
     for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);        /* } */
     fprintf(ficresplb,"Total Years_to_converge\n");        fprintf(ficresplb,"******\n");
             printf("******\n");
             fprintf(ficlog,"******\n");
     for (age=agebase; age<=agelim; age++){        if(invalidvarcomb[k]){
       /* for (age=agebase; age<=agebase; age++){ */          printf("\nCombination (%d) ignored because no cases \n",k); 
       if(mobilavproj > 0){          fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); 
         /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */          fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); 
         /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */          continue;
         bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k);  
       }else if (mobilavproj == 0){  
         printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);  
         fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);  
         exit(1);  
       }else{  
         /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */  
         bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k);  
       }        }
       fprintf(ficresplb,"%.0f ",age );      
       for(j=1;j<=cptcoveff;j++)        fprintf(ficresplb,"#Age ");
         fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        for(j=1;j<=cptcovs;j++) {
       tot=0.;          fprintf(ficresplb,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
       for(i=1; i<=nlstate;i++){        }
         tot +=  bprlim[i][i];        for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
         fprintf(ficresplb," %.5f", bprlim[i][i]);        fprintf(ficresplb,"Total Years_to_converge\n");
       }      
       fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);      
     } /* Age */        for (age=agebase; age<=agelim; age++){
     /* was end of cptcod */          /* for (age=agebase; age<=agebase; age++){ */
   } /* cptcov */          if(mobilavproj > 0){
               /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
             /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
             bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k, nres);
           }else if (mobilavproj == 0){
             printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
             fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
             exit(1);
           }else{
             /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
             bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres);
             /* printf("TOTOT\n"); */
             /* exit(1); */
           }
           fprintf(ficresplb,"%.0f ",age );
           for(j=1;j<=cptcovs;j++)
             fprintf(ficresplb,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
           tot=0.;
           for(i=1; i<=nlstate;i++){
             tot +=  bprlim[i][i];
             fprintf(ficresplb," %.5f", bprlim[i][i]);
           }
           fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
         } /* Age */
         /* was end of cptcod */
         /*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */
       /* } /\* end of any combination *\/ */
     } /* end of nres */  
   /* hBijx(p, bage, fage); */    /* hBijx(p, bage, fage); */
   /* fclose(ficrespijb); */    /* fclose(ficrespijb); */
       
Line 8613  int back_prevalence_limit(double *p, dou Line 11763  int back_prevalence_limit(double *p, dou
     
 int hPijx(double *p, int bage, int fage){  int hPijx(double *p, int bage, int fage){
     /*------------- h Pij x at various ages ------------*/      /*------------- h Pij x at various ages ------------*/
     /* to be optimized with precov */
   int stepsize;    int stepsize;
   int agelim;    int agelim;
   int hstepm;    int hstepm;
   int nhstepm;    int nhstepm;
   int h, i, i1, j, k;    int h, i, i1, j, k, k4, nres=0;
   
   double agedeb;    double agedeb;
   double ***p3mat;    double ***p3mat;
   
     strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);    strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {    if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij); return 1;      printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;      fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
     }    }
     printf("Computing pij: result on file '%s' \n", filerespij);    printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
       
     stepsize=(int) (stepm+YEARM-1)/YEARM;    stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/    /*if (stepm<=24) stepsize=2;*/
     
     agelim=AGESUP;    agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */    hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
                     
     /* hstepm=1;   aff par mois*/    /* hstepm=1;   aff par mois*/
     pstamp(ficrespij);    pstamp(ficrespij);
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");    fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     i1= pow(2,cptcoveff);    i1= pow(2,cptcoveff);
                 /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */    /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                 /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */    /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                 /*      k=k+1;  */    /*    k=k+1;  */
     for (k=1; k <= (int) pow(2,cptcoveff); k++){    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       fprintf(ficrespij,"\n#****** ");      k=TKresult[nres];
       for(j=1;j<=cptcoveff;j++)       if(TKresult[nres]==0) k=1; /* To be checked for noresult */
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);      /* for(k=1; k<=i1;k++){ */
       fprintf(ficrespij,"******\n");      /* if(i1 != 1 && TKresult[nres]!= k) */
       /*  continue; */
       fprintf(ficrespij,"\n#****** ");
       for(j=1;j<=cptcovs;j++){
         fprintf(ficrespij," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
         /* fprintf(ficrespij,"@wV%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
         /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
         /*        printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
         /*        fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
       }
       fprintf(ficrespij,"******\n");
       
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
               
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        /*          nhstepm=nhstepm*YEARM; aff par mois*/
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 oldm=oldms;savm=savms;
         /*        nhstepm=nhstepm*YEARM; aff par mois*/        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);  
                 fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=nlstate;i++)
         oldm=oldms;savm=savms;          for(j=1; j<=nlstate+ndeath;j++)
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              fprintf(ficrespij," %1d-%1d",i,j);
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");        fprintf(ficrespij,"\n");
         for(i=1; i<=nlstate;i++)        for (h=0; h<=nhstepm; h++){
           for(j=1; j<=nlstate+ndeath;j++)          /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij," %1d-%1d",i,j);          fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
         fprintf(ficrespij,"\n");          for(i=1; i<=nlstate;i++)
         for (h=0; h<=nhstepm; h++){            for(j=1; j<=nlstate+ndeath;j++)
           /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/              fprintf(ficrespij," %.5f", p3mat[i][j][h]);
           fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );  
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
           fprintf(ficrespij,"\n");  
         }  
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         fprintf(ficrespij,"\n");          fprintf(ficrespij,"\n");
       }        }
       /*}*/        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespij,"\n");
     }      }
     return 0;    }
     /*}*/
     return 0;
 }  }
     
  int hBijx(double *p, int bage, int fage, double ***prevacurrent){   int hBijx(double *p, int bage, int fage, double ***prevacurrent){
     /*------------- h Bij x at various ages ------------*/      /*------------- h Bij x at various ages ------------*/
       /* To be optimized with precov */
   int stepsize;    int stepsize;
   /* int agelim; */    /* int agelim; */
         int ageminl;          int ageminl;
   int hstepm;    int hstepm;
   int nhstepm;    int nhstepm;
   int h, i, i1, j, k;    int h, i, i1, j, k, nres;
                   
   double agedeb;    double agedeb;
   double ***p3mat;    double ***p3mat;
Line 8706  int hPijx(double *p, int bage, int fage) Line 11866  int hPijx(double *p, int bage, int fage)
   /*if (stepm<=24) stepsize=2;*/    /*if (stepm<=24) stepsize=2;*/
       
   /* agelim=AGESUP; */    /* agelim=AGESUP; */
   ageminl=30;    ageminl=AGEINF; /* was 30 */
   hstepm=stepsize*YEARM; /* Every year of age */    hstepm=stepsize*YEARM; /* Every year of age */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
       
   /* hstepm=1;   aff par mois*/    /* hstepm=1;   aff par mois*/
   pstamp(ficrespijb);    pstamp(ficrespijb);
   fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x ");    fprintf(ficrespijb,"#****** h Bij x Back probability to be in state i at age x-h being in j at x: B1j+B2j+...=1 ");
   i1= pow(2,cptcoveff);    i1= pow(2,cptcoveff);
   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */    /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */    /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
   /*    k=k+1;  */    /*    k=k+1;  */
   for (k=1; k <= (int) pow(2,cptcoveff); k++){    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
       k=TKresult[nres];
       if(TKresult[nres]==0) k=1; /* To be checked for noresult */
       /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */
       /*    if(i1 != 1 && TKresult[nres]!= k) */
       /*  continue; */
     fprintf(ficrespijb,"\n#****** ");      fprintf(ficrespijb,"\n#****** ");
     for(j=1;j<=cptcoveff;j++)      for(j=1;j<=cptcovs;j++){
       fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        fprintf(ficrespijb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
         /* for(j=1;j<=cptcoveff;j++) */
         /*        fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
         /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
         /*        fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
       }
     fprintf(ficrespijb,"******\n");      fprintf(ficrespijb,"******\n");
     if(invalidvarcomb[k]){      if(invalidvarcomb[k]){  /* Is it necessary here? */
       fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k);         fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); 
       continue;        continue;
     }      }
Line 8730  int hPijx(double *p, int bage, int fage) Line 11900  int hPijx(double *p, int bage, int fage)
     /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */      /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
     for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */      for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
       /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */        /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
       nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm+0.1)-1; /* Typically 20 years = 20*12/6=40 or 55*12/24=27.5-1.1=>27 */
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */        nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 or 28*/
               
       /*          nhstepm=nhstepm*YEARM; aff par mois*/        /*          nhstepm=nhstepm*YEARM; aff par mois*/
               
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */
         /* and memory limitations if stepm is small */
         
       /* oldm=oldms;savm=savms; */        /* oldm=oldms;savm=savms; */
       /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */        /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
       hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k);        hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres);/* Bug valgrind */
       /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */        /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
       fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j=");        fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j=");
       for(i=1; i<=nlstate;i++)        for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate+ndeath;j++)          for(j=1; j<=nlstate+ndeath;j++)
           fprintf(ficrespijb," %1d-%1d",i,j);            fprintf(ficrespijb," %1d-%1d",i,j);
Line 8751  int hPijx(double *p, int bage, int fage) Line 11923  int hPijx(double *p, int bage, int fage)
         /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */          /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
         for(i=1; i<=nlstate;i++)          for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate+ndeath;j++)            for(j=1; j<=nlstate+ndeath;j++)
             fprintf(ficrespijb," %.5f", p3mat[i][j][h]);              fprintf(ficrespijb," %.5f", p3mat[i][j][h]);/* Bug valgrind */
         fprintf(ficrespijb,"\n");          fprintf(ficrespijb,"\n");
       }        }
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficrespijb,"\n");        fprintf(ficrespijb,"\n");
     }      } /* end age deb */
     /*}*/      /* } /\* end combination *\/ */
   }    } /* end nres */
   return 0;    return 0;
  } /*  hBijx */   } /*  hBijx */
   
