version 1.249, 2016/09/07 17:14:18
|
version 1.355, 2023/05/22 17:03:18
|
Line 1
|
Line 1
|
/* $Id$ |
/* $Id$ |
$State$ |
$State$ |
$Log$ |
$Log$ |
|
Revision 1.355 2023/05/22 17:03:18 brouard |
|
Summary: 0.99r46 |
|
|
|
* imach.c (Module): In the ILK....txt file, the number of columns |
|
before the covariates values is dependent of the number of states (16+nlstate): 0.99r46 |
|
|
|
Revision 1.354 2023/05/21 05:05:17 brouard |
|
Summary: Temporary change for imachprax |
|
|
|
Revision 1.353 2023/05/08 18:48:22 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.352 2023/04/29 10:46:21 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.351 2023/04/29 10:43:47 brouard |
|
Summary: 099r45 |
|
|
|
Revision 1.350 2023/04/24 11:38:06 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.349 2023/01/31 09:19:37 brouard |
|
Summary: Improvements in models with age*Vn*Vm |
|
|
|
Revision 1.347 2022/09/18 14:36:44 brouard |
|
Summary: version 0.99r42 |
|
|
|
Revision 1.346 2022/09/16 13:52:36 brouard |
|
* src/imach.c (Module): 0.99r41 Was an error when product of timevarying and fixed. Using FixedV[of name] now. Thank you Feinuo |
|
|
|
Revision 1.345 2022/09/16 13:40:11 brouard |
|
Summary: Version 0.99r41 |
|
|
|
* imach.c (Module): 0.99r41 Was an error when product of timevarying and fixed. Using FixedV[of name] now. Thank you Feinuo |
|
|
|
Revision 1.344 2022/09/14 19:33:30 brouard |
|
Summary: version 0.99r40 |
|
|
|
* imach.c (Module): Fixing names of variables in T_ (thanks to Feinuo) |
|
|
|
Revision 1.343 2022/09/14 14:22:16 brouard |
|
Summary: version 0.99r39 |
|
|
|
* imach.c (Module): Version 0.99r39 with colored dummy covariates |
|
(fixed or time varying), using new last columns of |
|
ILK_parameter.txt file. |
|
|
|
Revision 1.342 2022/09/11 19:54:09 brouard |
|
Summary: 0.99r38 |
|
|
|
* imach.c (Module): Adding timevarying products of any kinds, |
|
should work before shifting cotvar from ncovcol+nqv columns in |
|
order to have a correspondance between the column of cotvar and |
|
the id of column. |
|
(Module): Some cleaning and adding covariates in ILK.txt |
|
|
|
Revision 1.341 2022/09/11 07:58:42 brouard |
|
Summary: Version 0.99r38 |
|
|
|
After adding change in cotvar. |
|
|
|
Revision 1.340 2022/09/11 07:53:11 brouard |
|
Summary: Version imach 0.99r37 |
|
|
|
* imach.c (Module): Adding timevarying products of any kinds, |
|
should work before shifting cotvar from ncovcol+nqv columns in |
|
order to have a correspondance between the column of cotvar and |
|
the id of column. |
|
|
|
Revision 1.339 2022/09/09 17:55:22 brouard |
|
Summary: version 0.99r37 |
|
|
|
* imach.c (Module): Many improvements for fixing products of fixed |
|
timevarying as well as fixed * fixed, and test with quantitative |
|
covariate. |
|
|
|
Revision 1.338 2022/09/04 17:40:33 brouard |
|
Summary: 0.99r36 |
|
|
|
* imach.c (Module): Now the easy runs i.e. without result or |
|
model=1+age only did not work. The defautl combination should be 1 |
|
and not 0 because everything hasn't been tranformed yet. |
|
|
|
Revision 1.337 2022/09/02 14:26:02 brouard |
|
Summary: version 0.99r35 |
|
|
|
* src/imach.c: Version 0.99r35 because it outputs same results with |
|
1+age+V1+V1*age for females and 1+age for females only |
|
(education=1 noweight) |
|
|
|
Revision 1.336 2022/08/31 09:52:36 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.335 2022/08/31 08:23:16 brouard |
|
Summary: improvements... |
|
|
|
Revision 1.334 2022/08/25 09:08:41 brouard |
|
Summary: In progress for quantitative |
|
|
|
Revision 1.333 2022/08/21 09:10:30 brouard |
|
* src/imach.c (Module): Version 0.99r33 A lot of changes in |
|
reassigning covariates: my first idea was that people will always |
|
use the first covariate V1 into the model but in fact they are |
|
producing data with many covariates and can use an equation model |
|
with some of the covariate; it means that in a model V2+V3 instead |
|
of codtabm(k,Tvaraff[j]) which calculates for combination k, for |
|
three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact |
|
the equation model is restricted to two variables only (V2, V3) |
|
and the combination for V2 should be codtabm(k,1) instead of |
|
(codtabm(k,2), and the code should be |
|
codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been |
|
made. All of these should be simplified once a day like we did in |
|
hpxij() for example by using precov[nres] which is computed in |
|
decoderesult for each nres of each resultline. Loop should be done |
|
on the equation model globally by distinguishing only product with |
|
age (which are changing with age) and no more on type of |
|
covariates, single dummies, single covariates. |
|
|
|
Revision 1.332 2022/08/21 09:06:25 brouard |
|
Summary: Version 0.99r33 |
|
|
|
* src/imach.c (Module): Version 0.99r33 A lot of changes in |
|
reassigning covariates: my first idea was that people will always |
|
use the first covariate V1 into the model but in fact they are |
|
producing data with many covariates and can use an equation model |
|
with some of the covariate; it means that in a model V2+V3 instead |
|
of codtabm(k,Tvaraff[j]) which calculates for combination k, for |
|
three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact |
|
the equation model is restricted to two variables only (V2, V3) |
|
and the combination for V2 should be codtabm(k,1) instead of |
|
(codtabm(k,2), and the code should be |
|
codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been |
|
made. All of these should be simplified once a day like we did in |
|
hpxij() for example by using precov[nres] which is computed in |
|
decoderesult for each nres of each resultline. Loop should be done |
|
on the equation model globally by distinguishing only product with |
|
age (which are changing with age) and no more on type of |
|
covariates, single dummies, single covariates. |
|
|
|
Revision 1.331 2022/08/07 05:40:09 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.330 2022/08/06 07:18:25 brouard |
|
Summary: last 0.99r31 |
|
|
|
* imach.c (Module): Version of imach using partly decoderesult to rebuild xpxij function |
|
|
|
Revision 1.329 2022/08/03 17:29:54 brouard |
|
* imach.c (Module): Many errors in graphs fixed with Vn*age covariates. |
|
|
|
Revision 1.328 2022/07/27 17:40:48 brouard |
|
Summary: valgrind bug fixed by initializing to zero DummyV as well as Tage |
|
|
|
Revision 1.327 2022/07/27 14:47:35 brouard |
|
Summary: Still a problem for one-step probabilities in case of quantitative variables |
|
|
|
Revision 1.326 2022/07/26 17:33:55 brouard |
|
Summary: some test with nres=1 |
|
|
|
Revision 1.325 2022/07/25 14:27:23 brouard |
|
Summary: r30 |
|
|
|
* imach.c (Module): Error cptcovn instead of nsd in bmij (was |
|
coredumped, revealed by Feiuno, thank you. |
|
|
|
Revision 1.324 2022/07/23 17:44:26 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.323 2022/07/22 12:30:08 brouard |
|
* imach.c (Module): Output of Wald test in the htm file and not only in the log. |
|
|
|
Revision 1.322 2022/07/22 12:27:48 brouard |
|
* imach.c (Module): Output of Wald test in the htm file and not only in the log. |
|
|
|
Revision 1.321 2022/07/22 12:04:24 brouard |
|
Summary: r28 |
|
|
|
* imach.c (Module): Output of Wald test in the htm file and not only in the log. |
|
|
|
Revision 1.320 2022/06/02 05:10:11 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.319 2022/06/02 04:45:11 brouard |
|
* imach.c (Module): Adding the Wald tests from the log to the main |
|
htm for better display of the maximum likelihood estimators. |
|
|
|
Revision 1.318 2022/05/24 08:10:59 brouard |
|
* imach.c (Module): Some attempts to find a bug of wrong estimates |
|
of confidencce intervals with product in the equation modelC |
|
|
|
Revision 1.317 2022/05/15 15:06:23 brouard |
|
* imach.c (Module): Some minor improvements |
|
|
|
Revision 1.316 2022/05/11 15:11:31 brouard |
|
Summary: r27 |
|
|
|
Revision 1.315 2022/05/11 15:06:32 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.314 2022/04/13 17:43:09 brouard |
|
* imach.c (Module): Adding link to text data files |
|
|
|
Revision 1.313 2022/04/11 15:57:42 brouard |
|
* imach.c (Module): Error in rewriting the 'r' file with yearsfproj or yearsbproj fixed |
|
|
|
Revision 1.312 2022/04/05 21:24:39 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.311 2022/04/05 21:03:51 brouard |
|
Summary: Fixed quantitative covariates |
|
|
|
Fixed covariates (dummy or quantitative) |
|
with missing values have never been allowed but are ERRORS and |
|
program quits. Standard deviations of fixed covariates were |
|
wrongly computed. Mean and standard deviations of time varying |
|
covariates are still not computed. |
|
|
|
Revision 1.310 2022/03/17 08:45:53 brouard |
|
Summary: 99r25 |
|
|
|
Improving detection of errors: result lines should be compatible with |
|
the model. |
|
|
|
Revision 1.309 2021/05/20 12:39:14 brouard |
|
Summary: Version 0.99r24 |
|
|
|
Revision 1.308 2021/03/31 13:11:57 brouard |
|
Summary: Version 0.99r23 |
|
|
|
|
|
* imach.c (Module): Still bugs in the result loop. Thank to Holly Benett |
|
|
|
Revision 1.307 2021/03/08 18:11:32 brouard |
|
Summary: 0.99r22 fixed bug on result: |
|
|
|
Revision 1.306 2021/02/20 15:44:02 brouard |
|
Summary: Version 0.99r21 |
|
|
|
* imach.c (Module): Fix bug on quitting after result lines! |
|
(Module): Version 0.99r21 |
|
|
|
Revision 1.305 2021/02/20 15:28:30 brouard |
|
* imach.c (Module): Fix bug on quitting after result lines! |
|
|
|
Revision 1.304 2021/02/12 11:34:20 brouard |
|
* imach.c (Module): The use of a Windows BOM (huge) file is now an error |
|
|
|
Revision 1.303 2021/02/11 19:50:15 brouard |
|
* (Module): imach.c Someone entered 'results:' instead of 'result:'. Now it is an error which is printed. |
|
|
|
Revision 1.302 2020/02/22 21:00:05 brouard |
|
* (Module): imach.c Update mle=-3 (for computing Life expectancy |
|
and life table from the data without any state) |
|
|
|
Revision 1.301 2019/06/04 13:51:20 brouard |
|
Summary: Error in 'r'parameter file backcast yearsbproj instead of yearsfproj |
|
|
|
Revision 1.300 2019/05/22 19:09:45 brouard |
|
Summary: version 0.99r19 of May 2019 |
|
|
|
Revision 1.299 2019/05/22 18:37:08 brouard |
|
Summary: Cleaned 0.99r19 |
|
|
|
Revision 1.298 2019/05/22 18:19:56 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.297 2019/05/22 17:56:10 brouard |
|
Summary: Fix bug by moving date2dmy and nhstepm which gaefin=-1 |
|
|
|
Revision 1.296 2019/05/20 13:03:18 brouard |
|
Summary: Projection syntax simplified |
|
|
|
|
|
We can now start projections, forward or backward, from the mean date |
|
of inteviews up to or down to a number of years of projection: |
|
prevforecast=1 yearsfproj=15.3 mobil_average=0 |
|
or |
|
prevforecast=1 starting-proj-date=1/1/2007 final-proj-date=12/31/2017 mobil_average=0 |
|
or |
|
prevbackcast=1 yearsbproj=12.3 mobil_average=1 |
|
or |
|
prevbackcast=1 starting-back-date=1/10/1999 final-back-date=1/1/1985 mobil_average=1 |
|
|
|
Revision 1.295 2019/05/18 09:52:50 brouard |
|
Summary: doxygen tex bug |
|
|
|
Revision 1.294 2019/05/16 14:54:33 brouard |
|
Summary: There was some wrong lines added |
|
|
|
Revision 1.293 2019/05/09 15:17:34 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.292 2019/05/09 14:17:20 brouard |
|
Summary: Some updates |
|
|
|
Revision 1.291 2019/05/09 13:44:18 brouard |
|
Summary: Before ncovmax |
|
|
|
Revision 1.290 2019/05/09 13:39:37 brouard |
|
Summary: 0.99r18 unlimited number of individuals |
|
|
|
The number n which was limited to 20,000 cases is now unlimited, from firstobs to lastobs. If the number is too for the virtual memory, probably an error will occur. |
|
|
|
Revision 1.289 2018/12/13 09:16:26 brouard |
|
Summary: Bug for young ages (<-30) will be in r17 |
|
|
|
Revision 1.288 2018/05/02 20:58:27 brouard |
|
Summary: Some bugs fixed |
|
|
|
Revision 1.287 2018/05/01 17:57:25 brouard |
|
Summary: Bug fixed by providing frequencies only for non missing covariates |
|
|
|
Revision 1.286 2018/04/27 14:27:04 brouard |
|
Summary: some minor bugs |
|
|
|
Revision 1.285 2018/04/21 21:02:16 brouard |
|
Summary: Some bugs fixed, valgrind tested |
|
|
|
Revision 1.284 2018/04/20 05:22:13 brouard |
|
Summary: Computing mean and stdeviation of fixed quantitative variables |
|
|
|
Revision 1.283 2018/04/19 14:49:16 brouard |
|
Summary: Some minor bugs fixed |
|
|
|
Revision 1.282 2018/02/27 22:50:02 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.281 2018/02/27 19:25:23 brouard |
|
Summary: Adding second argument for quitting |
|
|
|
Revision 1.280 2018/02/21 07:58:13 brouard |
|
Summary: 0.99r15 |
|
|
|
New Makefile with recent VirtualBox 5.26. Bug in sqrt negatve in imach.c |
|
|
|
Revision 1.279 2017/07/20 13:35:01 brouard |
|
Summary: temporary working |
|
|
|
Revision 1.278 2017/07/19 14:09:02 brouard |
|
Summary: Bug for mobil_average=0 and prevforecast fixed(?) |
|
|
|
Revision 1.277 2017/07/17 08:53:49 brouard |
|
Summary: BOM files can be read now |
|
|
|
Revision 1.276 2017/06/30 15:48:31 brouard |
|
Summary: Graphs improvements |
|
|
|
Revision 1.275 2017/06/30 13:39:33 brouard |
|
Summary: Saito's color |
|
|
|
Revision 1.274 2017/06/29 09:47:08 brouard |
|
Summary: Version 0.99r14 |
|
|
|
Revision 1.273 2017/06/27 11:06:02 brouard |
|
Summary: More documentation on projections |
|
|
|
Revision 1.272 2017/06/27 10:22:40 brouard |
|
Summary: Color of backprojection changed from 6 to 5(yellow) |
|
|
|
Revision 1.271 2017/06/27 10:17:50 brouard |
|
Summary: Some bug with rint |
|
|
|
Revision 1.270 2017/05/24 05:45:29 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.269 2017/05/23 08:39:25 brouard |
|
Summary: Code into subroutine, cleanings |
|
|
|
Revision 1.268 2017/05/18 20:09:32 brouard |
|
Summary: backprojection and confidence intervals of backprevalence |
|
|
|
Revision 1.267 2017/05/13 10:25:05 brouard |
|
Summary: temporary save for backprojection |
|
|
|
Revision 1.266 2017/05/13 07:26:12 brouard |
|
Summary: Version 0.99r13 (improvements and bugs fixed) |
|
|
|
Revision 1.265 2017/04/26 16:22:11 brouard |
|
Summary: imach 0.99r13 Some bugs fixed |
|
|
|
Revision 1.264 2017/04/26 06:01:29 brouard |
|
Summary: Labels in graphs |
|
|
|
Revision 1.263 2017/04/24 15:23:15 brouard |
|
Summary: to save |
|
|
|
Revision 1.262 2017/04/18 16:48:12 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.261 2017/04/05 10:14:09 brouard |
|
Summary: Bug in E_ as well as in T_ fixed nres-1 vs k1-1 |
|
|
|
Revision 1.260 2017/04/04 17:46:59 brouard |
|
Summary: Gnuplot indexations fixed (humm) |
|
|
|
Revision 1.259 2017/04/04 13:01:16 brouard |
|
Summary: Some errors to warnings only if date of death is unknown but status is death we could set to pi3 |
|
|
|
Revision 1.258 2017/04/03 10:17:47 brouard |
|
Summary: Version 0.99r12 |
|
|
|
Some cleanings, conformed with updated documentation. |
|
|
|
Revision 1.257 2017/03/29 16:53:30 brouard |
|
Summary: Temp |
|
|
|
Revision 1.256 2017/03/27 05:50:23 brouard |
|
Summary: Temporary |
|
|
|
Revision 1.255 2017/03/08 16:02:28 brouard |
|
Summary: IMaCh version 0.99r10 bugs in gnuplot fixed |
|
|
|
Revision 1.254 2017/03/08 07:13:00 brouard |
|
Summary: Fixing data parameter line |
|
|
|
Revision 1.253 2016/12/15 11:59:41 brouard |
|
Summary: 0.99 in progress |
|
|
|
Revision 1.252 2016/09/15 21:15:37 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.251 2016/09/15 15:01:13 brouard |
|
Summary: not working |
|
|
|
Revision 1.250 2016/09/08 16:07:27 brouard |
|
Summary: continue |
|
|
Revision 1.249 2016/09/07 17:14:18 brouard |
Revision 1.249 2016/09/07 17:14:18 brouard |
Summary: Starting values from frequencies |
Summary: Starting values from frequencies |
|
|
Line 122
|
Line 549
|
Author: Nicolas Brouard |
Author: Nicolas Brouard |
|
|
Revision 1.210 2015/11/18 17:41:20 brouard |
Revision 1.210 2015/11/18 17:41:20 brouard |
Summary: Start working on projected prevalences |
Summary: Start working on projected prevalences Revision 1.209 2015/11/17 22:12:03 brouard |
|
|
Revision 1.209 2015/11/17 22:12:03 brouard |
|
Summary: Adding ftolpl parameter |
Summary: Adding ftolpl parameter |
Author: N Brouard |
Author: N Brouard |
|
|
Line 612
|
Line 1037
|
|
|
The same imach parameter file can be used but the option for mle should be -3. |
The same imach parameter file can be used but the option for mle should be -3. |
|
|
Agnès, who wrote this part of the code, tried to keep most of the |
Agnès, who wrote this part of the code, tried to keep most of the |
former routines in order to include the new code within the former code. |
former routines in order to include the new code within the former code. |
|
|
The output is very simple: only an estimate of the intercept and of |
The output is very simple: only an estimate of the intercept and of |
Line 767 Back prevalence and projections:
|
Line 1192 Back prevalence and projections:
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
|
|
- hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
- hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres); |
Computes the transition matrix starting at age 'age' over |
Computes the transition matrix starting at age 'age' over |
'nhstepm*hstepm*stepm' months (i.e. until |
'nhstepm*hstepm*stepm' months (i.e. until |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
Line 791 Important routines
|
Line 1216 Important routines
|
- Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities) |
- Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities) |
and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually. |
and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually. |
- printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables |
- printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables |
o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if |
o There are 2**cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if |
race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless. |
race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless. |
|
|
|
|
|
|
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
Institut national d'études démographiques, Paris. |
Institut national d'études démographiques, Paris. |
This software have been partly granted by Euro-REVES, a concerted action |
This software have been partly granted by Euro-REVES, a concerted action |
from the European Union. |
from the European Union. |
It is copyrighted identically to a GNU software product, ie programme and |
It is copyrighted identically to a GNU software product, ie programme and |
Line 861 Important routines
|
Line 1286 Important routines
|
#define POWELLNOF3INFF1TEST /* Skip test */ |
#define POWELLNOF3INFF1TEST /* Skip test */ |
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
|
/* #define FLATSUP *//* Suppresses directions where likelihood is flat */ |
|
|
#include <math.h> |
#include <math.h> |
#include <stdio.h> |
#include <stdio.h> |
Line 912 typedef struct {
|
Line 1338 typedef struct {
|
/* #include <libintl.h> */ |
/* #include <libintl.h> */ |
/* #define _(String) gettext (String) */ |
/* #define _(String) gettext (String) */ |
|
|
#define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */ |
#define MAXLINE 16384 /* Was 256 and 1024 and 2048. Overflow with 312 with 2 states and 4 covariates. Should be ok */ |
|
|
#define GNUPLOTPROGRAM "gnuplot" |
#define GNUPLOTPROGRAM "gnuplot" |
|
#define GNUPLOTVERSION 5.1 |
|
double gnuplotversion=GNUPLOTVERSION; |
/*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ |
/*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ |
#define FILENAMELENGTH 132 |
#define FILENAMELENGTH 256 |
|
|
#define GLOCK_ERROR_NOPATH -1 /* empty path */ |
#define GLOCK_ERROR_NOPATH -1 /* empty path */ |
#define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */ |
#define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */ |
|
|
#define MAXPARM 128 /**< Maximum number of parameters for the optimization */ |
#define MAXPARM 216 /**< Maximum number of parameters for the optimization was 128 */ |
#define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */ |
#define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */ |
|
|
#define NINTERVMAX 8 |
#define NINTERVMAX 8 |
#define NLSTATEMAX 8 /**< Maximum number of live states (for func) */ |
#define NLSTATEMAX 8 /**< Maximum number of live states (for func) */ |
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
#define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */ |
#define NCOVMAX 30 /**< Maximum number of covariates used in the model, including generated covariates V1*V2 or V1*age */ |
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
/*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/ |
/*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/ |
#define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 |
#define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 |
#define MAXN 20000 |
/*#define MAXN 20000 */ /* Should by replaced by nobs, real number of observations and unlimited */ |
#define YEARM 12. /**< Number of months per year */ |
#define YEARM 12. /**< Number of months per year */ |
/* #define AGESUP 130 */ |
/* #define AGESUP 130 */ |
#define AGESUP 150 |
/* #define AGESUP 150 */ |
|
#define AGESUP 200 |
|
#define AGEINF 0 |
#define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */ |
#define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */ |
#define AGEBASE 40 |
#define AGEBASE 40 |
#define AGEOVERFLOW 1.e20 |
#define AGEOVERFLOW 1.e20 |
Line 953 typedef struct {
|
Line 1383 typedef struct {
|
/* $State$ */ |
/* $State$ */ |
#include "version.h" |
#include "version.h" |
char version[]=__IMACH_VERSION__; |
char version[]=__IMACH_VERSION__; |
char copyright[]="February 2016,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018"; |
char copyright[]="April 2023,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2020, Nihon University 2021-202, INED 2000-2022"; |
char fullversion[]="$Revision$ $Date$"; |
char fullversion[]="$Revision$ $Date$"; |
char strstart[80]; |
char strstart[80]; |
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings */ |
int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings */ |
|
int debugILK=0; /* debugILK is set by a #d in a comment line */ |
int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */ |
int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */ |
/* Number of covariates model=V2+V1+ V3*age+V2*V4 */ |
/* Number of covariates model (1)=V2+V1+ V3*age+V2*V4 */ |
int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */ |
/* Model(2) V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */ |
int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */ |
int cptcovn=0; /**< cptcovn decodemodel: number of covariates k of the models excluding age*products =6 and age*age but including products */ |
int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */ |
int cptcovt=0; /**< cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */ |
int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */ |
int cptcovs=0; /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */ |
|
int cptcovsnq=0; /**< cptcovsnq number of SIMPLE covariates in the model but non quantitative V2+V1 =2 */ |
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
|
int cptcovprodage=0; /**< Number of fixed covariates with age: V3*age or V2*V3*age 1 */ |
|
int cptcovprodvage=0; /**< Number of varying covariates with age: V7*age or V7*V6*age */ |
|
int cptcovdageprod=0; /**< Number of doubleproducts with age, since 0.99r44 only: age*Vn*Vm for gnuplot printing*/ |
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
int cptcoveff=0; /* Total number of covariates to vary for printing results */ |
int cptcoveff=0; /* Total number of single dummy covariates (fixed or time varying) to vary for printing results (2**cptcoveff combinations of dummies)(computed in tricode as cptcov) */ |
int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */ |
int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */ |
int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */ |
int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */ |
int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */ |
int ncovvt=0; /* Total number of effective (wave) varying covariates (dummy or quantitative or products [without age]) in the model */ |
|
int ncovvta=0; /* +age*V6 + age*V7+ age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 Total number of expandend products [with age]) in the model */ |
|
int ncovta=0; /*age*V3*V2 +age*V2+agev3+ageV4 +age*V6 + age*V7+ age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 Total number of expandend products [with age]) in the model */ |
|
int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (single or product, dummy or quantitative) in the model */ |
|
int ncovva=0; /* +age*V6 + age*V7+ge*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 Total number of effective (wave and stepm) varying with age covariates (single or product, dummy or quantitative) in the model */ |
int nsd=0; /**< Total number of single dummy variables (output) */ |
int nsd=0; /**< Total number of single dummy variables (output) */ |
int nsq=0; /**< Total number of single quantitative variables (output) */ |
int nsq=0; /**< Total number of single quantitative variables (output) */ |
int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */ |
int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */ |
Line 977 int nqfveff=0; /**< nqfveff Number of Qu
|
Line 1416 int nqfveff=0; /**< nqfveff Number of Qu
|
int ntveff=0; /**< ntveff number of effective time varying variables */ |
int ntveff=0; /**< ntveff number of effective time varying variables */ |
int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */ |
int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */ |
int cptcov=0; /* Working variable */ |
int cptcov=0; /* Working variable */ |
|
int firstobs=1, lastobs=10; /* nobs = lastobs-firstobs+1 declared globally ;*/ |
|
int nobs=10; /* Number of observations in the data lastobs-firstobs */ |
int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */ |
int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */ |
int npar=NPARMAX; |
int npar=NPARMAX; /* Number of parameters (nlstate+ndeath-1)*nlstate*ncovmodel; */ |
int nlstate=2; /* Number of live states */ |
int nlstate=2; /* Number of live states */ |
int ndeath=1; /* Number of dead states */ |
int ndeath=1; /* Number of dead states */ |
int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ |
int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ |
int nqv=0, ntv=0, nqtv=0; /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ |
int nqv=0, ntv=0, nqtv=0; /* Total number of quantitative variables, time variable (dummy), quantitative and time variable*/ |
|
int ncovcolt=0; /* ncovcolt=ncovcol+nqv+ntv+nqtv; total of covariates in the data, not in the model equation*/ |
int popbased=0; |
int popbased=0; |
|
|
int *wav; /* Number of waves for this individuual 0 is possible */ |
int *wav; /* Number of waves for this individuual 0 is possible */ |
Line 1026 FILE *ficrescveij;
|
Line 1468 FILE *ficrescveij;
|
char filerescve[FILENAMELENGTH]; |
char filerescve[FILENAMELENGTH]; |
FILE *ficresvij; |
FILE *ficresvij; |
char fileresv[FILENAMELENGTH]; |
char fileresv[FILENAMELENGTH]; |
FILE *ficresvpl; |
|
char fileresvpl[FILENAMELENGTH]; |
|
char title[MAXLINE]; |
char title[MAXLINE]; |
char model[MAXLINE]; /**< The model line */ |
char model[MAXLINE]; /**< The model line */ |
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH], fileresplb[FILENAMELENGTH]; |
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH], fileresplb[FILENAMELENGTH]; |
Line 1054 extern time_t time();
|
Line 1495 extern time_t time();
|
|
|
struct tm start_time, end_time, curr_time, last_time, forecast_time; |
struct tm start_time, end_time, curr_time, last_time, forecast_time; |
time_t rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */ |
time_t rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */ |
|
time_t rlast_btime; /* raw time */ |
struct tm tm; |
struct tm tm; |
|
|
char strcurr[80], strfor[80]; |
char strcurr[80], strfor[80]; |
Line 1116 int *ncodemaxwundef; /* ncodemax[j]= Nu
|
Line 1558 int *ncodemaxwundef; /* ncodemax[j]= Nu
|
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
double **pmmij, ***probs; /* Global pointer */ |
double **pmmij, ***probs; /* Global pointer */ |
double ***mobaverage, ***mobaverages; /* New global variable */ |
double ***mobaverage, ***mobaverages; /* New global variable */ |
|
double **precov; /* New global variable to store for each resultline, values of model covariates given by the resultlines (in order to speed up) */ |
double *ageexmed,*agecens; |
double *ageexmed,*agecens; |
double dateintmean=0; |
double dateintmean=0; |
|
double anprojd, mprojd, jprojd; /* For eventual projections */ |
|
double anprojf, mprojf, jprojf; |
|
|
|
double anbackd, mbackd, jbackd; /* For eventual backprojections */ |
|
double anbackf, mbackf, jbackf; |
|
double jintmean,mintmean,aintmean; |
double *weight; |
double *weight; |
int **s; /* Status */ |
int **s; /* Status */ |
double *agedc; |
double *agedc; |
double **covar; /**< covar[j,i], value of jth covariate for individual i, |
double **covar; /**< covar[j,i], value of jth covariate for individual i, |
* covar=matrix(0,NCOVMAX,1,n); |
* covar=matrix(0,NCOVMAX,1,n); |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
double **coqvar; /* Fixed quantitative covariate iqv */ |
double **coqvar; /* Fixed quantitative covariate nqv */ |
double ***cotvar; /* Time varying covariate itv */ |
double ***cotvar; /* Time varying covariate start at ncovcol + nqv + (1 to ntv) */ |
double ***cotqvar; /* Time varying quantitative covariate itqv */ |
double ***cotqvar; /* Time varying quantitative covariate itqv */ |
double idx; |
double idx; |
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
/* Some documentation */ |
/*k 1 2 3 4 5 6 7 8 9 */ |
/* Design original data |
/*Tvar[k]= 5 4 3 6 5 2 7 1 1 */ |
* V1 V2 V3 V4 V5 V6 V7 V8 Weight ddb ddth d1st s1 V9 V10 V11 V12 s2 V9 V10 V11 V12 |
/* Tndvar[k] 1 2 3 4 5 */ |
* < ncovcol=6 > nqv=2 (V7 V8) dv dv dv qtv dv dv dvv qtv |
/*TDvar 4 3 6 7 1 */ /* For outputs only; combination of dummies fixed or varying */ |
* ntv=3 nqtv=1 |
/* Tns[k] 1 2 2 4 5 */ /* Number of single cova */ |
* cptcovn number of covariates (not including constant and age or age*age) = number of plus sign + 1 = 10+1=11 |
/* TvarsD[k] 1 2 3 */ /* Number of single dummy cova */ |
* For time varying covariate, quanti or dummies |
/* TvarsDind 2 3 9 */ /* position K of single dummy cova */ |
* cotqvar[wav][iv(1 to nqtv)][i]= [1][12][i]=(V12) quanti |
/* TvarsQ[k] 1 2 */ /* Number of single quantitative cova */ |
* cotvar[wav][ncovcol+nqv+ iv(1 to nqtv)][i]= [(1 to nqtv)][i]=(V12) quanti |
/* TvarsQind 1 6 */ /* position K of single quantitative cova */ |
* cotvar[wav][iv(1 to ntv)][i]= [1][1][i]=(V9) dummies at wav 1 |
/* Tprod[i]=k 4 7 */ |
* cotvar[wav][iv(1 to ntv)][i]= [1][2][i]=(V10) dummies at wav 1 |
/* Tage[i]=k 5 8 */ |
* covar[Vk,i], value of the Vkth fixed covariate dummy or quanti for individual i: |
/* */ |
* covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8) |
|
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 + V9 + V9*age + V10 |
|
* k= 1 2 3 4 5 6 7 8 9 10 11 |
|
*/ |
|
/* According to the model, more columns can be added to covar by the product of covariates */ |
|
/* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1 |
|
# States 1=Coresidence, 2 Living alone, 3 Institution |
|
# V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi |
|
*/ |
|
/* V5+V4+ V3+V4*V3 +V5*age+V2 +V1*V2+V1*age+V1+V4*V3*age */ |
|
/* kmodel 1 2 3 4 5 6 7 8 9 10 */ |
|
/*Typevar[k]= 0 0 0 2 1 0 2 1 0 3 *//*0 for simple covariate (dummy, quantitative,*/ |
|
/* fixed or varying), 1 for age product, 2 for*/ |
|
/* product without age, 3 for age and double product */ |
|
/*Dummy[k]= 1 0 0 1 3 1 1 2 0 3 *//*Dummy[k] 0=dummy (0 1), 1 quantitative */ |
|
/*(single or product without age), 2 dummy*/ |
|
/* with age product, 3 quant with age product*/ |
|
/*Tvar[k]= 5 4 3 6 5 2 7 1 1 6 */ |
|
/* nsd 1 2 3 */ /* Counting single dummies covar fixed or tv */ |
|
/*TnsdVar[Tvar] 1 2 3 */ |
|
/*Tvaraff[nsd] 4 3 1 */ /* ID of single dummy cova fixed or timevary*/ |
|
/*TvarsD[nsd] 4 3 1 */ /* ID of single dummy cova fixed or timevary*/ |
|
/*TvarsDind[nsd] 2 3 9 */ /* position K of single dummy cova */ |
|
/* nsq 1 2 */ /* Counting single quantit tv */ |
|
/* TvarsQ[k] 5 2 */ /* Number of single quantitative cova */ |
|
/* TvarsQind 1 6 */ /* position K of single quantitative cova */ |
|
/* Tprod[i]=k 1 2 */ /* Position in model of the ith prod without age */ |
|
/* cptcovage 1 2 3 */ /* Counting cov*age in the model equation */ |
|
/* Tage[cptcovage]=k 5 8 10 */ /* Position in the model of ith cov*age */ |
|
/* model="V2+V3+V4+V6+V7+V6*V2+V7*V2+V6*V3+V7*V3+V6*V4+V7*V4+age*V2+age*V3+age*V4+age*V6+age*V7+age*V6*V2+age*V6*V3+age*V7*V3+age*V6*V4+age*V7*V4\r"*/ |
|
/* p Tvard[1][1]@21 = {6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0}*/ |
|
/* p Tvard[2][1]@21 = {7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0 <repeats 11 times>} */ |
|
/* p Tvardk[1][1]@24 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0, 0}*/ |
|
/* p Tvardk[1][1]@22 = {0, 0, 0, 0, 0, 0, 0, 0, 6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0, 0} */ |
|
/* Tvard[1][1]@4={4,3,1,2} V4*V3 V1*V2 */ /* Position in model of the ith prod without age */ |
|
/* Tvardk[4][1]=4;Tvardk[4][2]=3;Tvardk[7][1]=1;Tvardk[7][2]=2 */ /* Variables of a prod at position in the model equation*/ |
|
/* TvarF TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 ID of fixed covariates or product V2, V1*V2, V1 */ |
|
/* TvarFind; TvarFind[1]=6, TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod) */ |
/* Type */ |
/* Type */ |
/* V 1 2 3 4 5 */ |
/* V 1 2 3 4 5 */ |
/* F F V V V */ |
/* F F V V V */ |
/* D Q D D Q */ |
/* D Q D D Q */ |
/* */ |
/* */ |
int *TvarsD; |
int *TvarsD; |
|
int *TnsdVar; |
int *TvarsDind; |
int *TvarsDind; |
int *TvarsQ; |
int *TvarsQ; |
int *TvarsQind; |
int *TvarsQind; |
|
|
#define MAXRESULTLINES 10 |
#define MAXRESULTLINESPONE 10+1 |
int nresult=0; |
int nresult=0; |
int TKresult[MAXRESULTLINES]; |
int parameterline=0; /* # of the parameter (type) line */ |
int Tresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */ |
int TKresult[MAXRESULTLINESPONE]; /* TKresult[nres]=k for each resultline nres give the corresponding combination of dummies */ |
int Tinvresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */ |
int resultmodel[MAXRESULTLINESPONE][NCOVMAX];/* resultmodel[k1]=k3: k1th position in the model corresponds to the k3 position in the resultline */ |
int Tvresult[MAXRESULTLINES][NCOVMAX]; /* For dummy variable , variable # (output) */ |
int modelresult[MAXRESULTLINESPONE][NCOVMAX];/* modelresult[k3]=k1: k1th position in the model corresponds to the k3 position in the resultline */ |
double Tqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */ |
int Tresult[MAXRESULTLINESPONE][NCOVMAX];/* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline */ |
double Tqinvresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */ |
int Tinvresult[MAXRESULTLINESPONE][NCOVMAX];/* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line */ |
int Tvqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , variable # (output) */ |
double TinvDoQresult[MAXRESULTLINESPONE][NCOVMAX];/* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line */ |
|
int Tvresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline */ |
|
double Tqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */ |
|
double Tqinvresult[MAXRESULTLINESPONE][NCOVMAX]; /* For quantitative variable , value (output) */ |
|
int Tvqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline */ |
|
|
|
/* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1 |
|
# States 1=Coresidence, 2 Living alone, 3 Institution |
|
# V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi |
|
*/ |
/* int *TDvar; /\**< TDvar[1]=4, TDvarF[2]=3, TDvar[3]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */ |
/* int *TDvar; /\**< TDvar[1]=4, TDvarF[2]=3, TDvar[3]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */ |
int *TvarF; /**< TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
int *TvarF; /**< TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
int *TvarFind; /**< TvarFind[1]=6, TvarFind[2]=7, Tvarind[3]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
int *TvarFind; /**< TvarFind[1]=6, TvarFind[2]=7, Tvarind[3]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
Line 1178 int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3
|
Line 1672 int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3
|
int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
int *TvarVV; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */ |
|
int *TvarVVind; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */ |
|
int *TvarVVA; /* We count ncovvt time varying covariates (single or products with age) and put their name into TvarVVA */ |
|
int *TvarVVAind; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */ |
|
int *TvarAVVA; /* We count ALL ncovta time varying covariates (single or products with age) and put their name into TvarVVA */ |
|
int *TvarAVVAind; /* We count ALL ncovta time varying covariates (single or products without age) and put their name into TvarVV */ |
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 + V1*V3*age */ |
|
/* Tvar={1, 3, 1, 3, 6, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
/* TvarVV={3,1,3,1,3}, for V3 and then the product V1*V3 is decomposed into V1 and V3 */ |
|
/* TvarVVind={2,5,5,6,6}, for V3 and then the product V1*V3 is decomposed into V1 and V3 and V1*V3*age into 6,6 */ |
int *Tvarsel; /**< Selected covariates for output */ |
int *Tvarsel; /**< Selected covariates for output */ |
double *Tvalsel; /**< Selected modality value of covariate for output */ |
double *Tvalsel; /**< Selected modality value of covariate for output */ |
int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product, 3 age*Vn*Vm */ |
int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ |
int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ |
int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ |
int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ |
int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */ |
int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */ |
Line 1194 int *TmodelInvQind; /** Tmodelqind[1]=1
|
Line 1698 int *TmodelInvQind; /** Tmodelqind[1]=1
|
int *Ndum; /** Freq of modality (tricode */ |
int *Ndum; /** Freq of modality (tricode */ |
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
int **Tvard; |
int **Tvard; |
|
int **Tvardk; |
int *Tprod;/**< Gives the k position of the k1 product */ |
int *Tprod;/**< Gives the k position of the k1 product */ |
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 */ |
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 */ |
int *Tposprod; /**< Gives the k1 product from the k position */ |
int *Tposprod; /**< Gives the k1 product from the k position */ |
Line 1317 char *trimbb(char *out, char *in)
|
Line 1822 char *trimbb(char *out, char *in)
|
return s; |
return s; |
} |
} |
|
|
|
char *trimbtab(char *out, char *in) |
|
{ /* Trim blanks or tabs in line but keeps first blanks if line starts with blanks */ |
|
char *s; |
|
s=out; |
|
while (*in != '\0'){ |
|
while( (*in == ' ' || *in == '\t')){ /* && *(in+1) != '\0'){*/ |
|
in++; |
|
} |
|
*out++ = *in++; |
|
} |
|
*out='\0'; |
|
return s; |
|
} |
|
|
/* char *substrchaine(char *out, char *in, char *chain) */ |
/* char *substrchaine(char *out, char *in, char *chain) */ |
/* { */ |
/* { */ |
/* /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */ |
/* /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */ |
Line 1343 char *trimbb(char *out, char *in)
|
Line 1862 char *trimbb(char *out, char *in)
|
char *substrchaine(char *out, char *in, char *chain) |
char *substrchaine(char *out, char *in, char *chain) |
{ |
{ |
/* Substract chain 'chain' from 'in', return and output 'out' */ |
/* Substract chain 'chain' from 'in', return and output 'out' */ |
/* in="V1+V1*age+age*age+V2", chain="age*age" */ |
/* in="V1+V1*age+age*age+V2", chain="+age*age" out="V1+V1*age+V2" */ |
|
|
char *strloc; |
char *strloc; |
|
|
strcpy (out, in); |
strcpy (out, in); /* out="V1+V1*age+age*age+V2" */ |
strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */ |
strloc = strstr(out, chain); /* strloc points to out at "+age*age+V2" */ |
printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out); |
printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out); /* strloc=+age*age+V2 chain="+age*age", out="V1+V1*age+age*age+V2" */ |
if(strloc != NULL){ |
if(strloc != NULL){ |
/* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */ |
/* will affect out */ /* strloc+strlen(chain)=|+V2 = "V1+V1*age+age*age|+V2" */ /* Will also work in Unicodek */ |
memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1); |
memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1); /* move number of bytes corresponding to the length of "+V2" which is 3, plus one is 4 (including the null)*/ |
/* strcpy (strloc, strloc +strlen(chain));*/ |
/* equivalent to strcpy (strloc, strloc +strlen(chain)) if no overlap; Copies from "+V2" to V1+V1*age+ */ |
} |
} |
printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out); |
printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out); /* strloc=+V2 chain="+age*age", in="V1+V1*age+age*age+V2", out="V1+V1*age+V2" */ |
return out; |
return out; |
} |
} |
|
|
Line 1363 char *substrchaine(char *out, char *in,
|
Line 1882 char *substrchaine(char *out, char *in,
|
char *cutl(char *blocc, char *alocc, char *in, char occ) |
char *cutl(char *blocc, char *alocc, char *in, char occ) |
{ |
{ |
/* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' |
/* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' |
and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2') |
and alocc starts after first occurence of char 'occ' : ex cutl(blocc,alocc,"abcdef2ghi2j",'2') |
gives blocc="abcdef" and alocc="ghi2j". |
gives alocc="abcdef" and blocc="ghi2j". |
If occ is not found blocc is null and alocc is equal to in. Returns blocc |
If occ is not found blocc is null and alocc is equal to in. Returns blocc |
*/ |
*/ |
char *s, *t; |
char *s, *t; |
Line 1429 int nbocc(char *s, char occ)
|
Line 1948 int nbocc(char *s, char occ)
|
return j; |
return j; |
} |
} |
|
|
|
int nboccstr(char *textin, char *chain) |
|
{ |
|
/* Counts the number of occurence of "chain" in string textin */ |
|
/* in="+V7*V4+age*V2+age*V3+age*V4" chain="age" */ |
|
char *strloc; |
|
|
|
int i,j=0; |
|
|
|
i=0; |
|
|
|
strloc=textin; /* strloc points to "^+V7*V4+age+..." in textin */ |
|
for(;;) { |
|
strloc= strstr(strloc,chain); /* strloc points to first character of chain in textin if found. Example strloc points^ to "+V7*V4+^age" in textin */ |
|
if(strloc != NULL){ |
|
strloc = strloc+strlen(chain); /* strloc points to "+V7*V4+age^" in textin */ |
|
j++; |
|
}else |
|
break; |
|
} |
|
return j; |
|
|
|
} |
/* void cutv(char *u,char *v, char*t, char occ) */ |
/* void cutv(char *u,char *v, char*t, char occ) */ |
/* { */ |
/* { */ |
/* /\* cuts string t into u and v where u ends before last occurence of char 'occ' */ |
/* /\* cuts string t into u and v where u ends before last occurence of char 'occ' */ |
Line 1646 char *subdirf(char fileres[])
|
Line 2187 char *subdirf(char fileres[])
|
/*************** function subdirf2 ***********/ |
/*************** function subdirf2 ***********/ |
char *subdirf2(char fileres[], char *preop) |
char *subdirf2(char fileres[], char *preop) |
{ |
{ |
|
/* Example subdirf2(optionfilefiname,"FB_") with optionfilefiname="texte", result="texte/FB_texte" |
|
Errors in subdirf, 2, 3 while printing tmpout is |
|
rewritten within the same printf. Workaround: many printfs */ |
/* Caution optionfilefiname is hidden */ |
/* Caution optionfilefiname is hidden */ |
strcpy(tmpout,optionfilefiname); |
strcpy(tmpout,optionfilefiname); |
strcat(tmpout,"/"); |
strcat(tmpout,"/"); |
Line 2017 void linmin(double p[], double xi[], int
|
Line 2560 void linmin(double p[], double xi[], int
|
#endif |
#endif |
#ifdef LINMINORIGINAL |
#ifdef LINMINORIGINAL |
#else |
#else |
if(fb == fx){ /* Flat function in the direction */ |
if(fb == fx){ /* Flat function in the direction */ |
xmin=xx; |
xmin=xx; |
*flat=1; |
*flat=1; |
}else{ |
}else{ |
*flat=0; |
*flat=0; |
#endif |
#endif |
/*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */ |
/*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */ |
Line 2078 void linmin(double p[], double xi[], int
|
Line 2621 void linmin(double p[], double xi[], int
|
|
|
/*************** powell ************************/ |
/*************** powell ************************/ |
/* |
/* |
Minimization of a function func of n variables. Input consists of an initial starting point |
Minimization of a function func of n variables. Input consists in an initial starting point |
p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di- |
p[1..n] ; an initial matrix xi[1..n][1..n] whose columns contain the initial set of di- |
rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value |
rections (usually the n unit vectors); and ftol, the fractional tolerance in the function value |
such that failure to decrease by more than this amount on one iteration signals doneness. On |
such that failure to decrease by more than this amount in one iteration signals doneness. On |
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
*/ |
*/ |
Line 2106 void powell(double p[], double **xi, int
|
Line 2649 void powell(double p[], double **xi, int
|
double fp,fptt; |
double fp,fptt; |
double *xits; |
double *xits; |
int niterf, itmp; |
int niterf, itmp; |
#ifdef LINMINORIGINAL |
int Bigter=0, nBigterf=1; |
#else |
|
|
|
flatdir=ivector(1,n); |
|
for (j=1;j<=n;j++) flatdir[j]=0; |
|
#endif |
|
|
|
pt=vector(1,n); |
pt=vector(1,n); |
ptt=vector(1,n); |
ptt=vector(1,n); |
xit=vector(1,n); |
xit=vector(1,n); |
xits=vector(1,n); |
xits=vector(1,n); |
*fret=(*func)(p); |
*fret=(*func)(p); |
for (j=1;j<=n;j++) pt[j]=p[j]; |
for (j=1;j<=n;j++) pt[j]=p[j]; |
rcurr_time = time(NULL); |
rcurr_time = time(NULL); |
|
fp=(*fret); /* Initialisation */ |
for (*iter=1;;++(*iter)) { |
for (*iter=1;;++(*iter)) { |
fp=(*fret); /* From former iteration or initial value */ |
|
ibig=0; |
ibig=0; |
del=0.0; |
del=0.0; |
rlast_time=rcurr_time; |
rlast_time=rcurr_time; |
|
rlast_btime=rcurr_time; |
/* (void) gettimeofday(&curr_time,&tzp); */ |
/* (void) gettimeofday(&curr_time,&tzp); */ |
rcurr_time = time(NULL); |
rcurr_time = time(NULL); |
curr_time = *localtime(&rcurr_time); |
curr_time = *localtime(&rcurr_time); |
printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); |
/* printf("\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); */ |
fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); |
/* fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); */ |
/* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */ |
Bigter=(*iter - *iter % ncovmodel)/ncovmodel +1; /* Big iteration, i.e on ncovmodel cycle */ |
|
printf("\nPowell iter=%d Big Iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,Bigter,*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); |
|
fprintf(ficlog,"\nPowell iter=%d Big Iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,Bigter,*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); |
|
fprintf(ficrespow,"%d %d %.12f %d",*iter,Bigter, *fret,curr_time.tm_sec-start_time.tm_sec); |
|
fp=(*fret); /* From former iteration or initial value */ |
for (i=1;i<=n;i++) { |
for (i=1;i<=n;i++) { |
fprintf(ficrespow," %.12lf", p[i]); |
fprintf(ficrespow," %.12lf", p[i]); |
} |
} |
Line 2151 void powell(double p[], double **xi, int
|
Line 2694 void powell(double p[], double **xi, int
|
}else if(Typevar[j]==2) { |
}else if(Typevar[j]==2) { |
printf(" + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
printf(" + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
fprintf(ficlog," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
fprintf(ficlog," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
}else if(Typevar[j]==3) { |
|
printf(" + V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficlog," + V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
} |
} |
} |
} |
printf("\n"); |
printf("\n"); |
Line 2181 void powell(double p[], double **xi, int
|
Line 2727 void powell(double p[], double **xi, int
|
strcurr[itmp-1]='\0'; |
strcurr[itmp-1]='\0'; |
printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
for(niterf=10;niterf<=30;niterf+=10){ |
for(nBigterf=1;nBigterf<=31;nBigterf+=10){ |
|
niterf=nBigterf*ncovmodel; |
|
/* rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); */ |
rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); |
rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); |
forecast_time = *localtime(&rforecast_time); |
forecast_time = *localtime(&rforecast_time); |
strcpy(strfor,asctime(&forecast_time)); |
strcpy(strfor,asctime(&forecast_time)); |
itmp = strlen(strfor); |
itmp = strlen(strfor); |
if(strfor[itmp-1]=='\n') |
if(strfor[itmp-1]=='\n') |
strfor[itmp-1]='\0'; |
strfor[itmp-1]='\0'; |
printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
printf(" - if your program needs %d BIG iterations (%d iterations) to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",nBigterf, niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
fprintf(ficlog," - if your program needs %d BIG iterations (%d iterations) to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",nBigterf, niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
} |
} |
} |
} |
for (i=1;i<=n;i++) { /* For each direction i */ |
for (i=1;i<=n;i++) { /* For each direction i */ |
Line 2235 void powell(double p[], double **xi, int
|
Line 2783 void powell(double p[], double **xi, int
|
/* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ |
/* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ |
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
/* New value of last point Pn is not computed, P(n-1) */ |
/* New value of last point Pn is not computed, P(n-1) */ |
for(j=1;j<=n;j++) { |
for(j=1;j<=n;j++) { |
if(flatdir[j] >0){ |
if(flatdir[j] >0){ |
printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
} |
} |
/* printf("\n"); */ |
/* printf("\n"); */ |
/* fprintf(ficlog,"\n"); */ |
/* fprintf(ficlog,"\n"); */ |
} |
} |
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */ |
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */ |
if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */ |
if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
Line 2280 void powell(double p[], double **xi, int
|
Line 2828 void powell(double p[], double **xi, int
|
} |
} |
#endif |
#endif |
|
|
#ifdef LINMINORIGINAL |
|
#else |
|
free_ivector(flatdir,1,n); |
|
#endif |
|
free_vector(xit,1,n); |
free_vector(xit,1,n); |
free_vector(xits,1,n); |
free_vector(xits,1,n); |
free_vector(ptt,1,n); |
free_vector(ptt,1,n); |
Line 2387 void powell(double p[], double **xi, int
|
Line 2931 void powell(double p[], double **xi, int
|
flatd++; |
flatd++; |
} |
} |
if(flatd >0){ |
if(flatd >0){ |
printf("%d flat directions\n",flatd); |
printf("%d flat directions: ",flatd); |
fprintf(ficlog,"%d flat directions\n",flatd); |
fprintf(ficlog,"%d flat directions :",flatd); |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
if(flatdir[j]>0){ |
if(flatdir[j]>0){ |
printf("%d ",j); |
printf("%d ",j); |
Line 2397 void powell(double p[], double **xi, int
|
Line 2941 void powell(double p[], double **xi, int
|
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
|
#ifdef FLATSUP |
|
free_vector(xit,1,n); |
|
free_vector(xits,1,n); |
|
free_vector(ptt,1,n); |
|
free_vector(pt,1,n); |
|
return; |
|
#endif |
} |
} |
#endif |
#endif |
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
Line 2428 void powell(double p[], double **xi, int
|
Line 2979 void powell(double p[], double **xi, int
|
|
|
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres) |
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres) |
{ |
{ |
/* Computes the prevalence limit in each live state at age x and for covariate combination ij |
/**< Computes the prevalence limit in each live state at age x and for covariate combination ij . Nicely done |
(and selected quantitative values in nres) |
* (and selected quantitative values in nres) |
by left multiplying the unit |
* by left multiplying the unit |
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
* matrix by transitions matrix until convergence is reached with precision ftolpl |
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I |
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
* Wx is row vector: population in state 1, population in state 2, population dead |
/* or prevalence in state 1, prevalence in state 2, 0 */ |
* or prevalence in state 1, prevalence in state 2, 0 |
/* newm is the matrix after multiplications, its rows are identical at a factor */ |
* newm is the matrix after multiplications, its rows are identical at a factor. |
/* Initial matrix pimij */ |
* Inputs are the parameter, age, a tolerance for the prevalence limit ftolpl. |
|
* Output is prlim. |
|
* Initial matrix pimij |
|
*/ |
/* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */ |
/* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */ |
/* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */ |
/* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */ |
/* 0, 0 , 1} */ |
/* 0, 0 , 1} */ |
Line 2450 void powell(double p[], double **xi, int
|
Line 3004 void powell(double p[], double **xi, int
|
/* 0.51326036147820708, 0.48673963852179264} */ |
/* 0.51326036147820708, 0.48673963852179264} */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
|
|
int i, ii,j,k; |
int i, ii,j,k, k1; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
/* double **matprod2(); */ /* test */ |
/* double **matprod2(); */ /* test */ |
double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */ |
double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */ |
double **newm; |
double **newm; |
double agefin, delaymax=200. ; /* 100 Max number of years to converge */ |
double agefin, delaymax=200. ; /* 100 Max number of years to converge */ |
int ncvloop=0; |
int ncvloop=0; |
|
int first=0; |
|
|
min=vector(1,nlstate); |
min=vector(1,nlstate); |
max=vector(1,nlstate); |
max=vector(1,nlstate); |
Line 2477 void powell(double p[], double **xi, int
|
Line 3032 void powell(double p[], double **xi, int
|
newm=savm; |
newm=savm; |
/* Covariates have to be included here again */ |
/* Covariates have to be included here again */ |
cov[2]=agefin; |
cov[2]=agefin; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agefin*agefin;; |
cov[3]= agefin*agefin; |
for (k=1; k<=nsd;k++) { /* For single dummy covariates only */ |
} |
/* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */ |
/* Model(2) V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */ |
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
/* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */ |
/* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
} |
if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */ |
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
}else{ |
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
cov[2+nagesqr+k1]=precov[nres][k1]; |
/* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
} |
} |
}/* End of loop on model equation */ |
for (k=1; k<=cptcovage;k++){ /* For product with age */ |
|
if(Dummy[Tvar[Tage[k]]]){ |
/* Start of old code (replaced by a loop on position in the model equation */ |
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
/* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only of the model *\/ */ |
} else{ |
/* /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */ |
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
/* /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; *\/ */ |
} |
/* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])]; */ |
/* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
/* /\* model = 1 +age + V1*V3 + age*V1 + V2 + V1 + age*V2 + V3 + V3*age + V1*V2 */ |
} |
/* * k 1 2 3 4 5 6 7 8 */ |
for (k=1; k<=cptcovprod;k++){ /* For product without age */ |
/* *cov[] 1 2 3 4 5 6 7 8 9 10 */ |
/* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */ |
/* *TypeVar[k] 2 1 0 0 1 0 1 2 */ |
if(Dummy[Tvard[k][1]==0]){ |
/* *Dummy[k] 0 2 0 0 2 0 2 0 */ |
if(Dummy[Tvard[k][2]==0]){ |
/* *Tvar[k] 4 1 2 1 2 3 3 5 */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
/* *nsd=3 (1) (2) (3) */ |
}else{ |
/* *TvarsD[nsd] [1]=2 1 3 */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; |
/* *TnsdVar [2]=2 [1]=1 [3]=3 */ |
} |
/* *TvarsDind[nsd](=k) [1]=3 [2]=4 [3]=6 */ |
}else{ |
/* *Tage[] [1]=1 [2]=2 [3]=3 */ |
if(Dummy[Tvard[k][2]==0]){ |
/* *Tvard[] [1][1]=1 [2][1]=1 */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; |
/* * [1][2]=3 [2][2]=2 */ |
}else{ |
/* *Tprod[](=k) [1]=1 [2]=8 */ |
cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; |
/* *TvarsDp(=Tvar) [1]=1 [2]=2 [3]=3 [4]=5 */ |
} |
/* *TvarD (=k) [1]=1 [2]=3 [3]=4 [3]=6 [4]=6 */ |
} |
/* *TvarsDpType */ |
} |
/* *si model= 1 + age + V3 + V2*age + V2 + V3*age */ |
|
/* * nsd=1 (1) (2) */ |
|
/* *TvarsD[nsd] 3 2 */ |
|
/* *TnsdVar (3)=1 (2)=2 */ |
|
/* *TvarsDind[nsd](=k) [1]=1 [2]=3 */ |
|
/* *Tage[] [1]=2 [2]= 3 */ |
|
/* *\/ */ |
|
/* /\* cov[++k1]=nbcode[TvarsD[k]][codtabm(ij,k)]; *\/ */ |
|
/* /\* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=nsq;k++) { /\* For single quantitative varying covariates only of the model *\/ */ |
|
/* /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */ |
|
/* /\* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline *\/ */ |
|
/* /\* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */ |
|
/* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][resultmodel[nres][k1]] */ |
|
/* /\* cov[++k1]=Tqresult[nres][k]; *\/ */ |
|
/* /\* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovage;k++){ /\* For product with age *\/ */ |
|
/* if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
|
/* /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */ |
|
/* } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */ |
|
/* /\* cov[++k1]=Tqresult[nres][k]; *\/ */ |
|
/* } */ |
|
/* /\* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */ |
|
/* /\* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */ |
|
/* if(Dummy[Tvard[k][1]]==0){ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */ |
|
/* } */ |
|
/* }else{ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; */ |
|
/* /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; *\/ */ |
|
/* } */ |
|
/* } */ |
|
/* } /\* End product without age *\/ */ |
|
/* ENd of old code */ |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
/* age and covariate values of ij are in 'cov' */ |
/* age and covariate values of ij are in 'cov' */ |
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */ |
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */ |
|
|
savm=oldm; |
savm=oldm; |
Line 2553 void powell(double p[], double **xi, int
|
Line 3156 void powell(double p[], double **xi, int
|
free_vector(meandiff,1,nlstate); |
free_vector(meandiff,1,nlstate); |
return prlim; |
return prlim; |
} |
} |
} /* age loop */ |
} /* agefin loop */ |
/* After some age loop it doesn't converge */ |
/* After some age loop it doesn't converge */ |
printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ |
if(!first){ |
Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
first=1; |
|
printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d). Others in log file only...\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
}else if (first >=1 && first <10){ |
|
fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
first++; |
|
}else if (first ==10){ |
|
fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
printf("Warning: the stable prevalence dit not converge. This warning came too often, IMaCh will stop notifying, even in its log file. Look at the graphs to appreciate the non convergence.\n"); |
|
fprintf(ficlog,"Warning: the stable prevalence no convergence; too many cases, giving up noticing, even in log file\n"); |
|
first++; |
|
} |
|
|
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
free_vector(min,1,nlstate); |
free_vector(min,1,nlstate); |
free_vector(max,1,nlstate); |
free_vector(max,1,nlstate); |
Line 2572 Earliest age to start was %d-%d=%d, ncvl
|
Line 3187 Earliest age to start was %d-%d=%d, ncvl
|
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres) |
double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres) |
{ |
{ |
/* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit |
/* Computes the prevalence limit in each live state at age x and for covariate combination ij (<=2**cptcoveff) by left multiplying the unit |
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
Line 2592 Earliest age to start was %d-%d=%d, ncvl
|
Line 3207 Earliest age to start was %d-%d=%d, ncvl
|
/* 0.51326036147820708, 0.48673963852179264} */ |
/* 0.51326036147820708, 0.48673963852179264} */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
|
|
int i, ii,j,k; |
int i, ii,j,k, k1; |
int first=0; |
int first=0; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
/* double **matprod2(); */ /* test */ |
/* double **matprod2(); */ /* test */ |
Line 2608 Earliest age to start was %d-%d=%d, ncvl
|
Line 3223 Earliest age to start was %d-%d=%d, ncvl
|
max=vector(1,nlstate); |
max=vector(1,nlstate); |
meandiff=vector(1,nlstate); |
meandiff=vector(1,nlstate); |
|
|
dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms; |
dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms; |
oldm=oldms; savm=savms; |
oldm=oldms; savm=savms; |
|
|
/* Starting with matrix unity */ |
/* Starting with matrix unity */ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
} |
} |
|
|
Line 2622 Earliest age to start was %d-%d=%d, ncvl
|
Line 3237 Earliest age to start was %d-%d=%d, ncvl
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
/* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */ |
/* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */ |
/* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */ |
/* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */ |
for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */ |
/* for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */ |
|
for(agefin=age; agefin<FMIN(AGESUP,age+delaymax); agefin=agefin+stepm/YEARM){ /* A changer en age */ |
ncvloop++; |
ncvloop++; |
newm=savm; /* oldm should be kept from previous iteration or unity at start */ |
newm=savm; /* oldm should be kept from previous iteration or unity at start */ |
/* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */ |
/* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */ |
/* Covariates have to be included here again */ |
/* Covariates have to be included here again */ |
cov[2]=agefin; |
cov[2]=agefin; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agefin*agefin;; |
cov[3]= agefin*agefin;; |
for (k=1; k<=nsd;k++) { /* For single dummy covariates only */ |
} |
/* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */ |
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */ |
/* printf("bprevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
} |
|
/* for (k=1; k<=cptcovn;k++) { */ |
|
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */ |
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
|
/* /\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\/ */ |
|
/* } */ |
|
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
