version 1.223, 2016/02/19 09:23:35
|
version 1.278, 2017/07/19 14:09:02
|
Line 1
|
Line 1
|
/* $Id$ |
/* $Id$ |
$State$ |
$State$ |
$Log$ |
$Log$ |
|
Revision 1.278 2017/07/19 14:09:02 brouard |
|
Summary: Bug for mobil_average=0 and prevforecast fixed(?) |
|
|
|
Revision 1.277 2017/07/17 08:53:49 brouard |
|
Summary: BOM files can be read now |
|
|
|
Revision 1.276 2017/06/30 15:48:31 brouard |
|
Summary: Graphs improvements |
|
|
|
Revision 1.275 2017/06/30 13:39:33 brouard |
|
Summary: Saito's color |
|
|
|
Revision 1.274 2017/06/29 09:47:08 brouard |
|
Summary: Version 0.99r14 |
|
|
|
Revision 1.273 2017/06/27 11:06:02 brouard |
|
Summary: More documentation on projections |
|
|
|
Revision 1.272 2017/06/27 10:22:40 brouard |
|
Summary: Color of backprojection changed from 6 to 5(yellow) |
|
|
|
Revision 1.271 2017/06/27 10:17:50 brouard |
|
Summary: Some bug with rint |
|
|
|
Revision 1.270 2017/05/24 05:45:29 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.269 2017/05/23 08:39:25 brouard |
|
Summary: Code into subroutine, cleanings |
|
|
|
Revision 1.268 2017/05/18 20:09:32 brouard |
|
Summary: backprojection and confidence intervals of backprevalence |
|
|
|
Revision 1.267 2017/05/13 10:25:05 brouard |
|
Summary: temporary save for backprojection |
|
|
|
Revision 1.266 2017/05/13 07:26:12 brouard |
|
Summary: Version 0.99r13 (improvements and bugs fixed) |
|
|
|
Revision 1.265 2017/04/26 16:22:11 brouard |
|
Summary: imach 0.99r13 Some bugs fixed |
|
|
|
Revision 1.264 2017/04/26 06:01:29 brouard |
|
Summary: Labels in graphs |
|
|
|
Revision 1.263 2017/04/24 15:23:15 brouard |
|
Summary: to save |
|
|
|
Revision 1.262 2017/04/18 16:48:12 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.261 2017/04/05 10:14:09 brouard |
|
Summary: Bug in E_ as well as in T_ fixed nres-1 vs k1-1 |
|
|
|
Revision 1.260 2017/04/04 17:46:59 brouard |
|
Summary: Gnuplot indexations fixed (humm) |
|
|
|
Revision 1.259 2017/04/04 13:01:16 brouard |
|
Summary: Some errors to warnings only if date of death is unknown but status is death we could set to pi3 |
|
|
|
Revision 1.258 2017/04/03 10:17:47 brouard |
|
Summary: Version 0.99r12 |
|
|
|
Some cleanings, conformed with updated documentation. |
|
|
|
Revision 1.257 2017/03/29 16:53:30 brouard |
|
Summary: Temp |
|
|
|
Revision 1.256 2017/03/27 05:50:23 brouard |
|
Summary: Temporary |
|
|
|
Revision 1.255 2017/03/08 16:02:28 brouard |
|
Summary: IMaCh version 0.99r10 bugs in gnuplot fixed |
|
|
|
Revision 1.254 2017/03/08 07:13:00 brouard |
|
Summary: Fixing data parameter line |
|
|
|
Revision 1.253 2016/12/15 11:59:41 brouard |
|
Summary: 0.99 in progress |
|
|
|
Revision 1.252 2016/09/15 21:15:37 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.251 2016/09/15 15:01:13 brouard |
|
Summary: not working |
|
|
|
Revision 1.250 2016/09/08 16:07:27 brouard |
|
Summary: continue |
|
|
|
Revision 1.249 2016/09/07 17:14:18 brouard |
|
Summary: Starting values from frequencies |
|
|
|
Revision 1.248 2016/09/07 14:10:18 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.247 2016/09/02 11:11:21 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.246 2016/09/02 08:49:22 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.245 2016/09/02 07:25:01 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.244 2016/09/02 07:17:34 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.243 2016/09/02 06:45:35 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.242 2016/08/30 15:01:20 brouard |
|
Summary: Fixing a lots |
|
|
|
Revision 1.241 2016/08/29 17:17:25 brouard |
|
Summary: gnuplot problem in Back projection to fix |
|
|
|
Revision 1.240 2016/08/29 07:53:18 brouard |
|
Summary: Better |
|
|
|
Revision 1.239 2016/08/26 15:51:03 brouard |
|
Summary: Improvement in Powell output in order to copy and paste |
|
|
|
Author: |
|
|
|
Revision 1.238 2016/08/26 14:23:35 brouard |
|
Summary: Starting tests of 0.99 |
|
|
|
Revision 1.237 2016/08/26 09:20:19 brouard |
|
Summary: to valgrind |
|
|
|
Revision 1.236 2016/08/25 10:50:18 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.235 2016/08/25 06:59:23 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.234 2016/08/23 16:51:20 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.233 2016/08/23 07:40:50 brouard |
|
Summary: not working |
|
|
|
Revision 1.232 2016/08/22 14:20:21 brouard |
|
Summary: not working |
|
|
|
Revision 1.231 2016/08/22 07:17:15 brouard |
|
Summary: not working |
|
|
|
Revision 1.230 2016/08/22 06:55:53 brouard |
|
Summary: Not working |
|
|
|
Revision 1.229 2016/07/23 09:45:53 brouard |
|
Summary: Completing for func too |
|
|
|
Revision 1.228 2016/07/22 17:45:30 brouard |
|
Summary: Fixing some arrays, still debugging |
|
|
|
Revision 1.226 2016/07/12 18:42:34 brouard |
|
Summary: temp |
|
|
|
Revision 1.225 2016/07/12 08:40:03 brouard |
|
Summary: saving but not running |
|
|
|
Revision 1.224 2016/07/01 13:16:01 brouard |
|
Summary: Fixes |
|
|
Revision 1.223 2016/02/19 09:23:35 brouard |
Revision 1.223 2016/02/19 09:23:35 brouard |
Summary: temporary |
Summary: temporary |
|
|
Line 45
|
Line 211
|
Author: Nicolas Brouard |
Author: Nicolas Brouard |
|
|
Revision 1.210 2015/11/18 17:41:20 brouard |
Revision 1.210 2015/11/18 17:41:20 brouard |
Summary: Start working on projected prevalences |
Summary: Start working on projected prevalences Revision 1.209 2015/11/17 22:12:03 brouard |
|
|
Revision 1.209 2015/11/17 22:12:03 brouard |
|
Summary: Adding ftolpl parameter |
Summary: Adding ftolpl parameter |
Author: N Brouard |
Author: N Brouard |
|
|
Line 630
|
Line 794
|
|
|
Short summary of the programme: |
Short summary of the programme: |
|
|
This program computes Healthy Life Expectancies from |
This program computes Healthy Life Expectancies or State-specific |
cross-longitudinal data. Cross-longitudinal data consist in: -1- a |
(if states aren't health statuses) Expectancies from |
first survey ("cross") where individuals from different ages are |
cross-longitudinal data. Cross-longitudinal data consist in: |
interviewed on their health status or degree of disability (in the |
|
case of a health survey which is our main interest) -2- at least a |
-1- a first survey ("cross") where individuals from different ages |
second wave of interviews ("longitudinal") which measure each change |
are interviewed on their health status or degree of disability (in |
(if any) in individual health status. Health expectancies are |
the case of a health survey which is our main interest) |
computed from the time spent in each health state according to a |
|
model. More health states you consider, more time is necessary to reach the |
-2- at least a second wave of interviews ("longitudinal") which |
Maximum Likelihood of the parameters involved in the model. The |
measure each change (if any) in individual health status. Health |
simplest model is the multinomial logistic model where pij is the |
expectancies are computed from the time spent in each health state |
probability to be observed in state j at the second wave |
according to a model. More health states you consider, more time is |
conditional to be observed in state i at the first wave. Therefore |
necessary to reach the Maximum Likelihood of the parameters involved |
the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where |
in the model. The simplest model is the multinomial logistic model |
'age' is age and 'sex' is a covariate. If you want to have a more |
where pij is the probability to be observed in state j at the second |
complex model than "constant and age", you should modify the program |
wave conditional to be observed in state i at the first |
where the markup *Covariates have to be included here again* invites |
wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex + |
you to do it. More covariates you add, slower the |
etc , where 'age' is age and 'sex' is a covariate. If you want to |
|
have a more complex model than "constant and age", you should modify |
|
the program where the markup *Covariates have to be included here |
|
again* invites you to do it. More covariates you add, slower the |
convergence. |
convergence. |
|
|
The advantage of this computer programme, compared to a simple |
The advantage of this computer programme, compared to a simple |
Line 669
|
Line 836
|
of the life expectancies. It also computes the period (stable) prevalence. |
of the life expectancies. It also computes the period (stable) prevalence. |
|
|
Back prevalence and projections: |
Back prevalence and projections: |
- back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj) |
|
Computes the back prevalence limit for any combination of covariate values k |
- back_prevalence_limit(double *p, double **bprlim, double ageminpar, |
at any age between ageminpar and agemaxpar and returns it in **bprlim. In the loops, |
double agemaxpar, double ftolpl, int *ncvyearp, double |
- **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm, **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k); |
dateprev1,double dateprev2, int firstpass, int lastpass, int |
- hBijx Back Probability to be in state i at age x-h being in j at x |
mobilavproj) |
|
|
|
Computes the back prevalence limit for any combination of |
|
covariate values k at any age between ageminpar and agemaxpar and |
|
returns it in **bprlim. In the loops, |
|
|
|
- **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm, |
|
**savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k); |
|
|
|
- hBijx Back Probability to be in state i at age x-h being in j at x |
Computes for any combination of covariates k and any age between bage and fage |
Computes for any combination of covariates k and any age between bage and fage |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
- hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
|
|
- hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres); |
Computes the transition matrix starting at age 'age' over |
Computes the transition matrix starting at age 'age' over |
'nhstepm*hstepm*stepm' months (i.e. until |
'nhstepm*hstepm*stepm' months (i.e. until |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
nhstepm*hstepm matrices. Returns p3mat[i][j][h] after calling |
nhstepm*hstepm matrices. |
p3mat[i][j][h]=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ |
|
1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); |
Returns p3mat[i][j][h] after calling |
|
p3mat[i][j][h]=matprod2(newm, |
|
bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, |
|
dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
|
oldm); |
|
|
|
Important routines |
|
|
|
- func (or funcone), computes logit (pij) distinguishing |
|
o fixed variables (single or product dummies or quantitative); |
|
o varying variables by: |
|
(1) wave (single, product dummies, quantitative), |
|
(2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be: |
|
% fixed dummy (treated) or quantitative (not done because time-consuming); |
|
% varying dummy (not done) or quantitative (not done); |
|
- Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities) |
|
and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually. |
|
- printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables |
|
o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if |
|
race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless. |
|
|
|
|
|
|
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
Institut national d'études démographiques, Paris. |
Institut national d'études démographiques, Paris. |
This software have been partly granted by Euro-REVES, a concerted action |
This software have been partly granted by Euro-REVES, a concerted action |
Line 745 Back prevalence and projections:
|
Line 943 Back prevalence and projections:
|
/* #define DEBUGLINMIN */ |
/* #define DEBUGLINMIN */ |
/* #define DEBUGHESS */ |
/* #define DEBUGHESS */ |
#define DEBUGHESSIJ |
#define DEBUGHESSIJ |
/* #define LINMINORIGINAL /\* Don't use loop on scale in linmin (accepting nan)*\/ */ |
/* #define LINMINORIGINAL /\* Don't use loop on scale in linmin (accepting nan) *\/ */ |
#define POWELL /* Instead of NLOPT */ |
#define POWELL /* Instead of NLOPT */ |
#define POWELLF1F3 /* Skip test */ |
#define POWELLNOF3INFF1TEST /* Skip test */ |
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
|
|
Line 755 Back prevalence and projections:
|
Line 953 Back prevalence and projections:
|
#include <stdio.h> |
#include <stdio.h> |
#include <stdlib.h> |
#include <stdlib.h> |
#include <string.h> |
#include <string.h> |
|
#include <ctype.h> |
|
|
#ifdef _WIN32 |
#ifdef _WIN32 |
#include <io.h> |
#include <io.h> |
Line 800 typedef struct {
|
Line 999 typedef struct {
|
/* #include <libintl.h> */ |
/* #include <libintl.h> */ |
/* #define _(String) gettext (String) */ |
/* #define _(String) gettext (String) */ |
|
|
#define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */ |
#define MAXLINE 2048 /* Was 256 and 1024. Overflow with 312 with 2 states and 4 covariates. Should be ok */ |
|
|
#define GNUPLOTPROGRAM "gnuplot" |
#define GNUPLOTPROGRAM "gnuplot" |
/*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ |
/*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ |
Line 823 typedef struct {
|
Line 1022 typedef struct {
|
#define YEARM 12. /**< Number of months per year */ |
#define YEARM 12. /**< Number of months per year */ |
/* #define AGESUP 130 */ |
/* #define AGESUP 130 */ |
#define AGESUP 150 |
#define AGESUP 150 |
|
#define AGEINF 0 |
#define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */ |
#define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */ |
#define AGEBASE 40 |
#define AGEBASE 40 |
#define AGEOVERFLOW 1.e20 |
#define AGEOVERFLOW 1.e20 |
Line 841 typedef struct {
|
Line 1041 typedef struct {
|
/* $State$ */ |
/* $State$ */ |
#include "version.h" |
#include "version.h" |
char version[]=__IMACH_VERSION__; |
char version[]=__IMACH_VERSION__; |
char copyright[]="October 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015"; |
char copyright[]="February 2016,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018"; |
char fullversion[]="$Revision$ $Date$"; |
char fullversion[]="$Revision$ $Date$"; |
char strstart[80]; |
char strstart[80]; |
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
Line 850 int nagesqr=0, nforce=0; /* nagesqr=1 if
|
Line 1050 int nagesqr=0, nforce=0; /* nagesqr=1 if
|
/* Number of covariates model=V2+V1+ V3*age+V2*V4 */ |
/* Number of covariates model=V2+V1+ V3*age+V2*V4 */ |
int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */ |
int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */ |
int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */ |
int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */ |
int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */ |
int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */ |
|
int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */ |
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
int cptcoveff=0; /* Total number of covariates to vary for printing results */ |
int cptcoveff=0; /* Total number of covariates to vary for printing results */ |
|
int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */ |
|
int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */ |
|
int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */ |
|
int nsd=0; /**< Total number of single dummy variables (output) */ |
|
int nsq=0; /**< Total number of single quantitative variables (output) */ |
|
int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */ |
|
int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */ |
|
int ntveff=0; /**< ntveff number of effective time varying variables */ |
|
int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */ |
int cptcov=0; /* Working variable */ |
int cptcov=0; /* Working variable */ |
int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */ |
int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */ |
int npar=NPARMAX; |
int npar=NPARMAX; |
Line 875 int **dh; /* dh[mi][i] is number of step
|
Line 1085 int **dh; /* dh[mi][i] is number of step
|
int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between |
int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between |
* wave mi and wave mi+1 is not an exact multiple of stepm. */ |
* wave mi and wave mi+1 is not an exact multiple of stepm. */ |
int countcallfunc=0; /* Count the number of calls to func */ |
int countcallfunc=0; /* Count the number of calls to func */ |
|
int selected(int kvar); /* Is covariate kvar selected for printing results */ |
|
|
double jmean=1; /* Mean space between 2 waves */ |
double jmean=1; /* Mean space between 2 waves */ |
double **matprod2(); /* test */ |
double **matprod2(); /* test */ |
double **oldm, **newm, **savm; /* Working pointers to matrices */ |
double **oldm, **newm, **savm; /* Working pointers to matrices */ |
Line 902 FILE *ficrescveij;
|
Line 1114 FILE *ficrescveij;
|
char filerescve[FILENAMELENGTH]; |
char filerescve[FILENAMELENGTH]; |
FILE *ficresvij; |
FILE *ficresvij; |
char fileresv[FILENAMELENGTH]; |
char fileresv[FILENAMELENGTH]; |
FILE *ficresvpl; |
|
char fileresvpl[FILENAMELENGTH]; |
|
char title[MAXLINE]; |
char title[MAXLINE]; |
|
char model[MAXLINE]; /**< The model line */ |
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH], fileresplb[FILENAMELENGTH]; |
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH], fileresplb[FILENAMELENGTH]; |
char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH]; |
char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH]; |
char tmpout[FILENAMELENGTH], tmpout2[FILENAMELENGTH]; |
char tmpout[FILENAMELENGTH], tmpout2[FILENAMELENGTH]; |
Line 942 double dval;
|
Line 1154 double dval;
|
#define FTOL 1.0e-10 |
#define FTOL 1.0e-10 |
|
|
#define NRANSI |
#define NRANSI |
#define ITMAX 200 |
#define ITMAX 200 |
|
#define ITPOWMAX 20 /* This is now multiplied by the number of parameters */ |
|
|
#define TOL 2.0e-4 |
#define TOL 2.0e-4 |
|
|
Line 999 double *agedc;
|
Line 1212 double *agedc;
|
double **covar; /**< covar[j,i], value of jth covariate for individual i, |
double **covar; /**< covar[j,i], value of jth covariate for individual i, |
* covar=matrix(0,NCOVMAX,1,n); |
* covar=matrix(0,NCOVMAX,1,n); |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
double ***cotvar; /* Time varying covariate */ |
double **coqvar; /* Fixed quantitative covariate nqv */ |
double ***cotqvar; /* Time varying quantitative covariate */ |
double ***cotvar; /* Time varying covariate ntv */ |
double **coqvar; /* Fixed quantitative covariate */ |
double ***cotqvar; /* Time varying quantitative covariate itqv */ |
double idx; |
double idx; |
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
|
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
/*k 1 2 3 4 5 6 7 8 9 */ |
|
/*Tvar[k]= 5 4 3 6 5 2 7 1 1 */ |
|
/* Tndvar[k] 1 2 3 4 5 */ |
|
/*TDvar 4 3 6 7 1 */ /* For outputs only; combination of dummies fixed or varying */ |
|
/* Tns[k] 1 2 2 4 5 */ /* Number of single cova */ |
|
/* TvarsD[k] 1 2 3 */ /* Number of single dummy cova */ |
|
/* TvarsDind 2 3 9 */ /* position K of single dummy cova */ |
|
/* TvarsQ[k] 1 2 */ /* Number of single quantitative cova */ |
|
/* TvarsQind 1 6 */ /* position K of single quantitative cova */ |
|
/* Tprod[i]=k 4 7 */ |
|
/* Tage[i]=k 5 8 */ |
|
/* */ |
|
/* Type */ |
|
/* V 1 2 3 4 5 */ |
|
/* F F V V V */ |
|
/* D Q D D Q */ |
|
/* */ |
|
int *TvarsD; |
|
int *TvarsDind; |
|
int *TvarsQ; |
|
int *TvarsQind; |
|
|
|
#define MAXRESULTLINES 10 |
|
int nresult=0; |
|
int parameterline=0; /* # of the parameter (type) line */ |
|
int TKresult[MAXRESULTLINES]; |
|
int Tresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */ |
|
int Tinvresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */ |
|
int Tvresult[MAXRESULTLINES][NCOVMAX]; /* For dummy variable , variable # (output) */ |
|
double Tqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */ |
|
double Tqinvresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */ |
|
int Tvqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , variable # (output) */ |
|
|
|
/* int *TDvar; /\**< TDvar[1]=4, TDvarF[2]=3, TDvar[3]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */ |
|
int *TvarF; /**< TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFind; /**< TvarFind[1]=6, TvarFind[2]=7, Tvarind[3]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
|
|
int *Tvarsel; /**< Selected covariates for output */ |
|
double *Tvalsel; /**< Selected modality value of covariate for output */ |
|
int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
|
int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ |
|
int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ |
|
int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */ |
|
int *FixedV; /** FixedV[v] 0 fixed, 1 varying */ |
int *Tage; |
int *Tage; |
|
int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ |
|
int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
|
int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
|
int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
int *Ndum; /** Freq of modality (tricode */ |
int *Ndum; /** Freq of modality (tricode */ |
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
int **Tvard, *Tprod, cptcovprod, *Tvaraff, *invalidvarcomb; |
int **Tvard; |
|
int *Tprod;/**< Gives the k position of the k1 product */ |
|
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 */ |
|
int *Tposprod; /**< Gives the k1 product from the k position */ |
|
/* if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) */ |
|
/* Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5(V3*V2)]=2 (2nd product without age) */ |
|
int cptcovprod, *Tvaraff, *invalidvarcomb; |
double *lsurv, *lpop, *tpop; |
double *lsurv, *lpop, *tpop; |
|
|
|
#define FD 1; /* Fixed dummy covariate */ |
|
#define FQ 2; /* Fixed quantitative covariate */ |
|
#define FP 3; /* Fixed product covariate */ |
|
#define FPDD 7; /* Fixed product dummy*dummy covariate */ |
|
#define FPDQ 8; /* Fixed product dummy*quantitative covariate */ |
|
#define FPQQ 9; /* Fixed product quantitative*quantitative covariate */ |
|
#define VD 10; /* Varying dummy covariate */ |
|
#define VQ 11; /* Varying quantitative covariate */ |
|
#define VP 12; /* Varying product covariate */ |
|
#define VPDD 13; /* Varying product dummy*dummy covariate */ |
|
#define VPDQ 14; /* Varying product dummy*quantitative covariate */ |
|
#define VPQQ 15; /* Varying product quantitative*quantitative covariate */ |
|
#define APFD 16; /* Age product * fixed dummy covariate */ |
|
#define APFQ 17; /* Age product * fixed quantitative covariate */ |
|
#define APVD 18; /* Age product * varying dummy covariate */ |
|
#define APVQ 19; /* Age product * varying quantitative covariate */ |
|
|
|
#define FTYPE 1; /* Fixed covariate */ |
|
#define VTYPE 2; /* Varying covariate (loop in wave) */ |
|
#define ATYPE 2; /* Age product covariate (loop in dh within wave)*/ |
|
|
|
struct kmodel{ |
|
int maintype; /* main type */ |
|
int subtype; /* subtype */ |
|
}; |
|
struct kmodel modell[NCOVMAX]; |
|
|
double ftol=FTOL; /**< Tolerance for computing Max Likelihood */ |
double ftol=FTOL; /**< Tolerance for computing Max Likelihood */ |
double ftolhess; /**< Tolerance for computing hessian */ |
double ftolhess; /**< Tolerance for computing hessian */ |
|
|
Line 1205 int nbocc(char *s, char occ)