Line 8777  int main(int argc, char *argv[]) Line 11949  int main(int argc, char *argv[])
   double ssval;    double ssval;
 #endif  #endif
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;    int i,j, k, iter=0,m,size=100, cptcod; /* Suppressing because nobs */
     /* int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; */
   int ncvyear=0; /* Number of years needed for the period prevalence to converge */    int ncvyear=0; /* Number of years needed for the period prevalence to converge */
   int jj, ll, li, lj, lk;    int jj, ll, li, lj, lk;
   int numlinepar=0; /* Current linenumber of parameter file */    int numlinepar=0; /* Current linenumber of parameter file */
Line 8785  int main(int argc, char *argv[]) Line 11958  int main(int argc, char *argv[])
   int itimes;    int itimes;
   int NDIM=2;    int NDIM=2;
   int vpopbased=0;    int vpopbased=0;
     int nres=0;
     int endishere=0;
     int noffset=0;
     int ncurrv=0; /* Temporary variable */
     
   char ca[32], cb[32];    char ca[32], cb[32];
   /*  FILE *fichtm; *//* Html File */    /*  FILE *fichtm; *//* Html File */
   /* FILE *ficgp;*/ /*Gnuplot File */    /* FILE *ficgp;*/ /*Gnuplot File */
Line 8799  int main(int argc, char *argv[]) Line 11976  int main(int argc, char *argv[])
   double dum=0.; /* Dummy variable */    double dum=0.; /* Dummy variable */
   double ***p3mat;    double ***p3mat;
   /* double ***mobaverage; */    /* double ***mobaverage; */
     double wald;
   
   char line[MAXLINE];    char line[MAXLINE];
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
   char model[MAXLINE], modeltemp[MAXLINE];    char  modeltemp[MAXLINE];
     char resultline[MAXLINE], resultlineori[MAXLINE];
     
   char pathr[MAXLINE], pathimach[MAXLINE];     char pathr[MAXLINE], pathimach[MAXLINE]; 
   char *tok, *val; /* pathtot */    char *tok, *val; /* pathtot */
   int firstobs=1, lastobs=10;    /* int firstobs=1, lastobs=10; /\* nobs = lastobs-firstobs declared globally ;*\/ */
   int c,  h , cpt, c2;    int c,  h , cpt, c2;
   int jl=0;    int jl=0;
   int i1, j1, jk, stepsize=0;    int i1, j1, jk, stepsize=0;
Line 8814  int main(int argc, char *argv[]) Line 11994  int main(int argc, char *argv[])
   
   int *tab;     int *tab; 
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   int backcast=0;    /* double anprojd, mprojd, jprojd; /\* For eventual projections *\/ */
     /* double anprojf, mprojf, jprojf; */
     /* double jintmean,mintmean,aintmean;   */
     int prvforecast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */
     int prvbackcast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */
     double yrfproj= 10.0; /* Number of years of forward projections */
     double yrbproj= 10.0; /* Number of years of backward projections */
     int prevbcast=0; /* defined as global for mlikeli and mle, replacing backcast */
   int mobilav=0,popforecast=0;    int mobilav=0,popforecast=0;
   int hstepm=0, nhstepm=0;    int hstepm=0, nhstepm=0;
   int agemortsup;    int agemortsup;
Line 8826  int main(int argc, char *argv[]) Line 12013  int main(int argc, char *argv[])
   double ftolpl=FTOL;    double ftolpl=FTOL;
   double **prlim;    double **prlim;
   double **bprlim;    double **bprlim;
   double ***param; /* Matrix of parameters */    double ***param; /* Matrix of parameters, param[i][j][k] param=ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel) 
   double  *p;                      state of origin, state of destination including death, for each covariate: constante, age, and V1 V2 etc. */
     double ***paramstart; /* Matrix of starting parameter values */
     double  *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */
   double **matcov; /* Matrix of covariance */    double **matcov; /* Matrix of covariance */
   double **hess; /* Hessian matrix */    double **hess; /* Hessian matrix */
   double ***delti3; /* Scale */    double ***delti3; /* Scale */
   double *delti; /* Scale */    double *delti; /* Scale */
   double ***eij, ***vareij;    double ***eij, ***vareij;
   double **varpl; /* Variances of prevalence limits by age */    double **varpl; /* Variances of prevalence limits by age */
   
   double *epj, vepp;    double *epj, vepp;
   
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    double dateprev1, dateprev2;
   double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000;    double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0, dateprojd=0, dateprojf=0;
     double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0, datebackd=0, datebackf=0;
   
   
   double **ximort;    double **ximort;
   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";    char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
Line 8915  int main(int argc, char *argv[]) Line 12107  int main(int argc, char *argv[])
       if(pathr[0] == '\0') break; /* Dirty */        if(pathr[0] == '\0') break; /* Dirty */
     }      }
   }    }
     else if (argc<=2){
       strcpy(pathtot,argv[1]);
     }
   else{    else{
     strcpy(pathtot,argv[1]);      strcpy(pathtot,argv[1]);
       strcpy(z,argv[2]);
       printf("\nargv[2]=%s z=%c\n",argv[2],z[0]);
   }    }
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   /*cygwin_split_path(pathtot,path,optionfile);    /*cygwin_split_path(pathtot,path,optionfile);
Line 8994  int main(int argc, char *argv[]) Line 12191  int main(int argc, char *argv[])
     exit(70);       exit(70); 
   }    }
   
   
   
   strcpy(filereso,"o");    strcpy(filereso,"o");
   strcat(filereso,fileresu);    strcat(filereso,fileresu);
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
Line 9004  int main(int argc, char *argv[]) Line 12199  int main(int argc, char *argv[])
     fflush(ficlog);      fflush(ficlog);
     goto end;      goto end;
   }    }
         /*-------- Rewriting parameter file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name */
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", rfileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       fflush(ficlog);
       goto end;
     }
     fprintf(ficres,"#IMaCh %s\n",version);
   
                                         
   /* Reads comments: lines beginning with '#' */    /* Reads comments: lines beginning with '#' */
   numlinepar=0;    numlinepar=0;
     /* Is it a BOM UTF-8 Windows file? */
     /* First parameter line */    /* First parameter line */
   while(fgets(line, MAXLINE, ficpar)) {    while(fgets(line, MAXLINE, ficpar)) {
       noffset=0;
       if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */
       {
         noffset=noffset+3;
         printf("# File is an UTF8 Bom.\n"); // 0xBF
       }
   /*    else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/
       else if( line[0] == (char)0xFF && line[1] == (char)0xFE)
       {
         noffset=noffset+2;
         printf("# File is an UTF16BE BOM file\n");
       }
       else if( line[0] == 0 && line[1] == 0)
       {
         if( line[2] == (char)0xFE && line[3] == (char)0xFF){
           noffset=noffset+4;
           printf("# File is an UTF16BE BOM file\n");
         }
       } else{
         ;/*printf(" Not a BOM file\n");*/
       }
     
     /* If line starts with a # it is a comment */      /* If line starts with a # it is a comment */
     if (line[0] == '#') {      if (line[noffset] == '#') {
       numlinepar++;        numlinepar++;
       fputs(line,stdout);        fputs(line,stdout);
       fputs(line,ficparo);        fputs(line,ficparo);
         fputs(line,ficres);
       fputs(line,ficlog);        fputs(line,ficlog);
       continue;        continue;
     }else      }else
Line 9024  int main(int argc, char *argv[]) Line 12255  int main(int argc, char *argv[])
                         title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){                          title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
     if (num_filled != 5) {      if (num_filled != 5) {
       printf("Should be 5 parameters\n");        printf("Should be 5 parameters\n");
         fprintf(ficlog,"Should be 5 parameters\n");
     }      }
     numlinepar++;      numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);      printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
       fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
       fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
   }    }
   /* Second parameter line */    /* Second parameter line */
   while(fgets(line, MAXLINE, ficpar)) {    while(fgets(line, MAXLINE, ficpar)) {
     /* If line starts with a # it is a comment */      /* while(fscanf(ficpar,"%[^\n]", line)) { */
       /* If line starts with a # it is a comment. Strangely fgets reads the EOL and fputs doesn't */
     if (line[0] == '#') {      if (line[0] == '#') {
       numlinepar++;        numlinepar++;
       fputs(line,stdout);        printf("%s",line);
       fputs(line,ficparo);        fprintf(ficres,"%s",line);
       fputs(line,ficlog);        fprintf(ficparo,"%s",line);
         fprintf(ficlog,"%s",line);
       continue;        continue;
     }else      }else
       break;        break;
Line 9045  int main(int argc, char *argv[]) Line 12282  int main(int argc, char *argv[])
     if (num_filled != 11) {      if (num_filled != 11) {
       printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");        printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
       printf("but line=%s\n",line);        printf("but line=%s\n",line);
         fprintf(ficlog,"Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         fprintf(ficlog,"but line=%s\n",line);
       }
       if( lastpass > maxwav){
         printf("Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
         fprintf(ficlog,"Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
         fflush(ficlog);
         goto end;
     }      }
     printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);        printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
       fprintf(ficparo,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
       fprintf(ficres,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, 0, weightopt);
       fprintf(ficlog,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
   }    }
   /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */    /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
   /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */    /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
Line 9055  int main(int argc, char *argv[]) Line 12303  int main(int argc, char *argv[])
     /* If line starts with a # it is a comment */      /* If line starts with a # it is a comment */
     if (line[0] == '#') {      if (line[0] == '#') {
       numlinepar++;        numlinepar++;
       fputs(line,stdout);        printf("%s",line);
       fputs(line,ficparo);        fprintf(ficres,"%s",line);
       fputs(line,ficlog);        fprintf(ficparo,"%s",line);
         fprintf(ficlog,"%s",line);
       continue;        continue;
     }else      }else
       break;        break;
   }    }
   if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){    if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
     if (num_filled == 0)      if (num_filled != 1){
             model[0]='\0';        printf("ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
     else if (num_filled != 1){        fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
       printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);  
       fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);  
       model[0]='\0';        model[0]='\0';
       goto end;        goto end;
     }      }
Line 9078  int main(int argc, char *argv[]) Line 12325  int main(int argc, char *argv[])
         strcpy(model,modeltemp);           strcpy(model,modeltemp); 
       }        }
     }      }
     /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */      /* printf(" model=1+age%s modeltemp= %s, model=1+age+%s\n",model, modeltemp, model);fflush(stdout); */
     printf("model=1+age+%s\n",model);fflush(stdout);      printf("model=1+age+%s\n",model);fflush(stdout);
       fprintf(ficparo,"model=1+age+%s\n",model);fflush(stdout);
       fprintf(ficres,"model=1+age+%s\n",model);fflush(stdout);
       fprintf(ficlog,"model=1+age+%s\n",model);fflush(stdout);
   }    }
   /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */    /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
   /* numlinepar=numlinepar+3; /\* In general *\/ */    /* numlinepar=numlinepar+3; /\* In general *\/ */
   /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */    /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);    /* fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);    /* fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
   fflush(ficlog);    fflush(ficlog);
   /* if(model[0]=='#'|| model[0]== '\0'){ */    /* if(model[0]=='#'|| model[0]== '\0'){ */
   if(model[0]=='#'){    if(model[0]=='#'){
     printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \      printf("Error in 'model' line: model should start with 'model=1+age+' and end without space \n \
  'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \   'model=1+age+' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age' or \n \
  'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \   'model=1+age+V1+V2' or 'model=1+age+V1+V2+V1*V2' etc. \n");            \
     if(mle != -1){      if(mle != -1){
       printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");        printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter vectors and subdiagonal covariance matrix.\n");
       exit(1);        exit(1);
     }      }
   }    }
Line 9113  int main(int argc, char *argv[]) Line 12363  int main(int argc, char *argv[])
   ungetc(c,ficpar);    ungetc(c,ficpar);
   