|
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
|
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
|
/* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
/* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; */ |
|
/* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\/ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; */ |
|
for (k=1; k<=cptcovage;k++){ /* For product with age */ |
|
if(Dummy[Tvar[Tage[k]]]){ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
} else{ |
|
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
|
} |
|
/* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovprod;k++){ /* For product without age */ |
|
/* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */ |
|
if(Dummy[Tvard[k][1]==0]){ |
|
if(Dummy[Tvard[k][2]==0]){ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; |
|
} |
|
}else{ |
}else{ |
if(Dummy[Tvard[k][2]==0]){ |
cov[2+nagesqr+k1]=precov[nres][k1]; |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; |
|
} |
|
} |
} |
} |
}/* End of loop on model equation */ |
|
|
|
/* Old code */ |
|
|
|
/* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */ |
|
/* /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */ |
|
/* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; */ |
|
/* /\* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */ |
|
/* } */ |
|
/* /\* for (k=1; k<=cptcovn;k++) { *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */ |
|
/* /\* /\\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\\/ *\/ */ |
|
/* /\* } *\/ */ |
|
/* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */ |
|
/* /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */ |
|
/* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; */ |
|
/* /\* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* /\* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; *\/ */ |
|
/* /\* for (k=1; k<=cptcovprod;k++) /\\* Useless *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* for (k=1; k<=cptcovage;k++){ /\* For product with age *\/ */ |
|
/* /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age *\\/ ERROR ???*\/ */ |
|
/* if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
|
/* } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */ |
|
/* } */ |
|
/* /\* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */ |
|
/* /\* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */ |
|
/* if(Dummy[Tvard[k][1]]==0){ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */ |
|
/* } */ |
|
/* }else{ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
|
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
Line 2687 Earliest age to start was %d-%d=%d, ncvl
|
Line 3315 Earliest age to start was %d-%d=%d, ncvl
|
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */ |
|
/* if((int)age == 86 || (int)age == 87){ */ |
|
/* printf(" Backward prevalim age=%d agefin=%d \n", (int) age, (int) agefin); */ |
|
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
|
/* printf("%d newm= ",i); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",newm[i][j]); */ |
|
/* } */ |
|
/* printf("oldm * "); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",oldm[i][j]); */ |
|
/* } */ |
|
/* printf(" bmmij "); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",pmmij[i][j]); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* } */ |
|
/* } */ |
savm=oldm; |
savm=oldm; |
oldm=newm; |
oldm=newm; |
|
|
for(j=1; j<=nlstate; j++){ |
for(j=1; j<=nlstate; j++){ |
max[j]=0.; |
max[j]=0.; |
min[j]=1.; |
min[j]=1.; |
Line 2704 Earliest age to start was %d-%d=%d, ncvl
|
Line 3351 Earliest age to start was %d-%d=%d, ncvl
|
|
|
maxmax=0.; |
maxmax=0.; |
for(i=1; i<=nlstate; i++){ |
for(i=1; i<=nlstate; i++){ |
meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */ |
meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column, could be nan! */ |
maxmax=FMAX(maxmax,meandiff[i]); |
maxmax=FMAX(maxmax,meandiff[i]); |
/* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */ |
/* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */ |
} /* j loop */ |
} /* i loop */ |
*ncvyear= -( (int)age- (int)agefin); |
*ncvyear= -( (int)age- (int)agefin); |
/* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);*/ |
/* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
if(maxmax < ftolpl){ |
if(maxmax < ftolpl){ |
/* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
/* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
free_vector(min,1,nlstate); |
free_vector(min,1,nlstate); |
Line 2717 Earliest age to start was %d-%d=%d, ncvl
|
Line 3364 Earliest age to start was %d-%d=%d, ncvl
|
free_vector(meandiff,1,nlstate); |
free_vector(meandiff,1,nlstate); |
return bprlim; |
return bprlim; |
} |
} |
} /* age loop */ |
} /* agefin loop */ |
/* After some age loop it doesn't converge */ |
/* After some age loop it doesn't converge */ |
if(first){ |
if(!first){ |
first=1; |
first=1; |
printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\ |
printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\ |
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
Line 2739 Oldest age to start was %d-%d=%d, ncvloo
|
Line 3386 Oldest age to start was %d-%d=%d, ncvloo
|
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
{ |
{ |
/* According to parameters values stored in x and the covariate's values stored in cov, |
/* According to parameters values stored in x and the covariate's values stored in cov, |
computes the probability to be observed in state j being in state i by appying the |
computes the probability to be observed in state j (after stepm years) being in state i by appying the |
model to the ncovmodel covariates (including constant and age). |
model to the ncovmodel covariates (including constant and age). |
lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
Line 2748 double **pmij(double **ps, double *cov,
|
Line 3395 double **pmij(double **ps, double *cov,
|
j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
Outputs ps[i][j] the probability to be observed in j being in j according to |
Outputs ps[i][j] or probability to be observed in j being in i according to |
the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
|
Sum on j ps[i][j] should equal to 1. |
*/ |
*/ |
double s1, lnpijopii; |
double s1, lnpijopii; |
/*double t34;*/ |
/*double t34;*/ |
Line 2763 double **pmij(double **ps, double *cov,
|
Line 3411 double **pmij(double **ps, double *cov,
|
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
} |
} |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
/* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */ |
} |
} |
for(j=i+1; j<=nlstate+ndeath;j++){ |
for(j=i+1; j<=nlstate+ndeath;j++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
Line 2772 double **pmij(double **ps, double *cov,
|
Line 3420 double **pmij(double **ps, double *cov,
|
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
} |
} |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
/* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */ |
} |
} |
} |
} |
|
|
for(i=1; i<= nlstate; i++){ |
for(i=1; i<= nlstate; i++){ |
s1=0; |
s1=0; |
for(j=1; j<i; j++){ |
for(j=1; j<i; j++){ |
|
/* printf("debug1 %d %d ps=%lf exp(ps)=%lf \n",i,j,ps[i][j],exp(ps[i][j])); */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
} |
for(j=i+1; j<=nlstate+ndeath; j++){ |
for(j=i+1; j<=nlstate+ndeath; j++){ |
|
/* printf("debug2 %d %d ps=%lf exp(ps)=%lf \n",i,j,ps[i][j],exp(ps[i][j])); */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
} |
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
ps[i][i]=1./(s1+1.); |
ps[i][i]=1./(s1+1.); |
/* Computing other pijs */ |
/* Computing other pijs */ |
for(j=1; j<i; j++) |
for(j=1; j<i; j++) |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
ps[i][j]= exp(ps[i][j])*ps[i][i];/* Bug valgrind */ |
for(j=i+1; j<=nlstate+ndeath; j++) |
for(j=i+1; j<=nlstate+ndeath; j++) |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
Line 2801 double **pmij(double **ps, double *cov,
|
Line 3450 double **pmij(double **ps, double *cov,
|
ps[ii][ii]=1; |
ps[ii][ii]=1; |
} |
} |
} |
} |
|
|
|
|
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
Line 2813 double **pmij(double **ps, double *cov,
|
Line 3462 double **pmij(double **ps, double *cov,
|
/* |
/* |
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
goto end;*/ |
goto end;*/ |
return ps; |
return ps; /* Pointer is unchanged since its call */ |
} |
} |
|
|
/*************** backward transition probabilities ***************/ |
/*************** backward transition probabilities ***************/ |
Line 2822 double **pmij(double **ps, double *cov,
|
Line 3471 double **pmij(double **ps, double *cov,
|
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, int ij ) |
double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, int ij ) |
{ |
{ |
/* Computes the backward probability at age agefin and covariate ij |
/* Computes the backward probability at age agefin, cov[2], and covariate combination 'ij'. In fact cov is already filled and x too. |
* and returns in **ps as well as **bmij. |
* Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij. |
*/ |
*/ |
int i, ii, j,k; |
int i, ii, j,k; |
|
|
double **out, **pmij(); |
double **out, **pmij(); |
double sumnew=0.; |
double sumnew=0.; |
double agefin; |
double agefin; |
|
double k3=0.; /* constant of the w_x diagonal matrix (in order for B to sum to 1 even for death state) */ |
double **dnewm, **dsavm, **doldm; |
double **dnewm, **dsavm, **doldm; |
double **bbmij; |
double **bbmij; |
|
|
doldm=ddoldms; /* global pointers */ |
doldm=ddoldms; /* global pointers */ |
dnewm=ddnewms; |
dnewm=ddnewms; |
dsavm=ddsavms; |
dsavm=ddsavms; |
|
|
|
/* Debug */ |
|
/* printf("Bmij ij=%d, cov[2}=%f\n", ij, cov[2]); */ |
agefin=cov[2]; |
agefin=cov[2]; |
|
/* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */ |
/* bmij *//* age is cov[2], ij is included in cov, but we need for |
/* bmij *//* age is cov[2], ij is included in cov, but we need for |
the observed prevalence (with this covariate ij) */ |
the observed prevalence (with this covariate ij) at beginning of transition */ |
dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); |
/* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* We do have the matrix Px in savm and we need pij */ |
|
|
/* P_x */ |
|
pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm *//* Bug valgrind */ |
|
/* outputs pmmij which is a stochastic matrix in row */ |
|
|
|
/* Diag(w_x) */ |
|
/* Rescaling the cross-sectional prevalence: Problem with prevacurrent which can be zero */ |
|
sumnew=0.; |
|
/*for (ii=1;ii<=nlstate+ndeath;ii++){*/ |
|
for (ii=1;ii<=nlstate;ii++){ /* Only on live states */ |
|
/* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]); */ |
|
sumnew+=prevacurrent[(int)agefin][ii][ij]; |
|
} |
|
if(sumnew >0.01){ /* At least some value in the prevalence */ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
for (j=1;j<=nlstate+ndeath;j++) |
|
doldm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij]/sumnew : 0.0); |
|
} |
|
}else{ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
for (j=1;j<=nlstate+ndeath;j++) |
|
doldm[ii][j]=(ii==j ? 1./nlstate : 0.0); |
|
} |
|
/* if(sumnew <0.9){ */ |
|
/* printf("Problem internal bmij B: sum on i wi <0.9: j=%d, sum_i wi=%lf,agefin=%d\n",j,sumnew, (int)agefin); */ |
|
/* } */ |
|
} |
|
k3=0.0; /* We put the last diagonal to 0 */ |
|
for (ii=nlstate+1;ii<=nlstate+ndeath;ii++){ |
|
doldm[ii][ii]= k3; |
|
} |
|
/* End doldm, At the end doldm is diag[(w_i)] */ |
|
|
|
/* Left product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm): diag[(w_i)*Px */ |
|
bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* was a Bug Valgrind */ |
|
|
|
/* Diag(Sum_i w^i_x p^ij_x, should be the prevalence at age x+stepm */ |
|
/* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */ |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
sumnew=0.; /* w1 p11 + w2 p21 only on live states */ |
sumnew=0.; |
for (ii=1;ii<=nlstate;ii++){ |
for (ii=1;ii<=nlstate;ii++){ |
sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; |
/* sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; */ |
|
sumnew+=pmmij[ii][j]*doldm[ii][ii]; /* Yes prevalence at beginning of transition */ |
} /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */ |
} /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */ |
for (ii=1;ii<=nlstate+ndeath;ii++){ |
for (ii=1;ii<=nlstate+ndeath;ii++){ |
if(sumnew >= 1.e-10){ |
|
/* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */ |
/* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */ |
/* doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
/* dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
/* }else if(agefin >= agemaxpar+stepm/YEARM){ */ |
/* }else if(agefin >= agemaxpar+stepm/YEARM){ */ |
/* doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
/* dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
/* }else */ |
/* }else */ |
doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); |
dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); |
}else{ |
|
; |
|
/* printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin); */ |
|
} |
|
} /*End ii */ |
} /*End ii */ |
} /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */ |
} /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */ |
/* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */ |
|
bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */ |
ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* was a Bug Valgrind */ |
/* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */ |
/* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */ |
/* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */ |
|
/* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */ |
|
/* left Product of this matrix by diag matrix of prevalences (savm) */ |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0); |
|
} |
|
} /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */ |
|
ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */ |
|
/* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */ |
|
/* end bmij */ |
/* end bmij */ |
return ps; |
return ps; /*pointer is unchanged */ |
} |
} |
/*************** transition probabilities ***************/ |
/*************** transition probabilities ***************/ |
|
|
Line 2945 double **bpmij(double **ps, double *cov,
|
Line 3620 double **bpmij(double **ps, double *cov,
|
ps[ii][ii]=1; |
ps[ii][ii]=1; |
} |
} |
} |
} |
/* Added for backcast */ /* Transposed matrix too */ |
/* Added for prevbcast */ /* Transposed matrix too */ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
s1=0.; |
s1=0.; |
for(ii=1; ii<= nlstate+ndeath; ii++){ |
for(ii=1; ii<= nlstate+ndeath; ii++){ |
Line 3001 double **matprod2(double **out, double *
|
Line 3676 double **matprod2(double **out, double *
|
|
|
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres ) |
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres ) |
{ |
{ |
/* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over |
/* Already optimized with precov. |
|
Computes the transition matrix starting at age 'age' and dummies values in each resultline (loop on ij to find the corresponding combination) to over |
'nhstepm*hstepm*stepm' months (i.e. until |
'nhstepm*hstepm*stepm' months (i.e. until |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
nhstepm*hstepm matrices. |
nhstepm*hstepm matrices. |
Line 3013 double ***hpxij(double ***po, int nhstep
|
Line 3689 double ***hpxij(double ***po, int nhstep
|
|
|
*/ |
*/ |
|
|
int i, j, d, h, k; |
int i, j, d, h, k, k1; |
double **out, cov[NCOVMAX+1]; |
double **out, cov[NCOVMAX+1]; |
double **newm; |
double **newm; |
double agexact; |
double agexact; |
Line 3033 double ***hpxij(double ***po, int nhstep
|
Line 3709 double ***hpxij(double ***po, int nhstep
|
cov[1]=1.; |
cov[1]=1.; |
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (k=1; k<=nsd;k++) { /* For single dummy covariates only */ |
|
/* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */ |
|
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
|
/* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
|
} |
|
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
|
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
|
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
|
/* printf("hPxij Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovage;k++){ |
|
if(Dummy[Tvar[Tage[k]]]){ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
} else{ |
|
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
|
} |
|
/* printf("hPxij Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovprod;k++){ /* */ |
|
/* printf("hPxij Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
} |
} |
|
/* Model(2) V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */ |
|
/* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */ |
|
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
|
if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */ |
|
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
|
}else{ |
|
cov[2+nagesqr+k1]=precov[nres][k1]; |
|
} |
|
}/* End of loop on model equation */ |
|
/* Old code */ |
|
/* if( Dummy[k1]==0 && Typevar[k1]==0 ){ /\* Single dummy *\/ */ |
|
/* /\* V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) *\/ */ |
|
/* /\* for (k=1; k<=nsd;k++) { /\\* For single dummy covariates only *\\/ *\/ */ |
|
/* /\* /\\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\\/ *\/ */ |
|
/* /\* codtabm(ij,k) (1 & (ij-1) >> (k-1))+1 *\/ */ |
|
/* /\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */ |
|
/* /\* k 1 2 3 4 5 6 7 8 9 *\/ */ |
|
/* /\*Tvar[k]= 5 4 3 6 5 2 7 1 1 *\/ */ |
|
/* /\* nsd 1 2 3 *\/ /\* Counting single dummies covar fixed or tv *\/ */ |
|
/* /\*TvarsD[nsd] 4 3 1 *\/ /\* ID of single dummy cova fixed or timevary*\/ */ |
|
/* /\*TvarsDind[k] 2 3 9 *\/ /\* position K of single dummy cova *\/ */ |
|
/* /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];or [codtabm(ij,TnsdVar[TvarsD[k]] *\/ */ |
|
/* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; */ |
|
/* /\* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,TnsdVar[TvarsD[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,TnsdVar[TvarsD[k]])); *\/ */ |
|
/* printf("hpxij Dummy combi=%d k1=%d Tvar[%d]=V%d cov[2+%d+%d]=%lf resultmodel[nres][%d]=%d nres/nresult=%d/%d \n",ij,k1,k1, Tvar[k1],nagesqr,k1,cov[2+nagesqr+k1],k1,resultmodel[nres][k1],nres,nresult); */ |
|
/* printf("hpxij new Dummy precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */ |
|
/* }else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /\* Single quantitative variables *\/ */ |
|
/* /\* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline *\/ */ |
|
/* cov[2+nagesqr+k1]=Tqresult[nres][resultmodel[nres][k1]]; */ |
|
/* /\* for (k=1; k<=nsq;k++) { /\\* For single varying covariates only *\\/ *\/ */ |
|
/* /\* /\\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */ |
|
/* printf("hPxij Quantitative k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */ |
|
/* printf("hpxij new Quanti precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */ |
|
/* }else if( Dummy[k1]==2 ){ /\* For dummy with age product *\/ */ |
|
/* /\* Tvar[k1] Variable in the age product age*V1 is 1 *\/ */ |
|
/* /\* [Tinvresult[nres][V1] is its value in the resultline nres *\/ */ |
|
/* cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvar[k1]]*cov[2]; */ |
|
/* printf("DhPxij Dummy with age k1=%d Tvar[%d]=%d TinvDoQresult[nres=%d][%d]=%.f age=%.2f,cov[2+%d+%d]=%.3f\n",k1,k1,Tvar[k1],nres,TinvDoQresult[nres][Tvar[k1]],cov[2],nagesqr,k1,cov[2+nagesqr+k1]); */ |
|
/* printf("hpxij new Dummy with age product precov[nres=%d][k1=%d]=%.4f * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */ |
|
|
|
/* /\* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; *\/ */ |
|
/* /\* for (k=1; k<=cptcovage;k++){ /\\* For product with age V1+V1*age +V4 +age*V3 *\\/ *\/ */ |
|
/* /\* 1+2 Tage[1]=2 TVar[2]=1 Dummy[2]=2, Tage[2]=4 TVar[4]=3 Dummy[4]=3 quant*\/ */ |
|
/* /\* *\/ */ |
|
/* /\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */ |
|
/* /\* k 1 2 3 4 5 6 7 8 9 *\/ */ |
|
/* /\*Tvar[k]= 5 4 3 6 5 2 7 1 1 *\/ */ |
|
/* /\*cptcovage=2 1 2 *\/ */ |
|
/* /\*Tage[k]= 5 8 *\/ */ |
|
/* }else if( Dummy[k1]==3 ){ /\* For quant with age product *\/ */ |
|
/* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; */ |
|
/* printf("QhPxij Quant with age k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */ |
|
/* printf("hpxij new Quanti with age product precov[nres=%d][k1=%d] * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */ |
|
/* /\* if(Dummy[Tage[k]]== 2){ /\\* dummy with age *\\/ *\/ */ |
|
/* /\* /\\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\\* dummy with age *\\\/ *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\/ */ |
|
/* /\* printf("hPxij Age combi=%d k=%d cptcovage=%d Tage[%d]=%d Tvar[Tage[%d]]=V%d nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]]])]=%d nres=%d\n",ij,k,cptcovage,k,Tage[k],k,Tvar[Tage[k]], nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]])],nres); *\/ */ |
|
/* /\* } else if(Dummy[Tage[k]]== 3){ /\\* quantitative with age *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* printf("hPxij Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* }else if(Typevar[k1]==2 ){ /\* For product (not with age) *\/ */ |
|
/* /\* for (k=1; k<=cptcovprod;k++){ /\\* For product without age *\\/ *\/ */ |
|
/* /\* /\\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\\/ *\/ */ |
|
/* /\* /\\* k 1 2 3 4 5 6 7 8 9 *\\/ *\/ */ |
|
/* /\* /\\*Tvar[k]= 5 4 3 6 5 2 7 1 1 *\\/ *\/ */ |
|
/* /\* /\\*cptcovprod=1 1 2 *\\/ *\/ */ |
|
/* /\* /\\*Tprod[]= 4 7 *\\/ *\/ */ |
|
/* /\* /\\*Tvard[][1] 4 1 *\\/ *\/ */ |
|
/* /\* /\\*Tvard[][2] 3 2 *\\/ *\/ */ |
|
|
|
/* /\* printf("hPxij Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]=%d nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]=%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2],nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])],nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]); *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]]; */ |
|
/* printf("hPxij Prod ij=%d k1=%d cov[2+%d+%d]=%.5f Tvard[%d][1]=V%d * Tvard[%d][2]=V%d ; TinvDoQresult[nres][Tvardk[k1][1]]=%.4f * TinvDoQresult[nres][Tvardk[k1][1]]=%.4f\n",ij,k1,nagesqr,k1,cov[2+nagesqr+k1],k1,Tvardk[k1][1], k1,Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][1]], TinvDoQresult[nres][Tvardk[k1][2]]); */ |
|
/* printf("hpxij new Product no age product precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */ |
|
|
|
/* /\* if(Dummy[Tvardk[k1][1]]==0){ *\/ */ |
|
/* /\* if(Dummy[Tvardk[k1][2]]==0){ /\\* Product of dummies *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* /\* cov[2+nagesqr+k1]=Tinvresult[nres][Tvardk[k1][1]] * Tinvresult[nres][Tvardk[k1][2]]; *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])]; *\/ */ |
|
/* /\* }else{ /\\* Product of dummy by quantitative *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * Tqresult[nres][k]; *\/ */ |
|
/* /\* cov[2+nagesqr+k1]=Tresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]]; *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* }else{ /\\* Product of quantitative by...*\\/ *\/ */ |
|
/* /\* if(Dummy[Tvard[k][2]]==0){ /\\* quant by dummy *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][Tvard[k][1]]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tresult[nres][Tinvresult[nres][Tvardk[k1][2]]] ; *\/ */ |
|
/* /\* }else{ /\\* Product of two quant *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]] ; *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* }/\\*end of products quantitative *\\/ *\/ */ |
|
/* }/\*end of products *\/ */ |
|
/* } /\* End of loop on model equation *\/ */ |
/* for (k=1; k<=cptcovn;k++) */ |
/* for (k=1; k<=cptcovn;k++) */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
/* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */ |
/* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */ |
Line 3067 double ***hpxij(double ***po, int nhstep
|
Line 3822 double ***hpxij(double ***po, int nhstep
|
|
|
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/* right multiplication of oldm by the current matrix */ |
/* right multiplication of oldm by the current matrix */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
pmij(pmmij,cov,ncovmodel,x,nlstate)); |
pmij(pmmij,cov,ncovmodel,x,nlstate)); |
/* if((int)age == 70){ */ |
/* if((int)age == 70){ */ |
Line 3089 double ***hpxij(double ***po, int nhstep
|
Line 3844 double ***hpxij(double ***po, int nhstep
|
} |
} |
for(i=1; i<=nlstate+ndeath; i++) |
for(i=1; i<=nlstate+ndeath; i++) |
for(j=1;j<=nlstate+ndeath;j++) { |
for(j=1;j<=nlstate+ndeath;j++) { |
po[i][j][h]=newm[i][j]; |
po[i][j][h]=newm[i][j]; |
/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
} |
} |
/*printf("h=%d ",h);*/ |
/*printf("h=%d ",h);*/ |
} /* end h */ |
} /* end h */ |
/* printf("\n H=%d \n",h); */ |
/* printf("\n H=%d \n",h); */ |
return po; |
return po; |
} |
} |
|
|
/************* Higher Back Matrix Product ***************/ |
/************* Higher Back Matrix Product ***************/ |
/* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */ |
/* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */ |
double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij ) |
double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres ) |
{ |
{ |
/* Computes the transition matrix starting at age 'age' over |
/* For dummy covariates given in each resultline (for historical, computes the corresponding combination ij), |
|
computes the transition matrix starting at age 'age' over |
'nhstepm*hstepm*stepm' months (i.e. until |
'nhstepm*hstepm*stepm' months (i.e. until |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
nhstepm*hstepm matrices. |
nhstepm*hstepm matrices. |
Line 3110 double ***hbxij(double ***po, int nhstep
|
Line 3866 double ***hbxij(double ***po, int nhstep
|
(typically every 2 years instead of every month which is too big |
(typically every 2 years instead of every month which is too big |
for the memory). |
for the memory). |
Model is determined by parameters x and covariates have to be |
Model is determined by parameters x and covariates have to be |
included manually here. |
included manually here. Then we use a call to bmij(x and cov) |
|
The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output |
*/ |
*/ |
|
|
int i, j, d, h, k; |
int i, j, d, h, k, k1; |
double **out, cov[NCOVMAX+1]; |
double **out, cov[NCOVMAX+1], **bmij(); |
double **newm; |
double **newm, ***newmm; |
double agexact; |
double agexact; |
double agebegin, ageend; |
double agebegin, ageend; |
double **oldm, **savm; |
double **oldm, **savm; |
|
|
oldm=oldms;savm=savms; |
newmm=po; /* To be saved */ |
|
oldm=oldms;savm=savms; /* Global pointers */ |
/* Hstepm could be zero and should return the unit matrix */ |
/* Hstepm could be zero and should return the unit matrix */ |
for (i=1;i<=nlstate+ndeath;i++) |
for (i=1;i<=nlstate+ndeath;i++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
Line 3134 double ***hbxij(double ***po, int nhstep
|
Line 3891 double ***hbxij(double ***po, int nhstep
|
newm=savm; |
newm=savm; |
/* Covariates have to be included here again */ |
/* Covariates have to be included here again */ |
cov[1]=1.; |
cov[1]=1.; |
agexact=age-((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
agexact=age-( (h-1)*hstepm + (d) )*stepm/YEARM; /* age just before transition, d or d-1? */ |
/* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */ |
/* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */ |
|
/* Debug */ |
|
/* printf("hBxij age=%lf, agexact=%lf\n", age, agexact); */ |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (k=1; k<=cptcovn;k++) |
} |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
/** New code */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */ |
if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */ |
/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
}else{ |
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
cov[2+nagesqr+k1]=precov[nres][k1]; |
for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */ |
} |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
}/* End of loop on model equation */ |
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
/** End of new code */ |
|
/** This was old code */ |
|
/* for (k=1; k<=nsd;k++){ /\* For single dummy covariates only *\//\* cptcovn error *\/ */ |
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/* /\* /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */ |
|
/* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])];/\* Bug valgrind *\/ */ |
|
/* /\* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */ |
|
/* /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */ |
|
/* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; */ |
|
/* /\* printf("hPxij Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovage;k++){ /\* Should start at cptcovn+1 *\//\* For product with age *\/ */ |
|
/* /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age error!!!*\\/ *\/ */ |
|
/* if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
|
/* } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */ |
|
/* } */ |
|
/* /\* printf("hBxij Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovprod;k++){ /\* Useless because included in cptcovn *\/ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
/* if(Dummy[Tvard[k][1]]==0){ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]; */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */ |
|
/* } */ |
|
/* }else{ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
/* /\*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*\/ */ |
|
/* /\*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*\/ */ |
|
/** End of old code */ |
|
|
/* Careful transposed matrix */ |
/* Careful transposed matrix */ |
/* age is in cov[2] */ |
/* age is in cov[2], prevacurrent at beginning of transition. */ |
/* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */ |
/* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */ |
/* 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */ |
/* 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */ |
out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\ |
out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\ |
1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); |
1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);/* Bug valgrind */ |
/* if((int)age == 70){ */ |
/* if((int)age == 70){ */ |
/* printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */ |
/* printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */ |
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
Line 3179 double ***hbxij(double ***po, int nhstep
|
Line 3975 double ***hbxij(double ***po, int nhstep
|
for(i=1; i<=nlstate+ndeath; i++) |
for(i=1; i<=nlstate+ndeath; i++) |
for(j=1;j<=nlstate+ndeath;j++) { |
for(j=1;j<=nlstate+ndeath;j++) { |
po[i][j][h]=newm[i][j]; |
po[i][j][h]=newm[i][j]; |
/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
/* if(h==nhstepm) */ |
|
/* printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]); */ |
} |
} |
/*printf("h=%d ",h);*/ |
/* printf("h=%d %.1f ",h, agexact); */ |
} /* end h */ |
} /* end h */ |
/* printf("\n H=%d \n",h); */ |
/* printf("\n H=%d nhs=%d \n",h, nhstepm); */ |
return po; |
return po; |
} |
} |
|
|
Line 3211 double ***hbxij(double ***po, int nhstep
|
Line 4008 double ***hbxij(double ***po, int nhstep
|
/*************** log-likelihood *************/ |
/*************** log-likelihood *************/ |
double func( double *x) |
double func( double *x) |
{ |
{ |
int i, ii, j, k, mi, d, kk; |
int i, ii, j, k, mi, d, kk, kf=0; |
int ioffset=0; |
int ioffset=0; |
|
int ipos=0,iposold=0,ncovv=0; |
|
|
|
double cotvarv, cotvarvold; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double **out; |
double **out; |
double lli; /* Individual log likelihood */ |
double lli; /* Individual log likelihood */ |
int s1, s2; |
int s1, s2; |
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
|
|
double bbh, survp; |
double bbh, survp; |
long ipmx; |
|
double agexact; |
double agexact; |
|
double agebegin, ageend; |
/*extern weight */ |
/*extern weight */ |
/* We are differentiating ll according to initial status */ |
/* We are differentiating ll according to initial status */ |
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
Line 3243 double func( double *x)
|
Line 4044 double func( double *x)
|
*/ |
*/ |
ioffset=2+nagesqr ; |
ioffset=2+nagesqr ; |
/* Fixed */ |
/* Fixed */ |
for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */ |
for (kf=1; kf<=ncovf;kf++){ /* For each fixed covariate dummy or quant or prod */ |
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
/* # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi */ |
|
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
/* TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 ID of fixed covariates or product V2, V1*V2, V1 */ |
|
/* TvarFind; TvarFind[1]=6, TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod) */ |
|
cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (TvarFind[1]=6)*/ |
|
/* V1*V2 (7) TvarFind[2]=7, TvarFind[3]=9 */ |
} |
} |
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] |
is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 |
has been calculated etc */ |
has been calculated etc */ |
/* For an individual i, wav[i] gives the number of effective waves */ |
/* For an individual i, wav[i] gives the number of effective waves */ |
/* We compute the contribution to Likelihood of each effective transition |
/* We compute the contribution to Likelihood of each effective transition |
mw[mi][i] is real wave of the mi th effectve wave */ |
mw[mi][i] is real wave of the mi th effectve wave */ |
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] |
And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] because now is moved after nvocol+nqv |
But if the variable is not in the model TTvar[iv] is the real variable effective in the model: |
But if the variable is not in the model TTvar[iv] is the real variable effective in the model: |
meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i] |
meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i] |
*/ |
*/ |
for(mi=1; mi<= wav[i]-1; mi++){ |
for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ |
for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ |
/* Wave varying (but not age varying) */ |
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */ |
/* for(k=1; k <= ncovv ; k++){ /\* Varying covariates in the model (single and product but no age )"V5+V4+V3+V4*V3+V5*age+V1*age+V1" +TvarVind 1,2,3,4(V4*V3) Tvar[1]@7{5, 4, 3, 6, 5, 1, 1 ; 6 because the created covar is after V5 and is 6, minus 1+1, 3,2,1,4 positions in cotvar*\/ */ |
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; |
/* /\* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; but where is the crossproduct? *\/ */ |
|
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; */ |
|
/* } */ |
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying covariates (single and product but no age )*/ |
|
itv=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate */ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
|
if(FixedV[itv]!=0){ /* Not a fixed covariate */ |
|
cotvarv=cotvar[mw[mi][i]][TvarVV[ncovv]][i]; /* cotvar[wav][ncovcol+nqv+iv][i] */ |
|
}else{ /* fixed covariate */ |
|
cotvarv=covar[itv][i]; /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */ |
|
} |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
cotvarvold=cotvarv; |
|
}else{ /* A second product */ |
|
cotvarv=cotvarv*cotvarvold; |
|
} |
|
iposold=ipos; |
|
cov[ioffset+ipos]=cotvarv; |
} |
} |
|
/* for products of time varying to be done */ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
} |
} |
|
|
|
agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */ |
|
ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */ |
for(d=0; d<dh[mi][i]; d++){ |
for(d=0; d<dh[mi][i]; d++){ |
newm=savm; |
newm=savm; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; /* Should be changed here */ |
cov[3]= agexact*agexact; /* Should be changed here */ |
for (kk=1; kk<=cptcovage;kk++) { |
/* for (kk=1; kk<=cptcovage;kk++) { */ |
if(!FixedV[Tvar[Tage[kk]]]) |
/* if(!FixedV[Tvar[Tage[kk]]]) */ |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
/* cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /\* Tage[kk] gives the data-covariate associated with age *\/ */ |
else |
/* else */ |
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact; |
/* cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/ */ |
|
/* } */ |
|
for(ncovva=1, iposold=0; ncovva <= ncovta ; ncovva++){ /* Time varying covariates with age including individual from products, product is computed dynamically */ |
|
itv=TvarAVVA[ncovva]; /* TvarVV={3, 1, 3} gives the name of each varying covariate, exploding product Vn*Vm into Vn and then Vm */ |
|
ipos=TvarAVVAind[ncovva]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
|
if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */ |
|
cotvarv=cotvar[mw[mi][i]][TvarAVVA[ncovva]][i]; /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ |
|
}else{ /* fixed covariate */ |
|
cotvarv=covar[itv][i]; /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */ |
|
} |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
cotvarvold=cotvarv; |
|
}else{ /* A second product */ |
|
cotvarv=cotvarv*cotvarvold; |
|
} |
|
iposold=ipos; |
|
cov[ioffset+ipos]=cotvarv*agexact; |
|
/* For products */ |
} |
} |
|
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
savm=oldm; |
savm=oldm; |
Line 3358 double func( double *x)
|
Line 4203 double func( double *x)
|
/*survp += out[s1][j]; */ |
/*survp += out[s1][j]; */ |
lli= log(survp); |
lli= log(survp); |
} |
} |
else if (s2==-4) { |
/* else if (s2==-4) { */ |
for (j=3,survp=0. ; j<=nlstate; j++) |
/* for (j=3,survp=0. ; j<=nlstate; j++) */ |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
/* survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */ |
lli= log(survp); |
/* lli= log(survp); */ |
} |
/* } */ |
else if (s2==-5) { |
/* else if (s2==-5) { */ |
for (j=1,survp=0. ; j<=2; j++) |
/* for (j=1,survp=0. ; j<=2; j++) */ |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
/* survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */ |
lli= log(survp); |
/* lli= log(survp); */ |
} |
/* } */ |
else{ |
else{ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
} |
} |
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
/*if(lli ==000.0)*/ |
/*if(lli ==000.0)*/ |
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
/* printf("num[i], i=%d, bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
ipmx +=1; |
ipmx +=1; |
sw += weight[i]; |
sw += weight[i]; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
Line 3386 double func( double *x)
|
Line 4231 double func( double *x)
|
} /* end of individual */ |
} /* end of individual */ |
} else if(mle==2){ |
} else if(mle==2){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
ioffset=2+nagesqr ; |
|
for (k=1; k<=ncovf;k++) |
|
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i]; |
for(mi=1; mi<= wav[i]-1; mi++){ |
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for(k=1; k <= ncovv ; k++){ |
|
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
|
} |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
Line 3433 double func( double *x)
|
Line 4283 double func( double *x)
|
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (kk=1; kk<=cptcovage;kk++) { |
for (kk=1; kk<=cptcovage;kk++) { |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
if(!FixedV[Tvar[Tage[kk]]]) |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
|
else |
|
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
} |
} |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
Line 3489 double func( double *x)
|
Line 4342 double func( double *x)
|
ipmx +=1; |
ipmx +=1; |
sw += weight[i]; |
sw += weight[i]; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
/* printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
/* printf("num[i]=%09ld, i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */ |
} /* end of wave */ |
} /* end of wave */ |
} /* end of individual */ |
} /* end of individual */ |
}else{ /* ml=5 no inter-extrapolation no jackson =0.8a */ |
}else{ /* ml=5 no inter-extrapolation no jackson =0.8a */ |
Line 3508 double func( double *x)
|
Line 4361 double func( double *x)
|
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (kk=1; kk<=cptcovage;kk++) { |
for (kk=1; kk<=cptcovage;kk++) { |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
if(!FixedV[Tvar[Tage[kk]]]) |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
|
else |
|
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
} |
} |
|
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
Line 3537 double func( double *x)
|
Line 4393 double func( double *x)
|
double funcone( double *x) |
double funcone( double *x) |
{ |
{ |
/* Same as func but slower because of a lot of printf and if */ |
/* Same as func but slower because of a lot of printf and if */ |
int i, ii, j, k, mi, d, kk; |
int i, ii, j, k, mi, d, kk, kv=0, kf=0; |
int ioffset=0; |
int ioffset=0; |
|
int ipos=0,iposold=0,ncovv=0; |
|
|
|
double cotvarv, cotvarvold; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double **out; |
double **out; |
double lli; /* Individual log likelihood */ |
double lli; /* Individual log likelihood */ |
Line 3560 double funcone( double *x)
|
Line 4419 double funcone( double *x)
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for(k=1; k<=nlstate; k++) ll[k]=0.; |
ioffset=0; |
ioffset=0; |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
/* Computes the values of the ncovmodel covariates of the model |
|
depending if the covariates are fixed or varying (age dependent) and stores them in cov[] |
|
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
|
to be observed in j being in i according to the model. |
|
*/ |
/* ioffset=2+nagesqr+cptcovage; */ |
/* ioffset=2+nagesqr+cptcovage; */ |
ioffset=2+nagesqr; |
ioffset=2+nagesqr; |
/* Fixed */ |
/* Fixed */ |
/* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ |
/* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ |
/* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ |
/* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ |
for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */ |
for (kf=1; kf<=ncovf;kf++){ /* V2 + V3 + V4 Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */ |
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
/* printf("Debug3 TvarFind[%d]=%d",kf, TvarFind[kf]); */ |
|
/* printf(" Tvar[TvarFind[kf]]=%d", Tvar[TvarFind[kf]]); */ |
|
/* printf(" i=%d covar[Tvar[TvarFind[kf]]][i]=%f\n",i,covar[Tvar[TvarFind[kf]]][i]); */ |
|
cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
/* cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i]; */ |
/* cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i]; */ |
/* cov[2+6]=covar[Tvar[6]][i]; */ |
/* cov[2+6]=covar[Tvar[6]][i]; */ |
/* cov[2+6]=covar[2][i]; V2 */ |
/* cov[2+6]=covar[2][i]; V2 */ |
Line 3577 double funcone( double *x)
|
Line 4444 double funcone( double *x)
|
/* cov[2+9]=covar[Tvar[9]][i]; */ |
/* cov[2+9]=covar[Tvar[9]][i]; */ |
/* cov[2+9]=covar[1][i]; V1 */ |
/* cov[2+9]=covar[1][i]; V1 */ |
} |
} |
|
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
|
is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 |
|
has been calculated etc */ |
|
/* For an individual i, wav[i] gives the number of effective waves */ |
|
/* We compute the contribution to Likelihood of each effective transition |
|
mw[mi][i] is real wave of the mi th effectve wave */ |
|
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
And the iv th varying covariate in the DATA is the cotvar[mw[mi+1][i]][ncovcol+nqv+iv][i] |
|
*/ |
|
/* This part may be useless now because everythin should be in covar */ |
/* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */ |
/* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */ |
/* cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */ |
/* cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */ |
/* } */ |
/* } */ |
Line 3586 double funcone( double *x)
|
Line 4464 double funcone( double *x)
|
|
|
|
|
for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ |
for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ |
/* Wave varying (but not age varying) */ |
/* Wave varying (but not age varying) *//* V1+V3+age*V1+age*V3+V1*V3 with V4 tv and V5 tvq k= 1 to 5 and extra at V(5+1)=6 for V1*V3 */ |
for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ |
/* for(k=1; k <= ncovv ; k++){ /\* Varying covariates (single and product but no age )*\/ */ |
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */ |
/* /\* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; *\/ */ |
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; |
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; */ |
} |
/* } */ |
/* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */ |
|
/* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
/* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */ |
/* model V1+V3+age*V1+age*V3+V1*V3 */ |
/* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */ |
/* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
/* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */ |
/* TvarVV[1]=V3 (first time varying in the model equation, TvarVV[2]=V1 (in V1*V3) TvarVV[3]=3(V3) */ |
/* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */ |
/* We need the position of the time varying or product in the model */ |
|
/* TvarVVind={2,5,5}, for V3 at position 2 and then the product V1*V3 is decomposed into V1 and V3 but at same position 5 */ |
|
/* TvarVV gives the variable name */ |
|
/* Other example V1 + V3 + V5 + age*V1 + age*V3 + age*V5 + V1*V3 + V3*V5 + V1*V5 |
|
* k= 1 2 3 4 5 6 7 8 9 |
|
* varying 1 2 3 4 5 |
|
* ncovv 1 2 3 4 5 6 7 8 |
|
* TvarVV[ncovv] V3 5 1 3 3 5 1 5 |
|
* TvarVVind 2 3 7 7 8 8 9 9 |
|
* TvarFind[k] 1 0 0 0 0 0 0 0 0 |
|
*/ |
|
/* Other model ncovcol=5 nqv=0 ntv=3 nqtv=0 nlstate=3 |
|
* V2 V3 V4 are fixed V6 V7 are timevarying so V8 and V5 are not in the model and product column will start at 9 Tvar[(v6*V2)6]=9 |
|
* FixedV[ncovcol+qv+ntv+nqtv] V5 |
|
* 3 V1 V2 V3 V4 V5 V6 V7 V8 V3*V2 V7*V2 V6*V3 V7*V3 V6*V4 V7*V4 |
|
* 0 0 0 0 0 1 1 1 0, 0, 1,1, 1, 0, 1, 0, 1, 0, 1, 0} |
|
* 3 0 0 0 0 0 1 1 1 0, 1 1 1 1 1} |
|
* model= V2 + V3 + V4 + V6 + V7 + V6*V2 + V7*V2 + V6*V3 + V7*V3 + V6*V4 + V7*V4 |
|
* +age*V2 +age*V3 +age*V4 +age*V6 + age*V7 |
|
* +age*V6*V2 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 |
|
* model2= V2 + V3 + V4 + V6 + V7 + V3*V2 + V7*V2 + V6*V3 + V7*V3 + V6*V4 + V7*V4 |
|
* +age*V2 +age*V3 +age*V4 +age*V6 + age*V7 |
|
* +age*V3*V2 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 |
|
* model3= V2 + V3 + V4 + V6 + V7 + age*V3*V2 + V7*V2 + V6*V3 + V7*V3 + V6*V4 + V7*V4 |
|
* +age*V2 +age*V3 +age*V4 +age*V6 + age*V7 |
|
* +V3*V2 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 |
|
* kmodel 1 2 3 4 5 6 7 8 9 10 11 |
|
* 12 13 14 15 16 |
|
* 17 18 19 20 21 |
|
* Tvar[kmodel] 2 3 4 6 7 9 10 11 12 13 14 |
|
* 2 3 4 6 7 |
|
* 9 11 12 13 14 |
|
* cptcovage=5+5 total of covariates with age |
|
* Tage[cptcovage] age*V2=12 13 14 15 16 |
|
*1 17 18 19 20 21 gives the position in model of covariates associated with age |
|
*3 Tage[cptcovage] age*V3*V2=6 |
|
*3 age*V2=12 13 14 15 16 |
|
*3 age*V6*V3=18 19 20 21 |
|
* Tvar[Tage[cptcovage]] Tvar[12]=2 3 4 6 Tvar[16]=7(age*V7) |
|
* Tvar[17]age*V6*V2=9 Tvar[18]age*V6*V3=11 age*V7*V3=12 age*V6*V4=13 Tvar[21]age*V7*V4=14 |
|
* 2 Tvar[17]age*V3*V2=9 Tvar[18]age*V6*V3=11 age*V7*V3=12 age*V6*V4=13 Tvar[21]age*V7*V4=14 |
|
* 3 Tvar[Tage[cptcovage]] Tvar[6]=9 Tvar[12]=2 3 4 6 Tvar[16]=7(age*V7) |
|
* 3 Tvar[18]age*V6*V3=11 age*V7*V3=12 age*V6*V4=13 Tvar[21]age*V7*V4=14 |
|
* 3 Tage[cptcovage] age*V3*V2=6 age*V2=12 age*V3 13 14 15 16 |
|
* age*V6*V3=18 19 20 21 gives the position in model of covariates associated with age |
|
* 3 Tvar[17]age*V3*V2=9 Tvar[18]age*V6*V3=11 age*V7*V3=12 age*V6*V4=13 Tvar[21]age*V7*V4=14 |
|
* Tvar= {2, 3, 4, 6, 7, |
|
* 9, 10, 11, 12, 13, 14, |
|
* Tvar[12]=2, 3, 4, 6, 7, |
|
* Tvar[17]=9, 11, 12, 13, 14} |
|
* Typevar[1]@21 = {0, 0, 0, 0, 0, |
|
* 2, 2, 2, 2, 2, 2, |
|
* 3 3, 2, 2, 2, 2, 2, |
|
* 1, 1, 1, 1, 1, |
|
* 3, 3, 3, 3, 3} |
|
* 3 2, 3, 3, 3, 3} |
|
* p Tposprod[1]@21 {0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 1, 3, 4, 5, 6} Id of the prod at position k in the model |
|
* p Tprod[1]@21 {6, 7, 8, 9, 10, 11, 0 <repeats 15 times>} |
|
* 3 Tposprod[1]@21 {0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 1, 3, 4, 5, 6} |
|
* 3 Tprod[1]@21 {17, 7, 8, 9, 10, 11, 0 <repeats 15 times>} |
|
* cptcovprod=11 (6+5) |
|
* FixedV[Tvar[Tage[cptcovage]]]] FixedV[2]=0 FixedV[3]=0 0 1 (age*V7)Tvar[16]=1 FixedV[absolute] not [kmodel] |
|
* FixedV[Tvar[17]=FixedV[age*V6*V2]=FixedV[9]=1 1 1 1 1 |
|
* 3 FixedV[Tvar[17]=FixedV[age*V3*V2]=FixedV[9]=0 [11]=1 1 1 1 |
|
* FixedV[] V1=0 V2=0 V3=0 v4=0 V5=0 V6=1 V7=1 v8=1 OK then model dependent |
|
* 9=1 [V7*V2]=[10]=1 11=1 12=1 13=1 14=1 |
|
* 3 9=0 [V7*V2]=[10]=1 11=1 12=1 13=1 14=1 |
|
* cptcovdageprod=5 for gnuplot printing |
|
* cptcovprodvage=6 |
|
* ncova=15 1 2 3 4 5 |
|
* 6 7 8 9 10 11 12 13 14 15 |
|
* TvarA 2 3 4 6 7 |
|
* 6 2 6 7 7 3 6 4 7 4 |
|
* TvaAind 12 12 13 13 14 14 15 15 16 16 |
|
* ncovf 1 2 3 |
|
* V6 V7 V6*V2 V7*V2 V6*V3 V7*V3 V6*V4 V7*V4 |
|
* ncovvt=14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
* TvarVV[1]@14 = itv {V6=6, 7, V6*V2=6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4} |
|
* TvarVVind[1]@14= {4, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11} |
|
* 3 ncovvt=12 V6 V7 V7*V2 V6*V3 V7*V3 V6*V4 V7*V4 |
|
* 3 TvarVV[1]@12 = itv {6, 7, V7*V2=7, 2, 6, 3, 7, 3, 6, 4, 7, 4} |
|
* 3 1 2 3 4 5 6 7 8 9 10 11 12 |
|
* TvarVVind[1]@12= {V6 is in k=4, 5, 7,(4isV2)=7, 8, 8, 9, 9, 10,10, 11,11}TvarVVind[12]=k=11 |
|
* TvarV 6, 7, 9, 10, 11, 12, 13, 14 |
|
* 3 cptcovprodvage=6 |
|
* 3 ncovta=15 +age*V3*V2+age*V2+agev3+ageV4 +age*V6 + age*V7 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 |
|
* 3 TvarAVVA[1]@15= itva 3 2 2 3 4 6 7 6 3 7 3 6 4 7 4 |
|
* 3 ncovta 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
*?TvarAVVAind[1]@15= V3 is in k=2 1 1 2 3 4 5 4,2 5,2, 4,3 5 3}TvarVVAind[] |
|
* TvarAVVAind[1]@15= V3 is in k=6 6 12 13 14 15 16 18 18 19,19, 20,20 21,21}TvarVVAind[] |
|
* 3 ncovvta=10 +age*V6 + age*V7 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 |
|
* 3 we want to compute =cotvar[mw[mi][i]][TvarVVA[ncovva]][i] at position TvarVVAind[ncovva] |
|
* 3 TvarVVA[1]@10= itva 6 7 6 3 7 3 6 4 7 4 |
|
* 3 ncovva 1 2 3 4 5 6 7 8 9 10 |
|
* TvarVVAind[1]@10= V6 is in k=4 5 8,8 9, 9, 10,10 11 11}TvarVVAind[] |
|
* TvarVVAind[1]@10= 15 16 18,18 19,19, 20,20 21 21}TvarVVAind[] |
|
* TvarVA V3*V2=6 6 , 1, 2, 11, 12, 13, 14 |
|
* TvarFind[1]@14= {1, 2, 3, 0 <repeats 12 times>} |
|
* Tvar[1]@21= {2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, |
|
* 2, 3, 4, 6, 7, |
|
* 6, 8, 9, 10, 11} |
|
* TvarFind[itv] 0 0 0 |
|
* FixedV[itv] 1 1 1 0 1 0 1 0 1 0 0 |
|
*? FixedV[itv] 1 1 1 0 1 0 1 0 1 0 1 0 1 0 |
|
* Tvar[TvarFind[ncovf]]=[1]=2 [2]=3 [4]=4 |
|
* Tvar[TvarFind[itv]] [0]=? ?ncovv 1 à ncovvt] |
|
* Not a fixed cotvar[mw][itv][i] 6 7 6 2 7, 2, 6, 3, 7, 3, 6, 4, 7, 4} |
|
* fixed covar[itv] [6] [7] [6][2] |
|
*/ |
|
|
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* V6 V7 V7*V2 V6*V3 V7*V3 V6*V4 V7*V4 Time varying covariates (single and extended product but no age) including individual from products, product is computed dynamically */ |
|
itv=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate, or fixed covariate of a varying product after exploding product Vn*Vm into Vn and then Vm */ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
|
/* if(TvarFind[itv]==0){ /\* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv *\/ */ |
|
if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */ |
|
/* printf("DEBUG ncovv=%d, Varying TvarVV[ncovv]=%d\n",ncovv, TvarVV[ncovv]); */ |
|
cotvarv=cotvar[mw[mi][i]][TvarVV[ncovv]][i]; /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ |
|
/* printf("DEBUG Varying cov[ioffset+ipos=%d]=%g \n",ioffset+ipos,cotvarv); */ |
|
}else{ /* fixed covariate */ |
|
/* cotvarv=covar[Tvar[TvarFind[itv]]][i]; /\* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model *\/ */ |
|
/* printf("DEBUG ncovv=%d, Fixed TvarVV[ncovv]=%d\n",ncovv, TvarVV[ncovv]); */ |
|
cotvarv=covar[itv][i]; /* Good: In V6*V3, 3 is fixed at position of the data */ |
|
/* printf("DEBUG Fixed cov[ioffset+ipos=%d]=%g \n",ioffset+ipos,cotvarv); */ |
|
} |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
cotvarvold=cotvarv; |
|
}else{ /* A second product */ |
|
cotvarv=cotvarv*cotvarvold; |
|
} |
|
iposold=ipos; |
|
cov[ioffset+ipos]=cotvarv; |
|
/* printf("DEBUG Product cov[ioffset+ipos=%d] \n",ioffset+ipos); */ |
|
/* For products */ |
|
} |
|
/* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates single *\/ */ |
|
/* iv=TvarVDind[itv]; /\* iv, position in the model equation of time varying covariate itv *\/ */ |
|
/* /\* "V1+V3+age*V1+age*V3+V1*V3" with V3 time varying *\/ */ |
|
/* /\* 1 2 3 4 5 *\/ */ |
|
/* /\*itv 1 *\/ */ |
|
/* /\* TvarVInd[1]= 2 *\/ */ |
|
/* /\* iv= Tvar[Tmodelind[itv]]-ncovcol-nqv; /\\* Counting the # varying covariate from 1 to ntveff *\\/ *\/ */ |
|
/* /\* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; *\/ */ |
|
/* /\* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; *\/ */ |
|
/* /\* k=ioffset-2-nagesqr-cptcovage+itv; /\\* position in simple model *\\/ *\/ */ |
|
/* /\* cov[ioffset+iv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; *\/ */ |
|
/* cov[ioffset+iv]=cotvar[mw[mi][i]][itv][i]; */ |
|
/* /\* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][itv][i]=%f\n", i, mi, itv, TvarVDind[itv],cotvar[mw[mi][i]][itv][i]); *\/ */ |
|
/* } */ |
/* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ |
/* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ |
/* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
/* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
/* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ |
/* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ |
Line 3619 double funcone( double *x)
|
Line 4644 double funcone( double *x)
|
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (kk=1; kk<=cptcovage;kk++) { |
for(ncovva=1, iposold=0; ncovva <= ncovta ; ncovva++){ /* Time varying covariates with age including individual from products, product is computed dynamically */ |
if(!FixedV[Tvar[Tage[kk]]]) |
itv=TvarAVVA[ncovva]; /* TvarVV={3, 1, 3} gives the name of each varying covariate, exploding product Vn*Vm into Vn and then Vm */ |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
ipos=TvarAVVAind[ncovva]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
else |
/* if(TvarFind[itv]==0){ /\* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv *\/ */ |
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact; |
if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */ |
|
/* printf("DEBUG ncovva=%d, Varying TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */ |
|
cotvarv=cotvar[mw[mi][i]][TvarAVVA[ncovva]][i]; /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ |
|
}else{ /* fixed covariate */ |
|
/* cotvarv=covar[Tvar[TvarFind[itv]]][i]; /\* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model *\/ */ |
|
/* printf("DEBUG ncovva=%d, Fixed TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */ |
|
cotvarv=covar[itv][i]; /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */ |
|
} |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
cotvarvold=cotvarv; |
|
}else{ /* A second product */ |
|
/* printf("DEBUG * \n"); */ |
|
cotvarv=cotvarv*cotvarvold; |
|
} |
|
iposold=ipos; |
|
/* printf("DEBUG Product cov[ioffset+ipos=%d] \n",ioffset+ipos); */ |
|
cov[ioffset+ipos]=cotvarv*agexact; |
|
/* For products */ |
} |
} |
|
|
/* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */ |
/* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
Line 3634 double funcone( double *x)
|
Line 4677 double funcone( double *x)
|
savm=oldm; |
savm=oldm; |
oldm=newm; |
oldm=newm; |
} /* end mult */ |
} /* end mult */ |
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
|
/* But now since version 0.9 we anticipate for bias at large stepm. |
|
* If stepm is larger than one month (smallest stepm) and if the exact delay |
|
* (in months) between two waves is not a multiple of stepm, we rounded to |
|
* the nearest (and in case of equal distance, to the lowest) interval but now |
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
|
* (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
|
* probability in order to take into account the bias as a fraction of the way |
|
* from savm to out if bh is negative or even beyond if bh is positive. bh varies |
|
* -stepm/2 to stepm/2 . |
|
* For stepm=1 the results are the same as for previous versions of Imach. |
|
* For stepm > 1 the results are less biased than in previous versions. |
|
*/ |
s1=s[mw[mi][i]][i]; |
s1=s[mw[mi][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
/* if(s2==-1){ */ |
/* if(s2==-1){ */ |
/* printf(" s1=%d, s2=%d i=%d \n", s1, s2, i); */ |
/* printf(" ERROR s1=%d, s2=%d i=%d \n", s1, s2, i); */ |
/* /\* exit(1); *\/ */ |
/* /\* exit(1); *\/ */ |
/* } */ |
/* } */ |
bbh=(double)bh[mi][i]/(double)stepm; |
bbh=(double)bh[mi][i]/(double)stepm; |
Line 3666 double funcone( double *x)
|
Line 4721 double funcone( double *x)
|
ipmx +=1; |
ipmx +=1; |
sw += weight[i]; |
sw += weight[i]; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
/* Printing covariates values for each contribution for checking */ |
|
/* printf("num[i]=%09ld, i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */ |
if(globpr){ |
if(globpr){ |
fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ |
fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ |
%11.6f %11.6f %11.6f ", \ |
%11.6f %11.6f %11.6f ", \ |
num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, |
num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, |
2*weight[i]*lli,out[s1][s2],savm[s1][s2]); |
2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); |
|
/* printf("%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ */ |
|
/* %11.6f %11.6f %11.6f ", \ */ |
|
/* num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, */ |
|
/* 2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */ |
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
llt +=ll[k]*gipmx/gsw; |
llt +=ll[k]*gipmx/gsw; |
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
|
/* printf(" %10.6f",-ll[k]*gipmx/gsw); */ |
} |
} |
fprintf(ficresilk," %10.6f\n", -llt); |
fprintf(ficresilk," %10.6f ", -llt); |
} |
/* printf(" %10.6f\n", -llt); */ |
} /* end of wave */ |
/* if(debugILK){ /\* debugILK is set by a #d in a comment line *\/ */ |
} /* end of individual */ |
/* fprintf(ficresilk,"%09ld ", num[i]); */ /* not necessary */ |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
for (kf=1; kf<=ncovf;kf++){ /* Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */ |
|
fprintf(ficresilk," %g",covar[Tvar[TvarFind[kf]]][i]); |
|
} |
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying covariates (single and product but no age) including individual from products */ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
fprintf(ficresilk," %g",cov[ioffset+ipos]); |
|
/* printf(" %g",cov[ioffset+ipos]); */ |
|
}else{ |
|
fprintf(ficresilk,"*"); |
|
/* printf("*"); */ |
|
} |
|
iposold=ipos; |
|
} |
|
/* for (kk=1; kk<=cptcovage;kk++) { */ |
|
/* if(!FixedV[Tvar[Tage[kk]]]){ */ |
|
/* fprintf(ficresilk," %g*age",covar[Tvar[Tage[kk]]][i]); */ |
|
/* /\* printf(" %g*age",covar[Tvar[Tage[kk]]][i]); *\/ */ |
|
/* }else{ */ |
|
/* fprintf(ficresilk," %g*age",cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]);/\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/ */ |
|
/* /\* printf(" %g*age",cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]);/\\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\\/ *\/ */ |
|
/* } */ |
|
/* } */ |
|
for(ncovva=1, iposold=0; ncovva <= ncovta ; ncovva++){ /* Time varying covariates with age including individual from products, product is computed dynamically */ |
|
itv=TvarAVVA[ncovva]; /* TvarVV={3, 1, 3} gives the name of each varying covariate, exploding product Vn*Vm into Vn and then Vm */ |
|
ipos=TvarAVVAind[ncovva]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
|
/* if(TvarFind[itv]==0){ /\* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv *\/ */ |
|
if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */ |
|
/* printf("DEBUG ncovva=%d, Varying TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */ |
|
cotvarv=cotvar[mw[mi][i]][TvarAVVA[ncovva]][i]; /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ |
|
}else{ /* fixed covariate */ |
|
/* cotvarv=covar[Tvar[TvarFind[itv]]][i]; /\* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model *\/ */ |
|
/* printf("DEBUG ncovva=%d, Fixed TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */ |
|
cotvarv=covar[itv][i]; /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */ |
|
} |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
cotvarvold=cotvarv; |
|
}else{ /* A second product */ |
|
/* printf("DEBUG * \n"); */ |
|
cotvarv=cotvarv*cotvarvold; |
|
} |
|
cotvarv=cotvarv*agexact; |
|
fprintf(ficresilk," %g*age",cotvarv); |
|
iposold=ipos; |
|
/* printf("DEBUG Product cov[ioffset+ipos=%d] \n",ioffset+ipos); */ |
|
cov[ioffset+ipos]=cotvarv; |
|
/* For products */ |
|
} |
|
/* printf("\n"); */ |
|
/* } /\* End debugILK *\/ */ |
|
fprintf(ficresilk,"\n"); |
|
} /* End if globpr */ |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
if(globpr==0){ /* First time we count the contributions and weights */ |
if(globpr==0){ /* First time we count the contributions and weights */ |
gipmx=ipmx; |
gipmx=ipmx; |
gsw=sw; |
gsw=sw; |
} |
} |
return -l; |
return -l; |
} |
} |
|
|
|
|
/*************** function likelione ***********/ |
/*************** function likelione ***********/ |
void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double [])) |
void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*func)(double [])) |
{ |
{ |
/* This routine should help understanding what is done with |
/* This routine should help understanding what is done with |
the selection of individuals/waves and |
the selection of individuals/waves and |
to check the exact contribution to the likelihood. |
to check the exact contribution to the likelihood. |
Plotting could be done. |
Plotting could be done. |
*/ |
*/ |
int k; |
void pstamp(FILE *ficres); |
|
int k, kf, kk, kvar, ncovv, iposold, ipos; |
|
|
if(*globpri !=0){ /* Just counts and sums, no printings */ |
if(*globpri !=0){ /* Just counts and sums, no printings */ |
strcpy(fileresilk,"ILK_"); |
strcpy(fileresilk,"ILK_"); |
Line 3708 void likelione(FILE *ficres,double p[],
|
Line 4824 void likelione(FILE *ficres,double p[],
|
printf("Problem with resultfile: %s\n", fileresilk); |
printf("Problem with resultfile: %s\n", fileresilk); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk); |
} |
} |
|
pstamp(ficresilk);fprintf(ficresilk,"# model=1+age+%s\n",model); |
fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n"); |
fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n"); |
fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav "); |
fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav "); |
/* i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */ |
/* i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */ |
for(k=1; k<=nlstate; k++) |
for(k=1; k<=nlstate; k++) |
fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k); |
fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k); |
fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n"); |
fprintf(ficresilk," -2*gipw/gsw*weight*ll(total) "); |
} |
|
|
/* if(debugILK){ /\* debugILK is set by a #d in a comment line *\/ */ |
|
for(kf=1;kf <= ncovf; kf++){ |
|
fprintf(ficresilk,"V%d",Tvar[TvarFind[kf]]); |
|
/* printf("V%d",Tvar[TvarFind[kf]]); */ |
|
} |
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */ |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
/* printf(" %d",ipos); */ |
|
fprintf(ficresilk," V%d",TvarVV[ncovv]); |
|
}else{ |
|
/* printf("*"); */ |
|
fprintf(ficresilk,"*"); |
|
} |
|
iposold=ipos; |
|
} |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
if(!FixedV[Tvar[Tage[kk]]]){ |
|
/* printf(" %d*age(Fixed)",Tvar[Tage[kk]]); */ |
|
fprintf(ficresilk," %d*age(Fixed)",Tvar[Tage[kk]]); |
|
}else{ |
|
fprintf(ficresilk," %d*age(Varying)",Tvar[Tage[kk]]);/* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
|
/* printf(" %d*age(Varying)",Tvar[Tage[kk]]);/\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/ */ |
|
} |
|
} |
|
/* } /\* End if debugILK *\/ */ |
|
/* printf("\n"); */ |
|
fprintf(ficresilk,"\n"); |
|
} /* End glogpri */ |
|
|
*fretone=(*funcone)(p); |
*fretone=(*func)(p); |
if(*globpri !=0){ |
if(*globpri !=0){ |
fclose(ficresilk); |
fclose(ficresilk); |
if (mle ==0) |
if (mle ==0) |
Line 3724 void likelione(FILE *ficres,double p[],
|
Line 4870 void likelione(FILE *ficres,double p[],
|
else if(mle >=1) |
else if(mle >=1) |
fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle); |
fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle); |
fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
|
fprintf(fichtm,"\n<br>Equation of the model: <b>model=1+age+%s</b><br>\n",model); |
|
|
for (k=1; k<= nlstate ; k++) { |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
|
<img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k); |
|
} |
|
fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \ |
fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \ |
<img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
<img src=\"%s-ori.png\">\n",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \ |
fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \ |
<img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
<img src=\"%s-dest.png\">\n",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
|
|
|
for (k=1; k<= nlstate ; k++) { |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br>\n \ |
|
<img src=\"%s-p%dj.png\">\n",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k); |
|
for(kf=1; kf <= ncovf; kf++){ /* For each simple dummy covariate of the model */ |
|
kvar=Tvar[TvarFind[kf]]; /* variable */ |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored covariate V%d. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): ",k,k,Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],Tvar[TvarFind[kf]]); |
|
fprintf(fichtm,"<a href=\"%s-p%dj-%d.png\">%s-p%dj-%d.png</a><br>",subdirf2(optionfilefiname,"ILK_"),k,kvar,subdirf2(optionfilefiname,"ILK_"),k,kvar); |
|
fprintf(fichtm,"<img src=\"%s-p%dj-%d.png\">",subdirf2(optionfilefiname,"ILK_"),k,Tvar[TvarFind[kf]]); |
|
} |
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Loop on the time varying extended covariates (with extension of Vn*Vm */ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */ |
|
kvar=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate */ |
|
/* printf("DebugILK fichtm ncovv=%d, kvar=TvarVV[ncovv]=V%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); */ |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
/* fprintf(ficresilk," V%d",TvarVV[ncovv]); */ |
|
/* printf(" DebugILK fichtm ipos=%d != iposold=%d\n", ipos, iposold); */ |
|
if(Dummy[ipos]==0 && Typevar[ipos]==0){ /* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm) */ |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored time varying dummy covariate V%d. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
|
<img src=\"%s-p%dj-%d.png\">",k,k,kvar,kvar,kvar,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,kvar); |
|
} /* End only for dummies time varying (single?) */ |
|
}else{ /* Useless product */ |
|
/* printf("*"); */ |
|
/* fprintf(ficresilk,"*"); */ |
|
} |
|
iposold=ipos; |
|
} /* For each time varying covariate */ |
|
} /* End loop on states */ |
|
|
|
/* if(debugILK){ */ |
|
/* for(kf=1; kf <= ncovf; kf++){ /\* For each simple dummy covariate of the model *\/ */ |
|
/* /\* kvar=Tvar[TvarFind[kf]]; *\/ /\* variable *\/ */ |
|
/* for (k=1; k<= nlstate ; k++) { */ |
|
/* fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored covariate V%. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ */ |
|
/* <img src=\"%s-p%dj-%d.png\">",k,k,Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,Tvar[TvarFind[kf]]); */ |
|
/* } */ |
|
/* } */ |
|
/* for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /\* Loop on the time varying extended covariates (with extension of Vn*Vm *\/ */ |
|
/* ipos=TvarVVind[ncovv]; /\* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate *\/ */ |
|
/* kvar=TvarVV[ncovv]; /\* TvarVV={3, 1, 3} gives the name of each varying covariate *\/ */ |
|
/* /\* printf("DebugILK fichtm ncovv=%d, kvar=TvarVV[ncovv]=V%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); *\/ */ |
|
/* if(ipos!=iposold){ /\* Not a product or first of a product *\/ */ |
|
/* /\* fprintf(ficresilk," V%d",TvarVV[ncovv]); *\/ */ |
|
/* /\* printf(" DebugILK fichtm ipos=%d != iposold=%d\n", ipos, iposold); *\/ */ |
|
/* if(Dummy[ipos]==0 && Typevar[ipos]==0){ /\* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm) *\/ */ |
|
/* for (k=1; k<= nlstate ; k++) { */ |
|
/* fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ */ |
|
/* <img src=\"%s-p%dj-%d.png\">",k,k,kvar,kvar,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,kvar); */ |
|
/* } /\* End state *\/ */ |
|
/* } /\* End only for dummies time varying (single?) *\/ */ |
|
/* }else{ /\* Useless product *\/ */ |
|
/* /\* printf("*"); *\/ */ |
|
/* /\* fprintf(ficresilk,"*"); *\/ */ |
|
/* } */ |
|
/* iposold=ipos; */ |
|
/* } /\* For each time varying covariate *\/ */ |
|
/* }/\* End debugILK *\/ */ |
fflush(fichtm); |
fflush(fichtm); |
} |
}/* End globpri */ |
return; |
return; |
} |
} |
|
|
Line 3744 void likelione(FILE *ficres,double p[],
|
Line 4943 void likelione(FILE *ficres,double p[],
|
|
|
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
{ |
{ |
int i,j, iter=0; |
int i,j,k, jk, jkk=0, iter=0; |
double **xi; |
double **xi; |
double fret; |
double fret; |
double fretone; /* Only one call to likelihood */ |
double fretone; /* Only one call to likelihood */ |
/* char filerespow[FILENAMELENGTH];*/ |
/* char filerespow[FILENAMELENGTH];*/ |
|
|
|
double * p1; /* Shifted parameters from 0 instead of 1 */ |
#ifdef NLOPT |
#ifdef NLOPT |
int creturn; |
int creturn; |
nlopt_opt opt; |
nlopt_opt opt; |
/* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */ |
/* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */ |
double *lb; |
double *lb; |
double minf; /* the minimum objective value, upon return */ |
double minf; /* the minimum objective value, upon return */ |
double * p1; /* Shifted parameters from 0 instead of 1 */ |
|
myfunc_data dinst, *d = &dinst; |
myfunc_data dinst, *d = &dinst; |
#endif |
#endif |
|
|
Line 3778 void mlikeli(FILE *ficres,double p[], in
|
Line 4978 void mlikeli(FILE *ficres,double p[], in
|
if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
fprintf(ficrespow,"\n"); |
fprintf(ficrespow,"\n"); |
#ifdef POWELL |
#ifdef POWELL |
|
#ifdef LINMINORIGINAL |
|
#else /* LINMINORIGINAL */ |
|
|
|
flatdir=ivector(1,npar); |
|
for (j=1;j<=npar;j++) flatdir[j]=0; |
|
#endif /*LINMINORIGINAL */ |
|
|
|
#ifdef FLATSUP |
|
powell(p,xi,npar,ftol,&iter,&fret,flatdir,func); |
|
/* reorganizing p by suppressing flat directions */ |
|
for(i=1, jk=1; i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]); |
|
if(flatdir[jk]==1){ |
|
printf(" To be skipped %d%d flatdir[%d]=%d ",i,k,jk, flatdir[jk]); |
|
} |
|
for(j=1; j <=ncovmodel; j++){ |
|
printf("%12.7f ",p[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
} |
|
} |
|
} |
|
/* skipping */ |
|
/* for(i=1, jk=1, jkk=1;(flatdir[jk]==0)&& (i <=nlstate); i++){ */ |
|
for(i=1, jk=1, jkk=1;i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]); |
|
if(flatdir[jk]==1){ |
|
printf(" To be skipped %d%d flatdir[%d]=%d jk=%d p[%d] ",i,k,jk, flatdir[jk],jk, jk); |
|
for(j=1; j <=ncovmodel; jk++,j++){ |
|
printf(" p[%d]=%12.7f",jk, p[jk]); |
|
/*q[jjk]=p[jk];*/ |
|
} |
|
}else{ |
|
printf(" To be kept %d%d flatdir[%d]=%d jk=%d q[%d]=p[%d] ",i,k,jk, flatdir[jk],jk, jkk, jk); |
|
for(j=1; j <=ncovmodel; jk++,jkk++,j++){ |
|
printf(" p[%d]=%12.7f=q[%d]",jk, p[jk],jkk); |
|
/*q[jjk]=p[jk];*/ |
|
} |
|
} |
|
printf("\n"); |
|
} |
|
fflush(stdout); |
|
} |
|
} |
|
powell(p,xi,npar,ftol,&iter,&fret,flatdir,func); |
|
#else /* FLATSUP */ |
powell(p,xi,npar,ftol,&iter,&fret,func); |
powell(p,xi,npar,ftol,&iter,&fret,func); |
#endif |
#endif /* FLATSUP */ |
|
|
|
#ifdef LINMINORIGINAL |
|
#else |
|
free_ivector(flatdir,1,npar); |
|
#endif /* LINMINORIGINAL*/ |
|
#endif /* POWELL */ |
|
|
#ifdef NLOPT |
#ifdef NLOPT |
#ifdef NEWUOA |
#ifdef NEWUOA |
Line 3807 void mlikeli(FILE *ficres,double p[], in
|
Line 5064 void mlikeli(FILE *ficres,double p[], in
|
} |
} |
nlopt_destroy(opt); |
nlopt_destroy(opt); |
#endif |
#endif |
|
#ifdef FLATSUP |
|
/* npared = npar -flatd/ncovmodel; */ |
|
/* xired= matrix(1,npared,1,npared); */ |
|
/* paramred= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ |
|
/* powell(pred,xired,npared,ftol,&iter,&fret,flatdir,func); */ |
|
/* free_matrix(xire,1,npared,1,npared); */ |
|
#else /* FLATSUP */ |
|
#endif /* FLATSUP */ |
free_matrix(xi,1,npar,1,npar); |
free_matrix(xi,1,npar,1,npar); |
fclose(ficrespow); |
fclose(ficrespow); |
printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
Line 4026 double hessij( double x[], double **hess
|
Line 5291 double hessij( double x[], double **hess
|
kmax=kmax+10; |
kmax=kmax+10; |
} |
} |
if(kmax >=10 || firstime ==1){ |
if(kmax >=10 || firstime ==1){ |
|
/* What are the thetai and thetaj? thetai/ncovmodel thetai=(thetai-thetai%ncovmodel)/ncovmodel +thetai%ncovmodel=(line,pos) */ |
printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol); |
printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol); |
fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol); |
fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol); |
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
Line 4116 void ludcmp(double **a, int n, int *indx
|
Line 5382 void ludcmp(double **a, int n, int *indx
|
big=0.0; |
big=0.0; |
for (j=1;j<=n;j++) |
for (j=1;j<=n;j++) |
if ((temp=fabs(a[i][j])) > big) big=temp; |
if ((temp=fabs(a[i][j])) > big) big=temp; |
if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); |
if (big == 0.0){ |
|
printf(" Singular Hessian matrix at row %d:\n",i); |
|
for (j=1;j<=n;j++) { |
|
printf(" a[%d][%d]=%f,",i,j,a[i][j]); |
|
fprintf(ficlog," a[%d][%d]=%f,",i,j,a[i][j]); |
|
} |
|
fflush(ficlog); |
|
fclose(ficlog); |
|
nrerror("Singular matrix in routine ludcmp"); |
|
} |
vv[i]=1.0/big; |
vv[i]=1.0/big; |
} |
} |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
Line 4182 void pstamp(FILE *fichier)
|
Line 5457 void pstamp(FILE *fichier)
|
fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart); |
fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart); |
} |
} |
|
|
|
void date2dmy(double date,double *day, double *month, double *year){ |
|
double yp=0., yp1=0., yp2=0.; |
|
|
|
yp1=modf(date,&yp);/* extracts integral of date in yp and |
|
fractional in yp1 */ |
|
*year=yp; |
|
yp2=modf((yp1*12),&yp); |
|
*month=yp; |
|
yp1=modf((yp2*30.5),&yp); |
|
*day=yp; |
|
if(*day==0) *day=1; |
|
if(*month==0) *month=1; |
|
} |
|
|
|
|
|
|
/************ Frequencies ********************/ |
/************ Frequencies ********************/ |
void freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \ |
void freqsummary(char fileres[], double p[], double pstart[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \ |
int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \ |
int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \ |
int firstpass, int lastpass, int stepm, int weightopt, char model[]) |
int firstpass, int lastpass, int stepm, int weightopt, char model[]) |
{ /* Some frequencies */ |
{ /* Some frequencies as well as proposing some starting values */ |
|
/* Frequencies of any combination of dummy covariate used in the model equation */ |
int i, m, jk, j1, bool, z1,j, k, iv; |
int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1; |
int iind=0, iage=0; |
int iind=0, iage=0; |
int mi; /* Effective wave */ |
int mi; /* Effective wave */ |
int first; |
int first; |
double ***freq; /* Frequencies */ |
double ***freq; /* Frequencies */ |
double *meanq; |
double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */ |
|
int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb); |
|
double *meanq, *stdq, *idq; |
double **meanqt; |
double **meanqt; |
double *pp, **prop, *posprop, *pospropt; |
double *pp, **prop, *posprop, *pospropt; |
double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0; |
double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0; |
Line 4201 void freqsummary(char fileres[], int ia
|
Line 5494 void freqsummary(char fileres[], int ia
|
double agebegin, ageend; |
double agebegin, ageend; |
|
|
pp=vector(1,nlstate); |
pp=vector(1,nlstate); |
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ |
posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ |
pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ |
pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ |
/* prop=matrix(1,nlstate,iagemin,iagemax+3); */ |
/* prop=matrix(1,nlstate,iagemin,iagemax+3); */ |
meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
|
stdq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
|
idq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
meanqt=matrix(1,lastpass,1,nqtveff); |
meanqt=matrix(1,lastpass,1,nqtveff); |
strcpy(fileresp,"P_"); |
strcpy(fileresp,"P_"); |
strcat(fileresp,fileresu); |
strcat(fileresp,fileresu); |
Line 4229 void freqsummary(char fileres[], int ia
|
Line 5524 void freqsummary(char fileres[], int ia
|
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
} |
} |
fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm); |
fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies (weight=%d) and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm, weightopt); |
|
|
strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm")); |
strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm")); |
if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) { |
if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) { |
Line 4239 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5534 Title=%s <br>Datafile=%s Firstpass=%d La
|
exit(70); |
exit(70); |
} else{ |
} else{ |
fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
<hr size=\"2\" color=\"#EC5E5E\"> \n \ |
,<hr size=\"2\" color=\"#EC5E5E\"> \n \ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
} |
} |
fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr); |
fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>(weight=%d) frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr,weightopt); |
|
|
freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
|
x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
|
freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
j1=0; |
j1=0; |
|
|
/* j=ncoveff; /\* Only fixed dummy covariates *\/ */ |
/* j=ncoveff; /\* Only fixed dummy covariates *\/ */ |
j=cptcoveff; /* Only dummy covariates of the model */ |
j=cptcoveff; /* Only simple dummy covariates used in the model */ |
|
/* j=cptcovn; /\* Only dummy covariates of the model *\/ */ |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
|
|
Line 4257 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5555 Title=%s <br>Datafile=%s Firstpass=%d La
|
reference=low_education V1=0,V2=0 |
reference=low_education V1=0,V2=0 |
med_educ V1=1 V2=0, |
med_educ V1=1 V2=0, |
high_educ V1=0 V2=1 |
high_educ V1=0 V2=1 |
Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff |
Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcovn |
*/ |
*/ |
dateintsum=0; |
dateintsum=0; |
k2cpt=0; |
k2cpt=0; |
|
|
for (j = 0; j <= cptcoveff; j+=cptcoveff){ |
if(cptcoveff == 0 ) |
first=1; |
nl=1; /* Constant and age model only */ |
for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination in order of model, excluding quantitatives V4=0, V3=0 for example, fixed or varying covariates */ |
else |
posproptt=0.; |
nl=2; |
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
|
scanf("%d", i);*/ |
|
for (i=-5; i<=nlstate+ndeath; i++) |
|
for (jk=-5; jk<=nlstate+ndeath; jk++) |
|
for(m=iagemin; m <= iagemax+3; m++) |
|
freq[i][jk][m]=0; |
|
|
|
for (i=1; i<=nlstate; i++) { |
|
for(m=iagemin; m <= iagemax+3; m++) |
|
prop[i][m]=0; |
|
posprop[i]=0; |
|
pospropt[i]=0; |
|
} |
|
/* for (z1=1; z1<= nqfveff; z1++) { */ |
|
/* meanq[z1]+=0.; */ |
|
/* for(m=1;m<=lastpass;m++){ */ |
|
/* meanqt[m][z1]=0.; */ |
|
/* } */ |
|
/* } */ |
|
|
|
/* dateintsum=0; */ |
|
/* k2cpt=0; */ |
|
|
|
/* For that combination of covariate j1, we count and print the frequencies in one pass */ |
/* if a constant only model, one pass to compute frequency tables and to write it on ficresp */ |
for (iind=1; iind<=imx; iind++) { /* For each individual iind */ |
/* Loop on nj=1 or 2 if dummy covariates j!=0 |
bool=1; |
* Loop on j1(1 to 2**cptcoveff) covariate combination |
if(j !=0){ |
* freq[s1][s2][iage] =0. |
if(anyvaryingduminmodel==0){ /* If All fixed covariates */ |
* Loop on iind |
if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
* ++freq[s1][s2][iage] weighted |
/* for (z1=1; z1<= nqfveff; z1++) { */ |
* end iind |
/* meanq[z1]+=coqvar[Tvar[z1]][iind]; /\* Computes mean of quantitative with selected filter *\/ */ |
* if covariate and j!0 |
/* } */ |
* headers Variable on one line |
for (z1=1; z1<=cptcoveff; z1++) { |
* endif cov j!=0 |
/* if(Tvaraff[z1] ==-20){ */ |
* header of frequency table by age |
/* /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */ |
* Loop on age |
/* }else if(Tvaraff[z1] ==-10){ */ |
* pp[s1]+=freq[s1][s2][iage] weighted |
/* /\* sumnew+=coqvar[z1][iind]; *\/ */ |
* pos+=freq[s1][s2][iage] weighted |
/* }else */ |
* Loop on s1 initial state |
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ |
* fprintf(ficresp |
/* Tests if this individual iind responded to j1 (V4=1 V3=0) */ |
* end s1 |
bool=0; |
* end age |
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", |
* if j!=0 computes starting values |
bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1), |
* end compute starting values |
j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
* end j1 |
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
* end nl |
} /* Onlyf fixed */ |
*/ |
} /* end z1 */ |
for (nj = 1; nj <= nl; nj++){ /* nj= 1 constant model, nl number of loops. */ |
} /* cptcovn > 0 */ |
if(nj==1) |
} /* end any */ |
j=0; /* First pass for the constant */ |
}/* end j==0 */ |
else{ |
if (bool==1){ /* We selected an individual iind satisfying combination j1 or all fixed */ |
j=cptcoveff; /* Other passes for the covariate values number of simple covariates in the model V2+V1 =2 (simple dummy fixed or time varying) */ |
/* for(m=firstpass; m<=lastpass; m++){ */ |
} |
for(mi=1; mi<wav[iind];mi++){ /* For that wave */ |
first=1; |
m=mw[mi][iind]; |
for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all dummy covariates combination of the model, ie excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */ |
if(j!=0){ |
posproptt=0.; |
if(anyvaryingduminmodel==1){ /* Some are varying covariates */ |
/*printf("cptcovn=%d Tvaraff=%d", cptcovn,Tvaraff[1]); |
for (z1=1; z1<=cptcoveff; z1++) { |
scanf("%d", i);*/ |
if( Fixed[Tmodelind[z1]]==1){ |
for (i=-5; i<=nlstate+ndeath; i++) |
iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; |
for (s2=-5; s2<=nlstate+ndeath; s2++) |
if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */ |
for(m=iagemin; m <= iagemax+3; m++) |
bool=0; /* not selected */ |
freq[i][s2][m]=0; |
}else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */ |
|
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { |
for (i=1; i<=nlstate; i++) { |
bool=0; |
for(m=iagemin; m <= iagemax+3; m++) |
|
prop[i][m]=0; |
|
posprop[i]=0; |
|
pospropt[i]=0; |
|
} |
|
for (z1=1; z1<= nqfveff; z1++) { /* zeroing for each combination j1 as well as for the total */ |
|
idq[z1]=0.; |
|
meanq[z1]=0.; |
|
stdq[z1]=0.; |
|
} |
|
/* for (z1=1; z1<= nqtveff; z1++) { */ |
|
/* for(m=1;m<=lastpass;m++){ */ |
|
/* meanqt[m][z1]=0.; */ |
|
/* } */ |
|
/* } */ |
|
/* dateintsum=0; */ |
|
/* k2cpt=0; */ |
|
|
|
/* For that combination of covariates j1 (V4=1 V3=0 for example), we count and print the frequencies in one pass */ |
|
for (iind=1; iind<=imx; iind++) { /* For each individual iind */ |
|
bool=1; |
|
if(j !=0){ |
|
if(anyvaryingduminmodel==0){ /* If All fixed covariates */ |
|
if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
|
for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */ |
|
/* if(Tvaraff[z1] ==-20){ */ |
|
/* /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */ |
|
/* }else if(Tvaraff[z1] ==-10){ */ |
|
/* /\* sumnew+=coqvar[z1][iind]; *\/ */ |
|
/* }else */ /* TODO TODO codtabm(j1,z1) or codtabm(j1,Tvaraff[z1]]z1)*/ |
|
/* if( iind >=imx-3) printf("Searching error iind=%d Tvaraff[z1]=%d covar[Tvaraff[z1]][iind]=%.f TnsdVar[Tvaraff[z1]]=%d, cptcoveff=%d, cptcovs=%d \n",iind, Tvaraff[z1], covar[Tvaraff[z1]][iind],TnsdVar[Tvaraff[z1]],cptcoveff, cptcovs); */ |
|
if(Tvaraff[z1]<1 || Tvaraff[z1]>=NCOVMAX) |
|
printf("Error Tvaraff[z1]=%d<1 or >=%d, cptcoveff=%d model=1+age+%s\n",Tvaraff[z1],NCOVMAX, cptcoveff, model); |
|
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]){ /* for combination j1 of covariates */ |
|
/* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */ |
|
bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */ |
|
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", */ |
|
/* bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),*/ |
|
/* j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
|
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
|
} /* Onlyf fixed */ |
|
} /* end z1 */ |
|
} /* cptcoveff > 0 */ |
|
} /* end any */ |
|
}/* end j==0 */ |
|
if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */ |
|
/* for(m=firstpass; m<=lastpass; m++){ */ |
|
for(mi=1; mi<wav[iind];mi++){ /* For each wave */ |
|
m=mw[mi][iind]; |
|
if(j!=0){ |
|
if(anyvaryingduminmodel==1){ /* Some are varying covariates */ |
|
for (z1=1; z1<=cptcoveff; z1++) { |
|
if( Fixed[Tmodelind[z1]]==1){ |
|
/* iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; /\* Good *\/ */ |
|
iv= Tvar[Tmodelind[z1]]; /* Good *//* because cotvar starts now at first at ncovcol+nqv+ntv */ |
|
if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality. If covariate's |
|
value is -1, we don't select. It differs from the |
|
constant and age model which counts them. */ |
|
bool=0; /* not selected */ |
|
}else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */ |
|
/* i1=Tvaraff[z1]; */ |
|
/* i2=TnsdVar[i1]; */ |
|
/* i3=nbcode[i1][i2]; */ |
|
/* i4=covar[i1][iind]; */ |
|
/* if(i4 != i3){ */ |
|
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) { /* Bug valgrind */ |
|
bool=0; |
|
} |
|
} |
} |
} |
|
}/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop */ |
|
} /* end j==0 */ |
|
/* bool =0 we keep that guy which corresponds to the combination of dummy values */ |
|
if(bool==1){ /*Selected */ |
|
/* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind] |
|
and mw[mi+1][iind]. dh depends on stepm. */ |
|
agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/ |
|
ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */ |
|
if(m >=firstpass && m <=lastpass){ |
|
k2=anint[m][iind]+(mint[m][iind]/12.); |
|
/*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ |
|
if(agev[m][iind]==0) agev[m][iind]=iagemax+1; /* All ages equal to 0 are in iagemax+1 */ |
|
if(agev[m][iind]==1) agev[m][iind]=iagemax+2; /* All ages equal to 1 are in iagemax+2 */ |
|
if (s[m][iind]>0 && s[m][iind]<=nlstate) /* If status at wave m is known and a live state */ |
|
prop[s[m][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
if (m<lastpass) { |
|
/* if(s[m][iind]==4 && s[m+1][iind]==4) */ |
|
/* printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */ |
|
if(s[m][iind]==-1) |
|
printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.)); |
|
freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
for (z1=1; z1<= nqfveff; z1++) { /* Quantitative variables, calculating mean on known values only */ |
|
if(!isnan(covar[ncovcol+z1][iind])){ |
|
idq[z1]=idq[z1]+weight[iind]; |
|
meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind]; /* Computes mean of quantitative with selected filter */ |
|
/* stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; *//*error*/ |
|
stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]; /* *weight[iind];*/ /* Computes mean of quantitative with selected filter */ |
|
} |
|
} |
|
/* if((int)agev[m][iind] == 55) */ |
|
/* printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */ |
|
/* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */ |
|
freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */ |
|
} |
|
} /* end if between passes */ |
|
if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99) && (j==0)) { |
|
dateintsum=dateintsum+k2; /* on all covariates ?*/ |
|
k2cpt++; |
|
/* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */ |
} |
} |
} |
}else{ |
}/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop */ |
bool=1; |
} /* end j==0 */ |
}/* end bool 2 */ |
/* bool =0 we keep that guy which corresponds to the combination of dummy values */ |
} /* end m */ |
if(bool==1){ |
/* for (z1=1; z1<= nqfveff; z1++) { /\* Quantitative variables, calculating mean *\/ */ |
/* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind] |
/* idq[z1]=idq[z1]+weight[iind]; */ |
and mw[mi+1][iind]. dh depends on stepm. */ |
/* meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind]; /\* Computes mean of quantitative with selected filter *\/ */ |
agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/ |
/* stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; /\* *weight[iind];*\/ /\* Computes mean of quantitative with selected filter *\/ */ |
ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */ |
/* } */ |
if(m >=firstpass && m <=lastpass){ |
} /* end bool */ |
k2=anint[m][iind]+(mint[m][iind]/12.); |
} /* end iind = 1 to imx */ |
/*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ |
/* prop[s][age] is fed for any initial and valid live state as well as |
if(agev[m][iind]==0) agev[m][iind]=iagemax+1; /* All ages equal to 0 are in iagemax+1 */ |
freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */ |
if(agev[m][iind]==1) agev[m][iind]=iagemax+2; /* All ages equal to 1 are in iagemax+2 */ |
|
if (s[m][iind]>0 && s[m][iind]<=nlstate) /* If status at wave m is known and a live state */ |
|
prop[s[m][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
/* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
if (m<lastpass) { |
if(cptcoveff==0 && nj==1) /* no covariate and first pass */ |
/* if(s[m][iind]==4 && s[m+1][iind]==4) */ |
pstamp(ficresp); |
/* printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */ |
if (cptcoveff>0 && j!=0){ |
if(s[m][iind]==-1) |
pstamp(ficresp); |
printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.)); |
printf( "\n#********** Variable "); |
freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
fprintf(ficresp, "\n#********** Variable "); |
/* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */ |
fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); |
freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */ |
fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); |
} |
fprintf(ficlog, "\n#********** Variable "); |
} /* end if between passes */ |
for (z1=1; z1<=cptcoveff; z1++){ |
if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99) && (j==0)) { |
if(!FixedV[Tvaraff[z1]]){ |
dateintsum=dateintsum+k2; /* on all covariates ?*/ |
printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
k2cpt++; |
fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
/* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */ |
fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
} |
fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
} /* end bool 2 */ |
fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
} /* end m */ |
}else{ |
} /* end bool */ |
printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
} /* end iind = 1 to imx */ |
fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
/* prop[s][age] is feeded for any initial and valid live state as well as |
fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */ |
fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
} |
/* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
} |
pstamp(ficresp); |
printf( "**********\n#"); |
if (cptcoveff>0 && j!=0){ |
fprintf(ficresp, "**********\n#"); |
fprintf(ficresp, "\n#********** Variable "); |
fprintf(ficresphtm, "**********</h3>\n"); |
fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); |
fprintf(ficresphtmfr, "**********</h3>\n"); |
fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); |
fprintf(ficlog, "**********\n"); |
fprintf(ficlog, "\n#********** Variable "); |
} |
for (z1=1; z1<=cptcoveff; z1++){ |
/* |
if(DummyV[z1]){ |
Printing means of quantitative variables if any |
fprintf(ficresp, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
*/ |
fprintf(ficresphtm, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
for (z1=1; z1<= nqfveff; z1++) { |
fprintf(ficresphtmfr, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficlog,"Mean of fixed quantitative variable V%d on %.3g (weighted) individuals sum=%f", ncovcol+z1, idq[z1], meanq[z1]); |
fprintf(ficlog, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficlog,", mean=%.3g\n",meanq[z1]/idq[z1]); |
|
if(weightopt==1){ |
|
printf(" Weighted mean and standard deviation of"); |
|
fprintf(ficlog," Weighted mean and standard deviation of"); |
|
fprintf(ficresphtmfr," Weighted mean and standard deviation of"); |
|
} |
|
/* mu = \frac{w x}{\sum w} |
|
var = \frac{\sum w (x-mu)^2}{\sum w} = \frac{w x^2}{\sum w} - mu^2 |
|
*/ |
|
printf(" fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1])); |
|
fprintf(ficlog," fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1])); |
|
fprintf(ficresphtmfr," fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)<p>\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1])); |
|
} |
|
/* for (z1=1; z1<= nqtveff; z1++) { */ |
|
/* for(m=1;m<=lastpass;m++){ */ |
|
/* fprintf(ficresphtmfr,"V quantitative id %d, pass id=%d, mean=%f<p>\n", z1, m, meanqt[m][z1]); */ |
|
/* } */ |
|
/* } */ |
|
|
|
fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">"); |
|
if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */ |
|
fprintf(ficresp, " Age"); |
|
if(nj==2) for (z1=1; z1<=cptcoveff; z1++) { |
|
printf(" V%d=%d, z1=%d, Tvaraff[z1]=%d, j1=%d, TnsdVar[Tvaraff[%d]]=%d |",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])], z1, Tvaraff[z1], j1,z1,TnsdVar[Tvaraff[z1]]); |
|
fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
} |
|
for(i=1; i<=nlstate;i++) { |
|
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d) N(%d) N ",i,i); |
|
fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i); |
|
} |
|
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp, "\n"); |
|
fprintf(ficresphtm, "\n"); |
|
|
|
/* Header of frequency table by age */ |
|
fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">"); |
|
fprintf(ficresphtmfr,"<th>Age</th> "); |
|
for(s2=-1; s2 <=nlstate+ndeath; s2++){ |
|
for(m=-1; m <=nlstate+ndeath; m++){ |
|
if(s2!=0 && m!=0) |
|
fprintf(ficresphtmfr,"<th>%d%d</th> ",s2,m); |
|
} |
|
} |
|
fprintf(ficresphtmfr, "\n"); |
|
|
|
/* For each age */ |
|
for(iage=iagemin; iage <= iagemax+3; iage++){ |
|
fprintf(ficresphtm,"<tr>"); |
|
if(iage==iagemax+1){ |
|
fprintf(ficlog,"1"); |
|
fprintf(ficresphtmfr,"<tr><th>0</th> "); |
|
}else if(iage==iagemax+2){ |
|
fprintf(ficlog,"0"); |
|
fprintf(ficresphtmfr,"<tr><th>Unknown</th> "); |
|
}else if(iage==iagemax+3){ |
|
fprintf(ficlog,"Total"); |
|
fprintf(ficresphtmfr,"<tr><th>Total</th> "); |
}else{ |
}else{ |
fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
} |
|
} |
|
fprintf(ficresp, "**********\n#"); |
|
fprintf(ficresphtm, "**********</h3>\n"); |
|
fprintf(ficresphtmfr, "**********</h3>\n"); |
|
fprintf(ficlog, "**********\n"); |
|
} |
|
fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">"); |
|
for(i=1; i<=nlstate;i++) { |
|
fprintf(ficresp, " Age Prev(%d) N(%d) N ",i,i); |
|
fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i); |
|
} |
|
fprintf(ficresp, "\n"); |
|
fprintf(ficresphtm, "\n"); |
|
|
|
/* Header of frequency table by age */ |
|
fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">"); |
|
fprintf(ficresphtmfr,"<th>Age</th> "); |
|
for(jk=-1; jk <=nlstate+ndeath; jk++){ |
|
for(m=-1; m <=nlstate+ndeath; m++){ |
|
if(jk!=0 && m!=0) |
|
fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m); |
|
} |
|
} |
|
fprintf(ficresphtmfr, "\n"); |
|
|
|
/* For each age */ |
|
for(iage=iagemin; iage <= iagemax+3; iage++){ |
|
fprintf(ficresphtm,"<tr>"); |
|
if(iage==iagemax+1){ |
|
fprintf(ficlog,"1"); |
|
fprintf(ficresphtmfr,"<tr><th>0</th> "); |
|
}else if(iage==iagemax+2){ |
|
fprintf(ficlog,"0"); |
|
fprintf(ficresphtmfr,"<tr><th>Unknown</th> "); |
|
}else if(iage==iagemax+3){ |
|
fprintf(ficlog,"Total"); |
|
fprintf(ficresphtmfr,"<tr><th>Total</th> "); |
|
}else{ |
|
if(first==1){ |
|
first=0; |
|
printf("See log file for details...\n"); |
|
} |
|
fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage); |
|
fprintf(ficlog,"Age %d", iage); |
|
} |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) |
|
pp[jk] += freq[jk][m][iage]; |
|
} |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
for(m=-1, pos=0; m <=0 ; m++) |
|
pos += freq[jk][m][iage]; |
|
if(pp[jk]>=1.e-10){ |
|
if(first==1){ |
if(first==1){ |
printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
first=0; |
|
printf("See log file for details...\n"); |
|
} |
|
fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage); |
|
fprintf(ficlog,"Age %d", iage); |
|
} |
|
for(s1=1; s1 <=nlstate ; s1++){ |
|
for(m=-1, pp[s1]=0; m <=nlstate+ndeath ; m++) |
|
pp[s1] += freq[s1][m][iage]; |
|
} |
|
for(s1=1; s1 <=nlstate ; s1++){ |
|
for(m=-1, pos=0; m <=0 ; m++) |
|
pos += freq[s1][m][iage]; |
|
if(pp[s1]>=1.e-10){ |
|
if(first==1){ |
|
printf(" %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]); |
|
} |
|
fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]); |
|
}else{ |
|
if(first==1) |
|
printf(" %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1); |
|
fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1); |
} |
} |
fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
|
}else{ |
|
if(first==1) |
|
printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
|
fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
|
} |
} |
} |
|
|
|
for(jk=1; jk <=nlstate ; jk++){ |
for(s1=1; s1 <=nlstate ; s1++){ |
/* posprop[jk]=0; */ |
/* posprop[s1]=0; */ |
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */ |
for(m=0, pp[s1]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */ |
pp[jk] += freq[jk][m][iage]; |
pp[s1] += freq[s1][m][iage]; |
} /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */ |
} /* pp[s1] is the total number of transitions starting from state s1 and any ending status until this age */ |
|
|
for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){ |
for(s1=1,pos=0, pospropta=0.; s1 <=nlstate ; s1++){ |
pos += pp[jk]; /* pos is the total number of transitions until this age */ |
pos += pp[s1]; /* pos is the total number of transitions until this age */ |
posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state |
posprop[s1] += prop[s1][iage]; /* prop is the number of transitions from a live state |
from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state |
pospropta += prop[s1][iage]; /* prop is the number of transitions from a live state |
from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
} |
} |
for(jk=1; jk <=nlstate ; jk++){ |
|
if(pos>=1.e-5){ |
/* Writing ficresp */ |
if(first==1) |
if(cptcoveff==0 && nj==1){ /* no covariate and first pass */ |
printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
if( iage <= iagemax){ |
fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
fprintf(ficresp," %d",iage); |
}else{ |
} |
if(first==1) |
}else if( nj==2){ |
printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
if( iage <= iagemax){ |
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
fprintf(ficresp," %d",iage); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
} |
} |
} |
if( iage <= iagemax){ |
for(s1=1; s1 <=nlstate ; s1++){ |
if(pos>=1.e-5){ |
if(pos>=1.e-5){ |
fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta); |
if(first==1) |
fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta); |
printf(" %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos); |
/*probs[iage][jk][j1]= pp[jk]/pos;*/ |
fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos); |
/*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/ |
}else{ |
} |
if(first==1) |
else{ |
printf(" %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1); |
fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta); |
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1); |
fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[jk][iage],pospropta); |
} |
|
if( iage <= iagemax){ |
|
if(pos>=1.e-5){ |
|
if(cptcoveff==0 && nj==1){ /* no covariate and first pass */ |
|
fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta); |
|
}else if( nj==2){ |
|
fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta); |
|
} |
|
fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[s1][iage]/pospropta, prop[s1][iage],pospropta); |
|
/*probs[iage][s1][j1]= pp[s1]/pos;*/ |
|
/*printf("\niage=%d s1=%d j1=%d %.5f %.0f %.0f %f",iage,s1,j1,pp[s1]/pos, pp[s1],pos,probs[iage][s1][j1]);*/ |
|
} else{ |
|
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," NaNq %.0f %.0f",prop[s1][iage],pospropta); |
|
fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[s1][iage],pospropta); |
|
} |
} |
} |
} |
pospropt[s1] +=posprop[s1]; |
pospropt[jk] +=posprop[jk]; |
} /* end loop s1 */ |
} /* end loop jk */ |
/* pospropt=0.; */ |
/* pospropt=0.; */ |
for(s1=-1; s1 <=nlstate+ndeath; s1++){ |
for(jk=-1; jk <=nlstate+ndeath; jk++){ |
for(m=-1; m <=nlstate+ndeath; m++){ |
for(m=-1; m <=nlstate+ndeath; m++){ |
if(freq[s1][m][iage] !=0 ) { /* minimizing output */ |
if(freq[jk][m][iage] !=0 ) { /* minimizing output */ |
if(first==1){ |
if(first==1){ |
printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); |
printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]); |
} |
|
/* printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); */ |
|
fprintf(ficlog," %d%d=%.0f",s1,m,freq[s1][m][iage]); |
} |
} |
fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]); |
if(s1!=0 && m!=0) |
|
fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[s1][m][iage]); |
} |
} |
if(jk!=0 && m!=0) |
} /* end loop s1 */ |
fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][iage]); |
posproptt=0.; |
|
for(s1=1; s1 <=nlstate; s1++){ |
|
posproptt += pospropt[s1]; |
} |
} |
} /* end loop jk */ |
fprintf(ficresphtmfr,"</tr>\n "); |
posproptt=0.; |
|
for(jk=1; jk <=nlstate; jk++){ |
|
posproptt += pospropt[jk]; |
|
} |
|
fprintf(ficresphtmfr,"</tr>\n "); |
|
if(iage <= iagemax){ |
|
fprintf(ficresp,"\n"); |
|
fprintf(ficresphtm,"</tr>\n"); |
fprintf(ficresphtm,"</tr>\n"); |
|
if((cptcoveff==0 && nj==1)|| nj==2 ) { |
|
if(iage <= iagemax) |
|
fprintf(ficresp,"\n"); |
|
} |
|
if(first==1) |
|
printf("Others in log...\n"); |
|
fprintf(ficlog,"\n"); |
|
} /* end loop age iage */ |
|
|
|
fprintf(ficresphtm,"<tr><th>Tot</th>"); |
|
for(s1=1; s1 <=nlstate ; s1++){ |
|
if(posproptt < 1.e-5){ |
|
fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[s1],posproptt); |
|
}else{ |
|
fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[s1]/posproptt,pospropt[s1],posproptt); |
|
} |
} |
} |
if(first==1) |
fprintf(ficresphtm,"</tr>\n"); |
printf("Others in log...\n"); |
fprintf(ficresphtm,"</table>\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficresphtmfr,"</table>\n"); |
} /* end loop age iage */ |
|
fprintf(ficresphtm,"<tr><th>Tot</th>"); |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
if(posproptt < 1.e-5){ |
if(posproptt < 1.e-5){ |
fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[jk],posproptt); |
fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
|
fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
|
fprintf(ficlog,"# This combination (%d) is not valid and no result will be produced\n",j1); |
|
printf("# This combination (%d) is not valid and no result will be produced\n",j1); |
|
invalidvarcomb[j1]=1; |
}else{ |
}else{ |
fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[jk]/posproptt,pospropt[jk],posproptt); |
fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced (or no resultline).</p>",j1); |
|
invalidvarcomb[j1]=0; |
} |
} |
} |
fprintf(ficresphtmfr,"</table>\n"); |
fprintf(ficresphtm,"</tr>\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficresphtm,"</table>\n"); |
if(j!=0){ |
fprintf(ficresphtmfr,"</table>\n"); |
printf("#Freqsummary: Starting values for combination j1=%d:\n", j1); |
if(posproptt < 1.e-5){ |
for(i=1,s1=1; i <=nlstate; i++){ |
fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
for(k=1; k <=(nlstate+ndeath); k++){ |
fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
if (k != i) { |
fprintf(ficres,"\n This combination (%d) is not valid and no result will be produced\n\n",j1); |
for(jj=1; jj <=ncovmodel; jj++){ /* For counting s1 */ |
invalidvarcomb[j1]=1; |
if(jj==1){ /* Constant case (in fact cste + age) */ |
}else{ |
if(j1==1){ /* All dummy covariates to zero */ |
fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1); |
freq[i][k][iagemax+4]=freq[i][k][iagemax+3]; /* Stores case 0 0 0 */ |
invalidvarcomb[j1]=0; |
freq[i][i][iagemax+4]=freq[i][i][iagemax+3]; /* Stores case 0 0 0 */ |
} |
printf("%d%d ",i,k); |
fprintf(ficresphtmfr,"</table>\n"); |
fprintf(ficlog,"%d%d ",i,k); |
} /* end selected combination of covariate j1 */ |
printf("%12.7f ln(%.0f/%.0f)= %f, OR=%f sd=%f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]),freq[i][k][iagemax+3]/freq[i][i][iagemax+3], sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3])); |
if(j==0){ /* We can estimate starting values from the occurences in each case */ |
fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); |
for(jk=-1; jk <=nlstate+ndeath; jk++){ |
pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]); |
for(m=-1; m <=nlstate+ndeath; m++){ |
} |
/* param[i]|j][k]= freq[jk][m][iagemax+3] */ |
}else if((j1==1) && (jj==2 || nagesqr==1)){ /* age or age*age parameter without covariate V4*age (to be done later) */ |
if(freq[jk][m][iage] !=0 ) { /* minimizing output */ |
for(iage=iagemin; iage <= iagemax+3; iage++){ |
if(first==1){ |
x[iage]= (double)iage; |
printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]); |
y[iage]= log(freq[i][k][iage]/freq[i][i][iage]); |
|
/* printf("i=%d, k=%d, s1=%d, j1=%d, jj=%d, y[%d]=%f\n",i,k,s1,j1,jj, iage, y[iage]); */ |
|
} |
|
/* Some are not finite, but linreg will ignore these ages */ |
|
no=0; |
|
linreg(iagemin,iagemax,&no,x,y,&a,&b,&r, &sa, &sb ); /* y= a+b*x with standard errors */ |
|
pstart[s1]=b; |
|
pstart[s1-1]=a; |
|
}else if( j1!=1 && (j1==2 || (log(j1-1.)/log(2.)-(int)(log(j1-1.)/log(2.))) <0.010) && ( TvarsDind[(int)(log(j1-1.)/log(2.))+1]+2+nagesqr == jj) && Dummy[jj-2-nagesqr]==0){ /* We want only if the position, jj, in model corresponds to unique covariate equal to 1 in j1 combination */ |
|
printf("j1=%d, jj=%d, (int)(log(j1-1.)/log(2.))+1=%d, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(int)(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]); |
|
printf("j1=%d, jj=%d, (log(j1-1.)/log(2.))+1=%f, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]); |
|
pstart[s1]= log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])); |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
printf("s1=%d,i=%d,k=%d,p[%d]=%12.7f ln((%.0f/%.0f)/(%.0f/%.0f))= %f, OR=%f sd=%f \n",s1,i,k,s1,p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3],freq[i][k][iagemax+4],freq[i][i][iagemax+4], log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])),(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]), sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]+1/freq[i][k][iagemax+4]+1/freq[i][i][iagemax+4])); |
|
}else{ /* Other cases, like quantitative fixed or varying covariates */ |
|
; |
|
} |
|
/* printf("%12.7f )", param[i][jj][k]); */ |
|
/* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */ |
|
s1++; |
|
} /* end jj */ |
|
} /* end k!= i */ |
|
} /* end k */ |
|
} /* end i, s1 */ |
|
} /* end j !=0 */ |
|
} /* end selected combination of covariate j1 */ |
|
if(j==0){ /* We can estimate starting values from the occurences in each case */ |
|
printf("#Freqsummary: Starting values for the constants:\n"); |
|
fprintf(ficlog,"\n"); |
|
for(i=1,s1=1; i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
for(jj=1; jj <=ncovmodel; jj++){ |
|
pstart[s1]=p[s1]; /* Setting pstart to p values by default */ |
|
if(jj==1){ /* Age has to be done */ |
|
pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]); |
|
printf("%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); |
|
fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); |
|
} |
|
/* printf("%12.7f )", param[i][jj][k]); */ |
|
/* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */ |
|
s1++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
} |
} |
fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]); |
|
} |
} |
} |
} /* end of state i */ |
} /* end loop jk */ |
printf("#Freqsummary\n"); |
} |
fprintf(ficlog,"\n"); |
|
for(s1=-1; s1 <=nlstate+ndeath; s1++){ |
|
for(s2=-1; s2 <=nlstate+ndeath; s2++){ |
|
/* param[i]|j][k]= freq[s1][s2][iagemax+3] */ |
|
printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); |
|
fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); |
|
/* if(freq[s1][s2][iage] !=0 ) { /\* minimizing output *\/ */ |
|
/* printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */ |
|
/* fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */ |
|
/* } */ |
|
} |
|
} /* end loop s1 */ |
|
|
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} /* end j=0 */ |
} /* end j */ |
} /* end j */ |
|
|
|
if(mle == -2){ /* We want to use these values as starting values */ |
|
for(i=1, jk=1; i <=nlstate; i++){ |
|
for(j=1; j <=nlstate+ndeath; j++){ |
|
if(j!=i){ |
|
/*ca[0]= k+'a'-1;ca[1]='\0';*/ |
|
printf("%1d%1d",i,j); |
|
fprintf(ficparo,"%1d%1d",i,j); |
|
for(k=1; k<=ncovmodel;k++){ |
|
/* printf(" %lf",param[i][j][k]); */ |
|
/* fprintf(ficparo," %lf",param[i][j][k]); */ |
|
p[jk]=pstart[jk]; |
|
printf(" %f ",pstart[jk]); |
|
fprintf(ficparo," %f ",pstart[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
fprintf(ficparo,"\n"); |
|
} |
|
} |
|
} |
|
} /* end mle=-2 */ |
dateintmean=dateintsum/k2cpt; |
dateintmean=dateintsum/k2cpt; |
|
date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); |
|
|
fclose(ficresp); |
fclose(ficresp); |
fclose(ficresphtm); |
fclose(ficresphtm); |
fclose(ficresphtmfr); |
fclose(ficresphtmfr); |
|
free_vector(idq,1,nqfveff); |
free_vector(meanq,1,nqfveff); |
free_vector(meanq,1,nqfveff); |
|
free_vector(stdq,1,nqfveff); |
free_matrix(meanqt,1,lastpass,1,nqtveff); |
free_matrix(meanqt,1,lastpass,1,nqtveff); |
free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE); |
free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
|
free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
|
free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
free_vector(pospropt,1,nlstate); |
free_vector(pospropt,1,nlstate); |
free_vector(posprop,1,nlstate); |
free_vector(posprop,1,nlstate); |
free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE); |
free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
free_vector(pp,1,nlstate); |
free_vector(pp,1,nlstate); |
/* End of freqsummary */ |
/* End of freqsummary */ |
} |
} |
|
|
|
/* Simple linear regression */ |
|
int linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb) { |
|
|
|
/* y=a+bx regression */ |
|
double sumx = 0.0; /* sum of x */ |
|
double sumx2 = 0.0; /* sum of x**2 */ |
|
double sumxy = 0.0; /* sum of x * y */ |
|
double sumy = 0.0; /* sum of y */ |
|
double sumy2 = 0.0; /* sum of y**2 */ |
|
double sume2 = 0.0; /* sum of square or residuals */ |
|
double yhat; |
|
|
|
double denom=0; |
|
int i; |
|
int ne=*no; |
|
|
|
for ( i=ifi, ne=0;i<=ila;i++) { |
|
if(!isfinite(x[i]) || !isfinite(y[i])){ |
|
/* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */ |
|
continue; |
|
} |
|
ne=ne+1; |
|
sumx += x[i]; |
|
sumx2 += x[i]*x[i]; |
|
sumxy += x[i] * y[i]; |
|
sumy += y[i]; |
|
sumy2 += y[i]*y[i]; |
|
denom = (ne * sumx2 - sumx*sumx); |
|
/* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */ |
|
} |
|
|
|
denom = (ne * sumx2 - sumx*sumx); |
|
if (denom == 0) { |
|
// vertical, slope m is infinity |
|
*b = INFINITY; |
|
*a = 0; |
|
if (r) *r = 0; |
|
return 1; |
|
} |
|
|
|
*b = (ne * sumxy - sumx * sumy) / denom; |
|
*a = (sumy * sumx2 - sumx * sumxy) / denom; |
|
if (r!=NULL) { |
|
*r = (sumxy - sumx * sumy / ne) / /* compute correlation coeff */ |
|
sqrt((sumx2 - sumx*sumx/ne) * |
|
(sumy2 - sumy*sumy/ne)); |
|
} |
|
*no=ne; |
|
for ( i=ifi, ne=0;i<=ila;i++) { |
|
if(!isfinite(x[i]) || !isfinite(y[i])){ |
|
/* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */ |
|
continue; |
|
} |
|
ne=ne+1; |
|
yhat = y[i] - *a -*b* x[i]; |
|
sume2 += yhat * yhat ; |
|
|
|
denom = (ne * sumx2 - sumx*sumx); |
|
/* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */ |
|
} |
|
*sb = sqrt(sume2/(double)(ne-2)/(sumx2 - sumx * sumx /(double)ne)); |
|
*sa= *sb * sqrt(sumx2/ne); |
|
|
|
return 0; |
|
} |
|
|
/************ Prevalence ********************/ |
/************ Prevalence ********************/ |
void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) |
void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) |
{ |
{ |
Line 4590 void prevalence(double ***probs, double
|
Line 6171 void prevalence(double ***probs, double
|
iagemin= (int) agemin; |
iagemin= (int) agemin; |
iagemax= (int) agemax; |
iagemax= (int) agemax; |
/*pp=vector(1,nlstate);*/ |
/*pp=vector(1,nlstate);*/ |
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
/* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
/* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
j1=0; |
j1=0; |
|
|
/*j=cptcoveff;*/ |
/*j=cptcoveff;*/ |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
first=1; |
first=0; |
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */ |
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of simple dummy covariates */ |
for (i=1; i<=nlstate; i++) |
for (i=1; i<=nlstate; i++) |
for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++) |
for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++) |
prop[i][iage]=0.0; |
prop[i][iage]=0.0; |
printf("Prevalence combination of varying and fixed dummies %d\n",j1); |
printf("Prevalence combination of varying and fixed dummies %d\n",j1); |
/* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */ |
/* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */ |
Line 4615 void prevalence(double ***probs, double
|
Line 6196 void prevalence(double ***probs, double
|
/* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */ |
/* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */ |
for (z1=1; z1<=cptcoveff; z1++){ |
for (z1=1; z1<=cptcoveff; z1++){ |
if( Fixed[Tmodelind[z1]]==1){ |
if( Fixed[Tmodelind[z1]]==1){ |
iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; |
iv= Tvar[Tmodelind[z1]];/* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */ |
if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality */ |
bool=0; |
bool=0; |
}else if( Fixed[Tmodelind[z1]]== 0) /* fixed */ |
}else if( Fixed[Tmodelind[z1]]== 0) /* fixed */ |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) { |
bool=0; |
bool=0; |
} |
} |
} |
} |
Line 4631 void prevalence(double ***probs, double
|
Line 6212 void prevalence(double ***probs, double
|
if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+3+AGEMARGE){ |
if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+4+AGEMARGE){ |
printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); |
printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); |
exit(1); |
exit(1); |
} |
} |
Line 4655 void prevalence(double ***probs, double
|
Line 6236 void prevalence(double ***probs, double
|
if(posprop>=1.e-5){ |
if(posprop>=1.e-5){ |
probs[i][jk][j1]= prop[jk][i]/posprop; |
probs[i][jk][j1]= prop[jk][i]/posprop; |
} else{ |
} else{ |
if(first==1){ |
if(!first){ |
first=0; |
first=1; |
printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,j1,probs[i][jk][j1]); |
printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]); |
|
}else{ |
|
fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases.\n",jk,i,jk, j1,probs[i][jk][j1]); |
} |
} |
} |
} |
} |
} |
Line 4668 void prevalence(double ***probs, double
|
Line 6251 void prevalence(double ***probs, double
|
|
|
/* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
/* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
/*free_vector(pp,1,nlstate);*/ |
/*free_vector(pp,1,nlstate);*/ |
free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
} /* End of prevalence */ |
} /* End of prevalence */ |
|
|
/************* Waves Concatenation ***************/ |
/************* Waves Concatenation ***************/ |
|
|
void concatwav(int wav[], int **dh, int **bh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) |
void concatwav(int wav[], int **dh, int **bh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) |
{ |
{ |
/* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. |
/* Concatenates waves: wav[i] is the number of effective (useful waves in the sense that a non interview is useless) of individual i. |
Death is a valid wave (if date is known). |
Death is a valid wave (if date is known). |
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
and mw[mi+1][i]. dh depends on stepm. |
and mw[mi+1][i]. dh depends on stepm. s[m][i] exists for any wave from firstpass to lastpass |
*/ |
*/ |
|
|
int i=0, mi=0, m=0, mli=0; |
int i=0, mi=0, m=0, mli=0; |
Line 4700 void concatwav(int wav[], int **dh, int
|
Line 6283 void concatwav(int wav[], int **dh, int
|
for(i=1; i<=imx; i++){ /* For simple cases and if state is death */ |
for(i=1; i<=imx; i++){ /* For simple cases and if state is death */ |
mi=0; /* First valid wave */ |
mi=0; /* First valid wave */ |
mli=0; /* Last valid wave */ |
mli=0; /* Last valid wave */ |
m=firstpass; |
m=firstpass; /* Loop on waves */ |
while(s[m][i] <= nlstate){ /* a live state */ |
while(s[m][i] <= nlstate){ /* a live state or unknown state */ |
if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */ |
if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */ |
mli=m-1;/* mw[++mi][i]=m-1; */ |
mli=m-1;/* mw[++mi][i]=m-1; */ |
}else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */ |
}else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */ |
mw[++mi][i]=m; |
mw[++mi][i]=m; /* Valid wave: incrementing mi and updating mi; mw[mi] is the wave number of mi_th valid transition */ |
mli=m; |
mli=m; |
} /* else might be a useless wave -1 and mi is not incremented and mw[mi] not updated */ |
} /* else might be a useless wave -1 and mi is not incremented and mw[mi] not updated */ |
if(m < lastpass){ /* m < lastpass, standard case */ |
if(m < lastpass){ /* m < lastpass, standard case */ |
m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */ |
m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */ |
} |
} |
else{ /* m >= lastpass, eventual special issue with warning */ |
else{ /* m = lastpass, eventual special issue with warning */ |
#ifdef UNKNOWNSTATUSNOTCONTRIBUTING |
#ifdef UNKNOWNSTATUSNOTCONTRIBUTING |
break; |
break; |
#else |
#else |
if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ |
if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ /* no death date and known date of interview, case -2 (vital status unknown is warned later */ |
if(firsthree == 0){ |
if(firsthree == 0){ |
printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m); |
printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath); |
firsthree=1; |
firsthree=1; |
|
}else if(firsthree >=1 && firsthree < 10){ |
|
fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath); |
|
firsthree++; |
|
}else if(firsthree == 10){ |
|
printf("Information, too many Information flags: no more reported to log either\n"); |
|
fprintf(ficlog,"Information, too many Information flags: no more reported to log either\n"); |
|
firsthree++; |
|
}else{ |
|
firsthree++; |
} |
} |
fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m); |
mw[++mi][i]=m; /* Valid transition with unknown status */ |
mw[++mi][i]=m; |
|
mli=m; |
mli=m; |
} |
} |
if(s[m][i]==-2){ /* Vital status is really unknown */ |
if(s[m][i]==-2){ /* Vital status is really unknown */ |
nbwarn++; |
nbwarn++; |
if((int)anint[m][i] == 9999){ /* Has the vital status really been verified? */ |
if((int)anint[m][i] == 9999){ /* Has the vital status really been verified?not a transition */ |
printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
} |
} |
Line 4747 void concatwav(int wav[], int **dh, int
|
Line 6338 void concatwav(int wav[], int **dh, int
|
/* if(mi==0) never been interviewed correctly before death */ |
/* if(mi==0) never been interviewed correctly before death */ |
/* Only death is a correct wave */ |
/* Only death is a correct wave */ |
mw[mi][i]=m; |
mw[mi][i]=m; |
} |
} /* else not in a death state */ |
#ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE |
#ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE |
else if ((int) andc[i] != 9999) { /* Status is negative. A death occured after lastpass, we can't take it into account because of potential bias */ |
else if ((int) andc[i] != 9999) { /* Date of death is known */ |
/* m++; */ |
|
/* mi++; */ |
|
/* s[m][i]=nlstate+1; /\* We are setting the status to the last of non live state *\/ */ |
|
/* mw[mi][i]=m; */ |
|
if ((int)anint[m][i]!= 9999) { /* date of last interview is known */ |
if ((int)anint[m][i]!= 9999) { /* date of last interview is known */ |
if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */ |
if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* month of death occured before last wave month and status should have been death instead of -1 */ |
nbwarn++; |
nbwarn++; |
if(firstfiv==0){ |
if(firstfiv==0){ |
printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
firstfiv=1; |
firstfiv=1; |
}else{ |
}else{ |
fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
} |
} |
}else{ /* Death occured afer last wave potential bias */ |
s[m][i]=nlstate+1; /* Fixing the status as death. Be careful if multiple death states */ |
|
}else{ /* Month of Death occured afer last wave month, potential bias */ |
nberr++; |
nberr++; |
if(firstwo==0){ |
if(firstwo==0){ |
printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
firstwo=1; |
firstwo=1; |
} |
} |
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
} |
} |
}else{ /* end date of interview is known */ |
}else{ /* if date of interview is unknown */ |
/* death is known but not confirmed by death status at any wave */ |
/* death is known but not confirmed by death status at any wave */ |
if(firstfour==0){ |
if(firstfour==0){ |
printf("Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
printf("Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
firstfour=1; |
firstfour=1; |
} |
} |
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
} |
} |
} /* end if date of death is known */ |
} /* end if date of death is known */ |
#endif |
#endif |
wav[i]=mi; /* mi should be the last effective wave (or mli) */ |
wav[i]=mi; /* mi should be the last effective wave (or mli), */ |
/* wav[i]=mw[mi][i]; */ |
/* wav[i]=mw[mi][i]; */ |
if(mi==0){ |
if(mi==0){ |
nbwarn++; |
nbwarn++; |
if(first==0){ |
if(first==0){ |
Line 4796 void concatwav(int wav[], int **dh, int
|
Line 6384 void concatwav(int wav[], int **dh, int
|
} /* End individuals */ |
} /* End individuals */ |
/* wav and mw are no more changed */ |
/* wav and mw are no more changed */ |
|
|
|
printf("Information, you have to check %d informations which haven't been logged!\n",firsthree); |
|
fprintf(ficlog,"Information, you have to check %d informations which haven't been logged!\n",firsthree); |
|
|
|
|
for(i=1; i<=imx; i++){ |
for(i=1; i<=imx; i++){ |
for(mi=1; mi<wav[i];mi++){ |
for(mi=1; mi<wav[i];mi++){ |
if (stepm <=0) |
if (stepm <=0) |
dh[mi][i]=1; |
dh[mi][i]=1; |
else{ |
else{ |
if (s[mw[mi+1][i]][i] > nlstate) { /* A death */ |
if (s[mw[mi+1][i]][i] > nlstate) { /* A death, but what if date is unknown? */ |
if (agedc[i] < 2*AGESUP) { |
if (agedc[i] < 2*AGESUP) { |
j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); |
j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); |
if(j==0) j=1; /* Survives at least one month after exam */ |
if(j==0) j=1; /* Survives at least one month after exam */ |
Line 4907 void concatwav(int wav[], int **dh, int
|
Line 6498 void concatwav(int wav[], int **dh, int
|
/* *cptcov=0; */ |
/* *cptcov=0; */ |
|
|
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
|
for (k=1; k <= maxncov; k++) |
|
for(j=1; j<=2; j++) |
|
nbcode[k][j]=0; /* Valgrind */ |
|
|
/* Loop on covariates without age and products and no quantitative variable */ |
/* Loop on covariates without age and products and no quantitative variable */ |
/* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */ |
for (k=1; k<=cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */ |
for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */ |
|
for (j=-1; (j < maxncov); j++) Ndum[j]=0; |
for (j=-1; (j < maxncov); j++) Ndum[j]=0; |
if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ |
/* printf("Testing k=%d, cptcovt=%d\n",k, cptcovt); */ |
|
if(Dummy[k]==0 && Typevar[k] !=1 && Typevar[k] != 3 && Typevar[k] != 2){ /* Dummy covariate and not age product nor fixed product */ |
switch(Fixed[k]) { |
switch(Fixed[k]) { |
case 0: /* Testing on fixed dummy covariate, simple or product of fixed */ |
case 0: /* Testing on fixed dummy covariate, simple or product of fixed */ |
|
modmaxcovj=0; |
|
modmincovj=0; |
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
|
/* printf("Waiting for error tricode Tvar[%d]=%d i=%d (int)(covar[Tvar[k]][i]=%d\n",k,Tvar[k], i, (int)(covar[Tvar[k]][i])); */ |
ij=(int)(covar[Tvar[k]][i]); |
ij=(int)(covar[Tvar[k]][i]); |
/* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
/* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
* If product of Vn*Vm, still boolean *: |
* If product of Vn*Vm, still boolean *: |
Line 4927 void concatwav(int wav[], int **dh, int
|
Line 6524 void concatwav(int wav[], int **dh, int
|
modmaxcovj=ij; |
modmaxcovj=ij; |
else if (ij < modmincovj) |
else if (ij < modmincovj) |
modmincovj=ij; |
modmincovj=ij; |
if ((ij < -1) && (ij > NCOVMAX)){ |
if (ij <0 || ij >1 ){ |
|
printf("ERROR, IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i); |
|
fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i); |
|
fflush(ficlog); |
|
exit(1); |
|
} |
|
if ((ij < -1) || (ij > NCOVMAX)){ |
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
exit(1); |
exit(1); |
}else |
}else |
Line 4973 void concatwav(int wav[], int **dh, int
|