|
Line 1512 int nbocc(char *s, char occ)
|
i=0; |
i=0; |
lg=strlen(s); |
lg=strlen(s); |
for(i=0; i<= lg; i++) { |
for(i=0; i<= lg; i++) { |
if (s[i] == occ ) j++; |
if (s[i] == occ ) j++; |
} |
} |
return j; |
return j; |
} |
} |
Line 1549 double brent(double ax, double bx, doubl
|
Line 1856 double brent(double ax, double bx, doubl
|
etemp=e; |
etemp=e; |
e=d; |
e=d; |
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
else { |
else { |
d=p/q; |
d=p/q; |
u=x+d; |
u=x+d; |
if (u-a < tol2 || b-u < tol2) |
if (u-a < tol2 || b-u < tol2) |
d=SIGN(tol1,xm-x); |
d=SIGN(tol1,xm-x); |
} |
} |
} else { |
} else { |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
Line 1568 double brent(double ax, double bx, doubl
|
Line 1875 double brent(double ax, double bx, doubl
|
} else { |
} else { |
if (u < x) a=u; else b=u; |
if (u < x) a=u; else b=u; |
if (fu <= fw || w == x) { |
if (fu <= fw || w == x) { |
v=w; |
v=w; |
w=u; |
w=u; |
fv=fw; |
fv=fw; |
fw=fu; |
fw=fu; |
} else if (fu <= fv || v == x || v == w) { |
} else if (fu <= fv || v == x || v == w) { |
v=u; |
v=u; |
fv=fu; |
fv=fu; |
} |
} |
} |
} |
} |
} |
Line 1615 values at the three points, fa, fb , and
|
Line 1922 values at the three points, fa, fb , and
|
*cx=(*bx)+GOLD*(*bx-*ax); |
*cx=(*bx)+GOLD*(*bx-*ax); |
*fc=(*func)(*cx); |
*fc=(*func)(*cx); |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc); |
printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc); |
fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc); |
fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc); |
#endif |
#endif |
while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */ |
while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/ |
r=(*bx-*ax)*(*fb-*fc); |
r=(*bx-*ax)*(*fb-*fc); |
q=(*bx-*cx)*(*fb-*fa); |
q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */ |
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ |
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ |
(2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */ |
(2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */ |
ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */ |
ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */ |
Line 1631 values at the three points, fa, fb , and
|
Line 1938 values at the three points, fa, fb , and
|
double A, fparabu; |
double A, fparabu; |
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
fparabu= *fa - A*(*ax-u)*(*ax-u); |
fparabu= *fa - A*(*ax-u)*(*ax-u); |
printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu); |
printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r); |
fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu); |
fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r); |
/* And thus,it can be that fu > *fc even if fparabu < *fc */ |
/* And thus,it can be that fu > *fc even if fparabu < *fc */ |
/* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489), |
/* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489), |
(*cx=10.098840694817, *fc=298946.631474258087), (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */ |
(*cx=10.098840694817, *fc=298946.631474258087), (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */ |
Line 1665 values at the three points, fa, fb , and
|
Line 1972 values at the three points, fa, fb , and
|
/* fu = *fc; */ |
/* fu = *fc; */ |
/* *fc =dum; */ |
/* *fc =dum; */ |
/* } */ |
/* } */ |
#ifdef DEBUG |
#ifdef DEBUGMNBRAK |
printf("mnbrak34 fu < or >= fc \n"); |
double A, fparabu; |
fprintf(ficlog, "mnbrak34 fu < fc\n"); |
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
|
fparabu= *fa - A*(*ax-u)*(*ax-u); |
|
printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r); |
|
fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r); |
#endif |
#endif |
dum=u; /* Shifting c and u */ |
dum=u; /* Shifting c and u */ |
u = *cx; |
u = *cx; |
Line 1678 values at the three points, fa, fb , and
|
Line 1988 values at the three points, fa, fb , and
|
#endif |
#endif |
} else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */ |
} else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u after c but before ulim\n"); |
printf("\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx); |
fprintf(ficlog, "mnbrak2 u after c but before ulim\n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx); |
#endif |
#endif |
fu=(*func)(u); |
fu=(*func)(u); |
if (fu < *fc) { |
if (fu < *fc) { |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u after c but before ulim AND fu < fc\n"); |
printf("\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc); |
fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc); |
|
#endif |
|
SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) |
|
SHFT(*fb,*fc,fu,(*func)(u)) |
|
#ifdef DEBUG |
|
printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx)); |
#endif |
#endif |
SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) |
|
SHFT(*fb,*fc,fu,(*func)(u)) |
|
} |
} |
} else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */ |
} else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u outside ulim (verifying that ulim is beyond c)\n"); |
printf("\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx); |
fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx); |
#endif |
#endif |
u=ulim; |
u=ulim; |
fu=(*func)(u); |
fu=(*func)(u); |
} else { /* u could be left to b (if r > q parabola has a maximum) */ |
} else { /* u could be left to b (if r > q parabola has a maximum) */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u could be left to b (if r > q parabola has a maximum)\n"); |
printf("\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q); |
fprintf(ficlog, "mnbrak2 u could be left to b (if r > q parabola has a maximum)\n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q); |
#endif |
#endif |
u=(*cx)+GOLD*(*cx-*bx); |
u=(*cx)+GOLD*(*cx-*bx); |
fu=(*func)(u); |
fu=(*func)(u); |
|
#ifdef DEBUG |
|
printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx); |
|
fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx); |
|
#endif |
} /* end tests */ |
} /* end tests */ |
SHFT(*ax,*bx,*cx,u) |
SHFT(*ax,*bx,*cx,u) |
SHFT(*fa,*fb,*fc,fu) |
SHFT(*fa,*fb,*fc,fu) |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu); |
printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc); |
fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu); |
fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc); |
#endif |
#endif |
} /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */ |
} /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */ |
} |
} |
Line 1724 int ncom;
|
Line 2041 int ncom;
|
double *pcom,*xicom; |
double *pcom,*xicom; |
double (*nrfunc)(double []); |
double (*nrfunc)(double []); |
|
|
|
#ifdef LINMINORIGINAL |
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) |
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) |
|
#else |
|
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) |
|
#endif |
{ |
{ |
double brent(double ax, double bx, double cx, |
double brent(double ax, double bx, double cx, |
double (*f)(double), double tol, double *xmin); |
double (*f)(double), double tol, double *xmin); |
Line 1768 void linmin(double p[], double xi[], int
|
Line 2089 void linmin(double p[], double xi[], int
|
#ifdef LINMINORIGINAL |
#ifdef LINMINORIGINAL |
#else |
#else |
if (fx != fx){ |
if (fx != fx){ |
xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */ |
xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */ |
printf("|"); |
printf("|"); |
fprintf(ficlog,"|"); |
fprintf(ficlog,"|"); |
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n", axs, xxs, fx,fb, fa, xx, ax, bx); |
printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n", axs, xxs, fx,fb, fa, xx, ax, bx); |
#endif |
#endif |
} |
} |
}while(fx != fx); |
}while(fx != fx && xxs > 1.e-5); |
#endif |
#endif |
|
|
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
#endif |
#endif |
|
#ifdef LINMINORIGINAL |
|
#else |
|
if(fb == fx){ /* Flat function in the direction */ |
|
xmin=xx; |
|
*flat=1; |
|
}else{ |
|
*flat=0; |
|
#endif |
|
/*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */ |
*fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/ |
*fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/ |
/* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */ |
/* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */ |
/* fmin = f(p[j] + xmin * xi[j]) */ |
/* fmin = f(p[j] + xmin * xi[j]) */ |
/* P+lambda n in that direction (lambdamin), with TOL between abscisses */ |
/* P+lambda n in that direction (lambdamin), with TOL between abscisses */ |
/* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */ |
/* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |
printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin); |
fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |
fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin); |
|
#endif |
|
#ifdef LINMINORIGINAL |
|
#else |
|
} |
#endif |
#endif |
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("linmin end "); |
printf("linmin end "); |
Line 1839 such that failure to decrease by more th
|
Line 2173 such that failure to decrease by more th
|
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
*/ |
*/ |
|
#ifdef LINMINORIGINAL |
|
#else |
|
int *flatdir; /* Function is vanishing in that direction */ |
|
int flat=0, flatd=0; /* Function is vanishing in that direction */ |
|
#endif |
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, |
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, |
double (*func)(double [])) |
double (*func)(double [])) |
{ |
{ |
void linmin(double p[], double xi[], int n, double *fret, |
#ifdef LINMINORIGINAL |
|
void linmin(double p[], double xi[], int n, double *fret, |
double (*func)(double [])); |
double (*func)(double [])); |
int i,ibig,j; |
#else |
|
void linmin(double p[], double xi[], int n, double *fret, |
|
double (*func)(double []),int *flat); |
|
#endif |
|
int i,ibig,j,jk,k; |
double del,t,*pt,*ptt,*xit; |
double del,t,*pt,*ptt,*xit; |
double directest; |
double directest; |
double fp,fptt; |
double fp,fptt; |
double *xits; |
double *xits; |
int niterf, itmp; |
int niterf, itmp; |
|
#ifdef LINMINORIGINAL |
|
#else |
|
|
|
flatdir=ivector(1,n); |
|
for (j=1;j<=n;j++) flatdir[j]=0; |
|
#endif |
|
|
pt=vector(1,n); |
pt=vector(1,n); |
ptt=vector(1,n); |
ptt=vector(1,n); |
Line 1870 void powell(double p[], double **xi, int
|
Line 2220 void powell(double p[], double **xi, int
|
fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); |
fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); |
/* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */ |
/* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */ |
for (i=1;i<=n;i++) { |
for (i=1;i<=n;i++) { |
printf(" %d %.12f",i, p[i]); |
|
fprintf(ficlog," %d %.12lf",i, p[i]); |
|
fprintf(ficrespow," %.12lf", p[i]); |
fprintf(ficrespow," %.12lf", p[i]); |
} |
} |
|
fprintf(ficrespow,"\n");fflush(ficrespow); |
|
printf("\n#model= 1 + age "); |
|
fprintf(ficlog,"\n#model= 1 + age "); |
|
if(nagesqr==1){ |
|
printf(" + age*age "); |
|
fprintf(ficlog," + age*age "); |
|
} |
|
for(j=1;j <=ncovmodel-2;j++){ |
|
if(Typevar[j]==0) { |
|
printf(" + V%d ",Tvar[j]); |
|
fprintf(ficlog," + V%d ",Tvar[j]); |
|
}else if(Typevar[j]==1) { |
|
printf(" + V%d*age ",Tvar[j]); |
|
fprintf(ficlog," + V%d*age ",Tvar[j]); |
|
}else if(Typevar[j]==2) { |
|
printf(" + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficlog," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
} |
|
} |
printf("\n"); |
printf("\n"); |
|
/* printf("12 47.0114589 0.0154322 33.2424412 0.3279905 2.3731903 */ |
|
/* 13 -21.5392400 0.1118147 1.2680506 1.2973408 -1.0663662 */ |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficrespow,"\n");fflush(ficrespow); |
for(i=1,jk=1; i <=nlstate; i++){ |
if(*iter <=3){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
for(j=1; j <=ncovmodel; j++){ |
|
printf("%12.7f ",p[jk]); |
|
fprintf(ficlog,"%12.7f ",p[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
} |
|
} |
|
if(*iter <=3 && *iter >1){ |
tml = *localtime(&rcurr_time); |
tml = *localtime(&rcurr_time); |
strcpy(strcurr,asctime(&tml)); |
strcpy(strcurr,asctime(&tml)); |
rforecast_time=rcurr_time; |
rforecast_time=rcurr_time; |
Line 1892 void powell(double p[], double **xi, int
|
Line 2275 void powell(double p[], double **xi, int
|
strcpy(strfor,asctime(&forecast_time)); |
strcpy(strfor,asctime(&forecast_time)); |
itmp = strlen(strfor); |
itmp = strlen(strfor); |
if(strfor[itmp-1]=='\n') |
if(strfor[itmp-1]=='\n') |
strfor[itmp-1]='\0'; |
strfor[itmp-1]='\0'; |
printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
} |
} |
Line 1906 void powell(double p[], double **xi, int
|
Line 2289 void powell(double p[], double **xi, int
|
#endif |
#endif |
printf("%d",i);fflush(stdout); /* print direction (parameter) i */ |
printf("%d",i);fflush(stdout); /* print direction (parameter) i */ |
fprintf(ficlog,"%d",i);fflush(ficlog); |
fprintf(ficlog,"%d",i);fflush(ficlog); |
|
#ifdef LINMINORIGINAL |
linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
/* Outputs are fret(new point p) p is updated and xit rescaled */ |
#else |
|
linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
|
flatdir[i]=flat; /* Function is vanishing in that direction i */ |
|
#endif |
|
/* Outputs are fret(new point p) p is updated and xit rescaled */ |
if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */ |
if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */ |
/* because that direction will be replaced unless the gain del is small */ |
/* because that direction will be replaced unless the gain del is small */ |
/* in comparison with the 'probable' gain, mu^2, with the last average direction. */ |
/* in comparison with the 'probable' gain, mu^2, with the last average direction. */ |
/* Unless the n directions are conjugate some gain in the determinant may be obtained */ |
/* Unless the n directions are conjugate some gain in the determinant may be obtained */ |
/* with the new direction. */ |
/* with the new direction. */ |
del=fabs(fptt-(*fret)); |
del=fabs(fptt-(*fret)); |
ibig=i; |
ibig=i; |
} |
} |
#ifdef DEBUG |
#ifdef DEBUG |
printf("%d %.12e",i,(*fret)); |
printf("%d %.12e",i,(*fret)); |
fprintf(ficlog,"%d %.12e",i,(*fret)); |
fprintf(ficlog,"%d %.12e",i,(*fret)); |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); |
xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); |
printf(" x(%d)=%.12e",j,xit[j]); |
printf(" x(%d)=%.12e",j,xit[j]); |
fprintf(ficlog," x(%d)=%.12e",j,xit[j]); |
fprintf(ficlog," x(%d)=%.12e",j,xit[j]); |
} |
} |
for(j=1;j<=n;j++) { |
for(j=1;j<=n;j++) { |
printf(" p(%d)=%.12e",j,p[j]); |
printf(" p(%d)=%.12e",j,p[j]); |
fprintf(ficlog," p(%d)=%.12e",j,p[j]); |
fprintf(ficlog," p(%d)=%.12e",j,p[j]); |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
Line 1935 void powell(double p[], double **xi, int
|
Line 2323 void powell(double p[], double **xi, int
|
/* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ |
/* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ |
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
/* New value of last point Pn is not computed, P(n-1) */ |
/* New value of last point Pn is not computed, P(n-1) */ |
if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */ |
for(j=1;j<=n;j++) { |
|
if(flatdir[j] >0){ |
|
printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
|
fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
|
} |
|
/* printf("\n"); */ |
|
/* fprintf(ficlog,"\n"); */ |
|
} |
|
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */ |
|
if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
/* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ |
/* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ |
/* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */ |
/* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */ |
Line 1943 void powell(double p[], double **xi, int
|
Line 2340 void powell(double p[], double **xi, int
|
/* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */ |
/* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */ |
/* By using V1+V2+V3, the gain should be 7.82, compared with basic 1+age. */ |
/* By using V1+V2+V3, the gain should be 7.82, compared with basic 1+age. */ |
/* By adding 10 parameters more the gain should be 18.31 */ |
/* By adding 10 parameters more the gain should be 18.31 */ |
|
|
/* Starting the program with initial values given by a former maximization will simply change */ |
/* Starting the program with initial values given by a former maximization will simply change */ |
/* the scales of the directions and the directions, because the are reset to canonical directions */ |
/* the scales of the directions and the directions, because the are reset to canonical directions */ |
/* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */ |
/* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */ |
Line 1971 void powell(double p[], double **xi, int
|
Line 2368 void powell(double p[], double **xi, int
|
} |
} |
#endif |
#endif |
|
|
|
#ifdef LINMINORIGINAL |
|
#else |
|
free_ivector(flatdir,1,n); |
|
#endif |
free_vector(xit,1,n); |
free_vector(xit,1,n); |
free_vector(xits,1,n); |
free_vector(xits,1,n); |
free_vector(ptt,1,n); |
free_vector(ptt,1,n); |
free_vector(pt,1,n); |
free_vector(pt,1,n); |
return; |
return; |
} /* enough precision */ |
} /* enough precision */ |
if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); |
if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); |
for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */ |
for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */ |
ptt[j]=2.0*p[j]-pt[j]; |
ptt[j]=2.0*p[j]-pt[j]; |
xit[j]=p[j]-pt[j]; |
xit[j]=p[j]-pt[j]; |
pt[j]=p[j]; |
pt[j]=p[j]; |
} |
} |
fptt=(*func)(ptt); /* f_3 */ |
fptt=(*func)(ptt); /* f_3 */ |
#ifdef POWELLF1F3 |
#ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */ |
|
if (*iter <=4) { |
|
#else |
|
#endif |
|
#ifdef POWELLNOF3INFF1TEST /* skips test F3 <F1 */ |
#else |
#else |
if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */ |
if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */ |
#endif |
#endif |
Line 1994 void powell(double p[], double **xi, int
|
Line 2398 void powell(double p[], double **xi, int
|
/* Let f"(x2) be the 2nd derivative equal everywhere. */ |
/* Let f"(x2) be the 2nd derivative equal everywhere. */ |
/* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */ |
/* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */ |
/* will reach at f3 = fm + h^2/2 f"m ; f" = (f1 -2f2 +f3 ) / h**2 */ |
/* will reach at f3 = fm + h^2/2 f"m ; f" = (f1 -2f2 +f3 ) / h**2 */ |
/* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */ |
/* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */ |
|
/* also lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */ |
|
/* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */ |
/* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */ |
/* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */ |
|
/* Even if f3 <f1, directest can be negative and t >0 */ |
|
/* mu² and del² are equal when f3=f1 */ |
|
/* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */ |
|
/* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */ |
|
/* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0 */ |
|
/* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0 */ |
#ifdef NRCORIGINAL |
#ifdef NRCORIGINAL |
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/ |
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/ |
#else |
#else |
Line 2017 void powell(double p[], double **xi, int
|
Line 2429 void powell(double p[], double **xi, int
|
if (t < 0.0) { /* Then we use it for new direction */ |
if (t < 0.0) { /* Then we use it for new direction */ |
#else |
#else |
if (directest*t < 0.0) { /* Contradiction between both tests */ |
if (directest*t < 0.0) { /* Contradiction between both tests */ |
printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del); |
printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del); |
printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del); |
fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del); |
fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
} |
} |
if (directest < 0.0) { /* Then we use it for new direction */ |
if (directest < 0.0) { /* Then we use it for new direction */ |
#endif |
#endif |
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("Before linmin in direction P%d-P0\n",n); |
printf("Before linmin in direction P%d-P0\n",n); |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
if(j % ncovmodel == 0){ |
if(j % ncovmodel == 0){ |
Line 2035 void powell(double p[], double **xi, int
|
Line 2447 void powell(double p[], double **xi, int
|
} |
} |
} |
} |
#endif |
#endif |
|
#ifdef LINMINORIGINAL |
linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
|
#else |
|
linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
|
flatdir[i]=flat; /* Function is vanishing in that direction i */ |
|
#endif |
|
|
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
Line 2050 void powell(double p[], double **xi, int
|
Line 2468 void powell(double p[], double **xi, int
|
xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */ |
xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */ |
xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */ |
xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */ |
} |
} |
|
#ifdef LINMINORIGINAL |
|
#else |
|
for (j=1, flatd=0;j<=n;j++) { |
|
if(flatdir[j]>0) |
|
flatd++; |
|
} |
|
if(flatd >0){ |
|
printf("%d flat directions: ",flatd); |
|
fprintf(ficlog,"%d flat directions :",flatd); |
|
for (j=1;j<=n;j++) { |
|
if(flatdir[j]>0){ |
|
printf("%d ",j); |
|
fprintf(ficlog,"%d ",j); |
|
} |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
#endif |
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
|
|
#ifdef DEBUG |
#ifdef DEBUG |
printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
fprintf(ficlog,"Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
fprintf(ficlog,"Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
for(j=1;j<=n;j++){ |
for(j=1;j<=n;j++){ |
printf(" %.12e",xit[j]); |
printf(" %lf",xit[j]); |
fprintf(ficlog," %.12e",xit[j]); |
fprintf(ficlog," %lf",xit[j]); |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
#endif |
#endif |
} /* end of t or directest negative */ |
} /* end of t or directest negative */ |
#ifdef POWELLF1F3 |
#ifdef POWELLNOF3INFF1TEST |
|
#else |
|
} /* end if (fptt < fp) */ |
|
#endif |
|
#ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */ |
|
} /*NODIRECTIONCHANGEDUNTILNITER No change in drections until some iterations are done */ |
#else |
#else |
} /* end if (fptt < fp) */ |
|
#endif |
#endif |
} /* loop iteration */ |
} /* loop iteration */ |
} |
} |
|
|
/**** Prevalence limit (stable or period prevalence) ****************/ |
/**** Prevalence limit (stable or period prevalence) ****************/ |
|
|
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij) |
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres) |
{ |
{ |
/* Computes the prevalence limit in each live state at age x and for covariate ij by left multiplying the unit |
/* Computes the prevalence limit in each live state at age x and for covariate combination ij |
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
(and selected quantitative values in nres) |
|
by left multiplying the unit |