         
   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */    covar=matrix(0,NCOVMAX,firstobs,lastobs);  /**< used in readdata */
   coqvar=matrix(1,nqv,1,n);  /**< Fixed quantitative covariate */    if(nqv>=1)coqvar=matrix(1,nqv,firstobs,lastobs);  /**< Fixed quantitative covariate */
   cotvar=ma3x(1,maxwav,1,ntv,1,n);  /**< Time varying covariate */    if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,firstobs,lastobs);  /**< Time varying quantitative covariate */
   cotqvar=ma3x(1,maxwav,1,nqtv,1,n);  /**< Time varying quantitative covariate */    if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,firstobs,lastobs);  /**< Time varying covariate (dummy and quantitative)*/
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5    /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
      v1+v2*age+v2*v3 makes cptcovn = 3       v1+v2*age+v2*v3 makes cptcovn = 3
Line 9138  int main(int argc, char *argv[]) Line 12388  int main(int argc, char *argv[])
   delti=delti3[1][1];    delti=delti3[1][1];
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
   /* We could also provide initial parameters values giving by simple logistic regression 
    * only one way, that is without matrix product. We will have nlstate maximizations */
         /* for(i=1;i<nlstate;i++){ */
         /*        /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
         /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
         /* } */
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);      printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);      fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
Line 9167  int main(int argc, char *argv[]) Line 12423  int main(int argc, char *argv[])
     ungetc(c,ficpar);      ungetc(c,ficpar);
           
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       paramstart= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){      for(i=1; i <=nlstate; i++){
                         j=0;        j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){        for(jj=1; jj <=nlstate+ndeath; jj++){
                                 if(jj==i) continue;          if(jj==i) continue;
                                 j++;          j++;
                                 fscanf(ficpar,"%1d%1d",&i1,&j1);          while((c=getc(ficpar))=='#' && c!= EOF){
                                 if ((i1 != i) || (j1 != jj)){            ungetc(c,ficpar);
                                         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \            fgets(line, MAXLINE, ficpar);
             numlinepar++;
             fputs(line,stdout);
             fputs(line,ficparo);
             fputs(line,ficlog);
           }
           ungetc(c,ficpar);
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
 It might be a problem of design; if ncovcol and the model are correct\n \  It might be a problem of design; if ncovcol and the model are correct\n \
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
                                         exit(1);            exit(1);
                                 }          }
                                 fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficparo,"%1d%1d",i1,j1);
                                 if(mle==1)          if(mle==1)
                                         printf("%1d%1d",i,jj);            printf("%1d%1d",i,jj);
                                 fprintf(ficlog,"%1d%1d",i,jj);          fprintf(ficlog,"%1d%1d",i,jj);
                                 for(k=1; k<=ncovmodel;k++){          for(k=1; k<=ncovmodel;k++){
                                         fscanf(ficpar," %lf",&param[i][j][k]);            fscanf(ficpar," %lf",&param[i][j][k]);
                                         if(mle==1){            if(mle==1){
                                                 printf(" %lf",param[i][j][k]);              printf(" %lf",param[i][j][k]);
                                                 fprintf(ficlog," %lf",param[i][j][k]);              fprintf(ficlog," %lf",param[i][j][k]);
                                         }            }
                                         else            else
                                                 fprintf(ficlog," %lf",param[i][j][k]);              fprintf(ficlog," %lf",param[i][j][k]);
                                         fprintf(ficparo," %lf",param[i][j][k]);            fprintf(ficparo," %lf",param[i][j][k]);
                                 }          }
                                 fscanf(ficpar,"\n");          fscanf(ficpar,"\n");
                                 numlinepar++;          numlinepar++;
                                 if(mle==1)          if(mle==1)
                                         printf("\n");            printf("\n");
                                 fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
                                 fprintf(ficparo,"\n");          fprintf(ficparo,"\n");
       }        }
     }        }  
     fflush(ficlog);      fflush(ficlog);
       
     /* Reads scales values */      /* Reads parameters values */
     p=param[1][1];      p=param[1][1];
       pstart=paramstart[1][1];
           
     /* Reads comments: lines beginning with '#' */      /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){      while((c=getc(ficpar))=='#' && c!= EOF){
Line 9219  run imach with mle=-1 to get a correct t Line 12486  run imach with mle=-1 to get a correct t
   
     for(i=1; i <=nlstate; i++){      for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){        for(j=1; j <=nlstate+ndeath-1; j++){
                                 fscanf(ficpar,"%1d%1d",&i1,&j1);          fscanf(ficpar,"%1d%1d",&i1,&j1);
                                 if ( (i1-i) * (j1-j) != 0){          if ( (i1-i) * (j1-j) != 0){
                                         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                                         exit(1);            exit(1);
                                 }          }
                                 printf("%1d%1d",i,j);          printf("%1d%1d",i,j);
                                 fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficparo,"%1d%1d",i1,j1);
                                 fprintf(ficlog,"%1d%1d",i1,j1);          fprintf(ficlog,"%1d%1d",i1,j1);
                                 for(k=1; k<=ncovmodel;k++){          for(k=1; k<=ncovmodel;k++){
                                         fscanf(ficpar,"%le",&delti3[i][j][k]);            fscanf(ficpar,"%le",&delti3[i][j][k]);
                                         printf(" %le",delti3[i][j][k]);            printf(" %le",delti3[i][j][k]);
                                         fprintf(ficparo," %le",delti3[i][j][k]);            fprintf(ficparo," %le",delti3[i][j][k]);
                                         fprintf(ficlog," %le",delti3[i][j][k]);            fprintf(ficlog," %le",delti3[i][j][k]);
                                 }          }
                                 fscanf(ficpar,"\n");          fscanf(ficpar,"\n");
                                 numlinepar++;          numlinepar++;
                                 printf("\n");          printf("\n");
                                 fprintf(ficparo,"\n");          fprintf(ficparo,"\n");
                                 fprintf(ficlog,"\n");          fprintf(ficlog,"\n");
       }        }
     }      }
     fflush(ficlog);      fflush(ficlog);
                       
     /* Reads covariance matrix */      /* Reads covariance matrix */
     delti=delti3[1][1];      delti=delti3[1][1];
                                   
Line 9307  Please run with mle=-1 to get a correct Line 12574  Please run with mle=-1 to get a correct
           
     fflush(ficlog);      fflush(ficlog);
           
     /*-------- Rewriting parameter file ----------*/  
     strcpy(rfileres,"r");    /* "Rparameterfile */  
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
     strcat(rfileres,".");    /* */  
     strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {  
       printf("Problem writing new parameter file: %s\n", rfileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;  
     }  
     fprintf(ficres,"#%s\n",version);  
   }    /* End of mle != -3 */    }    /* End of mle != -3 */
       
   /*  Main data    /*  Main data
    */     */
   n= lastobs;    nobs=lastobs-firstobs+1; /* was = lastobs;*/
   num=lvector(1,n);    /* num=lvector(1,n); */
   moisnais=vector(1,n);    /* moisnais=vector(1,n); */
   annais=vector(1,n);    /* annais=vector(1,n); */
   moisdc=vector(1,n);    /* moisdc=vector(1,n); */
   andc=vector(1,n);    /* andc=vector(1,n); */
   weight=vector(1,n);    /* weight=vector(1,n); */
   agedc=vector(1,n);    /* agedc=vector(1,n); */
   cod=ivector(1,n);    /* cod=ivector(1,n); */
   for(i=1;i<=n;i++){    /* for(i=1;i<=n;i++){ */
                 num[i]=0;    num=lvector(firstobs,lastobs);
                 moisnais[i]=0;    moisnais=vector(firstobs,lastobs);
                 annais[i]=0;    annais=vector(firstobs,lastobs);
                 moisdc[i]=0;    moisdc=vector(firstobs,lastobs);
                 andc[i]=0;    andc=vector(firstobs,lastobs);
                 agedc[i]=0;    weight=vector(firstobs,lastobs);
                 cod[i]=0;    agedc=vector(firstobs,lastobs);
                 weight[i]=1.0; /* Equal weights, 1 by default */    cod=ivector(firstobs,lastobs);
         }    for(i=firstobs;i<=lastobs;i++){
   mint=matrix(1,maxwav,1,n);      num[i]=0;
   anint=matrix(1,maxwav,1,n);      moisnais[i]=0;
   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */       annais[i]=0;
       moisdc[i]=0;
       andc[i]=0;
       agedc[i]=0;
       cod[i]=0;
       weight[i]=1.0; /* Equal weights, 1 by default */
     }
     mint=matrix(1,maxwav,firstobs,lastobs);
     anint=matrix(1,maxwav,firstobs,lastobs);
     s=imatrix(1,maxwav+1,firstobs,lastobs); /* s[i][j] health state for wave i and individual j */
     /* printf("BUG ncovmodel=%d NCOVMAX=%d 2**ncovmodel=%f BUG\n",ncovmodel,NCOVMAX,pow(2,ncovmodel)); */
   tab=ivector(1,NCOVMAX);    tab=ivector(1,NCOVMAX);
   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */    ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */    ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
Line 9352  Please run with mle=-1 to get a correct Line 12619  Please run with mle=-1 to get a correct
     goto end;      goto end;
   
   /* Calculation of the number of parameters from char model */    /* Calculation of the number of parameters from char model */
     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
         k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4          k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
         k=3 V4 Tvar[k=3]= 4 (from V4)          k=3 V4 Tvar[k=3]= 4 (from V4)
         k=2 V1 Tvar[k=2]= 1 (from V1)          k=2 V1 Tvar[k=2]= 1 (from V1)
         k=1 Tvar[1]=2 (from V2)          k=1 Tvar[1]=2 (from V2)
     */    */
     
   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */    Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     TvarsDind=ivector(1,NCOVMAX); /*  */
     TnsdVar=ivector(1,NCOVMAX); /*  */
       /* for(i=1; i<=NCOVMAX;i++) TnsdVar[i]=3; */
     TvarsD=ivector(1,NCOVMAX); /*  */
     TvarsQind=ivector(1,NCOVMAX); /*  */
     TvarsQ=ivector(1,NCOVMAX); /*  */
     TvarF=ivector(1,NCOVMAX); /*  */
     TvarFind=ivector(1,NCOVMAX); /*  */
     TvarV=ivector(1,NCOVMAX); /*  */
     TvarVind=ivector(1,NCOVMAX); /*  */
     TvarA=ivector(1,NCOVMAX); /*  */
     TvarAind=ivector(1,NCOVMAX); /*  */
     TvarFD=ivector(1,NCOVMAX); /*  */
     TvarFDind=ivector(1,NCOVMAX); /*  */
     TvarFQ=ivector(1,NCOVMAX); /*  */
     TvarFQind=ivector(1,NCOVMAX); /*  */
     TvarVD=ivector(1,NCOVMAX); /*  */
     TvarVDind=ivector(1,NCOVMAX); /*  */
     TvarVQ=ivector(1,NCOVMAX); /*  */
     TvarVQind=ivector(1,NCOVMAX); /*  */
   