Line 6576 void concatwav(int wav[], int **dh, int
|
/* nbcode[Tvar[j]][3]=2; */ |
/* nbcode[Tvar[j]][3]=2; */ |
/* To be continued (not working yet). */ |
/* To be continued (not working yet). */ |
ij=0; /* ij is similar to i but can jump over null modalities */ |
ij=0; /* ij is similar to i but can jump over null modalities */ |
for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
|
|
/* for (i=modmincovj; i<=modmaxcovj; i++) { */ /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
|
/* Skipping the case of missing values by reducing nbcode to 0 and 1 and not -1, 0, 1 */ |
|
/* model=V1+V2+V3, if V2=-1, 0 or 1, then nbcode[2][1]=0 and nbcode[2][2]=1 instead of |
|
* nbcode[2][1]=-1, nbcode[2][2]=0 and nbcode[2][3]=1 */ |
|
/*, could be restored in the future */ |
|
for (i=0; i<=1; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
break; |
break; |
} |
} |
ij++; |
ij++; |
nbcode[Tvar[k]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/ |
nbcode[Tvar[k]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1 . Could be -1*/ |
cptcode = ij; /* New max modality for covar j */ |
cptcode = ij; /* New max modality for covar j */ |
} /* end of loop on modality i=-1 to 1 or more */ |
} /* end of loop on modality i=-1 to 1 or more */ |
break; |
break; |
Line 4994 void concatwav(int wav[], int **dh, int
|
Line 6603 void concatwav(int wav[], int **dh, int
|
break; |
break; |
} /* end switch */ |
} /* end switch */ |
} /* end dummy test */ |
} /* end dummy test */ |
|
if(Dummy[k]==1 && Typevar[k] !=1 && Typevar[k] !=3 && Fixed ==0){ /* Fixed Quantitative covariate and not age product */ |
/* for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */ |
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
/* /\*recode from 0 *\/ */ |
if(Tvar[k]<=0 || Tvar[k]>=NCOVMAX){ |
/* k is a modality. If we have model=V1+V1*sex */ |
printf("Error k=%d \n",k); |
/* then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ |
exit(1); |
/* But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */ |
} |
/* } */ |
if(isnan(covar[Tvar[k]][i])){ |
/* /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */ |
printf("ERROR, IMaCh doesn't treat fixed quantitative covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i); |
/* if (ij > ncodemax[j]) { */ |
fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i); |
/* printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
fflush(ficlog); |
/* fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
exit(1); |
/* break; */ |
} |
/* } */ |
} |
/* } /\* end of loop on modality k *\/ */ |
} /* end Quanti */ |
} /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/ |
} /* end of loop on model-covariate k. nbcode[Tvark][1]=-1, nbcode[Tvark][1]=0 and nbcode[Tvark][2]=1 sets the value of covariate k*/ |
|
|
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
/* Look at fixed dummy (single or product) covariates to check empty modalities */ |
/* Look at fixed dummy (single or product) covariates to check empty modalities */ |
Line 5021 void concatwav(int wav[], int **dh, int
|
Line 6630 void concatwav(int wav[], int **dh, int
|
|
|
ij=0; |
ij=0; |
/* for (i=0; i<= maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */ |
/* for (i=0; i<= maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */ |
for (k=1; k<= cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
for (k=1; k<= cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */ |
|
/* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
/* if((Ndum[i]!=0) && (i<=ncovcol)){ /\* Tvar[i] <= ncovmodel ? *\/ */ |
/* if((Ndum[i]!=0) && (i<=ncovcol)){ /\* Tvar[i] <= ncovmodel ? *\/ */ |
if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){ /* Only Dummy and non empty in the model */ |
if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){ /* Only Dummy simple and non empty in the model */ |
|
/* Typevar[k] =0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
|
/* Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product*/ |
/* If product not in single variable we don't print results */ |
/* If product not in single variable we don't print results */ |
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */ |
++ij;/* V5 + V4 + V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V1, *//* V5 quanti, V2 quanti, V4, V3, V1 dummies */ |
|
/* k= 1 2 3 4 5 6 7 8 9 */ |
|
/* Tvar[k]= 5 4 3 6 5 2 7 1 1 */ |
|
/* ij 1 2 3 */ |
|
/* Tvaraff[ij]= 4 3 1 */ |
|
/* Tmodelind[ij]=2 3 9 */ |
|
/* TmodelInvind[ij]=2 1 1 */ |
Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/ |
Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/ |
Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */ |
Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */ |
TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */ |
TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */ |
Line 5043 void concatwav(int wav[], int **dh, int
|
Line 6661 void concatwav(int wav[], int **dh, int
|
} /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */ |
} /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */ |
/* ij--; */ |
/* ij--; */ |
/* cptcoveff=ij; /\*Number of total covariates*\/ */ |
/* cptcoveff=ij; /\*Number of total covariates*\/ */ |
*cptcov=ij; /*Number of total real effective covariates: effective |
*cptcov=ij; /* cptcov= Number of total real effective simple dummies (fixed or time arying) effective (used as cptcoveff in other functions) |
* because they can be excluded from the model and real |
* because they can be excluded from the model and real |
* if in the model but excluded because missing values, but how to get k from ij?*/ |
* if in the model but excluded because missing values, but how to get k from ij?*/ |
for(j=ij+1; j<= cptcovt; j++){ |
for(j=ij+1; j<= cptcovt; j++){ |
Line 5064 void concatwav(int wav[], int **dh, int
|
Line 6682 void concatwav(int wav[], int **dh, int
|
|
|
{ |
{ |
/* Health expectancies, no variances */ |
/* Health expectancies, no variances */ |
|
/* cij is the combination in the list of combination of dummy covariates */ |
|
/* strstart is a string of time at start of computing */ |
int i, j, nhstepm, hstepm, h, nstepm; |
int i, j, nhstepm, hstepm, h, nstepm; |
int nhstepma, nstepma; /* Decreasing with age */ |
int nhstepma, nstepma; /* Decreasing with age */ |
double age, agelim, hf; |
double age, agelim, hf; |
Line 5101 void concatwav(int wav[], int **dh, int
|
Line 6721 void concatwav(int wav[], int **dh, int
|
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
nhstepm is the number of hstepm from age to agelim |
nhstepm is the number of hstepm from age to agelim |
nstepm is the number of stepm from age to agelin. |
nstepm is the number of stepm from age to agelin. |
Look at hpijx to understand the reason of that which relies in memory size |
Look at hpijx to understand the reason which relies in memory size consideration |
and note for a fixed period like estepm months */ |
and note for a fixed period like estepm months */ |
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
survival function given by stepm (the optimization length). Unfortunately it |
survival function given by stepm (the optimization length). Unfortunately it |
Line 5132 void concatwav(int wav[], int **dh, int
|
Line 6752 void concatwav(int wav[], int **dh, int
|
/* If stepm=6 months */ |
/* If stepm=6 months */ |
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
|
/* printf("HELLO evsij Entering hpxij age=%d cij=%d hstepm=%d x[1]=%f nres=%d\n",(int) age, cij, hstepm, x[1], nres); */ |
hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres); |
hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres); |
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
Line 5174 void concatwav(int wav[], int **dh, int
|
Line 6794 void concatwav(int wav[], int **dh, int
|
/* Covariances of health expectancies eij and of total life expectancies according |
/* Covariances of health expectancies eij and of total life expectancies according |
to initial status i, ei. . |
to initial status i, ei. . |
*/ |
*/ |
|
/* Very time consuming function, but already optimized with precov */ |
int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji; |
int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji; |
int nhstepma, nstepma; /* Decreasing with age */ |
int nhstepma, nstepma; /* Decreasing with age */ |
double age, agelim, hf; |
double age, agelim, hf; |
Line 5321 void concatwav(int wav[], int **dh, int
|
Line 6942 void concatwav(int wav[], int **dh, int
|
varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf; |
varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf; |
} |
} |
} |
} |
|
/* if((int)age ==50){ */ |
|
/* printf(" age=%d cij=%d nres=%d varhe[%d][%d]=%f ",(int)age, cij, nres, 1,2,varhe[1][2]); */ |
|
/* } */ |
/* Computing expectancies */ |
/* Computing expectancies */ |
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres); |
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
Line 5332 void concatwav(int wav[], int **dh, int
|
Line 6955 void concatwav(int wav[], int **dh, int
|
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
|
|
} |
} |
|
|
|
/* Standard deviation of expectancies ij */ |
fprintf(ficresstdeij,"%3.0f",age ); |
fprintf(ficresstdeij,"%3.0f",age ); |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
eip=0.; |
eip=0.; |
Line 5347 void concatwav(int wav[], int **dh, int
|
Line 6971 void concatwav(int wav[], int **dh, int
|
} |
} |
fprintf(ficresstdeij,"\n"); |
fprintf(ficresstdeij,"\n"); |
|
|
|
/* Variance of expectancies ij */ |
fprintf(ficrescveij,"%3.0f",age ); |
fprintf(ficrescveij,"%3.0f",age ); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate;j++){ |
for(j=1; j<=nlstate;j++){ |
Line 5380 void concatwav(int wav[], int **dh, int
|
Line 7005 void concatwav(int wav[], int **dh, int
|
/************ Variance ******************/ |
/************ Variance ******************/ |
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres) |
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres) |
{ |
{ |
/* Variance of health expectancies */ |
/** Variance of health expectancies |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ |
* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl); |
/* double **newm;*/ |
* double **newm; |
/* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/ |
* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav) |
|
*/ |
|
|
/* int movingaverage(); */ |
/* int movingaverage(); */ |
double **dnewm,**doldm; |
double **dnewm,**doldm; |
double **dnewmp,**doldmp; |
double **dnewmp,**doldmp; |
int i, j, nhstepm, hstepm, h, nstepm ; |
int i, j, nhstepm, hstepm, h, nstepm ; |
|
int first=0; |
int k; |
int k; |
double *xp; |
double *xp; |
double **gp, **gm; /* for var eij */ |
double **gp, **gm; /**< for var eij */ |
double ***gradg, ***trgradg; /*for var eij */ |
double ***gradg, ***trgradg; /**< for var eij */ |
double **gradgp, **trgradgp; /* for var p point j */ |
double **gradgp, **trgradgp; /**< for var p point j */ |
double *gpp, *gmp; /* for var p point j */ |
double *gpp, *gmp; /**< for var p point j */ |
double **varppt; /* for var p point j nlstate to nlstate+ndeath */ |
double **varppt; /**< for var p point j nlstate to nlstate+ndeath */ |
double ***p3mat; |
double ***p3mat; |
double age,agelim, hf; |
double age,agelim, hf; |
/* double ***mobaverage; */ |
/* double ***mobaverage; */ |
Line 5436 void concatwav(int wav[], int **dh, int
|
Line 7063 void concatwav(int wav[], int **dh, int
|
pstamp(ficresprobmorprev); |
pstamp(ficresprobmorprev); |
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies"); |
fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies"); |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* We use TinvDoQresult[nres][resultmodel[nres][j] we sort according to the equation model and the resultline: it is a choice */ |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ /\* To be done*\/ */ |
|
/* fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* } */ |
|
for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */ /* To be done*/ |
|
/* fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); */ |
|
fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} |
} |
for(j=1;j<=cptcoveff;j++) |
/* for(j=1;j<=cptcoveff;j++) */ |
fprintf(ficresprobmorprev,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,j)]); |
/* fprintf(ficresprobmorprev," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,TnsdVar[Tvaraff[j]])]); */ |
fprintf(ficresprobmorprev,"\n"); |
fprintf(ficresprobmorprev,"\n"); |
|
|
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
Line 5456 void concatwav(int wav[], int **dh, int
|
Line 7089 void concatwav(int wav[], int **dh, int
|
/* fprintf(fichtm, "#Local time at start: %s", strstart);*/ |
/* fprintf(fichtm, "#Local time at start: %s", strstart);*/ |
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
/* } */ |
|
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
pstamp(ficresvij); |
pstamp(ficresvij); |
fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are "); |
fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are "); |
Line 5511 void concatwav(int wav[], int **dh, int
|
Line 7144 void concatwav(int wav[], int **dh, int
|
for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
} |
} |
|
/**< Computes the prevalence limit with parameter theta shifted of delta up to ftolpl precision and |
|
* returns into prlim . |
|
*/ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres); |
|
|
|
/* If popbased = 1 we use crossection prevalences. Previous step is useless but prlim is created */ |
if (popbased==1) { |
if (popbased==1) { |
if(mobilav ==0){ |
if(mobilav ==0){ |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
Line 5523 void concatwav(int wav[], int **dh, int
|
Line 7159 void concatwav(int wav[], int **dh, int
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
prlim[i][i]=mobaverage[(int)age][i][ij]; |
} |
} |
} |
} |
|
/**< Computes the shifted transition matrix \f$ {}{h}_p^{ij}x\f$ at horizon h. |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres); /* Returns p3mat[i][j][h] for h=1 to nhstepm */ |
*/ |
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres); /* Returns p3mat[i][j][h] for h=0 to nhstepm */ |
|
/**< And for each alive state j, sums over i \f$ w^i_x {}{h}_p^{ij}x\f$, which are the probability |
|
* at horizon h in state j including mortality. |
|
*/ |
for(j=1; j<= nlstate; j++){ |
for(j=1; j<= nlstate; j++){ |
for(h=0; h<=nhstepm; h++){ |
for(h=0; h<=nhstepm; h++){ |
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
} |
} |
} |
} |
/* Next for computing probability of death (h=1 means |
/* Next for computing shifted+ probability of death (h=1 means |
computed over hstepm matrices product = hstepm*stepm months) |
computed over hstepm matrices product = hstepm*stepm months) |
as a weighted average of prlim. |
as a weighted average of prlim(i) * p(i,j) p.3=w1*p13 + w2*p23 . |
*/ |
*/ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
for(i=1,gpp[j]=0.; i<= nlstate; i++) |
for(i=1,gpp[j]=0.; i<= nlstate; i++) |
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
} |
} |
/* end probability of death */ |
|
|
/* Again with minus shift */ |
|
|
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres); |
|
|
if (popbased==1) { |
if (popbased==1) { |
Line 5572 void concatwav(int wav[], int **dh, int
|
Line 7213 void concatwav(int wav[], int **dh, int
|
for(i=1,gmp[j]=0.; i<= nlstate; i++) |
for(i=1,gmp[j]=0.; i<= nlstate; i++) |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
} |
} |
/* end probability of death */ |
/* end shifting computations */ |
|
|
|
/**< Computing gradient matrix at horizon h |
|
*/ |
for(j=1; j<= nlstate; j++) /* vareij */ |
for(j=1; j<= nlstate; j++) /* vareij */ |
for(h=0; h<=nhstepm; h++){ |
for(h=0; h<=nhstepm; h++){ |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
} |
} |
|
/**< Gradient of overall mortality p.3 (or p.j) |
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ |
*/ |
|
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu mortality from j */ |
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
} |
} |
|
|
} /* End theta */ |
} /* End theta */ |
|
|
|
/* We got the gradient matrix for each theta and state j */ |
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ |
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ |
|
|
for(h=0; h<=nhstepm; h++) /* veij */ |
for(h=0; h<=nhstepm; h++) /* veij */ |
Line 5595 void concatwav(int wav[], int **dh, int
|
Line 7240 void concatwav(int wav[], int **dh, int
|
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
for(theta=1; theta <=npar; theta++) |
for(theta=1; theta <=npar; theta++) |
trgradgp[j][theta]=gradgp[theta][j]; |
trgradgp[j][theta]=gradgp[theta][j]; |
|
/**< as well as its transposed matrix |
|
*/ |
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
for(j=1;j<=nlstate;j++) |
for(j=1;j<=nlstate;j++) |
vareij[i][j][(int)age] =0.; |
vareij[i][j][(int)age] =0.; |
|
|
|
/* Computing trgradg by matcov by gradg at age and summing over h |
|
* and k (nhstepm) formula 15 of article |
|
* Lievre-Brouard-Heathcote |
|
*/ |
|
|
for(h=0;h<=nhstepm;h++){ |
for(h=0;h<=nhstepm;h++){ |
for(k=0;k<=nhstepm;k++){ |
for(k=0;k<=nhstepm;k++){ |
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
Line 5612 void concatwav(int wav[], int **dh, int
|
Line 7263 void concatwav(int wav[], int **dh, int
|
} |
} |
} |
} |
|
|
/* pptj */ |
/* pptj is p.3 or p.j = trgradgp by cov by gradgp, variance of |
|
* p.j overall mortality formula 49 but computed directly because |
|
* we compute the grad (wix pijx) instead of grad (pijx),even if |
|
* wix is independent of theta. |
|
*/ |
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
for(j=nlstate+1;j<=nlstate+ndeath;j++) |
for(j=nlstate+1;j<=nlstate+ndeath;j++) |
Line 5700 void concatwav(int wav[], int **dh, int
|
Line 7355 void concatwav(int wav[], int **dh, int
|
} /* end varevsij */ |
} /* end varevsij */ |
|
|
/************ Variance of prevlim ******************/ |
/************ Variance of prevlim ******************/ |
void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres) |
void varprevlim(char fileresvpl[], FILE *ficresvpl, double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres) |
{ |
{ |
/* Variance of prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
/* Variance of prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
|
|
double **dnewm,**doldm; |
double **dnewmpar,**doldm; |
int i, j, nhstepm, hstepm; |
int i, j, nhstepm, hstepm; |
double *xp; |
double *xp; |
double *gp, *gm; |
double *gp, *gm; |
Line 5715 void concatwav(int wav[], int **dh, int
|
Line 7370 void concatwav(int wav[], int **dh, int
|
int theta; |
int theta; |
|
|
pstamp(ficresvpl); |
pstamp(ficresvpl); |
fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n"); |
fprintf(ficresvpl,"# Standard deviation of period (forward stable) prevalences \n"); |
fprintf(ficresvpl,"# Age "); |
fprintf(ficresvpl,"# Age "); |
if(nresult >=1) |
if(nresult >=1) |
fprintf(ficresvpl," Result# "); |
fprintf(ficresvpl," Result# "); |
Line 5724 void concatwav(int wav[], int **dh, int
|
Line 7379 void concatwav(int wav[], int **dh, int
|
fprintf(ficresvpl,"\n"); |
fprintf(ficresvpl,"\n"); |
|
|
xp=vector(1,npar); |
xp=vector(1,npar); |
dnewm=matrix(1,nlstate,1,npar); |
dnewmpar=matrix(1,nlstate,1,npar); |
doldm=matrix(1,nlstate,1,nlstate); |
doldm=matrix(1,nlstate,1,nlstate); |
|
|
hstepm=1*YEARM; /* Every year of age */ |
hstepm=1*YEARM; /* Every year of age */ |
Line 5744 void concatwav(int wav[], int **dh, int
|
Line 7399 void concatwav(int wav[], int **dh, int
|
for(i=1; i<=npar; i++){ /* Computes gradient */ |
for(i=1; i<=npar; i++){ /* Computes gradient */ |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
} |
} |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
/* prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */ |
else |
/* else */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
for(i=1;i<=nlstate;i++){ |
for(i=1;i<=nlstate;i++){ |
gp[i] = prlim[i][i]; |
gp[i] = prlim[i][i]; |
mgp[theta][i] = prlim[i][i]; |
mgp[theta][i] = prlim[i][i]; |
} |
} |
for(i=1; i<=npar; i++) /* Computes gradient */ |
for(i=1; i<=npar; i++) /* Computes gradient */ |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
/* prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */ |
else |
/* else */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
for(i=1;i<=nlstate;i++){ |
for(i=1;i<=nlstate;i++){ |
gm[i] = prlim[i][i]; |
gm[i] = prlim[i][i]; |
mgm[theta][i] = prlim[i][i]; |
mgm[theta][i] = prlim[i][i]; |
Line 5794 void concatwav(int wav[], int **dh, int
|
Line 7449 void concatwav(int wav[], int **dh, int
|
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
varpl[i][(int)age] =0.; |
varpl[i][(int)age] =0.; |
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
}else{ |
}else{ |
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
} |
} |
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
Line 5806 void concatwav(int wav[], int **dh, int
|
Line 7461 void concatwav(int wav[], int **dh, int
|
fprintf(ficresvpl,"%.0f ",age ); |
fprintf(ficresvpl,"%.0f ",age ); |
if(nresult >=1) |
if(nresult >=1) |
fprintf(ficresvpl,"%d ",nres ); |
fprintf(ficresvpl,"%d ",nres ); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++){ |
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
|
/* for(j=1;j<=nlstate;j++) */ |
|
/* fprintf(ficresvpl," %d %.5f ",j,prlim[j][i]); */ |
|
} |
fprintf(ficresvpl,"\n"); |
fprintf(ficresvpl,"\n"); |
free_vector(gp,1,nlstate); |
free_vector(gp,1,nlstate); |
free_vector(gm,1,nlstate); |
free_vector(gm,1,nlstate); |
Line 5819 void concatwav(int wav[], int **dh, int
|
Line 7477 void concatwav(int wav[], int **dh, int
|
|
|
free_vector(xp,1,npar); |
free_vector(xp,1,npar); |
free_matrix(doldm,1,nlstate,1,npar); |
free_matrix(doldm,1,nlstate,1,npar); |
free_matrix(dnewm,1,nlstate,1,nlstate); |
free_matrix(dnewmpar,1,nlstate,1,nlstate); |
|
|
|
} |
|
|
|
|
|
/************ Variance of backprevalence limit ******************/ |
|
void varbrevlim(char fileresvbl[], FILE *ficresvbl, double **varbpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **bprlim, double ftolpl, int mobilavproj, int *ncvyearp, int ij, char strstart[], int nres) |
|
{ |
|
/* Variance of backward prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
|
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
|
|
|
double **dnewmpar,**doldm; |
|
int i, j, nhstepm, hstepm; |
|
double *xp; |
|
double *gp, *gm; |
|
double **gradg, **trgradg; |
|
double **mgm, **mgp; |
|
double age,agelim; |
|
int theta; |
|
|
|
pstamp(ficresvbl); |
|
fprintf(ficresvbl,"# Standard deviation of back (stable) prevalences \n"); |
|
fprintf(ficresvbl,"# Age "); |
|
if(nresult >=1) |
|
fprintf(ficresvbl," Result# "); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresvbl," %1d-%1d",i,i); |
|
fprintf(ficresvbl,"\n"); |
|
|
|
xp=vector(1,npar); |
|
dnewmpar=matrix(1,nlstate,1,npar); |
|
doldm=matrix(1,nlstate,1,nlstate); |
|
|
|
hstepm=1*YEARM; /* Every year of age */ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ |
|
agelim = AGEINF; |
|
for (age=fage; age>=bage; age --){ /* If stepm=6 months */ |
|
nhstepm=(int) rint((age-agelim)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
if (stepm >= YEARM) hstepm=1; |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
|
gradg=matrix(1,npar,1,nlstate); |
|
mgp=matrix(1,npar,1,nlstate); |
|
mgm=matrix(1,npar,1,nlstate); |
|
gp=vector(1,nlstate); |
|
gm=vector(1,nlstate); |
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ /* Computes gradient */ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
} |
|
if(mobilavproj > 0 ) |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
else |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
for(i=1;i<=nlstate;i++){ |
|
gp[i] = bprlim[i][i]; |
|
mgp[theta][i] = bprlim[i][i]; |
|
} |
|
for(i=1; i<=npar; i++) /* Computes gradient */ |
|
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
if(mobilavproj > 0 ) |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
else |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
for(i=1;i<=nlstate;i++){ |
|
gm[i] = bprlim[i][i]; |
|
mgm[theta][i] = bprlim[i][i]; |
|
} |
|
for(i=1;i<=nlstate;i++) |
|
gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; |
|
/* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */ |
|
} /* End theta */ |
|
|
|
trgradg =matrix(1,nlstate,1,npar); |
|
|
|
for(j=1; j<=nlstate;j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[j][theta]=gradg[theta][j]; |
|
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */ |
|
/* printf("\nmgm mgp %d ",(int)age); */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* printf(" %d ",j); */ |
|
/* for(theta=1; theta <=npar; theta++) */ |
|
/* printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* } */ |
|
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */ |
|
/* printf("\n gradg %d ",(int)age); */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* printf("%d ",j); */ |
|
/* for(theta=1; theta <=npar; theta++) */ |
|
/* printf("%d %lf ",theta,gradg[theta][j]); */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* } */ |
|
|
|
for(i=1;i<=nlstate;i++) |
|
varbpl[i][(int)age] =0.; |
|
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
|
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
|
}else{ |
|
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
|
} |
|
for(i=1;i<=nlstate;i++) |
|
varbpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
|
|
|
fprintf(ficresvbl,"%.0f ",age ); |
|
if(nresult >=1) |
|
fprintf(ficresvbl,"%d ",nres ); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresvbl," %.5f (%.5f)",bprlim[i][i],sqrt(varbpl[i][(int)age])); |
|
fprintf(ficresvbl,"\n"); |
|
free_vector(gp,1,nlstate); |
|
free_vector(gm,1,nlstate); |
|
free_matrix(mgm,1,npar,1,nlstate); |
|
free_matrix(mgp,1,npar,1,nlstate); |
|
free_matrix(gradg,1,npar,1,nlstate); |
|
free_matrix(trgradg,1,nlstate,1,npar); |
|
} /* End age */ |
|
|
|
free_vector(xp,1,npar); |
|
free_matrix(doldm,1,nlstate,1,npar); |
|
free_matrix(dnewmpar,1,nlstate,1,nlstate); |
|
|
} |
} |
|
|
Line 5830 void varprob(char optionfilefiname[], do
|
Line 7613 void varprob(char optionfilefiname[], do
|
int k2, l2, j1, z1; |
int k2, l2, j1, z1; |
int k=0, l; |
int k=0, l; |
int first=1, first1, first2; |
int first=1, first1, first2; |
|
int nres=0; /* New */ |
double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; |
double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; |
double **dnewm,**doldm; |
double **dnewm,**doldm; |
double *xp; |
double *xp; |
Line 5899 void varprob(char optionfilefiname[], do
|
Line 7683 void varprob(char optionfilefiname[], do
|
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
fprintf(fichtm,"\n"); |
fprintf(fichtm,"\n"); |
|
|
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov); |
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. File %s</li>\n",optionfilehtmcov,optionfilehtmcov); |
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
and drawn. It helps understanding how is the covariance between two incidences.\ |
and drawn. It helps understanding how is the covariance between two incidences.\ |
Line 5917 To be simple, these graphs help to under
|
Line 7701 To be simple, these graphs help to under
|
tj = (int) pow(2,cptcoveff); |
tj = (int) pow(2,cptcoveff); |
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
j1=0; |
j1=0; |
for(j1=1; j1<=tj;j1++){ /* For each valid combination of covariates or only once*/ |
|
|
for(nres=1;nres <=nresult; nres++){ /* For each resultline */ |
|
for(j1=1; j1<=tj;j1++){ /* For any combination of dummy covariates, fixed and varying */ |
|
/* printf("Varprob TKresult[nres]=%d j1=%d, nres=%d, cptcovn=%d, cptcoveff=%d tj=%d cptcovs=%d\n", TKresult[nres], j1, nres, cptcovn, cptcoveff, tj, cptcovs); */ |
|
if(tj != 1 && TKresult[nres]!= j1) |
|
continue; |
|
|
|
/* for(j1=1; j1<=tj;j1++){ /\* For each valid combination of covariates or only once*\/ */ |
|
/* for(nres=1;nres <=1; nres++){ /\* For each resultline *\/ */ |
|
/* /\* for(nres=1;nres <=nresult; nres++){ /\\* For each resultline *\\/ *\/ */ |
if (cptcovn>0) { |
if (cptcovn>0) { |
fprintf(ficresprob, "\n#********** Variable "); |
fprintf(ficresprob, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprob, "**********\n#\n"); |
|
fprintf(ficresprobcov, "\n#********** Variable "); |
fprintf(ficresprobcov, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficgp, "\n#********** Variable "); |
|
fprintf(fichtmcov, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
|
fprintf(ficresprobcor, "\n#********** Variable "); |
|
|
|
/* Including quantitative variables of the resultline to be done */ |
|
for (z1=1; z1<=cptcovs; z1++){ /* Loop on each variable of this resultline */ |
|
/* printf("Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model); */ |
|
fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model); |
|
/* fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s resultline[%d]=%s \n",nres, z1, modelresult[nres][z1], model, nres, resultline[nres]); */ |
|
if(Dummy[modelresult[nres][z1]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to z1 in resultline */ |
|
if(Fixed[modelresult[nres][z1]]==0){ /* Fixed referenced to model equation */ |
|
fprintf(ficresprob,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficresprobcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficgp,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(fichtmcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficresprobcor,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficresprob,"fixed "); |
|
fprintf(ficresprobcov,"fixed "); |
|
fprintf(ficgp,"fixed "); |
|
fprintf(fichtmcov,"fixed "); |
|
fprintf(ficresprobcor,"fixed "); |
|
}else{ |
|
fprintf(ficresprob,"varyi "); |
|
fprintf(ficresprobcov,"varyi "); |
|
fprintf(ficgp,"varyi "); |
|
fprintf(fichtmcov,"varyi "); |
|
fprintf(ficresprobcor,"varyi "); |
|
} |
|
}else if(Dummy[modelresult[nres][z1]]==1){ /* Quanti variable */ |
|
/* For each selected (single) quantitative value */ |
|
fprintf(ficresprob," V%d=%lg ",Tvqresult[nres][z1],Tqresult[nres][z1]); |
|
if(Fixed[modelresult[nres][z1]]==0){ /* Fixed */ |
|
fprintf(ficresprob,"fixed "); |
|
fprintf(ficresprobcov,"fixed "); |
|
fprintf(ficgp,"fixed "); |
|
fprintf(fichtmcov,"fixed "); |
|
fprintf(ficresprobcor,"fixed "); |
|
}else{ |
|
fprintf(ficresprob,"varyi "); |
|
fprintf(ficresprobcov,"varyi "); |
|
fprintf(ficgp,"varyi "); |
|
fprintf(fichtmcov,"varyi "); |
|
fprintf(ficresprobcor,"varyi "); |
|
} |
|
}else{ |
|
printf("Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff); /* end if dummy or quanti */ |
|
fprintf(ficlog,"Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff); /* end if dummy or quanti */ |
|
exit(1); |
|
} |
|
} /* End loop on variable of this resultline */ |
|
/* for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); */ |
|
fprintf(ficresprob, "**********\n#\n"); |
fprintf(ficresprobcov, "**********\n#\n"); |
fprintf(ficresprobcov, "**********\n#\n"); |
|
|
fprintf(ficgp, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficgp, "**********\n#\n"); |
fprintf(ficgp, "**********\n#\n"); |
|
|
|
|
fprintf(fichtmcov, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
|
fprintf(ficresprobcor, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprobcor, "**********\n#"); |
fprintf(ficresprobcor, "**********\n#"); |
if(invalidvarcomb[j1]){ |
if(invalidvarcomb[j1]){ |
fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); |
fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); |
Line 5948 To be simple, these graphs help to under
|
Line 7780 To be simple, these graphs help to under
|
trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
gp=vector(1,(nlstate)*(nlstate+ndeath)); |
gp=vector(1,(nlstate)*(nlstate+ndeath)); |
gm=vector(1,(nlstate)*(nlstate+ndeath)); |
gm=vector(1,(nlstate)*(nlstate+ndeath)); |
for (age=bage; age<=fage; age ++){ |
for (age=bage; age<=fage; age ++){ /* Fo each age we feed the model equation with covariates, using precov as in hpxij() ? */ |
cov[2]=age; |
cov[2]=age; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= age*age; |
cov[3]= age*age; |
for (k=1; k<=cptcovn;k++) { |
/* New code end of combination but for each resultline */ |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; |
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
/*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4 |
if(Typevar[k1]==1 || Typevar[k1] ==3){ /* A product with age */ |
* 1 1 1 1 1 |
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
* 2 2 1 1 1 |
}else{ |
* 3 1 2 1 1 |
cov[2+nagesqr+k1]=precov[nres][k1]; |
*/ |
} |
/* nbcode[1][1]=0 nbcode[1][2]=1;*/ |
}/* End of loop on model equation */ |
} |
/* Old code */ |
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
/* /\* for (k=1; k<=cptcovn;k++) { *\/ */ |
for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; *\/ */ |
for (k=1; k<=cptcovprod;k++) |
/* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
/* /\* Here comes the value of the covariate 'j1' after renumbering k with single dummy covariates *\/ */ |
|
/* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(j1,TnsdVar[TvarsD[k]])]; */ |
|
/* /\*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*\//\* j1 1 2 3 4 */ |
|
/* * 1 1 1 1 1 */ |
|
/* * 2 2 1 1 1 */ |
|
/* * 3 1 2 1 1 */ |
|
/* *\/ */ |
|
/* /\* nbcode[1][1]=0 nbcode[1][2]=1;*\/ */ |
|
/* } */ |
|
/* /\* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 *\/ */ |
|
/* /\* ) p nbcode[Tvar[Tage[k]]][(1 & (ij-1) >> (k-1))+1] *\/ */ |
|
/* /\*for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; *\/ */ |
|
/* for (k=1; k<=cptcovage;k++){ /\* For product with age *\/ */ |
|
/* if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(j1,TnsdVar[Tvar[Tage[k]]])]*cov[2]; */ |
|
/* /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */ |
|
/* } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */ |
|
/* printf("Internal IMaCh error, don't know which value for quantitative covariate with age, Tage[k]%d, k=%d, Tvar[Tage[k]]=V%d, age=%d\n",Tage[k],k ,Tvar[Tage[k]], (int)cov[2]); */ |
|
/* /\* cov[2+nagesqr+Tage[k]]=meanq[k]/idq[k]*cov[2];/\\* Using the mean of quantitative variable Tvar[Tage[k]] /\\* Tqresult[nres][k]; *\\/ *\/ */ |
|
/* /\* exit(1); *\/ */ |
|
/* /\* cov[++k1]=Tqresult[nres][k]; *\/ */ |
|
/* } */ |
|
/* /\* cov[2+Tage[k]+nagesqr]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovprod;k++){/\* For product without age *\/ */ |
|
/* if(Dummy[Tvard[k][1]]==0){ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* }else{ /\* Should we use the mean of the quantitative variables? *\/ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * Tqresult[nres][resultmodel[nres][k]]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */ |
|
/* } */ |
|
/* }else{ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][TnsdVar[Tvard[k][1]]]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][TnsdVar[Tvard[k][1]]]* Tqinvresult[nres][TnsdVar[Tvard[k][2]]]; */ |
|
/* /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; *\/ */ |
|
/* } */ |
|
/* } */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* } */ |
|
/* For each age and combination of dummy covariates we slightly move the parameters of delti in order to get the gradient*/ |
for(theta=1; theta <=npar; theta++){ |
for(theta=1; theta <=npar; theta++){ |
for(i=1; i<=npar; i++) |
for(i=1; i<=npar; i++) |
xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
Line 6096 To be simple, these graphs help to under
|
Line 7970 To be simple, these graphs help to under
|
} |
} |
|
|
/* Eigen vectors */ |
/* Eigen vectors */ |
v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); |
if(1+(v1-lc1)*(v1-lc1)/cv12/cv12 <1.e-5){ |
|
printf(" Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12); |
|
fprintf(ficlog," Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12); |
|
v11=(1./sqrt(fabs(1+(v1-lc1)*(v1-lc1)/cv12/cv12))); |
|
}else |
|
v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); |
/*v21=sqrt(1.-v11*v11); *//* error */ |
/*v21=sqrt(1.-v11*v11); *//* error */ |
v21=(lc1-v1)/cv12*v11; |
v21=(lc1-v1)/cv12*v11; |
v12=-v21; |
v12=-v21; |
Line 6116 To be simple, these graphs help to under
|
Line 7995 To be simple, these graphs help to under
|
fprintf(ficgp,"\nset parametric;unset label"); |
fprintf(ficgp,"\nset parametric;unset label"); |
fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); |
fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); |
fprintf(ficgp,"\nset ter svg size 640, 480"); |
fprintf(ficgp,"\nset ter svg size 640, 480"); |
fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ |
fprintf(fichtmcov,"\n<p><br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ |
:<a href=\"%s_%d%1d%1d-%1d%1d.svg\"> \ |
:<a href=\"%s_%d%1d%1d-%1d%1d.svg\"> \ |
%s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\ |
%s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\ |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2, \ |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2, \ |
Line 6127 To be simple, these graphs help to under
|
Line 8006 To be simple, these graphs help to under
|
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \ |
mu1,std,v11,sqrt(fabs(lc1)),v12,sqrt(fabs(lc2)), \ |
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
mu2,std,v21,sqrt(fabs(lc1)),v22,sqrt(fabs(lc2))); /* For gnuplot only */ |
}else{ |
}else{ |
first=0; |
first=0; |
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(fabs(lc2)), \ |
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
mu2,std,v21,sqrt(lc1),v22,sqrt(fabs(lc2))); |
}/* if first */ |
}/* if first */ |
} /* age mod 5 */ |
} /* age mod 5 */ |
} /* end loop age */ |
} /* end loop age */ |
Line 6147 To be simple, these graphs help to under
|
Line 8026 To be simple, these graphs help to under
|
} /*l1 */ |
} /*l1 */ |
}/* k1 */ |
}/* k1 */ |
} /* loop on combination of covariates j1 */ |
} /* loop on combination of covariates j1 */ |
|
} /* loop on nres */ |
free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); |
free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); |
free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); |
free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); |
free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
Line 6164 To be simple, these graphs help to under
|
Line 8044 To be simple, these graphs help to under
|
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
int lastpass, int stepm, int weightopt, char model[],\ |
int lastpass, int stepm, int weightopt, char model[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int popforecast, int prevfcast, int backcast, int estepm , \ |
int popforecast, int mobilav, int prevfcast, int mobilavproj, int prevbcast, int estepm , \ |
double jprev1, double mprev1,double anprev1, double dateprev1, \ |
double jprev1, double mprev1,double anprev1, double dateprev1, double dateprojd, double dateback1, \ |
double jprev2, double mprev2,double anprev2, double dateprev2){ |
double jprev2, double mprev2,double anprev2, double dateprev2, double dateprojf, double dateback2){ |
int jj1, k1, i1, cpt, k4, nres; |
int jj1, k1, i1, cpt, k4, nres; |
|
/* In fact some results are already printed in fichtm which is open */ |
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
</ul>"); |
</ul>"); |
fprintf(fichtm,"<ul><li> model=1+age+%s\n \ |
/* fprintf(fichtm,"<ul><li> model=1+age+%s\n \ */ |
</ul>", model); |
/* </ul>", model); */ |
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n"); |
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n"); |
fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n", |
fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n", |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm")); |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm")); |
fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ", |
fprintf(fichtm,"<li> - Observed prevalence (cross-sectional prevalence) in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ", |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm")); |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm")); |
fprintf(fichtm,", <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_")); |
fprintf(fichtm,", <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
Line 6187 void printinghtml(char fileresu[], char
|
Line 8067 void printinghtml(char fileresu[], char
|
- Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
- Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_")); |
stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
- Period (forward) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
- Backward prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_")); |
subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
- (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
Line 6202 void printinghtml(char fileresu[], char
|
Line 8082 void printinghtml(char fileresu[], char
|
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
} |
} |
|
|
fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); |
|
|
|
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
|
fprintf(fichtm," \n<ul><li><b>Graphs (first order)</b></li><p>"); |
|
|
jj1=0; |
jj1=0; |
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
fprintf(fichtm," \n<ul>"); |
for(k1=1; k1<=m;k1++){ /* For each combination of covariate */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(TKresult[nres]!= k1) |
/* k1=nres; */ |
continue; |
k1=TKresult[nres]; |
|
if(TKresult[nres]==0)k1=1; /* To be checked for no result */ |
|
/* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
jj1++; |
|
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<li><a size=\"1\" color=\"#EC5E5E\" href=\"#rescov"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */ |
|
fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
/* for (cpt=1; cpt<=cptcoveff;cpt++){ */ |
|
/* fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
|
fprintf(fichtm,"\">"); |
|
|
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
|
fprintf(fichtm,"************ Results for covariates"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ |
|
fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
/* fprintf(fichtm,"************ Results for covariates"); */ |
|
/* for (cpt=1; cpt<=cptcoveff;cpt++){ */ |
|
/* fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); |
|
continue; |
|
} |
|
fprintf(fichtm,"</a></li>"); |
|
} /* cptcovn >0 */ |
|
} |
|
fprintf(fichtm," \n</ul>"); |
|
|
|
jj1=0; |
|
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
/* k1=nres; */ |
|
k1=TKresult[nres]; |
|
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
|
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
jj1++; |
jj1++; |
if (cptcovn > 0) { |
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<p><a name=\"rescov"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ |
|
fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
|
fprintf(fichtm,"\"</a>"); |
|
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
for (cpt=1; cpt<=cptcoveff;cpt++){ |
for (cpt=1; cpt<=cptcovs;cpt++){ |
fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
printf(" V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);fflush(stdout); |
printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
/* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */ |
/* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */ |
} |
} |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);fflush(stdout); |
|
} |
|
|
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); |
fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); |
printf("\nCombination (%d) ignored because no cases \n",k1); |
printf("\nCombination (%d) ignored because no cases \n",k1); |
Line 6238 void printinghtml(char fileresu[], char
|
Line 8171 void printinghtml(char fileresu[], char
|
} |
} |
} |
} |
/* aij, bij */ |
/* aij, bij */ |
fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1-%d.svg\">%s_%d-1-%d.svg</a><br> \ |
fprintf(fichtm,"<br>- Logit model (yours is: logit(pij)=log(pij/pii)= aij+ bij age+%s) as a function of age: <a href=\"%s_%d-1-%d.svg\">%s_%d-1-%d.svg</a><br> \ |
<img src=\"%s_%d-1-%d.svg\">",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
<img src=\"%s_%d-1-%d.svg\">",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
/* Pij */ |
/* Pij */ |
fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2-%d.svg\">%s_%d-2-%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2-%d.svg\">%s_%d-2-%d.svg</a><br> \ |
Line 6251 divided by h: <sub>h</sub>P<sub>ij</sub>
|
Line 8184 divided by h: <sub>h</sub>P<sub>ij</sub>
|
<img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
<img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
/* Survival functions (period) in state j */ |
/* Survival functions (period) in state j */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Survival functions in state %d. And probability to be observed in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
<img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
} |
} |
/* State specific survival functions (period) */ |
/* State specific survival functions (period) */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\ |
fprintf(fichtm,"<br>\n- Survival functions in state %d and in any other live state (total).\ |
Or probability to survive in various states (1 to %d) being in state %d at different ages. \ |
And probability to be observed in various states (up to %d) being in state %d at different ages. \ |
<a href=\"%s_%d-%d-%d.svg\">%s_%d%d-%d.svg</a><br> <img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
<a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> ", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
|
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
} |
} |
/* Period (stable) prevalence in each health state */ |
/* Period (forward stable) prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
<img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
} |
} |
if(backcast==1){ |
if(prevbcast==1){ |
/* Period (stable) back prevalence in each health state */ |
/* Backward prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
<img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJB_"),subdirf2(optionfilefiname,"PIJB_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
} |
} |
} |
} |
if(prevfcast==1){ |
if(prevfcast==1){ |
/* Projection of prevalence up to period (stable) prevalence in each health state */ |
/* Projection of prevalence up to period (forward stable) prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) forward prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateprojd, dateprojf, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
<img src=\"%s_%d-%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"F_"),subdirf2(optionfilefiname,"F_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">", |
|
subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
|
} |
|
} |
|
if(prevbcast==1){ |
|
/* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \ |
|
from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d (randomness in cross-sectional prevalence is not taken into \ |
|
account but can visually be appreciated). Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \ |
|
with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
|
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"FB_"),subdirf2(optionfilefiname,"FB_")); |
|
fprintf(fichtm," <img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
} |
} |
} |
} |
|
|
for(cpt=1; cpt<=nlstate;cpt++) { |
for(cpt=1; cpt<=nlstate;cpt++) { |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a> <br> \ |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
<img src=\"%s_%d-%d-%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\"> %s.txt</a>)\n<br>",subdirf2(optionfilefiname,"E_"),subdirf2(optionfilefiname,"E_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres ); |
} |
} |
/* } /\* end i1 *\/ */ |
/* } /\* end i1 *\/ */ |
}/* End k1 */ |
}/* End k1=nres */ |
fprintf(fichtm,"</ul>"); |
fprintf(fichtm,"</ul>"); |
|
|
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
Line 6318 See page 'Matrix of variance-covariance
|
Line 8270 See page 'Matrix of variance-covariance
|
<a href=\"%s\">%s</a> <br>\n</li>", |
<a href=\"%s\">%s</a> <br>\n</li>", |
estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_")); |
estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n", |
- Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the forward (period) prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n", |
estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_")); |
estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n", |
- Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n", |
estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_")); |
estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\ |
- Standard deviation of forward (period) prevalences: <a href=\"%s\">%s</a> <br>\n",\ |
subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
|
|
/* if(popforecast==1) fprintf(fichtm,"\n */ |
/* if(popforecast==1) fprintf(fichtm,"\n */ |
Line 6332 See page 'Matrix of variance-covariance
|
Line 8284 See page 'Matrix of variance-covariance
|
/* - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */ |
/* - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */ |
/* <br>",fileres,fileres,fileres,fileres); */ |
/* <br>",fileres,fileres,fileres,fileres); */ |
/* else */ |
/* else */ |
/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ |
/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=1+age+%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ |
fflush(fichtm); |
fflush(fichtm); |
fprintf(fichtm," <ul><li><b>Graphs</b></li><p>"); |
|
|
|
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
|
fprintf(fichtm," <ul><li><b>Graphs (second order)</b></li><p>"); |
|
|
|
jj1=0; |
|
|
|
fprintf(fichtm," \n<ul>"); |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
/* k1=nres; */ |
|
k1=TKresult[nres]; |
|
/* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
jj1++; |
|
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<li><a size=\"1\" color=\"#EC5E5E\" href=\"#rescovsecond"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ |
|
fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
fprintf(fichtm,"\">"); |
|
|
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
|
fprintf(fichtm,"************ Results for covariates"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ |
|
fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); |
|
continue; |
|
} |
|
fprintf(fichtm,"</a></li>"); |
|
} /* cptcovn >0 */ |
|
} /* End nres */ |
|
fprintf(fichtm," \n</ul>"); |
|
|
jj1=0; |
jj1=0; |
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k1=1; k1<=m;k1++){ |
/* k1=nres; */ |
if(TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* for(k1=1; k1<=m;k1++){ */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
jj1++; |
jj1++; |
if (cptcovn > 0) { |
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<p><a name=\"rescovsecond"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ |
|
fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
fprintf(fichtm,"\"</a>"); |
|
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
for (cpt=1; cpt<=cptcoveff;cpt++) /**< cptcoveff number of variables */ |
for (cpt=1; cpt<=cptcovs;cpt++){ /**< cptcoveff number of variables */ |
fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]); |
fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
} |
fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
|
|
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model); |
|
|
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); |
fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); |
continue; |
continue; |
} |
} |
} |
} /* If cptcovn >0 */ |
for(cpt=1; cpt<=nlstate;cpt++) { |
for(cpt=1; cpt<=nlstate;cpt++) { |
fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \ |
fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \ |
prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>\n <br>\ |
prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
<img src=\"%s_%d-%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s\">%s</a>)\n <br>",subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"V_"), cpt,k1,nres); |
} |
} |
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \ |
health expectancies in each live states (1 to %d). If popbased=1 the smooth (due to the model) \ |
true period expectancies (those weighted with period prevalences are also\ |
true period expectancies (those weighted with period prevalences are also\ |
drawn in addition to the population based expectancies computed using\ |
drawn in addition to the population based expectancies computed using\ |
observed and cahotic prevalences: <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>\n<br>\ |
observed and cahotic prevalences: <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>",nlstate, subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres); |
<img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>) \n<br>",subdirf2(optionfilefiname,"T_"),subdirf2(optionfilefiname,"T_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres); |
/* } /\* end i1 *\/ */ |
/* } /\* end i1 *\/ */ |
}/* End k1 */ |
|
}/* End nres */ |
}/* End nres */ |
fprintf(fichtm,"</ul>"); |
fprintf(fichtm,"</ul>"); |
fflush(fichtm); |
fflush(fichtm); |
} |
} |
|
|
/******************* Gnuplot file **************/ |
/******************* Gnuplot file **************/ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int prevbcast, char pathc[], double p[], int offyear, int offbyear){ |
|
|
char dirfileres[132],optfileres[132]; |
char dirfileres[256],optfileres[256]; |
char gplotcondition[132]; |
char gplotcondition[256], gplotlabel[256]; |
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,ij=0, ijp=0, l=0; |
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,kf=0,kvar=0,kk=0,ipos=0,iposold=0,ij=0, ijp=0, l=0; |
int lv=0, vlv=0, kl=0; |
int lv=0, vlv=0, kl=0; |
int ng=0; |
int ng=0; |
int vpopbased; |
int vpopbased; |
int ioffset; /* variable offset for columns */ |
int ioffset; /* variable offset for columns */ |
|
int iyearc=1; /* variable column for year of projection */ |
|
int iagec=1; /* variable column for age of projection */ |
int nres=0; /* Index of resultline */ |
int nres=0; /* Index of resultline */ |
|
int istart=1; /* For starting graphs in projections */ |
|
|
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
/* printf("Problem with file %s",optionfilegnuplot); */ |
/* printf("Problem with file %s",optionfilegnuplot); */ |
Line 6403 void printinggnuplot(char fileresu[], ch
|
Line 8399 void printinggnuplot(char fileresu[], ch
|
/*#endif */ |
/*#endif */ |
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
|
|
|
/* diagram of the model */ |
|
fprintf(ficgp,"\n#Diagram of the model \n"); |
|
fprintf(ficgp,"\ndelta=0.03;delta2=0.07;unset arrow;\n"); |
|
fprintf(ficgp,"yoff=(%d > 2? 0:1);\n",nlstate); |
|
fprintf(ficgp,"\n#Peripheral arrows\nset for [i=1:%d] for [j=1:%d] arrow i*10+j from cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.95*(cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) - cos(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta2:0)), -0.95*(sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) - sin(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d))+( i!=j?(i-j)/abs(i-j)*delta2:0)) ls (i < j? 1:2)\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
|
|
|
fprintf(ficgp,"\n#Centripete arrows (turning in other direction (1-i) instead of (i-1)) \nset for [i=1:%d] for [j=1:%d] arrow (%d+1)*10+i from cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.80*(cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) ), -0.80*(sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) + yoff ) ls 4\n",nlstate, nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
|
fprintf(ficgp,"\n#show arrow\nunset label\n"); |
|
fprintf(ficgp,"\n#States labels, starting from 2 (2-i) instead of (1-i), was (i-1)\nset for [i=1:%d] label i sprintf(\"State %%d\",i) center at cos(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)), yoff+sin(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)) font \"helvetica, 16\" tc rgbcolor \"blue\"\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
|
fprintf(ficgp,"\nset label %d+1 sprintf(\"State %%d\",%d+1) center at 0.,0. font \"helvetica, 16\" tc rgbcolor \"red\"\n",nlstate,nlstate); |
|
fprintf(ficgp,"\n#show label\nunset border;unset xtics; unset ytics;\n"); |
|
fprintf(ficgp,"\n\nset ter svg size 640, 480;set out \"%s_.svg\" \n",subdirf2(optionfilefiname,"D_")); |
|
fprintf(ficgp,"unset log y; plot [-1.2:1.2][yoff-1.2:1.2] 1/0 not; set out;reset;\n"); |
|
|
/* Contribution to likelihood */ |
/* Contribution to likelihood */ |
/* Plot the probability implied in the likelihood */ |
/* Plot the probability implied in the likelihood */ |
fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n"); |
fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n"); |
Line 6432 void printinggnuplot(char fileresu[], ch
|
Line 8442 void printinggnuplot(char fileresu[], ch
|
fprintf(ficgp,"\nset out;unset log\n"); |
fprintf(ficgp,"\nset out;unset log\n"); |
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
|
|
strcpy(dirfileres,optionfilefiname); |
/* Plot the probability implied in the likelihood by covariate value */ |
strcpy(optfileres,"vpl"); |
fprintf(ficgp,"\nset ter pngcairo size 640, 480"); |
/* 1eme*/ |
/* if(debugILK==1){ */ |
for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */ |
for(kf=1; kf <= ncovf; kf++){ /* For each simple dummy covariate of the model */ |
for (k1=1; k1<= m ; k1 ++){ /* For each valid combination of covariate */ |
kvar=Tvar[TvarFind[kf]]; /* variable name */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
/* k=18+Tvar[TvarFind[kf]];/\*offset because there are 18 columns in the ILK_ file but could be placed else where *\/ */ |
/* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
/* k=18+kf;/\*offset because there are 18 columns in the ILK_ file *\/ */ |
if(TKresult[nres]!= k1) |
/* k=19+nlstate+kf;/\*offset because there are 19 columns in the ILK_ file *\/ */ |
continue; |
k=16+nlstate+kf;/*offset because there are 19 columns in the ILK_ file, first cov Vn on col 21 with 4 living states */ |
/* We are interested in selected combination by the resultline */ |
for (i=1; i<= nlstate ; i ++) { |
|
fprintf(ficgp,"\nset out \"%s-p%dj-%d.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i,kvar); |
|
fprintf(ficgp,"unset log;\n# For each simple dummy covariate of the model \n plot \"%s\"",subdirf(fileresilk)); |
|
if(gnuplotversion >=5.2){ /* Former gnuplot versions do not have variable pointsize!! */ |
|
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable \\\n",i,1,k,k,i,1,kvar); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable ",i,j,k,k,i,j,kvar); |
|
} |
|
}else{ |
|
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable \\\n",i,1,k,i,1,kvar); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable ",i,j,k,i,j,kvar); |
|
} |
|
} |
|
fprintf(ficgp,";\nset out; unset ylabel;\n"); |
|
} |
|
} /* End of each covariate dummy */ |
|
for(ncovv=1, iposold=0, kk=0; ncovv <= ncovvt ; ncovv++){ |
|
/* Other example V1 + V3 + V5 + age*V1 + age*V3 + age*V5 + V1*V3 + V3*V5 + V1*V5 |
|
* kmodel = 1 2 3 4 5 6 7 8 9 |
|
* varying 1 2 3 4 5 |
|
* ncovv 1 2 3 4 5 6 7 8 |
|
* TvarVV[ncovv] V3 5 1 3 3 5 1 5 |
|
* TvarVVind[ncovv]=kmodel 2 3 7 7 8 8 9 9 |
|
* TvarFind[kmodel] 1 0 0 0 0 0 0 0 0 |
|
* kdata ncovcol=[V1 V2] nqv=0 ntv=[V3 V4] nqtv=V5 |
|
* Dummy[kmodel] 0 0 1 2 2 3 1 1 1 |
|
*/ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */ |
|
kvar=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate */ |
|
/* printf("DebugILK ficgp ncovv=%d, kvar=TvarVV[ncovv]=%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); */ |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
/* printf(" %d",ipos); */ |
|
/* fprintf(ficresilk," V%d",TvarVV[ncovv]); */ |
|
/* printf(" DebugILK ficgp suite ipos=%d != iposold=%d\n", ipos, iposold); */ |
|
kk++; /* Position of the ncovv column in ILK_ */ |
|
k=18+ncovf+kk; /*offset because there are 18 columns in the ILK_ file plus ncovf fixed covariate */ |
|
if(Dummy[ipos]==0 && Typevar[ipos]==0){ /* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm) */ |
|
for (i=1; i<= nlstate ; i ++) { |
|
fprintf(ficgp,"\nset out \"%s-p%dj-%d.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i,kvar); |
|
fprintf(ficgp,"unset log;\n# For each simple dummy covariate of the model \n plot \"%s\"",subdirf(fileresilk)); |
|
|
|
/* printf("Before DebugILK gnuplotversion=%g >=5.2\n",gnuplotversion); */ |
|
if(gnuplotversion >=5.2){ /* Former gnuplot versions do not have variable pointsize!! */ |
|
/* printf("DebugILK gnuplotversion=%g >=5.2\n",gnuplotversion); */ |
|
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable \\\n",i,1,k,k,i,1,kvar); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable ",i,j,k,k,i,j,kvar); |
|
} |
|
}else{ |
|
/* printf("DebugILK gnuplotversion=%g <5.2\n",gnuplotversion); */ |
|
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable \\\n",i,1,k,i,1,kvar); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable ",i,j,k,i,j,kvar); |
|
} |
|
} |
|
fprintf(ficgp,";\nset out; unset ylabel;\n"); |
|
} |
|
}/* End if dummy varying */ |
|
}else{ /*Product */ |
|
/* printf("*"); */ |
|
/* fprintf(ficresilk,"*"); */ |
|
} |
|
iposold=ipos; |
|
} /* For each time varying covariate */ |
|
/* } /\* debugILK==1 *\/ */ |
|
/* unset log; plot "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */ |
|
/* fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */ |
|
/* fprintf(ficgp,"\nreplot \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */ |
|
fprintf(ficgp,"\nset out;unset log\n"); |
|
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
|
|
|
|
|
|
|
strcpy(dirfileres,optionfilefiname); |
|
strcpy(optfileres,"vpl"); |
|
/* 1eme*/ |
|
for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */ |
|
/* for (k1=1; k1<= m ; k1 ++){ /\* For each valid combination of covariate *\/ */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k1=TKresult[nres]; |
|
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
/* We are interested in selected combination by the resultline */ |
/* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */ |
/* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */ |
fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); |
fprintf(ficgp,"\n# 1st: Forward (stable period) prevalence with CI: 'VPL_' files and live state =%d ", cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
strcpy(gplotlabel,"("); |
lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate k get corresponding value lv for combination k1 *\/ */ |
/* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */ |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the value of the covariate corresponding to k1 combination *\\/ *\/ */ |
/* printf(" V%d=%d ",Tvaraff[k],vlv); */ |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
} |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
/* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
/* vlv= nbcode[Tvaraff[k]][lv]; /\* vlv is the value of the covariate lv, 0 or 1 *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* /\* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv *\/ */ |
} |
/* /\* printf(" V%d=%d ",Tvaraff[k],vlv); *\/ */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* /\* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
/* printf("\n#\n"); */ |
/* printf("\n#\n"); */ |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
|
/*k1=k1-1;*/ /* To be checked */ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
continue; |
continue; |
} |
} |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres); |
fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); |
/* fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); */ |