|
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
/* or prevalence in state 1, prevalence in state 2, 0 */ |
/* or prevalence in state 1, prevalence in state 2, 0 */ |
Line 2094 double **prevalim(double **prlim, int nl
|
Line 2537 double **prevalim(double **prlim, int nl
|
/* {0.51571254859325999, 0.4842874514067399, */ |
/* {0.51571254859325999, 0.4842874514067399, */ |
/* 0.51326036147820708, 0.48673963852179264} */ |
/* 0.51326036147820708, 0.48673963852179264} */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
|
|
int i, ii,j,k; |
int i, ii,j,k; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
/* double **matprod2(); */ /* test */ |
/* double **matprod2(); */ /* test */ |
Line 2124 double **prevalim(double **prlim, int nl
|
Line 2567 double **prevalim(double **prlim, int nl
|
cov[2]=agefin; |
cov[2]=agefin; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agefin*agefin;; |
cov[3]= agefin*agefin;; |
for (k=1; k<=cptcovn;k++) { |
for (k=1; k<=nsd;k++) { /* For single dummy covariates only */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
/* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */ |
/* Here comes the value of the covariate 'ij' */ |
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
/* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
/* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */ |
} |
} |
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
/*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
/* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */ |
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; |
/* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
for (k=1; k<=cptcovprod;k++) /* Useless */ |
} |
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
for (k=1; k<=cptcovage;k++){ /* For product with age */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
if(Dummy[Tvar[Tage[k]]]){ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
} else{ |
|
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
|
} |
|
/* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovprod;k++){ /* For product without age */ |
|
/* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */ |
|
if(Dummy[Tvard[k][1]==0]){ |
|
if(Dummy[Tvard[k][2]==0]){ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; |
|
} |
|
}else{ |
|
if(Dummy[Tvard[k][2]==0]){ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; |
|
} |
|
} |
|
} |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
Line 2194 Earliest age to start was %d-%d=%d, ncvl
|
Line 2658 Earliest age to start was %d-%d=%d, ncvl
|
|
|
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij) |
double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres) |
{ |
{ |
/* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit |
/* Computes the prevalence limit in each live state at age x and for covariate combination ij (<=2**cptcoveff) by left multiplying the unit |
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
Line 2217 Earliest age to start was %d-%d=%d, ncvl
|
Line 2681 Earliest age to start was %d-%d=%d, ncvl
|
/* If we start from prlim again, prlim tends to a constant matrix */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
|
|
int i, ii,j,k; |
int i, ii,j,k; |
|
int first=0; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
/* double **matprod2(); */ /* test */ |
/* double **matprod2(); */ /* test */ |
double **out, cov[NCOVMAX+1], **bmij(); |
double **out, cov[NCOVMAX+1], **bmij(); |
Line 2231 Earliest age to start was %d-%d=%d, ncvl
|
Line 2696 Earliest age to start was %d-%d=%d, ncvl
|
max=vector(1,nlstate); |
max=vector(1,nlstate); |
meandiff=vector(1,nlstate); |
meandiff=vector(1,nlstate); |
|
|
dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms; |
dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms; |
oldm=oldms; savm=savms; |
oldm=oldms; savm=savms; |
|
|
/* Starting with matrix unity */ |
/* Starting with matrix unity */ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
} |
} |
|
|
Line 2253 Earliest age to start was %d-%d=%d, ncvl
|
Line 2718 Earliest age to start was %d-%d=%d, ncvl
|
cov[2]=agefin; |
cov[2]=agefin; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agefin*agefin;; |
cov[3]= agefin*agefin;; |
for (k=1; k<=cptcovn;k++) { |
for (k=1; k<=nsd;k++) { /* For single dummy covariates only */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
/* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */ |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
/* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */ |
/* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
} |
} |
/*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
/* for (k=1; k<=cptcovn;k++) { */ |
/* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */ |
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */ |
for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
for (k=1; k<=cptcovprod;k++) /* Useless */ |
/* /\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\/ */ |
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
/* } */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
|
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
|
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
|
/* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
/* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; */ |
|
/* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\/ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; */ |
|
for (k=1; k<=cptcovage;k++){ /* For product with age */ |
|
if(Dummy[Tvar[Tage[k]]]){ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
} else{ |
|
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
|
} |
|
/* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovprod;k++){ /* For product without age */ |
|
/* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */ |
|
if(Dummy[Tvard[k][1]==0]){ |
|
if(Dummy[Tvard[k][2]==0]){ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; |
|
} |
|
}else{ |
|
if(Dummy[Tvard[k][2]==0]){ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; |
|
} |
|
} |
|
} |
|
|
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
Line 2278 Earliest age to start was %d-%d=%d, ncvl
|
Line 2775 Earliest age to start was %d-%d=%d, ncvl
|
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */ |
|
/* if((int)age == 86 || (int)age == 87){ */ |
|
/* printf(" Backward prevalim age=%d agefin=%d \n", (int) age, (int) agefin); */ |
|
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
|
/* printf("%d newm= ",i); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",newm[i][j]); */ |
|
/* } */ |
|
/* printf("oldm * "); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",oldm[i][j]); */ |
|
/* } */ |
|
/* printf(" bmmij "); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",pmmij[i][j]); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* } */ |
|
/* } */ |
savm=oldm; |
savm=oldm; |
oldm=newm; |
oldm=newm; |
|
|
for(j=1; j<=nlstate; j++){ |
for(j=1; j<=nlstate; j++){ |
max[j]=0.; |
max[j]=0.; |
min[j]=1.; |
min[j]=1.; |
} |
} |
for(j=1; j<=nlstate; j++){ |
for(j=1; j<=nlstate; j++){ |
for(i=1;i<=nlstate;i++){ |
for(i=1;i<=nlstate;i++){ |
/* bprlim[i][j]= newm[i][j]/(1-sumnew); */ |
/* bprlim[i][j]= newm[i][j]/(1-sumnew); */ |
bprlim[i][j]= newm[i][j]; |
bprlim[i][j]= newm[i][j]; |
max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */ |
max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */ |
min[i]=FMIN(min[i],bprlim[i][j]); |
min[i]=FMIN(min[i],bprlim[i][j]); |
} |
} |
} |
} |
|
|
Line 2298 Earliest age to start was %d-%d=%d, ncvl
|
Line 2814 Earliest age to start was %d-%d=%d, ncvl
|
meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */ |
meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */ |
maxmax=FMAX(maxmax,meandiff[i]); |
maxmax=FMAX(maxmax,meandiff[i]); |
/* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */ |
/* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */ |
} /* j loop */ |
} /* i loop */ |
*ncvyear= -( (int)age- (int)agefin); |
*ncvyear= -( (int)age- (int)agefin); |
/* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);*/ |
/* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
if(maxmax < ftolpl){ |
if(maxmax < ftolpl){ |
/* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
/* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
free_vector(min,1,nlstate); |
free_vector(min,1,nlstate); |
Line 2310 Earliest age to start was %d-%d=%d, ncvl
|
Line 2826 Earliest age to start was %d-%d=%d, ncvl
|
} |
} |
} /* age loop */ |
} /* age loop */ |
/* After some age loop it doesn't converge */ |
/* After some age loop it doesn't converge */ |
printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ |
if(first){ |
|
first=1; |
|
printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\ |
|
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
|
} |
|
fprintf(ficlog,"Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ |
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
free_vector(min,1,nlstate); |
free_vector(min,1,nlstate); |
Line 2325 Oldest age to start was %d-%d=%d, ncvloo
|
Line 2846 Oldest age to start was %d-%d=%d, ncvloo
|
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
{ |
{ |
/* According to parameters values stored in x and the covariate's values stored in cov, |
/* According to parameters values stored in x and the covariate's values stored in cov, |
computes the probability to be observed in state j being in state i by appying the |
computes the probability to be observed in state j (after stepm years) being in state i by appying the |
model to the ncovmodel covariates (including constant and age). |
model to the ncovmodel covariates (including constant and age). |
lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
Line 2334 double **pmij(double **ps, double *cov,
|
Line 2855 double **pmij(double **ps, double *cov,
|
j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
Outputs ps[i][j] the probability to be observed in j being in j according to |
Outputs ps[i][j] or probability to be observed in j being in i according to |
the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
|
Sum on j ps[i][j] should equal to 1. |
*/ |
*/ |
double s1, lnpijopii; |
double s1, lnpijopii; |
/*double t34;*/ |
/*double t34;*/ |
Line 2399 double **pmij(double **ps, double *cov,
|
Line 2921 double **pmij(double **ps, double *cov,
|
/* |
/* |
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
goto end;*/ |
goto end;*/ |
return ps; |
return ps; /* Pointer is unchanged since its call */ |
} |
} |
|
|
/*************** backward transition probabilities ***************/ |
/*************** backward transition probabilities ***************/ |
Line 2408 double **pmij(double **ps, double *cov,
|
Line 2930 double **pmij(double **ps, double *cov,
|
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, int ij ) |
double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, int ij ) |
{ |
{ |
/* Computes the backward probability at age agefin and covariate ij |
/* Computes the backward probability at age agefin and covariate combination ij. In fact cov is already filled and x too. |
* and returns in **ps as well as **bmij. |
* Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij. |
*/ |
*/ |
int i, ii, j,k; |
int i, ii, j,k; |
|
|
double **out, **pmij(); |
double **out, **pmij(); |
double sumnew=0.; |
double sumnew=0.; |
double agefin; |
double agefin; |
|
double k3=0.; /* constant of the w_x diagonal matrixe (in order for B to sum to 1 even for death state) */ |
double **dnewm, **dsavm, **doldm; |
double **dnewm, **dsavm, **doldm; |
double **bbmij; |
double **bbmij; |
|
|
Line 2425 double **pmij(double **ps, double *cov,
|
Line 2947 double **pmij(double **ps, double *cov,
|
dsavm=ddsavms; |
dsavm=ddsavms; |
|
|
agefin=cov[2]; |
agefin=cov[2]; |
|
/* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */ |
/* bmij *//* age is cov[2], ij is included in cov, but we need for |
/* bmij *//* age is cov[2], ij is included in cov, but we need for |
the observed prevalence (with this covariate ij) */ |
the observed prevalence (with this covariate ij) at beginning of transition */ |
dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); |
/* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* We do have the matrix Px in savm and we need pij */ |
|
|
/* P_x */ |
|
pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm */ |
|
/* outputs pmmij which is a stochastic matrix in row */ |
|
|
|
/* Diag(w_x) */ |
|
/* Problem with prevacurrent which can be zero */ |
|
sumnew=0.; |
|
/*for (ii=1;ii<=nlstate+ndeath;ii++){*/ |
|
for (ii=1;ii<=nlstate;ii++){ /* Only on live states */ |
|
/* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]); */ |
|
sumnew+=prevacurrent[(int)agefin][ii][ij]; |
|
} |
|
if(sumnew >0.01){ /* At least some value in the prevalence */ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
for (j=1;j<=nlstate+ndeath;j++) |
|
doldm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij]/sumnew : 0.0); |
|
} |
|
}else{ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
for (j=1;j<=nlstate+ndeath;j++) |
|
doldm[ii][j]=(ii==j ? 1./nlstate : 0.0); |
|
} |
|
/* if(sumnew <0.9){ */ |
|
/* printf("Problem internal bmij B: sum on i wi <0.9: j=%d, sum_i wi=%lf,agefin=%d\n",j,sumnew, (int)agefin); */ |
|
/* } */ |
|
} |
|
k3=0.0; /* We put the last diagonal to 0 */ |
|
for (ii=nlstate+1;ii<=nlstate+ndeath;ii++){ |
|
doldm[ii][ii]= k3; |
|
} |
|
/* End doldm, At the end doldm is diag[(w_i)] */ |
|
|
|
/* left Product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm) */ |
|
bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* Bug Valgrind */ |
|
|
|
/* Diag(Sum_i w^i_x p^ij_x */ |
|
/* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */ |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
sumnew=0.; /* w1 p11 + w2 p21 only on live states */ |
sumnew=0.; |
for (ii=1;ii<=nlstate;ii++){ |
for (ii=1;ii<=nlstate;ii++){ |
sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; |
/* sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; */ |
|
sumnew+=pmmij[ii][j]*doldm[ii][ii]; /* Yes prevalence at beginning of transition */ |
} /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */ |
} /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */ |
for (ii=1;ii<=nlstate+ndeath;ii++){ |
for (ii=1;ii<=nlstate+ndeath;ii++){ |
if(sumnew >= 1.e-10){ |
|
/* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */ |
/* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */ |
/* doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
/* dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
/* }else if(agefin >= agemaxpar+stepm/YEARM){ */ |
/* }else if(agefin >= agemaxpar+stepm/YEARM){ */ |
/* doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
/* dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
/* }else */ |
/* }else */ |
doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); |
dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); |
}else{ |
|
printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin); |
|
} |
|
} /*End ii */ |
} /*End ii */ |
} /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */ |
} /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */ |
/* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */ |
|
bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */ |
ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* Bug Valgrind */ |
/* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */ |
/* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */ |
/* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */ |
|
/* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */ |
|
/* left Product of this matrix by diag matrix of prevalences (savm) */ |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0); |
|
} |
|
} /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */ |
|
ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */ |
|
/* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */ |
|
/* end bmij */ |
/* end bmij */ |
return ps; |
return ps; /*pointer is unchanged */ |
} |
} |
/*************** transition probabilities ***************/ |
/*************** transition probabilities ***************/ |
|
|
Line 2484 double **bpmij(double **ps, double *cov,
|
Line 3031 double **bpmij(double **ps, double *cov,
|
/*double t34;*/ |
/*double t34;*/ |
int i,j, nc, ii, jj; |
int i,j, nc, ii, jj; |
|
|
for(i=1; i<= nlstate; i++){ |
for(i=1; i<= nlstate; i++){ |
for(j=1; j<i;j++){ |
for(j=1; j<i;j++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
/*lnpijopii += param[i][j][nc]*cov[nc];*/ |
/*lnpijopii += param[i][j][nc]*cov[nc];*/ |
lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
} |
} |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
} |
} |
for(j=i+1; j<=nlstate+ndeath;j++){ |
for(j=i+1; j<=nlstate+ndeath;j++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
/*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
/*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
} |
} |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
} |
} |
} |
} |
|
|
for(i=1; i<= nlstate; i++){ |
for(i=1; i<= nlstate; i++){ |
s1=0; |
s1=0; |
for(j=1; j<i; j++){ |
for(j=1; j<i; j++){ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
} |
} |
for(j=i+1; j<=nlstate+ndeath; j++){ |
for(j=i+1; j<=nlstate+ndeath; j++){ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
} |
} |
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
ps[i][i]=1./(s1+1.); |
ps[i][i]=1./(s1+1.); |
/* Computing other pijs */ |
/* Computing other pijs */ |
for(j=1; j<i; j++) |
for(j=1; j<i; j++) |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
for(j=i+1; j<=nlstate+ndeath; j++) |
for(j=i+1; j<=nlstate+ndeath; j++) |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
} /* end i */ |
} /* end i */ |
|
|
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
ps[ii][jj]=0; |
ps[ii][jj]=0; |
ps[ii][ii]=1; |
ps[ii][ii]=1; |
} |
} |
} |
} |
/* Added for backcast */ /* Transposed matrix too */ |
/* Added for backcast */ /* Transposed matrix too */ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
s1=0.; |
s1=0.; |
for(ii=1; ii<= nlstate+ndeath; ii++){ |
for(ii=1; ii<= nlstate+ndeath; ii++){ |
s1+=ps[ii][jj]; |
s1+=ps[ii][jj]; |
} |
} |
for(ii=1; ii<= nlstate; ii++){ |
for(ii=1; ii<= nlstate; ii++){ |
ps[ii][jj]=ps[ii][jj]/s1; |
ps[ii][jj]=ps[ii][jj]/s1; |
} |
} |
} |
} |
/* Transposition */ |
/* Transposition */ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
for(ii=jj; ii<= nlstate+ndeath; ii++){ |
for(ii=jj; ii<= nlstate+ndeath; ii++){ |
s1=ps[ii][jj]; |
s1=ps[ii][jj]; |
ps[ii][jj]=ps[jj][ii]; |
ps[ii][jj]=ps[jj][ii]; |
ps[jj][ii]=s1; |
ps[jj][ii]=s1; |
} |
} |
} |
} |
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
/* } */ |
/* } */ |
/* printf("\n "); */ |
/* printf("\n "); */ |
/* } */ |
/* } */ |
/* printf("\n ");printf("%lf ",cov[2]);*/ |
/* printf("\n ");printf("%lf ",cov[2]);*/ |
/* |
/* |
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
goto end;*/ |
goto end;*/ |
return ps; |
return ps; |
} |
} |
|
|
|
|
/**************** Product of 2 matrices ******************/ |
/**************** Product of 2 matrices ******************/ |
|
|
double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b) |
double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b) |
{ |
{ |
/* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times |
/* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times |
b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ |
b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ |
/* in, b, out are matrice of pointers which should have been initialized |
/* in, b, out are matrice of pointers which should have been initialized |
before: only the contents of out is modified. The function returns |
before: only the contents of out is modified. The function returns |
a pointer to pointers identical to out */ |
a pointer to pointers identical to out */ |
int i, j, k; |
int i, j, k; |
for(i=nrl; i<= nrh; i++) |
for(i=nrl; i<= nrh; i++) |
for(k=ncolol; k<=ncoloh; k++){ |
for(k=ncolol; k<=ncoloh; k++){ |
out[i][k]=0.; |
out[i][k]=0.; |
for(j=ncl; j<=nch; j++) |
for(j=ncl; j<=nch; j++) |
out[i][k] +=in[i][j]*b[j][k]; |
out[i][k] +=in[i][j]*b[j][k]; |
} |
} |
return out; |
return out; |
} |
} |
|
|
|
|
/************* Higher Matrix Product ***************/ |
/************* Higher Matrix Product ***************/ |
|
|
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) |
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres ) |
{ |
{ |
/* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over |
/* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over |
'nhstepm*hstepm*stepm' months (i.e. until |
'nhstepm*hstepm*stepm' months (i.e. until |
Line 2619 double ***hpxij(double ***po, int nhstep
|
Line 3166 double ***hpxij(double ***po, int nhstep
|
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (k=1; k<=cptcovn;k++) |
for (k=1; k<=nsd;k++) { /* For single dummy covariates only */ |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
/* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */ |
/* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
} |
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */ |
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
/* printf("hPxij Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
} |
|
for (k=1; k<=cptcovage;k++){ |
|
if(Dummy[Tvar[Tage[k]]]){ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
} else{ |
|
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
|
} |
|
/* printf("hPxij Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovprod;k++){ /* */ |
|
/* printf("hPxij Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
} |
|
/* for (k=1; k<=cptcovn;k++) */ |
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
|
/* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */ |
|
/* for (k=1; k<=cptcovprod;k++) /\* Useless because included in cptcovn *\/ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; */ |
|
|
|
|
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/* right multiplication of oldm by the current matrix */ |
/* right multiplication of oldm by the current matrix */ |
Line 2656 double ***hpxij(double ***po, int nhstep
|
Line 3221 double ***hpxij(double ***po, int nhstep
|
} |
} |
for(i=1; i<=nlstate+ndeath; i++) |
for(i=1; i<=nlstate+ndeath; i++) |
for(j=1;j<=nlstate+ndeath;j++) { |
for(j=1;j<=nlstate+ndeath;j++) { |
po[i][j][h]=newm[i][j]; |
po[i][j][h]=newm[i][j]; |
/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
} |
} |
/*printf("h=%d ",h);*/ |
/*printf("h=%d ",h);*/ |
} /* end h */ |
} /* end h */ |
/* printf("\n H=%d \n",h); */ |
/* printf("\n H=%d \n",h); */ |
return po; |
return po; |
} |
} |
|
|
/************* Higher Back Matrix Product ***************/ |
/************* Higher Back Matrix Product ***************/ |
/* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */ |
/* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */ |
double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij ) |
double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres ) |
{ |
{ |
/* Computes the transition matrix starting at age 'age' over |
/* For a combination of dummy covariate ij, computes the transition matrix starting at age 'age' over |
'nhstepm*hstepm*stepm' months (i.e. until |
'nhstepm*hstepm*stepm' months (i.e. until |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