     Tvalsel=vector(1,NCOVMAX); /*  */
     Tvarsel=ivector(1,NCOVMAX); /*  */
   Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */    Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */
   Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */    Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */
   Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */    Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */
Line 9381  Please run with mle=-1 to get a correct Line 12672  Please run with mle=-1 to get a correct
   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm    Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                             * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd.                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                             * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */                              * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tvardk=imatrix(1,NCOVMAX,1,2);
   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age    Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                          4 covariates (3 plus signs)                           4 covariates (3 plus signs)
                          Tage[1=V3*age]= 4; Tage[2=age*V4] = 3                           Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                       */                               */  
   Tmodelind=ivector(1,NCOVMAX);/** five the k model position of an    for(i=1;i<NCOVMAX;i++)
       Tage[i]=0;
     Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an
                                 * individual dummy, fixed or varying:                                  * individual dummy, fixed or varying:
                                 * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,                                  * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,
                                 * 3, 1, 0, 0, 0, 0, 0, 0},                                  * 3, 1, 0, 0, 0, 0, 0, 0},
                                   * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , 
                                   * V1 df, V2 qf, V3 & V4 dv, V5 qv
                                   * Tmodelind[1]@9={9,0,3,2,}*/
     TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/
     TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an
                                   * individual quantitative, fixed or varying:
                                   * Tmodelqind[1]=1,Tvaraff[1]@9={4,
                                   * 3, 1, 0, 0, 0, 0, 0, 0},
                                 * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/                                  * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
 /* Main decodemodel */  /* Main decodemodel */
   
Line 9414  Please run with mle=-1 to get a correct Line 12716  Please run with mle=-1 to get a correct
   
   
   agegomp=(int)agemin;    agegomp=(int)agemin;
   free_vector(moisnais,1,n);    free_vector(moisnais,firstobs,lastobs);
   free_vector(annais,1,n);    free_vector(annais,firstobs,lastobs);
   /* free_matrix(mint,1,maxwav,1,n);    /* free_matrix(mint,1,maxwav,1,n);
      free_matrix(anint,1,maxwav,1,n);*/       free_matrix(anint,1,maxwav,1,n);*/
   /* free_vector(moisdc,1,n); */    /* free_vector(moisdc,1,n); */
Line 9439  Please run with mle=-1 to get a correct Line 12741  Please run with mle=-1 to get a correct
   */    */
   
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   /* */    /* Concatenates waves */
     
   free_vector(moisdc,1,n);    free_vector(moisdc,firstobs,lastobs);
   free_vector(andc,1,n);    free_vector(andc,firstobs,lastobs);
   
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
Line 9450  Please run with mle=-1 to get a correct Line 12752  Please run with mle=-1 to get a correct
   Ndum =ivector(-1,NCOVMAX);      Ndum =ivector(-1,NCOVMAX);  
   cptcoveff=0;    cptcoveff=0;
   if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */    if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
     tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */      tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; as well as calculate cptcoveff or number of total effective dummy covariates*/
   }    }
       
   ncovcombmax=pow(2,cptcoveff);    ncovcombmax=pow(2,cptcoveff);
   invalidvarcomb=ivector(1, ncovcombmax);     invalidvarcomb=ivector(0, ncovcombmax); 
   for(i=1;i<ncovcombmax;i++)    for(i=0;i<ncovcombmax;i++)
     invalidvarcomb[i]=0;      invalidvarcomb[i]=0;
       
   /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in    /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
Line 9480  Please run with mle=-1 to get a correct Line 12782  Please run with mle=-1 to get a correct
            * For k=4 covariates, h goes from 1 to m=2**k             * For k=4 covariates, h goes from 1 to m=2**k
            * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;             * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
            * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1             * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
            *     h\k   1     2     3     4             *     h\k   1     2     3     4   *  h-1\k-1  4  3  2  1          
            *______________________________               *______________________________   *______________________
            *     1 i=1 1 i=1 1 i=1 1 i=1 1             *     1 i=1 1 i=1 1 i=1 1 i=1 1   *     0     0  0  0  0 
            *     2     2     1     1     1             *     2     2     1     1     1   *     1     0  0  0  1 
            *     3 i=2 1     2     1     1             *     3 i=2 1     2     1     1   *     2     0  0  1  0 
            *     4     2     2     1     1             *     4     2     2     1     1   *     3     0  0  1  1 
            *     5 i=3 1 i=2 1     2     1             *     5 i=3 1 i=2 1     2     1   *     4     0  1  0  0 
            *     6     2     1     2     1             *     6     2     1     2     1   *     5     0  1  0  1 
            *     7 i=4 1     2     2     1             *     7 i=4 1     2     2     1   *     6     0  1  1  0 
            *     8     2     2     2     1             *     8     2     2     2     1   *     7     0  1  1  1 
            *     9 i=5 1 i=3 1 i=2 1     2             *     9 i=5 1 i=3 1 i=2 1     2   *     8     1  0  0  0 
            *    10     2     1     1     2             *    10     2     1     1     2   *     9     1  0  0  1 
            *    11 i=6 1     2     1     2             *    11 i=6 1     2     1     2   *    10     1  0  1  0 
            *    12     2     2     1     2             *    12     2     2     1     2   *    11     1  0  1  1 
            *    13 i=7 1 i=4 1     2     2                 *    13 i=7 1 i=4 1     2     2   *    12     1  1  0  0  
            *    14     2     1     2     2             *    14     2     1     2     2   *    13     1  1  0  1 
            *    15 i=8 1     2     2     2             *    15 i=8 1     2     2     2   *    14     1  1  1  0 
            *    16     2     2     2     2             *    16     2     2     2     2   *    15     1  1  1  1          
            */             */                                     
   /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */    /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
      /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4       /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
      * and the value of each covariate?       * and the value of each covariate?
Line 9589  Title=%s <br>Datafile=%s Firstpass=%d La Line 12891  Title=%s <br>Datafile=%s Firstpass=%d La
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
   }    }
   
   fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \    fprintf(fichtm,"<html><head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n\
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  <title>IMaCh %s</title></head>\n\
    <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n\
   <font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>\
   -EUROREVES-Institut de longévité-2013-2022-Japan Society for the Promotion of Sciences 日本学術振興会 \
   (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - \
   <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br> \n", optionfilehtm);
     
     fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\"> \n\
 <font size=\"2\">IMaCh-%s <br> %s</font> \  <font size=\"2\">IMaCh-%s <br> %s</font> \
 <hr size=\"2\" color=\"#EC5E5E\"> \n\  <hr size=\"2\" color=\"#EC5E5E\"> \n\
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\  This file: <a href=\"%s\">%s</a></br>Title=%s <br>Datafile=<a href=\"%s\">%s</a> Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
 \n\  \n\
 <hr  size=\"2\" color=\"#EC5E5E\">\  <hr  size=\"2\" color=\"#EC5E5E\">\
  <ul><li><h4>Parameter files</h4>\n\   <ul><li><h4>Parameter files</h4>\n\
Line 9602  Title=%s <br>Datafile=%s Firstpass=%d La Line 12911  Title=%s <br>Datafile=%s Firstpass=%d La
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
  - Date and time at start: %s</ul>\n",\   - Date and time at start: %s</ul>\n",\
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\            version,fullversion,optionfilehtm,optionfilehtm,title,datafile,datafile,firstpass,lastpass,stepm, weightopt, model, \
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
           fileres,fileres,\            fileres,fileres,\
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
Line 9620  Title=%s <br>Datafile=%s Firstpass=%d La Line 12929  Title=%s <br>Datafile=%s Firstpass=%d La
   /* Calculates basic frequencies. Computes observed prevalence at single age     /* Calculates basic frequencies. Computes observed prevalence at single age 
                  and for any valid combination of covariates                   and for any valid combination of covariates
      and prints on file fileres'p'. */       and prints on file fileres'p'. */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \    freqsummary(fileres, p, pstart, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \
               firstpass, lastpass,  stepm,  weightopt, model);                firstpass, lastpass,  stepm,  weightopt, model);
   
   fprintf(fichtm,"\n");    fprintf(fichtm,"\n");
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\    fprintf(fichtm,"<h4>Parameter line 2</h4><ul><li>Tolerance for the convergence of the likelihood: ftol=%g \n<li>Interval for the elementary matrix (in month): stepm=%d",\
             ftol, stepm);
     fprintf(fichtm,"\n<li>Number of fixed dummy covariates: ncovcol=%d ", ncovcol);
     ncurrv=1;
     for(i=ncurrv; i <=ncovcol; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li> Number of fixed quantitative variables: nqv=%d ", nqv); 
     ncurrv=i;
     for(i=ncurrv; i <=ncurrv-1+nqv; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li> Number of time varying (wave varying) dummy covariates: ntv=%d ", ntv);
     ncurrv=i;
     for(i=ncurrv; i <=ncurrv-1+ntv; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li>Number of time varying  quantitative covariates: nqtv=%d ", nqtv);
     ncurrv=i;
     for(i=ncurrv; i <=ncurrv-1+nqtv; i++) fprintf(fichtm,"V%d ", i);
     fprintf(fichtm,"\n<li>Weights column \n<br>Number of alive states: nlstate=%d <br>Number of death states (not really implemented): ndeath=%d \n<li>Number of waves: maxwav=%d \n<li>Parameter for maximization (1), using parameter values (0), for design of parameters and variance-covariance matrix: mle=%d \n<li>Does the weight column be taken into account (1), or not (0): weight=%d</ul>\n", \
              nlstate, ndeath, maxwav, mle, weightopt);
   
     fprintf(fichtm,"<h4> Diagram of states <a href=\"%s_.svg\">%s_.svg</a></h4> \n\
   <img src=\"%s_.svg\">", subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"));
   
     
     fprintf(fichtm,"\n<h4>Some descriptive statistics </h4>\n<br>Number of (used) observations=%d <br>\n\
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);    imx,agemin,agemax,jmin,jmax,jmean);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
   
   /* For Powell, parameters are in a vector p[] starting at p[1]    /* For Powell, parameters are in a vector p[] starting at p[1]
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
Line 9642  Interval (in months) between two waves: Line 12972  Interval (in months) between two waves:
   /* For mortality only */    /* For mortality only */
   if (mle==-3){    if (mle==-3){
     ximort=matrix(1,NDIM,1,NDIM);       ximort=matrix(1,NDIM,1,NDIM); 
                 for(i=1;i<=NDIM;i++)      for(i=1;i<=NDIM;i++)
                         for(j=1;j<=NDIM;j++)        for(j=1;j<=NDIM;j++)
                                 ximort[i][j]=0.;          ximort[i][j]=0.;
     /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */      /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
     cens=ivector(1,n);      cens=ivector(firstobs,lastobs);
     ageexmed=vector(1,n);      ageexmed=vector(firstobs,lastobs);
     agecens=vector(1,n);      agecens=vector(firstobs,lastobs);
     dcwave=ivector(1,n);      dcwave=ivector(firstobs,lastobs);
                                   
     for (i=1; i<=imx; i++){      for (i=1; i<=imx; i++){
       dcwave[i]=-1;        dcwave[i]=-1;
Line 9683  Interval (in months) between two waves: Line 13013  Interval (in months) between two waves:
         ximort[i][j]=(i == j ? 1.0 : 0.0);          ximort[i][j]=(i == j ? 1.0 : 0.0);
     }      }
           