|
fprintf(ficgp,"set title \"Alive state %d %s model=1+age+%s\" font \"Helvetica,12\"\n",cpt,gplotlabel,model); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
|
/* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */ |
|
/* k1-1 error should be nres-1*/ |
for (i=1; i<= nlstate ; i ++) { |
for (i=1; i<= nlstate ; i ++) { |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); |
fprintf(ficgp,"\" t\"Forward prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
for (i=1; i<= nlstate ; i ++) { |
for (i=1; i<= nlstate ; i ++) { |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); |
fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
for (i=1; i<= nlstate ; i ++) { |
for (i=1; i<= nlstate ; i ++) { |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); |
/* fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); */ |
if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */ |
|
|
fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" u 1:((",subdirf2(fileresu,"P_")); |
|
if(cptcoveff ==0){ |
|
fprintf(ficgp,"$%d)) t 'Observed prevalence in state %d' with line lt 3", 2+3*(cpt-1), cpt ); |
|
}else{ |
|
kl=0; |
|
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
|
/* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */ |
|
lv=codtabm(k1,TnsdVar[Tvaraff[k]]); |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
kl++; |
|
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
|
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
|
if(k==cptcoveff){ |
|
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Observed prevalence in state %d' w l lt 2",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
|
2+cptcoveff*2+3*(cpt-1), cpt ); /* 4 or 6 ?*/ |
|
}else{ |
|
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
|
kl++; |
|
} |
|
} /* end covariate */ |
|
} /* end if no covariate */ |
|
|
|
if(prevbcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */ |
/* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
/* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */ |
fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */ |
if(cptcoveff ==0){ |
if(cptcoveff ==0){ |
Line 6492 void printinggnuplot(char fileresu[], ch
|
Line 8628 void printinggnuplot(char fileresu[], ch
|
}else{ |
}else{ |
kl=0; |
kl=0; |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
/* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */ |
|
lv=codtabm(k1,TnsdVar[Tvaraff[k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* vlv= nbcode[Tvaraff[k]][lv]; */ |
|
vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; |
kl++; |
kl++; |
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
Line 6506 void printinggnuplot(char fileresu[], ch
|
Line 8644 void printinggnuplot(char fileresu[], ch
|
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
2+cptcoveff*2+(cpt-1), cpt ); /* 4 or 6 ?*/ |
2+cptcoveff*2+(cpt-1), cpt ); /* 4 or 6 ?*/ |
}else{ |
}else{ |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]); |
kl++; |
kl++; |
} |
} |
} /* end covariate */ |
} /* end covariate */ |
} /* end if no covariate */ |
} /* end if no covariate */ |
} /* end if backcast */ |
if(prevbcast == 1){ |
fprintf(ficgp,"\nset out \n"); |
fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
|
/* k1-1 error should be nres-1*/ |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"Backward (stable) prevalence\" w l lt 6 dt 3,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"95%% CI\" w l lt 4,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"\" w l lt 4"); |
|
} /* end if backprojcast */ |
|
} /* end if prevbcast */ |
|
/* fprintf(ficgp,"\nset out ;unset label;\n"); */ |
|
fprintf(ficgp,"\nset out ;unset title;\n"); |
} /* nres */ |
} /* nres */ |
} /* k1 */ |
/* } /\* k1 *\/ */ |
} /* cpt */ |
} /* cpt */ |
|
|
|
|
/*2 eme*/ |
/*2 eme*/ |
for (k1=1; k1<= m ; k1 ++){ |
/* for (k1=1; k1<= m ; k1 ++){ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); |
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
strcpy(gplotlabel,"("); |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
} |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
/* for(k=1; k <= ncovds; k++){ */ |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* /\* for(k=1; k <= ncovds; k++){ *\/ */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
} |
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
Line 6545 void printinggnuplot(char fileresu[], ch
|
Line 8714 void printinggnuplot(char fileresu[], ch
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres); |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
if(vpopbased==0) |
fprintf(ficgp,"\nset label \"popbased %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",vpopbased,gplotlabel); |
|
if(vpopbased==0){ |
fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage); |
fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage); |
else |
}else |
fprintf(ficgp,"\nreplot "); |
fprintf(ficgp,"\nreplot "); |
for (i=1; i<= nlstate+1 ; i ++) { |
for (i=1; i<= nlstate+1 ; i ++) { |
k=2*i; |
k=2*i; |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased); |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1, vpopbased); |
for (j=1; j<= nlstate+1 ; j ++) { |
for (j=1; j<= nlstate+1 ; j ++) { |
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i); |
if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i); |
else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1); |
else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1); |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased); |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased); |
for (j=1; j<= nlstate+1 ; j ++) { |
for (j=1; j<= nlstate+1 ; j ++) { |
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
fprintf(ficgp,"\" t\"\" w l lt 0,"); |
fprintf(ficgp,"\" t\"\" w l lt 0,"); |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased); |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased); |
for (j=1; j<= nlstate+1 ; j ++) { |
for (j=1; j<= nlstate+1 ; j ++) { |
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
Line 6573 void printinggnuplot(char fileresu[], ch
|
Line 8743 void printinggnuplot(char fileresu[], ch
|
else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); |
else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); |
} /* state */ |
} /* state */ |
} /* vpopbased */ |
} /* vpopbased */ |
fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */ |
fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */ |
} /* end nres */ |
} /* end nres */ |
} /* k1 end 2 eme*/ |
/* } /\* k1 end 2 eme*\/ */ |
|
|
|
|
/*3eme*/ |
/*3eme*/ |
for (k1=1; k1<= m ; k1 ++){ |
/* for (k1=1; k1<= m ; k1 ++){ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
for (cpt=1; cpt<= nlstate ; cpt ++) { |
/* continue; */ |
fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files: combination=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
for (cpt=1; cpt<= nlstate ; cpt ++) { /* Fragile no verification of covariate values */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files: combination=%d state=%d",k1, cpt); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
strcpy(gplotlabel,"("); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
vlv= nbcode[Tvaraff[k]][lv]; |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
|
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
|
/* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
|
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
|
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
|
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
|
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */ |
} |
} |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
Line 6606 void printinggnuplot(char fileresu[], ch
|
Line 8787 void printinggnuplot(char fileresu[], ch
|
/* k=2+nlstate*(2*cpt-2); */ |
/* k=2+nlstate*(2*cpt-2); */ |
k=2+(nlstate+1)*(cpt-1); |
k=2+(nlstate+1)*(cpt-1); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"%s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); |
fprintf(ficgp,"set ter svg size 640, 480\n\ |
fprintf(ficgp,"set ter svg size 640, 480\n\ |
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt); |
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),nres-1,nres-1,k,cpt); |
/*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
/*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
Line 6617 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
Line 8799 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
|
|
*/ |
*/ |
for (i=1; i< nlstate ; i ++) { |
for (i=1; i< nlstate ; i ++) { |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1); |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+i,cpt,i+1); |
/* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/ |
/* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/ |
|
|
} |
} |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt); |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+nlstate,cpt); |
} |
} |
|
fprintf(ficgp,"\nunset label;\n"); |
} /* end nres */ |
} /* end nres */ |
} /* end kl 3eme */ |
/* } /\* end kl 3eme *\/ */ |
|
|
/* 4eme */ |
/* 4eme */ |
/* Survival functions (period) from state i in state j by initial state i */ |
/* Survival functions (period) from state i in state j by initial state i */ |
for (k1=1; k1<=m; k1++){ /* For each covariate and each value */ |
/* for (k1=1; k1<=m; k1++){ /\* For each covariate and each value *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/ |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt); |
strcpy(gplotlabel,"("); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
fprintf(ficgp,"\n#\n#\n# Survival functions in state %d : 'LIJ_' files, cov=%d state=%d", cpt, k1, cpt); |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
} |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
|
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
} |
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
Line 6652 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
Line 8846 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
} |
} |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
k=3; |
k=3; |
Line 6667 set ter svg size 640, 480\nunset log y\n
|
Line 8862 set ter svg size 640, 480\nunset log y\n
|
fprintf(ficgp,"+$%d",k+l+j-1); |
fprintf(ficgp,"+$%d",k+l+j-1); |
fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt); |
fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt); |
} /* nlstate */ |
} /* nlstate */ |
fprintf(ficgp,"\nset out\n"); |
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end nres */ |
} /* end nres */ |
} /* end covariate k1 */ |
/* } /\* end covariate k1 *\/ */ |
|
|
/* 5eme */ |
/* 5eme */ |
/* Survival functions (period) from state i in state j by final state j */ |
/* Survival functions (period) from state i in state j by final state j */ |
for (k1=1; k1<= m ; k1++){ /* For each covariate combination if any */ |
/* for (k1=1; k1<= m ; k1++){ /\* For each covariate combination if any *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
|
strcpy(gplotlabel,"("); |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
} |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
} |
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
Line 6698 set ter svg size 640, 480\nunset log y\n
|
Line 8904 set ter svg size 640, 480\nunset log y\n
|
} |
} |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
k=3; |
k=3; |
Line 6721 set ter svg size 640, 480\nunset log y\n
|
Line 8928 set ter svg size 640, 480\nunset log y\n
|
else |
else |
fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt); |
fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt); |
} |
} |
fprintf(ficgp,"\nset out\n"); |
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
/* } /\* end covariate *\/ */ |
} /* end nres */ |
} /* end nres */ |
|
|
/* 6eme */ |
/* 6eme */ |
/* CV preval stable (period) for each covariate */ |
/* CV preval stable (period) for each covariate */ |
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
/* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
strcpy(gplotlabel,"("); |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
fprintf(ficgp,"\n#\n#\n#CV preval stable (forward): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
vlv= nbcode[Tvaraff[k]][lv]; |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
} |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
|
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
|
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
} |
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
Line 6753 set ter svg size 640, 480\nunset log y\n
|
Line 8970 set ter svg size 640, 480\nunset log y\n
|
} |
} |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
k=3; /* Offset */ |
k=3; /* Offset */ |
for (i=1; i<= nlstate ; i ++){ |
for (i=1; i<= nlstate ; i ++){ /* State of origin */ |
if(i==1) |
if(i==1) |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
else |
else |
fprintf(ficgp,", '' "); |
fprintf(ficgp,", '' "); |
l=(nlstate+ndeath)*(i-1)+1; |
l=(nlstate+ndeath)*(i-1)+1; /* 1, 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */ |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
for (j=2; j<= nlstate ; j ++) |
for (j=2; j<= nlstate ; j ++) |
fprintf(ficgp,"+$%d",k+l+j-1); |
fprintf(ficgp,"+$%d",k+l+j-1); |
fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt); |
fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt); |
} /* nlstate */ |
} /* nlstate */ |
fprintf(ficgp,"\nset out\n"); |
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
|
|
|
|
/* 7eme */ |
/* 7eme */ |
if(backcast == 1){ |
if(prevbcast == 1){ |
/* CV back preval stable (period) for each covariate */ |
/* CV backward prevalence for each covariate */ |
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
/* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
/* if(m != 1 && TKresult[nres]!= k1) */ |
fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
/* continue; */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
strcpy(gplotlabel,"("); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
fprintf(ficgp,"\n#\n#\n#CV Backward stable prevalence: 'pijb' files, covariatecombination#=%d state=%d",k1, cpt); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
vlv= nbcode[Tvaraff[k]][lv]; |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
} |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
|
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
|
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
|
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
} |
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
Line 6799 set ter svg size 640, 480\nunset log y\n
|
Line 9028 set ter svg size 640, 480\nunset log y\n
|
} |
} |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
k=3; /* Offset */ |
k=3; /* Offset */ |
for (i=1; i<= nlstate ; i ++){ |
for (i=1; i<= nlstate ; i ++){ /* State of arrival */ |
if(i==1) |
if(i==1) |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_")); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_")); |
else |
else |
fprintf(ficgp,", '' "); |
fprintf(ficgp,", '' "); |
/* l=(nlstate+ndeath)*(i-1)+1; */ |
/* l=(nlstate+ndeath)*(i-1)+1; */ |
l=(nlstate+ndeath)*(cpt-1)+1; |
l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */ |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */ |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */ |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */ |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */ |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */ |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */ |
/* for (j=2; j<= nlstate ; j ++) */ |
/* for (j=2; j<= nlstate ; j ++) */ |
/* fprintf(ficgp,"+$%d",k+l+j-1); */ |
/* fprintf(ficgp,"+$%d",k+l+j-1); */ |
/* /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */ |
/* /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */ |
fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt); |
fprintf(ficgp,") t \"bprev(%d,%d)\" w l",cpt,i); |
} /* nlstate */ |
} /* nlstate */ |
fprintf(ficgp,"\nset out\n"); |
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
} /* End if backcast */ |
} /* End if prevbcast */ |
|
|
/* 8eme */ |
/* 8eme */ |
if(prevfcast==1){ |
if(prevfcast==1){ |
/* Projection from cross-sectional to stable (period) for each covariate */ |
/* Projection from cross-sectional to forward stable (period) prevalence for each covariate */ |
|
|
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
/* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); |
strcpy(gplotlabel,"("); |
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
fprintf(ficgp,"\n#\n#\n#Projection of prevalence to forward stable prevalence (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each correspondig covariate value *\/ */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
} |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
|
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
} |
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
Line 6851 set ter svg size 640, 480\nunset log y\n
|
Line 9092 set ter svg size 640, 480\nunset log y\n
|
|
|
fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n "); |
fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n "); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
for (i=1; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
|
|
/* for (i=1; i<= nlstate+1 ; i ++){ /\* nlstate +1 p11 p21 p.1 *\/ */ |
|
istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */ |
|
/*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */ |
|
for (i=istart; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
if(i==1){ |
if(i==istart){ |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_")); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_")); |
}else{ |
}else{ |
fprintf(ficgp,",\\\n '' "); |
fprintf(ficgp,",\\\n '' "); |
Line 6870 set ter svg size 640, 480\nunset log y\n
|
Line 9116 set ter svg size 640, 480\nunset log y\n
|
/*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
/*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
fprintf(ficgp," u %d:(", ioffset); |
fprintf(ficgp," u %d:(", ioffset); |
if(i==nlstate+1) |
if(i==nlstate+1){ |
fprintf(ficgp," $%d/(1.-$%d)) t 'pw.%d' with line ", \ |
fprintf(ficgp," $%d/(1.-$%d)):1 t 'pw.%d' with line lc variable ", \ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
else |
fprintf(ficgp,",\\\n '' "); |
|
fprintf(ficgp," u %d:(",ioffset); |
|
fprintf(ficgp," (($1-$2) == %d ) ? $%d/(1.-$%d) : 1/0):1 with labels center not ", \ |
|
offyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate ); |
|
}else |
fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \ |
fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
}else{ /* more than 2 covariates */ |
}else{ /* more than 2 covariates */ |
if(cptcoveff ==1){ |
ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/ |
ioffset=4; /* Age is in 4 */ |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
}else{ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
ioffset=6; /* Age is in 6 */ |
iyearc=ioffset-1; |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
iagec=ioffset; |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
} |
|
fprintf(ficgp," u %d:(",ioffset); |
fprintf(ficgp," u %d:(",ioffset); |
kl=0; |
kl=0; |
strcpy(gplotcondition,"("); |
strcpy(gplotcondition,"("); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate writing the chain of conditions *\/ */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */ |
/* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
|
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
|
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
|
lv=Tvresult[nres][k]; |
|
vlv=TinvDoQresult[nres][Tvresult[nres][k]]; |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */ |
/* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
kl++; |
kl++; |
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); |
/* sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); */ |
|
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,lv, kl+1, vlv ); |
kl++; |
kl++; |
if(k <cptcoveff && cptcoveff>1) |
if(k <cptcovs && cptcovs>1) |
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
} |
} |
strcpy(gplotcondition+strlen(gplotcondition),")"); |
strcpy(gplotcondition+strlen(gplotcondition),")"); |
Line 6905 set ter svg size 640, 480\nunset log y\n
|
Line 9160 set ter svg size 640, 480\nunset log y\n
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
if(i==nlstate+1){ |
if(i==nlstate+1){ |
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ", gplotcondition, \ |
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0):%d t 'p.%d' with line lc variable", gplotcondition, \ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,iyearc, cpt ); |
|
fprintf(ficgp,",\\\n '' "); |
|
fprintf(ficgp," u %d:(",iagec); |
|
fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d/(1.-$%d) : 1/0):%d with labels center not ", gplotcondition, \ |
|
iyearc, iagec, offyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate, iyearc ); |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/ |
}else{ |
}else{ |
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ |
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
} |
} |
} /* end if covariate */ |
} /* end if covariate */ |
} /* nlstate */ |
} /* nlstate */ |
fprintf(ficgp,"\nset out\n"); |
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
} /* End if prevfcast */ |
} /* End if prevfcast */ |
|
|
|
if(prevbcast==1){ |
|
/* Back projection from cross-sectional to stable (mixed) for each covariate */ |
|
|
|
/* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k1=TKresult[nres]; |
|
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
strcpy(gplotlabel,"("); |
|
fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt); |
|
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
|
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
|
/* for (k=1; k<=cptcoveff; k++){ /\* For each correspondig covariate value *\/ */ |
|
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */ |
|
/* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
|
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
|
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
|
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
|
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"# hbijx=backprobability over h years, hb.jx is weighted by observed prev at destination state\n "); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
|
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
|
|
|
/* for (i=1; i<= nlstate+1 ; i ++){ /\* nlstate +1 p11 p21 p.1 *\/ */ |
|
istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */ |
|
/*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */ |
|
for (i=istart; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
if(i==istart){ |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"FB_")); |
|
}else{ |
|
fprintf(ficgp,",\\\n '' "); |
|
} |
|
/* if(cptcoveff ==0){ /\* No covariate *\/ */ |
|
if(cptcovs ==0){ /* No covariate */ |
|
ioffset=2; /* Age is in 2 */ |
|
/*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
|
/*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
|
fprintf(ficgp," u %d:(", ioffset); |
|
if(i==nlstate+1){ |
|
fprintf(ficgp," $%d/(1.-$%d)):1 t 'bw%d' with line lc variable ", \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
|
fprintf(ficgp,",\\\n '' "); |
|
fprintf(ficgp," u %d:(",ioffset); |
|
fprintf(ficgp," (($1-$2) == %d ) ? $%d : 1/0):1 with labels center not ", \ |
|
offbyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1) ); |
|
}else |
|
fprintf(ficgp," $%d/(1.-$%d)) t 'b%d%d' with line ", \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt,i ); |
|
}else{ /* more than 2 covariates */ |
|
ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
iyearc=ioffset-1; |
|
iagec=ioffset; |
|
fprintf(ficgp," u %d:(",ioffset); |
|
kl=0; |
|
strcpy(gplotcondition,"("); |
|
for (k=1; k<=cptcovs; k++){ /* For each covariate k of the resultline, get corresponding value lv for combination k1 */ |
|
if(Dummy[modelresult[nres][k]]==0){ /* To be verified */ |
|
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate writing the chain of conditions *\/ */ |
|
/* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
|
/* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
|
lv=Tvresult[nres][k]; |
|
vlv=TinvDoQresult[nres][Tvresult[nres][k]]; |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
/* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
kl++; |
|
/* sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); */ |
|
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%lg " ,kl,Tvresult[nres][k], kl+1,TinvDoQresult[nres][Tvresult[nres][k]]); |
|
kl++; |
|
if(k <cptcovs && cptcovs>1) |
|
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
|
} |
|
} |
|
strcpy(gplotcondition+strlen(gplotcondition),")"); |
|
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
|
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
|
if(i==nlstate+1){ |
|
fprintf(ficgp,"%s ? $%d : 1/0):%d t 'bw%d' with line lc variable", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1),iyearc,cpt ); |
|
fprintf(ficgp,",\\\n '' "); |
|
fprintf(ficgp," u %d:(",iagec); |
|
/* fprintf(ficgp,"%s && (($5-$6) == %d ) ? $%d/(1.-$%d) : 1/0):5 with labels center not ", gplotcondition, \ */ |
|
fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d : 1/0):%d with labels center not ", gplotcondition, \ |
|
iyearc,iagec,offbyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), iyearc ); |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/ |
|
}else{ |
|
/* fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ */ |
|
fprintf(ficgp,"%s ? $%d : 1/0) t 'b%d%d' with line ", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), cpt,i ); |
|
} |
|
} /* end if covariate */ |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
} /* End if prevbcast */ |
|
|
|
|
/* 9eme writing MLE parameters */ |
/* 9eme writing MLE parameters */ |
fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n"); |
fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n"); |
Line 6954 set ter svg size 640, 480\nunset log y\n
|
Line 9346 set ter svg size 640, 480\nunset log y\n
|
fprintf(ficgp,"#\n"); |
fprintf(ficgp,"#\n"); |
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n"); |
fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n"); |
fprintf(ficgp,"#model=%s \n",model); |
fprintf(ficgp,"#model=1+age+%s \n",model); |
fprintf(ficgp,"# Type of graphic ng=%d\n",ng); |
fprintf(ficgp,"# Type of graphic ng=%d\n",ng); |
fprintf(ficgp,"# jk=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */ |
/* fprintf(ficgp,"# k1=1 to 2^%d=%d\n",cptcoveff,m);/\* to be checked *\/ */ |
for(jk=1; jk <=m; jk++) /* For each combination of covariate */ |
fprintf(ficgp,"# k1=1 to 2^%d=%d\n",cptcovs,m);/* to be checked */ |
|
/* for(k1=1; k1 <=m; k1++) /\* For each combination of covariate *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(TKresult[nres]!= jk) |
/* k1=nres; */ |
continue; |
k1=TKresult[nres]; |
fprintf(ficgp,"# Combination of dummy jk=%d and ",jk); |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
fprintf(ficgp,"\n\n# Resultline k1=%d ",k1); |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
strcpy(gplotlabel,"("); |
} |
/*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*/ |
|
for (k=1; k<=cptcovs; k++){ /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */ |
|
/* for each resultline nres, and position k, Tvresult[nres][k] gives the name of the variable and |
|
TinvDoQresult[nres][Tvresult[nres][k]] gives its value double or integer) */ |
|
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
|
} |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
/* fprintf(ficgp,"\n\n# Combination of dummy k1=%d which is ",k1); */ |
|
/* strcpy(gplotlabel,"("); */ |
|
/* /\*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*\/ */ |
|
/* for (k=1; k<=cptcoveff; k++){ /\* For each correspondig covariate value *\/ */ |
|
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */ |
|
/* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
|
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
|
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
|
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
|
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* } */ |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng,nres); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres); |
|
fprintf(ficgp,"\nset key outside "); |
|
/* fprintf(ficgp,"\nset label \"%s\" at graph 1.2,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); */ |
|
fprintf(ficgp,"\nset title \"%s\" font \"Helvetica,12\"\n",gplotlabel); |
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
if (ng==1){ |
if (ng==1){ |
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
Line 7010 set ter svg size 640, 480\nunset log y\n
|
Line 9433 set ter svg size 640, 480\nunset log y\n
|
/* for(j=3; j <=ncovmodel-nagesqr; j++) { */ |
/* for(j=3; j <=ncovmodel-nagesqr; j++) { */ |
for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */ |
for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */ |
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
if(j==Tage[ij]) { /* Product by age */ |
switch(Typevar[j]){ |
if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */ |
case 1: |
if(DummyV[j]==0){ |
if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */ |
fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; |
if(j==Tage[ij]) { /* Product by age To be looked at!!*//* Bug valgrind */ |
}else{ /* quantitative */ |
if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */ |
fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */ |
if(DummyV[j]==0){/* Bug valgrind */ |
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; |
|
}else{ /* quantitative */ |
|
fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
} |
|
ij++; |
|
} |
} |
} |
ij++; |
|
} |
} |
}else if(j==Tprod[ijp]) { /* */ |
break; |
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
case 2: |
if(ijp <=cptcovprod) { /* Product */ |
if(cptcovprod >0){ |
if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */ |
if(j==Tprod[ijp]) { /* */ |
if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */ |
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(jk,j)],nbcode[Tvard[ijp][2]][codtabm(jk,j)]); */ |
if(ijp <=cptcovprod) { /* Product */ |
fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); |
if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */ |
}else{ /* Vn is dummy and Vm is quanti */ |
if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */ |
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(jk,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */ |
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); |
|
}else{ /* Vn is dummy and Vm is quanti */ |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
} |
|
}else{ /* Vn*Vm Vn is quanti */ |
|
if(DummyV[Tvard[ijp][2]]==0){ |
|
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); |
|
}else{ /* Both quanti */ |
|
fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
} |
|
} |
|
ijp++; |
} |
} |
}else{ /* Vn*Vm Vn is quanti */ |
} /* end Tprod */ |
if(DummyV[Tvard[ijp][2]]==0){ |
} |
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); |
break; |
}else{ /* Both quanti */ |
case 3: |
fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
if(cptcovdageprod >0){ |
|
/* if(j==Tprod[ijp]) { */ /* not necessary */ |
|
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
|
if(ijp <=cptcovprod) { /* Product Vn*Vm and age*VN*Vm*/ |
|
if(DummyV[Tvardk[ijp][1]]==0){/* Vn is dummy */ |
|
if(DummyV[Tvardk[ijp][2]]==0){/* Vn and Vm are dummy */ |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */ |
|
fprintf(ficgp,"+p%d*%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); |
|
}else{ /* Vn is dummy and Vm is quanti */ |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]); |
|
} |
|
}else{ /* age* Vn*Vm Vn is quanti HERE */ |
|
if(DummyV[Tvard[ijp][2]]==0){ |
|
fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvardk[ijp][2]],Tqinvresult[nres][Tvardk[ijp][1]]); |
|
}else{ /* Both quanti */ |
|
fprintf(ficgp,"+p%d*%f*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]); |
|
} |
|
} |
|
ijp++; |
} |
} |
} |
/* } */ /* end Tprod */ |
ijp++; |
} |
} |
break; |
} else{ /* simple covariate */ |
case 0: |
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(jk,j)]); /\* Valgrind bug nbcode *\/ */ |
/* simple covariate */ |
|
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */ |
if(Dummy[j]==0){ |
if(Dummy[j]==0){ |
fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /* */ |
fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /* */ |
}else{ /* quantitative */ |
}else{ /* quantitative */ |
fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */ |
fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */ |
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
} |
} |
} /* end simple */ |
/* end simple */ |
|
break; |
|
default: |
|
break; |
|
} /* end switch */ |
} /* end j */ |
} /* end j */ |
}else{ |
}else{ /* k=k2 */ |
i=i-ncovmodel; |
if(ng !=1 ){ /* For logit formula of log p11 is more difficult to get */ |
if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */ |
fprintf(ficgp," (1.");i=i-ncovmodel; |
fprintf(ficgp," (1."); |
}else |
|
i=i-ncovmodel; |
} |
} |
|
|
if(ng != 1){ |
if(ng != 1){ |
fprintf(ficgp,")/(1"); |
fprintf(ficgp,")/(1"); |
|
|
for(k1=1; k1 <=nlstate; k1++){ |
for(cpt=1; cpt <=nlstate; cpt++){ |
if(nagesqr==0) |
if(nagesqr==0) |
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); |
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1); |
else /* nagesqr =1 */ |
else /* nagesqr =1 */ |
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr); |
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr); |
|
|
ij=1; |
ij=1; |
for(j=3; j <=ncovmodel-nagesqr; j++){ |
ijp=1; |
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
/* for(j=3; j <=ncovmodel-nagesqr; j++){ */ |
if(ij <=cptcovage) { /* Bug valgrind */ |
for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */ |
fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
switch(Typevar[j]){ |
/* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
case 1: |
ij++; |
if(cptcovage >0){ |
|
if(j==Tage[ij]) { /* Bug valgrind */ |
|
if(ij <=cptcovage) { /* Bug valgrind */ |
|
if(DummyV[j]==0){/* Bug valgrind */ |
|
/* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]); */ |
|
/* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,nbcode[Tvar[j]][codtabm(k1,j)]); */ |
|
fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]); |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; */ |
|
/* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
}else{ /* quantitative */ |
|
/* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */ |
|
fprintf(ficgp,"+p%d*%f*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */ |
|
/* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
} |
|
ij++; |
|
} |
|
} |
} |
} |
} |
break; |
else |
case 2: |
fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);/* Valgrind bug nbcode */ |
if(cptcovprod >0){ |
|
if(j==Tprod[ijp]) { /* */ |
|
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
|
if(ijp <=cptcovprod) { /* Product */ |
|
if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */ |
|
if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */ |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */ |
|
fprintf(ficgp,"+p%d*%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); */ |
|
}else{ /* Vn is dummy and Vm is quanti */ |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
} |
|
}else{ /* Vn*Vm Vn is quanti */ |
|
if(DummyV[Tvard[ijp][2]]==0){ |
|
fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); */ |
|
}else{ /* Both quanti */ |
|
fprintf(ficgp,"+p%d*%f*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
} |
|
} |
|
ijp++; |
|
} |
|
} /* end Tprod */ |
|
} /* end if */ |
|
break; |
|
case 3: |
|
if(cptcovdageprod >0){ |
|
/* if(j==Tprod[ijp]) { /\* *\/ */ |
|
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
|
if(ijp <=cptcovprod) { /* Product */ |
|
if(DummyV[Tvardk[ijp][1]]==0){/* Vn is dummy */ |
|
if(DummyV[Tvardk[ijp][2]]==0){/* Vn and Vm are dummy */ |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */ |
|
fprintf(ficgp,"+p%d*%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvardk[ijp][1]],Tinvresult[nres][Tvardk[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); */ |
|
}else{ /* Vn is dummy and Vm is quanti */ |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
fprintf(ficgp,"+p%d*%d*%f*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
} |
|
}else{ /* Vn*Vm Vn is quanti */ |
|
if(DummyV[Tvardk[ijp][2]]==0){ |
|
fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvardk[ijp][2]],Tqinvresult[nres][Tvardk[ijp][1]]); |
|
/* fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); */ |
|
}else{ /* Both quanti */ |
|
fprintf(ficgp,"+p%d*%f*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%f*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
} |
|
} |
|
ijp++; |
|
} |
|
/* } /\* end Tprod *\/ */ |
|
} /* end if */ |
|
break; |
|
case 0: |
|
/* simple covariate */ |
|
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */ |
|
if(Dummy[j]==0){ |
|
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\* *\/ */ |
|
fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]); /* */ |
|
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\* *\/ */ |
|
}else{ /* quantitative */ |
|
fprintf(ficgp,"+p%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* */ |
|
/* fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* *\/ */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
} |
|
/* end simple */ |
|
/* fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/\* Valgrind bug nbcode *\/ */ |
|
break; |
|
default: |
|
break; |
|
} /* end switch */ |
} |
} |
fprintf(ficgp,")"); |
fprintf(ficgp,")"); |
} |
} |
fprintf(ficgp,")"); |
fprintf(ficgp,")"); |
if(ng ==2) |
if(ng ==2) |
fprintf(ficgp," t \"p%d%d\" ", k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"p%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
else /* ng= 3 */ |
else /* ng= 3 */ |
fprintf(ficgp," t \"i%d%d\" ", k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"i%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
}else{ /* end ng <> 1 */ |
}else{ /* end ng <> 1 */ |
if( k !=k2) /* logit p11 is hard to draw */ |
if( k !=k2) /* logit p11 is hard to draw */ |
fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"logit(p%d%d)\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
} |
} |
if ((k+k2)!= (nlstate*2+ndeath) && ng != 1) |
if ((k+k2)!= (nlstate*2+ndeath) && ng != 1) |
fprintf(ficgp,","); |
fprintf(ficgp,","); |
Line 7095 set ter svg size 640, 480\nunset log y\n
|
Line 9651 set ter svg size 640, 480\nunset log y\n
|
i=i+ncovmodel; |
i=i+ncovmodel; |
} /* end k */ |
} /* end k */ |
} /* end k2 */ |
} /* end k2 */ |
fprintf(ficgp,"\n set out\n"); |
/* fprintf(ficgp,"\n set out; unset label;set key default;\n"); */ |
} /* end jk */ |
fprintf(ficgp,"\n set out; unset title;set key default;\n"); |
|
} /* end resultline */ |
} /* end ng */ |
} /* end ng */ |
/* avoid: */ |
/* avoid: */ |
fflush(ficgp); |
fflush(ficgp); |
Line 7111 set ter svg size 640, 480\nunset log y\n
|
Line 9668 set ter svg size 640, 480\nunset log y\n
|
int modcovmax =1; |
int modcovmax =1; |
int mobilavrange, mob; |
int mobilavrange, mob; |
int iage=0; |
int iage=0; |
|
int firstA1=0, firstA2=0; |
|
|
double sum=0.; |
double sum=0., sumr=0.; |
double age; |
double age; |
double *sumnewp, *sumnewm; |
double *sumnewp, *sumnewm, *sumnewmr; |
double *agemingood, *agemaxgood; /* Currently identical for all covariates */ |
double *agemingood, *agemaxgood; |
|
double *agemingoodr, *agemaxgoodr; |
|
|
|
|
/* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose */ |
/* modcovmax=2*cptcoveff; Max number of modalities. We suppose */ |
/* a covariate has 2 modalities, should be equal to ncovcombmax *\/ */ |
/* a covariate has 2 modalities, should be equal to ncovcombmax */ |
|
|
sumnewp = vector(1,ncovcombmax); |
sumnewp = vector(1,ncovcombmax); |
sumnewm = vector(1,ncovcombmax); |
sumnewm = vector(1,ncovcombmax); |
|
sumnewmr = vector(1,ncovcombmax); |
agemingood = vector(1,ncovcombmax); |
agemingood = vector(1,ncovcombmax); |
|
agemingoodr = vector(1,ncovcombmax); |
agemaxgood = vector(1,ncovcombmax); |
agemaxgood = vector(1,ncovcombmax); |
|
agemaxgoodr = vector(1,ncovcombmax); |
|
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
sumnewm[cptcod]=0.; |
sumnewm[cptcod]=0.; sumnewmr[cptcod]=0.; |
sumnewp[cptcod]=0.; |
sumnewp[cptcod]=0.; |
agemingood[cptcod]=0; |
agemingood[cptcod]=0, agemingoodr[cptcod]=0; |
agemaxgood[cptcod]=0; |
agemaxgood[cptcod]=0, agemaxgoodr[cptcod]=0; |
} |
} |
if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */ |
if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */ |
|
|
if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ |
if(mobilav==-1 || mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ |
if(mobilav==1) mobilavrange=5; /* default */ |
if(mobilav==1 || mobilav==-1) mobilavrange=5; /* default */ |
else mobilavrange=mobilav; |
else mobilavrange=mobilav; |
for (age=bage; age<=fage; age++) |
for (age=bage; age<=fage; age++) |
for (i=1; i<=nlstate;i++) |
for (i=1; i<=nlstate;i++) |
Line 7147 set ter svg size 640, 480\nunset log y\n
|
Line 9709 set ter svg size 640, 480\nunset log y\n
|
*/ |
*/ |
for (mob=3;mob <=mobilavrange;mob=mob+2){ |
for (mob=3;mob <=mobilavrange;mob=mob+2){ |
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ |
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ |
for (i=1; i<=nlstate;i++){ |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
sumnewm[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; |
mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; |
for (cpt=1;cpt<=(mob-1)/2;cpt++){ |
for (cpt=1;cpt<=(mob-1)/2;cpt++){ |
mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; |
mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; |
mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; |
mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; |
} |
} |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; |
} |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
} |
} /* end i */ |
|
if(sumnewm[cptcod] >1.e-3) mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/sumnewm[cptcod]; /* Rescaling to sum one */ |
|
} /* end cptcod */ |
}/* end age */ |
}/* end age */ |
}/* end mob */ |
}/* end mob */ |
}else |
}else{ |
|
printf("Error internal in movingaverage, mobilav=%d.\n",mobilav); |
return -1; |
return -1; |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
} |
|
|
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ /* for each combination */ |
/* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */ |
/* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */ |
if(invalidvarcomb[cptcod]){ |
if(invalidvarcomb[cptcod]){ |
printf("\nCombination (%d) ignored because no cases \n",cptcod); |
printf("\nCombination (%d) ignored because no cases \n",cptcod); |
continue; |
continue; |
} |
} |
|
|
agemingood[cptcod]=fage-(mob-1)/2; |
for (age=fage-(mob-1)/2; age>=bage+(mob-1)/2; age--){ /*looking for the youngest and oldest good age */ |
for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */ |
|
sumnewm[cptcod]=0.; |
sumnewm[cptcod]=0.; |
|
sumnewmr[cptcod]=0.; |
for (i=1; i<=nlstate;i++){ |
for (i=1; i<=nlstate;i++){ |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */ |
|
agemingoodr[cptcod]=age; |
} |
} |
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
agemingood[cptcod]=age; |
agemingood[cptcod]=age; |
}else{ /* bad */ |
} |
for (i=1; i<=nlstate;i++){ |
} /* age */ |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ /*looking for the youngest and oldest good age */ |
} /* i */ |
|
} /* end bad */ |
|
}/* age */ |
|
sum=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any descending age!\n",cptcod); |
|
/* for (i=1; i<=nlstate;i++){ */ |
|
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
|
/* } /\* i *\/ */ |
|
} /* end bad */ |
|
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
|
/* From youngest, finding the oldest wrong */ |
|
agemaxgood[cptcod]=bage+(mob-1)/2; |
|
for (age=bage+(mob-1)/2; age<=fage; age++){ |
|
sumnewm[cptcod]=0.; |
sumnewm[cptcod]=0.; |
|
sumnewmr[cptcod]=0.; |
for (i=1; i<=nlstate;i++){ |
for (i=1; i<=nlstate;i++){ |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */ |
|
agemaxgoodr[cptcod]=age; |
} |
} |
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
agemaxgood[cptcod]=age; |
agemaxgood[cptcod]=age; |
}else{ /* bad */ |
} |
for (i=1; i<=nlstate;i++){ |
} /* age */ |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
/* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */ |
} /* i */ |
/* but they will change */ |
|
firstA1=0;firstA2=0; |
|
for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */ |
|
sumnewm[cptcod]=0.; |
|
sumnewmr[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
|
} |
|
if(mobilav==-1){ /* Forcing raw ages if good else agemingood */ |
|
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */ |
|
agemaxgoodr[cptcod]=age; /* age min */ |
|
for (i=1; i<=nlstate;i++) |
|
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
|
}else{ /* bad we change the value with the values of good ages */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgoodr[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}else{ |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemaxgood[cptcod]=age; |
|
}else{ /* bad we change the value with the values of good ages */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}/* end else */ |
|
sum=0.;sumr=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)age][i][cptcod]; |
|
sumr+=probs[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
if(!firstA1){ |
|
firstA1=1; |
|
printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage); |
|
} |
|
fprintf(ficlog,"Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage); |
|
} /* end bad */ |
|
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
|
if(fabs(sumr - 1.) > 1.e-3) { /* bad */ |
|
if(!firstA2){ |
|
firstA2=1; |
|
printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage); |
|
} |
|
fprintf(ficlog,"Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage); |
} /* end bad */ |
} /* end bad */ |
}/* age */ |
}/* age */ |
sum=0.; |
|
for (i=1; i<=nlstate;i++){ |
for (age=bage+(mob-1)/2; age<=fage; age++){/* From youngest, finding the oldest wrong */ |
sum+=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
sumnewm[cptcod]=0.; |
} |
sumnewmr[cptcod]=0.; |
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
for (i=1; i<=nlstate;i++){ |
printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any ascending age!\n",cptcod); |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
/* for (i=1; i<=nlstate;i++){ */ |
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
} |
/* } /\* i *\/ */ |
if(mobilav==-1){ /* Forcing raw ages if good else agemingood */ |
} /* end bad */ |
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemingoodr[cptcod]=age; |
|
for (i=1; i<=nlstate;i++) |
|
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
|
}else{ /* bad we change the value with the values of good ages */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingoodr[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}else{ |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemingood[cptcod]=age; |
|
}else{ /* bad */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}/* end else */ |
|
sum=0.;sumr=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)age][i][cptcod]; |
|
sumr+=mobaverage[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
printf("Moving average B1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you decrease fage=%d?\n",cptcod, sum, (int) age, (int)fage); |
|
} /* end bad */ |
|
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
|
if(fabs(sumr - 1.) > 1.e-3) { /* bad */ |
|
printf("Moving average B2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase fage=%d\n",cptcod,sumr, (int)age, (int)fage); |
|
} /* end bad */ |
|
}/* age */ |
|
|
|
|
for (age=bage; age<=fage; age++){ |
for (age=bage; age<=fage; age++){ |
/* printf("%d %d ", cptcod, (int)age); */ |
/* printf("%d %d ", cptcod, (int)age); */ |
Line 7232 set ter svg size 640, 480\nunset log y\n
|
Line 9869 set ter svg size 640, 480\nunset log y\n
|
} |
} |
/* printf("\n"); */ |
/* printf("\n"); */ |
/* } */ |
/* } */ |
|
|
/* brutal averaging */ |
/* brutal averaging */ |
for (i=1; i<=nlstate;i++){ |
/* for (i=1; i<=nlstate;i++){ */ |
for (age=1; age<=bage; age++){ |
/* for (age=1; age<=bage; age++){ */ |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
/* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */ |
/* /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */ |
} |
/* } */ |
for (age=fage; age<=AGESUP; age++){ |
/* for (age=fage; age<=AGESUP; age++){ */ |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; */ |
/* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */ |
/* /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */ |
} |
/* } */ |
} /* end i status */ |
/* } /\* end i status *\/ */ |
for (i=nlstate+1; i<=nlstate+ndeath;i++){ |
/* for (i=nlstate+1; i<=nlstate+ndeath;i++){ */ |
for (age=1; age<=AGESUP; age++){ |
/* for (age=1; age<=AGESUP; age++){ */ |
/*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/ |
/* /\*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*\/ */ |
mobaverage[(int)age][i][cptcod]=0.; |
/* mobaverage[(int)age][i][cptcod]=0.; */ |
} |
/* } */ |
} |
/* } */ |
}/* end cptcod */ |
}/* end cptcod */ |
free_vector(sumnewm,1, ncovcombmax); |
free_vector(agemaxgoodr,1, ncovcombmax); |
free_vector(sumnewp,1, ncovcombmax); |
|
free_vector(agemaxgood,1, ncovcombmax); |
free_vector(agemaxgood,1, ncovcombmax); |
free_vector(agemingood,1, ncovcombmax); |
free_vector(agemingood,1, ncovcombmax); |
|
free_vector(agemingoodr,1, ncovcombmax); |
|
free_vector(sumnewmr,1, ncovcombmax); |
|
free_vector(sumnewm,1, ncovcombmax); |
|
free_vector(sumnewp,1, ncovcombmax); |
return 0; |
return 0; |
}/* End movingaverage */ |
}/* End movingaverage */ |
|
|
|
|
|
|
/************** Forecasting ******************/ |
/************** Forecasting ******************/ |
void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ |
/* void prevforecast(char fileres[], double dateintmean, double anprojd, double mprojd, double jprojd, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anprojf, double p[], int cptcoveff)*/ |
/* proj1, year, month, day of starting projection |
void prevforecast(char fileres[], double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){ |
|
/* dateintemean, mean date of interviews |
|
dateprojd, year, month, day of starting projection |
|
dateprojf date of end of projection;year of end of projection (same day and month as proj1). |
agemin, agemax range of age |
agemin, agemax range of age |
dateprev1 dateprev2 range of dates during which prevalence is computed |
dateprev1 dateprev2 range of dates during which prevalence is computed |
anproj2 year of en of projection (same day and month as proj1). |
|
*/ |
*/ |
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0; |
/* double anprojd, mprojd, jprojd; */ |
|
/* double anprojf, mprojf, jprojf; */ |
|
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0; |
double agec; /* generic age */ |
double agec; /* generic age */ |
double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
double agelim, ppij, yp,yp1,yp2; |
double *popeffectif,*popcount; |
double *popeffectif,*popcount; |
double ***p3mat; |
double ***p3mat; |
/* double ***mobaverage; */ |
/* double ***mobaverage; */ |
Line 7298 set ter svg size 640, 480\nunset log y\n
|
Line 9944 set ter svg size 640, 480\nunset log y\n
|
if(estepm < stepm){ |
if(estepm < stepm){ |
printf ("Problem %d lower than %d\n",estepm, stepm); |
printf ("Problem %d lower than %d\n",estepm, stepm); |
} |
} |
else hstepm=estepm; |
else{ |
|
hstepm=estepm; |
|
} |
|
if(estepm > stepm){ /* Yes every two year */ |
|
stepsize=2; |
|
} |
|
hstepm=hstepm/stepm; |
|
|
hstepm=hstepm/stepm; |
|
yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and |
/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */ |
fractional in yp1 */ |
/* fractional in yp1 *\/ */ |
anprojmean=yp; |
/* aintmean=yp; */ |
yp2=modf((yp1*12),&yp); |
/* yp2=modf((yp1*12),&yp); */ |
mprojmean=yp; |
/* mintmean=yp; */ |
yp1=modf((yp2*30.5),&yp); |
/* yp1=modf((yp2*30.5),&yp); */ |
jprojmean=yp; |
/* jintmean=yp; */ |
if(jprojmean==0) jprojmean=1; |
/* if(jintmean==0) jintmean=1; */ |
if(mprojmean==0) jprojmean=1; |
/* if(mintmean==0) mintmean=1; */ |
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
/* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ |
|
/* date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); */ |
|
/* date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); */ |
|
/* i1=pow(2,cptcoveff); */ |
|
/* if (cptcovn < 1){i1=1;} */ |
|
|
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); |
|
|
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
|
|
/* if (h==(int)(YEARM*yearp)){ */ |
/* if (h==(int)(YEARM*yearp)){ */ |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k=1; k<=i1;k++){ |
k=TKresult[nres]; |
if(TKresult[nres]!= k) |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
continue; |
/* for(k=1; k<=i1;k++){ /\* We want to find the combination k corresponding to the values of the dummies given in this resut line (to be cleaned one day) *\/ */ |
if(invalidvarcomb[k]){ |
/* if(i1 != 1 && TKresult[nres]!= k) */ |
printf("\nCombination (%d) projection ignored because no cases \n",k); |
/* continue; */ |
continue; |
/* if(invalidvarcomb[k]){ */ |
} |
/* printf("\nCombination (%d) projection ignored because no cases \n",k); */ |
|
/* continue; */ |
|
/* } */ |
fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#"); |
fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#"); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcovs;j++){ |
fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* for(j=1;j<=cptcoveff;j++) { */ |
} |
/* /\* fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
|
fprintf(ficresf," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} |
} |
|
|
fprintf(ficresf," yearproj age"); |
fprintf(ficresf," yearproj age"); |
for(j=1; j<=nlstate+ndeath;j++){ |
for(j=1; j<=nlstate+ndeath;j++){ |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
fprintf(ficresf," p%d%d",i,j); |
fprintf(ficresf," p%d%d",i,j); |
fprintf(ficresf," wp.%d",j); |
fprintf(ficresf," wp.%d",j); |
} |
} |
for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { |
for (yearp=0; yearp<=(anprojf-anprojd);yearp +=stepsize) { |
fprintf(ficresf,"\n"); |
fprintf(ficresf,"\n"); |
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); |
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jprojd,mprojd,anprojd+yearp); |
for (agec=fage; agec>=(ageminpar-1); agec--){ |
/* for (agec=fage; agec>=(ageminpar-1); agec--){ */ |
|
for (agec=fage; agec>=(bage); agec--){ |
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
nhstepm = nhstepm/hstepm; |
nhstepm = nhstepm/hstepm; |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
|
/* We compute pii at age agec over nhstepm);*/ |
hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres); |
hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres); |
|
/* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */ |
for (h=0; h<=nhstepm; h++){ |
for (h=0; h<=nhstepm; h++){ |
if (h*hstepm/YEARM*stepm ==yearp) { |
if (h*hstepm/YEARM*stepm ==yearp) { |
fprintf(ficresf,"\n"); |
break; |
for(j=1;j<=cptcoveff;j++) |
} |
fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
} |
fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); |
fprintf(ficresf,"\n"); |
} |
/* for(j=1;j<=cptcoveff;j++) */ |
for(j=1; j<=nlstate+ndeath;j++) { |
for(j=1;j<=cptcovs;j++) |
ppij=0.; |
fprintf(ficresf,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
for(i=1; i<=nlstate;i++) { |
/* fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Tvaraff not correct *\/ */ |
if (mobilav==1) |
/* fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /\* TnsdVar[Tvaraff] correct *\/ */ |
ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][k]; |
fprintf(ficresf,"%.f %.f ",anprojd+yearp,agec+h*hstepm/YEARM*stepm); |
else { |
|
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; |
for(j=1; j<=nlstate+ndeath;j++) { |
} |
ppij=0.; |
if (h*hstepm/YEARM*stepm== yearp) { |
for(i=1; i<=nlstate;i++) { |
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
if (mobilav>=1) |
} |
ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k]; |
} /* end i */ |
else { /* even if mobilav==-1 we use mobaverage, probs may not sums to 1 */ |
if (h*hstepm/YEARM*stepm==yearp) { |
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; |
fprintf(ficresf," %.3f", ppij); |
|
} |
} |
}/* end j */ |
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
} /* end h */ |
} /* end i */ |
|
fprintf(ficresf," %.3f", ppij); |
|
}/* end j */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
} /* end agec */ |
} /* end agec */ |
|
/* diffyear=(int) anproj1+yearp-ageminpar-1; */ |
|
/*printf("Prevforecast %d+%d-%d=diffyear=%d\n",(int) anproj1, (int)yearp,(int)ageminpar,(int) anproj1-(int)ageminpar);*/ |
} /* end yearp */ |
} /* end yearp */ |
} /* end k */ |
} /* end k */ |
|
|
Line 7385 set ter svg size 640, 480\nunset log y\n
|
Line 10053 set ter svg size 640, 480\nunset log y\n
|
|
|
} |
} |
|
|
/* /\************** Back Forecasting ******************\/ */ |
/************** Back Forecasting ******************/ |
/* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */ |
/* void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */ |
/* /\* back1, year, month, day of starting backection */ |
void prevbackforecast(char fileres[], double ***prevacurrent, double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){ |
/* agemin, agemax range of age */ |
/* back1, year, month, day of starting backprojection |
/* dateprev1 dateprev2 range of dates during which prevalence is computed */ |
agemin, agemax range of age |
/* anback2 year of en of backection (same day and month as back1). */ |
dateprev1 dateprev2 range of dates during which prevalence is computed |
/* *\/ */ |
anback2 year of end of backprojection (same day and month as back1). |
/* int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */ |
prevacurrent and prev are prevalences. |
/* double agec; /\* generic age *\/ */ |
*/ |
/* double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */ |
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0; |
/* double *popeffectif,*popcount; */ |
double agec; /* generic age */ |
/* double ***p3mat; */ |
double agelim, ppij, ppi, yp,yp1,yp2; /* ,jintmean,mintmean,aintmean;*/ |
/* /\* double ***mobaverage; *\/ */ |
double *popeffectif,*popcount; |
/* char fileresfb[FILENAMELENGTH]; */ |
double ***p3mat; |
|
/* double ***mobaverage; */ |
/* agelim=AGESUP; */ |
char fileresfb[FILENAMELENGTH]; |
/* /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */ |
|
/* in each health status at the date of interview (if between dateprev1 and dateprev2). */ |
agelim=AGEINF; |
/* We still use firstpass and lastpass as another selection. */ |
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
/* *\/ */ |
in each health status at the date of interview (if between dateprev1 and dateprev2). |
/* /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */ |
We still use firstpass and lastpass as another selection. |
/* /\* firstpass, lastpass, stepm, weightopt, model); *\/ */ |
*/ |
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */ |
|
/* firstpass, lastpass, stepm, weightopt, model); */ |
/* strcpy(fileresfb,"FB_"); */ |
|
/* strcat(fileresfb,fileresu); */ |
/*Do we need to compute prevalence again?*/ |
/* if((ficresfb=fopen(fileresfb,"w"))==NULL) { */ |
|
/* printf("Problem with back forecast resultfile: %s\n", fileresfb); */ |
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
/* fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */ |
|
/* } */ |
|
/* printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */ |
|
/* fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */ |
|
|
|
/* if (cptcoveff==0) ncodemax[cptcoveff]=1; */ |
|
|
|
/* /\* if (mobilav!=0) { *\/ */ |
|
/* /\* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
/* /\* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */ |
|
/* /\* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
|
/* /\* printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* } *\/ */ |
|
|
|
/* stepsize=(int) (stepm+YEARM-1)/YEARM; */ |
|
/* if (stepm<=12) stepsize=1; */ |
|
/* if(estepm < stepm){ */ |
|
/* printf ("Problem %d lower than %d\n",estepm, stepm); */ |
|
/* } */ |
|
/* else hstepm=estepm; */ |
|
|
|
/* hstepm=hstepm/stepm; */ |
|
/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */ |
|
/* fractional in yp1 *\/ */ |
|
/* anprojmean=yp; */ |
|
/* yp2=modf((yp1*12),&yp); */ |
|
/* mprojmean=yp; */ |
|
/* yp1=modf((yp2*30.5),&yp); */ |
|
/* jprojmean=yp; */ |
|
/* if(jprojmean==0) jprojmean=1; */ |
|
/* if(mprojmean==0) jprojmean=1; */ |
|
|
|
/* i1=cptcoveff; */ |
|
/* if (cptcovn < 1){i1=1;} */ |
|
|
|
/* fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); */ |
strcpy(fileresfb,"FB_"); |
|
strcat(fileresfb,fileresu); |
|
if((ficresfb=fopen(fileresfb,"w"))==NULL) { |
|
printf("Problem with back forecast resultfile: %s\n", fileresfb); |
|
fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); |
|
} |
|
printf("\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb); |
|
fprintf(ficlog,"\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb); |
|
|
/* fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */ |
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
|
|
/* /\* if (h==(int)(YEARM*yearp)){ *\/ */ |
|
/* for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */ |
stepsize=(int) (stepm+YEARM-1)/YEARM; |
/* for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */ |
if (stepm<=12) stepsize=1; |
/* k=k+1; */ |
if(estepm < stepm){ |
/* fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */ |
printf ("Problem %d lower than %d\n",estepm, stepm); |
/* for(j=1;j<=cptcoveff;j++) { */ |
} |
/* fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
else{ |
/* } */ |
hstepm=estepm; |
/* fprintf(ficresfb," yearbproj age"); */ |
} |
/* for(j=1; j<=nlstate+ndeath;j++){ */ |
if(estepm >= stepm){ /* Yes every two year */ |
/* for(i=1; i<=nlstate;i++) */ |
stepsize=2; |
/* fprintf(ficresfb," p%d%d",i,j); */ |
} |
/* fprintf(ficresfb," p.%d",j); */ |
|
/* } */ |
hstepm=hstepm/stepm; |
/* for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) { */ |
/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */ |
/* /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { *\/ */ |
/* fractional in yp1 *\/ */ |
/* fprintf(ficresfb,"\n"); */ |
/* aintmean=yp; */ |
/* fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */ |
/* yp2=modf((yp1*12),&yp); */ |
/* for (agec=fage; agec>=(ageminpar-1); agec--){ */ |
/* mintmean=yp; */ |
/* nhstepm=(int) rint((agelim-agec)*YEARM/stepm); */ |
/* yp1=modf((yp2*30.5),&yp); */ |
/* nhstepm = nhstepm/hstepm; */ |
/* jintmean=yp; */ |
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
/* if(jintmean==0) jintmean=1; */ |
/* oldm=oldms;savm=savms; */ |
/* if(mintmean==0) jintmean=1; */ |
/* hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k); */ |
|
/* for (h=0; h<=nhstepm; h++){ */ |
/* i1=pow(2,cptcoveff); */ |
/* if (h*hstepm/YEARM*stepm ==yearp) { */ |
/* if (cptcovn < 1){i1=1;} */ |
/* fprintf(ficresfb,"\n"); */ |
|
/* for(j=1;j<=cptcoveff;j++) */ |
fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); |
/* fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); |
/* fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */ |
|
/* } */ |
fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); |
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
|
/* ppij=0.; */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
/* for(i=1; i<=nlstate;i++) { */ |
k=TKresult[nres]; |
/* if (mobilav==1) */ |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
/* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */ |
/* for(k=1; k<=i1;k++){ */ |
/* else { */ |
/* if(i1 != 1 && TKresult[nres]!= k) */ |
/* ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */ |
/* continue; */ |
/* } */ |
/* if(invalidvarcomb[k]){ */ |
/* if (h*hstepm/YEARM*stepm== yearp) { */ |
/* printf("\nCombination (%d) projection ignored because no cases \n",k); */ |
/* fprintf(ficresfb," %.3f", p3mat[i][j][h]); */ |
/* continue; */ |
/* } */ |
/* } */ |
/* } /\* end i *\/ */ |
fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#"); |
/* if (h*hstepm/YEARM*stepm==yearp) { */ |
for(j=1;j<=cptcovs;j++){ |
/* fprintf(ficresfb," %.3f", ppij); */ |
/* for(j=1;j<=cptcoveff;j++) { */ |
/* } */ |
/* fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
/* }/\* end j *\/ */ |
/* } */ |
/* } /\* end h *\/ */ |
fprintf(ficresfb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
} |
/* } /\* end agec *\/ */ |
/* fprintf(ficrespij,"******\n"); */ |
/* } /\* end yearp *\/ */ |
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
/* } /\* end cptcod *\/ */ |
/* fprintf(ficresfb," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
/* } /\* end cptcov *\/ */ |
/* } */ |
|
fprintf(ficresfb," yearbproj age"); |
/* /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
for(j=1; j<=nlstate+ndeath;j++){ |
|
for(i=1; i<=nlstate;i++) |
/* fclose(ficresfb); */ |
fprintf(ficresfb," b%d%d",i,j); |
/* printf("End of Computing Back forecasting \n"); */ |
fprintf(ficresfb," b.%d",j); |
/* fprintf(ficlog,"End of Computing Back forecasting\n"); */ |
} |
|
for (yearp=0; yearp>=(anbackf-anbackd);yearp -=stepsize) { |
|
/* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { */ |
|
fprintf(ficresfb,"\n"); |
|
fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jbackd,mbackd,anbackd+yearp); |
|
/* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */ |
|
/* for (agec=bage; agec<=agemax-1; agec++){ /\* testing *\/ */ |
|
for (agec=bage; agec<=fage; agec++){ /* testing */ |
|
/* We compute bij at age agec over nhstepm, nhstepm decreases when agec increases because of agemax;*/ |
|
nhstepm=(int) (agec-agelim) *YEARM/stepm;/* nhstepm=(int) rint((agec-agelim)*YEARM/stepm);*/ |
|
nhstepm = nhstepm/hstepm; |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
/* computes hbxij at age agec over 1 to nhstepm */ |
|
/* printf("####prevbackforecast debug agec=%.2f nhstepm=%d\n",agec, nhstepm);fflush(stdout); */ |
|
hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm, k, nres); |
|
/* hpxij(p3mat,nhstepm,agec,hstepm,p, nlstate,stepm,oldm,savm, k,nres); */ |
|
/* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */ |
|
/* printf(" agec=%.2f\n",agec);fflush(stdout); */ |
|
for (h=0; h<=nhstepm; h++){ |
|
if (h*hstepm/YEARM*stepm ==-yearp) { |
|
break; |
|
} |
|
} |
|
fprintf(ficresfb,"\n"); |
|
/* for(j=1;j<=cptcoveff;j++) */ |
|
for(j=1;j<=cptcovs;j++) |
|
fprintf(ficresfb,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
/* fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
fprintf(ficresfb,"%.f %.f ",anbackd+yearp,agec-h*hstepm/YEARM*stepm); |
|
for(i=1; i<=nlstate+ndeath;i++) { |
|
ppij=0.;ppi=0.; |
|
for(j=1; j<=nlstate;j++) { |
|
/* if (mobilav==1) */ |
|
ppij=ppij+p3mat[i][j][h]*prevacurrent[(int)agec][j][k]; |
|
ppi=ppi+prevacurrent[(int)agec][j][k]; |
|
/* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][j][k]; */ |
|
/* ppi=ppi+mobaverage[(int)agec][j][k]; */ |
|
/* else { */ |
|
/* ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; */ |
|
/* } */ |
|
fprintf(ficresfb," %.3f", p3mat[i][j][h]); |
|
} /* end j */ |
|
if(ppi <0.99){ |
|
printf("Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi); |
|
fprintf(ficlog,"Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi); |
|
} |
|
fprintf(ficresfb," %.3f", ppij); |
|
}/* end j */ |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* end agec */ |
|
} /* end yearp */ |
|
} /* end k */ |
|
|
|
/* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
|
|
fclose(ficresfb); |
|
printf("End of Computing Back forecasting \n"); |
|
fprintf(ficlog,"End of Computing Back forecasting\n"); |
|
|
/* } */ |
} |
|
|
|
/* Variance of prevalence limit: varprlim */ |
|
void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){ |
|
/*------- Variance of forward period (stable) prevalence------*/ |
|
|
|
char fileresvpl[FILENAMELENGTH]; |
|
FILE *ficresvpl; |
|
double **oldm, **savm; |
|
double **varpl; /* Variances of prevalence limits by age */ |
|
int i1, k, nres, j ; |
|
|
|
strcpy(fileresvpl,"VPL_"); |
|
strcat(fileresvpl,fileresu); |
|
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
|
printf("Problem with variance of forward period (stable) prevalence resultfile: %s\n", fileresvpl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog); |
|
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k=TKresult[nres]; |
|
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
|
/* for(k=1; k<=i1;k++){ /\* We find the combination equivalent to result line values of dummies *\/ */ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
|
fprintf(ficresvpl,"\n#****** "); |
|
printf("\n#****** "); |
|
fprintf(ficlog,"\n#****** "); |
|
for(j=1;j<=cptcovs;j++) { |
|
fprintf(ficresvpl,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
/* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
} |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* } */ |
|
fprintf(ficresvpl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
|
|
varpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
varprevlim(fileresvpl, ficresvpl, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyearp, k, strstart, nres); |
|
free_matrix(varpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
|
|
fclose(ficresvpl); |
|
printf("done variance-covariance of forward period prevalence\n");fflush(stdout); |
|
fprintf(ficlog,"done variance-covariance of forward period prevalence\n");fflush(ficlog); |
|
|
|
} |
|
/* Variance of back prevalence: varbprlim */ |
|
void varbprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **bprlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){ |
|
/*------- Variance of back (stable) prevalence------*/ |
|
|
|
char fileresvbl[FILENAMELENGTH]; |
|
FILE *ficresvbl; |
|
|
|
double **oldm, **savm; |
|
double **varbpl; /* Variances of back prevalence limits by age */ |
|
int i1, k, nres, j ; |
|
|
|
strcpy(fileresvbl,"VBL_"); |
|
strcat(fileresvbl,fileresu); |
|
if((ficresvbl=fopen(fileresvbl,"w"))==NULL) { |
|
printf("Problem with variance of back (stable) prevalence resultfile: %s\n", fileresvbl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(ficlog); |
|
|
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k=TKresult[nres]; |
|
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
|
/* for(k=1; k<=i1;k++){ */ |
|
/* if(i1 != 1 && TKresult[nres]!= k) */ |
|
/* continue; */ |
|
fprintf(ficresvbl,"\n#****** "); |
|
printf("\n#****** "); |
|
fprintf(ficlog,"\n#****** "); |
|
for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]); |
|
fprintf(ficresvbl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]); |
|
fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]); |
|
/* for(j=1;j<=cptcoveff;j++) { */ |
|
/* fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* } */ |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
} |
|
fprintf(ficresvbl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
|
|
varbpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
|
|
varbrevlim(fileresvbl, ficresvbl, varbpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, bprlim, ftolpl, mobilavproj, ncvyearp, k, strstart, nres); |
|
free_matrix(varbpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
|
|
fclose(ficresvbl); |
|
printf("done variance-covariance of back prevalence\n");fflush(stdout); |
|
fprintf(ficlog,"done variance-covariance of back prevalence\n");fflush(ficlog); |
|
|
|
} /* End of varbprlim */ |
|
|
/************** Forecasting *****not tested NB*************/ |
/************** Forecasting *****not tested NB*************/ |
/* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */ |
/* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */ |
Line 7813 void prwizard(int ncovmodel, int nlstate
|
Line 10638 void prwizard(int ncovmodel, int nlstate
|
/******************* Gompertz Likelihood ******************************/ |
/******************* Gompertz Likelihood ******************************/ |
double gompertz(double x[]) |
double gompertz(double x[]) |
{ |
{ |
double A,B,L=0.0,sump=0.,num=0.; |
double A=0.0,B=0.,L=0.0,sump=0.,num=0.; |
int i,n=0; /* n is the size of the sample */ |
int i,n=0; /* n is the size of the sample */ |
|
|
for (i=1;i<=imx ; i++) { |
for (i=1;i<=imx ; i++) { |
Line 7821 double gompertz(double x[])
|
Line 10646 double gompertz(double x[])
|
/* sump=sump+1;*/ |
/* sump=sump+1;*/ |
num=num+1; |
num=num+1; |
} |
} |
|
L=0.0; |
|
/* agegomp=AGEGOMP; */ |
/* for (i=0; i<=imx; i++) |
/* for (i=0; i<=imx; i++) |
if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ |
if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ |
|
|
for (i=1;i<=imx ; i++) |
for (i=1;i<=imx ; i++) { |
{ |
/* mu(a)=mu(agecomp)*exp(teta*(age-agegomp)) |
if (cens[i] == 1 && wav[i]>1) |
mu(a)=x[1]*exp(x[2]*(age-agegomp)); x[1] and x[2] are per year. |
A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))); |
* L= Product mu(agedeces)exp(-\int_ageexam^agedc mu(u) du ) for a death between agedc (in month) |
|
* and agedc +1 month, cens[i]=0: log(x[1]/YEARM) |
if (cens[i] == 0 && wav[i]>1) |
* + |
|
* exp(-\int_ageexam^agecens mu(u) du ) when censored, cens[i]=1 |
|
*/ |
|
if (wav[i] > 1 || agedc[i] < AGESUP) { |
|
if (cens[i] == 1){ |
|
A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))); |
|
} else if (cens[i] == 0){ |
A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))) |
A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))) |
+log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM); |
+log(x[1]/YEARM) +x[2]*(agedc[i]-agegomp)+log(YEARM); |
|
} else |
|
printf("Gompertz cens[%d] neither 1 nor 0\n",i); |
/*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ |
/*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ |
if (wav[i] > 1 ) { /* ??? */ |
L=L+A*weight[i]; |
L=L+A*weight[i]; |
|
/* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ |
/* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ |
} |
} |
} |
} |
|
|
/*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ |
/*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ |
|
|
return -2*L*num/sump; |
return -2*L*num/sump; |
} |
} |
Line 7851 double gompertz(double x[])
|
Line 10682 double gompertz(double x[])
|
/******************* Gompertz_f Likelihood ******************************/ |
/******************* Gompertz_f Likelihood ******************************/ |
double gompertz_f(const gsl_vector *v, void *params) |
double gompertz_f(const gsl_vector *v, void *params) |
{ |
{ |
double A,B,LL=0.0,sump=0.,num=0.; |
double A=0.,B=0.,LL=0.0,sump=0.,num=0.; |
double *x= (double *) v->data; |
double *x= (double *) v->data; |
int i,n=0; /* n is the size of the sample */ |
int i,n=0; /* n is the size of the sample */ |
|
|
Line 7944 int readdata(char datafile[], int firsto
|
Line 10775 int readdata(char datafile[], int firsto
|
int i=0, j=0, n=0, iv=0, v; |
int i=0, j=0, n=0, iv=0, v; |
int lstra; |
int lstra; |
int linei, month, year,iout; |
int linei, month, year,iout; |
|
int noffset=0; /* This is the offset if BOM data file */ |
char line[MAXLINE], linetmp[MAXLINE]; |
char line[MAXLINE], linetmp[MAXLINE]; |
char stra[MAXLINE], strb[MAXLINE]; |
char stra[MAXLINE], strb[MAXLINE]; |
char *stratrunc; |
char *stratrunc; |
|
|
DummyV=ivector(1,NCOVMAX); /* 1 to 3 */ |
/* DummyV=ivector(-1,NCOVMAX); /\* 1 to 3 *\/ */ |
FixedV=ivector(1,NCOVMAX); /* 1 to 3 */ |
/* FixedV=ivector(-1,NCOVMAX); /\* 1 to 3 *\/ */ |
|
|
for(v=1; v <=ncovcol;v++){ |
ncovcolt=ncovcol+nqv+ntv+nqtv; /* total of covariates in the data, not in the model equation */ |
DummyV[v]=0; |
|
FixedV[v]=0; |
if((fic=fopen(datafile,"r"))==NULL) { |
} |
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
for(v=ncovcol+1; v <=ncovcol+nqv;v++){ |
fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; |
DummyV[v]=1; |
|
FixedV[v]=0; |
|
} |
|
for(v=ncovcol+nqv+1; v <=ncovcol+nqv+ntv;v++){ |
|
DummyV[v]=0; |
|
FixedV[v]=1; |
|
} |
|
for(v=ncovcol+nqv+ntv+1; v <=ncovcol+nqv+ntv+nqtv;v++){ |
|
DummyV[v]=1; |
|
FixedV[v]=1; |
|
} |
|
for(v=1; v <=ncovcol+nqv+ntv+nqtv;v++){ |
|
printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]); |
|
fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]); |
|
} |
} |
|
|
|
/* Is it a BOM UTF-8 Windows file? */ |
|
/* First data line */ |
|
linei=0; |
|
while(fgets(line, MAXLINE, fic)) { |
|
noffset=0; |
|
if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */ |
|
{ |
|
noffset=noffset+3; |
|
printf("# Data file '%s' is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);fflush(stdout); |
|
fprintf(ficlog,"# Data file '%s' is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile); |
|
fflush(ficlog); return 1; |
|
} |
|
/* else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/ |
|
else if( line[0] == (char)0xFF && line[1] == (char)0xFE) |
|
{ |
|
noffset=noffset+2; |
|
printf("# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout); |
|
fprintf(ficlog,"# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile); |
|
fflush(ficlog); return 1; |
|
} |
|
else if( line[0] == 0 && line[1] == 0) |
|
{ |
|
if( line[2] == (char)0xFE && line[3] == (char)0xFF){ |
|
noffset=noffset+4; |
|
printf("# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout); |
|
fprintf(ficlog,"# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile); |
|
fflush(ficlog); return 1; |
|
} |
|
} else{ |
|
;/*printf(" Not a BOM file\n");*/ |
|
} |
|
/* If line starts with a # it is a comment */ |
|
if (line[noffset] == '#') { |
|
linei=linei+1; |
|
break; |
|
}else{ |
|
break; |
|
} |
|
} |
|
fclose(fic); |
if((fic=fopen(datafile,"r"))==NULL) { |
if((fic=fopen(datafile,"r"))==NULL) { |
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; |
fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; |
} |
} |
|
/* Not a Bom file */ |
|
|
i=1; |
i=1; |
linei=0; |
|
while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) { |
while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) { |
linei=linei+1; |
linei=linei+1; |
for(j=strlen(line); j>=0;j--){ /* Untabifies line */ |
for(j=strlen(line); j>=0;j--){ /* Untabifies line */ |
Line 8004 int readdata(char datafile[], int firsto
|
Line 10862 int readdata(char datafile[], int firsto
|
if(strb[0]=='.') { /* Missing value */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
cotqvar[j][iv][i]=-1; /* 0.0/0.0 */ |
cotqvar[j][iv][i]=-1; /* 0.0/0.0 */ |
cotvar[j][ntv+iv][i]=-1; /* For performance reasons */ |
cotvar[j][ncovcol+nqv+ntv+iv][i]=-1; /* For performance reasons */ |
if(isalpha(strb[1])) { /* .m or .d Really Missing value */ |
if(isalpha(strb[1])) { /* .m or .d Really Missing value */ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog); |
Line 8024 int readdata(char datafile[], int firsto
|
Line 10882 int readdata(char datafile[], int firsto
|
return 1; |
return 1; |
} |
} |
cotqvar[j][iv][i]=dval; |
cotqvar[j][iv][i]=dval; |
cotvar[j][ntv+iv][i]=dval; |
cotvar[j][ncovcol+nqv+ntv+iv][i]=dval; /* because cotvar starts now at first ntv */ |
} |
} |
strcpy(line,stra); |
strcpy(line,stra); |
}/* end loop ntqv */ |
}/* end loop ntqv */ |
Line 8045 int readdata(char datafile[], int firsto
|
Line 10903 int readdata(char datafile[], int firsto
|
} |
} |
if(lval <-1 || lval >1){ |
if(lval <-1 || lval >1){ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j); |
Exiting.\n",lval,linei, i,line,iv,j); |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
Exiting.\n",lval,linei, i,line,iv,j);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
cotvar[j][iv][i]=(double)(lval); |
cotvar[j][ncovcol+nqv+iv][i]=(double)(lval); |
strcpy(line,stra); |
strcpy(line,stra); |
}/* end loop ntv */ |
}/* end loop ntv */ |
|
|
Line 8076 int readdata(char datafile[], int firsto
|
Line 10934 int readdata(char datafile[], int firsto
|
errno=0; |
errno=0; |
lval=strtol(strb,&endptr,10); |
lval=strtol(strb,&endptr,10); |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
if( strb[0]=='\0' || (*endptr != '\0' )){ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
|
return 1; |
|
}else if( lval==0 || lval > nlstate+ndeath){ |
|
printf("Error in data around '%s' at line number %d for individual %d, '%s'\n Should be a state at wave %d. A state should be 1 to %d and not %ld.\n Fix your data file '%s'! Exiting.\n", strb, linei,i,line,j,nlstate+ndeath, lval, datafile);fflush(stdout); |
|
fprintf(ficlog,"Error in data around '%s' at line number %d for individual %d, '%s'\n Should be a state at wave %d. A state should be 1 to %d and not %ld.\n Fix your data file '%s'! Exiting.\n", strb, linei,i,line,j,nlstate+ndeath, lval, datafile); fflush(ficlog); |
return 1; |
return 1; |
} |
} |
} |
} |
Line 8099 int readdata(char datafile[], int firsto
|
Line 10961 int readdata(char datafile[], int firsto
|
return 1; |
return 1; |
} |
} |
anint[j][i]= (double) year; |
anint[j][i]= (double) year; |
mint[j][i]= (double)month; |
mint[j][i]= (double)month; |
|
/* if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){ */ |
|
/* printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */ |
|
/* fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */ |
|
/* } */ |
strcpy(line,stra); |
strcpy(line,stra); |
} /* End loop on waves */ |
} /* End loop on waves */ |
|
|
Line 8138 int readdata(char datafile[], int firsto
|
Line 11004 int readdata(char datafile[], int firsto
|
|
|
} |
} |
annais[i]=(double)(year); |
annais[i]=(double)(year); |
moisnais[i]=(double)(month); |
moisnais[i]=(double)(month); |
|
for (j=1;j<=maxwav;j++){ |
|
if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){ |
|
printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j,(int)moisnais[i],(int)annais[i]); |
|
fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j, (int)moisnais[i],(int)annais[i]); |
|
} |
|
} |
|
|
strcpy(line,stra); |
strcpy(line,stra); |
|
|
/* Sample weight */ |
/* Sample weight */ |
Line 8158 int readdata(char datafile[], int firsto
|
Line 11031 int readdata(char datafile[], int firsto
|
cutv(stra, strb, line, ' '); |
cutv(stra, strb, line, ' '); |
if(strb[0]=='.') { /* Missing value */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
|
coqvar[iv][i]=NAN; |
|
covar[ncovcol+iv][i]=NAN; /* including qvar in standard covar for performance reasons */ |
}else{ |
}else{ |
errno=0; |
errno=0; |
/* what_kind_of_number(strb); */ |
/* what_kind_of_number(strb); */ |
Line 8251 void removefirstspace(char **stri){/*, c
|
Line 11126 void removefirstspace(char **stri){/*, c
|
*stri=p2; |
*stri=p2; |
} |
} |
|
|
int decoderesult ( char resultline[], int nres) |
int decoderesult( char resultline[], int nres) |
/**< This routine decode one result line and returns the combination # of dummy covariates only **/ |
/**< This routine decode one result line and returns the combination # of dummy covariates only **/ |
{ |
{ |
int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0; |
int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0; |
char resultsav[MAXLINE]; |
char resultsav[MAXLINE]; |
int resultmodel[MAXLINE]; |
/* int resultmodel[MAXLINE]; */ |
int modelresult[MAXLINE]; |
/* int modelresult[MAXLINE]; */ |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
|
|
removefirstspace(&resultline); |
removefirstspace(&resultline); |
printf("decoderesult:%s\n",resultline); |
printf("decoderesult:%s\n",resultline); |
|
|
if (strstr(resultline,"v") !=0){ |
strcpy(resultsav,resultline); |
printf("Error. 'v' must be in upper case 'V' result: %s ",resultline); |
/* printf("Decoderesult resultsav=\"%s\" resultline=\"%s\"\n", resultsav, resultline); */ |
fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog); |
|
return 1; |
|
} |
|
trimbb(resultsav, resultline); |
|
if (strlen(resultsav) >1){ |
if (strlen(resultsav) >1){ |
j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */ |
j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' in this resultline */ |
|
} |
|
if(j == 0 && cptcovs== 0){ /* Resultline but no = and no covariate in the model */ |
|
TKresult[nres]=0; /* Combination for the nresult and the model */ |
|
return (0); |
} |
} |
if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */ |
if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */ |
printf("ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs); |
fprintf(ficlog,"ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, 1+age+%s.\n",j, cptcovs, model);fflush(ficlog); |
fprintf(ficlog,"ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs); |
printf("ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, 1+age+%s.\n",j, cptcovs, model);fflush(stdout); |
|
if(j==0) |
|
return 1; |
} |
} |
for(k=1; k<=j;k++){ /* Loop on any covariate of the result line */ |
for(k=1; k<=j;k++){ /* Loop on any covariate of the RESULT LINE */ |
if(nbocc(resultsav,'=') >1){ |
if(nbocc(resultsav,'=') >1){ |
cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' |
cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' (stra is the rest of the resultline to be analyzed in the next loop *//* resultsav= "V4=1 V5=25.1 V3=0" stra= "V5=25.1 V3=0" strb= "V4=1" */ |
resultsav= V4=1 V5=25.1 V3=0 strb=V3=0 stra= V4=1 V5=25.1 */ |
/* If resultsav= "V4= 1 V5=25.1 V3=0" with a blank then strb="V4=" and stra="1 V5=25.1 V3=0" */ |
cutl(strc,strd,strb,'='); /* strb:V4=1 strc=1 strd=V4 */ |
cutl(strc,strd,strb,'='); /* strb:"V4=1" strc="1" strd="V4" */ |
|
/* If a blank, then strc="V4=" and strd='\0' */ |
|
if(strc[0]=='\0'){ |
|
printf("Error in resultline, probably a blank after the \"%s\", \"result:%s\", stra=\"%s\" resultsav=\"%s\"\n",strb,resultline, stra, resultsav); |
|
fprintf(ficlog,"Error in resultline, probably a blank after the \"V%s=\", resultline=%s\n",strb,resultline); |
|
return 1; |
|
} |
}else |
}else |
cutl(strc,strd,resultsav,'='); |
cutl(strc,strd,resultsav,'='); |
Tvalsel[k]=atof(strc); /* 1 */ |
Tvalsel[k]=atof(strc); /* 1 */ /* Tvalsel of k is the float value of the kth covariate appearing in this result line */ |
|
|
cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */; |
cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */; |
Tvarsel[k]=atoi(strc); |
Tvarsel[k]=atoi(strc); /* 4 */ /* Tvarsel is the id of the kth covariate in the result line Tvarsel[1] in "V4=1.." is 4.*/ |
/* Typevarsel[k]=1; /\* 1 for age product *\/ */ |
/* Typevarsel[k]=1; /\* 1 for age product *\/ */ |
/* cptcovsel++; */ |
/* cptcovsel++; */ |
if (nbocc(stra,'=') >0) |
if (nbocc(stra,'=') >0) |
strcpy(resultsav,stra); /* and analyzes it */ |
strcpy(resultsav,stra); /* and analyzes it */ |
} |
} |
/* Checking for missing or useless values in comparison of current model needs */ |
/* Checking for missing or useless values in comparison of current model needs */ |
for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
/* Feeds resultmodel[nres][k1]=k2 for k1th product covariate with age in the model equation fed by the index k2 of the resutline*/ |
|
for(k1=1; k1<= cptcovt ;k1++){ /* Loop on MODEL LINE V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
if(Typevar[k1]==0){ /* Single covariate in model */ |
if(Typevar[k1]==0){ /* Single covariate in model */ |
|
/* 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
match=0; |
match=0; |
for(k2=1; k2 <=j;k2++){/* result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
if(Tvar[k1]==Tvarsel[k2]) {/* Tvar[1]=5 == Tvarsel[2]=5 */ |
if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5 */ |
modelresult[k2]=k1;/* modelresult[2]=1 modelresult[1]=2 modelresult[3]=3 modelresult[6]=4 modelresult[9]=5 */ |
modelresult[nres][k2]=k1;/* modelresult[2]=1 modelresult[1]=2 modelresult[3]=3 modelresult[6]=4 modelresult[9]=5 */ |
match=1; |
match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */ |
break; |
break; |
} |
} |
} |
} |
if(match == 0){ |
if(match == 0){ |
printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model); |
printf("Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s. Tvar[k1=%d]=%d is different from Tvarsel[k2=%d]=%d.\n",Tvar[k1], resultline, model,k1, Tvar[k1], k2, Tvarsel[k2]); |
|
fprintf(ficlog,"Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s\n",Tvar[k1], resultline, model); |
|
return 1; |
} |
} |
} |
}else if(Typevar[k1]==1){ /* Product with age We want to get the position k2 in the resultline of the product k1 in the model line*/ |
} |
/* We feed resultmodel[k1]=k2; */ |
|
match=0; |
|
for(k2=1; k2 <=j;k2++){/* Loop on resultline. jth occurence of = signs in the result line. In result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5 */ |
|
modelresult[nres][k2]=k1;/* we found a Vn=1 corrresponding to Vn*age in the model modelresult[2]=1 modelresult[1]=2 modelresult[3]=3 modelresult[6]=4 modelresult[9]=5 */ |
|
resultmodel[nres][k1]=k2; /* Added here */ |
|
/* printf("Decoderesult first modelresult[k2=%d]=%d (k1) V%d*AGE\n",k2,k1,Tvar[k1]); */ |
|
match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */ |
|
break; |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]); |
|
fprintf(ficlog,"Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]); |
|
return 1; |
|
} |
|
}else if(Typevar[k1]==2 || Typevar[k1]==3){ /* Product with or without age. We want to get the position in the resultline of the product in the model line*/ |
|
/* resultmodel[nres][of such a Vn * Vm product k1] is not unique, so can't exist, we feed Tvard[k1][1] and [2] */ |
|
match=0; |
|
/* printf("Decoderesult very first Product Tvardk[k1=%d][1]=%d Tvardk[k1=%d][2]=%d V%d * V%d\n",k1,Tvardk[k1][1],k1,Tvardk[k1][2],Tvardk[k1][1],Tvardk[k1][2]); */ |
|
for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
if(Tvardk[k1][1]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5 */ |
|
/* modelresult[k2]=k1; */ |
|
/* printf("Decoderesult first Product modelresult[k2=%d]=%d (k1) V%d * \n",k2,k1,Tvarsel[k2]); */ |
|
match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */ |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line (Product without age first variable or double product with age): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model); |
|
fprintf(ficlog,"Error in result line (Product without age first variable or double product with age): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model); |
|
return 1; |
|
} |
|
match=0; |
|
for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
if(Tvardk[k1][2]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5 */ |
|
/* modelresult[k2]=k1;*/ |
|
/* printf("Decoderesult second Product modelresult[k2=%d]=%d (k1) * V%d \n ",k2,k1,Tvarsel[k2]); */ |
|
match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */ |
|
break; |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line (Product without age second variable or double product with age): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model); |
|
fprintf(ficlog,"Error in result line (Product without age second variable or double product with age): V%d is missing in result : %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model); |
|
return 1; |
|
} |
|
}/* End of testing */ |
|
}/* End loop cptcovt */ |
/* Checking for missing or useless values in comparison of current model needs */ |
/* Checking for missing or useless values in comparison of current model needs */ |
for(k2=1; k2 <=j;k2++){ /* result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
/* Feeds resultmodel[nres][k1]=k2 for single covariate (k1) in the model equation */ |
|
for(k2=1; k2 <=j;k2++){ /* j or cptcovs is the number of single covariates used either in the model line as well as in the result line (dummy or quantitative) |
|
* Loop on resultline variables: result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
match=0; |
match=0; |
for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
for(k1=1; k1<= cptcovt ;k1++){ /* loop on model: model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
if(Typevar[k1]==0){ /* Single */ |
if(Typevar[k1]==0){ /* Single only */ |
if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4 */ |
if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4 What if a product? */ |
resultmodel[k1]=k2; /* resultmodel[2]=1 resultmodel[1]=2 resultmodel[3]=3 resultmodel[6]=4 resultmodel[9]=5 */ |
resultmodel[nres][k1]=k2; /* k1th position in the model equation corresponds to k2th position in the result line. resultmodel[2]=1 resultmodel[1]=2 resultmodel[3]=3 resultmodel[6]=4 resultmodel[9]=5 */ |
|
modelresult[nres][k2]=k1; /* k1th position in the model equation corresponds to k2th position in the result line. modelresult[1]=2 modelresult[2]=1 modelresult[3]=3 remodelresult[4]=6 modelresult[5]=9 */ |
++match; |
++match; |
} |
} |
} |
} |
} |
} |
if(match == 0){ |
if(match == 0){ |
printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model); |
printf("Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model); |
|
fprintf(ficlog,"Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model); |
|
return 1; |
}else if(match > 1){ |
}else if(match > 1){ |
printf("Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model); |
printf("Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model); |
|
fprintf(ficlog,"Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model); |
|
return 1; |
} |
} |
} |
} |
|
/* cptcovres=j /\* Number of variables in the resultline is equal to cptcovs and thus useless *\/ */ |
/* We need to deduce which combination number is chosen and save quantitative values */ |
/* We need to deduce which combination number is chosen and save quantitative values */ |
/* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
/* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
/* result line V4=1 V5=25.1 V3=0 V2=8 V1=1 */ |
/* nres=1st result line: V4=1 V5=25.1 V3=0 V2=8 V1=1 */ |
/* should give a combination of dummy V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 5 + (1offset) = 6*/ |
/* should correspond to the combination 6 of dummy: V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 1*1 + 0*2 + 1*4 = 5 + (1offset) = 6*/ |
/* result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
/* nres=2nd result line: V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
/* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/ |
/* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/ |
/* 1 0 0 0 */ |
/* 1 0 0 0 */ |
/* 2 1 0 0 */ |
/* 2 1 0 0 */ |
/* 3 0 1 0 */ |
/* 3 0 1 0 */ |
/* 4 1 1 0 */ /* V4=1, V3=1, V1=0 */ |
/* 4 1 1 0 */ /* V4=1, V3=1, V1=0 (nres=2)*/ |
/* 5 0 0 1 */ |
/* 5 0 0 1 */ |
/* 6 1 0 1 */ /* V4=1, V3=0, V1=1 */ |
/* 6 1 0 1 */ /* V4=1, V3=0, V1=1 (nres=1)*/ |
/* 7 0 1 1 */ |
/* 7 0 1 1 */ |
/* 8 1 1 1 */ |
/* 8 1 1 1 */ |
/* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */ |
/* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */ |
/* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */ |
/* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */ |
/* V5*age V5 known which value for nres? */ |
/* V5*age V5 known which value for nres? */ |
/* Tqinvresult[2]=8 Tqinvresult[1]=25.1 */ |
/* Tqinvresult[2]=8 Tqinvresult[1]=25.1 */ |
for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* model line */ |
for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* cptcovt number of covariates (excluding 1 and age or age*age) in the MODEL equation. |
if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Single dummy */ |
* loop on position k1 in the MODEL LINE */ |
k3= resultmodel[k1]; /* resultmodel[2(V4)] = 1=k3 */ |
/* k counting number of combination of single dummies in the equation model */ |
k2=(int)Tvarsel[k3]; /* Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */ |
/* k4 counting single dummies in the equation model */ |
k+=Tvalsel[k3]*pow(2,k4); /* Tvalsel[1]=1 */ |
/* k4q counting single quantitatives in the equation model */ |
Tresult[nres][k4+1]=Tvalsel[k3];/* Tresult[nres][1]=1(V4=1) Tresult[nres][2]=0(V3=0) */ |
if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Dummy and Single, fixed or timevarying, k1 is sorting according to MODEL, but k3 to resultline */ |
Tvresult[nres][k4+1]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */ |
/* k4+1= (not always if quant in model) position in the resultline V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) */ |
|
/* modelresult[k3]=k1: k3th position in the result line corresponds to the k1 position in the model line (doesn't work with products)*/ |
|
/* Value in the (current nres) resultline of the variable at the k1th position in the model equation resultmodel[nres][k1]= k3 */ |
|
/* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline */ |
|
/* k3 is the position in the nres result line of the k1th variable of the model equation */ |
|
/* Tvarsel[k3]: Name of the variable at the k3th position in the result line. */ |
|
/* Tvalsel[k3]: Value of the variable at the k3th position in the result line. */ |
|
/* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline */ |
|
/* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline */ |
|
/* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line */ |
|
/* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line */ |
|
k3= resultmodel[nres][k1]; /* From position k1 in model get position k3 in result line */ |
|
/* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/ |
|
k2=(int)Tvarsel[k3]; /* from position k3 in resultline get name k2: nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/ |
|
k+=Tvalsel[k3]*pow(2,k4); /* nres=1 k1=2 Tvalsel[1]=1 (V4=1); k1=3 k3=2 Tvalsel[2]=0 (V3=0) */ |
|
TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][Name]=Value; stores the value into the name of the variable. */ |
|
/* Tinvresult[nres][4]=1 */ |
|
/* Tresult[nres][k4+1]=Tvalsel[k3];/\* Tresult[nres=2][1]=1(V4=1) Tresult[nres=2][2]=0(V3=0) *\/ */ |
|
Tresult[nres][k3]=Tvalsel[k3];/* Tresult[nres=2][1]=1(V4=1) Tresult[nres=2][2]=0(V3=0) */ |
|
/* Tvresult[nres][k4+1]=(int)Tvarsel[k3];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */ |
|
Tvresult[nres][k3]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */ |
Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */ |
Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */ |
printf("Decoderesult Dummy k=%d, V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k2, k3, (int)Tvalsel[k3], k4); |
precov[nres][k1]=Tvalsel[k3]; /* Value from resultline of the variable at the k1 position in the model */ |
|
/* printf("Decoderesult Dummy k=%d, k1=%d precov[nres=%d][k1=%d]=%.f V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k1, nres, k1,precov[nres][k1], k2, k3, (int)Tvalsel[k3], k4); */ |
k4++;; |
k4++;; |
} else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Single quantitative */ |
}else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Quantitative and single */ |
k3q= resultmodel[k1]; /* resultmodel[2] = 1=k3 */ |
/* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */ |
k2q=(int)Tvarsel[k3q]; /* Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */ |
/* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline */ |
Tqresult[nres][k4q+1]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */ |
/* Tqinvresult[nres][Name of a quantitative variable]= value of the variable in the result line */ |
Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */ |
k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 5 =k3q */ |
|
k2q=(int)Tvarsel[k3q]; /* Name of variable at k3q th position in the resultline */ |
|
/* Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */ |
|
/* Tqresult[nres][k4q+1]=Tvalsel[k3q]; /\* Tqresult[nres][1]=25.1 *\/ */ |
|
/* Tvresult[nres][k4q+1]=(int)Tvarsel[k3q];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */ |
|
/* Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /\* Tvqresult[nres][1]=5 *\/ */ |
|
Tqresult[nres][k3q]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */ |
|
Tvresult[nres][k3q]=(int)Tvarsel[k3q];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */ |
|
Tvqresult[nres][k3q]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */ |
Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */ |
Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */ |
printf("Decoderesult Quantitative nres=%d, V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); |
TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */ |
|
precov[nres][k1]=Tvalsel[k3q]; |
|
/* printf("Decoderesult Quantitative nres=%d,precov[nres=%d][k1=%d]=%.f V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, nres, k1,precov[nres][k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); */ |
k4q++;; |
k4q++;; |
|
}else if( Dummy[k1]==2 ){ /* For dummy with age product "V2+V3+V4+V6+V7+V6*V2+V7*V2+V6*V3+V7*V3+V6*V4+V7*V4+age*V2+age*V3+age*V4+age*V6+age*V7+age*V6*V2+age*V6*V3+age*V7*V3+age*V6*V4+age*V7*V4\r"*/ |
|
/* Tvar[k1]; */ /* Age variable */ /* 17 age*V6*V2 ?*/ |
|
/* Wrong we want the value of variable name Tvar[k1] */ |
|
if(Typevar[k1]==2 || Typevar[k1]==3 ){ /* For product quant or dummy (with or without age) */ |
|
precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]]; |
|
/* printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]); */ |
|
}else{ |
|
k3= resultmodel[nres][k1]; /* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/ |
|
k2=(int)Tvarsel[k3]; /* nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/ |
|
TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][4]=1 */ |
|
precov[nres][k1]=Tvalsel[k3]; |
|
} |
|
/* printf("Decoderesult Dummy with age k=%d, k1=%d precov[nres=%d][k1=%d]=%.f Tvar[%d]=V%d k2=Tvarsel[%d]=%d Tvalsel[%d]=%d\n",k, k1, nres, k1,precov[nres][k1], k1, Tvar[k1], k3,(int)Tvarsel[k3], k3, (int)Tvalsel[k3]); */ |
|
}else if( Dummy[k1]==3 ){ /* For quant with age product */ |
|
if(Typevar[k1]==2 || Typevar[k1]==3 ){ /* For product quant or dummy (with or without age) */ |
|
precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]]; |
|
/* printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]); */ |
|
}else{ |
|
k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 25.1=k3q */ |
|
k2q=(int)Tvarsel[k3q]; /* Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */ |
|
TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* TinvDoQresult[nres][5]=25.1 */ |
|
precov[nres][k1]=Tvalsel[k3q]; |
|
} |
|
/* printf("Decoderesult Quantitative with age nres=%d, k1=%d, precov[nres=%d][k1=%d]=%f Tvar[%d]=V%d V(k2q=%d)= Tvarsel[%d]=%d, Tvalsel[%d]=%f\n",nres, k1, nres, k1,precov[nres][k1], k1, Tvar[k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); */ |
|
}else if(Typevar[k1]==2 || Typevar[k1]==3 ){ /* For product quant or dummy (with or without age) */ |
|
precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]]; |
|
/* printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]); */ |
|
}else{ |
|
printf("Error Decoderesult probably a product Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]); |
|
fprintf(ficlog,"Error Decoderesult probably a product Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]); |
} |
} |
} |
} |
|
|
TKresult[nres]=++k; /* Combination for the nresult and the model */ |
TKresult[nres]=++k; /* Number of combinations of dummies for the nresult and the model =Tvalsel[k3]*pow(2,k4) + 1*/ |
return (0); |
return (0); |
} |
} |
|
|
Line 8377 int decodemodel( char model[], int lasto
|
Line 11379 int decodemodel( char model[], int lasto
|
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
* - cptcovage number of covariates with age*products =2 |
* - cptcovage number of covariates with age*products =2 |
* - cptcovs number of simple covariates |
* - cptcovs number of simple covariates |
|
* ncovcolt=ncovcol+nqv+ntv+nqtv total of covariates in the data, not in the model equation |
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
* which is a new column after the 9 (ncovcol) variables. |
* which is a new column after the 9 (ncovcol+nqv+ntv+nqtv) variables. |
* - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual |
* - if k is a product Vn*Vm, covar[k][i] is filled with correct values for each individual |
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
*/ |
*/ |
|
/* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
{ |
{ |
int i, j, k, ks, v; |
int i, j, k, ks, v; |
int j1, k1, k2, k3, k4; |
int n,m; |
char modelsav[80]; |
int j1, k1, k11, k12, k2, k3, k4; |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
char modelsav[300]; |
|
char stra[300], strb[300], strc[300], strd[300],stre[300],strf[300]; |
char *strpt; |
char *strpt; |
|
int **existcomb; |
|
|
|
existcomb=imatrix(1,NCOVMAX,1,NCOVMAX); |
|
for(i=1;i<=NCOVMAX;i++) |
|
for(j=1;j<=NCOVMAX;j++) |
|
existcomb[i][j]=0; |
|
|
/*removespace(model);*/ |
/*removespace(model);*/ |
if (strlen(model) >1){ /* If there is at least 1 covariate */ |
if (strlen(model) >1){ /* If there is at least 1 covariate */ |
j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0; |
j=0, j1=0, k1=0, k12=0, k2=-1, ks=0, cptcovn=0; |
if (strstr(model,"AGE") !=0){ |
if (strstr(model,"AGE") !=0){ |
printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model); |
printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model); |
fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog); |
fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
if (strstr(model,"v") !=0){ |
if (strstr(model,"v") !=0){ |
printf("Error. 'v' must be in upper case 'V' model=%s ",model); |
printf("Error. 'v' must be in upper case 'V' model=1+age+%s ",model); |
fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog); |
fprintf(ficlog,"Error. 'v' must be in upper case model=1+age+%s ",model);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
strcpy(modelsav,model); |
strcpy(modelsav,model); |
if ((strpt=strstr(model,"age*age")) !=0){ |
if ((strpt=strstr(model,"age*age")) !=0){ |
printf(" strpt=%s, model=%s\n",strpt, model); |
printf(" strpt=%s, model=1+age+%s\n",strpt, model); |
if(strpt != model){ |
if(strpt != model){ |
printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
printf("Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
corresponding column of parameters.\n",model); |
corresponding column of parameters.\n",model); |
fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
fprintf(ficlog,"Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
corresponding column of parameters.\n",model); fflush(ficlog); |
corresponding column of parameters.\n",model); fflush(ficlog); |
return 1; |
return 1; |
Line 8425 int decodemodel( char model[], int lasto
|
Line 11436 int decodemodel( char model[], int lasto
|
substrchaine(modelsav, model, "age*age"); |
substrchaine(modelsav, model, "age*age"); |
}else |
}else |
nagesqr=0; |
nagesqr=0; |
if (strlen(modelsav) >1){ |
if (strlen(modelsav) >1){ /* V2 +V3 +V4 +V6 +V7 +V6*V2 +V7*V2 +V6*V3 +V7*V3 +V6*V4 +V7*V4 +age*V2 +age*V3 +age*V4 +age*V6 +age*V7 +age*V6*V2 +V7*V2 +age*V6*V3 +age*V7*V3 +age*V6*V4 +age*V7*V4 */ |
j=nbocc(modelsav,'+'); /**< j=Number of '+' */ |
j=nbocc(modelsav,'+'); /**< j=Number of '+' */ |
j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */ |
j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */ |
cptcovs=j+1-j1; /**< Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2 */ |
cptcovs=0; /**< Number of simple covariates V1 +V1*age +V3 +V3*V4 +age*age => V1 + V3 =4+1-3=2 Wrong */ |
cptcovt= j+1; /* Number of total covariates in the model, not including |
cptcovt= j+1; /* Number of total covariates in the model, not including |
* cst, age and age*age |
* cst, age and age*age |
* V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/ |
* V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/ |
/* including age products which are counted in cptcovage. |
/* including age products which are counted in cptcovage. |
* but the covariates which are products must be treated |
* but the covariates which are products must be treated |
* separately: ncovn=4- 2=2 (V1+V3). */ |
* separately: ncovn=4- 2=2 (V1+V3). */ |
cptcovprod=j1; /**< Number of products V1*V2 +v3*age = 2 */ |
cptcovprod=0; /**< Number of products V1*V2 +v3*age = 2 */ |
|
cptcovdageprod=0; /* Number of doouble products with age age*Vn*VM or Vn*age*Vm or Vn*Vm*age */ |
cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */ |
cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */ |
|
cptcovprodage=0; |
|
/* cptcovprodage=nboccstr(modelsav,"age");*/ |
|
|
/* Design |
/* Design |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight |
Line 8445 int decodemodel( char model[], int lasto
|
Line 11458 int decodemodel( char model[], int lasto
|
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 |
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 |
* k= 1 2 3 4 5 6 7 8 |
* k= 1 2 3 4 5 6 7 8 |
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
* covar[k,i], value of kth covariate if not including age for individual i: |
* covar[k,i], are for fixed covariates, value of kth covariate if not including age for individual i: |
* covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8) |
* covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8) |
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[2]=1 Tvar[4]=3 Tvar[8]=8 |
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[2]=1 Tvar[4]=3 Tvar[8]=8 |
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
* Tage[++cptcovage]=k |
* Tage[++cptcovage]=k |
* if products, new covar are created after ncovcol with k1 |
* if products, new covar are created after ncovcol + nqv (quanti fixed) with k1 |
* Tvar[k]=ncovcol+k1; # of the kth covariate product: Tvar[5]=ncovcol+1=10 Tvar[6]=ncovcol+1=11 |
* Tvar[k]=ncovcol+k1; # of the kth covariate product: Tvar[5]=ncovcol+1=10 Tvar[6]=ncovcol+1=11 |
* Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product |
* Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product |
* Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8 |
* Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8 |
* Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2]; |
* Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2]; |
* Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted |
* Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 |
* < ncovcol=8 > |
* < ncovcol=8 8 fixed covariate. Additional starts at 9 (V5*V6) and 10(V7*V8) > |
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 d1 d1 d2 d2 |
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 d1 d1 d2 d2 |
* k= 1 2 3 4 5 6 7 8 9 10 11 12 |
* k= 1 2 3 4 5 6 7 8 9 10 11 12 |
* Tvar[k]= 2 1 3 3 10 11 8 8 5 6 7 8 |
* Tvard[k]= 2 1 3 3 10 11 8 8 5 6 7 8 |
* p Tvar[1]@12={2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
* p Tvar[1]@12={2, 1, 3, 3, 9, 10, 8, 8} |
* p Tprod[1]@2={ 6, 5} |
* p Tprod[1]@2={ 6, 5} |
*p Tvard[1][1]@4= {7, 8, 5, 6} |
*p Tvard[1][1]@4= {7, 8, 5, 6} |
* covar[k][i]= V2 V1 ? V3 V5*V6? V7*V8? ? V8 |
* covar[k][i]= V2 V1 ? V3 V5*V6? V7*V8? ? V8 |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
*How to reorganize? |
*How to reorganize? Tvars(orted) |
* Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age |
* Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age |
* Tvars {2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
* Tvars {2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
* {2, 1, 4, 8, 5, 6, 3, 7} |
* {2, 1, 4, 8, 5, 6, 3, 7} |
Line 8491 int decodemodel( char model[], int lasto
|
Line 11504 int decodemodel( char model[], int lasto
|
Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0; |
Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0; |
} |
} |
cptcovage=0; |
cptcovage=0; |
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */ |
|
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' |
/* First loop in order to calculate */ |
modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ |
/* for age*VN*Vm |
if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ |
* Provides, Typevar[k], Tage[cptcovage], existcomb[n][m], FixedV[ncovcolt+k12] |
|
* Tprod[k1]=k Tposprod[k]=k1; Tvard[k1][1] =m; |
|
*/ |
|
/* Needs FixedV[Tvardk[k][1]] */ |
|
/* For others: |
|
* Sets Typevar[k]; |
|
* Tvar[k]=ncovcol+nqv+ntv+nqtv+k11; |
|
* Tposprod[k]=k11; |
|
* Tprod[k11]=k; |
|
* Tvardk[k][1] =m; |
|
* Needs FixedV[Tvardk[k][1]] == 0 |
|
*/ |
|
|
|
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model line */ |
|
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' cutl from left to right |
|
modelsav==V2+V1+V5*age+V4+V3*age strb=V3*age stra=V2+V1V5*age+V4 */ /* <model> "V5+V4+V3+V4*V3+V5*age+V1*age+V1" strb="V5" stra="V4+V3+V4*V3+V5*age+V1*age+V1" */ |
|
if (nbocc(modelsav,'+')==0) |
|
strcpy(strb,modelsav); /* and analyzes it */ |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
/*scanf("%d",i);*/ |
/*scanf("%d",i);*/ |
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */ |
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V5*age+ V4+V3*age strb=V3*age OR double product with age strb=age*V6*V2 or V6*V2*age or V6*age*V2 */ |
cutl(strc,strd,strb,'*'); /**< strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */ |
cutl(strc,strd,strb,'*'); /**< k=1 strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 OR strb=age*V6*V2 strc=V6*V2 strd=age OR c=V2*age OR c=age*V2 */ |
if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */ |
if(strchr(strc,'*')) { /**< Model with age and DOUBLE product: allowed since 0.99r44, strc=V6*V2 or V2*age or age*V2, strd=age or V6 or V6 */ |
/* covar is not filled and then is empty */ |
Typevar[k]=3; /* 3 for age and double product age*Vn*Vm varying of fixed */ |
cptcovprod--; |
if(strstr(strc,"age")!=0) { /* It means that strc=V2*age or age*V2 and thus that strd=Vn */ |
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
cutl(stre,strf,strc,'*') ; /* strf=age or Vm, stre=Vm or age. If strc=V6*V2 then strf=V6 and stre=V2 */ |
Tvar[k]=atoi(stre); /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
strcpy(strc,strb); /* save strb(=age*Vn*Vm) into strc */ |
Typevar[k]=1; /* 1 for age product */ |
/* We want strb=Vn*Vm */ |
cptcovage++; /* Sums the number of covariates which include age as a product */ |
if(strcmp(strf,"age")==0){ /* strf is "age" so that stre=Vm =V2 . */ |
Tage[cptcovage]=k; /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
strcpy(strb,strd); |
/*printf("stre=%s ", stre);*/ |
strcat(strb,"*"); |
} else if (strcmp(strd,"age")==0) { /* or age*Vn */ |
strcat(strb,stre); |
cptcovprod--; |
}else{ /* strf=Vm If strf=V6 then stre=V2 */ |
cutl(stre,strb,strc,'V'); |
strcpy(strb,strf); |
Tvar[k]=atoi(stre); |
strcat(strb,"*"); |
Typevar[k]=1; /* 1 for age product */ |
strcat(strb,stre); |
cptcovage++; |
strcpy(strd,strb); /* in order for strd to not be "age" for next test (will be Vn*Vm */ |
Tage[cptcovage]=k; |
} |
} else { /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2 strb=V3*V2*/ |
/* printf("DEBUG FIXED k=%d, Tage[k]=%d, Tvar[Tage[k]=%d,FixedV[Tvar[Tage[k]]]=%d\n",k,Tage[k],Tvar[Tage[k]],FixedV[Tvar[Tage[k]]]); */ |
/* loops on k1=1 (V3*V2) and k1=2 V4*V3 */ |
/* FixedV[Tvar[Tage[k]]]=0; /\* HERY not sure if V7*V4*age Fixed might not exist yet*\/ */ |
cptcovn++; |
}else{ /* strc=Vn*Vm (and strd=age) and should be strb=Vn*Vm but want to keep original strb double product */ |
cptcovprodnoage++;k1++; |
strcpy(stre,strb); /* save full b in stre */ |
|
strcpy(strb,strc); /* save short c in new short b for next block strb=Vn*Vm*/ |
|
strcpy(strf,strc); /* save short c in new short f */ |
|
cutl(strc,strd,strf,'*'); /* We get strd=Vn and strc=Vm for next block (strb=Vn*Vm)*/ |
|
/* strcpy(strc,stre);*/ /* save full e in c for future */ |
|
} |
|
cptcovdageprod++; /* double product with age Which product is it? */ |
|
/* strcpy(strb,strc); /\* strb was age*V6*V2 or V6*V2*age or V6*age*V2 IS now V6*V2 or V2*age or age*V2 *\/ */ |
|
/* cutl(strc,strd,strb,'*'); /\* strd= V6 or V2 or age and strc= V2 or age or V2 *\/ */ |
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but |
n=atoi(stre); |
because this model-covariate is a construction we invent a new column |
|
which is after existing variables ncovcol+nqv+ntv+nqtv + k1 |
|
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2 |
|
Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */ |
|
Typevar[k]=2; /* 2 for double fixed dummy covariates */ |
|
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ |
m=atoi(strc); |
Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */ |
cptcovage++; /* Counts the number of covariates which include age as a product */ |
Tvard[k1][1] =atoi(strc); /* m 1 for V1*/ |
Tage[cptcovage]=k; /* For age*V3*V2 gives the position in model of covariates associated with age Tage[1]=6 HERY too*/ |
Tvard[k1][2] =atoi(stre); /* n 4 for V4*/ |
if(existcomb[n][m] == 0){ |
k2=k2+2; /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */ |
/* r /home/brouard/Documents/Recherches/REVES/Zachary/Zach-2022/Feinuo_Sun/Feinuo-threeway/femV12V15_3wayintNBe.imach */ |
/* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */ |
printf("Warning in model combination V%d*V%d should exist in the model before adding V%d*V%d*age !\n",n,m,n,m); |
/* Tvar[cptcovt+k2+1]=Tvard[k1][2]; /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */ |
fprintf(ficlog,"Warning in model combination V%d*V%d should exist in the model before adding V%d*V%d*age !\n",n,m,n,m); |
/*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */ |
fflush(ficlog); |
/* 1 2 3 4 5 | Tvar[5+1)=1, Tvar[7]=2 */ |
k1++; /* The combination Vn*Vm will be in the model so we create it at k1 */ |
for (i=1; i<=lastobs;i++){ |
k12++; |
/* Computes the new covariate which is a product of |
existcomb[n][m]=k1; |
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
existcomb[m][n]=k1; |
covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; |
|
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2+ age*V6*V3 Gives the k position of the k1 double product Vn*Vm or age*Vn*Vm*/ |
|
Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 Gives the k1 double product Vn*Vm or age*Vn*Vm at the k position */ |
|
Tvard[k1][1] =m; /* m 1 for V1*/ |
|
Tvardk[k][1] =m; /* m 1 for V1*/ |
|
Tvard[k1][2] =n; /* n 4 for V4*/ |
|
Tvardk[k][2] =n; /* n 4 for V4*/ |
|
/* Tvar[Tage[cptcovage]]=k1;*/ /* Tvar[6=age*V3*V2]=9 (new fixed covariate) */ /* We don't know about Fixed yet HERE */ |
|
if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */ |
|
for (i=1; i<=lastobs;i++){/* For fixed product */ |
|
/* Computes the new covariate which is a product of |
|
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
|
covar[ncovcolt+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
|
} |
|
cptcovprodage++; /* Counting the number of fixed covariate with age */ |
|
FixedV[ncovcolt+k12]=0; /* We expand Vn*Vm */ |
|
k12++; |
|
FixedV[ncovcolt+k12]=0; |
|
}else{ /*End of FixedV */ |
|
cptcovprodvage++; /* Counting the number of varying covariate with age */ |
|
FixedV[ncovcolt+k12]=1; /* We expand Vn*Vm */ |
|
k12++; |
|
FixedV[ncovcolt+k12]=1; |
|
} |
|
}else{ /* k1 Vn*Vm already exists */ |
|
k11=existcomb[n][m]; |
|
Tposprod[k]=k11; /* OK */ |
|
Tvar[k]=Tvar[Tprod[k11]]; /* HERY */ |
|
Tvardk[k][1]=m; |
|
Tvardk[k][2]=n; |
|
if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */ |
|
/*cptcovage++;*/ /* Counts the number of covariates which include age as a product */ |
|
cptcovprodage++; /* Counting the number of fixed covariate with age */ |
|
/*Tage[cptcovage]=k;*/ /* For age*V3*V2 Tage[1]=V3*V3=9 HERY too*/ |
|
Tvar[Tage[cptcovage]]=k1; |
|
FixedV[ncovcolt+k12]=0; /* We expand Vn*Vm */ |
|
k12++; |
|
FixedV[ncovcolt+k12]=0; |
|
}else{ /* Already exists but time varying (and age) */ |
|
/*cptcovage++;*/ /* Counts the number of covariates which include age as a product */ |
|
/*Tage[cptcovage]=k;*/ /* For age*V3*V2 Tage[1]=V3*V3=9 HERY too*/ |
|
/* Tvar[Tage[cptcovage]]=k1; */ |
|
cptcovprodvage++; |
|
FixedV[ncovcolt+k12]=1; /* We expand Vn*Vm */ |
|
k12++; |
|
FixedV[ncovcolt+k12]=1; |
|
} |
} |
} |
} /* End age is not in the model */ |
/* Tage[cptcovage]=k; /\* V2+V1+V4+V3*age Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 *\/ */ |
} /* End if model includes a product */ |
/* Tvar[k]=k11; /\* HERY *\/ */ |
else { /* no more sum */ |
} else {/* simple product strb=age*Vn so that c=Vn and d=age, or strb=Vn*age so that c=age and d=Vn, or b=Vn*Vm so that c=Vm and d=Vn */ |
|
cptcovprod++; |
|
if (strcmp(strc,"age")==0) { /**< Model includes age: strb= Vn*age c=age d=Vn*/ |
|
/* covar is not filled and then is empty */ |
|
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
|
Tvar[k]=atoi(stre); /* V2+V1+V5*age+V4+V3*age Tvar[5]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
|
Typevar[k]=1; /* 1 for age product */ |
|
cptcovage++; /* Counts the number of covariates which include age as a product */ |
|
Tage[cptcovage]=k; /* V2+V1+V4+V3*age Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
|
if( FixedV[Tvar[k]] == 0){ |
|
cptcovprodage++; /* Counting the number of fixed covariate with age */ |
|
}else{ |
|
cptcovprodvage++; /* Counting the number of fixedvarying covariate with age */ |
|
} |
|
/*printf("stre=%s ", stre);*/ |
|
} else if (strcmp(strd,"age")==0) { /* strb= age*Vn c=Vn */ |
|
cutl(stre,strb,strc,'V'); |
|
Tvar[k]=atoi(stre); |
|
Typevar[k]=1; /* 1 for age product */ |
|
cptcovage++; |
|
Tage[cptcovage]=k; |
|
if( FixedV[Tvar[k]] == 0){ |
|
cptcovprodage++; /* Counting the number of fixed covariate with age */ |
|
}else{ |
|
cptcovprodvage++; /* Counting the number of fixedvarying covariate with age */ |
|
} |
|
}else{ /* for product Vn*Vm */ |
|
Typevar[k]=2; /* 2 for product Vn*Vm */ |
|
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
|
n=atoi(stre); |
|
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
|
m=atoi(strc); |
|
k1++; |
|
cptcovprodnoage++; |
|
if(existcomb[n][m] != 0 || existcomb[m][n] != 0){ |
|
printf("Warning in model combination V%d*V%d already exists in the model in position k1=%d!\n",n,m,existcomb[n][m]); |
|
fprintf(ficlog,"Warning in model combination V%d*V%d already exists in the model in position k1=%d!\n",n,m,existcomb[n][m]); |
|
fflush(ficlog); |
|
k11=existcomb[n][m]; |
|
Tvar[k]=ncovcol+nqv+ntv+nqtv+k11; |
|
Tposprod[k]=k11; |
|
Tprod[k11]=k; |
|
Tvardk[k][1] =m; /* m 1 for V1*/ |
|
/* Tvard[k11][1] =m; /\* n 4 for V4*\/ */ |
|
Tvardk[k][2] =n; /* n 4 for V4*/ |
|
/* Tvard[k11][2] =n; /\* n 4 for V4*\/ */ |
|
}else{ /* combination Vn*Vm doesn't exist we create it (no age)*/ |
|
existcomb[n][m]=k1; |
|
existcomb[m][n]=k1; |
|
Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* ncovcolt+k1; For model-covariate k tells which data-covariate to use but |
|
because this model-covariate is a construction we invent a new column |
|
which is after existing variables ncovcol+nqv+ntv+nqtv + k1 |
|
If already ncovcol=4 and model= V2 + V1 + V1*V4 + age*V3 + V3*V2 |
|
thus after V4 we invent V5 and V6 because age*V3 will be computed in 4 |
|
Tvar[3=V1*V4]=4+1=5 Tvar[5=V3*V2]=4 + 2= 6, Tvar[4=age*V3]=3 etc */ |
|
/* Please remark that the new variables are model dependent */ |
|
/* If we have 4 variable but the model uses only 3, like in |
|
* model= V1 + age*V1 + V2 + V3 + age*V2 + age*V3 + V1*V2 + V1*V3 |
|
* k= 1 2 3 4 5 6 7 8 |
|
* Tvar[k]=1 1 2 3 2 3 (5 6) (and not 4 5 because of V4 missing) |
|
* Tage[kk] [1]= 2 [2]=5 [3]=6 kk=1 to cptcovage=3 |
|
* Tvar[Tage[kk]][1]=2 [2]=2 [3]=3 |
|
*/ |
|
/* We need to feed some variables like TvarVV, but later on next loop because of ncovv (k2) is not correct */ |
|
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 +V6*V2*age */ |
|
Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 */ |
|
Tvard[k1][1] =m; /* m 1 for V1*/ |
|
Tvardk[k][1] =m; /* m 1 for V1*/ |
|
Tvard[k1][2] =n; /* n 4 for V4*/ |
|
Tvardk[k][2] =n; /* n 4 for V4*/ |
|
k2=k2+2; /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */ |
|
/* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */ |
|
/* Tvar[cptcovt+k2+1]=Tvard[k1][2]; /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */ |
|
/*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */ |
|
/* 1 2 3 4 5 | Tvar[5+1)=1, Tvar[7]=2 */ |
|
if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */ |
|
for (i=1; i<=lastobs;i++){/* For fixed product */ |
|
/* Computes the new covariate which is a product of |
|
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
|
covar[ncovcolt+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
|
} |
|
/* TvarVV[k2]=n; */ |
|
/* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */ |
|
/* TvarVV[k2+1]=m; */ |
|
/* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */ |
|
}else{ /* not FixedV */ |
|
/* TvarVV[k2]=n; */ |
|
/* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */ |
|
/* TvarVV[k2+1]=m; */ |
|
/* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */ |
|
} |
|
} /* End of creation of Vn*Vm if not created by age*Vn*Vm earlier */ |
|
} /* End of product Vn*Vm */ |
|
} /* End of age*double product or simple product */ |
|
}else { /* not a product */ |
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
/* scanf("%d",i);*/ |
/* scanf("%d",i);*/ |
cutl(strd,strc,strb,'V'); |
cutl(strd,strc,strb,'V'); |
Line 8556 int decodemodel( char model[], int lasto
|
Line 11729 int decodemodel( char model[], int lasto
|
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); |
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); |
scanf("%d",i);*/ |
scanf("%d",i);*/ |
} /* end of loop + on total covariates */ |
} /* end of loop + on total covariates */ |
|
|
|
|
} /* end if strlen(modelsave == 0) age*age might exist */ |
} /* end if strlen(modelsave == 0) age*age might exist */ |
} /* end if strlen(model == 0) */ |
} /* end if strlen(model == 0) */ |
|
cptcovs=cptcovt - cptcovdageprod - cptcovprod;/**< Number of simple covariates V1 +V1*age +V3 +V3*V4 +age*age + age*v4*V3=> V1 + V3 =4+1-3=2 */ |
|
|
/*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. |
/*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. |
If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ |
If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ |
|
|
Line 8574 int decodemodel( char model[], int lasto
|
Line 11750 int decodemodel( char model[], int lasto
|
model= V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place |
model= V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place |
k = 1 2 3 4 5 6 7 8 9 |
k = 1 2 3 4 5 6 7 8 9 |
Tvar[k]= 5 4 3 1+1+2+1+1=6 5 2 7 1 5 |
Tvar[k]= 5 4 3 1+1+2+1+1=6 5 2 7 1 5 |
Typevar[k]= 0 0 0 2 1 0 2 1 1 |
Typevar[k]= 0 0 0 2 1 0 2 1 0 |
Fixed[k] 1 1 1 1 3 0 0 or 2 2 3 |
Fixed[k] 1 1 1 1 3 0 0 or 2 2 3 |
Dummy[k] 1 0 0 0 3 1 1 2 3 |
Dummy[k] 1 0 0 0 3 1 1 2 3 |
Tmodelind[combination of covar]=k; |
Tmodelind[combination of covar]=k; |
Line 8583 int decodemodel( char model[], int lasto
|
Line 11759 int decodemodel( char model[], int lasto
|
/* If Tvar[k] >ncovcol it is a product */ |
/* If Tvar[k] >ncovcol it is a product */ |
/* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p Vp=Vn*Vm for product */ |
/* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p Vp=Vn*Vm for product */ |
/* Computing effective variables, ie used by the model, that is from the cptcovt variables */ |
/* Computing effective variables, ie used by the model, that is from the cptcovt variables */ |
printf("Model=%s\n\ |
printf("Model=1+age+%s\n\ |
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product, 3 for double product with age \n\ |
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
fprintf(ficlog,"Model=%s\n\ |
fprintf(ficlog,"Model=1+age+%s\n\ |