nhstepm*hstepm matrices. |
nhstepm*hstepm matrices. |
Line 2677 double ***hbxij(double ***po, int nhstep
|
Line 3242 double ***hbxij(double ***po, int nhstep
|
(typically every 2 years instead of every month which is too big |
(typically every 2 years instead of every month which is too big |
for the memory). |
for the memory). |
Model is determined by parameters x and covariates have to be |
Model is determined by parameters x and covariates have to be |
included manually here. |
included manually here. Then we use a call to bmij(x and cov) |
|
The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output |
*/ |
*/ |
|
|
int i, j, d, h, k; |
int i, j, d, h, k; |
double **out, cov[NCOVMAX+1]; |
double **out, cov[NCOVMAX+1], **bmij(); |
double **newm; |
double **newm, ***newmm; |
double agexact; |
double agexact; |
double agebegin, ageend; |
double agebegin, ageend; |
double **oldm, **savm; |
double **oldm, **savm; |
|
|
oldm=oldms;savm=savms; |
newmm=po; /* To be saved */ |
|
oldm=oldms;savm=savms; /* Global pointers */ |
/* Hstepm could be zero and should return the unit matrix */ |
/* Hstepm could be zero and should return the unit matrix */ |
for (i=1;i<=nlstate+ndeath;i++) |
for (i=1;i<=nlstate+ndeath;i++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
Line 2701 double ***hbxij(double ***po, int nhstep
|
Line 3267 double ***hbxij(double ***po, int nhstep
|
newm=savm; |
newm=savm; |
/* Covariates have to be included here again */ |
/* Covariates have to be included here again */ |
cov[1]=1.; |
cov[1]=1.; |
agexact=age-((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
agexact=age-( (h-1)*hstepm + (d) )*stepm/YEARM; /* age just before transition, d or d-1? */ |
/* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */ |
/* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */ |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (k=1; k<=cptcovn;k++) |
for (k=1; k<=cptcovn;k++){ |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */ |
for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */ |
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
/* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
} |
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */ |
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
|
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
|
/* printf("hPxij Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovage;k++){ /* Should start at cptcovn+1 */ |
|
if(Dummy[Tvar[Tage[k]]]){ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
} else{ |
|
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
|
} |
|
/* printf("hBxij Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovprod;k++){ /* Useless because included in cptcovn */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
} |
|
|
|
|
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
|
|
/* Careful transposed matrix */ |
/* Careful transposed matrix */ |
/* age is in cov[2] */ |
/* age is in cov[2], prevacurrent at beginning of transition. */ |
/* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */ |
/* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */ |
/* 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */ |
/* 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */ |
out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\ |
out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\ |
Line 2746 double ***hbxij(double ***po, int nhstep
|
Line 3323 double ***hbxij(double ***po, int nhstep
|
for(i=1; i<=nlstate+ndeath; i++) |
for(i=1; i<=nlstate+ndeath; i++) |
for(j=1;j<=nlstate+ndeath;j++) { |
for(j=1;j<=nlstate+ndeath;j++) { |
po[i][j][h]=newm[i][j]; |
po[i][j][h]=newm[i][j]; |
/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
/* if(h==nhstepm) */ |
|
/* printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]); */ |
} |
} |
/*printf("h=%d ",h);*/ |
/* printf("h=%d %.1f ",h, agexact); */ |
} /* end h */ |
} /* end h */ |
/* printf("\n H=%d \n",h); */ |
/* printf("\n H=%d nhs=%d \n",h, nhstepm); */ |
return po; |
return po; |
} |
} |
|
|
Line 2779 double ***hbxij(double ***po, int nhstep
|
Line 3357 double ***hbxij(double ***po, int nhstep
|
double func( double *x) |
double func( double *x) |
{ |
{ |
int i, ii, j, k, mi, d, kk; |
int i, ii, j, k, mi, d, kk; |
int ioffset; |
int ioffset=0; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double **out; |
double **out; |
double sw; /* Sum of weights */ |
|
double lli; /* Individual log likelihood */ |
double lli; /* Individual log likelihood */ |
int s1, s2; |
int s1, s2; |
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate */ |
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
double bbh, survp; |
double bbh, survp; |
long ipmx; |
long ipmx; |
double agexact; |
double agexact; |
Line 2801 double func( double *x)
|
Line 3378 double func( double *x)
|
cov[1]=1.; |
cov[1]=1.; |
|
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for(k=1; k<=nlstate; k++) ll[k]=0.; |
|
ioffset=0; |
if(mle==1){ |
if(mle==1){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
/* Computes the values of the ncovmodel covariates of the model |
/* Computes the values of the ncovmodel covariates of the model |
depending if the covariates are fixed or varying (age dependent) and stores them in cov[] |
depending if the covariates are fixed or varying (age dependent) and stores them in cov[] |
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
to be observed in j being in i according to the model. |
to be observed in j being in i according to the model. |
*/ |
*/ |
ioffset=2+nagesqr; |
ioffset=2+nagesqr ; |
for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */ |
/* Fixed */ |
cov[++ioffset]=covar[Tvar[k]][i]; |
for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */ |
} |
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
for(iqv=1; iqv <= nqv; iqv++){ /* Varying quantitatives covariates */ |
|
/* cov[2+nagesqr+cptcovn+iqv]=varq[mw[mi+1][i]][iqv][i]; */ |
|
} |
} |
|
|
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] |
is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] |
has been calculated etc */ |
has been calculated etc */ |
Line 2824 double func( double *x)
|
Line 3398 double func( double *x)
|
/* We compute the contribution to Likelihood of each effective transition |
/* We compute the contribution to Likelihood of each effective transition |
mw[mi][i] is real wave of the mi th effectve wave */ |
mw[mi][i] is real wave of the mi th effectve wave */ |
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] |
And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] |
But if the variable is not in the model TTvar[iv] is the real variable effective in the model: |
But if the variable is not in the model TTvar[iv] is the real variable effective in the model: |
meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i] |
meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i] |
*/ |
*/ |
for(mi=1; mi<= wav[i]-1; mi++){ |
for(mi=1; mi<= wav[i]-1; mi++){ |
for(itv=1; itv <= ntv; itv++){ /* Varying dummy covariates */ |
for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ |
cov[++ioffset]=cotvar[mw[mi+1][i]][itv][i]; |
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */ |
} |
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; |
for(iqtv=1; iqtv <= nqtv; iqtv++){ /* Varying quantitatives covariates */ |
|
/* cov[2+nagesqr+cptcovn+nqv+ntv+iqtv]=varq[mw[mi+1][i]][iqtv][i]; */ |
|
} |
} |
ioffset=2+nagesqr+cptcovn+nqv+ntv+nqtv; |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
Line 2849 double func( double *x)
|
Line 3420 double func( double *x)
|
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; /* Should be changed here */ |
cov[3]= agexact*agexact; /* Should be changed here */ |
for (kk=1; kk<=cptcovage;kk++) { |
for (kk=1; kk<=cptcovage;kk++) { |
|
if(!FixedV[Tvar[Tage[kk]]]) |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
|
else |
|
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact; |
} |
} |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
savm=oldm; |
savm=oldm; |
oldm=newm; |
oldm=newm; |
} /* end mult */ |
} /* end mult */ |
|
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
/* But now since version 0.9 we anticipate for bias at large stepm. |
/* But now since version 0.9 we anticipate for bias at large stepm. |
* If stepm is larger than one month (smallest stepm) and if the exact delay |
* If stepm is larger than one month (smallest stepm) and if the exact delay |
Line 2865 double func( double *x)
|
Line 3439 double func( double *x)
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
* (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
* (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
* probability in order to take into account the bias as a fraction of the way |
* probability in order to take into account the bias as a fraction of the way |
* from savm to out if bh is negative or even beyond if bh is positive. bh varies |
* from savm to out if bh is negative or even beyond if bh is positive. bh varies |
* -stepm/2 to stepm/2 . |
* -stepm/2 to stepm/2 . |
* For stepm=1 the results are the same as for previous versions of Imach. |
* For stepm=1 the results are the same as for previous versions of Imach. |
* For stepm > 1 the results are less biased than in previous versions. |
* For stepm > 1 the results are less biased than in previous versions. |
*/ |
*/ |
s1=s[mw[mi][i]][i]; |
s1=s[mw[mi][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
bbh=(double)bh[mi][i]/(double)stepm; |
bbh=(double)bh[mi][i]/(double)stepm; |
Line 2884 double func( double *x)
|
Line 3458 double func( double *x)
|
which is also equal to probability to die before dh |
which is also equal to probability to die before dh |
minus probability to die before dh-stepm . |
minus probability to die before dh-stepm . |
In version up to 0.92 likelihood was computed |
In version up to 0.92 likelihood was computed |
as if date of death was unknown. Death was treated as any other |
as if date of death was unknown. Death was treated as any other |
health state: the date of the interview describes the actual state |
health state: the date of the interview describes the actual state |
and not the date of a change in health state. The former idea was |
and not the date of a change in health state. The former idea was |
to consider that at each interview the state was recorded |
to consider that at each interview the state was recorded |
(healthy, disable or death) and IMaCh was corrected; but when we |
(healthy, disable or death) and IMaCh was corrected; but when we |
introduced the exact date of death then we should have modified |
introduced the exact date of death then we should have modified |
the contribution of an exact death to the likelihood. This new |
the contribution of an exact death to the likelihood. This new |
contribution is smaller and very dependent of the step unit |
contribution is smaller and very dependent of the step unit |
stepm. It is no more the probability to die between last interview |
stepm. It is no more the probability to die between last interview |
and month of death but the probability to survive from last |
and month of death but the probability to survive from last |
interview up to one month before death multiplied by the |
interview up to one month before death multiplied by the |
probability to die within a month. Thanks to Chris |
probability to die within a month. Thanks to Chris |
Jackson for correcting this bug. Former versions increased |
Jackson for correcting this bug. Former versions increased |
mortality artificially. The bad side is that we add another loop |
mortality artificially. The bad side is that we add another loop |
which slows down the processing. The difference can be up to 10% |
which slows down the processing. The difference can be up to 10% |
lower mortality. |
lower mortality. |
|
*/ |
|
/* If, at the beginning of the maximization mostly, the |
|
cumulative probability or probability to be dead is |
|
constant (ie = 1) over time d, the difference is equal to |
|
0. out[s1][3] = savm[s1][3]: probability, being at state |
|
s1 at precedent wave, to be dead a month before current |
|
wave is equal to probability, being at state s1 at |
|
precedent wave, to be dead at mont of the current |
|
wave. Then the observed probability (that this person died) |
|
is null according to current estimated parameter. In fact, |
|
it should be very low but not zero otherwise the log go to |
|
infinity. |
*/ |
*/ |
/* If, at the beginning of the maximization mostly, the |
|
cumulative probability or probability to be dead is |
|
constant (ie = 1) over time d, the difference is equal to |
|
0. out[s1][3] = savm[s1][3]: probability, being at state |
|
s1 at precedent wave, to be dead a month before current |
|
wave is equal to probability, being at state s1 at |
|
precedent wave, to be dead at mont of the current |
|
wave. Then the observed probability (that this person died) |
|
is null according to current estimated parameter. In fact, |
|
it should be very low but not zero otherwise the log go to |
|
infinity. |
|
*/ |
|
/* #ifdef INFINITYORIGINAL */ |
/* #ifdef INFINITYORIGINAL */ |
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
/* #else */ |
/* #else */ |
Line 2929 double func( double *x)
|
Line 3503 double func( double *x)
|
/*survp += out[s1][j]; */ |
/*survp += out[s1][j]; */ |
lli= log(survp); |
lli= log(survp); |
} |
} |
else if (s2==-4) { |
else if (s2==-4) { |
for (j=3,survp=0. ; j<=nlstate; j++) |
for (j=3,survp=0. ; j<=nlstate; j++) |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
lli= log(survp); |
lli= log(survp); |
} |
} |
else if (s2==-5) { |
else if (s2==-5) { |
for (j=1,survp=0. ; j<=2; j++) |
for (j=1,survp=0. ; j<=2; j++) |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
lli= log(survp); |
lli= log(survp); |
} |
} |
else{ |
else{ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
Line 2946 double func( double *x)
|
Line 3520 double func( double *x)
|
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
/*if(lli ==000.0)*/ |
/*if(lli ==000.0)*/ |
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
ipmx +=1; |
ipmx +=1; |
sw += weight[i]; |
sw += weight[i]; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
/* if (lli < log(mytinydouble)){ */ |
/* if (lli < log(mytinydouble)){ */ |
Line 3107 double func( double *x)
|
Line 3681 double func( double *x)
|
/*************** log-likelihood *************/ |
/*************** log-likelihood *************/ |
double funcone( double *x) |
double funcone( double *x) |
{ |
{ |
/* Same as likeli but slower because of a lot of printf and if */ |
/* Same as func but slower because of a lot of printf and if */ |
int i, ii, j, k, mi, d, kk; |
int i, ii, j, k, mi, d, kk; |
|
int ioffset=0; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double **out; |
double **out; |
double lli; /* Individual log likelihood */ |
double lli; /* Individual log likelihood */ |
double llt; |
double llt; |
int s1, s2; |
int s1, s2; |
|
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
|
|
double bbh, survp; |
double bbh, survp; |
double agexact; |
double agexact; |
double agebegin, ageend; |
double agebegin, ageend; |
Line 3126 double funcone( double *x)
|
Line 3703 double funcone( double *x)
|
cov[1]=1.; |
cov[1]=1.; |
|
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for(k=1; k<=nlstate; k++) ll[k]=0.; |
|
ioffset=0; |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
/* ioffset=2+nagesqr+cptcovage; */ |
for(mi=1; mi<= wav[i]-1; mi++){ |
ioffset=2+nagesqr; |
|
/* Fixed */ |
|
/* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ |
|
/* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ |
|
for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */ |
|
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
|
/* cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i]; */ |
|
/* cov[2+6]=covar[Tvar[6]][i]; */ |
|
/* cov[2+6]=covar[2][i]; V2 */ |
|
/* cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i]; */ |
|
/* cov[2+7]=covar[Tvar[7]][i]; */ |
|
/* cov[2+7]=covar[7][i]; V7=V1*V2 */ |
|
/* cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i]; */ |
|
/* cov[2+9]=covar[Tvar[9]][i]; */ |
|
/* cov[2+9]=covar[1][i]; V1 */ |
|
} |
|
/* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */ |
|
/* cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */ |
|
/* } */ |
|
/* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */ |
|
/* cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */ |
|
/* } */ |
|
|
|
|
|
for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ |
|
/* Wave varying (but not age varying) */ |
|
for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ |
|
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */ |
|
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; |
|
} |
|
/* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */ |
|
/* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
|
/* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */ |
|
/* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */ |
|
/* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */ |
|
/* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */ |
|
/* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ |
|
/* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
|
/* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ |
|
/* cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */ |
|
/* } */ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
Line 3139 double funcone( double *x)
|
Line 3756 double funcone( double *x)
|
agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */ |
agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */ |
ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */ |
ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */ |
for(d=0; d<dh[mi][i]; d++){ /* Delay between two effective waves */ |
for(d=0; d<dh[mi][i]; d++){ /* Delay between two effective waves */ |
|
/* for(d=0; d<=0; d++){ /\* Delay between two effective waves Only one matrix to speed up*\/ */ |
/*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
/*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
and mw[mi+1][i]. dh depends on stepm.*/ |
and mw[mi+1][i]. dh depends on stepm.*/ |
newm=savm; |
newm=savm; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; /* Here d is needed */ |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (kk=1; kk<=cptcovage;kk++) { |
for (kk=1; kk<=cptcovage;kk++) { |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
if(!FixedV[Tvar[Tage[kk]]]) |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
|
else |
|
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact; |
} |
} |
|
/* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
Line 3162 double funcone( double *x)
|
Line 3783 double funcone( double *x)
|
s1=s[mw[mi][i]][i]; |
s1=s[mw[mi][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
/* if(s2==-1){ */ |
/* if(s2==-1){ */ |
/* printf(" s1=%d, s2=%d i=%d \n", s1, s2, i); */ |
/* printf(" ERROR s1=%d, s2=%d i=%d \n", s1, s2, i); */ |
/* /\* exit(1); *\/ */ |
/* /\* exit(1); *\/ */ |
/* } */ |
/* } */ |
bbh=(double)bh[mi][i]/(double)stepm; |
bbh=(double)bh[mi][i]/(double)stepm; |
Line 3192 double funcone( double *x)
|
Line 3813 double funcone( double *x)
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
if(globpr){ |
if(globpr){ |
fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f %8.3f\ |
fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ |
%11.6f %11.6f %11.6f ", \ |
%11.6f %11.6f %11.6f ", \ |
num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, |
num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, |
2*weight[i]*lli,out[s1][s2],savm[s1][s2]); |
2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); |
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
llt +=ll[k]*gipmx/gsw; |
llt +=ll[k]*gipmx/gsw; |
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
} |
} |
fprintf(ficresilk," %10.6f\n", -llt); |
fprintf(ficresilk," %10.6f\n", -llt); |
} |
} |
} /* end of wave */ |
} /* end of wave */ |
} /* end of individual */ |
} /* end of individual */ |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
if(globpr==0){ /* First time we count the contributions and weights */ |
if(globpr==0){ /* First time we count the contributions and weights */ |
gipmx=ipmx; |
gipmx=ipmx; |
gsw=sw; |
gsw=sw; |
} |
} |
return -l; |
return -l; |
} |
} |
|
|
|
|
Line 3248 void likelione(FILE *ficres,double p[],
|
Line 3869 void likelione(FILE *ficres,double p[],
|
else if(mle >=1) |
else if(mle >=1) |
fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle); |
fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle); |
fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
|
fprintf(fichtm,"\n<br>Equation of the model: <b>model=1+age+%s</b><br>\n",model); |
|
|
for (k=1; k<= nlstate ; k++) { |
for (k=1; k<= nlstate ; k++) { |
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
Line 3550 double hessij( double x[], double **hess
|
Line 4171 double hessij( double x[], double **hess
|
kmax=kmax+10; |
kmax=kmax+10; |
} |
} |
if(kmax >=10 || firstime ==1){ |
if(kmax >=10 || firstime ==1){ |
printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol); |
printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol); |
fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol); |
fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol); |
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
} |
} |
Line 3640 void ludcmp(double **a, int n, int *indx
|
Line 4261 void ludcmp(double **a, int n, int *indx
|
big=0.0; |
big=0.0; |
for (j=1;j<=n;j++) |
for (j=1;j<=n;j++) |
if ((temp=fabs(a[i][j])) > big) big=temp; |
if ((temp=fabs(a[i][j])) > big) big=temp; |
if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); |
if (big == 0.0){ |
|
printf(" Singular Hessian matrix at row %d:\n",i); |
|
for (j=1;j<=n;j++) { |
|
printf(" a[%d][%d]=%f,",i,j,a[i][j]); |
|
fprintf(ficlog," a[%d][%d]=%f,",i,j,a[i][j]); |
|
} |
|
fflush(ficlog); |
|
fclose(ficlog); |
|
nrerror("Singular matrix in routine ludcmp"); |
|
} |
vv[i]=1.0/big; |
vv[i]=1.0/big; |
} |
} |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
Line 3706 void pstamp(FILE *fichier)
|
Line 4336 void pstamp(FILE *fichier)
|
fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart); |
fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart); |
} |
} |
|
|
/************ Frequencies ********************/ |
|
void freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \ |
|
int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \ |
|
int firstpass, int lastpass, int stepm, int weightopt, char model[]) |
|
{ /* Some frequencies */ |
|
|
|
int i, m, jk, j1, bool, z1,j; |
|
int iind=0, iage=0; |
|
int mi; /* Effective wave */ |
|
int first; |
|
double ***freq; /* Frequencies */ |
|
double *pp, **prop, *posprop, *pospropt; |
|
double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0; |
|
char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH]; |
|
double agebegin, ageend; |
|
|
|
pp=vector(1,nlstate); |
|
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
|
posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ |
|
pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ |
|
/* prop=matrix(1,nlstate,iagemin,iagemax+3); */ |
|
strcpy(fileresp,"P_"); |
|
strcat(fileresp,fileresu); |
|