     /*p[1]=0.0268; p[NDIM]=0.083;*/      p[1]=0.0268; p[NDIM]=0.083;
     /*printf("%lf %lf", p[1], p[2]);*/      /* printf("%lf %lf", p[1], p[2]); */
           
           
 #ifdef GSL  #ifdef GSL
Line 9810  Interval (in months) between two waves: Line 13140  Interval (in months) between two waves:
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));        fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     }      }
     lsurv=vector(1,AGESUP);      lsurv=vector(agegomp,AGESUP);
     lpop=vector(1,AGESUP);      lpop=vector(agegomp,AGESUP);
     tpop=vector(1,AGESUP);      tpop=vector(agegomp,AGESUP);
     lsurv[agegomp]=100000;      lsurv[agegomp]=100000;
           
     for (k=agegomp;k<=AGESUP;k++) {      for (k=agegomp;k<=AGESUP;k++) {
Line 9859  Please run with mle=-1 to get a correct Line 13189  Please run with mle=-1 to get a correct
                      stepm, weightopt,\                       stepm, weightopt,\
                      model,imx,p,matcov,agemortsup);                       model,imx,p,matcov,agemortsup);
           
     free_vector(lsurv,1,AGESUP);      free_vector(lsurv,agegomp,AGESUP);
     free_vector(lpop,1,AGESUP);      free_vector(lpop,agegomp,AGESUP);
     free_vector(tpop,1,AGESUP);      free_vector(tpop,agegomp,AGESUP);
     free_matrix(ximort,1,NDIM,1,NDIM);      free_matrix(ximort,1,NDIM,1,NDIM);
     free_ivector(cens,1,n);      free_ivector(dcwave,firstobs,lastobs);
     free_vector(agecens,1,n);      free_vector(agecens,firstobs,lastobs);
     free_ivector(dcwave,1,n);      free_vector(ageexmed,firstobs,lastobs);
       free_ivector(cens,firstobs,lastobs);
 #ifdef GSL  #ifdef GSL
 #endif  #endif
   } /* Endof if mle==-3 mortality only */    } /* Endof if mle==-3 mortality only */
Line 9880  Please run with mle=-1 to get a correct Line 13211  Please run with mle=-1 to get a correct
     printf("\n");      printf("\n");
     if(mle>=1){ /* Could be 1 or 2, Real Maximization */      if(mle>=1){ /* Could be 1 or 2, Real Maximization */
       /* mlikeli uses func not funcone */        /* mlikeli uses func not funcone */
         /* for(i=1;i<nlstate;i++){ */
         /*        /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
         /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
         /* } */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }      }
     if(mle==0) {/* No optimization, will print the likelihoods for the datafile */      if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
Line 9890  Please run with mle=-1 to get a correct Line 13225  Please run with mle=-1 to get a correct
     globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */      globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
             /* exit(0); */
     for (k=1; k<=npar;k++)      for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);        printf(" %d %8.5f",k,p[k]);
     printf("\n");      printf("\n");
           
     /*--------- results files --------------*/      /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model);      /* fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); */
           
           
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); /* Printing model equation */
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   
       printf("#model=  1      +     age ");
       fprintf(ficres,"#model=  1      +     age ");
       fprintf(ficlog,"#model=  1      +     age ");
       fprintf(fichtm,"\n<ul><li> model=1+age+%s\n \
   </ul>", model);
   
       fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">\n");
       fprintf(fichtm, "<tr><th>Model=</th><th>1</th><th>+ age</th>");
       if(nagesqr==1){
         printf("  + age*age  ");
         fprintf(ficres,"  + age*age  ");
         fprintf(ficlog,"  + age*age  ");
         fprintf(fichtm, "<th>+ age*age</th>");
       }
       for(j=1;j <=ncovmodel-2;j++){
         if(Typevar[j]==0) {
           printf("  +      V%d  ",Tvar[j]);
           fprintf(ficres,"  +      V%d  ",Tvar[j]);
           fprintf(ficlog,"  +      V%d  ",Tvar[j]);
           fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]);
         }else if(Typevar[j]==1) {
           printf("  +    V%d*age ",Tvar[j]);
           fprintf(ficres,"  +    V%d*age ",Tvar[j]);
           fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
           fprintf(fichtm, "<th>+  V%d*age</th>",Tvar[j]);
         }else if(Typevar[j]==2) {
           printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
           fprintf(ficres,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
           fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
           fprintf(fichtm, "<th>+  V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
         }
       }
       printf("\n");
       fprintf(ficres,"\n");
       fprintf(ficlog,"\n");
       fprintf(fichtm, "</tr>");
       fprintf(fichtm, "\n");
       
       
     for(i=1,jk=1; i <=nlstate; i++){      for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){        for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {          if (k != i) {
             fprintf(fichtm, "<tr>");
           printf("%d%d ",i,k);            printf("%d%d ",i,k);
           fprintf(ficlog,"%d%d ",i,k);            fprintf(ficlog,"%d%d ",i,k);
           fprintf(ficres,"%1d%1d ",i,k);            fprintf(ficres,"%1d%1d ",i,k);
             fprintf(fichtm, "<td>%1d%1d</td>",i,k);
           for(j=1; j <=ncovmodel; j++){            for(j=1; j <=ncovmodel; j++){
             printf("%12.7f ",p[jk]);              printf("%12.7f ",p[jk]);
             fprintf(ficlog,"%12.7f ",p[jk]);              fprintf(ficlog,"%12.7f ",p[jk]);
             fprintf(ficres,"%12.7f ",p[jk]);              fprintf(ficres,"%12.7f ",p[jk]);
               fprintf(fichtm, "<td>%12.7f</td>",p[jk]);
             jk++;               jk++; 
           }            }
           printf("\n");            printf("\n");
           fprintf(ficlog,"\n");            fprintf(ficlog,"\n");
           fprintf(ficres,"\n");            fprintf(ficres,"\n");
             fprintf(fichtm, "</tr>\n");
         }          }
       }        }
     }      }
       /* fprintf(fichtm,"</tr>\n"); */
       fprintf(fichtm,"</table>\n");
       fprintf(fichtm, "\n");
   
     if(mle != 0){      if(mle != 0){
       /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */        /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
       ftolhess=ftol; /* Usually correct */        ftolhess=ftol; /* Usually correct */
       hesscov(matcov, hess, p, npar, delti, ftolhess, func);        hesscov(matcov, hess, p, npar, delti, ftolhess, func);
       printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");        printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");        fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(fichtm, "\n<p>The Wald test results are output only if the maximimzation of the Likelihood is performed (mle=1)\n</br>Parameters, Wald tests and Wald-based confidence intervals\n</br> W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n</br> And Wald-based confidence intervals plus and minus 1.96 * W \n </br> It might be better to visualize the covariance matrix. See the page '<a href=\"%s\">Matrix of variance-covariance of one-step probabilities and its graphs</a>'.\n</br>",optionfilehtmcov);
         fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">");
         fprintf(fichtm, "\n<tr><th>Model=</th><th>1</th><th>+ age</th>");
         if(nagesqr==1){
           printf("  + age*age  ");
           fprintf(ficres,"  + age*age  ");
           fprintf(ficlog,"  + age*age  ");
           fprintf(fichtm, "<th>+ age*age</th>");
         }
         for(j=1;j <=ncovmodel-2;j++){
           if(Typevar[j]==0) {
             printf("  +      V%d  ",Tvar[j]);
             fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]);
           }else if(Typevar[j]==1) {
             printf("  +    V%d*age ",Tvar[j]);
             fprintf(fichtm, "<th>+  V%d*age</th>",Tvar[j]);
           }else if(Typevar[j]==2) {
             fprintf(fichtm, "<th>+  V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
           }
         }
         fprintf(fichtm, "</tr>\n");
    
       for(i=1,jk=1; i <=nlstate; i++){        for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){          for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {            if (k != i) {
               fprintf(fichtm, "<tr valign=top>");
             printf("%d%d ",i,k);              printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);              fprintf(ficlog,"%d%d ",i,k);
               fprintf(fichtm, "<td>%1d%1d</td>",i,k);
             for(j=1; j <=ncovmodel; j++){              for(j=1; j <=ncovmodel; j++){
               printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));                wald=p[jk]/sqrt(matcov[jk][jk]);
               fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));                printf("%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 if(fabs(wald) > 1.96){
                   fprintf(fichtm, "<td><b>%12.7f</b></br> (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk]));
                 }else{
                   fprintf(fichtm, "<td>%12.7f (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk]));
                 }
                 fprintf(fichtm,"W=%8.3f</br>",wald);
                 fprintf(fichtm,"[%12.7f;%12.7f]</br></td>", p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               jk++;                 jk++; 
             }              }
             printf("\n");              printf("\n");
             fprintf(ficlog,"\n");              fprintf(ficlog,"\n");
               fprintf(fichtm, "</tr>\n");
           }            }
         }          }
       }        }
     } /* end of hesscov and Wald tests */      } /* end of hesscov and Wald tests */
       fprintf(fichtm,"</table>\n");
           
     /*  */      /*  */
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
Line 10057  Please run with mle=-1 to get a correct Line 13475  Please run with mle=-1 to get a correct
         fputs(line,stdout);          fputs(line,stdout);
         fputs(line,ficparo);          fputs(line,ficparo);
         fputs(line,ficlog);          fputs(line,ficlog);
           fputs(line,ficres);
         continue;          continue;
       }else        }else
         break;          break;
Line 10095  Please run with mle=-1 to get a correct Line 13514  Please run with mle=-1 to get a correct
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);      fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
                                   
     /* Other stuffs, more or less useful */          /* Other stuffs, more or less useful */    
     while((c=getc(ficpar))=='#' && c!= EOF){      while(fgets(line, MAXLINE, ficpar)) {
       ungetc(c,ficpar);        /* If line starts with a # it is a comment */
       fgets(line, MAXLINE, ficpar);        if (line[0] == '#') {
       fputs(line,stdout);          numlinepar++;
       fputs(line,ficparo);          fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           fputs(line,ficres);
           continue;
         }else
           break;
     }      }
     ungetc(c,ficpar);  
           if((num_filled=sscanf(line,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav)) !=EOF){
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        if (num_filled != 7) {
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          printf("Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004  mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          fprintf(ficlog,"Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004  mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          goto end;
             }
     while((c=getc(ficpar))=='#' && c!= EOF){        printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       ungetc(c,ficpar);        fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fgets(line, MAXLINE, ficpar);        fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fputs(line,stdout);        fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fputs(line,ficparo);      }
   
       while(fgets(line, MAXLINE, ficpar)) {
         /* If line starts with a # it is a comment */
         if (line[0] == '#') {
           numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           fputs(line,ficres);
           continue;
         }else
           break;
     }      }
     ungetc(c,ficpar);  
           