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product, 3 for double product with age \n\ |
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
for(k=1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;} |
for(k=-1;k<=NCOVMAX; k++){ Fixed[k]=0; Dummy[k]=0;} |
for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */ |
for(k=1;k<=NCOVMAX; k++){TvarFind[k]=0; TvarVind[k]=0;} |
|
|
|
|
|
/* Second loop for calculating Fixed[k], Dummy[k]*/ |
|
|
|
|
|
for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0,ncovva=0,ncovvta=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0, ncovvt=0;k<=cptcovt; k++){ /* or cptocvt loop on k from model */ |
if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */ |
if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */ |
Fixed[k]= 0; |
Fixed[k]= 0; |
Dummy[k]= 0; |
Dummy[k]= 0; |
Line 8602 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11784 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
modell[k].maintype= FTYPE; |
modell[k].maintype= FTYPE; |
TvarsD[nsd]=Tvar[k]; |
TvarsD[nsd]=Tvar[k]; |
TvarsDind[nsd]=k; |
TvarsDind[nsd]=k; |
|
TnsdVar[Tvar[k]]=nsd; |
TvarF[ncovf]=Tvar[k]; |
TvarF[ncovf]=Tvar[k]; |
TvarFind[ncovf]=k; |
TvarFind[ncovf]=k; |
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
}else if( Tvar[k] <=ncovcol && Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */ |
/* }else if( Tvar[k] <=ncovcol && Typevar[k]==2){ /\* Product of fixed dummy (<=ncovcol) covariates For a fixed product k is higher than ncovcol *\/ */ |
Fixed[k]= 0; |
|
Dummy[k]= 0; |
|
ncoveff++; |
|
ncovf++; |
|
modell[k].maintype= FTYPE; |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
}else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */ |
}else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */ |
Fixed[k]= 0; |
Fixed[k]= 0; |
Dummy[k]= 1; |
Dummy[k]= 1; |
Line 8623 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11797 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
modell[k].maintype= FTYPE; |
modell[k].maintype= FTYPE; |
modell[k].subtype= FQ; |
modell[k].subtype= FQ; |
nsq++; |
nsq++; |
TvarsQ[nsq]=Tvar[k]; |
TvarsQ[nsq]=Tvar[k]; /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary see below */ |
TvarsQind[nsq]=k; |
TvarsQind[nsq]=k; /* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */ |
ncovf++; |
ncovf++; |
TvarF[ncovf]=Tvar[k]; |
TvarF[ncovf]=Tvar[k]; |
TvarFind[ncovf]=k; |
TvarFind[ncovf]=k; |
TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
}else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */ |
}else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */ |
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 */ |
|
/* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
ncovvt++; |
|
TvarVV[ncovvt]=Tvar[k]; /* TvarVV[1]=V3 (first time varying in the model equation */ |
|
TvarVVind[ncovvt]=k; /* TvarVVind[1]=2 (second position in the model equation */ |
|
|
Fixed[k]= 1; |
Fixed[k]= 1; |
Dummy[k]= 0; |
Dummy[k]= 0; |
ntveff++; /* Only simple time varying dummy variable */ |
ntveff++; /* Only simple time varying dummy variable */ |
Line 8639 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11820 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
nsd++; |
nsd++; |
TvarsD[nsd]=Tvar[k]; |
TvarsD[nsd]=Tvar[k]; |
TvarsDind[nsd]=k; |
TvarsDind[nsd]=k; |
|
TnsdVar[Tvar[k]]=nsd; /* To be verified */ |
ncovv++; /* Only simple time varying variables */ |
ncovv++; /* Only simple time varying variables */ |
TvarV[ncovv]=Tvar[k]; |
TvarV[ncovv]=Tvar[k]; |
TvarVind[ncovv]=k; /* TvarVind[2]=2 TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
TvarVind[ncovv]=k; /* TvarVind[2]=2 TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
Line 8647 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11829 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv); |
printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv); |
printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv); |
printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv); |
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/ |
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/ |
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 */ |
|
/* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
ncovvt++; |
|
TvarVV[ncovvt]=Tvar[k]; /* TvarVV[1]=V3 (first time varying in the model equation */ |
|
TvarVVind[ncovvt]=k; /* TvarVV[1]=V3 (first time varying in the model equation */ |
|
|
Fixed[k]= 1; |
Fixed[k]= 1; |
Dummy[k]= 1; |
Dummy[k]= 1; |
nqtveff++; |
nqtveff++; |
Line 8654 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11843 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
modell[k].subtype= VQ; |
modell[k].subtype= VQ; |
ncovv++; /* Only simple time varying variables */ |
ncovv++; /* Only simple time varying variables */ |
nsq++; |
nsq++; |
TvarsQ[nsq]=Tvar[k]; |
TvarsQ[nsq]=Tvar[k]; /* k=1 Tvar=5 nsq=1 TvarsQ[1]=5 */ /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary here) */ |
TvarsQind[nsq]=k; |
TvarsQind[nsq]=k; /* For single quantitative covariate gives the model position of each single quantitative covariate *//* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */ |
TvarV[ncovv]=Tvar[k]; |
TvarV[ncovv]=Tvar[k]; |
TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */ |
TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */ |
/* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */ |
/* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */ |
printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv); |
/* printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%Ad,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv); */ |
printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv); |
/* printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv); */ |
}else if (Typevar[k] == 1) { /* product with age */ |
}else if (Typevar[k] == 1) { /* product with age */ |
ncova++; |
ncova++; |
TvarA[ncova]=Tvar[k]; |
TvarA[ncova]=Tvar[k]; |
TvarAind[ncova]=k; |
TvarAind[ncova]=k; |
|
/** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ |
|
/** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ |
if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */ |
if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */ |
Fixed[k]= 2; |
Fixed[k]= 2; |
Dummy[k]= 2; |
Dummy[k]= 2; |
modell[k].maintype= ATYPE; |
modell[k].maintype= ATYPE; |
modell[k].subtype= APFD; |
modell[k].subtype= APFD; |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvar[k]; /* (2)age*V3 */ |
|
TvarAVVAind[ncovta]=k; |
/* ncoveff++; */ |
/* ncoveff++; */ |
}else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/ |
}else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/ |
Fixed[k]= 2; |
Fixed[k]= 2; |
Dummy[k]= 3; |
Dummy[k]= 3; |
modell[k].maintype= ATYPE; |
modell[k].maintype= ATYPE; |
modell[k].subtype= APFQ; /* Product age * fixed quantitative */ |
modell[k].subtype= APFQ; /* Product age * fixed quantitative */ |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvar[k]; /* */ |
|
TvarAVVAind[ncovta]=k; |
/* nqfveff++; /\* Only simple fixed quantitative variable *\/ */ |
/* nqfveff++; /\* Only simple fixed quantitative variable *\/ */ |
}else if( Tvar[k] <=ncovcol+nqv+ntv ){ |
}else if( Tvar[k] <=ncovcol+nqv+ntv ){ |
Fixed[k]= 3; |
Fixed[k]= 3; |
Dummy[k]= 2; |
Dummy[k]= 2; |
modell[k].maintype= ATYPE; |
modell[k].maintype= ATYPE; |
modell[k].subtype= APVD; /* Product age * varying dummy */ |
modell[k].subtype= APVD; /* Product age * varying dummy */ |
|
ncovva++; |
|
TvarVVA[ncovva]=Tvar[k]; /* (1)+age*V6 + (2)age*V7 */ |
|
TvarVVAind[ncovva]=k; |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvar[k]; /* */ |
|
TvarAVVAind[ncovta]=k; |
/* ntveff++; /\* Only simple time varying dummy variable *\/ */ |
/* ntveff++; /\* Only simple time varying dummy variable *\/ */ |
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){ |
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){ |
Fixed[k]= 3; |
Fixed[k]= 3; |
Dummy[k]= 3; |
Dummy[k]= 3; |
modell[k].maintype= ATYPE; |
modell[k].maintype= ATYPE; |
modell[k].subtype= APVQ; /* Product age * varying quantitative */ |
modell[k].subtype= APVQ; /* Product age * varying quantitative */ |
|
ncovva++; |
|
TvarVVA[ncovva]=Tvar[k]; /* */ |
|
TvarVVAind[ncovva]=k; |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvar[k]; /* (1)+age*V6 + (2)age*V7 */ |
|
TvarAVVAind[ncovta]=k; |
/* nqtveff++;/\* Only simple time varying quantitative variable *\/ */ |
/* nqtveff++;/\* Only simple time varying quantitative variable *\/ */ |
} |
} |
}else if (Typevar[k] == 2) { /* product without age */ |
}else if( Tposprod[k]>0 && Typevar[k]==2){ /* Detects if fixed product no age Vm*Vn */ |
k1=Tposprod[k]; |
printf("MEMORY ERRORR k=%d Tposprod[k]=%d, Typevar[k]=%d\n ",k, Tposprod[k], Typevar[k]); |
if(Tvard[k1][1] <=ncovcol){ |
if(FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* Needs a fixed product Product of fixed dummy (<=ncovcol) covariates For a fixed product k is higher than ncovcol V3*V2 */ |
if(Tvard[k1][2] <=ncovcol){ |
printf("MEMORY ERRORR k=%d Tvardk[k][1]=%d, Tvardk[k][2]=%d, FixedV[Tvardk[k][1]]=%d,FixedV[Tvardk[k][2]]=%d\n ",k,Tvardk[k][1],Tvardk[k][2],FixedV[Tvardk[k][1]],FixedV[Tvardk[k][2]]); |
Fixed[k]= 1; |
Fixed[k]= 0; |
Dummy[k]= 0; |
Dummy[k]= 0; |
|
ncoveff++; |
|
ncovf++; |
|
/* ncovv++; */ |
|
/* TvarVV[ncovv]=Tvardk[k][1]; */ |
|
/* FixedV[ncovcolt+ncovv]=0; /\* or FixedV[TvarVV[ncovv]]=0 HERE *\/ */ |
|
/* ncovv++; */ |
|
/* TvarVV[ncovv]=Tvardk[k][2]; */ |
|
/* FixedV[ncovcolt+ncovv]=0; /\* or FixedV[TvarVV[ncovv]]=0 HERE *\/ */ |
|
modell[k].maintype= FTYPE; |
|
TvarF[ncovf]=Tvar[k]; |
|
/* TnsdVar[Tvar[k]]=nsd; */ /* To be done */ |
|
TvarFind[ncovf]=k; |
|
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
}else{/* product varying Vn * Vm without age, V1+V3+age*V1+age*V3+V1*V3 looking at V1*V3, Typevar={0, 0, 1, 1, 2}, k=5, V1 is fixed, V3 is timevary, V5 is a product */ |
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 + V1*V3*age*/ |
|
/* Tvar={1, 3, 1, 3, 6, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
k1=Tposprod[k]; /* Position in the products of product k, Tposprod={0, 0, 0, 0, 1, 1} k1=1 first product but second time varying because of V3 */ |
|
ncovvt++; |
|
TvarVV[ncovvt]=Tvard[k1][1]; /* TvarVV[2]=V1 (because TvarVV[1] was V3, first time varying covariates */ |
|
TvarVVind[ncovvt]=k; /* TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */ |
|
ncovvt++; |
|
TvarVV[ncovvt]=Tvard[k1][2]; /* TvarVV[3]=V3 */ |
|
TvarVVind[ncovvt]=k; /* TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */ |
|
|
|
/** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ |
|
/** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ |
|
|
|
if(Tvard[k1][1] <=ncovcol){ /* Vn is dummy fixed, (Tvard[1][1]=V1), (Tvard[1][1]=V3 time varying) */ |
|
if(Tvard[k1][2] <=ncovcol){ /* Vm is dummy fixed */ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDD; /* Product fixed dummy * fixed dummy */ |
|
ncovf++; /* Fixed variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ /* Vm is quanti fixed */ |
|
Fixed[k]= 0; /* Fixed product */ |
|
Dummy[k]= 1; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed dummy * fixed quantitative */ |
|
ncovf++; /* Varying variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is a time varying dummy covariate */ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product fixed dummy * varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; /* TvarV[1]=Tvar[5]=5 because there is a V4 */ |
|
TvarVind[ncovv]=k;/* TvarVind[1]=5 */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is a time varying quantitative covariate */ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed dummy * varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv){ /* Vn is fixed quanti */ |
|
if(Tvard[k1][2] <=ncovcol){ /* Vm is fixed dummy */ |
|
Fixed[k]= 0; /* Fixed product */ |
|
Dummy[k]= 1; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed quantitative * fixed dummy */ |
|
ncovf++; /* Fixed variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is time varying */ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed quantitative * varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is time varying quanti */ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product fixed quantitative * varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ /* Vn is time varying dummy */ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * fixed dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * fixed quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * time varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * time varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ /* Vn is time varying quanti */ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * fixed dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * fixed quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * time varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * time varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else{ |
|
printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
} /*end k1*/ |
|
} |
|
}else if(Typevar[k] == 3){ /* product Vn * Vm with age, V1+V3+age*V1+age*V3+V1*V3 looking at V1*V3, Typevar={0, 0, 1, 1, 2}, k=5, V1 is fixed, V3 is timevary, V5 is a product */ |
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 + V1*V3*age*/ |
|
/* Tvar={1, 3, 1, 3, 6, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
k1=Tposprod[k]; /* Position in the products of product k, Tposprod={0, 0, 0, 0, 1, 1} k1=1 first product but second time varying because of V3 */ |
|
ncova++; |
|
TvarA[ncova]=Tvard[k1][1]; /* TvarVV[2]=V1 (because TvarVV[1] was V3, first time varying covariates */ |
|
TvarAind[ncova]=k; /* TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */ |
|
ncova++; |
|
TvarA[ncova]=Tvard[k1][2]; /* TvarVV[3]=V3 */ |
|
TvarAind[ncova]=k; /* TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */ |
|
|
|
/** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ |
|
/** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ |
|
if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvard[k1][1]; /* age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */ |
|
TvarAVVAind[ncovta]=k; |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvard[k1][2]; /* age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */ |
|
TvarAVVAind[ncovta]=k; |
|
}else{ |
|
ncovva++; /* HERY reached */ |
|
TvarVVA[ncovva]=Tvard[k1][1]; /* age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */ |
|
TvarVVAind[ncovva]=k; |
|
ncovva++; |
|
TvarVVA[ncovva]=Tvard[k1][2]; /* */ |
|
TvarVVAind[ncovva]=k; |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvard[k1][1]; /* age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */ |
|
TvarAVVAind[ncovta]=k; |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvard[k1][2]; /* age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */ |
|
TvarAVVAind[ncovta]=k; |
|
} |
|
if(Tvard[k1][1] <=ncovcol){ /* Vn is dummy fixed, (Tvard[1][1]=V1), (Tvard[1][1]=V3 time varying) */ |
|
if(Tvard[k1][2] <=ncovcol){ /* Vm is dummy fixed */ |
|
Fixed[k]= 2; |
|
Dummy[k]= 2; |
modell[k].maintype= FTYPE; |
modell[k].maintype= FTYPE; |
modell[k].subtype= FPDD; /* Product fixed dummy * fixed dummy */ |
modell[k].subtype= FPDD; /* Product fixed dummy * fixed dummy */ |
ncovf++; /* Fixed variables without age */ |
/* TvarF[ncova]=Tvar[k]; /\* Problem to solve *\/ */ |
TvarF[ncovf]=Tvar[k]; |
/* TvarFind[ncova]=k; */ |
TvarFind[ncovf]=k; |
}else if(Tvard[k1][2] <=ncovcol+nqv){ /* Vm is quanti fixed */ |
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
Fixed[k]= 2; /* Fixed product */ |
Fixed[k]= 0; /* or 2 ?*/ |
Dummy[k]= 3; |
Dummy[k]= 1; |
|
modell[k].maintype= FTYPE; |
modell[k].maintype= FTYPE; |
modell[k].subtype= FPDQ; /* Product fixed dummy * fixed quantitative */ |
modell[k].subtype= FPDQ; /* Product fixed dummy * fixed quantitative */ |
ncovf++; /* Varying variables without age */ |
/* TvarF[ncova]=Tvar[k]; */ |
TvarF[ncovf]=Tvar[k]; |
/* TvarFind[ncova]=k; */ |
TvarFind[ncovf]=k; |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is a time varying dummy covariate */ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
Fixed[k]= 3; |
Fixed[k]= 1; |
Dummy[k]= 2; |
Dummy[k]= 0; |
|
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
modell[k].subtype= VPDD; /* Product fixed dummy * varying dummy */ |
modell[k].subtype= VPDD; /* Product fixed dummy * varying dummy */ |
ncovv++; /* Varying variables without age */ |
TvarV[ncova]=Tvar[k]; /* TvarV[1]=Tvar[5]=5 because there is a V4 */ |
TvarV[ncovv]=Tvar[k]; |
TvarVind[ncova]=k;/* TvarVind[1]=5 */ |
TvarVind[ncovv]=k; |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is a time varying quantitative covariate */ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
Fixed[k]= 3; |
Fixed[k]= 1; |
Dummy[k]= 3; |
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
modell[k].subtype= VPDQ; /* Product fixed dummy * varying quantitative */ |
modell[k].subtype= VPDQ; /* Product fixed dummy * varying quantitative */ |
ncovv++; /* Varying variables without age */ |
/* ncovv++; /\* Varying variables without age *\/ */ |
TvarV[ncovv]=Tvar[k]; |
/* TvarV[ncovv]=Tvar[k]; */ |
TvarVind[ncovv]=k; |
/* TvarVind[ncovv]=k; */ |
} |
} |
}else if(Tvard[k1][1] <=ncovcol+nqv){ |
}else if(Tvard[k1][1] <=ncovcol+nqv){ /* Vn is fixed quanti */ |
if(Tvard[k1][2] <=ncovcol){ |
if(Tvard[k1][2] <=ncovcol){ /* Vm is fixed dummy */ |
Fixed[k]= 0; /* or 2 ?*/ |
Fixed[k]= 2; /* Fixed product */ |
Dummy[k]= 1; |
Dummy[k]= 2; |
modell[k].maintype= FTYPE; |
modell[k].maintype= FTYPE; |
modell[k].subtype= FPDQ; /* Product fixed quantitative * fixed dummy */ |
modell[k].subtype= FPDQ; /* Product fixed quantitative * fixed dummy */ |
ncovf++; /* Fixed variables without age */ |
/* ncova++; /\* Fixed variables with age *\/ */ |
TvarF[ncovf]=Tvar[k]; |
/* TvarF[ncovf]=Tvar[k]; */ |
TvarFind[ncovf]=k; |
/* TvarFind[ncovf]=k; */ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is time varying */ |
Fixed[k]= 1; |
Fixed[k]= 2; |
Dummy[k]= 1; |
Dummy[k]= 3; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
modell[k].subtype= VPDQ; /* Product fixed quantitative * varying dummy */ |
modell[k].subtype= VPDQ; /* Product fixed quantitative * varying dummy */ |
ncovv++; /* Varying variables without age */ |
/* ncova++; /\* Varying variables with age *\/ */ |
TvarV[ncovv]=Tvar[k]; |
/* TvarV[ncova]=Tvar[k]; */ |
TvarVind[ncovv]=k; |
/* TvarVind[ncova]=k; */ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is time varying quanti */ |
Fixed[k]= 1; |
Fixed[k]= 3; |
Dummy[k]= 1; |
Dummy[k]= 2; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
modell[k].subtype= VPQQ; /* Product fixed quantitative * varying quantitative */ |
modell[k].subtype= VPQQ; /* Product fixed quantitative * varying quantitative */ |
ncovv++; /* Varying variables without age */ |
ncova++; /* Varying variables without age */ |
TvarV[ncovv]=Tvar[k]; |
TvarV[ncova]=Tvar[k]; |
TvarVind[ncovv]=k; |
TvarVind[ncova]=k; |
ncovv++; /* Varying variables without age */ |
/* ncova++; /\* Varying variables without age *\/ */ |
TvarV[ncovv]=Tvar[k]; |
/* TvarV[ncova]=Tvar[k]; */ |
TvarVind[ncovv]=k; |
/* TvarVind[ncova]=k; */ |
} |
} |
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ |
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ /* Vn is time varying dummy */ |
if(Tvard[k1][2] <=ncovcol){ |
if(Tvard[k1][2] <=ncovcol){ |
Fixed[k]= 1; |
Fixed[k]= 2; |
Dummy[k]= 1; |
Dummy[k]= 2; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
modell[k].subtype= VPDD; /* Product time varying dummy * fixed dummy */ |
modell[k].subtype= VPDD; /* Product time varying dummy * fixed dummy */ |
ncovv++; /* Varying variables without age */ |
/* ncova++; /\* Varying variables with age *\/ */ |
TvarV[ncovv]=Tvar[k]; |
/* TvarV[ncova]=Tvar[k]; */ |
TvarVind[ncovv]=k; |
/* TvarVind[ncova]=k; */ |
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
Fixed[k]= 1; |
Fixed[k]= 2; |
Dummy[k]= 1; |
Dummy[k]= 3; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
modell[k].subtype= VPDQ; /* Product time varying dummy * fixed quantitative */ |
modell[k].subtype= VPDQ; /* Product time varying dummy * fixed quantitative */ |
ncovv++; /* Varying variables without age */ |
/* ncova++; /\* Varying variables with age *\/ */ |
TvarV[ncovv]=Tvar[k]; |
/* TvarV[ncova]=Tvar[k]; */ |
TvarVind[ncovv]=k; |
/* TvarVind[ncova]=k; */ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
Fixed[k]= 1; |
Fixed[k]= 3; |
Dummy[k]= 0; |
Dummy[k]= 2; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
modell[k].subtype= VPDD; /* Product time varying dummy * time varying dummy */ |
modell[k].subtype= VPDD; /* Product time varying dummy * time varying dummy */ |
ncovv++; /* Varying variables without age */ |
/* ncova++; /\* Varying variables with age *\/ */ |
TvarV[ncovv]=Tvar[k]; |
/* TvarV[ncova]=Tvar[k]; */ |
TvarVind[ncovv]=k; |
/* TvarVind[ncova]=k; */ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
Fixed[k]= 1; |
Fixed[k]= 3; |
Dummy[k]= 1; |
Dummy[k]= 3; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
modell[k].subtype= VPDQ; /* Product time varying dummy * time varying quantitative */ |
modell[k].subtype= VPDQ; /* Product time varying dummy * time varying quantitative */ |
ncovv++; /* Varying variables without age */ |
/* ncova++; /\* Varying variables with age *\/ */ |
TvarV[ncovv]=Tvar[k]; |
/* TvarV[ncova]=Tvar[k]; */ |
TvarVind[ncovv]=k; |
/* TvarVind[ncova]=k; */ |
} |
} |
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ |
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ /* Vn is time varying quanti */ |
if(Tvard[k1][2] <=ncovcol){ |
if(Tvard[k1][2] <=ncovcol){ |
Fixed[k]= 1; |
Fixed[k]= 2; |
Dummy[k]= 1; |
Dummy[k]= 2; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
modell[k].subtype= VPDQ; /* Product time varying quantitative * fixed dummy */ |
modell[k].subtype= VPDQ; /* Product time varying quantitative * fixed dummy */ |
ncovv++; /* Varying variables without age */ |
/* ncova++; /\* Varying variables with age *\/ */ |
TvarV[ncovv]=Tvar[k]; |
/* TvarV[ncova]=Tvar[k]; */ |
TvarVind[ncovv]=k; |
/* TvarVind[ncova]=k; */ |
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
Fixed[k]= 1; |
Fixed[k]= 2; |
Dummy[k]= 1; |
Dummy[k]= 3; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
modell[k].subtype= VPQQ; /* Product time varying quantitative * fixed quantitative */ |
modell[k].subtype= VPQQ; /* Product time varying quantitative * fixed quantitative */ |
ncovv++; /* Varying variables without age */ |
/* ncova++; /\* Varying variables with age *\/ */ |
TvarV[ncovv]=Tvar[k]; |
/* TvarV[ncova]=Tvar[k]; */ |
TvarVind[ncovv]=k; |
/* TvarVind[ncova]=k; */ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
Fixed[k]= 1; |
Fixed[k]= 3; |
Dummy[k]= 1; |
Dummy[k]= 2; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
modell[k].subtype= VPDQ; /* Product time varying quantitative * time varying dummy */ |
modell[k].subtype= VPDQ; /* Product time varying quantitative * time varying dummy */ |
ncovv++; /* Varying variables without age */ |
/* ncova++; /\* Varying variables with age *\/ */ |
TvarV[ncovv]=Tvar[k]; |
/* TvarV[ncova]=Tvar[k]; */ |
TvarVind[ncovv]=k; |
/* TvarVind[ncova]=k; */ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
Fixed[k]= 1; |
Fixed[k]= 3; |
Dummy[k]= 1; |
Dummy[k]= 3; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
modell[k].subtype= VPQQ; /* Product time varying quantitative * time varying quantitative */ |
modell[k].subtype= VPQQ; /* Product time varying quantitative * time varying quantitative */ |
ncovv++; /* Varying variables without age */ |
/* ncova++; /\* Varying variables with age *\/ */ |
TvarV[ncovv]=Tvar[k]; |
/* TvarV[ncova]=Tvar[k]; */ |
TvarVind[ncovv]=k; |
/* TvarVind[ncova]=k; */ |
} |
} |
}else{ |
}else{ |
printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
} /*end k1*/ |
} /*end k1*/ |
}else{ |
} else{ |
printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
} |
} |
printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
/* printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); */ |
printf(" modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype); |
/* printf(" modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype); */ |
fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
} |
} |
|
ncovvta=ncovva; |
/* Searching for doublons in the model */ |
/* Searching for doublons in the model */ |
for(k1=1; k1<= cptcovt;k1++){ |
for(k1=1; k1<= cptcovt;k1++){ |
for(k2=1; k2 <k1;k2++){ |
for(k2=1; k2 <k1;k2++){ |
if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ |
/* if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ */ |
|
if((Typevar[k1]==Typevar[k2]) && (Fixed[k1]==Fixed[k2]) && (Dummy[k1]==Dummy[k2] )){ |
if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */ |
if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */ |
if(Tvar[k1]==Tvar[k2]){ |
if(Tvar[k1]==Tvar[k2]){ |
printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); |
fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); fflush(ficlog); |
return(1); |
return(1); |
} |
} |
}else if (Typevar[k1] ==2){ |
}else if (Typevar[k1] ==2){ |
k3=Tposprod[k1]; |
k3=Tposprod[k1]; |
k4=Tposprod[k2]; |
k4=Tposprod[k2]; |
if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){ |
if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){ |
printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
return(1); |
return(1); |
} |
} |
} |
} |
Line 8864 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 12276 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn); |
fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn); |
printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq); |
printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq); |
fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq); |
fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq); |
|
|
|
free_imatrix(existcomb,1,NCOVMAX,1,NCOVMAX); |
return (0); /* with covar[new additional covariate if product] and Tage if age */ |
return (0); /* with covar[new additional covariate if product] and Tage if age */ |
/*endread:*/ |
/*endread:*/ |
printf("Exiting decodemodel: "); |
printf("Exiting decodemodel: "); |
Line 8886 int calandcheckages(int imx, int maxwav,
|
Line 12300 int calandcheckages(int imx, int maxwav,
|
*nberr = *nberr + 1; |
*nberr = *nberr + 1; |
if(firstone == 0){ |
if(firstone == 0){ |
firstone=1; |
firstone=1; |
printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m); |
printf("Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\nOther similar cases in log file\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m); |
} |
} |
fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m); |
fprintf(ficlog,"Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m); |
s[m][i]=-1; |
s[m][i]=-1; /* Droping the death status */ |
} |
} |
if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ |
if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ |
(*nberr)++; |
(*nberr)++; |
printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); |
printf("Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\nOther similar cases in log file\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m); |
fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); |
fprintf(ficlog,"Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m); |
s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */ |
s[m][i]=-2; /* We prefer to skip it (and to skip it in version 0.8a1 too */ |
} |
} |
} |
} |
} |
} |
Line 9017 BOOL IsWow64()
|
Line 12431 BOOL IsWow64()
|
#endif |
#endif |
|
|
void syscompilerinfo(int logged) |
void syscompilerinfo(int logged) |
{ |
{ |
/* #include "syscompilerinfo.h"*/ |
#include <stdint.h> |
|
|
|
/* #include "syscompilerinfo.h"*/ |
/* command line Intel compiler 32bit windows, XP compatible:*/ |
/* command line Intel compiler 32bit windows, XP compatible:*/ |
/* /GS /W3 /Gy |
/* /GS /W3 /Gy |
/Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D |
/Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D |
Line 9053 void syscompilerinfo(int logged)
|
Line 12469 void syscompilerinfo(int logged)
|
/ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF |
/ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF |
/NOLOGO /TLBID:1 |
/NOLOGO /TLBID:1 |
*/ |
*/ |
|
|
|
|
#if defined __INTEL_COMPILER |
#if defined __INTEL_COMPILER |
#if defined(__GNUC__) |
#if defined(__GNUC__) |
struct utsname sysInfo; /* For Intel on Linux and OS/X */ |
struct utsname sysInfo; /* For Intel on Linux and OS/X */ |
Line 9069 void syscompilerinfo(int logged)
|
Line 12487 void syscompilerinfo(int logged)
|
} |
} |
#endif |
#endif |
|
|
#include <stdint.h> |
|
|
|
printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:"); |
printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:"); |
#if defined(__clang__) |
#if defined(__clang__) |
printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */ |
printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */ |
Line 9156 void syscompilerinfo(int logged)
|
Line 12572 void syscompilerinfo(int logged)
|
#endif |
#endif |
#endif |
#endif |
|
|
// void main() |
// void main () |
// { |
// { |
#if defined(_MSC_VER) |
#if defined(_MSC_VER) |
if (IsWow64()){ |
if (IsWow64()){ |
Line 9177 void syscompilerinfo(int logged)
|
Line 12593 void syscompilerinfo(int logged)
|
} |
} |
|
|
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){ |
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){ |
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Prevalence limit (forward period or forward stable prevalence) --------------*/ |
|
/* Computes the prevalence limit for each combination of the dummy covariates */ |
int i, j, k, i1, k4=0, nres=0 ; |
int i, j, k, i1, k4=0, nres=0 ; |
/* double ftolpl = 1.e-10; */ |
/* double ftolpl = 1.e-10; */ |
double age, agebase, agelim; |
double age, agebase, agelim; |
Line 9186 int prevalence_limit(double *p, double *
|
Line 12603 int prevalence_limit(double *p, double *
|
strcpy(filerespl,"PL_"); |
strcpy(filerespl,"PL_"); |
strcat(filerespl,fileresu); |
strcat(filerespl,fileresu); |
if((ficrespl=fopen(filerespl,"w"))==NULL) { |
if((ficrespl=fopen(filerespl,"w"))==NULL) { |
printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
printf("Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
fprintf(ficlog,"Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
} |
} |
printf("\nComputing period (stable) prevalence: result on file '%s' \n", filerespl); |
printf("\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl); |
fprintf(ficlog,"\nComputing period (stable) prevalence: result on file '%s' \n", filerespl); |
fprintf(ficlog,"\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl); |
pstamp(ficrespl); |
pstamp(ficrespl); |
fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficrespl,"# Forward period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficrespl,"#Age "); |
fprintf(ficrespl,"#Age "); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); |
fprintf(ficrespl,"\n"); |
fprintf(ficrespl,"\n"); |
Line 9206 int prevalence_limit(double *p, double *
|
Line 12623 int prevalence_limit(double *p, double *
|
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
for(k=1; k<=i1;k++){ /* For each combination k of dummy covariates in the model */ |
/* for(k=1; k<=i1;k++){ /\* For each combination k of dummy covariates in the model *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(TKresult[nres]!= k) |
k=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
|
/* if(i1 != 1 && TKresult[nres]!= k) /\* We found the combination k corresponding to the resultline value of dummies *\/ */ |
|
/* continue; */ |
|
|
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
/* k=k+1; */ |
/* k=k+1; */ |
/* to clean */ |
/* to clean */ |
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
/*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*/ |
fprintf(ficrespl,"#******"); |
fprintf(ficrespl,"#******"); |
printf("#******"); |
printf("#******"); |
fprintf(ficlog,"#******"); |
fprintf(ficlog,"#******"); |
for(j=1;j<=cptcoveff ;j++) {/* all covariates */ |
for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */ |
fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/ |
/* fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Here problem for varying dummy*\/ */ |
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
} |
fprintf(ficrespl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
} |
fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
} |
/* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
fprintf(ficrespl,"******\n"); |
fprintf(ficrespl,"******\n"); |
printf("******\n"); |
printf("******\n"); |
fprintf(ficlog,"******\n"); |
fprintf(ficlog,"******\n"); |
Line 9241 int prevalence_limit(double *p, double *
|
Line 12663 int prevalence_limit(double *p, double *
|
} |
} |
|
|
fprintf(ficrespl,"#Age "); |
fprintf(ficrespl,"#Age "); |
for(j=1;j<=cptcoveff;j++) { |
/* for(j=1;j<=cptcoveff;j++) { */ |
fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* } */ |
|
for(j=1;j<=cptcovs;j++) { /* New the quanti variable is added */ |
|
fprintf(ficrespl,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} |
} |
for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); |
fprintf(ficrespl,"Total Years_to_converge\n"); |
fprintf(ficrespl,"Total Years_to_converge\n"); |
|
|
for (age=agebase; age<=agelim; age++){ |
for (age=agebase; age<=agelim; age++){ |
/* for (age=agebase; age<=agebase; age++){ */ |
/* for (age=agebase; age<=agebase; age++){ */ |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); |
/**< Computes the prevalence limit in each live state at age x and for covariate combination (k and) nres */ |
|
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); /* Nicely done */ |
fprintf(ficrespl,"%.0f ",age ); |
fprintf(ficrespl,"%.0f ",age ); |
for(j=1;j<=cptcoveff;j++) |
/* for(j=1;j<=cptcoveff;j++) */ |
fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
for(j=1;j<=cptcovs;j++) |
|
fprintf(ficrespl,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
tot=0.; |
tot=0.; |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
tot += prlim[i][i]; |
tot += prlim[i][i]; |
Line 9261 int prevalence_limit(double *p, double *
|
Line 12689 int prevalence_limit(double *p, double *
|
fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp); |
fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp); |
} /* Age */ |
} /* Age */ |
/* was end of cptcod */ |
/* was end of cptcod */ |
} /* cptcov */ |
} /* nres */ |
} /* nres */ |
/* } /\* for each combination *\/ */ |
return 0; |
return 0; |
} |
} |
|
|
int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){ |
int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){ |
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Back Prevalence limit (backward stable prevalence) --------------*/ |
|
|
/* Computes the back prevalence limit for any combination of covariate values |
/* Computes the back prevalence limit for any combination of covariate values |
* at any age between ageminpar and agemaxpar |
* at any age between ageminpar and agemaxpar |
Line 9282 int back_prevalence_limit(double *p, dou
|
Line 12710 int back_prevalence_limit(double *p, dou
|
strcpy(fileresplb,"PLB_"); |
strcpy(fileresplb,"PLB_"); |
strcat(fileresplb,fileresu); |
strcat(fileresplb,fileresu); |
if((ficresplb=fopen(fileresplb,"w"))==NULL) { |
if((ficresplb=fopen(fileresplb,"w"))==NULL) { |
printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1; |
printf("Problem with backward prevalence resultfile: %s\n", fileresplb);return 1; |
fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1; |
fprintf(ficlog,"Problem with backward prevalence resultfile: %s\n", fileresplb);return 1; |
} |
} |
printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb); |
printf("Computing backward prevalence: result on file '%s' \n", fileresplb); |
fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb); |
fprintf(ficlog,"Computing backward prevalence: result on file '%s' \n", fileresplb); |
pstamp(ficresplb); |
pstamp(ficresplb); |
fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficresplb,"# Backward prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficresplb,"#Age "); |
fprintf(ficresplb,"#Age "); |
for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i); |
for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i); |
fprintf(ficresplb,"\n"); |
fprintf(ficresplb,"\n"); |
Line 9304 int back_prevalence_limit(double *p, dou
|
Line 12732 int back_prevalence_limit(double *p, dou
|
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
/* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */ |
if(TKresult[nres]!= k) |
k=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
/* if(i1 != 1 && TKresult[nres]!= k) */ |
|
/* continue; */ |
|
/* /\*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*\/ */ |
fprintf(ficresplb,"#******"); |
fprintf(ficresplb,"#******"); |
printf("#******"); |
printf("#******"); |
fprintf(ficlog,"#******"); |
fprintf(ficlog,"#******"); |
for(j=1;j<=cptcoveff ;j++) {/* all covariates */ |
for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */ |
fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresplb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} |
} |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
/* for(j=1;j<=cptcoveff ;j++) {/\* all covariates *\/ */ |
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
} |
/* } */ |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* } */ |
fprintf(ficresplb,"******\n"); |
fprintf(ficresplb,"******\n"); |
printf("******\n"); |
printf("******\n"); |
fprintf(ficlog,"******\n"); |
fprintf(ficlog,"******\n"); |
Line 9332 int back_prevalence_limit(double *p, dou
|
Line 12767 int back_prevalence_limit(double *p, dou
|
} |
} |
|
|
fprintf(ficresplb,"#Age "); |
fprintf(ficresplb,"#Age "); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcovs;j++) { |
fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresplb,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} |
} |
for(i=1; i<=nlstate;i++) fprintf(ficresplb," %d-%d ",i,i); |
for(i=1; i<=nlstate;i++) fprintf(ficresplb," %d-%d ",i,i); |
fprintf(ficresplb,"Total Years_to_converge\n"); |
fprintf(ficresplb,"Total Years_to_converge\n"); |
Line 9352 int back_prevalence_limit(double *p, dou
|
Line 12787 int back_prevalence_limit(double *p, dou
|
}else{ |
}else{ |
/* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
/* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres); |
bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres); |
|
/* printf("TOTOT\n"); */ |
|
/* exit(1); */ |
} |
} |
fprintf(ficresplb,"%.0f ",age ); |
fprintf(ficresplb,"%.0f ",age ); |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcovs;j++) |
fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresplb,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
tot=0.; |
tot=0.; |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
tot += bprlim[i][i]; |
tot += bprlim[i][i]; |
Line 9364 int back_prevalence_limit(double *p, dou
|
Line 12801 int back_prevalence_limit(double *p, dou
|
fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp); |
fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp); |
} /* Age */ |
} /* Age */ |
/* was end of cptcod */ |
/* was end of cptcod */ |
} /* end of any combination */ |
/*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */ |
|
/* } /\* end of any combination *\/ */ |
} /* end of nres */ |
} /* end of nres */ |
/* hBijx(p, bage, fage); */ |
/* hBijx(p, bage, fage); */ |
/* fclose(ficrespijb); */ |
/* fclose(ficrespijb); */ |
Line 9374 int back_prevalence_limit(double *p, dou
|
Line 12812 int back_prevalence_limit(double *p, dou
|
|
|
int hPijx(double *p, int bage, int fage){ |
int hPijx(double *p, int bage, int fage){ |
/*------------- h Pij x at various ages ------------*/ |
/*------------- h Pij x at various ages ------------*/ |
|
/* to be optimized with precov */ |
int stepsize; |
int stepsize; |
int agelim; |
int agelim; |
int hstepm; |
int hstepm; |
Line 9384 int hPijx(double *p, int bage, int fage)
|
Line 12822 int hPijx(double *p, int bage, int fage)
|
double agedeb; |
double agedeb; |
double ***p3mat; |
double ***p3mat; |
|
|
strcpy(filerespij,"PIJ_"); strcat(filerespij,fileresu); |
strcpy(filerespij,"PIJ_"); strcat(filerespij,fileresu); |
if((ficrespij=fopen(filerespij,"w"))==NULL) { |
if((ficrespij=fopen(filerespij,"w"))==NULL) { |
printf("Problem with Pij resultfile: %s\n", filerespij); return 1; |
printf("Problem with Pij resultfile: %s\n", filerespij); return 1; |
fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1; |
fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1; |
} |
} |
printf("Computing pij: result on file '%s' \n", filerespij); |
printf("Computing pij: result on file '%s' \n", filerespij); |
fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij); |
fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij); |
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
stepsize=(int) (stepm+YEARM-1)/YEARM; |
/*if (stepm<=24) stepsize=2;*/ |
/*if (stepm<=24) stepsize=2;*/ |
|
|
agelim=AGESUP; |
agelim=AGESUP; |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
|
|
/* hstepm=1; aff par mois*/ |
/* hstepm=1; aff par mois*/ |
pstamp(ficrespij); |
pstamp(ficrespij); |
fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); |
fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); |
i1= pow(2,cptcoveff); |
i1= pow(2,cptcoveff); |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* k=k+1; */ |
/* k=k+1; */ |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k=1; k<=i1;k++){ |
k=TKresult[nres]; |
if(TKresult[nres]!= k) |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
continue; |
/* for(k=1; k<=i1;k++){ */ |
fprintf(ficrespij,"\n#****** "); |
/* if(i1 != 1 && TKresult[nres]!= k) */ |
for(j=1;j<=cptcoveff;j++) |
/* continue; */ |
fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrespij,"\n#****** "); |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
for(j=1;j<=cptcovs;j++){ |
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
fprintf(ficrespij," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* fprintf(ficrespij,"@wV%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
} |
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
fprintf(ficrespij,"******\n"); |
/* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ |
} |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
fprintf(ficrespij,"******\n"); |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
|
|
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ |
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres); |
|
fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres); |
|
fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespij," %1d-%1d",i,j); |
|
fprintf(ficrespij,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate+ndeath;j++) |
for(j=1; j<=nlstate+ndeath;j++) |
fprintf(ficrespij," %1d-%1d",i,j); |
fprintf(ficrespij," %.5f", p3mat[i][j][h]); |
fprintf(ficrespij,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespij," %.5f", p3mat[i][j][h]); |
|
fprintf(ficrespij,"\n"); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespij,"\n"); |
fprintf(ficrespij,"\n"); |
} |
} |
/*}*/ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespij,"\n"); |
} |
} |
return 0; |
} |
|
/*}*/ |
|
return 0; |
} |
} |
|
|
int hBijx(double *p, int bage, int fage, double ***prevacurrent){ |
int hBijx(double *p, int bage, int fage, double ***prevacurrent){ |
/*------------- h Bij x at various ages ------------*/ |
/*------------- h Bij x at various ages ------------*/ |
|
/* To be optimized with precov */ |
int stepsize; |
int stepsize; |
/* int agelim; */ |
/* int agelim; */ |
int ageminl; |
int ageminl; |
Line 9474 int hPijx(double *p, int bage, int fage)
|
Line 12915 int hPijx(double *p, int bage, int fage)
|
/*if (stepm<=24) stepsize=2;*/ |
/*if (stepm<=24) stepsize=2;*/ |
|
|
/* agelim=AGESUP; */ |
/* agelim=AGESUP; */ |
ageminl=30; |
ageminl=AGEINF; /* was 30 */ |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
|
|
/* hstepm=1; aff par mois*/ |
/* hstepm=1; aff par mois*/ |
pstamp(ficrespijb); |
pstamp(ficrespijb); |
fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x "); |
fprintf(ficrespijb,"#****** h Bij x Back probability to be in state i at age x-h being in j at x: B1j+B2j+...=1 "); |
i1= pow(2,cptcoveff); |
i1= pow(2,cptcoveff); |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* k=k+1; */ |
/* k=k+1; */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
k=TKresult[nres]; |
if(TKresult[nres]!= k) |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
continue; |
/* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */ |
fprintf(ficrespijb,"\n#****** "); |
/* if(i1 != 1 && TKresult[nres]!= k) */ |
for(j=1;j<=cptcoveff;j++) |
/* continue; */ |
fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrespijb,"\n#****** "); |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
for(j=1;j<=cptcovs;j++){ |
fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
fprintf(ficrespijb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} |
/* for(j=1;j<=cptcoveff;j++) */ |
fprintf(ficrespijb,"******\n"); |
/* fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
if(invalidvarcomb[k]){ |
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); |
/* fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
continue; |
} |
} |
fprintf(ficrespijb,"******\n"); |
|
if(invalidvarcomb[k]){ /* Is it necessary here? */ |
/* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */ |
fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); |
for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */ |
continue; |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */ |
} |
nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */ |
/* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */ |
|
for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */ |
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */ |
|
nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm+0.1)-1; /* Typically 20 years = 20*12/6=40 or 55*12/24=27.5-1.1=>27 */ |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 or 28*/ |
/* oldm=oldms;savm=savms; */ |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k); |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */ |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */ |
fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j="); |
/* and memory limitations if stepm is small */ |
|
|
|
/* oldm=oldms;savm=savms; */ |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
|
hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres);/* Bug valgrind */ |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */ |
|
fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j="); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespijb," %1d-%1d",i,j); |
|
fprintf(ficrespijb,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm ); |
|
/* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */ |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate+ndeath;j++) |
for(j=1; j<=nlstate+ndeath;j++) |
fprintf(ficrespijb," %1d-%1d",i,j); |
fprintf(ficrespijb," %.5f", p3mat[i][j][h]);/* Bug valgrind */ |
fprintf(ficrespijb,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm ); |
|
/* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */ |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespijb," %.5f", p3mat[i][j][h]); |
|
fprintf(ficrespijb,"\n"); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespijb,"\n"); |
fprintf(ficrespijb,"\n"); |
} /* end age deb */ |
} |
} /* end combination */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespijb,"\n"); |
|
} /* end age deb */ |
|
/* } /\* end combination *\/ */ |
} /* end nres */ |
} /* end nres */ |
return 0; |
return 0; |
} /* hBijx */ |
} /* hBijx */ |
Line 9551 int main(int argc, char *argv[])
|
Line 12998 int main(int argc, char *argv[])
|
double ssval; |
double ssval; |
#endif |
#endif |
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; |
int i,j, k, iter=0,m,size=100, cptcod; /* Suppressing because nobs */ |
|
/* int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; */ |
int ncvyear=0; /* Number of years needed for the period prevalence to converge */ |
int ncvyear=0; /* Number of years needed for the period prevalence to converge */ |
int jj, ll, li, lj, lk; |
int jj, ll, li, lj, lk; |
int numlinepar=0; /* Current linenumber of parameter file */ |
int numlinepar=0; /* Current linenumber of parameter file */ |
Line 9560 int main(int argc, char *argv[])
|
Line 13008 int main(int argc, char *argv[])
|
int NDIM=2; |
int NDIM=2; |
int vpopbased=0; |
int vpopbased=0; |
int nres=0; |
int nres=0; |
|
int endishere=0; |
|
int noffset=0; |
|
int ncurrv=0; /* Temporary variable */ |
|
|
char ca[32], cb[32]; |
char ca[32], cb[32]; |
/* FILE *fichtm; *//* Html File */ |
/* FILE *fichtm; *//* Html File */ |
/* FILE *ficgp;*/ /*Gnuplot File */ |
/* FILE *ficgp;*/ /*Gnuplot File */ |
Line 9574 int main(int argc, char *argv[])
|
Line 13025 int main(int argc, char *argv[])
|
double dum=0.; /* Dummy variable */ |
double dum=0.; /* Dummy variable */ |
double ***p3mat; |
double ***p3mat; |
/* double ***mobaverage; */ |
/* double ***mobaverage; */ |
|
double wald; |
|
|
char line[MAXLINE]; |
char line[MAXLINE], linetmp[MAXLINE]; |
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
|
|
char modeltemp[MAXLINE]; |
char modeltemp[MAXLINE]; |
char resultline[MAXLINE]; |
char resultline[MAXLINE], resultlineori[MAXLINE]; |
|
|
char pathr[MAXLINE], pathimach[MAXLINE]; |
char pathr[MAXLINE], pathimach[MAXLINE]; |
char *tok, *val; /* pathtot */ |
char *tok, *val; /* pathtot */ |
int firstobs=1, lastobs=10; |
/* int firstobs=1, lastobs=10; /\* nobs = lastobs-firstobs declared globally ;*\/ */ |
int c, h , cpt, c2; |
int c, h , cpt, c2; |
int jl=0; |
int jl=0; |
int i1, j1, jk, stepsize=0; |
int i1, j1, jk, stepsize=0; |
Line 9591 int main(int argc, char *argv[])
|
Line 13043 int main(int argc, char *argv[])
|
|
|
int *tab; |
int *tab; |
int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
int backcast=0; |
/* double anprojd, mprojd, jprojd; /\* For eventual projections *\/ */ |
|
/* double anprojf, mprojf, jprojf; */ |
|
/* double jintmean,mintmean,aintmean; */ |
|
int prvforecast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */ |
|
int prvbackcast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */ |
|
double yrfproj= 10.0; /* Number of years of forward projections */ |
|
double yrbproj= 10.0; /* Number of years of backward projections */ |
|
int prevbcast=0; /* defined as global for mlikeli and mle, replacing backcast */ |
int mobilav=0,popforecast=0; |
int mobilav=0,popforecast=0; |
int hstepm=0, nhstepm=0; |
int hstepm=0, nhstepm=0; |
int agemortsup; |
int agemortsup; |
Line 9603 int main(int argc, char *argv[])
|
Line 13062 int main(int argc, char *argv[])
|
double ftolpl=FTOL; |
double ftolpl=FTOL; |
double **prlim; |
double **prlim; |
double **bprlim; |
double **bprlim; |
double ***param; /* Matrix of parameters */ |
double ***param; /* Matrix of parameters, param[i][j][k] param=ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel) |
double *p; |
state of origin, state of destination including death, for each covariate: constante, age, and V1 V2 etc. */ |
|
double ***paramstart; /* Matrix of starting parameter values */ |
|
double *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */ |
double **matcov; /* Matrix of covariance */ |
double **matcov; /* Matrix of covariance */ |
double **hess; /* Hessian matrix */ |
double **hess; /* Hessian matrix */ |
double ***delti3; /* Scale */ |
double ***delti3; /* Scale */ |
double *delti; /* Scale */ |
double *delti; /* Scale */ |
double ***eij, ***vareij; |
double ***eij, ***vareij; |
double **varpl; /* Variances of prevalence limits by age */ |
double **varpl; /* Variances of prevalence limits by age */ |
|
|
double *epj, vepp; |
double *epj, vepp; |
|
|
double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000; |
double dateprev1, dateprev2; |
double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000; |
double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0, dateprojd=0, dateprojf=0; |
|
double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0, datebackd=0, datebackf=0; |
|
|
|
|
double **ximort; |
double **ximort; |
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
Line 9692 int main(int argc, char *argv[])
|
Line 13156 int main(int argc, char *argv[])
|
if(pathr[0] == '\0') break; /* Dirty */ |
if(pathr[0] == '\0') break; /* Dirty */ |
} |
} |
} |
} |
|
else if (argc<=2){ |
|
strcpy(pathtot,argv[1]); |
|
} |
else{ |
else{ |
strcpy(pathtot,argv[1]); |
strcpy(pathtot,argv[1]); |
|
strcpy(z,argv[2]); |
|
printf("\nargv[2]=%s z=%c\n",argv[2],z[0]); |
} |
} |
/*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/ |
/*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/ |
/*cygwin_split_path(pathtot,path,optionfile); |
/*cygwin_split_path(pathtot,path,optionfile); |
Line 9771 int main(int argc, char *argv[])
|
Line 13240 int main(int argc, char *argv[])
|
exit(70); |
exit(70); |
} |
} |
|
|
|
|
|
|
strcpy(filereso,"o"); |
strcpy(filereso,"o"); |
strcat(filereso,fileresu); |
strcat(filereso,fileresu); |
if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */ |
if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */ |
Line 9781 int main(int argc, char *argv[])
|
Line 13248 int main(int argc, char *argv[])
|
fflush(ficlog); |
fflush(ficlog); |
goto end; |
goto end; |
} |
} |
|
/*-------- Rewriting parameter file ----------*/ |
|
strcpy(rfileres,"r"); /* "Rparameterfile */ |
|
strcat(rfileres,optionfilefiname); /* Parameter file first name */ |
|
strcat(rfileres,"."); /* */ |
|
strcat(rfileres,optionfilext); /* Other files have txt extension */ |
|
if((ficres =fopen(rfileres,"w"))==NULL) { |
|
printf("Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fflush(ficlog); |
|
goto end; |
|
} |
|
fprintf(ficres,"#IMaCh %s\n",version); |
|
|
|
|
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
numlinepar=0; |
numlinepar=0; |
|
/* Is it a BOM UTF-8 Windows file? */ |
/* First parameter line */ |
/* First parameter line */ |
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
|
noffset=0; |
|
if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */ |
|
{ |
|
noffset=noffset+3; |
|
printf("# File is an UTF8 Bom.\n"); // 0xBF |
|
} |
|
/* else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/ |
|
else if( line[0] == (char)0xFF && line[1] == (char)0xFE) |
|
{ |
|
noffset=noffset+2; |
|
printf("# File is an UTF16BE BOM file\n"); |
|
} |
|
else if( line[0] == 0 && line[1] == 0) |
|
{ |
|
if( line[2] == (char)0xFE && line[3] == (char)0xFF){ |
|
noffset=noffset+4; |
|
printf("# File is an UTF16BE BOM file\n"); |
|
} |
|
} else{ |
|
;/*printf(" Not a BOM file\n");*/ |
|
} |
|
|
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
if (line[noffset] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
|
fputs(line,ficres); |
fputs(line,ficlog); |
fputs(line,ficlog); |
continue; |
continue; |
}else |
}else |
Line 9801 int main(int argc, char *argv[])
|
Line 13304 int main(int argc, char *argv[])
|
title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){ |
title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){ |
if (num_filled != 5) { |
if (num_filled != 5) { |
printf("Should be 5 parameters\n"); |
printf("Should be 5 parameters\n"); |
|
fprintf(ficlog,"Should be 5 parameters\n"); |
} |
} |
numlinepar++; |
numlinepar++; |
printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
} |
} |
/* Second parameter line */ |
/* Second parameter line */ |
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
/* If line starts with a # it is a comment */ |
/* while(fscanf(ficpar,"%[^\n]", line)) { */ |
|
/* If line starts with a # it is a comment. Strangely fgets reads the EOL and fputs doesn't */ |
if (line[0] == '#') { |
if (line[0] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
printf("%s",line); |
fputs(line,ficparo); |
fprintf(ficres,"%s",line); |
fputs(line,ficlog); |
fprintf(ficparo,"%s",line); |
|
fprintf(ficlog,"%s",line); |
continue; |
continue; |
}else |
}else |
break; |
break; |
Line 9822 int main(int argc, char *argv[])
|
Line 13331 int main(int argc, char *argv[])
|
if (num_filled != 11) { |
if (num_filled != 11) { |
printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
printf("but line=%s\n",line); |
printf("but line=%s\n",line); |
|
fprintf(ficlog,"Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
|
fprintf(ficlog,"but line=%s\n",line); |
|
} |
|
if( lastpass > maxwav){ |
|
printf("Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav); |
|
fprintf(ficlog,"Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav); |
|
fflush(ficlog); |
|
goto end; |
} |
} |
printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
|
fprintf(ficparo,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
|
fprintf(ficres,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, 0, weightopt); |
|
fprintf(ficlog,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
} |
} |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
/*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
/*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
Line 9832 int main(int argc, char *argv[])
|
Line 13352 int main(int argc, char *argv[])
|
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
if (line[0] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
printf("%s",line); |
fputs(line,ficparo); |
fprintf(ficres,"%s",line); |
fputs(line,ficlog); |
fprintf(ficparo,"%s",line); |
|
fprintf(ficlog,"%s",line); |
continue; |
continue; |
}else |
}else |
break; |
break; |
} |
} |
if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ |
if((num_filled=sscanf(line,"model=%[^.\n]", model)) !=EOF){ /* Every character after model but dot and return */ |
if (num_filled == 0) |
if (num_filled != 1){ |
model[0]='\0'; |
printf("ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line); |
else if (num_filled != 1){ |
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line); |
printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
model[0]='\0'; |
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
goto end; |
|
}else{ |
|
trimbtab(linetmp,line); /* Trims multiple blanks in line */ |
|
strcpy(line, linetmp); |
|
} |
|
} |
|
if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ /* Every character after 1+age but dot and return */ |
|
if (num_filled != 1){ |
|
printf("ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line); |
|
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line); |
model[0]='\0'; |
model[0]='\0'; |
goto end; |
goto end; |
} |
} |
Line 9855 int main(int argc, char *argv[])
|
Line 13385 int main(int argc, char *argv[])
|
strcpy(model,modeltemp); |
strcpy(model,modeltemp); |
} |
} |
} |
} |
/* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */ |
/* printf(" model=1+age%s modeltemp= %s, model=1+age+%s\n",model, modeltemp, model);fflush(stdout); */ |
printf("model=1+age+%s\n",model);fflush(stdout); |
printf("model=1+age+%s\n",model);fflush(stdout); |
|
fprintf(ficparo,"model=1+age+%s\n",model);fflush(stdout); |
|
fprintf(ficres,"model=1+age+%s\n",model);fflush(stdout); |
|
fprintf(ficlog,"model=1+age+%s\n",model);fflush(stdout); |
} |
} |
/* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */ |
/* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */ |
/* numlinepar=numlinepar+3; /\* In general *\/ */ |
/* numlinepar=numlinepar+3; /\* In general *\/ */ |
/* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */ |
/* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */ |
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); |
/* fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */ |
fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); |
/* fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */ |
fflush(ficlog); |
fflush(ficlog); |
/* if(model[0]=='#'|| model[0]== '\0'){ */ |
/* if(model[0]=='#'|| model[0]== '\0'){ */ |
if(model[0]=='#'){ |
if(model[0]=='#'){ |
printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \ |
printf("Error in 'model' line: model should start with 'model=1+age+' and end without space \n \ |
'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \ |
'model=1+age+' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age' or \n \ |
'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n"); \ |
'model=1+age+V1+V2' or 'model=1+age+V1+V2+V1*V2' etc. \n"); \ |
if(mle != -1){ |
if(mle != -1){ |
printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n"); |
printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter vectors and subdiagonal covariance matrix.\n"); |
exit(1); |
exit(1); |
} |
} |
} |
} |
Line 9880 int main(int argc, char *argv[])
|
Line 13413 int main(int argc, char *argv[])
|
numlinepar++; |
numlinepar++; |
if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */ |
if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */ |
z[0]=line[1]; |
z[0]=line[1]; |
|
}else if(line[1]=='d'){ /* For debugging individual values of covariates in ficresilk */ |
|
debugILK=1;printf("DebugILK\n"); |
} |
} |
/* printf("****line [1] = %c \n",line[1]); */ |
/* printf("****line [1] = %c \n",line[1]); */ |
fputs(line, stdout); |
fputs(line, stdout); |
Line 9890 int main(int argc, char *argv[])
|
Line 13425 int main(int argc, char *argv[])
|
ungetc(c,ficpar); |
ungetc(c,ficpar); |
|
|
|
|
covar=matrix(0,NCOVMAX,1,n); /**< used in readdata */ |
covar=matrix(0,NCOVMAX,firstobs,lastobs); /**< used in readdata */ |
coqvar=matrix(1,nqv,1,n); /**< Fixed quantitative covariate */ |
if(nqv>=1)coqvar=matrix(1,nqv,firstobs,lastobs); /**< Fixed quantitative covariate */ |
cotvar=ma3x(1,maxwav,1,ntv+nqtv,1,n); /**< Time varying covariate (dummy and quantitative)*/ |
if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,firstobs,lastobs); /**< Time varying quantitative covariate */ |
cotqvar=ma3x(1,maxwav,1,nqtv,1,n); /**< Time varying quantitative covariate */ |
/* if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,firstobs,lastobs); /\**< Time varying covariate (dummy and quantitative)*\/ */ |
|
if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,ncovcol+nqv+1,ncovcol+nqv+ntv+nqtv,firstobs,lastobs); /**< Might be better */ |
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
v1+v2*age+v2*v3 makes cptcovn = 3 |
v1+v2*age+v2*v3 makes cptcovn = 3 |
Line 9929 int main(int argc, char *argv[])
|
Line 13465 int main(int argc, char *argv[])
|
fclose (ficlog); |
fclose (ficlog); |
goto end; |
goto end; |
exit(0); |
exit(0); |
} else if(mle==-2) { /* Guessing from means */ |
|
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
|
printf(" You chose mle=-2, look at file %s for a template of covariance matrix \n",filereso); |
|
fprintf(ficlog," You chose mle=-2, look at file %s for a template of covariance matrix \n",filereso); |
|
|
|
} else if(mle==-5) { /* Main Wizard */ |
} else if(mle==-5) { /* Main Wizard */ |
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
Line 9955 int main(int argc, char *argv[])
|
Line 13486 int main(int argc, char *argv[])
|
ungetc(c,ficpar); |
ungetc(c,ficpar); |
|
|
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
|
paramstart= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
for(i=1; i <=nlstate; i++){ |
for(i=1; i <=nlstate; i++){ |
j=0; |
j=0; |
for(jj=1; jj <=nlstate+ndeath; jj++){ |
for(jj=1; jj <=nlstate+ndeath; jj++){ |
if(jj==i) continue; |
if(jj==i) continue; |
j++; |
j++; |
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
} |
|
ungetc(c,ficpar); |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
if ((i1 != i) || (j1 != jj)){ |
if ((i1 != i) || (j1 != jj)){ |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
Line 9991 run imach with mle=-1 to get a correct t
|
Line 13532 run imach with mle=-1 to get a correct t
|
} |
} |