/*strcat(fileresphtm,fileresu);*/ |
|
if((ficresp=fopen(fileresp,"w"))==NULL) { |
|
printf("Problem with prevalence resultfile: %s\n", fileresp); |
|
fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
|
exit(0); |
|
} |
|
|
|
strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm")); |
|
if((ficresphtm=fopen(fileresphtm,"w"))==NULL) { |
/************ Frequencies ********************/ |
printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
void freqsummary(char fileres[], double p[], double pstart[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \ |
fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \ |
fflush(ficlog); |
int firstpass, int lastpass, int stepm, int weightopt, char model[]) |
exit(70); |
{ /* Some frequencies as well as proposing some starting values */ |
} |
|
else{ |
int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1; |
fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
int iind=0, iage=0; |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
int mi; /* Effective wave */ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
int first; |
fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
double ***freq; /* Frequencies */ |
} |
double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */ |
fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition</h4>\n",fileresphtm, fileresphtm); |
int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb); |
|
double *meanq; |
|
double **meanqt; |
|
double *pp, **prop, *posprop, *pospropt; |
|
double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0; |
|
char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH]; |
|
double agebegin, ageend; |
|
|
strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm")); |
pp=vector(1,nlstate); |
if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) { |
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ |
fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ |
fflush(ficlog); |
/* prop=matrix(1,nlstate,iagemin,iagemax+3); */ |
exit(70); |
meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
} |
meanqt=matrix(1,lastpass,1,nqtveff); |
else{ |
strcpy(fileresp,"P_"); |
fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
strcat(fileresp,fileresu); |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
/*strcat(fileresphtm,fileresu);*/ |
|
if((ficresp=fopen(fileresp,"w"))==NULL) { |
|
printf("Problem with prevalence resultfile: %s\n", fileresp); |
|
fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
|
exit(0); |
|
} |
|
|
|
strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm")); |
|
if((ficresphtm=fopen(fileresphtm,"w"))==NULL) { |
|
printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
|
fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
|
fflush(ficlog); |
|
exit(70); |
|
} |
|
else{ |
|
fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n \ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
} |
} |
fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions by age at begin of transition </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr); |
fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm); |
|
|
freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
|
j1=0; |
|
|
|
j=cptcoveff; |
strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm")); |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) { |
|
printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
first=1; |
fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
|
fflush(ficlog); |
|
exit(70); |
|
} else{ |
|
fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n \ |
|
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
|
fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
|
} |
|
fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr); |
|
|
|
y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
|
x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
|
freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
|
j1=0; |
|
|
|
/* j=ncoveff; /\* Only fixed dummy covariates *\/ */ |
|
j=cptcoveff; /* Only dummy covariates of the model */ |
|
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
|
|
|
/* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels: |
|
reference=low_education V1=0,V2=0 |
|
med_educ V1=1 V2=0, |
|
high_educ V1=0 V2=1 |
|
Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff |
|
*/ |
|
dateintsum=0; |
|
k2cpt=0; |
|
|
/* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels: |
if(cptcoveff == 0 ) |
reference=low_education V1=0,V2=0 |
nl=1; /* Constant and age model only */ |
med_educ V1=1 V2=0, |
else |
high_educ V1=0 V2=1 |
nl=2; |
Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff |
|
*/ |
|
|
|
for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){ /* Loop on covariates combination */ |
/* if a constant only model, one pass to compute frequency tables and to write it on ficresp */ |
posproptt=0.; |
/* Loop on nj=1 or 2 if dummy covariates j!=0 |
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
* Loop on j1(1 to 2**cptcoveff) covariate combination |
scanf("%d", i);*/ |
* freq[s1][s2][iage] =0. |
for (i=-5; i<=nlstate+ndeath; i++) |
* Loop on iind |
for (jk=-5; jk<=nlstate+ndeath; jk++) |
* ++freq[s1][s2][iage] weighted |
for(m=iagemin; m <= iagemax+3; m++) |
* end iind |
freq[i][jk][m]=0; |
* if covariate and j!0 |
|
* headers Variable on one line |
for (i=1; i<=nlstate; i++) { |
* endif cov j!=0 |
for(m=iagemin; m <= iagemax+3; m++) |
* header of frequency table by age |
prop[i][m]=0; |
* Loop on age |
posprop[i]=0; |
* pp[s1]+=freq[s1][s2][iage] weighted |
pospropt[i]=0; |
* pos+=freq[s1][s2][iage] weighted |
} |
* Loop on s1 initial state |
|
* fprintf(ficresp |
|
* end s1 |
|
* end age |
|
* if j!=0 computes starting values |
|
* end compute starting values |
|
* end j1 |
|
* end nl |
|
*/ |
|
for (nj = 1; nj <= nl; nj++){ /* nj= 1 constant model, nl number of loops. */ |
|
if(nj==1) |
|
j=0; /* First pass for the constant */ |
|
else{ |
|
j=cptcoveff; /* Other passes for the covariate values */ |
|
} |
|
first=1; |
|
for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all covariates combination of the model, excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */ |
|
posproptt=0.; |
|
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
|
scanf("%d", i);*/ |
|
for (i=-5; i<=nlstate+ndeath; i++) |
|
for (s2=-5; s2<=nlstate+ndeath; s2++) |
|
for(m=iagemin; m <= iagemax+3; m++) |
|
freq[i][s2][m]=0; |
|
|
|
for (i=1; i<=nlstate; i++) { |
|
for(m=iagemin; m <= iagemax+3; m++) |
|
prop[i][m]=0; |
|
posprop[i]=0; |
|
pospropt[i]=0; |
|
} |
|
/* for (z1=1; z1<= nqfveff; z1++) { */ |
|
/* meanq[z1]+=0.; */ |
|
/* for(m=1;m<=lastpass;m++){ */ |
|
/* meanqt[m][z1]=0.; */ |
|
/* } */ |
|
/* } */ |
|
|
dateintsum=0; |
/* dateintsum=0; */ |
k2cpt=0; |
/* k2cpt=0; */ |
|
|
for (iind=1; iind<=imx; iind++) { /* For each individual iind */ |
|
bool=1; |
|
if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
|
for (z1=1; z1<=cptcoveff; z1++) { |
|
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ |
|
/* Tests if the value of each of the covariates of i is equal to filter j1 */ |
|
bool=0; |
|
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", |
|
bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1), |
|
j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
|
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
|
} |
|
} /* end z1 */ |
|
} /* cptcovn > 0 */ |
|
|
|
if (bool==1){ |
|
/* for(m=firstpass; m<=lastpass; m++){ */ |
|
for(mi=1; mi<wav[iind];mi++){ |
|
m=mw[mi][iind]; |
|
/* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind] |
|
and mw[mi+1][iind]. dh depends on stepm. */ |
|
agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/ |
|
ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */ |
|
if(m >=firstpass && m <=lastpass){ |
|
k2=anint[m][iind]+(mint[m][iind]/12.); |
|
/*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ |
|
if(agev[m][iind]==0) agev[m][iind]=iagemax+1; /* All ages equal to 0 are in iagemax+1 */ |
|
if(agev[m][iind]==1) agev[m][iind]=iagemax+2; /* All ages equal to 1 are in iagemax+2 */ |
|
if (s[m][iind]>0 && s[m][iind]<=nlstate) /* If status at wave m is known and a live state */ |
|
prop[s[m][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
if (m<lastpass) { |
|
/* if(s[m][iind]==4 && s[m+1][iind]==4) */ |
|
/* printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */ |
|
if(s[m][iind]==-1) |
|
printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.)); |
|
freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
/* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */ |
|
freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */ |
|
} |
|
} |
|
if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) { |
|
dateintsum=dateintsum+k2; |
|
k2cpt++; |
|
/* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */ |
|
} |
|
/*}*/ |
|
} /* end m */ |
|
} /* end bool */ |
|
} /* end iind = 1 to imx */ |
|
/* prop[s][age] is feeded for any initial and valid live state as well as |
|
freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */ |
|
|
|
|
|
/* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
|
pstamp(ficresp); |
|
if (cptcovn>0) { |
|
fprintf(ficresp, "\n#********** Variable "); |
|
fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); |
|
fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++){ |
|
fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
} |
|
fprintf(ficresp, "**********\n#"); |
|
fprintf(ficresphtm, "**********</h3>\n"); |
|
fprintf(ficresphtmfr, "**********</h3>\n"); |
|
fprintf(ficlog, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficlog, "**********\n"); |
|
} |
|
fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">"); |
|
for(i=1; i<=nlstate;i++) { |
|
fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); |
|
fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i); |
|
} |
|
fprintf(ficresp, "\n"); |
|
fprintf(ficresphtm, "\n"); |
|
|
|
/* Header of frequency table by age */ |
/* For that combination of covariates j1 (V4=1 V3=0 for example), we count and print the frequencies in one pass */ |
fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">"); |
for (iind=1; iind<=imx; iind++) { /* For each individual iind */ |
fprintf(ficresphtmfr,"<th>Age</th> "); |
bool=1; |
for(jk=-1; jk <=nlstate+ndeath; jk++){ |
if(j !=0){ |
for(m=-1; m <=nlstate+ndeath; m++){ |
if(anyvaryingduminmodel==0){ /* If All fixed covariates */ |
if(jk!=0 && m!=0) |
if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m); |
/* for (z1=1; z1<= nqfveff; z1++) { */ |
} |
/* meanq[z1]+=coqvar[Tvar[z1]][iind]; /\* Computes mean of quantitative with selected filter *\/ */ |
} |
/* } */ |
fprintf(ficresphtmfr, "\n"); |
for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */ |
|
/* if(Tvaraff[z1] ==-20){ */ |
|
/* /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */ |
|
/* }else if(Tvaraff[z1] ==-10){ */ |
|
/* /\* sumnew+=coqvar[z1][iind]; *\/ */ |
|
/* }else */ |
|
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ /* for combination j1 of covariates */ |
|
/* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */ |
|
bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */ |
|
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", |
|
bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1), |
|
j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
|
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
|
} /* Onlyf fixed */ |
|
} /* end z1 */ |
|
} /* cptcovn > 0 */ |
|
} /* end any */ |
|
}/* end j==0 */ |
|
if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */ |
|
/* for(m=firstpass; m<=lastpass; m++){ */ |
|
for(mi=1; mi<wav[iind];mi++){ /* For that wave */ |
|
m=mw[mi][iind]; |
|
if(j!=0){ |
|
if(anyvaryingduminmodel==1){ /* Some are varying covariates */ |
|
for (z1=1; z1<=cptcoveff; z1++) { |
|
if( Fixed[Tmodelind[z1]]==1){ |
|
iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; |
|
if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality. If covariate's |
|
value is -1, we don't select. It differs from the |
|
constant and age model which counts them. */ |
|
bool=0; /* not selected */ |
|
}else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */ |
|
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { |
|
bool=0; |
|
} |
|
} |
|
} |
|
}/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop */ |
|
} /* end j==0 */ |
|
/* bool =0 we keep that guy which corresponds to the combination of dummy values */ |
|
if(bool==1){ |
|
/* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind] |
|
and mw[mi+1][iind]. dh depends on stepm. */ |
|
agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/ |
|
ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */ |
|
if(m >=firstpass && m <=lastpass){ |
|
k2=anint[m][iind]+(mint[m][iind]/12.); |
|
/*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ |
|
if(agev[m][iind]==0) agev[m][iind]=iagemax+1; /* All ages equal to 0 are in iagemax+1 */ |
|
if(agev[m][iind]==1) agev[m][iind]=iagemax+2; /* All ages equal to 1 are in iagemax+2 */ |
|
if (s[m][iind]>0 && s[m][iind]<=nlstate) /* If status at wave m is known and a live state */ |
|
prop[s[m][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
if (m<lastpass) { |
|
/* if(s[m][iind]==4 && s[m+1][iind]==4) */ |
|
/* printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */ |
|
if(s[m][iind]==-1) |
|
printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.)); |
|
freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
/* if((int)agev[m][iind] == 55) */ |
|
/* printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */ |
|
/* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */ |
|
freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */ |
|
} |
|
} /* end if between passes */ |
|
if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99) && (j==0)) { |
|
dateintsum=dateintsum+k2; /* on all covariates ?*/ |
|
k2cpt++; |
|
/* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */ |
|
} |
|
}else{ |
|
bool=1; |
|
}/* end bool 2 */ |
|
} /* end m */ |
|
} /* end bool */ |
|
} /* end iind = 1 to imx */ |
|
/* prop[s][age] is feeded for any initial and valid live state as well as |
|
freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */ |
|
|
|
|
|
/* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
|
if(cptcoveff==0 && nj==1) /* no covariate and first pass */ |
|
pstamp(ficresp); |
|
if (cptcoveff>0 && j!=0){ |
|
pstamp(ficresp); |
|
printf( "\n#********** Variable "); |
|
fprintf(ficresp, "\n#********** Variable "); |
|
fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); |
|
fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); |
|
fprintf(ficlog, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++){ |
|
if(!FixedV[Tvaraff[z1]]){ |
|
printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
}else{ |
|
printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
} |
|
} |
|
printf( "**********\n#"); |
|
fprintf(ficresp, "**********\n#"); |
|
fprintf(ficresphtm, "**********</h3>\n"); |
|
fprintf(ficresphtmfr, "**********</h3>\n"); |
|
fprintf(ficlog, "**********\n"); |
|
} |
|
fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">"); |
|
if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */ |
|
fprintf(ficresp, " Age"); |
|
if(nj==2) for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
for(i=1; i<=nlstate;i++) { |
|
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d) N(%d) N ",i,i); |
|
fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i); |
|
} |
|
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp, "\n"); |
|
fprintf(ficresphtm, "\n"); |
|
|
|
/* Header of frequency table by age */ |
|
fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">"); |
|
fprintf(ficresphtmfr,"<th>Age</th> "); |
|
for(s2=-1; s2 <=nlstate+ndeath; s2++){ |
|
for(m=-1; m <=nlstate+ndeath; m++){ |
|
if(s2!=0 && m!=0) |
|
fprintf(ficresphtmfr,"<th>%d%d</th> ",s2,m); |
|
} |
|
} |
|
fprintf(ficresphtmfr, "\n"); |
|
|
|
/* For each age */ |
|
for(iage=iagemin; iage <= iagemax+3; iage++){ |
|
fprintf(ficresphtm,"<tr>"); |
|
if(iage==iagemax+1){ |
|
fprintf(ficlog,"1"); |
|
fprintf(ficresphtmfr,"<tr><th>0</th> "); |
|
}else if(iage==iagemax+2){ |
|
fprintf(ficlog,"0"); |
|
fprintf(ficresphtmfr,"<tr><th>Unknown</th> "); |
|
}else if(iage==iagemax+3){ |
|
fprintf(ficlog,"Total"); |
|
fprintf(ficresphtmfr,"<tr><th>Total</th> "); |
|
}else{ |
|
if(first==1){ |
|
first=0; |
|
printf("See log file for details...\n"); |
|
} |
|
fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage); |
|
fprintf(ficlog,"Age %d", iage); |
|
} |
|
for(s1=1; s1 <=nlstate ; s1++){ |
|
for(m=-1, pp[s1]=0; m <=nlstate+ndeath ; m++) |
|
pp[s1] += freq[s1][m][iage]; |
|
} |
|
for(s1=1; s1 <=nlstate ; s1++){ |
|
for(m=-1, pos=0; m <=0 ; m++) |
|
pos += freq[s1][m][iage]; |
|
if(pp[s1]>=1.e-10){ |
|
if(first==1){ |
|
printf(" %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]); |
|
} |
|
fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]); |
|
}else{ |
|
if(first==1) |
|
printf(" %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1); |
|
fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1); |
|
} |
|
} |
|
|
/* For each age */ |
for(s1=1; s1 <=nlstate ; s1++){ |
for(iage=iagemin; iage <= iagemax+3; iage++){ |
/* posprop[s1]=0; */ |
fprintf(ficresphtm,"<tr>"); |
for(m=0, pp[s1]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */ |
if(iage==iagemax+1){ |
pp[s1] += freq[s1][m][iage]; |
fprintf(ficlog,"1"); |
} /* pp[s1] is the total number of transitions starting from state s1 and any ending status until this age */ |
fprintf(ficresphtmfr,"<tr><th>0</th> "); |
|
}else if(iage==iagemax+2){ |
for(s1=1,pos=0, pospropta=0.; s1 <=nlstate ; s1++){ |
fprintf(ficlog,"0"); |
pos += pp[s1]; /* pos is the total number of transitions until this age */ |
fprintf(ficresphtmfr,"<tr><th>Unknown</th> "); |
posprop[s1] += prop[s1][iage]; /* prop is the number of transitions from a live state |
}else if(iage==iagemax+3){ |
from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
fprintf(ficlog,"Total"); |
pospropta += prop[s1][iage]; /* prop is the number of transitions from a live state |
fprintf(ficresphtmfr,"<tr><th>Total</th> "); |
from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
}else{ |
} |
if(first==1){ |
|
first=0; |
/* Writing ficresp */ |
printf("See log file for details...\n"); |
if(cptcoveff==0 && nj==1){ /* no covariate and first pass */ |
} |
if( iage <= iagemax){ |
fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage); |
fprintf(ficresp," %d",iage); |
fprintf(ficlog,"Age %d", iage); |
} |
} |
}else if( nj==2){ |
for(jk=1; jk <=nlstate ; jk++){ |
if( iage <= iagemax){ |
for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) |
fprintf(ficresp," %d",iage); |
pp[jk] += freq[jk][m][iage]; |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
} |
} |
for(jk=1; jk <=nlstate ; jk++){ |
} |
for(m=-1, pos=0; m <=0 ; m++) |
for(s1=1; s1 <=nlstate ; s1++){ |
pos += freq[jk][m][iage]; |
if(pos>=1.e-5){ |
if(pp[jk]>=1.e-10){ |
if(first==1) |
if(first==1){ |
printf(" %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos); |
printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos); |
} |
}else{ |
fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
if(first==1) |
}else{ |
printf(" %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1); |
if(first==1) |
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1); |
printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
} |
fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
if( iage <= iagemax){ |
} |
if(pos>=1.e-5){ |
} |
if(cptcoveff==0 && nj==1){ /* no covariate and first pass */ |
|
fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta); |
for(jk=1; jk <=nlstate ; jk++){ |
}else if( nj==2){ |
/* posprop[jk]=0; */ |
fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta); |
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */ |
} |
pp[jk] += freq[jk][m][iage]; |
fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[s1][iage]/pospropta, prop[s1][iage],pospropta); |
} /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */ |
/*probs[iage][s1][j1]= pp[s1]/pos;*/ |
|
/*printf("\niage=%d s1=%d j1=%d %.5f %.0f %.0f %f",iage,s1,j1,pp[s1]/pos, pp[s1],pos,probs[iage][s1][j1]);*/ |
for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){ |
} else{ |
pos += pp[jk]; /* pos is the total number of transitions until this age */ |
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," NaNq %.0f %.0f",prop[s1][iage],pospropta); |
posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state |
fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[s1][iage],pospropta); |
from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
} |
pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state |
} |
from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
pospropt[s1] +=posprop[s1]; |
} |
} /* end loop s1 */ |
for(jk=1; jk <=nlstate ; jk++){ |
/* pospropt=0.; */ |
if(pos>=1.e-5){ |
for(s1=-1; s1 <=nlstate+ndeath; s1++){ |
if(first==1) |
for(m=-1; m <=nlstate+ndeath; m++){ |
printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
if(freq[s1][m][iage] !=0 ) { /* minimizing output */ |
fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
if(first==1){ |
}else{ |
printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); |
if(first==1) |
} |
printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
/* printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); */ |
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
fprintf(ficlog," %d%d=%.0f",s1,m,freq[s1][m][iage]); |
} |
} |
if( iage <= iagemax){ |
if(s1!=0 && m!=0) |
if(pos>=1.e-5){ |
fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[s1][m][iage]); |
fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta); |
} |
fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta); |
} /* end loop s1 */ |
/*probs[iage][jk][j1]= pp[jk]/pos;*/ |
posproptt=0.; |
/*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/ |
for(s1=1; s1 <=nlstate; s1++){ |
} |
posproptt += pospropt[s1]; |
else{ |
} |
fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta); |
fprintf(ficresphtmfr,"</tr>\n "); |
fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[jk][iage],pospropta); |
fprintf(ficresphtm,"</tr>\n"); |
} |
if((cptcoveff==0 && nj==1)|| nj==2 ) { |
} |
if(iage <= iagemax) |
pospropt[jk] +=posprop[jk]; |
fprintf(ficresp,"\n"); |
} /* end loop jk */ |
} |
/* pospropt=0.; */ |
if(first==1) |
for(jk=-1; jk <=nlstate+ndeath; jk++){ |
printf("Others in log...\n"); |
for(m=-1; m <=nlstate+ndeath; m++){ |
fprintf(ficlog,"\n"); |
if(freq[jk][m][iage] !=0 ) { /* minimizing output */ |
} /* end loop age iage */ |
if(first==1){ |
|
printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]); |
fprintf(ficresphtm,"<tr><th>Tot</th>"); |
} |
for(s1=1; s1 <=nlstate ; s1++){ |
fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]); |
if(posproptt < 1.e-5){ |
} |
fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[s1],posproptt); |
if(jk!=0 && m!=0) |
}else{ |
fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][iage]); |
fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[s1]/posproptt,pospropt[s1],posproptt); |
} |
} |
} /* end loop jk */ |
} |
posproptt=0.; |
fprintf(ficresphtm,"</tr>\n"); |
for(jk=1; jk <=nlstate; jk++){ |
fprintf(ficresphtm,"</table>\n"); |
posproptt += pospropt[jk]; |
fprintf(ficresphtmfr,"</table>\n"); |
} |