           
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;      dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
           
     fscanf(ficpar,"pop_based=%d\n",&popbased);      if((num_filled=sscanf(line,"pop_based=%d\n",&popbased)) !=EOF){
     fprintf(ficlog,"pop_based=%d\n",popbased);        if (num_filled != 1) {
     fprintf(ficparo,"pop_based=%d\n",popbased);             printf("Error: Not 1 (data)parameters in line but %d, for example:pop_based=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
     fprintf(ficres,"pop_based=%d\n",popbased);             fprintf(ficlog,"Error: Not 1 (data)parameters in line but %d, for example: pop_based=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
               goto end;
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);        printf("pop_based=%d\n",popbased);
       fgets(line, MAXLINE, ficpar);        fprintf(ficlog,"pop_based=%d\n",popbased);
       fputs(line,stdout);        fprintf(ficparo,"pop_based=%d\n",popbased);   
       fputs(line,ficparo);        fprintf(ficres,"pop_based=%d\n",popbased);   
     }      }
     ungetc(c,ficpar);       
           /* Results */
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      /* Value of covariate in each resultine will be compututed (if product) and sorted according to model rank */
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      /* It is precov[] because we need the varying age in order to compute the real cov[] of the model equation */  
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      precov=matrix(1,MAXRESULTLINESPONE,1,NCOVMAX+1);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      endishere=0;
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      nresult=0;
     /* day and month of proj2 are not used but only year anproj2.*/      parameterline=0;
           do{
     while((c=getc(ficpar))=='#' && c!= EOF){        if(!fgets(line, MAXLINE, ficpar)){
       ungetc(c,ficpar);          endishere=1;
       fgets(line, MAXLINE, ficpar);          parameterline=15;
       fputs(line,stdout);        }else if (line[0] == '#') {
       fputs(line,ficparo);          /* If line starts with a # it is a comment */
     }          numlinepar++;
     ungetc(c,ficpar);          fputs(line,stdout);
               fputs(line,ficparo);
     fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);          fputs(line,ficlog);
     fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);          fputs(line,ficres);
     fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);          continue;
     fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);        }else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp))
     /* day and month of proj2 are not used but only year anproj2.*/          parameterline=11;
             else if(sscanf(line,"prevbackcast=%[^\n]\n",modeltemp))
           parameterline=12;
         else if(sscanf(line,"result:%[^\n]\n",modeltemp)){
           parameterline=13;
         }
         else{
           parameterline=14;
         }
         switch (parameterline){ /* =0 only if only comments */
         case 11:
           if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF && (num_filled == 8)){
                     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
             /* day and month of proj2 are not used but only year anproj2.*/
             dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.;
             dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.;
             prvforecast = 1;
           } 
           else if((num_filled=sscanf(line,"prevforecast=%d yearsfproj=%lf mobil_average=%d\n",&prevfcast,&yrfproj,&mobilavproj)) !=EOF){/* && (num_filled == 3))*/
             printf("prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
             fprintf(ficlog,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
             fprintf(ficres,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
             prvforecast = 2;
           }
           else {
             printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearsfproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
             fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
             goto end;
           }
           break;
         case 12:
           if((num_filled=sscanf(line,"prevbackcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&prevbcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF && (num_filled == 8)){
             fprintf(ficparo,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             printf("prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             fprintf(ficlog,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             fprintf(ficres,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
             /* day and month of back2 are not used but only year anback2.*/
             dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.;
             dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.;
             prvbackcast = 1;
           } 
           else if((num_filled=sscanf(line,"prevbackcast=%d yearsbproj=%lf mobil_average=%d\n",&prevbcast,&yrbproj,&mobilavproj)) ==3){/* && (num_filled == 3))*/
             printf("prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
             fprintf(ficlog,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
             fprintf(ficres,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
             prvbackcast = 2;
           }
           else {
             printf("Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearsbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
             fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
             goto end;
           }
           break;
         case 13:
           num_filled=sscanf(line,"result:%[^\n]\n",resultlineori);
           nresult++; /* Sum of resultlines */
           printf("Result %d: result:%s\n",nresult, resultlineori);
           /* removefirstspace(&resultlineori); */
           
           if(strstr(resultlineori,"v") !=0){
             printf("Error. 'v' must be in upper case 'V' result: %s ",resultlineori);
             fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultlineori);fflush(ficlog);
             return 1;
           }
           trimbb(resultline, resultlineori); /* Suppressing double blank in the resultline */
           printf("Decoderesult resultline=\"%s\" resultlineori=\"%s\"\n", resultline, resultlineori);
           if(nresult > MAXRESULTLINESPONE-1){
             printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres);
             fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres);
             goto end;
           }
           
           if(!decoderesult(resultline, nresult)){ /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */
             fprintf(ficparo,"result: %s\n",resultline);
             fprintf(ficres,"result: %s\n",resultline);
             fprintf(ficlog,"result: %s\n",resultline);
           } else
             goto end;
           break;
         case 14:
           printf("Error: Unknown command '%s'\n",line);
           fprintf(ficlog,"Error: Unknown command '%s'\n",line);
           if(line[0] == ' ' || line[0] == '\n'){
             printf("It should not be an empty line '%s'\n",line);
             fprintf(ficlog,"It should not be an empty line '%s'\n",line);
           }         
           if(ncovmodel >=2 && nresult==0 ){
             printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line);
             fprintf(ficlog,"ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line);
           }
           /* goto end; */
           break;
         case 15:
           printf("End of resultlines.\n");
           fprintf(ficlog,"End of resultlines.\n");
           break;
         default: /* parameterline =0 */
           nresult=1;
           decoderesult(".",nresult ); /* No covariate */
         } /* End switch parameterline */
       }while(endishere==0); /* End do */
           
                 /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */      /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
           
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){      if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
                         printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\        printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
 This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\  This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
 Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);  Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
                         fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\        fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
 This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\  This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
 Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);  Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
     }else{      }else{
       printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p);        /* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */
         /* It seems that anprojd which is computed from the mean year at interview which is known yet because of freqsummary */
         /* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ /* Done in freqsummary */
         if(prvforecast==1){
           dateprojd=(jproj1+12*mproj1+365*anproj1)/365;
           jprojd=jproj1;
           mprojd=mproj1;
           anprojd=anproj1;
           dateprojf=(jproj2+12*mproj2+365*anproj2)/365;
           jprojf=jproj2;
           mprojf=mproj2;
           anprojf=anproj2;
         } else if(prvforecast == 2){
           dateprojd=dateintmean;
           date2dmy(dateprojd,&jprojd, &mprojd, &anprojd);
           dateprojf=dateintmean+yrfproj;
           date2dmy(dateprojf,&jprojf, &mprojf, &anprojf);
         }
         if(prvbackcast==1){
           datebackd=(jback1+12*mback1+365*anback1)/365;
           jbackd=jback1;
           mbackd=mback1;
           anbackd=anback1;
           datebackf=(jback2+12*mback2+365*anback2)/365;
           jbackf=jback2;
           mbackf=mback2;
           anbackf=anback2;
         } else if(prvbackcast == 2){
           datebackd=dateintmean;
           date2dmy(datebackd,&jbackd, &mbackd, &anbackd);
           datebackf=dateintmean-yrbproj;
           date2dmy(datebackf,&jbackf, &mbackf, &anbackf);
         }
         
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, prevbcast, pathc,p, (int)anprojd-bage, (int)anbackd-fage);
     }      }
     printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \      printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \                   model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,prevbcast, estepm, \
                  jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2);                   jprev1,mprev1,anprev1,dateprev1, dateprojd, datebackd,jprev2,mprev2,anprev2,dateprev2,dateprojf, datebackf);
                                   
     /*------------ free_vector  -------------*/      /*------------ free_vector  -------------*/
     /*  chdir(path); */      /*  chdir(path); */
Line 10181  Please run with mle=-1 to get a correct Line 13753  Please run with mle=-1 to get a correct
     /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */      /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
     /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */      /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
     /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */      /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
     free_lvector(num,1,n);      free_lvector(num,firstobs,lastobs);
     free_vector(agedc,1,n);      free_vector(agedc,firstobs,lastobs);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);      fclose(ficparo);
Line 10195  Please run with mle=-1 to get a correct Line 13767  Please run with mle=-1 to get a correct
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */      /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
     prlim=matrix(1,nlstate,1,nlstate);      prlim=matrix(1,nlstate,1,nlstate);
       /* Computes the prevalence limit for each combination k of the dummy covariates by calling prevalim(k) */
     prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);      prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
     fclose(ficrespl);      fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/      /*------------- h Pij x at various ages ------------*/
     /*#include "hpijx.h"*/      /*#include "hpijx.h"*/
       /** h Pij x Probability to be in state j at age x+h being in i at x, for each combination k of dummies in the model line or to nres?*/
       /* calls hpxij with combination k */
     hPijx(p, bage, fage);      hPijx(p, bage, fage);
     fclose(ficrespij);      fclose(ficrespij);
           
     /* ncovcombmax=  pow(2,cptcoveff); */      /* ncovcombmax=  pow(2,cptcoveff); */
     /*-------------- Variance of one-step probabilities---*/      /*-------------- Variance of one-step probabilities for a combination ij or for nres ?---*/
     k=1;      k=1;
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
           
     /* Prevalence for each covariates in probs[age][status][cov] */      /* Prevalence for each covariate combination in probs[age][status][cov] */
     probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);      probs= ma3x(AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
     for(i=1;i<=AGESUP;i++)      for(i=AGEINF;i<=AGESUP;i++)
       for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */        for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */
         for(k=1;k<=ncovcombmax;k++)          for(k=1;k<=ncovcombmax;k++)
           probs[i][j][k]=0.;            probs[i][j][k]=0.;
     prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, 
                  ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     if (mobilav!=0 ||mobilavproj !=0 ) {      if (mobilav!=0 ||mobilavproj !=0 ) {
       mobaverages= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);        mobaverages= ma3x(AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
       for(i=1;i<=AGESUP;i++)        for(i=AGEINF;i<=AGESUP;i++)
         for(j=1;j<=nlstate;j++)          for(j=1;j<=nlstate+ndeath;j++)
           for(k=1;k<=ncovcombmax;k++)            for(k=1;k<=ncovcombmax;k++)
             mobaverages[i][j][k]=0.;              mobaverages[i][j][k]=0.;
       mobaverage=mobaverages;        mobaverage=mobaverages;
       if (mobilav!=0) {        if (mobilav!=0) {
           printf("Movingaveraging observed prevalence\n");
           fprintf(ficlog,"Movingaveraging observed prevalence\n");
         if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){          if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);            fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);            printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }          }
       }        } else if (mobilavproj !=0) {
       /* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */          printf("Movingaveraging projected observed prevalence\n");
       /* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */          fprintf(ficlog,"Movingaveraging projected observed prevalence\n");
       else if (mobilavproj !=0) {  
         if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){          if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
           fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);            fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
           printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);            printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
         }          }
         }else{
           printf("Internal error moving average\n");
           fflush(stdout);
           exit(1);
       }        }
     }/* end if moving average */      }/* end if moving average */
           