fflush(ficlog); |
fflush(ficlog); |
|
|
/* Reads scales values */ |
/* Reads parameters values */ |
p=param[1][1]; |
p=param[1][1]; |
|
pstart=paramstart[1][1]; |
|
|
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
Line 10095 Please run with mle=-1 to get a correct
|
Line 13637 Please run with mle=-1 to get a correct
|
|
|
fflush(ficlog); |
fflush(ficlog); |
|
|
/*-------- Rewriting parameter file ----------*/ |
|
strcpy(rfileres,"r"); /* "Rparameterfile */ |
|
strcat(rfileres,optionfilefiname); /* Parameter file first name*/ |
|
strcat(rfileres,"."); /* */ |
|
strcat(rfileres,optionfilext); /* Other files have txt extension */ |
|
if((ficres =fopen(rfileres,"w"))==NULL) { |
|
printf("Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end; |
|
} |
|
fprintf(ficres,"#%s\n",version); |
|
} /* End of mle != -3 */ |
} /* End of mle != -3 */ |
|
|
/* Main data |
/* Main data |
*/ |
*/ |
n= lastobs; |
nobs=lastobs-firstobs+1; /* was = lastobs;*/ |
num=lvector(1,n); |
/* num=lvector(1,n); */ |
moisnais=vector(1,n); |
/* moisnais=vector(1,n); */ |
annais=vector(1,n); |
/* annais=vector(1,n); */ |
moisdc=vector(1,n); |
/* moisdc=vector(1,n); */ |
andc=vector(1,n); |
/* andc=vector(1,n); */ |
weight=vector(1,n); |
/* weight=vector(1,n); */ |
agedc=vector(1,n); |
/* agedc=vector(1,n); */ |
cod=ivector(1,n); |
/* cod=ivector(1,n); */ |
for(i=1;i<=n;i++){ |
/* for(i=1;i<=n;i++){ */ |
|
num=lvector(firstobs,lastobs); |
|
moisnais=vector(firstobs,lastobs); |
|
annais=vector(firstobs,lastobs); |
|
moisdc=vector(firstobs,lastobs); |
|
andc=vector(firstobs,lastobs); |
|
weight=vector(firstobs,lastobs); |
|
agedc=vector(firstobs,lastobs); |
|
cod=ivector(firstobs,lastobs); |
|
for(i=firstobs;i<=lastobs;i++){ |
num[i]=0; |
num[i]=0; |
moisnais[i]=0; |
moisnais[i]=0; |
annais[i]=0; |
annais[i]=0; |
Line 10128 Please run with mle=-1 to get a correct
|
Line 13669 Please run with mle=-1 to get a correct
|
cod[i]=0; |
cod[i]=0; |
weight[i]=1.0; /* Equal weights, 1 by default */ |
weight[i]=1.0; /* Equal weights, 1 by default */ |
} |
} |
mint=matrix(1,maxwav,1,n); |
mint=matrix(1,maxwav,firstobs,lastobs); |
anint=matrix(1,maxwav,1,n); |
anint=matrix(1,maxwav,firstobs,lastobs); |
s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ |
s=imatrix(1,maxwav+1,firstobs,lastobs); /* s[i][j] health state for wave i and individual j */ |
|
/* printf("BUG ncovmodel=%d NCOVMAX=%d 2**ncovmodel=%f BUG\n",ncovmodel,NCOVMAX,pow(2,ncovmodel)); */ |
tab=ivector(1,NCOVMAX); |
tab=ivector(1,NCOVMAX); |
ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
Line 10149 Please run with mle=-1 to get a correct
|
Line 13691 Please run with mle=-1 to get a correct
|
|
|
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
TvarsDind=ivector(1,NCOVMAX); /* */ |
TvarsDind=ivector(1,NCOVMAX); /* */ |
|
TnsdVar=ivector(1,NCOVMAX); /* */ |
|
/* for(i=1; i<=NCOVMAX;i++) TnsdVar[i]=3; */ |
TvarsD=ivector(1,NCOVMAX); /* */ |
TvarsD=ivector(1,NCOVMAX); /* */ |
TvarsQind=ivector(1,NCOVMAX); /* */ |
TvarsQind=ivector(1,NCOVMAX); /* */ |
TvarsQ=ivector(1,NCOVMAX); /* */ |
TvarsQ=ivector(1,NCOVMAX); /* */ |
Line 10166 Please run with mle=-1 to get a correct
|
Line 13710 Please run with mle=-1 to get a correct
|
TvarVDind=ivector(1,NCOVMAX); /* */ |
TvarVDind=ivector(1,NCOVMAX); /* */ |
TvarVQ=ivector(1,NCOVMAX); /* */ |
TvarVQ=ivector(1,NCOVMAX); /* */ |
TvarVQind=ivector(1,NCOVMAX); /* */ |
TvarVQind=ivector(1,NCOVMAX); /* */ |
|
TvarVV=ivector(1,NCOVMAX); /* */ |
|
TvarVVind=ivector(1,NCOVMAX); /* */ |
|
TvarVVA=ivector(1,NCOVMAX); /* */ |
|
TvarVVAind=ivector(1,NCOVMAX); /* */ |
|
TvarAVVA=ivector(1,NCOVMAX); /* */ |
|
TvarAVVAind=ivector(1,NCOVMAX); /* */ |
|
|
Tvalsel=vector(1,NCOVMAX); /* */ |
Tvalsel=vector(1,NCOVMAX); /* */ |
Tvarsel=ivector(1,NCOVMAX); /* */ |
Tvarsel=ivector(1,NCOVMAX); /* */ |
Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */ |
Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */ |
Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */ |
Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */ |
Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */ |
Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */ |
|
DummyV=ivector(-1,NCOVMAX); /* 1 to 3 */ |
|
FixedV=ivector(-1,NCOVMAX); /* 1 to 3 */ |
|
|
/* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). |
/* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). |
For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, |
For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, |
Tvar[4=age*V3] is 3 and 'age' is recorded in Tage. |
Tvar[4=age*V3] is 3 and 'age' is recorded in Tage. |
Line 10191 Please run with mle=-1 to get a correct
|
Line 13744 Please run with mle=-1 to get a correct
|
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
* For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. |
* For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. |
* Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */ |
* Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */ |
|
Tvardk=imatrix(0,NCOVMAX,1,2); |
Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age |
Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age |
4 covariates (3 plus signs) |
4 covariates (3 plus signs) |
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
*/ |
*/ |
|
for(i=1;i<NCOVMAX;i++) |
|
Tage[i]=0; |
Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an |
Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an |
* individual dummy, fixed or varying: |
* individual dummy, fixed or varying: |
* Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4, |
* Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4, |
Line 10208 Please run with mle=-1 to get a correct
|
Line 13764 Please run with mle=-1 to get a correct
|
* Tmodelqind[1]=1,Tvaraff[1]@9={4, |
* Tmodelqind[1]=1,Tvaraff[1]@9={4, |
* 3, 1, 0, 0, 0, 0, 0, 0}, |
* 3, 1, 0, 0, 0, 0, 0, 0}, |
* model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
* model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
|
|
|
/* Probably useless zeroes */ |
|
for(i=1;i<NCOVMAX;i++){ |
|
DummyV[i]=0; |
|
FixedV[i]=0; |
|
} |
|
|
|
for(i=1; i <=ncovcol;i++){ |
|
DummyV[i]=0; |
|
FixedV[i]=0; |
|
} |
|
for(i=ncovcol+1; i <=ncovcol+nqv;i++){ |
|
DummyV[i]=1; |
|
FixedV[i]=0; |
|
} |
|
for(i=ncovcol+nqv+1; i <=ncovcol+nqv+ntv;i++){ |
|
DummyV[i]=0; |
|
FixedV[i]=1; |
|
} |
|
for(i=ncovcol+nqv+ntv+1; i <=ncovcol+nqv+ntv+nqtv;i++){ |
|
DummyV[i]=1; |
|
FixedV[i]=1; |
|
} |
|
for(i=1; i <=ncovcol+nqv+ntv+nqtv;i++){ |
|
printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",i,i,DummyV[i],i,FixedV[i]); |
|
fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",i,i,DummyV[i],i,FixedV[i]); |
|
} |
|
|
|
|
|
|
/* Main decodemodel */ |
/* Main decodemodel */ |
|
|
|
|
Line 10232 Please run with mle=-1 to get a correct
|
Line 13818 Please run with mle=-1 to get a correct
|
|
|
|
|
agegomp=(int)agemin; |
agegomp=(int)agemin; |
free_vector(moisnais,1,n); |
free_vector(moisnais,firstobs,lastobs); |
free_vector(annais,1,n); |
free_vector(annais,firstobs,lastobs); |
/* free_matrix(mint,1,maxwav,1,n); |
/* free_matrix(mint,1,maxwav,1,n); |
free_matrix(anint,1,maxwav,1,n);*/ |
free_matrix(anint,1,maxwav,1,n);*/ |
/* free_vector(moisdc,1,n); */ |
/* free_vector(moisdc,1,n); */ |
Line 10259 Please run with mle=-1 to get a correct
|
Line 13845 Please run with mle=-1 to get a correct
|
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
/* Concatenates waves */ |
/* Concatenates waves */ |
|
|
free_vector(moisdc,1,n); |
free_vector(moisdc,firstobs,lastobs); |
free_vector(andc,1,n); |
free_vector(andc,firstobs,lastobs); |
|
|
/* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ |
/* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ |
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
Line 10268 Please run with mle=-1 to get a correct
|
Line 13854 Please run with mle=-1 to get a correct
|
Ndum =ivector(-1,NCOVMAX); |
Ndum =ivector(-1,NCOVMAX); |
cptcoveff=0; |
cptcoveff=0; |
if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */ |
if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */ |
tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ |
tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; as well as calculate cptcoveff or number of total effective dummy covariates*/ |
} |
} |
|
|
ncovcombmax=pow(2,cptcoveff); |
ncovcombmax=pow(2,cptcoveff); |
invalidvarcomb=ivector(1, ncovcombmax); |
invalidvarcomb=ivector(0, ncovcombmax); |
for(i=1;i<ncovcombmax;i++) |
for(i=0;i<ncovcombmax;i++) |
invalidvarcomb[i]=0; |
invalidvarcomb[i]=0; |
|
|
/* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in |
/* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in |
Line 10298 Please run with mle=-1 to get a correct
|
Line 13884 Please run with mle=-1 to get a correct
|
* For k=4 covariates, h goes from 1 to m=2**k |
* For k=4 covariates, h goes from 1 to m=2**k |
* codtabm(h,k)= (1 & (h-1) >> (k-1)) + 1; |
* codtabm(h,k)= (1 & (h-1) >> (k-1)) + 1; |
* #define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
* #define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
* h\k 1 2 3 4 |
* h\k 1 2 3 4 * h-1\k-1 4 3 2 1 |
*______________________________ |
*______________________________ *______________________ |
* 1 i=1 1 i=1 1 i=1 1 i=1 1 |
* 1 i=1 1 i=1 1 i=1 1 i=1 1 * 0 0 0 0 0 |
* 2 2 1 1 1 |
* 2 2 1 1 1 * 1 0 0 0 1 |
* 3 i=2 1 2 1 1 |
* 3 i=2 1 2 1 1 * 2 0 0 1 0 |
* 4 2 2 1 1 |
* 4 2 2 1 1 * 3 0 0 1 1 |
* 5 i=3 1 i=2 1 2 1 |
* 5 i=3 1 i=2 1 2 1 * 4 0 1 0 0 |
* 6 2 1 2 1 |
* 6 2 1 2 1 * 5 0 1 0 1 |
* 7 i=4 1 2 2 1 |
* 7 i=4 1 2 2 1 * 6 0 1 1 0 |
* 8 2 2 2 1 |
* 8 2 2 2 1 * 7 0 1 1 1 |
* 9 i=5 1 i=3 1 i=2 1 2 |
* 9 i=5 1 i=3 1 i=2 1 2 * 8 1 0 0 0 |
* 10 2 1 1 2 |
* 10 2 1 1 2 * 9 1 0 0 1 |
* 11 i=6 1 2 1 2 |
* 11 i=6 1 2 1 2 * 10 1 0 1 0 |
* 12 2 2 1 2 |
* 12 2 2 1 2 * 11 1 0 1 1 |
* 13 i=7 1 i=4 1 2 2 |
* 13 i=7 1 i=4 1 2 2 * 12 1 1 0 0 |
* 14 2 1 2 2 |
* 14 2 1 2 2 * 13 1 1 0 1 |
* 15 i=8 1 2 2 2 |
* 15 i=8 1 2 2 2 * 14 1 1 1 0 |
* 16 2 2 2 2 |
* 16 2 2 2 2 * 15 1 1 1 1 |
*/ |
*/ |
/* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */ |
/* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */ |
/* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4 |
/* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4 |
* and the value of each covariate? |
* and the value of each covariate? |
Line 10407 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 13993 Title=%s <br>Datafile=%s Firstpass=%d La
|
optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
} |
} |
|
|
fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C) 2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br> \ |
fprintf(fichtm,"<html><head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n\ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
<title>IMaCh %s</title></head>\n\ |
|
<body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n\ |
|
<font size=\"3\">Sponsored by Copyright (C) 2002-2015 <a href=http://www.ined.fr>INED</a>\ |
|
-EUROREVES-Institut de longévité-2013-2022-Japan Society for the Promotion of Sciences 日本学術振興会 \ |
|
(<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - \ |
|
<a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br> \n", optionfilehtm); |
|
|
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
<font size=\"2\">IMaCh-%s <br> %s</font> \ |
<font size=\"2\">IMaCh-%s <br> %s</font> \ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\ |
This file: <a href=\"%s\">%s</a></br>Title=%s <br>Datafile=<a href=\"%s\">%s</a> Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\ |
\n\ |
\n\ |
<hr size=\"2\" color=\"#EC5E5E\">\ |
<hr size=\"2\" color=\"#EC5E5E\">\ |
<ul><li><h4>Parameter files</h4>\n\ |
<ul><li><h4>Parameter files</h4>\n\ |
Line 10420 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 14013 Title=%s <br>Datafile=%s Firstpass=%d La
|
- Log file of the run: <a href=\"%s\">%s</a><br>\n\ |
- Log file of the run: <a href=\"%s\">%s</a><br>\n\ |
- Gnuplot file name: <a href=\"%s\">%s</a><br>\n\ |
- Gnuplot file name: <a href=\"%s\">%s</a><br>\n\ |
- Date and time at start: %s</ul>\n",\ |
- Date and time at start: %s</ul>\n",\ |
optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\ |
version,fullversion,optionfilehtm,optionfilehtm,title,datafile,datafile,firstpass,lastpass,stepm, weightopt, model, \ |
optionfilefiname,optionfilext,optionfilefiname,optionfilext,\ |
optionfilefiname,optionfilext,optionfilefiname,optionfilext,\ |
fileres,fileres,\ |
fileres,fileres,\ |
filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart); |
filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart); |
Line 10438 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 14031 Title=%s <br>Datafile=%s Firstpass=%d La
|
/* Calculates basic frequencies. Computes observed prevalence at single age |
/* Calculates basic frequencies. Computes observed prevalence at single age |
and for any valid combination of covariates |
and for any valid combination of covariates |
and prints on file fileres'p'. */ |
and prints on file fileres'p'. */ |
freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \ |
freqsummary(fileres, p, pstart, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \ |
firstpass, lastpass, stepm, weightopt, model); |
firstpass, lastpass, stepm, weightopt, model); |
|
|
fprintf(fichtm,"\n"); |
fprintf(fichtm,"\n"); |
fprintf(fichtm,"<br>Total number of observations=%d <br>\n\ |
fprintf(fichtm,"<h4>Parameter line 2</h4><ul><li>Tolerance for the convergence of the likelihood: ftol=%g \n<li>Interval for the elementary matrix (in month): stepm=%d",\ |
|
ftol, stepm); |
|
fprintf(fichtm,"\n<li>Number of fixed dummy covariates: ncovcol=%d ", ncovcol); |
|
ncurrv=1; |
|
for(i=ncurrv; i <=ncovcol; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li> Number of fixed quantitative variables: nqv=%d ", nqv); |
|
ncurrv=i; |
|
for(i=ncurrv; i <=ncurrv-1+nqv; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li> Number of time varying (wave varying) dummy covariates: ntv=%d ", ntv); |
|
ncurrv=i; |
|
for(i=ncurrv; i <=ncurrv-1+ntv; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li>Number of time varying quantitative covariates: nqtv=%d ", nqtv); |
|
ncurrv=i; |
|
for(i=ncurrv; i <=ncurrv-1+nqtv; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li>Weights column \n<br>Number of alive states: nlstate=%d <br>Number of death states (not really implemented): ndeath=%d \n<li>Number of waves: maxwav=%d \n<li>Parameter for maximization (1), using parameter values (0), for design of parameters and variance-covariance matrix: mle=%d \n<li>Does the weight column be taken into account (1), or not (0): weight=%d</ul>\n", \ |
|
nlstate, ndeath, maxwav, mle, weightopt); |
|
|
|
fprintf(fichtm,"<h4> Diagram of states <a href=\"%s_.svg\">%s_.svg</a></h4> \n\ |
|
<img src=\"%s_.svg\">", subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_")); |
|
|
|
|
|
fprintf(fichtm,"\n<h4>Some descriptive statistics </h4>\n<br>Number of (used) observations=%d <br>\n\ |
Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ |
Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ |
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
imx,agemin,agemax,jmin,jmax,jmean); |
imx,agemin,agemax,jmin,jmax,jmean); |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
|
|
/* For Powell, parameters are in a vector p[] starting at p[1] |
/* For Powell, parameters are in a vector p[] starting at p[1] |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
Line 10464 Interval (in months) between two waves:
|
Line 14078 Interval (in months) between two waves:
|
for(j=1;j<=NDIM;j++) |
for(j=1;j<=NDIM;j++) |
ximort[i][j]=0.; |
ximort[i][j]=0.; |
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
cens=ivector(1,n); |
cens=ivector(firstobs,lastobs); |
ageexmed=vector(1,n); |
ageexmed=vector(firstobs,lastobs); |
agecens=vector(1,n); |
agecens=vector(firstobs,lastobs); |
dcwave=ivector(1,n); |
dcwave=ivector(firstobs,lastobs); |
|
|
for (i=1; i<=imx; i++){ |
for (i=1; i<=imx; i++){ |
dcwave[i]=-1; |
dcwave[i]=-1; |
Line 10501 Interval (in months) between two waves:
|
Line 14115 Interval (in months) between two waves:
|
ximort[i][j]=(i == j ? 1.0 : 0.0); |
ximort[i][j]=(i == j ? 1.0 : 0.0); |
} |
} |
|
|
/*p[1]=0.0268; p[NDIM]=0.083;*/ |
p[1]=0.0268; p[NDIM]=0.083; |
/*printf("%lf %lf", p[1], p[2]);*/ |
/* printf("%lf %lf", p[1], p[2]); */ |
|
|
|
|
#ifdef GSL |
#ifdef GSL |
Line 10628 Interval (in months) between two waves:
|
Line 14242 Interval (in months) between two waves:
|
printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
} |
} |
lsurv=vector(1,AGESUP); |
lsurv=vector(agegomp,AGESUP); |
lpop=vector(1,AGESUP); |
lpop=vector(agegomp,AGESUP); |
tpop=vector(1,AGESUP); |
tpop=vector(agegomp,AGESUP); |
lsurv[agegomp]=100000; |
lsurv[agegomp]=100000; |
|
|
for (k=agegomp;k<=AGESUP;k++) { |
for (k=agegomp;k<=AGESUP;k++) { |
Line 10677 Please run with mle=-1 to get a correct
|
Line 14291 Please run with mle=-1 to get a correct
|
stepm, weightopt,\ |
stepm, weightopt,\ |
model,imx,p,matcov,agemortsup); |
model,imx,p,matcov,agemortsup); |
|
|
free_vector(lsurv,1,AGESUP); |
free_vector(lsurv,agegomp,AGESUP); |
free_vector(lpop,1,AGESUP); |
free_vector(lpop,agegomp,AGESUP); |
free_vector(tpop,1,AGESUP); |
free_vector(tpop,agegomp,AGESUP); |
free_matrix(ximort,1,NDIM,1,NDIM); |
free_matrix(ximort,1,NDIM,1,NDIM); |
free_ivector(cens,1,n); |
free_ivector(dcwave,firstobs,lastobs); |
free_vector(agecens,1,n); |
free_vector(agecens,firstobs,lastobs); |
free_ivector(dcwave,1,n); |
free_vector(ageexmed,firstobs,lastobs); |
|
free_ivector(cens,firstobs,lastobs); |
#ifdef GSL |
#ifdef GSL |
#endif |
#endif |
} /* Endof if mle==-3 mortality only */ |
} /* Endof if mle==-3 mortality only */ |
Line 10712 Please run with mle=-1 to get a correct
|
Line 14327 Please run with mle=-1 to get a correct
|
globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */ |
globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */ |
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
|
/* exit(0); */ |
for (k=1; k<=npar;k++) |
for (k=1; k<=npar;k++) |
printf(" %d %8.5f",k,p[k]); |
printf(" %d %8.5f",k,p[k]); |
printf("\n"); |
printf("\n"); |
|
|
/*--------- results files --------------*/ |
/*--------- results files --------------*/ |
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); |
/* fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); */ |
|
|
|
|
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); /* Printing model equation */ |
fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
|
|
printf("#model= 1 + age "); |
|
fprintf(ficres,"#model= 1 + age "); |
|
fprintf(ficlog,"#model= 1 + age "); |
|
fprintf(fichtm,"\n<ul><li> model=1+age+%s\n \ |
|
</ul>", model); |
|
|
|
fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">\n"); |
|
fprintf(fichtm, "<tr><th>Model=</th><th>1</th><th>+ age</th>"); |
|
if(nagesqr==1){ |
|
printf(" + age*age "); |
|
fprintf(ficres," + age*age "); |
|
fprintf(ficlog," + age*age "); |
|
fprintf(fichtm, "<th>+ age*age</th>"); |
|
} |
|
for(j=1;j <=ncovmodel-2;j++){ |
|
if(Typevar[j]==0) { |
|
printf(" + V%d ",Tvar[j]); |
|
fprintf(ficres," + V%d ",Tvar[j]); |
|
fprintf(ficlog," + V%d ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]); |
|
}else if(Typevar[j]==1) { |
|
printf(" + V%d*age ",Tvar[j]); |
|
fprintf(ficres," + V%d*age ",Tvar[j]); |
|
fprintf(ficlog," + V%d*age ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d*age</th>",Tvar[j]); |
|
}else if(Typevar[j]==2) { |
|
printf(" + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficres," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficlog," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(fichtm, "<th>+ V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
}else if(Typevar[j]==3) { /* TO VERIFY */ |
|
printf(" + V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficres," + V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficlog," + V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(fichtm, "<th>+ V%d*V%d*age</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
} |
|
} |
|
printf("\n"); |
|
fprintf(ficres,"\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(fichtm, "</tr>"); |
|
fprintf(fichtm, "\n"); |
|
|
|
|
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
if (k != i) { |
if (k != i) { |
|
fprintf(fichtm, "<tr>"); |
printf("%d%d ",i,k); |
printf("%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficres,"%1d%1d ",i,k); |
fprintf(ficres,"%1d%1d ",i,k); |
|
fprintf(fichtm, "<td>%1d%1d</td>",i,k); |
for(j=1; j <=ncovmodel; j++){ |
for(j=1; j <=ncovmodel; j++){ |
printf("%12.7f ",p[jk]); |
printf("%12.7f ",p[jk]); |
fprintf(ficlog,"%12.7f ",p[jk]); |
fprintf(ficlog,"%12.7f ",p[jk]); |
fprintf(ficres,"%12.7f ",p[jk]); |
fprintf(ficres,"%12.7f ",p[jk]); |
|
fprintf(fichtm, "<td>%12.7f</td>",p[jk]); |
jk++; |
jk++; |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficres,"\n"); |
fprintf(ficres,"\n"); |
|
fprintf(fichtm, "</tr>\n"); |
} |
} |
} |
} |
} |
} |
|
/* fprintf(fichtm,"</tr>\n"); */ |
|
fprintf(fichtm,"</table>\n"); |
|
fprintf(fichtm, "\n"); |
|
|
if(mle != 0){ |
if(mle != 0){ |
/* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */ |
/* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */ |
ftolhess=ftol; /* Usually correct */ |
ftolhess=ftol; /* Usually correct */ |
hesscov(matcov, hess, p, npar, delti, ftolhess, func); |
hesscov(matcov, hess, p, npar, delti, ftolhess, func); |
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
|
fprintf(fichtm, "\n<p>The Wald test results are output only if the maximimzation of the Likelihood is performed (mle=1)\n</br>Parameters, Wald tests and Wald-based confidence intervals\n</br> W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n</br> And Wald-based confidence intervals plus and minus 1.96 * W \n </br> It might be better to visualize the covariance matrix. See the page '<a href=\"%s\">Matrix of variance-covariance of one-step probabilities and its graphs</a>'.\n</br>",optionfilehtmcov); |
|
fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">"); |
|
fprintf(fichtm, "\n<tr><th>Model=</th><th>1</th><th>+ age</th>"); |
|
if(nagesqr==1){ |
|
printf(" + age*age "); |
|
fprintf(ficres," + age*age "); |
|
fprintf(ficlog," + age*age "); |
|
fprintf(fichtm, "<th>+ age*age</th>"); |
|
} |
|
for(j=1;j <=ncovmodel-2;j++){ |
|
if(Typevar[j]==0) { |
|
printf(" + V%d ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]); |
|
}else if(Typevar[j]==1) { |
|
printf(" + V%d*age ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d*age</th>",Tvar[j]); |
|
}else if(Typevar[j]==2) { |
|
fprintf(fichtm, "<th>+ V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
}else if(Typevar[j]==3) { /* TO VERIFY */ |
|
fprintf(fichtm, "<th>+ V%d*V%d*age</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
} |
|
} |
|
fprintf(fichtm, "</tr>\n"); |
|
|
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
if (k != i) { |
if (k != i) { |
|
fprintf(fichtm, "<tr valign=top>"); |
printf("%d%d ",i,k); |
printf("%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
|
fprintf(fichtm, "<td>%1d%1d</td>",i,k); |
for(j=1; j <=ncovmodel; j++){ |
for(j=1; j <=ncovmodel; j++){ |
printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
wald=p[jk]/sqrt(matcov[jk][jk]); |
fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
printf("%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
|
fprintf(ficlog,"%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
|
if(fabs(wald) > 1.96){ |
|
fprintf(fichtm, "<td><b>%12.7f</b></br> (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk])); |
|
}else{ |
|
fprintf(fichtm, "<td>%12.7f (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk])); |
|
} |
|
fprintf(fichtm,"W=%8.3f</br>",wald); |
|
fprintf(fichtm,"[%12.7f;%12.7f]</br></td>", p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
jk++; |
jk++; |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
|
fprintf(fichtm, "</tr>\n"); |
} |
} |
} |
} |
} |
} |
} /* end of hesscov and Wald tests */ |
} /* end of hesscov and Wald tests */ |
|
fprintf(fichtm,"</table>\n"); |
|
|
/* */ |
/* */ |
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
Line 10788 Please run with mle=-1 to get a correct
|
Line 14493 Please run with mle=-1 to get a correct
|
} |
} |
|
|
fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
if(mle >= 1) /* To big for the screen */ |
if(mle >= 1) /* Too big for the screen */ |
printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
/* # 121 Var(a12)\n\ */ |
/* # 121 Var(a12)\n\ */ |
Line 10879 Please run with mle=-1 to get a correct
|
Line 14584 Please run with mle=-1 to get a correct
|
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
fputs(line,ficlog); |
fputs(line,ficlog); |
|
fputs(line,ficres); |
continue; |
continue; |
}else |
}else |
break; |
break; |
Line 10917 Please run with mle=-1 to get a correct
|
Line 14623 Please run with mle=-1 to get a correct
|
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
|
|
/* Other stuffs, more or less useful */ |
/* Other stuffs, more or less useful */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while(fgets(line, MAXLINE, ficpar)) { |
ungetc(c,ficpar); |
/* If line starts with a # it is a comment */ |
fgets(line, MAXLINE, ficpar); |
if (line[0] == '#') { |
fputs(line,stdout); |
numlinepar++; |
fputs(line,ficparo); |
fputs(line,stdout); |
} |
fputs(line,ficparo); |
ungetc(c,ficpar); |
fputs(line,ficlog); |
|
fputs(line,ficres); |
fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); |
continue; |
fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
}else |
fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
break; |
printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
|
fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
|
|
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
|
|
dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; |
|
dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; |
|
|
|
fscanf(ficpar,"pop_based=%d\n",&popbased); |
|
fprintf(ficlog,"pop_based=%d\n",popbased); |
|
fprintf(ficparo,"pop_based=%d\n",popbased); |
|
fprintf(ficres,"pop_based=%d\n",popbased); |
|
|
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
fputs(line,stdout); |
|
fputs(line,ficres); |
|
fputs(line,ficparo); |
|
} |
} |
ungetc(c,ficpar); |
|
|
if((num_filled=sscanf(line,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav)) !=EOF){ |
fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj); |
|
fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
if (num_filled != 7) { |
printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
printf("Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004 mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
fprintf(ficlog,"Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004 mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
goto end; |
/* day and month of proj2 are not used but only year anproj2.*/ |
} |
|
printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
while((c=getc(ficpar))=='#' && c!= EOF){ |
fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
ungetc(c,ficpar); |
fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fgets(line, MAXLINE, ficpar); |
fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficres); |
|
} |
} |
ungetc(c,ficpar); |
|
|
|
fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj); |
|
fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
|
|
/* Results */ |
|
nresult=0; |
|
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
if (line[0] == '#') { |
Line 10993 Please run with mle=-1 to get a correct
|
Line 14661 Please run with mle=-1 to get a correct
|
}else |
}else |
break; |
break; |
} |
} |
if (!feof(ficpar)) |
|
while((num_filled=sscanf(line,"result:%[^\n]\n",resultline)) !=EOF){ |
|
if (num_filled == 0){ |
dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; |
resultline[0]='\0'; |
dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; |
break; |
|
} else if (num_filled != 1){ |
if((num_filled=sscanf(line,"pop_based=%d\n",&popbased)) !=EOF){ |
printf("ERROR %d: result line should be at minimum 'result=' %s\n",num_filled, line); |
if (num_filled != 1) { |
} |
printf("Error: Not 1 (data)parameters in line but %d, for example:pop_based=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
nresult++; /* Sum of resultlines */ |
fprintf(ficlog,"Error: Not 1 (data)parameters in line but %d, for example: pop_based=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
printf("Result %d: result=%s\n",nresult, resultline); |
|
if(nresult > MAXRESULTLINES){ |
|
printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult); |
|
fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult); |
|
goto end; |
goto end; |
} |
} |
decoderesult(resultline, nresult); /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */ |
printf("pop_based=%d\n",popbased); |
fprintf(ficparo,"result: %s\n",resultline); |
fprintf(ficlog,"pop_based=%d\n",popbased); |
fprintf(ficres,"result: %s\n",resultline); |
fprintf(ficparo,"pop_based=%d\n",popbased); |
fprintf(ficlog,"result: %s\n",resultline); |
fprintf(ficres,"pop_based=%d\n",popbased); |
while(fgets(line, MAXLINE, ficpar)) { |
} |
|
|
|
/* Results */ |
|
/* Value of covariate in each resultine will be compututed (if product) and sorted according to model rank */ |
|
/* It is precov[] because we need the varying age in order to compute the real cov[] of the model equation */ |
|
precov=matrix(1,MAXRESULTLINESPONE,1,NCOVMAX+1); |
|
endishere=0; |
|
nresult=0; |
|
parameterline=0; |
|
do{ |
|
if(!fgets(line, MAXLINE, ficpar)){ |
|
endishere=1; |
|
parameterline=15; |
|
}else if (line[0] == '#') { |
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
fputs(line,ficlog); |
fputs(line,ficres); |
fputs(line,ficres); |
fputs(line,ficlog); |
continue; |
continue; |
}else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp)) |
}else |
parameterline=11; |
break; |
else if(sscanf(line,"prevbackcast=%[^\n]\n",modeltemp)) |
|
parameterline=12; |
|
else if(sscanf(line,"result:%[^\n]\n",modeltemp)){ |
|
parameterline=13; |
|
} |
|
else{ |
|
parameterline=14; |
} |
} |
if (feof(ficpar)) |
switch (parameterline){ /* =0 only if only comments */ |
|
case 11: |
|
if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF && (num_filled == 8)){ |
|
fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.; |
|
dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.; |
|
prvforecast = 1; |
|
} |
|
else if((num_filled=sscanf(line,"prevforecast=%d yearsfproj=%lf mobil_average=%d\n",&prevfcast,&yrfproj,&mobilavproj)) !=EOF){/* && (num_filled == 3))*/ |
|
printf("prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj); |
|
fprintf(ficlog,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj); |
|
fprintf(ficres,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj); |
|
prvforecast = 2; |
|
} |
|
else { |
|
printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearsfproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
goto end; |
|
} |
break; |
break; |
else{ /* Processess output results for this combination of covariate values */ |
case 12: |
} |
if((num_filled=sscanf(line,"prevbackcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&prevbcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF && (num_filled == 8)){ |
} /* end while */ |
fprintf(ficparo,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
printf("prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficlog,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficres,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
/* day and month of back2 are not used but only year anback2.*/ |
|
dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.; |
|
dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.; |
|
prvbackcast = 1; |
|
} |
|
else if((num_filled=sscanf(line,"prevbackcast=%d yearsbproj=%lf mobil_average=%d\n",&prevbcast,&yrbproj,&mobilavproj)) ==3){/* && (num_filled == 3))*/ |
|
printf("prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj); |
|
fprintf(ficlog,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj); |
|
fprintf(ficres,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj); |
|
prvbackcast = 2; |
|
} |
|
else { |
|
printf("Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearsbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
goto end; |
|
} |
|
break; |
|
case 13: |
|
num_filled=sscanf(line,"result:%[^\n]\n",resultlineori); |
|
nresult++; /* Sum of resultlines */ |
|
/* printf("Result %d: result:%s\n",nresult, resultlineori); */ |
|
/* removefirstspace(&resultlineori); */ |
|
|
|
if(strstr(resultlineori,"v") !=0){ |
|
printf("Error. 'v' must be in upper case 'V' result: %s ",resultlineori); |
|
fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultlineori);fflush(ficlog); |
|
return 1; |
|
} |
|
trimbb(resultline, resultlineori); /* Suppressing double blank in the resultline */ |
|
/* printf("Decoderesult resultline=\"%s\" resultlineori=\"%s\"\n", resultline, resultlineori); */ |
|
if(nresult > MAXRESULTLINESPONE-1){ |
|
printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres); |
|
fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres); |
|
goto end; |
|
} |
|
|
|
if(!decoderesult(resultline, nresult)){ /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */ |
|
fprintf(ficparo,"result: %s\n",resultline); |
|
fprintf(ficres,"result: %s\n",resultline); |
|
fprintf(ficlog,"result: %s\n",resultline); |
|
} else |
|
goto end; |
|
break; |
|
case 14: |
|
printf("Error: Unknown command '%s'\n",line); |
|
fprintf(ficlog,"Error: Unknown command '%s'\n",line); |
|
if(line[0] == ' ' || line[0] == '\n'){ |
|
printf("It should not be an empty line '%s'\n",line); |
|
fprintf(ficlog,"It should not be an empty line '%s'\n",line); |
|
} |
|
if(ncovmodel >=2 && nresult==0 ){ |
|
printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line); |
|
fprintf(ficlog,"ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line); |
|
} |
|
/* goto end; */ |
|
break; |
|
case 15: |
|
printf("End of resultlines.\n"); |
|
fprintf(ficlog,"End of resultlines.\n"); |
|
break; |
|
default: /* parameterline =0 */ |
|
nresult=1; |
|
decoderesult(".",nresult ); /* No covariate */ |
|
} /* End switch parameterline */ |
|
}while(endishere==0); /* End do */ |
|
|
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */ |
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */ |
/* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */ |
/* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */ |
Line 11044 Please run with mle=-1 to get a correct
|
Line 14815 Please run with mle=-1 to get a correct
|
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
}else{ |
}else{ |
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p); |
/* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */ |
|
/* It seems that anprojd which is computed from the mean year at interview which is known yet because of freqsummary */ |
|
/* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ /* Done in freqsummary */ |
|
if(prvforecast==1){ |
|
dateprojd=(jproj1+12*mproj1+365*anproj1)/365; |
|
jprojd=jproj1; |
|
mprojd=mproj1; |
|
anprojd=anproj1; |
|
dateprojf=(jproj2+12*mproj2+365*anproj2)/365; |
|
jprojf=jproj2; |
|
mprojf=mproj2; |
|
anprojf=anproj2; |
|
} else if(prvforecast == 2){ |
|
dateprojd=dateintmean; |
|
date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); |
|
dateprojf=dateintmean+yrfproj; |
|
date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); |
|
} |
|
if(prvbackcast==1){ |
|
datebackd=(jback1+12*mback1+365*anback1)/365; |
|
jbackd=jback1; |
|
mbackd=mback1; |
|
anbackd=anback1; |
|
datebackf=(jback2+12*mback2+365*anback2)/365; |
|
jbackf=jback2; |
|
mbackf=mback2; |
|
anbackf=anback2; |
|
} else if(prvbackcast == 2){ |
|
datebackd=dateintmean; |
|
date2dmy(datebackd,&jbackd, &mbackd, &anbackd); |
|
datebackf=dateintmean-yrbproj; |
|
date2dmy(datebackf,&jbackf, &mbackf, &anbackf); |
|
} |
|
|
|
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, prevbcast, pathc,p, (int)anprojd-bage, (int)anbackd-fage);/* HERE valgrind Tvard*/ |
} |
} |
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \ |
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \ |
model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \ |
model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,prevbcast, estepm, \ |
jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2); |
jprev1,mprev1,anprev1,dateprev1, dateprojd, datebackd,jprev2,mprev2,anprev2,dateprev2,dateprojf, datebackf); |
|
|
/*------------ free_vector -------------*/ |
/*------------ free_vector -------------*/ |
/* chdir(path); */ |
/* chdir(path); */ |
Line 11057 Please run with mle=-1 to get a correct
|
Line 14862 Please run with mle=-1 to get a correct
|
/* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(mw,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(mw,1,lastpass-firstpass+2,1,imx); */ |
free_lvector(num,1,n); |
free_lvector(num,firstobs,lastobs); |
free_vector(agedc,1,n); |
free_vector(agedc,firstobs,lastobs); |
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
fclose(ficparo); |
fclose(ficparo); |
Line 11071 Please run with mle=-1 to get a correct
|
Line 14876 Please run with mle=-1 to get a correct
|
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*#include "prevlim.h"*/ /* Use ficrespl, ficlog */ |
/*#include "prevlim.h"*/ /* Use ficrespl, ficlog */ |
prlim=matrix(1,nlstate,1,nlstate); |
prlim=matrix(1,nlstate,1,nlstate); |
|
/* Computes the prevalence limit for each combination k of the dummy covariates by calling prevalim(k) */ |
prevalence_limit(p, prlim, ageminpar, agemaxpar, ftolpl, &ncvyear); |
prevalence_limit(p, prlim, ageminpar, agemaxpar, ftolpl, &ncvyear); |
fclose(ficrespl); |
fclose(ficrespl); |
|
|
/*------------- h Pij x at various ages ------------*/ |
/*------------- h Pij x at various ages ------------*/ |
/*#include "hpijx.h"*/ |
/*#include "hpijx.h"*/ |
|
/** h Pij x Probability to be in state j at age x+h being in i at x, for each combination k of dummies in the model line or to nres?*/ |
|
/* calls hpxij with combination k */ |
hPijx(p, bage, fage); |
hPijx(p, bage, fage); |
fclose(ficrespij); |
fclose(ficrespij); |
|
|
/* ncovcombmax= pow(2,cptcoveff); */ |
/* ncovcombmax= pow(2,cptcoveff); */ |
/*-------------- Variance of one-step probabilities---*/ |
/*-------------- Variance of one-step probabilities for a combination ij or for nres ?---*/ |
k=1; |
k=1; |
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
|
|
/* Prevalence for each covariates in probs[age][status][cov] */ |
/* Prevalence for each covariate combination in probs[age][status][cov] */ |
probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
probs= ma3x(AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
for(i=1;i<=AGESUP;i++) |
for(i=AGEINF;i<=AGESUP;i++) |
for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */ |
for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */ |
for(k=1;k<=ncovcombmax;k++) |
for(k=1;k<=ncovcombmax;k++) |
probs[i][j][k]=0.; |
probs[i][j][k]=0.; |
prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, |
|
ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
if (mobilav!=0 ||mobilavproj !=0 ) { |
if (mobilav!=0 ||mobilavproj !=0 ) { |
mobaverages= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
mobaverages= ma3x(AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
for(i=1;i<=AGESUP;i++) |
for(i=AGEINF;i<=AGESUP;i++) |
for(j=1;j<=nlstate;j++) |
for(j=1;j<=nlstate+ndeath;j++) |
for(k=1;k<=ncovcombmax;k++) |
for(k=1;k<=ncovcombmax;k++) |
mobaverages[i][j][k]=0.; |
mobaverages[i][j][k]=0.; |
mobaverage=mobaverages; |
mobaverage=mobaverages; |
if (mobilav!=0) { |
if (mobilav!=0) { |
printf("Movingaveraging observed prevalence\n"); |
printf("Movingaveraging observed prevalence\n"); |
|
fprintf(ficlog,"Movingaveraging observed prevalence\n"); |
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){ |
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){ |
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
} |
} |
} |
} else if (mobilavproj !=0) { |
/* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */ |
|
/* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
|
else if (mobilavproj !=0) { |
|
printf("Movingaveraging projected observed prevalence\n"); |
printf("Movingaveraging projected observed prevalence\n"); |
|
fprintf(ficlog,"Movingaveraging projected observed prevalence\n"); |
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){ |
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){ |
fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj); |
fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj); |
printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj); |
printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj); |
} |
} |
|
}else{ |
|
printf("Internal error moving average\n"); |
|
fflush(stdout); |
|
exit(1); |
} |
} |
}/* end if moving average */ |
}/* end if moving average */ |
|
|
/*---------- Forecasting ------------------*/ |
/*---------- Forecasting ------------------*/ |
/*if((stepm == 1) && (strcmp(model,".")==0)){*/ |
if(prevfcast==1){ |
if(prevfcast==1){ |
/* /\* if(stepm ==1){*\/ */ |
/* if(stepm ==1){*/ |
/* /\* anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */ |
prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); |
/*This done previously after freqsummary.*/ |
|
/* dateprojd=(jproj1+12*mproj1+365*anproj1)/365; */ |
|
/* dateprojf=(jproj2+12*mproj2+365*anproj2)/365; */ |
|
|
|
/* } else if (prvforecast==2){ */ |
|
/* /\* if(stepm ==1){*\/ */ |
|
/* /\* anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */ |
|
/* } */ |
|
/*prevforecast(fileresu, dateintmean, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);*/ |
|
prevforecast(fileresu,dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, p, cptcoveff); |
} |
} |
if(backcast==1){ |
|
|
/* Prevbcasting */ |
|
if(prevbcast==1){ |
ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
Line 11130 Please run with mle=-1 to get a correct
|
Line 14953 Please run with mle=-1 to get a correct
|
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
|
|
bprlim=matrix(1,nlstate,1,nlstate); |
bprlim=matrix(1,nlstate,1,nlstate); |
|
|
back_prevalence_limit(p, bprlim, ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj); |
back_prevalence_limit(p, bprlim, ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj); |
fclose(ficresplb); |
fclose(ficresplb); |
|
|
hBijx(p, bage, fage, mobaverage); |
hBijx(p, bage, fage, mobaverage); |
fclose(ficrespijb); |
fclose(ficrespijb); |
free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
|
|
|
/* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj, |
/* /\* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, *\/ */ |
bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */ |
/* /\* mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); *\/ */ |
|
/* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, */ |
|
/* mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */ |
|
prevbackforecast(fileresu, mobaverage, dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, |
|
mobilavproj, bage, fage, firstpass, lastpass, p, cptcoveff); |
|
|
|
|
|
varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff); |
|
|
|
|
|
free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
} |
} /* end Prevbcasting */ |
|
|
|
|
/* ------ Other prevalence ratios------------ */ |
/* ------ Other prevalence ratios------------ */ |
|
|
Line 11166 Please run with mle=-1 to get a correct
|
Line 14999 Please run with mle=-1 to get a correct
|
|
|
pstamp(ficreseij); |
pstamp(ficreseij); |
|
|
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
/* i1=pow(2,cptcoveff); /\* Number of combination of dummy covariates *\/ */ |
if (cptcovn < 1){i1=1;} |
/* if (cptcovn < 1){i1=1;} */ |
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
/* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */ |
if(TKresult[nres]!= k) |
/* if(i1 != 1 && TKresult[nres]!= k) */ |
continue; |
/* continue; */ |
fprintf(ficreseij,"\n#****** "); |
fprintf(ficreseij,"\n#****** "); |
printf("\n#****** "); |
printf("\n#****** "); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcovs;j++){ |
fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* for(j=1;j<=cptcoveff;j++) { */ |
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
fprintf(ficreseij," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
/* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
} |
} |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
printf(" V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); /* TvarsQ[j] gives the name of the jth quantitative (fixed or time v) */ |
fprintf(ficreseij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
fprintf(ficreseij,"V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); |
} |
} |
fprintf(ficreseij,"******\n"); |
fprintf(ficreseij,"******\n"); |
printf("******\n"); |
printf("******\n"); |
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
|
/* printf("HELLO Entering evsij bage=%d fage=%d k=%d estepm=%d nres=%d\n",(int) bage, (int)fage, k, estepm, nres); */ |
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres); |
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres); |
|
|
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
Line 11195 Please run with mle=-1 to get a correct
|
Line 15032 Please run with mle=-1 to get a correct
|
fclose(ficreseij); |
fclose(ficreseij); |
printf("done evsij\n");fflush(stdout); |
printf("done evsij\n");fflush(stdout); |
fprintf(ficlog,"done evsij\n");fflush(ficlog); |
fprintf(ficlog,"done evsij\n");fflush(ficlog); |
|
|
|
|
/*---------- State-specific expectancies and variances ------------*/ |
/*---------- State-specific expectancies and variances ------------*/ |
|
/* Should be moved in a function */ |
|
|
strcpy(filerest,"T_"); |
strcpy(filerest,"T_"); |
strcat(filerest,fileresu); |
strcat(filerest,fileresu); |
if((ficrest=fopen(filerest,"w"))==NULL) { |
if((ficrest=fopen(filerest,"w"))==NULL) { |
Line 11207 Please run with mle=-1 to get a correct
|
Line 15044 Please run with mle=-1 to get a correct
|
} |
} |
printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout); |
printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout); |
fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog); |
fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog); |
|
|
|
|
strcpy(fileresstde,"STDE_"); |
strcpy(fileresstde,"STDE_"); |
strcat(fileresstde,fileresu); |
strcat(fileresstde,fileresu); |
if((ficresstdeij=fopen(fileresstde,"w"))==NULL) { |
if((ficresstdeij=fopen(fileresstde,"w"))==NULL) { |
Line 11236 Please run with mle=-1 to get a correct
|
Line 15071 Please run with mle=-1 to get a correct
|
printf(" Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout); |
printf(" Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout); |
fprintf(ficlog," Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog); |
fprintf(ficlog," Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog); |
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(nres=1; nres <= nresult; nres++) /* For each resultline, find the combination and output results according to the values of dummies and then quanti. */ |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying. For each nres and each value at position k |
if(TKresult[nres]!= k) |
* we know Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline |
|
* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline |
|
* and Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */ |
|
/* */ |
|
if(i1 != 1 && TKresult[nres]!= k) /* TKresult[nres] is the combination of this nres resultline. All the i1 combinations are not output */ |
continue; |
continue; |
printf("\n#****** Result for:"); |
printf("\n# model %s \n#****** Result for:", model); /* HERE model is empty */ |
fprintf(ficrest,"\n#****** Result for:"); |
fprintf(ficrest,"\n# model %s \n#****** Result for:", model); |
fprintf(ficlog,"\n#****** Result for:"); |
fprintf(ficlog,"\n# model %s \n#****** Result for:", model); |
for(j=1;j<=cptcoveff;j++){ |
/* It might not be a good idea to mix dummies and quantitative */ |
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* for(j=1;j<=cptcoveff;j++){ /\* j=resultpos. Could be a loop on cptcovs: number of single dummy covariate in the result line as well as in the model *\/ */ |
fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
for(j=1;j<=cptcovs;j++){ /* j=resultpos. Could be a loop on cptcovs: number of single covariate (dummy or quantitative) in the result line as well as in the model */ |
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /\* Output by variables in the resultline *\/ */ |
} |
/* Tvaraff[j] is the name of the dummy variable in position j in the equation model: |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
* Tvaraff[1]@9={4, 3, 0, 0, 0, 0, 0, 0, 0}, in model=V5+V4+V3+V4*V3+V5*age |
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
* (V5 is quanti) V4 and V3 are dummies |
fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
* TnsdVar[4] is the position 1 and TnsdVar[3]=2 in codtabm(k,l)(V4 V3)=V4 V3 |
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
* l=1 l=2 |
} |
* k=1 1 1 0 0 |
|
* k=2 2 1 1 0 |
|
* k=3 [1] [2] 0 1 |
|
* k=4 2 2 1 1 |
|
* If nres=1 result: V3=1 V4=0 then k=3 and outputs |
|
* If nres=2 result: V4=1 V3=0 then k=2 and outputs |
|
* nres=1 =>k=3 j=1 V4= nbcode[4][codtabm(3,1)=1)=0; j=2 V3= nbcode[3][codtabm(3,2)=2]=1 |
|
* nres=2 =>k=2 j=1 V4= nbcode[4][codtabm(2,1)=2)=1; j=2 V3= nbcode[3][codtabm(2,2)=1]=0 |
|
*/ |
|
/* Tvresult[nres][j] Name of the variable at position j in this resultline */ |
|
/* Tresult[nres][j] Value of this variable at position j could be a float if quantitative */ |
|
/* We give up with the combinations!! */ |
|
/* if(debugILK) */ |
|
/* printf("\n j=%d In computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d Fixed[modelresult[nres][j]]=%d\n", j, nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff,Fixed[modelresult[nres][j]]); /\* end if dummy or quanti *\/ */ |
|
|
|
if(Dummy[modelresult[nres][j]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to j in resultline */ |
|
/* printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /\* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline *\/ */ /* TinvDoQresult[nres][Name of the variable] */ |
|
printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordered by the covariate values in the resultline */ |
|
fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficrest,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
if(Fixed[modelresult[nres][j]]==0){ /* Fixed */ |
|
printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed "); |
|
}else{ |
|
printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi "); |
|
} |
|
/* fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
}else if(Dummy[modelresult[nres][j]]==1){ /* Quanti variable */ |
|
/* For each selected (single) quantitative value */ |
|
printf(" V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficlog," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficrest," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
if(Fixed[modelresult[nres][j]]==0){ /* Fixed */ |
|
printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed "); |
|
}else{ |
|
printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi "); |
|
} |
|
}else{ |
|
printf("Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff); /* end if dummy or quanti */ |
|
fprintf(ficlog,"Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff); /* end if dummy or quanti */ |
|
exit(1); |
|
} |
|
} /* End loop for each variable in the resultline */ |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /\* Wrong j is not in the equation model *\/ */ |
|
/* fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* } */ |
fprintf(ficrest,"******\n"); |
fprintf(ficrest,"******\n"); |
fprintf(ficlog,"******\n"); |
fprintf(ficlog,"******\n"); |
printf("******\n"); |
printf("******\n"); |
|
|
fprintf(ficresstdeij,"\n#****** "); |
fprintf(ficresstdeij,"\n#****** "); |
fprintf(ficrescveij,"\n#****** "); |
fprintf(ficrescveij,"\n#****** "); |
|
/* It could have been: for(j=1;j<=cptcoveff;j++) {printf("V=%d=%lg",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);} */ |
|
/* But it won't be sorted and depends on how the resultline is ordered */ |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresstdeij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]); |
fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
} |
/* fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
} |
fprintf(ficresstdeij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value, TvarsQind gives the position of a quantitative in model equation */ |
fprintf(ficrescveij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
fprintf(ficresstdeij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]); |
|
fprintf(ficrescveij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]); |
} |
} |
fprintf(ficresstdeij,"******\n"); |
fprintf(ficresstdeij,"******\n"); |
fprintf(ficrescveij,"******\n"); |
fprintf(ficrescveij,"******\n"); |
Line 11279 Please run with mle=-1 to get a correct
|
Line 15165 Please run with mle=-1 to get a correct
|
fprintf(ficresvij,"\n#****** "); |
fprintf(ficresvij,"\n#****** "); |
/* pstamp(ficresvij); */ |
/* pstamp(ficresvij); */ |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresvij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]); |
|
/* fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[TnsdVar[Tvaraff[j]]])]); */ |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); /\* To solve *\/ */ |
|
fprintf(ficresvij," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /* Solved */ |
} |
} |
fprintf(ficresvij,"******\n"); |
fprintf(ficresvij,"******\n"); |
|
|
Line 11300 Please run with mle=-1 to get a correct
|
Line 15188 Please run with mle=-1 to get a correct
|
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
pstamp(ficrest); |
pstamp(ficrest); |
|
|
|
epj=vector(1,nlstate+1); |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
oldm=oldms;savm=savms; /* ZZ Segmentation fault */ |
oldm=oldms;savm=savms; /* ZZ Segmentation fault */ |
cptcod= 0; /* To be deleted */ |
cptcod= 0; /* To be deleted */ |
Line 11311 Please run with mle=-1 to get a correct
|
Line 15199 Please run with mle=-1 to get a correct
|
if(vpopbased==1) |
if(vpopbased==1) |
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
else |
else |
fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n"); |
fprintf(ficrest,"the age specific forward period (stable) prevalences in each health state \n"); |
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); |
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); /* Adding covariate values? */ |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
fprintf(ficrest,"\n"); |
fprintf(ficrest,"\n"); |
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
epj=vector(1,nlstate+1); |
printf("Computing age specific forward period (stable) prevalences in each health state \n"); |
printf("Computing age specific period (stable) prevalences in each health state \n"); |
fprintf(ficlog,"Computing age specific forward period (stable) prevalences in each health state \n"); |
fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n"); |
|
for(age=bage; age <=fage ;age++){ |
for(age=bage; age <=fage ;age++){ |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */ |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */ |
if (vpopbased==1) { |
if (vpopbased==1) { |
Line 11354 Please run with mle=-1 to get a correct
|
Line 15241 Please run with mle=-1 to get a correct
|
fprintf(ficrest,"\n"); |
fprintf(ficrest,"\n"); |
} |
} |
} /* End vpopbased */ |
} /* End vpopbased */ |
|
free_vector(epj,1,nlstate+1); |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_vector(epj,1,nlstate+1); |
|
printf("done selection\n");fflush(stdout); |
printf("done selection\n");fflush(stdout); |
fprintf(ficlog,"done selection\n");fflush(ficlog); |
fprintf(ficlog,"done selection\n");fflush(ficlog); |
|
|
/*}*/ |
} /* End k selection or end covariate selection for nres */ |
} /* End k selection */ |
|
|
|
printf("done State-specific expectancies\n");fflush(stdout); |
printf("done State-specific expectancies\n");fflush(stdout); |
fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog); |
fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog); |
|
|
/*------- Variance of period (stable) prevalence------*/ |
/* variance-covariance of forward period prevalence */ |
|
varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff); |
strcpy(fileresvpl,"VPL_"); |
|
strcat(fileresvpl,fileresu); |
|
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
|
printf("Problem with variance of period (stable) prevalence resultfile: %s\n", fileresvpl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog); |
|
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k=1; k<=i1;k++){ |
|
if(TKresult[nres]!= k) |
|
continue; |
|
fprintf(ficresvpl,"\n#****** "); |
|
printf("\n#****** "); |
|
fprintf(ficlog,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
|
fprintf(ficresvpl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
|
|
varpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart, nres); |
|
free_matrix(varpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
|
|
fclose(ficresvpl); |
free_vector(weight,firstobs,lastobs); |
printf("done variance-covariance of period prevalence\n");fflush(stdout); |
free_imatrix(Tvardk,0,NCOVMAX,1,2); |
fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog); |
|
|
|
free_vector(weight,1,n); |
|
free_imatrix(Tvard,1,NCOVMAX,1,2); |
free_imatrix(Tvard,1,NCOVMAX,1,2); |
free_imatrix(s,1,maxwav+1,1,n); |
free_imatrix(s,1,maxwav+1,firstobs,lastobs); |
free_matrix(anint,1,maxwav,1,n); |
free_matrix(anint,1,maxwav,firstobs,lastobs); |
free_matrix(mint,1,maxwav,1,n); |
free_matrix(mint,1,maxwav,firstobs,lastobs); |
free_ivector(cod,1,n); |
free_ivector(cod,firstobs,lastobs); |
free_ivector(tab,1,NCOVMAX); |
free_ivector(tab,1,NCOVMAX); |
fclose(ficresstdeij); |
fclose(ficresstdeij); |
fclose(ficrescveij); |
fclose(ficrescveij); |
Line 11431 Please run with mle=-1 to get a correct
|
Line 15273 Please run with mle=-1 to get a correct
|
|
|
/*---------- End : free ----------------*/ |
/*---------- End : free ----------------*/ |
if (mobilav!=0 ||mobilavproj !=0) |
if (mobilav!=0 ||mobilavproj !=0) |
free_ma3x(mobaverages,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */ |
free_ma3x(mobaverages,AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */ |
free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
free_ma3x(probs,AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); |
} /* mle==-3 arrives here for freeing */ |
} /* mle==-3 arrives here for freeing */ |
Line 11440 Please run with mle=-1 to get a correct
|
Line 15282 Please run with mle=-1 to get a correct
|
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n); |
/* if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,firstobs,lastobs); */ |
free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,1,n); |
if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,ncovcol+nqv+1,ncovcol+nqv+ntv+nqtv,firstobs,lastobs); |
free_matrix(coqvar,1,maxwav,1,n); |
if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,firstobs,lastobs); |
free_matrix(covar,0,NCOVMAX,1,n); |
if(nqv>=1)free_matrix(coqvar,1,nqv,firstobs,lastobs); |
|
free_matrix(covar,0,NCOVMAX,firstobs,lastobs); |
free_matrix(matcov,1,npar,1,npar); |
free_matrix(matcov,1,npar,1,npar); |
free_matrix(hess,1,npar,1,npar); |
free_matrix(hess,1,npar,1,npar); |
/*free_vector(delti,1,npar);*/ |
/*free_vector(delti,1,npar);*/ |
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_matrix(agev,1,maxwav,1,imx); |
free_matrix(agev,1,maxwav,1,imx); |
|
free_ma3x(paramstart,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
|
|
free_ivector(ncodemax,1,NCOVMAX); |
free_ivector(ncodemax,1,NCOVMAX); |
free_ivector(ncodemaxwundef,1,NCOVMAX); |
free_ivector(ncodemaxwundef,1,NCOVMAX); |
free_ivector(Dummy,-1,NCOVMAX); |
free_ivector(Dummy,-1,NCOVMAX); |
free_ivector(Fixed,-1,NCOVMAX); |
free_ivector(Fixed,-1,NCOVMAX); |
free_ivector(DummyV,1,NCOVMAX); |
free_ivector(DummyV,-1,NCOVMAX); |
free_ivector(FixedV,1,NCOVMAX); |
free_ivector(FixedV,-1,NCOVMAX); |
free_ivector(Typevar,-1,NCOVMAX); |
free_ivector(Typevar,-1,NCOVMAX); |
free_ivector(Tvar,1,NCOVMAX); |
free_ivector(Tvar,1,NCOVMAX); |
free_ivector(TvarsQ,1,NCOVMAX); |
free_ivector(TvarsQ,1,NCOVMAX); |
free_ivector(TvarsQind,1,NCOVMAX); |
free_ivector(TvarsQind,1,NCOVMAX); |
free_ivector(TvarsD,1,NCOVMAX); |
free_ivector(TvarsD,1,NCOVMAX); |
|
free_ivector(TnsdVar,1,NCOVMAX); |
free_ivector(TvarsDind,1,NCOVMAX); |
free_ivector(TvarsDind,1,NCOVMAX); |
free_ivector(TvarFD,1,NCOVMAX); |
free_ivector(TvarFD,1,NCOVMAX); |
free_ivector(TvarFDind,1,NCOVMAX); |
free_ivector(TvarFDind,1,NCOVMAX); |
Line 11477 Please run with mle=-1 to get a correct
|
Line 15322 Please run with mle=-1 to get a correct
|
free_ivector(TvarVDind,1,NCOVMAX); |
free_ivector(TvarVDind,1,NCOVMAX); |
free_ivector(TvarVQ,1,NCOVMAX); |
free_ivector(TvarVQ,1,NCOVMAX); |
free_ivector(TvarVQind,1,NCOVMAX); |
free_ivector(TvarVQind,1,NCOVMAX); |
|
free_ivector(TvarAVVA,1,NCOVMAX); |
|
free_ivector(TvarAVVAind,1,NCOVMAX); |
|
free_ivector(TvarVVA,1,NCOVMAX); |
|
free_ivector(TvarVVAind,1,NCOVMAX); |
|
free_ivector(TvarVV,1,NCOVMAX); |
|
free_ivector(TvarVVind,1,NCOVMAX); |
|
|
free_ivector(Tvarsel,1,NCOVMAX); |
free_ivector(Tvarsel,1,NCOVMAX); |
free_vector(Tvalsel,1,NCOVMAX); |
free_vector(Tvalsel,1,NCOVMAX); |
free_ivector(Tposprod,1,NCOVMAX); |
free_ivector(Tposprod,1,NCOVMAX); |
free_ivector(Tprod,1,NCOVMAX); |
free_ivector(Tprod,1,NCOVMAX); |
free_ivector(Tvaraff,1,NCOVMAX); |
free_ivector(Tvaraff,1,NCOVMAX); |
free_ivector(invalidvarcomb,1,ncovcombmax); |
free_ivector(invalidvarcomb,0,ncovcombmax); |
free_ivector(Tage,1,NCOVMAX); |
free_ivector(Tage,1,NCOVMAX); |
free_ivector(Tmodelind,1,NCOVMAX); |
free_ivector(Tmodelind,1,NCOVMAX); |
free_ivector(TmodelInvind,1,NCOVMAX); |
free_ivector(TmodelInvind,1,NCOVMAX); |
free_ivector(TmodelInvQind,1,NCOVMAX); |
free_ivector(TmodelInvQind,1,NCOVMAX); |
|
|
|
free_matrix(precov, 1,MAXRESULTLINESPONE,1,NCOVMAX+1); /* Could be elsewhere ?*/ |
|
|
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
/* free_imatrix(codtab,1,100,1,10); */ |
/* free_imatrix(codtab,1,100,1,10); */ |
fflush(fichtm); |
fflush(fichtm); |
Line 11525 Please run with mle=-1 to get a correct
|
Line 15379 Please run with mle=-1 to get a correct
|
fclose(ficlog); |
fclose(ficlog); |
/*------ End -----------*/ |
/*------ End -----------*/ |
|
|
|
|
|
/* Executes gnuplot */ |
|
|
printf("Before Current directory %s!\n",pathcd); |
printf("Before Current directory %s!\n",pathcd); |
#ifdef WIN32 |
#ifdef WIN32 |
Line 11560 Please run with mle=-1 to get a correct
|
Line 15416 Please run with mle=-1 to get a correct
|
|
|
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
|
strcpy(pplotcmd,plotcmd); |
|
|
if((outcmd=system(plotcmd)) != 0){ |
if((outcmd=system(plotcmd)) != 0){ |
printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
printf("Error in gnuplot, command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot); |
sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot); |
if((outcmd=system(plotcmd)) != 0) |
if((outcmd=system(plotcmd)) != 0){ |
printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd); |
printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd); |
|
strcpy(plotcmd,pplotcmd); |
|
} |
} |
} |
printf(" Successful, please wait..."); |
printf(" Successful, please wait..."); |
while (z[0] != 'q') { |
while (z[0] != 'q') { |
Line 11593 end:
|
Line 15452 end:
|
printf("\nType q for exiting: "); fflush(stdout); |
printf("\nType q for exiting: "); fflush(stdout); |
scanf("%s",z); |
scanf("%s",z); |
} |
} |
|
printf("End\n"); |
|
exit(0); |
} |
} |