if(posproptt < 1.e-5){ |
fprintf(ficresphtmfr,"</tr>\n "); |
fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
if(iage <= iagemax){ |
fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
fprintf(ficresp,"\n"); |
fprintf(ficlog,"# This combination (%d) is not valid and no result will be produced\n",j1); |
fprintf(ficresphtm,"</tr>\n"); |
printf("# This combination (%d) is not valid and no result will be produced\n",j1); |
} |
invalidvarcomb[j1]=1; |
if(first==1) |
}else{ |
printf("Others in log...\n"); |
fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1); |
fprintf(ficlog,"\n"); |
invalidvarcomb[j1]=0; |
} /* end loop age iage */ |
} |
fprintf(ficresphtm,"<tr><th>Tot</th>"); |
fprintf(ficresphtmfr,"</table>\n"); |
for(jk=1; jk <=nlstate ; jk++){ |
fprintf(ficlog,"\n"); |
if(posproptt < 1.e-5){ |
if(j!=0){ |
fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[jk],posproptt); |
printf("#Freqsummary: Starting values for combination j1=%d:\n", j1); |
}else{ |
for(i=1,s1=1; i <=nlstate; i++){ |
fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[jk]/posproptt,pospropt[jk],posproptt); |
for(k=1; k <=(nlstate+ndeath); k++){ |
} |
if (k != i) { |
} |
for(jj=1; jj <=ncovmodel; jj++){ /* For counting s1 */ |
fprintf(ficresphtm,"</tr>\n"); |
if(jj==1){ /* Constant case (in fact cste + age) */ |
fprintf(ficresphtm,"</table>\n"); |
if(j1==1){ /* All dummy covariates to zero */ |
fprintf(ficresphtmfr,"</table>\n"); |
freq[i][k][iagemax+4]=freq[i][k][iagemax+3]; /* Stores case 0 0 0 */ |
if(posproptt < 1.e-5){ |
freq[i][i][iagemax+4]=freq[i][i][iagemax+3]; /* Stores case 0 0 0 */ |
fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
printf("%d%d ",i,k); |
fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficres,"\n This combination (%d) is not valid and no result will be produced\n\n",j1); |
printf("%12.7f ln(%.0f/%.0f)= %f, OR=%f sd=%f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]),freq[i][k][iagemax+3]/freq[i][i][iagemax+3], sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3])); |
invalidvarcomb[j1]=1; |
fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); |
}else{ |
pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]); |
fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1); |
} |
invalidvarcomb[j1]=0; |
}else if((j1==1) && (jj==2 || nagesqr==1)){ /* age or age*age parameter without covariate V4*age (to be done later) */ |
} |
for(iage=iagemin; iage <= iagemax+3; iage++){ |
fprintf(ficresphtmfr,"</table>\n"); |
x[iage]= (double)iage; |
} /* end selected combination of covariate j1 */ |
y[iage]= log(freq[i][k][iage]/freq[i][i][iage]); |
dateintmean=dateintsum/k2cpt; |
/* printf("i=%d, k=%d, s1=%d, j1=%d, jj=%d, y[%d]=%f\n",i,k,s1,j1,jj, iage, y[iage]); */ |
|
} |
fclose(ficresp); |
/* Some are not finite, but linreg will ignore these ages */ |
fclose(ficresphtm); |
no=0; |
fclose(ficresphtmfr); |
linreg(iagemin,iagemax,&no,x,y,&a,&b,&r, &sa, &sb ); /* y= a+b*x with standard errors */ |
free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE); |
pstart[s1]=b; |
free_vector(pospropt,1,nlstate); |
pstart[s1-1]=a; |
free_vector(posprop,1,nlstate); |
}else if( j1!=1 && (j1==2 || (log(j1-1.)/log(2.)-(int)(log(j1-1.)/log(2.))) <0.010) && ( TvarsDind[(int)(log(j1-1.)/log(2.))+1]+2+nagesqr == jj) && Dummy[jj-2-nagesqr]==0){ /* We want only if the position, jj, in model corresponds to unique covariate equal to 1 in j1 combination */ |
free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE); |
printf("j1=%d, jj=%d, (int)(log(j1-1.)/log(2.))+1=%d, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(int)(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]); |
free_vector(pp,1,nlstate); |
printf("j1=%d, jj=%d, (log(j1-1.)/log(2.))+1=%f, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]); |
/* End of Freq */ |
pstart[s1]= log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])); |
} |
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
printf("s1=%d,i=%d,k=%d,p[%d]=%12.7f ln((%.0f/%.0f)/(%.0f/%.0f))= %f, OR=%f sd=%f \n",s1,i,k,s1,p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3],freq[i][k][iagemax+4],freq[i][i][iagemax+4], log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])),(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]), sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]+1/freq[i][k][iagemax+4]+1/freq[i][i][iagemax+4])); |
|
}else{ /* Other cases, like quantitative fixed or varying covariates */ |
|
; |
|
} |
|
/* printf("%12.7f )", param[i][jj][k]); */ |
|
/* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */ |
|
s1++; |
|
} /* end jj */ |
|
} /* end k!= i */ |
|
} /* end k */ |
|
} /* end i, s1 */ |
|
} /* end j !=0 */ |
|
} /* end selected combination of covariate j1 */ |
|
if(j==0){ /* We can estimate starting values from the occurences in each case */ |
|
printf("#Freqsummary: Starting values for the constants:\n"); |
|
fprintf(ficlog,"\n"); |
|
for(i=1,s1=1; i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
for(jj=1; jj <=ncovmodel; jj++){ |
|
pstart[s1]=p[s1]; /* Setting pstart to p values by default */ |
|
if(jj==1){ /* Age has to be done */ |
|
pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]); |
|
printf("%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); |
|
fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); |
|
} |
|
/* printf("%12.7f )", param[i][jj][k]); */ |
|
/* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */ |
|
s1++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
} |
|
} |
|
printf("#Freqsummary\n"); |
|
fprintf(ficlog,"\n"); |
|
for(s1=-1; s1 <=nlstate+ndeath; s1++){ |
|
for(s2=-1; s2 <=nlstate+ndeath; s2++){ |
|
/* param[i]|j][k]= freq[s1][s2][iagemax+3] */ |
|
printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); |
|
fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); |
|
/* if(freq[s1][s2][iage] !=0 ) { /\* minimizing output *\/ */ |
|
/* printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */ |
|
/* fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */ |
|
/* } */ |
|
} |
|
} /* end loop s1 */ |
|
|
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} /* end j=0 */ |
|
} /* end j */ |
|
|
/************ Prevalence ********************/ |
if(mle == -2){ /* We want to use these values as starting values */ |
void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) |
for(i=1, jk=1; i <=nlstate; i++){ |
{ |
for(j=1; j <=nlstate+ndeath; j++){ |
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
if(j!=i){ |
in each health status at the date of interview (if between dateprev1 and dateprev2). |
/*ca[0]= k+'a'-1;ca[1]='\0';*/ |
We still use firstpass and lastpass as another selection. |
printf("%1d%1d",i,j); |
*/ |
fprintf(ficparo,"%1d%1d",i,j); |
|
for(k=1; k<=ncovmodel;k++){ |
int i, m, jk, j1, bool, z1,j; |
/* printf(" %lf",param[i][j][k]); */ |
int mi; /* Effective wave */ |
/* fprintf(ficparo," %lf",param[i][j][k]); */ |
int iage; |
p[jk]=pstart[jk]; |
double agebegin, ageend; |
printf(" %f ",pstart[jk]); |
|
fprintf(ficparo," %f ",pstart[jk]); |
double **prop; |
jk++; |
double posprop; |
} |
double y2; /* in fractional years */ |
printf("\n"); |
int iagemin, iagemax; |
fprintf(ficparo,"\n"); |
int first; /** to stop verbosity which is redirected to log file */ |
} |
|
} |
iagemin= (int) agemin; |
} |
iagemax= (int) agemax; |
} /* end mle=-2 */ |
/*pp=vector(1,nlstate);*/ |
dateintmean=dateintsum/k2cpt; |
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
|
/* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
|
j1=0; |
|
|
|
/*j=cptcoveff;*/ |
fclose(ficresp); |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
fclose(ficresphtm); |
|
fclose(ficresphtmfr); |
|
free_vector(meanq,1,nqfveff); |
|
free_matrix(meanqt,1,lastpass,1,nqtveff); |
|
free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
|
free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
|
free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
|
free_vector(pospropt,1,nlstate); |
|
free_vector(posprop,1,nlstate); |
|
free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
|
free_vector(pp,1,nlstate); |
|
/* End of freqsummary */ |
|
} |
|
|
|
/* Simple linear regression */ |
|
int linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb) { |
|
|
|
/* y=a+bx regression */ |
|
double sumx = 0.0; /* sum of x */ |
|
double sumx2 = 0.0; /* sum of x**2 */ |
|
double sumxy = 0.0; /* sum of x * y */ |
|
double sumy = 0.0; /* sum of y */ |
|
double sumy2 = 0.0; /* sum of y**2 */ |
|
double sume2 = 0.0; /* sum of square or residuals */ |
|
double yhat; |
|
|
first=1; |
double denom=0; |
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */ |
int i; |
for (i=1; i<=nlstate; i++) |
int ne=*no; |
for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++) |
|
prop[i][iage]=0.0; |
for ( i=ifi, ne=0;i<=ila;i++) { |
|
if(!isfinite(x[i]) || !isfinite(y[i])){ |
for (i=1; i<=imx; i++) { /* Each individual */ |
/* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */ |
bool=1; |
continue; |
if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
} |
for (z1=1; z1<=cptcoveff; z1++) /* For each covariate, look at the value for individual i and checks if it is equal to the corresponding value of this covariate according to current combination j1*/ |
ne=ne+1; |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) |
sumx += x[i]; |
bool=0; |
sumx2 += x[i]*x[i]; |
} |
sumxy += x[i] * y[i]; |
if (bool==1) { /* For this combination of covariates values, this individual fits */ |
sumy += y[i]; |
/* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */ |
sumy2 += y[i]*y[i]; |
for(mi=1; mi<wav[i];mi++){ |
denom = (ne * sumx2 - sumx*sumx); |
m=mw[mi][i]; |
/* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */ |
agebegin=agev[m][i]; /* Age at beginning of wave before transition*/ |
} |
/* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */ |
|
if(m >=firstpass && m <=lastpass){ |
denom = (ne * sumx2 - sumx*sumx); |
y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ |
if (denom == 0) { |
if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
// vertical, slope m is infinity |
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
*b = INFINITY; |
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
*a = 0; |
if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+3+AGEMARGE){ |
if (r) *r = 0; |
printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); |
return 1; |
exit(1); |
} |
} |
|
if (s[m][i]>0 && s[m][i]<=nlstate) { |
*b = (ne * sumxy - sumx * sumy) / denom; |
/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ |
*a = (sumy * sumx2 - sumx * sumxy) / denom; |
prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */ |
if (r!=NULL) { |
prop[s[m][i]][iagemax+3] += weight[i]; |
*r = (sumxy - sumx * sumy / ne) / /* compute correlation coeff */ |
} /* end valid statuses */ |
sqrt((sumx2 - sumx*sumx/ne) * |
} /* end selection of dates */ |
(sumy2 - sumy*sumy/ne)); |
} /* end selection of waves */ |
} |
} /* end effective waves */ |
*no=ne; |
} /* end bool */ |
for ( i=ifi, ne=0;i<=ila;i++) { |
} |
if(!isfinite(x[i]) || !isfinite(y[i])){ |
for(i=iagemin; i <= iagemax+3; i++){ |
/* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */ |
for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
continue; |
posprop += prop[jk][i]; |
} |
} |
ne=ne+1; |
|
yhat = y[i] - *a -*b* x[i]; |
for(jk=1; jk <=nlstate ; jk++){ |
sume2 += yhat * yhat ; |
if( i <= iagemax){ |
|
if(posprop>=1.e-5){ |
denom = (ne * sumx2 - sumx*sumx); |
probs[i][jk][j1]= prop[jk][i]/posprop; |
/* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */ |
} else{ |
} |
if(first==1){ |
*sb = sqrt(sume2/(double)(ne-2)/(sumx2 - sumx * sumx /(double)ne)); |
first=0; |
*sa= *sb * sqrt(sumx2/ne); |
printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]); |
|
} |
return 0; |
} |
} |
} |
|
}/* end jk */ |
/************ Prevalence ********************/ |
}/* end i */ |
void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) |
|
{ |
|
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
|
in each health status at the date of interview (if between dateprev1 and dateprev2). |
|
We still use firstpass and lastpass as another selection. |
|
*/ |
|
|
|
int i, m, jk, j1, bool, z1,j, iv; |
|
int mi; /* Effective wave */ |
|
int iage; |
|
double agebegin, ageend; |
|
|
|
double **prop; |
|
double posprop; |
|
double y2; /* in fractional years */ |
|
int iagemin, iagemax; |
|
int first; /** to stop verbosity which is redirected to log file */ |
|
|
|
iagemin= (int) agemin; |
|
iagemax= (int) agemax; |
|
/*pp=vector(1,nlstate);*/ |
|
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
|
/* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
|
j1=0; |
|
|
|
/*j=cptcoveff;*/ |
|
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
|
first=1; |
|
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */ |
|
for (i=1; i<=nlstate; i++) |
|
for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++) |
|
prop[i][iage]=0.0; |
|
printf("Prevalence combination of varying and fixed dummies %d\n",j1); |
|
/* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */ |
|
fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1); |
|
|
|
for (i=1; i<=imx; i++) { /* Each individual */ |
|
bool=1; |
|
/* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */ |
|
for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */ |
|
m=mw[mi][i]; |
|
/* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */ |
|
/* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */ |
|
for (z1=1; z1<=cptcoveff; z1++){ |
|
if( Fixed[Tmodelind[z1]]==1){ |
|
iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; |
|
if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */ |
|
bool=0; |
|
}else if( Fixed[Tmodelind[z1]]== 0) /* fixed */ |
|
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { |
|
bool=0; |
|
} |
|
} |
|
if(bool==1){ /* Otherwise we skip that wave/person */ |
|
agebegin=agev[m][i]; /* Age at beginning of wave before transition*/ |
|
/* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */ |
|
if(m >=firstpass && m <=lastpass){ |
|
y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ |
|
if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
|
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
|
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
|
if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+4+AGEMARGE){ |
|
printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); |
|
exit(1); |
|
} |
|
if (s[m][i]>0 && s[m][i]<=nlstate) { |
|
/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ |
|
prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */ |
|
prop[s[m][i]][iagemax+3] += weight[i]; |
|
} /* end valid statuses */ |
|
} /* end selection of dates */ |
|
} /* end selection of waves */ |
|
} /* end bool */ |
|
} /* end wave */ |
|
} /* end individual */ |
|
for(i=iagemin; i <= iagemax+3; i++){ |
|
for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
|
posprop += prop[jk][i]; |
|
} |
|
|
|
for(jk=1; jk <=nlstate ; jk++){ |
|
if( i <= iagemax){ |
|
if(posprop>=1.e-5){ |
|
probs[i][jk][j1]= prop[jk][i]/posprop; |
|
} else{ |
|
if(first==1){ |
|
first=0; |
|
printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]); |
|
fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]); |
|
}else{ |
|
fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]); |
|
} |
|
} |
|
} |
|
}/* end jk */ |
|
}/* end i */ |
/*} *//* end i1 */ |
/*} *//* end i1 */ |
} /* end j1 */ |
} /* end j1 */ |
|
|
/* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
/* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
/*free_vector(pp,1,nlstate);*/ |
/*free_vector(pp,1,nlstate);*/ |
free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
} /* End of prevalence */ |
} /* End of prevalence */ |
|
|
/************* Waves Concatenation ***************/ |
/************* Waves Concatenation ***************/ |
|
|
Line 4129 void concatwav(int wav[], int **dh, int
|
Line 5074 void concatwav(int wav[], int **dh, int
|
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
and mw[mi+1][i]. dh depends on stepm. |
and mw[mi+1][i]. dh depends on stepm. |
*/ |
*/ |
|
|
int i, mi, m; |
int i=0, mi=0, m=0, mli=0; |
/* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; |
/* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; |
double sum=0., jmean=0.;*/ |
double sum=0., jmean=0.;*/ |
int first, firstwo, firsthree, firstfour; |
int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0; |
int j, k=0,jk, ju, jl; |
int j, k=0,jk, ju, jl; |
double sum=0.; |
double sum=0.; |
first=0; |
first=0; |
Line 4144 void concatwav(int wav[], int **dh, int
|
Line 5089 void concatwav(int wav[], int **dh, int
|
jmin=100000; |
jmin=100000; |
jmax=-1; |
jmax=-1; |
jmean=0.; |
jmean=0.; |
|
|
|
/* Treating live states */ |
for(i=1; i<=imx; i++){ /* For simple cases and if state is death */ |
for(i=1; i<=imx; i++){ /* For simple cases and if state is death */ |
mi=0; |
mi=0; /* First valid wave */ |
|
mli=0; /* Last valid wave */ |
m=firstpass; |
m=firstpass; |
while(s[m][i] <= nlstate){ /* a live state */ |
while(s[m][i] <= nlstate){ /* a live state */ |
if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */ |
if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */ |
mw[++mi][i]=m; |
mli=m-1;/* mw[++mi][i]=m-1; */ |
} |
}else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */ |
if(m >=lastpass){ |
mw[++mi][i]=m; |
if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ |
mli=m; |
if(firsthree == 0){ |
} /* else might be a useless wave -1 and mi is not incremented and mw[mi] not updated */ |
printf("Information! Unknown health status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m); |
if(m < lastpass){ /* m < lastpass, standard case */ |
firsthree=1; |
m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */ |
} |
} |
fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m); |
else{ /* m >= lastpass, eventual special issue with warning */ |
mw[++mi][i]=m; |
#ifdef UNKNOWNSTATUSNOTCONTRIBUTING |
} |
break; |
if(s[m][i]==-2){ /* Vital status is really unknown */ |
#else |
nbwarn++; |
if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ |
if((int)anint[m][i] == 9999){ /* Has the vital status really been verified? */ |
if(firsthree == 0){ |
printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p%d%d .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath); |
fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
firsthree=1; |
} |
} |
break; |
fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p%d%d .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath); |
} |
mw[++mi][i]=m; |
break; |
mli=m; |
} |
} |
else |
if(s[m][i]==-2){ /* Vital status is really unknown */ |
m++; |
nbwarn++; |
|
if((int)anint[m][i] == 9999){ /* Has the vital status really been verified? */ |
|
printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
|
fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
|
} |
|
break; |
|
} |
|
break; |
|
#endif |
|
}/* End m >= lastpass */ |
}/* end while */ |
}/* end while */ |
|
|
|
/* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */ |
/* After last pass */ |
/* After last pass */ |
|
/* Treating death states */ |
if (s[m][i] > nlstate){ /* In a death state */ |
if (s[m][i] > nlstate){ /* In a death state */ |
|
/* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */ |
|
/* } */ |
mi++; /* Death is another wave */ |
mi++; /* Death is another wave */ |
/* if(mi==0) never been interviewed correctly before death */ |
/* if(mi==0) never been interviewed correctly before death */ |
/* Only death is a correct wave */ |
/* Only death is a correct wave */ |
mw[mi][i]=m; |
mw[mi][i]=m; |
}else if ((int) andc[i] != 9999) { /* Status is either death or negative. A death occured after lastpass, we can't take it into account because of potential bias */ |
} /* else not in a death state */ |
/* m++; */ |
#ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE |
/* mi++; */ |
else if ((int) andc[i] != 9999) { /* Date of death is known */ |
/* s[m][i]=nlstate+1; /\* We are setting the status to the last of non live state *\/ */ |
|
/* mw[mi][i]=m; */ |
|
nberr++; |
|
if ((int)anint[m][i]!= 9999) { /* date of last interview is known */ |
if ((int)anint[m][i]!= 9999) { /* date of last interview is known */ |
if(firstwo==0){ |
if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */ |
printf("Error! Death for individual %ld line=%d occurred %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
nbwarn++; |
firstwo=1; |
if(firstfiv==0){ |
} |
printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
firstfiv=1; |
}else{ /* end date of interview is known */ |
}else{ |
/* death is known but not confirmed by death status at any wave */ |
fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
if(firstfour==0){ |
} |
printf("Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
}else{ /* Death occured afer last wave potential bias */ |
firstfour=1; |
nberr++; |
} |
if(firstwo==0){ |
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictive wave at the date of last vital status scan, with a dead status or alive but unknown state status (-1). See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
|
firstwo=1; |
|
} |
|
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictive wave at the date of last vital status scan, with a dead status or alive but unknown state status (-1). See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
|
} |
|
}else{ /* if date of interview is unknown */ |
|
/* death is known but not confirmed by death status at any wave */ |
|
if(firstfour==0){ |
|
printf("Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
|
firstfour=1; |
|
} |
|
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
} |
} |
} |
} /* end if date of death is known */ |
wav[i]=mi; |
#endif |
|
wav[i]=mi; /* mi should be the last effective wave (or mli) */ |
|
/* wav[i]=mw[mi][i]; */ |
if(mi==0){ |
if(mi==0){ |
nbwarn++; |
nbwarn++; |
if(first==0){ |
if(first==0){ |
printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i); |
printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i); |
first=1; |
first=1; |
} |
} |
if(first==1){ |
if(first==1){ |
fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i); |
fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i); |
} |
} |
} /* end mi==0 */ |
} /* end mi==0 */ |
} /* End individuals */ |
} /* End individuals */ |
Line 4219 void concatwav(int wav[], int **dh, int
|
Line 5190 void concatwav(int wav[], int **dh, int
|
for(i=1; i<=imx; i++){ |
for(i=1; i<=imx; i++){ |
for(mi=1; mi<wav[i];mi++){ |
for(mi=1; mi<wav[i];mi++){ |
if (stepm <=0) |
if (stepm <=0) |
dh[mi][i]=1; |
dh[mi][i]=1; |
else{ |
else{ |
if (s[mw[mi+1][i]][i] > nlstate) { /* A death */ |
if (s[mw[mi+1][i]][i] > nlstate) { /* A death, but what if date is unknown? */ |
if (agedc[i] < 2*AGESUP) { |
if (agedc[i] < 2*AGESUP) { |
j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); |
j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); |
if(j==0) j=1; /* Survives at least one month after exam */ |
if(j==0) j=1; /* Survives at least one month after exam */ |
else if(j<0){ |
else if(j<0){ |
nberr++; |
nberr++; |
printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
j=1; /* Temporary Dangerous patch */ |
j=1; /* Temporary Dangerous patch */ |
printf(" We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
printf(" We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