     /*---------- Forecasting ------------------*/      /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/      if(prevfcast==1){ 
     if(prevfcast==1){        /*   /\*    if(stepm ==1){*\/ */
       /*    if(stepm ==1){*/        /*   /\*  anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */
       prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);        /*This done previously after freqsummary.*/
         /*   dateprojd=(jproj1+12*mproj1+365*anproj1)/365; */
         /*   dateprojf=(jproj2+12*mproj2+365*anproj2)/365; */
         
         /* } else if (prvforecast==2){ */
         /*   /\*    if(stepm ==1){*\/ */
         /*   /\*  anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */
         /* } */
         /*prevforecast(fileresu, dateintmean, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);*/
         prevforecast(fileresu,dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, p, cptcoveff);
     }      }
     if(backcast==1){  
       /* Prevbcasting */
       if(prevbcast==1){
       ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);                ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
       ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);                ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
       ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
Line 10252  Please run with mle=-1 to get a correct Line 13844  Please run with mle=-1 to get a correct
       /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/        /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
   
       bprlim=matrix(1,nlstate,1,nlstate);        bprlim=matrix(1,nlstate,1,nlstate);
   
       back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);        back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
       fclose(ficresplb);        fclose(ficresplb);
   
       hBijx(p, bage, fage, mobaverage);        hBijx(p, bage, fage, mobaverage);
       fclose(ficrespijb);        fclose(ficrespijb);
       free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */  
   
       /* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj,        /* /\* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, *\/ */
          bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */        /* /\*                   mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); *\/ */
         /* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, */
         /*                       mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */
         prevbackforecast(fileresu, mobaverage, dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2,
                          mobilavproj, bage, fage, firstpass, lastpass, p, cptcoveff);
   
         
         varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
   
         
         free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);        free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
       free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);        free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
       free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);        free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
     }      }    /* end  Prevbcasting */
        
     
     /* ------ Other prevalence ratios------------ */      /* ------ Other prevalence ratios------------ */
   
Line 10285  Please run with mle=-1 to get a correct Line 13887  Please run with mle=-1 to get a correct
     }      }
     printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);      printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);      fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
   
       pstamp(ficreseij);
                                   
     for (k=1; k <= (int) pow(2,cptcoveff); k++){ /* For any combination of dummy covariates, fixed and varying */      i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
       if (cptcovn < 1){i1=1;}
       
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(i1 != 1 && TKresult[nres]!= k)
           continue;
       fprintf(ficreseij,"\n#****** ");        fprintf(ficreseij,"\n#****** ");
         printf("\n#****** ");
       for(j=1;j<=cptcoveff;j++) {        for(j=1;j<=cptcoveff;j++) {
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); /* TvarsQ[j] gives the name of the jth quantitative (fixed or time v) */
           fprintf(ficreseij,"V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]);
       }        }
       fprintf(ficreseij,"******\n");        fprintf(ficreseij,"******\n");
         printf("******\n");
               
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
       oldm=oldms;savm=savms;        oldm=oldms;savm=savms;
       evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);          /* printf("HELLO Entering evsij bage=%d fage=%d k=%d estepm=%d nres=%d\n",(int) bage, (int)fage, k, estepm, nres); */
         evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres);  
               
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     }      }
     fclose(ficreseij);      fclose(ficreseij);
     printf("done evsij\n");fflush(stdout);      printf("done evsij\n");fflush(stdout);
     fprintf(ficlog,"done evsij\n");fflush(ficlog);      fprintf(ficlog,"done evsij\n");fflush(ficlog);
   
                                   
     /*---------- State-specific expectancies and variances ------------*/      /*---------- State-specific expectancies and variances ------------*/
                       /* Should be moved in a function */         
                   
     strcpy(filerest,"T_");      strcpy(filerest,"T_");
     strcat(filerest,fileresu);      strcat(filerest,fileresu);
     if((ficrest=fopen(filerest,"w"))==NULL) {      if((ficrest=fopen(filerest,"w"))==NULL) {
Line 10314  Please run with mle=-1 to get a correct Line 13932  Please run with mle=-1 to get a correct
     }      }
     printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);      printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);      fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
                   
   
     strcpy(fileresstde,"STDE_");      strcpy(fileresstde,"STDE_");
     strcat(fileresstde,fileresu);      strcat(fileresstde,fileresu);
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {      if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
Line 10343  Please run with mle=-1 to get a correct Line 13959  Please run with mle=-1 to get a correct
     printf("      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout);      printf("      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout);
     fprintf(ficlog,"      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog);      fprintf(ficlog,"      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog);
   
     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){      i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/      if (cptcovn < 1){i1=1;}
                 
     for (k=1; k <= (int) pow(2,cptcoveff); k++){      for(nres=1; nres <= nresult; nres++) /* For each resultline, find the combination and output results according to the values of dummies and then quanti.  */
       printf("\n#****** ");      for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying. For each nres and each value at position k
       fprintf(ficrest,"\n#****** ");                            * we know Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline
       fprintf(ficlog,"\n#****** ");                            * Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline 
       for(j=1;j<=cptcoveff;j++){                             * and Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */
         printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        /* */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);        if(i1 != 1 && TKresult[nres]!= k) /* TKresult[nres] is the combination of this nres resultline. All the i1 combinations are not output */
         fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          continue;
       }        printf("\n# model %s \n#****** Result for:", model);
         fprintf(ficrest,"\n# model %s \n#****** Result for:", model);
         fprintf(ficlog,"\n# model %s \n#****** Result for:", model);
         /* It might not be a good idea to mix dummies and quantitative */
         /* for(j=1;j<=cptcoveff;j++){ /\* j=resultpos. Could be a loop on cptcovs: number of single dummy covariate in the result line as well as in the model *\/ */
         for(j=1;j<=cptcovs;j++){ /* j=resultpos. Could be a loop on cptcovs: number of single covariate (dummy or quantitative) in the result line as well as in the model */
           /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /\* Output by variables in the resultline *\/ */
           /* Tvaraff[j] is the name of the dummy variable in position j in the equation model:
            * Tvaraff[1]@9={4, 3, 0, 0, 0, 0, 0, 0, 0}, in model=V5+V4+V3+V4*V3+V5*age
            * (V5 is quanti) V4 and V3 are dummies
            * TnsdVar[4] is the position 1 and TnsdVar[3]=2 in codtabm(k,l)(V4  V3)=V4  V3
            *                                                              l=1 l=2
            *                                                           k=1  1   1   0   0
            *                                                           k=2  2   1   1   0
            *                                                           k=3 [1] [2]  0   1
            *                                                           k=4  2   2   1   1
            * If nres=1 result: V3=1 V4=0 then k=3 and outputs
            * If nres=2 result: V4=1 V3=0 then k=2 and outputs
            * nres=1 =>k=3 j=1 V4= nbcode[4][codtabm(3,1)=1)=0; j=2  V3= nbcode[3][codtabm(3,2)=2]=1
            * nres=2 =>k=2 j=1 V4= nbcode[4][codtabm(2,1)=2)=1; j=2  V3= nbcode[3][codtabm(2,2)=1]=0
            */
           /* Tvresult[nres][j] Name of the variable at position j in this resultline */
           /* Tresult[nres][j] Value of this variable at position j could be a float if quantitative  */
   /* We give up with the combinations!! */
           printf("\n j=%d In computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d Fixed[modelresult[nres][j]]=%d\n", j, nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff,Fixed[modelresult[nres][j]]);  /* end if dummy  or quanti */
   
           if(Dummy[modelresult[nres][j]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to j in resultline  */
             printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
             fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
             fprintf(ficrest,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
             if(Fixed[modelresult[nres][j]]==0){ /* Fixed */
               printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed ");
             }else{
               printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi ");
             }
             /* fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
             /* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
           }else if(Dummy[modelresult[nres][j]]==1){ /* Quanti variable */
             /* For each selected (single) quantitative value */
             printf(" V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
             fprintf(ficlog," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
             fprintf(ficrest," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
             if(Fixed[modelresult[nres][j]]==0){ /* Fixed */
               printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed ");
             }else{
               printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi ");
             }
           }else{
             printf("Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff);  /* end if dummy  or quanti */
             fprintf(ficlog,"Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff);  /* end if dummy  or quanti */
             exit(1);
           }
         } /* End loop for each variable in the resultline */
         /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
         /*        printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /\* Wrong j is not in the equation model *\/ */
         /*        fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
         /*        fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
         /* }       */
       fprintf(ficrest,"******\n");        fprintf(ficrest,"******\n");
       fprintf(ficlog,"******\n");        fprintf(ficlog,"******\n");
       printf("******\n");        printf("******\n");
               
       fprintf(ficresstdeij,"\n#****** ");        fprintf(ficresstdeij,"\n#****** ");
       fprintf(ficrescveij,"\n#****** ");        fprintf(ficrescveij,"\n#****** ");
         /* It could have been: for(j=1;j<=cptcoveff;j++) {printf("V=%d=%lg",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);} */
         /* But it won't be sorted and depends on how the resultline is ordered */
       for(j=1;j<=cptcoveff;j++) {        for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          fprintf(ficresstdeij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]);
         fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          /* fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
       }          /* fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value, TvarsQind gives the position of a quantitative in model equation  */
           fprintf(ficresstdeij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]);
           fprintf(ficrescveij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]);
         } 
       fprintf(ficresstdeij,"******\n");        fprintf(ficresstdeij,"******\n");
       fprintf(ficrescveij,"******\n");        fprintf(ficrescveij,"******\n");
               
       fprintf(ficresvij,"\n#****** ");        fprintf(ficresvij,"\n#****** ");
         /* pstamp(ficresvij); */
       for(j=1;j<=cptcoveff;j++)         for(j=1;j<=cptcoveff;j++) 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);          fprintf(ficresvij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]);
           /* fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[TnsdVar[Tvaraff[j]]])]); */
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           /* fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); /\* To solve *\/ */
           fprintf(ficresvij," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /* Solved */
         } 
       fprintf(ficresvij,"******\n");        fprintf(ficresvij,"******\n");
               