fprintf(ficlog," We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
fprintf(ficlog," We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
} |
} |
k=k+1; |
k=k+1; |
if (j >= jmax){ |
if (j >= jmax){ |
jmax=j; |
jmax=j; |
ijmax=i; |
ijmax=i; |
} |
} |
if (j <= jmin){ |
if (j <= jmin){ |
jmin=j; |
jmin=j; |
ijmin=i; |
ijmin=i; |
} |
} |
sum=sum+j; |
sum=sum+j; |
/*if (j<0) printf("j=%d num=%d \n",j,i);*/ |
/*if (j<0) printf("j=%d num=%d \n",j,i);*/ |
/* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ |
/* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ |
} |
} |
} |
} |
else{ |
else{ |
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
/* if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */ |
/* if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */ |
|
|
k=k+1; |
k=k+1; |
if (j >= jmax) { |
if (j >= jmax) { |
jmax=j; |
jmax=j; |
ijmax=i; |
ijmax=i; |
} |
} |
else if (j <= jmin){ |
else if (j <= jmin){ |
jmin=j; |
jmin=j; |
ijmin=i; |
ijmin=i; |
} |
} |
/* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ |
/* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ |
/*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ |
/*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ |
if(j<0){ |
if(j<0){ |
nberr++; |
nberr++; |
printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
} |
} |
sum=sum+j; |
sum=sum+j; |
} |
} |
jk= j/stepm; |
jk= j/stepm; |
jl= j -jk*stepm; |
jl= j -jk*stepm; |
ju= j -(jk+1)*stepm; |
ju= j -(jk+1)*stepm; |
if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */ |
if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */ |
if(jl==0){ |
if(jl==0){ |
dh[mi][i]=jk; |
dh[mi][i]=jk; |
bh[mi][i]=0; |
bh[mi][i]=0; |
}else{ /* We want a negative bias in order to only have interpolation ie |
}else{ /* We want a negative bias in order to only have interpolation ie |
* to avoid the price of an extra matrix product in likelihood */ |
* to avoid the price of an extra matrix product in likelihood */ |
dh[mi][i]=jk+1; |
dh[mi][i]=jk+1; |
bh[mi][i]=ju; |
bh[mi][i]=ju; |
} |
} |
}else{ |
}else{ |
if(jl <= -ju){ |
if(jl <= -ju){ |
dh[mi][i]=jk; |
dh[mi][i]=jk; |
bh[mi][i]=jl; /* bias is positive if real duration |
bh[mi][i]=jl; /* bias is positive if real duration |
* is higher than the multiple of stepm and negative otherwise. |
* is higher than the multiple of stepm and negative otherwise. |
*/ |
*/ |
} |
} |
else{ |
else{ |
dh[mi][i]=jk+1; |
dh[mi][i]=jk+1; |
bh[mi][i]=ju; |
bh[mi][i]=ju; |
} |
} |
if(dh[mi][i]==0){ |
if(dh[mi][i]==0){ |
dh[mi][i]=1; /* At least one step */ |
dh[mi][i]=1; /* At least one step */ |
bh[mi][i]=ju; /* At least one step */ |
bh[mi][i]=ju; /* At least one step */ |
/* printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/ |
/* printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/ |
} |
} |
} /* end if mle */ |
} /* end if mle */ |
} |
} |
} /* end wave */ |
} /* end wave */ |
} |
} |
jmean=sum/k; |
jmean=sum/k; |
printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean); |
printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean); |
fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean); |
fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean); |
} |
} |
|
|
/*********** Tricode ****************************/ |
/*********** Tricode ****************************/ |
void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum) |
void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum) |
{ |
{ |
/**< Uses cptcovn+2*cptcovprod as the number of covariates */ |
/**< Uses cptcovn+2*cptcovprod as the number of covariates */ |
/* Tvar[i]=atoi(stre); find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 |
/* Tvar[i]=atoi(stre); find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 |
* Boring subroutine which should only output nbcode[Tvar[j]][k] |
* Boring subroutine which should only output nbcode[Tvar[j]][k] |
* Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2) |
* Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable |
* nbcode[Tvar[5]][1]= nbcode[2][1]=0, nbcode[2][2]=1 (usually); |
* nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually); |
*/ |
*/ |
|
|
int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX; |
int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX; |
int modmaxcovj=0; /* Modality max of covariates j */ |
int modmaxcovj=0; /* Modality max of covariates j */ |
int cptcode=0; /* Modality max of covariates j */ |
int cptcode=0; /* Modality max of covariates j */ |
int modmincovj=0; /* Modality min of covariates j */ |
int modmincovj=0; /* Modality min of covariates j */ |
|
|
|
|
/* cptcoveff=0; */ |
/* cptcoveff=0; */ |
*cptcov=0; |
/* *cptcov=0; */ |
|
|
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
|
|
/* Loop on covariates without age and products */ |
/* Loop on covariates without age and products and no quantitative variable */ |
for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */ |
/* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */ |
for (k=-1; k < maxncov; k++) Ndum[k]=0; |
for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */ |
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the |
for (j=-1; (j < maxncov); j++) Ndum[j]=0; |
modality of this covariate Vj*/ |
if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ |
ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
switch(Fixed[k]) { |
* If product of Vn*Vm, still boolean *: |
case 0: /* Testing on fixed dummy covariate, simple or product of fixed */ |
* If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables |
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
* 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */ |
ij=(int)(covar[Tvar[k]][i]); |
/* Finds for covariate j, n=Tvar[j] of Vn . ij is the |
/* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
modality of the nth covariate of individual i. */ |
* If product of Vn*Vm, still boolean *: |
if (ij > modmaxcovj) |
* If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables |
modmaxcovj=ij; |
* 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */ |
else if (ij < modmincovj) |
/* Finds for covariate j, n=Tvar[j] of Vn . ij is the |
modmincovj=ij; |
modality of the nth covariate of individual i. */ |
if ((ij < -1) && (ij > NCOVMAX)){ |
if (ij > modmaxcovj) |
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
modmaxcovj=ij; |
exit(1); |
else if (ij < modmincovj) |
}else |
modmincovj=ij; |
Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/ |
if ((ij < -1) && (ij > NCOVMAX)){ |
/* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */ |
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
/*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ |
exit(1); |
/* getting the maximum value of the modality of the covariate |
}else |
(should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and |
Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/ |
female is 1, then modmaxcovj=1.*/ |
/* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */ |
} /* end for loop on individuals i */ |
/*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ |
printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj); |
/* getting the maximum value of the modality of the covariate |
fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj); |
(should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and |
cptcode=modmaxcovj; |
female ies 1, then modmaxcovj=1. |
/* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */ |
*/ |
/*for (i=0; i<=cptcode; i++) {*/ |
} /* end for loop on individuals i */ |
for (k=modmincovj; k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */ |
printf(" Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); |
printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]); |
fprintf(ficlog," Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); |
fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]); |
cptcode=modmaxcovj; |
if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */ |
/* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */ |
if( k != -1){ |
/*for (i=0; i<=cptcode; i++) {*/ |
ncodemax[j]++; /* ncodemax[j]= Number of modalities of the j th |
for (j=modmincovj; j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */ |
covariate for which somebody answered excluding |
printf("Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); |
undefined. Usually 2: 0 and 1. */ |
fprintf(ficlog, "Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); |
} |
if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */ |
ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th |
if( j != -1){ |
covariate for which somebody answered including |
ncodemax[k]++; /* ncodemax[k]= Number of modalities of the k th |
undefined. Usually 3: -1, 0 and 1. */ |
covariate for which somebody answered excluding |
} |
undefined. Usually 2: 0 and 1. */ |
/* In fact ncodemax[j]=2 (dichotom. variables only) but it could be more for |
} |
historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */ |
ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th |
} /* Ndum[-1] number of undefined modalities */ |
covariate for which somebody answered including |
|
undefined. Usually 3: -1, 0 and 1. */ |
/* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */ |
} /* In fact ncodemax[k]=2 (dichotom. variables only) but it could be more for |
/* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. |
* historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */ |
If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; |
} /* Ndum[-1] number of undefined modalities */ |
modmincovj=3; modmaxcovj = 7; |
|
There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; |
/* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */ |
which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; |
/* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */ |
defining two dummy variables: variables V1_1 and V1_2. |
/* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */ |
nbcode[Tvar[j]][ij]=k; |
/* modmincovj=3; modmaxcovj = 7; */ |
nbcode[Tvar[j]][1]=0; |
/* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */ |
nbcode[Tvar[j]][2]=1; |
/* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */ |
nbcode[Tvar[j]][3]=2; |
/* defining two dummy variables: variables V1_1 and V1_2.*/ |
To be continued (not working yet). |
/* nbcode[Tvar[j]][ij]=k; */ |
*/ |
/* nbcode[Tvar[j]][1]=0; */ |
ij=0; /* ij is similar to i but can jump over null modalities */ |
/* nbcode[Tvar[j]][2]=1; */ |
for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
/* nbcode[Tvar[j]][3]=2; */ |
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
/* To be continued (not working yet). */ |
break; |
ij=0; /* ij is similar to i but can jump over null modalities */ |
} |
for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
ij++; |
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
nbcode[Tvar[j]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/ |
break; |
cptcode = ij; /* New max modality for covar j */ |
} |
} /* end of loop on modality i=-1 to 1 or more */ |
ij++; |
|
nbcode[Tvar[k]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/ |
/* for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */ |
cptcode = ij; /* New max modality for covar j */ |
/* /\*recode from 0 *\/ */ |
} /* end of loop on modality i=-1 to 1 or more */ |
/* k is a modality. If we have model=V1+V1*sex */ |
break; |
/* then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ |
case 1: /* Testing on varying covariate, could be simple and |
/* But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */ |
* should look at waves or product of fixed * |
/* } */ |
* varying. No time to test -1, assuming 0 and 1 only */ |
/* /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */ |
ij=0; |
/* if (ij > ncodemax[j]) { */ |
for(i=0; i<=1;i++){ |
/* printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
nbcode[Tvar[k]][++ij]=i; |
/* fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
} |
/* break; */ |
break; |
/* } */ |
default: |
/* } /\* end of loop on modality k *\/ */ |
break; |
} /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/ |
} /* end switch */ |
|
} /* end dummy test */ |
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
|
|
/* for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */ |
for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ |
/* /\*recode from 0 *\/ */ |
/* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ |
/* k is a modality. If we have model=V1+V1*sex */ |
ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ |
/* then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ |
Ndum[ij]++; /* Might be supersed V1 + V1*age */ |
/* But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */ |
} |
/* } */ |
|
/* /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */ |
ij=0; |
/* if (ij > ncodemax[j]) { */ |
for (i=0; i<= maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
/* printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
/* fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
if((Ndum[i]!=0) && (i<=ncovcol)){ |
/* break; */ |
ij++; |
/* } */ |
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
/* } /\* end of loop on modality k *\/ */ |
Tvaraff[ij]=i; /*For printing (unclear) */ |
} /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/ |
}else{ |
|
/* Tvaraff[ij]=0; */ |
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
} |
/* Look at fixed dummy (single or product) covariates to check empty modalities */ |
} |
for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ |
/* ij--; */ |
/* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ |
/* cptcoveff=ij; /\*Number of total covariates*\/ */ |
ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ |
*cptcov=ij; /*Number of total covariates*/ |
Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */ |
|
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, {2, 1, 1, 1, 2, 1, 1, 0, 0} */ |
} |
} /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */ |
|
|
|
ij=0; |
|
/* for (i=0; i<= maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */ |
|
for (k=1; k<= cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
|
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
|
/* if((Ndum[i]!=0) && (i<=ncovcol)){ /\* Tvar[i] <= ncovmodel ? *\/ */ |
|
if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){ /* Only Dummy and non empty in the model */ |
|
/* If product not in single variable we don't print results */ |
|
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
|
++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */ |
|
Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/ |
|
Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */ |
|
TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */ |
|
if(Fixed[k]!=0) |
|
anyvaryingduminmodel=1; |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */ |
|
/* Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */ |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */ |
|
/* Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */ |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */ |
|
/* Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */ |
|
} |
|
} /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */ |
|
/* ij--; */ |
|
/* cptcoveff=ij; /\*Number of total covariates*\/ */ |
|
*cptcov=ij; /*Number of total real effective covariates: effective |
|
* because they can be excluded from the model and real |
|
* if in the model but excluded because missing values, but how to get k from ij?*/ |
|
for(j=ij+1; j<= cptcovt; j++){ |
|
Tvaraff[j]=0; |
|
Tmodelind[j]=0; |
|
} |
|
for(j=ntveff+1; j<= cptcovt; j++){ |
|
TmodelInvind[j]=0; |
|
} |
|
/* To be sorted */ |
|
; |
|
} |
|
|
|
|
/*********** Health Expectancies ****************/ |
/*********** Health Expectancies ****************/ |
|
|
void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] ) |
void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres ) |
|
|
{ |
{ |
/* Health expectancies, no variances */ |
/* Health expectancies, no variances */ |
Line 4451 void evsij(double ***eij, double x[], in
|
Line 5460 void evsij(double ***eij, double x[], in
|
double ***p3mat; |
double ***p3mat; |
double eip; |
double eip; |
|
|
pstamp(ficreseij); |
/* pstamp(ficreseij); */ |
fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n"); |
fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n"); |
fprintf(ficreseij,"# Age"); |
fprintf(ficreseij,"# Age"); |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
Line 4482 void evsij(double ***eij, double x[], in
|
Line 5491 void evsij(double ***eij, double x[], in
|
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
nhstepm is the number of hstepm from age to agelim |
nhstepm is the number of hstepm from age to agelim |
nstepm is the number of stepm from age to agelin. |
nstepm is the number of stepm from age to agelin. |
Look at hpijx to understand the reason of that which relies in memory size |
Look at hpijx to understand the reason which relies in memory size consideration |
and note for a fixed period like estepm months */ |
and note for a fixed period like estepm months */ |
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
survival function given by stepm (the optimization length). Unfortunately it |
survival function given by stepm (the optimization length). Unfortunately it |
Line 4514 void evsij(double ***eij, double x[], in
|
Line 5523 void evsij(double ***eij, double x[], in
|
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
|
|
hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij); |
hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres); |
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
|
|
Line 4549 void evsij(double ***eij, double x[], in
|
Line 5558 void evsij(double ***eij, double x[], in
|
|
|
} |
} |
|
|
void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] ) |
void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres ) |
|
|
{ |
{ |
/* Covariances of health expectancies eij and of total life expectancies according |
/* Covariances of health expectancies eij and of total life expectancies according |
Line 4662 void cvevsij(double ***eij, double x[],
|
Line 5671 void cvevsij(double ***eij, double x[],
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xm[i] = x[i] - (i==theta ?delti[theta]:0); |
xm[i] = x[i] - (i==theta ?delti[theta]:0); |
} |
} |
hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij); |
hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres); |
hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij); |
hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres); |
|
|
for(j=1; j<= nlstate; j++){ |
for(j=1; j<= nlstate; j++){ |
for(i=1; i<=nlstate; i++){ |
for(i=1; i<=nlstate; i++){ |
Line 4704 void cvevsij(double ***eij, double x[],
|
Line 5713 void cvevsij(double ***eij, double x[],
|
} |
} |
|
|
/* Computing expectancies */ |
/* Computing expectancies */ |
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij); |
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate;j++) |
for(j=1; j<=nlstate;j++) |
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
Line 4713 void cvevsij(double ***eij, double x[],
|
Line 5722 void cvevsij(double ***eij, double x[],
|
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
|
|
} |
} |
|
|
|
/* Standard deviation of expectancies ij */ |
fprintf(ficresstdeij,"%3.0f",age ); |
fprintf(ficresstdeij,"%3.0f",age ); |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
eip=0.; |
eip=0.; |
Line 4728 void cvevsij(double ***eij, double x[],
|
Line 5738 void cvevsij(double ***eij, double x[],
|
} |
} |
fprintf(ficresstdeij,"\n"); |
fprintf(ficresstdeij,"\n"); |
|
|
|
/* Variance of expectancies ij */ |
fprintf(ficrescveij,"%3.0f",age ); |
fprintf(ficrescveij,"%3.0f",age ); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate;j++){ |
for(j=1; j<=nlstate;j++){ |
Line 4759 void cvevsij(double ***eij, double x[],
|
Line 5770 void cvevsij(double ***eij, double x[],
|
} |
} |
|
|
/************ Variance ******************/ |
/************ Variance ******************/ |
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[]) |
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres) |
{ |
{ |
/* Variance of health expectancies */ |
/* Variance of health expectancies */ |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ |
Line 4816 void cvevsij(double ***eij, double x[],
|
Line 5827 void cvevsij(double ***eij, double x[],
|
fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
pstamp(ficresprobmorprev); |
pstamp(ficresprobmorprev); |
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
|
fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies"); |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresprobmorprev,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,j)]); |
|
fprintf(ficresprobmorprev,"\n"); |
|
|
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
fprintf(ficresprobmorprev," p.%-d SE",j); |
fprintf(ficresprobmorprev," p.%-d SE",j); |
Line 4885 void cvevsij(double ***eij, double x[],
|
Line 5904 void cvevsij(double ***eij, double x[],
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
} |
} |
|
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres); |
|
|
if (popbased==1) { |
if (popbased==1) { |
if(mobilav ==0){ |
if(mobilav ==0){ |
Line 4897 void cvevsij(double ***eij, double x[],
|
Line 5916 void cvevsij(double ***eij, double x[],
|
} |
} |
} |
} |
|
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); /* Returns p3mat[i][j][h] for h=1 to nhstepm */ |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres); /* Returns p3mat[i][j][h] for h=1 to nhstepm */ |
for(j=1; j<= nlstate; j++){ |
for(j=1; j<= nlstate; j++){ |
for(h=0; h<=nhstepm; h++){ |
for(h=0; h<=nhstepm; h++){ |
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
Line 4917 void cvevsij(double ***eij, double x[],
|
Line 5936 void cvevsij(double ***eij, double x[],
|
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres); |
|
|
if (popbased==1) { |
if (popbased==1) { |
if(mobilav ==0){ |
if(mobilav ==0){ |
Line 4929 void cvevsij(double ***eij, double x[],
|
Line 5948 void cvevsij(double ***eij, double x[],
|
} |
} |
} |
} |
|
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres); |
|
|
for(j=1; j<= nlstate; j++){ /* Sum of wi * eij = e.j */ |
for(j=1; j<= nlstate; j++){ /* Sum of wi * eij = e.j */ |
for(h=0; h<=nhstepm; h++){ |
for(h=0; h<=nhstepm; h++){ |
Line 4994 void cvevsij(double ***eij, double x[],
|
Line 6013 void cvevsij(double ***eij, double x[],
|
/* end ppptj */ |
/* end ppptj */ |
/* x centered again */ |
/* x centered again */ |
|
|
prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij); |
prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nres); |
|
|
if (popbased==1) { |
if (popbased==1) { |
if(mobilav ==0){ |
if(mobilav ==0){ |
Line 5010 void cvevsij(double ***eij, double x[],
|
Line 6029 void cvevsij(double ***eij, double x[],
|
computed over hstepm (estepm) matrices product = hstepm*stepm months) |
computed over hstepm (estepm) matrices product = hstepm*stepm months) |
as a weighted average of prlim. |
as a weighted average of prlim. |
*/ |
*/ |
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); |
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres); |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
for(i=1,gmp[j]=0.;i<= nlstate; i++) |
for(i=1,gmp[j]=0.;i<= nlstate; i++) |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