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
       oldm=oldms;savm=savms;        oldm=oldms;savm=savms;
       printf(" cvevsij combination#=%d, ",k);        printf(" cvevsij ");
       fprintf(ficlog, " cvevsij combination#=%d, ",k);        fprintf(ficlog, " cvevsij ");
       cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);        cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres);
       printf(" end cvevsij \n ");        printf(" end cvevsij \n ");
       fprintf(ficlog, " end cvevsij \n ");        fprintf(ficlog, " end cvevsij \n ");
               
Line 10388  Please run with mle=-1 to get a correct Line 14074  Please run with mle=-1 to get a correct
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
       pstamp(ficrest);        pstamp(ficrest);
               
               epj=vector(1,nlstate+1);
       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/        for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
         oldm=oldms;savm=savms; /* ZZ Segmentation fault */          oldm=oldms;savm=savms; /* ZZ Segmentation fault */
         cptcod= 0; /* To be deleted */          cptcod= 0; /* To be deleted */
         printf("varevsij vpopbased=%d \n",vpopbased);          printf("varevsij vpopbased=%d \n",vpopbased);
         fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased);          fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */          varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");          fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
         if(vpopbased==1)          if(vpopbased==1)
           fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);            fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
         else          else
           fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");            fprintf(ficrest,"the age specific forward period (stable) prevalences in each health state \n");
         fprintf(ficrest,"# Age popbased mobilav e.. (std) ");          fprintf(ficrest,"# Age popbased mobilav e.. (std) "); /* Adding covariate values? */
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");          fprintf(ficrest,"\n");
         /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */          /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
         epj=vector(1,nlstate+1);          printf("Computing age specific forward period (stable) prevalences in each health state \n");
         printf("Computing age specific period (stable) prevalences in each health state \n");          fprintf(ficlog,"Computing age specific forward period (stable) prevalences in each health state \n");
         fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");  
         for(age=bage; age <=fage ;age++){          for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */            prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */
           if (vpopbased==1) {            if (vpopbased==1) {
             if(mobilav ==0){              if(mobilav ==0){
               for(i=1; i<=nlstate;i++)                for(i=1; i<=nlstate;i++)
Line 10442  Please run with mle=-1 to get a correct Line 14127  Please run with mle=-1 to get a correct
           fprintf(ficrest,"\n");            fprintf(ficrest,"\n");
         }          }
       } /* End vpopbased */        } /* End vpopbased */
         free_vector(epj,1,nlstate+1);
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
       free_vector(epj,1,nlstate+1);        printf("done selection\n");fflush(stdout);
       printf("done \n");fflush(stdout);        fprintf(ficlog,"done selection\n");fflush(ficlog);
       fprintf(ficlog,"done\n");fflush(ficlog);  
               
       /*}*/      } /* End k selection or end covariate selection for nres */
     } /* End k */  
   
     printf("done State-specific expectancies\n");fflush(stdout);      printf("done State-specific expectancies\n");fflush(stdout);
     fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);      fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);
   
     /*------- Variance of period (stable) prevalence------*/         /* variance-covariance of forward period prevalence */
           varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
     strcpy(fileresvpl,"VPL_");  
     strcat(fileresvpl,fileresu);  
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);  
       exit(0);  
     }  
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);  
     fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);  
       
     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){  
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/  
       
     for (k=1; k <= (int) pow(2,cptcoveff); k++){  
       fprintf(ficresvpl,"\n#****** ");  
       printf("\n#****** ");  
       fprintf(ficlog,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);  
         fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);  
         printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);  
       }  
       fprintf(ficresvpl,"******\n");  
       printf("******\n");  
       fprintf(ficlog,"******\n");  
         
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart);  
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
       /*}*/  
     }  
       
     fclose(ficresvpl);  
     printf("done variance-covariance of period prevalence\n");fflush(stdout);  
     fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);  
           
     free_vector(weight,1,n);      free_vector(weight,firstobs,lastobs);
       free_imatrix(Tvardk,1,NCOVMAX,1,2);
     free_imatrix(Tvard,1,NCOVMAX,1,2);      free_imatrix(Tvard,1,NCOVMAX,1,2);
     free_imatrix(s,1,maxwav+1,1,n);      free_imatrix(s,1,maxwav+1,firstobs,lastobs);
     free_matrix(anint,1,maxwav,1,n);       free_matrix(anint,1,maxwav,firstobs,lastobs); 
     free_matrix(mint,1,maxwav,1,n);      free_matrix(mint,1,maxwav,firstobs,lastobs);
     free_ivector(cod,1,n);      free_ivector(cod,firstobs,lastobs);
     free_ivector(tab,1,NCOVMAX);      free_ivector(tab,1,NCOVMAX);
     fclose(ficresstdeij);      fclose(ficresstdeij);
     fclose(ficrescveij);      fclose(ficrescveij);
Line 10508  Please run with mle=-1 to get a correct Line 14159  Please run with mle=-1 to get a correct
           
     /*---------- End : free ----------------*/      /*---------- End : free ----------------*/
     if (mobilav!=0 ||mobilavproj !=0)      if (mobilav!=0 ||mobilavproj !=0)
       free_ma3x(mobaverages,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */        free_ma3x(mobaverages,AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
     free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);      free_ma3x(probs,AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */      free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
   }  /* mle==-3 arrives here for freeing */    }  /* mle==-3 arrives here for freeing */
Line 10517  Please run with mle=-1 to get a correct Line 14168  Please run with mle=-1 to get a correct
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
   free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n);    if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,firstobs,lastobs);
   free_ma3x(cotvar,1,maxwav,1,ntv,1,n);    if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,firstobs,lastobs);
   free_matrix(coqvar,1,maxwav,1,n);    if(nqv>=1)free_matrix(coqvar,1,nqv,firstobs,lastobs);
   free_matrix(covar,0,NCOVMAX,1,n);    free_matrix(covar,0,NCOVMAX,firstobs,lastobs);
   free_matrix(matcov,1,npar,1,npar);    free_matrix(matcov,1,npar,1,npar);
   free_matrix(hess,1,npar,1,npar);    free_matrix(hess,1,npar,1,npar);
   /*free_vector(delti,1,npar);*/    /*free_vector(delti,1,npar);*/
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
   free_matrix(agev,1,maxwav,1,imx);    free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(paramstart,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       
   free_ivector(ncodemax,1,NCOVMAX);    free_ivector(ncodemax,1,NCOVMAX);
   free_ivector(ncodemaxwundef,1,NCOVMAX);    free_ivector(ncodemaxwundef,1,NCOVMAX);
   free_ivector(Dummy,-1,NCOVMAX);    free_ivector(Dummy,-1,NCOVMAX);
   free_ivector(Fixed,-1,NCOVMAX);    free_ivector(Fixed,-1,NCOVMAX);
     free_ivector(DummyV,1,NCOVMAX);
     free_ivector(FixedV,1,NCOVMAX);
   free_ivector(Typevar,-1,NCOVMAX);    free_ivector(Typevar,-1,NCOVMAX);
   free_ivector(Tvar,1,NCOVMAX);    free_ivector(Tvar,1,NCOVMAX);
     free_ivector(TvarsQ,1,NCOVMAX);
     free_ivector(TvarsQind,1,NCOVMAX);
     free_ivector(TvarsD,1,NCOVMAX);
     free_ivector(TnsdVar,1,NCOVMAX);
     free_ivector(TvarsDind,1,NCOVMAX);
     free_ivector(TvarFD,1,NCOVMAX);
     free_ivector(TvarFDind,1,NCOVMAX);
     free_ivector(TvarF,1,NCOVMAX);
     free_ivector(TvarFind,1,NCOVMAX);
     free_ivector(TvarV,1,NCOVMAX);
     free_ivector(TvarVind,1,NCOVMAX);
     free_ivector(TvarA,1,NCOVMAX);
     free_ivector(TvarAind,1,NCOVMAX);
     free_ivector(TvarFQ,1,NCOVMAX);
     free_ivector(TvarFQind,1,NCOVMAX);
     free_ivector(TvarVD,1,NCOVMAX);
     free_ivector(TvarVDind,1,NCOVMAX);
     free_ivector(TvarVQ,1,NCOVMAX);
     free_ivector(TvarVQind,1,NCOVMAX);
     free_ivector(Tvarsel,1,NCOVMAX);
     free_vector(Tvalsel,1,NCOVMAX);
   free_ivector(Tposprod,1,NCOVMAX);    free_ivector(Tposprod,1,NCOVMAX);
   free_ivector(Tprod,1,NCOVMAX);    free_ivector(Tprod,1,NCOVMAX);
   free_ivector(Tvaraff,1,NCOVMAX);    free_ivector(Tvaraff,1,NCOVMAX);
   free_ivector(invalidvarcomb,1,ncovcombmax);    free_ivector(invalidvarcomb,0,ncovcombmax);
   free_ivector(Tage,1,NCOVMAX);    free_ivector(Tage,1,NCOVMAX);
   free_ivector(Tmodelind,1,NCOVMAX);    free_ivector(Tmodelind,1,NCOVMAX);
       free_ivector(TmodelInvind,1,NCOVMAX);
     free_ivector(TmodelInvQind,1,NCOVMAX);
   
     free_matrix(precov, 1,MAXRESULTLINESPONE,1,NCOVMAX+1); /* Could be elsewhere ?*/
   
   free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);    free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
   /* free_imatrix(codtab,1,100,1,10); */    /* free_imatrix(codtab,1,100,1,10); */
   fflush(fichtm);    fflush(fichtm);
Line 10578  Please run with mle=-1 to get a correct Line 14257  Please run with mle=-1 to get a correct
   fclose(ficlog);    fclose(ficlog);
   /*------ End -----------*/    /*------ End -----------*/
       
   
   /* Executes gnuplot */
       
   printf("Before Current directory %s!\n",pathcd);    printf("Before Current directory %s!\n",pathcd);
 #ifdef WIN32  #ifdef WIN32
Line 10613  Please run with mle=-1 to get a correct Line 14294  Please run with mle=-1 to get a correct
       
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);    sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);    printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
     strcpy(pplotcmd,plotcmd);
       
   if((outcmd=system(plotcmd)) != 0){    if((outcmd=system(plotcmd)) != 0){
     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);      printf("Error in gnuplot, command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");      printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);      sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
     if((outcmd=system(plotcmd)) != 0)      if((outcmd=system(plotcmd)) != 0){
       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);        printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
         strcpy(plotcmd,pplotcmd);
       }
   }    }
   printf(" Successful, please wait...");    printf(" Successful, please wait...");
   while (z[0] != 'q') {    while (z[0] != 'q') {
Line 10646  end: Line 14330  end:
     printf("\nType  q for exiting: "); fflush(stdout);      printf("\nType  q for exiting: "); fflush(stdout);
     scanf("%s",z);      scanf("%s",z);
   }    }
     printf("End\n");
     exit(0);
 }  }

Removed from v.1.227  
changed lines
  Added in v.1.338


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>