Line 5073 void cvevsij(double ***eij, double x[],
|
Line 6092 void cvevsij(double ***eij, double x[],
|
} /* end varevsij */ |
} /* end varevsij */ |
|
|
/************ Variance of prevlim ******************/ |
/************ Variance of prevlim ******************/ |
void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[]) |
void varprevlim(char fileresvpl[], FILE *ficresvpl, double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres) |
{ |
{ |
/* Variance of prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
/* Variance of prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
|
|
double **dnewm,**doldm; |
double **dnewmpar,**doldm; |
int i, j, nhstepm, hstepm; |
int i, j, nhstepm, hstepm; |
double *xp; |
double *xp; |
double *gp, *gm; |
double *gp, *gm; |
Line 5089 void cvevsij(double ***eij, double x[],
|
Line 6108 void cvevsij(double ***eij, double x[],
|
|
|
pstamp(ficresvpl); |
pstamp(ficresvpl); |
fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n"); |
fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n"); |
fprintf(ficresvpl,"# Age"); |
fprintf(ficresvpl,"# Age "); |
|
if(nresult >=1) |
|
fprintf(ficresvpl," Result# "); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
fprintf(ficresvpl," %1d-%1d",i,i); |
fprintf(ficresvpl," %1d-%1d",i,i); |
fprintf(ficresvpl,"\n"); |
fprintf(ficresvpl,"\n"); |
|
|
xp=vector(1,npar); |
xp=vector(1,npar); |
dnewm=matrix(1,nlstate,1,npar); |
dnewmpar=matrix(1,nlstate,1,npar); |
doldm=matrix(1,nlstate,1,nlstate); |
doldm=matrix(1,nlstate,1,nlstate); |
|
|
hstepm=1*YEARM; /* Every year of age */ |
hstepm=1*YEARM; /* Every year of age */ |
Line 5116 void cvevsij(double ***eij, double x[],
|
Line 6137 void cvevsij(double ***eij, double x[],
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
} |
} |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
else |
else |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
for(i=1;i<=nlstate;i++){ |
for(i=1;i<=nlstate;i++){ |
gp[i] = prlim[i][i]; |
gp[i] = prlim[i][i]; |
mgp[theta][i] = prlim[i][i]; |
mgp[theta][i] = prlim[i][i]; |
Line 5126 void cvevsij(double ***eij, double x[],
|
Line 6147 void cvevsij(double ***eij, double x[],
|
for(i=1; i<=npar; i++) /* Computes gradient */ |
for(i=1; i<=npar; i++) /* Computes gradient */ |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
else |
else |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
for(i=1;i<=nlstate;i++){ |
for(i=1;i<=nlstate;i++){ |
gm[i] = prlim[i][i]; |
gm[i] = prlim[i][i]; |
mgm[theta][i] = prlim[i][i]; |
mgm[theta][i] = prlim[i][i]; |
Line 5165 void cvevsij(double ***eij, double x[],
|
Line 6186 void cvevsij(double ***eij, double x[],
|
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
varpl[i][(int)age] =0.; |
varpl[i][(int)age] =0.; |
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
}else{ |
}else{ |
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
} |
} |
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
|
|
fprintf(ficresvpl,"%.0f ",age ); |
fprintf(ficresvpl,"%.0f ",age ); |
|
if(nresult >=1) |
|
fprintf(ficresvpl,"%d ",nres ); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
fprintf(ficresvpl,"\n"); |
fprintf(ficresvpl,"\n"); |
Line 5188 void cvevsij(double ***eij, double x[],
|
Line 6211 void cvevsij(double ***eij, double x[],
|
|
|
free_vector(xp,1,npar); |
free_vector(xp,1,npar); |
free_matrix(doldm,1,nlstate,1,npar); |
free_matrix(doldm,1,nlstate,1,npar); |
free_matrix(dnewm,1,nlstate,1,nlstate); |
free_matrix(dnewmpar,1,nlstate,1,nlstate); |
|
|
|
} |
|
|
|
|
|
/************ Variance of backprevalence limit ******************/ |
|
void varbrevlim(char fileresvbl[], FILE *ficresvbl, double **varbpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **bprlim, double ftolpl, int mobilavproj, int *ncvyearp, int ij, char strstart[], int nres) |
|
{ |
|
/* Variance of backward prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
|
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
|
|
|
double **dnewmpar,**doldm; |
|
int i, j, nhstepm, hstepm; |
|
double *xp; |
|
double *gp, *gm; |
|
double **gradg, **trgradg; |
|
double **mgm, **mgp; |
|
double age,agelim; |
|
int theta; |
|
|
|
pstamp(ficresvbl); |
|
fprintf(ficresvbl,"# Standard deviation of back (stable) prevalences \n"); |
|
fprintf(ficresvbl,"# Age "); |
|
if(nresult >=1) |
|
fprintf(ficresvbl," Result# "); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresvbl," %1d-%1d",i,i); |
|
fprintf(ficresvbl,"\n"); |
|
|
|
xp=vector(1,npar); |
|
dnewmpar=matrix(1,nlstate,1,npar); |
|
doldm=matrix(1,nlstate,1,nlstate); |
|
|
|
hstepm=1*YEARM; /* Every year of age */ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ |
|
agelim = AGEINF; |
|
for (age=fage; age>=bage; age --){ /* If stepm=6 months */ |
|
nhstepm=(int) rint((age-agelim)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
if (stepm >= YEARM) hstepm=1; |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
|
gradg=matrix(1,npar,1,nlstate); |
|
mgp=matrix(1,npar,1,nlstate); |
|
mgm=matrix(1,npar,1,nlstate); |
|
gp=vector(1,nlstate); |
|
gm=vector(1,nlstate); |
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ /* Computes gradient */ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
} |
|
if(mobilavproj > 0 ) |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
else |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
for(i=1;i<=nlstate;i++){ |
|
gp[i] = bprlim[i][i]; |
|
mgp[theta][i] = bprlim[i][i]; |
|
} |
|
for(i=1; i<=npar; i++) /* Computes gradient */ |
|
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
if(mobilavproj > 0 ) |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
else |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
for(i=1;i<=nlstate;i++){ |
|
gm[i] = bprlim[i][i]; |
|
mgm[theta][i] = bprlim[i][i]; |
|
} |
|
for(i=1;i<=nlstate;i++) |
|
gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; |
|
/* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */ |
|
} /* End theta */ |
|
|
|
trgradg =matrix(1,nlstate,1,npar); |
|
|
|
for(j=1; j<=nlstate;j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[j][theta]=gradg[theta][j]; |
|
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */ |
|
/* printf("\nmgm mgp %d ",(int)age); */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* printf(" %d ",j); */ |
|
/* for(theta=1; theta <=npar; theta++) */ |
|
/* printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* } */ |
|
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */ |
|
/* printf("\n gradg %d ",(int)age); */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* printf("%d ",j); */ |
|
/* for(theta=1; theta <=npar; theta++) */ |
|
/* printf("%d %lf ",theta,gradg[theta][j]); */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* } */ |
|
|
|
for(i=1;i<=nlstate;i++) |
|
varbpl[i][(int)age] =0.; |
|
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
|
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
|
}else{ |
|
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
|
} |
|
for(i=1;i<=nlstate;i++) |
|
varbpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
|
|
|
fprintf(ficresvbl,"%.0f ",age ); |
|
if(nresult >=1) |
|
fprintf(ficresvbl,"%d ",nres ); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresvbl," %.5f (%.5f)",bprlim[i][i],sqrt(varbpl[i][(int)age])); |
|
fprintf(ficresvbl,"\n"); |
|
free_vector(gp,1,nlstate); |
|
free_vector(gm,1,nlstate); |
|
free_matrix(mgm,1,npar,1,nlstate); |
|
free_matrix(mgp,1,npar,1,nlstate); |
|
free_matrix(gradg,1,npar,1,nlstate); |
|
free_matrix(trgradg,1,nlstate,1,npar); |
|
} /* End age */ |
|
|
|
free_vector(xp,1,npar); |
|
free_matrix(doldm,1,nlstate,1,npar); |
|
free_matrix(dnewmpar,1,nlstate,1,nlstate); |
|
|
} |
} |
|
|
Line 5268 void varprob(char optionfilefiname[], do
|
Line 6416 void varprob(char optionfilefiname[], do
|
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
fprintf(fichtm,"\n"); |
fprintf(fichtm,"\n"); |
|
|
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov); |
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. %s</li>\n",optionfilehtmcov,optionfilehtmcov); |
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
and drawn. It helps understanding how is the covariance between two incidences.\ |
and drawn. It helps understanding how is the covariance between two incidences.\ |
Line 5286 To be simple, these graphs help to under
|
Line 6434 To be simple, these graphs help to under
|
tj = (int) pow(2,cptcoveff); |
tj = (int) pow(2,cptcoveff); |
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
j1=0; |
j1=0; |
for(j1=1; j1<=tj;j1++){ /* For each valid combination of covariates */ |
for(j1=1; j1<=tj;j1++){ /* For each valid combination of covariates or only once*/ |
if (cptcovn>0) { |
if (cptcovn>0) { |
fprintf(ficresprob, "\n#********** Variable "); |
fprintf(ficresprob, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
Line 5485 To be simple, these graphs help to under
|
Line 6633 To be simple, these graphs help to under
|
fprintf(ficgp,"\nset parametric;unset label"); |
fprintf(ficgp,"\nset parametric;unset label"); |
fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); |
fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); |
fprintf(ficgp,"\nset ter svg size 640, 480"); |
fprintf(ficgp,"\nset ter svg size 640, 480"); |
fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ |
fprintf(fichtmcov,"\n<p><br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ |
:<a href=\"%s_%d%1d%1d-%1d%1d.svg\"> \ |
:<a href=\"%s_%d%1d%1d-%1d%1d.svg\"> \ |
%s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\ |
%s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\ |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2, \ |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2, \ |
Line 5496 To be simple, these graphs help to under
|
Line 6644 To be simple, these graphs help to under
|
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(fabs(lc2)), \ |
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
mu2,std,v21,sqrt(lc1),v22,sqrt(fabs(lc2))); /* For gnuplot only */ |
}else{ |
}else{ |
first=0; |
first=0; |
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(fabs(lc2)), \ |
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
mu2,std,v21,sqrt(lc1),v22,sqrt(fabs(lc2))); |
}/* if first */ |
}/* if first */ |
} /* age mod 5 */ |
} /* age mod 5 */ |
} /* end loop age */ |
} /* end loop age */ |
Line 5533 To be simple, these graphs help to under
|
Line 6681 To be simple, these graphs help to under
|
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
int lastpass, int stepm, int weightopt, char model[],\ |
int lastpass, int stepm, int weightopt, char model[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int popforecast, int prevfcast, int backcast, int estepm , \ |
int popforecast, int mobilav, int prevfcast, int mobilavproj, int backcast, int estepm , \ |
double jprev1, double mprev1,double anprev1, double dateprev1, \ |
double jprev1, double mprev1,double anprev1, double dateprev1, double dateproj1, double dateback1, \ |
double jprev2, double mprev2,double anprev2, double dateprev2){ |
double jprev2, double mprev2,double anprev2, double dateprev2, double dateproj2, double dateback2){ |
int jj1, k1, i1, cpt; |
int jj1, k1, i1, cpt, k4, nres; |
|
|
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
</ul>"); |
</ul>"); |
|
fprintf(fichtm,"<ul><li> model=1+age+%s\n \ |
|
</ul>", model); |
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n"); |
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n"); |
fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n", |
fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n", |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm")); |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm")); |
Line 5569 void printinghtml(char fileresu[], char
|
Line 6719 void printinghtml(char fileresu[], char
|
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
} |
} |
|
|
fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); |
|
|
|
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
|
fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); |
|
|
|
jj1=0; |
|
|
|
fprintf(fichtm," \n<ul>"); |
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k1=1; k1<=m;k1++){ /* For each combination of covariate */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
jj1++; |
|
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<li><a size=\"1\" color=\"#EC5E5E\" href=\"#rescov"); |
|
for (cpt=1; cpt<=cptcoveff;cpt++){ |
|
fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
fprintf(fichtm,"\">"); |
|
|
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
|
fprintf(fichtm,"************ Results for covariates"); |
|
for (cpt=1; cpt<=cptcoveff;cpt++){ |
|
fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); |
|
continue; |
|
} |
|
fprintf(fichtm,"</a></li>"); |
|
} /* cptcovn >0 */ |
|
} |
|
fprintf(fichtm," \n</ul>"); |
|
|
jj1=0; |
jj1=0; |
for(k1=1; k1<=m;k1++){ |
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k1=1; k1<=m;k1++){ /* For each combination of covariate */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
|
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
jj1++; |
jj1++; |
if (cptcovn > 0) { |
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<p><a name=\"rescov"); |
|
for (cpt=1; cpt<=cptcoveff;cpt++){ |
|
fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
fprintf(fichtm,"\"</a>"); |
|
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
for (cpt=1; cpt<=cptcoveff;cpt++){ |
for (cpt=1; cpt<=cptcoveff;cpt++){ |
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); |
printf(" V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);fflush(stdout); |
|
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
|
/* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */ |
} |
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);fflush(stdout); |
|
} |
|
|
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); |
fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); |
Line 5593 void printinghtml(char fileresu[], char
|
Line 6800 void printinghtml(char fileresu[], char
|
} |
} |
} |
} |
/* aij, bij */ |
/* aij, bij */ |
fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \ |
fprintf(fichtm,"<br>- Logit model (yours is: logit(pij)=log(pij/pii)= aij+ bij age+%s) as a function of age: <a href=\"%s_%d-1-%d.svg\">%s_%d-1-%d.svg</a><br> \ |
<img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-1-%d.svg\">",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
/* Pij */ |
/* Pij */ |
fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \ |
fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2-%d.svg\">%s_%d-2-%d.svg</a><br> \ |
<img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-2-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
/* Quasi-incidences */ |
/* Quasi-incidences */ |
fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ |
fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ |
before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \ |
before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \ |
incidence (rates) are the limit when h tends to zero of the ratio of the probability <sub>h</sub>P<sub>ij</sub> \ |
incidence (rates) are the limit when h tends to zero of the ratio of the probability <sub>h</sub>P<sub>ij</sub> \ |
divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \ |
divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3-%d.svg\">%s_%d-3-%d.svg</a><br> \ |
<img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
/* Survival functions (period) in state j */ |
/* Survival functions (period) in state j */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1); |
<img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
} |
} |
/* State specific survival functions (period) */ |
/* State specific survival functions (period) */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\ |
fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\ |
Or probability to survive in various states (1 to %d) being in state %d at different ages. \ |
Or probability to survive in various states (1 to %d) being in state %d at different ages. \ |
<a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1); |
<a href=\"%s_%d-%d-%d.svg\">%s_%d%d-%d.svg</a><br> <img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
} |
} |
/* Period (stable) prevalence in each health state */ |
/* Period (stable) prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1); |
<img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
} |
} |
if(backcast==1){ |
if(backcast==1){ |
/* Period (stable) back prevalence in each health state */ |
/* Period (stable) back prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1); |
<img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
} |
} |
} |
} |
if(prevfcast==1){ |
if(prevfcast==1){ |
/* Projection of prevalence up to period (stable) prevalence in each health state */ |
/* Projection of prevalence up to period (stable) prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
<img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1); |
<img src=\"%s_%d-%d-%d.svg\">", dateprev1, dateprev2, mobilavproj, dateproj1, dateproj2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
|
} |
|
} |
|
if(backcast==1){ |
|
/* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \ |
|
from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d (randomness in cross-sectional prevalence is not taken into \ |
|
account but can visually be appreciated). Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \ |
|
with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
|
<img src=\"%s_%d-%d-%d.svg\">", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
} |
} |
} |
} |
|
|
for(cpt=1; cpt<=nlstate;cpt++) { |
for(cpt=1; cpt<=nlstate;cpt++) { |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \ |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a> <br> \ |
<img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1); |
<img src=\"%s_%d-%d-%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
} |
} |
/* } /\* end i1 *\/ */ |
/* } /\* end i1 *\/ */ |
}/* End k1 */ |
}/* End k1 */ |
Line 5695 See page 'Matrix of variance-covariance
|
Line 6912 See page 'Matrix of variance-covariance
|
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
jj1=0; |
jj1=0; |
|
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k1=1; k1<=m;k1++){ |
for(k1=1; k1<=m;k1++){ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
jj1++; |
jj1++; |
if (cptcovn > 0) { |
if (cptcovn > 0) { |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
for (cpt=1; cpt<=cptcoveff;cpt++) |
for (cpt=1; cpt<=cptcoveff;cpt++) /**< cptcoveff number of variables */ |
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]); |
|
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
|
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
|
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
Line 5710 See page 'Matrix of variance-covariance
|
Line 6936 See page 'Matrix of variance-covariance
|
} |
} |
} |
} |
for(cpt=1; cpt<=nlstate;cpt++) { |
for(cpt=1; cpt<=nlstate;cpt++) { |
fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \ |
fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \ |
prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d.svg\"> %s_%d-%d.svg</a>\n <br>\ |
prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>\n <br>\ |
<img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1); |
<img src=\"%s_%d-%d-%d.svg\">",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
} |
} |
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \ |
health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \ |
true period expectancies (those weighted with period prevalences are also\ |
true period expectancies (those weighted with period prevalences are also\ |
drawn in addition to the population based expectancies computed using\ |
drawn in addition to the population based expectancies computed using\ |
observed and cahotic prevalences: <a href=\"%s_%d.svg\">%s_%d.svg</a>\n<br>\ |
observed and cahotic prevalences: <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>\n<br>\ |
<img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1); |
<img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres); |
/* } /\* end i1 *\/ */ |
/* } /\* end i1 *\/ */ |
}/* End k1 */ |
}/* End k1 */ |
|
}/* End nres */ |
fprintf(fichtm,"</ul>"); |
fprintf(fichtm,"</ul>"); |
fflush(fichtm); |
fflush(fichtm); |
} |
} |
|
|
/******************* Gnuplot file **************/ |
/******************* Gnuplot file **************/ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int backcast, char pathc[], double p[], int offyear, int offbyear){ |
|
|
char dirfileres[132],optfileres[132]; |
char dirfileres[132],optfileres[132]; |
char gplotcondition[132]; |
char gplotcondition[132], gplotlabel[132]; |
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0; |
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,ij=0, ijp=0, l=0; |
int lv=0, vlv=0, kl=0; |
int lv=0, vlv=0, kl=0; |
int ng=0; |
int ng=0; |
int vpopbased; |
int vpopbased; |
int ioffset; /* variable offset for columns */ |
int ioffset; /* variable offset for columns */ |
|
int iyearc=1; /* variable column for year of projection */ |
|
int iagec=1; /* variable column for age of projection */ |
|
int nres=0; /* Index of resultline */ |
|
int istart=1; /* For starting graphs in projections */ |
|
|
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
/* printf("Problem with file %s",optionfilegnuplot); */ |
/* printf("Problem with file %s",optionfilegnuplot); */ |
Line 5747 void printinggnuplot(char fileresu[], ch
|
Line 6978 void printinggnuplot(char fileresu[], ch
|
/*#endif */ |
/*#endif */ |
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
|
|
|
/* diagram of the model */ |
|
fprintf(ficgp,"\n#Diagram of the model \n"); |
|
fprintf(ficgp,"\ndelta=0.03;delta2=0.07;unset arrow;\n"); |
|
fprintf(ficgp,"yoff=(%d > 2? 0:1);\n",nlstate); |
|
fprintf(ficgp,"\n#Peripheral arrows\nset for [i=1:%d] for [j=1:%d] arrow i*10+j from cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.95*(cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) - cos(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta2:0)), -0.95*(sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) - sin(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d))+( i!=j?(i-j)/abs(i-j)*delta2:0)) ls (i < j? 1:2)\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
|
|
|
fprintf(ficgp,"\n#Centripete arrows (turning in other direction (1-i) instead of (i-1)) \nset for [i=1:%d] arrow (%d+1)*10+i from cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.80*(cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) ), -0.80*(sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) + yoff ) ls 4\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
|
fprintf(ficgp,"\n#show arrow\nunset label\n"); |
|
fprintf(ficgp,"\n#States labels, starting from 2 (2-i) instead of (1-i), was (i-1)\nset for [i=1:%d] label i sprintf(\"State %%d\",i) center at cos(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)), yoff+sin(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)) font \"helvetica, 16\" tc rgbcolor \"blue\"\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
|
fprintf(ficgp,"\nset label %d+1 sprintf(\"State %%d\",%d+1) center at 0.,0. font \"helvetica, 16\" tc rgbcolor \"red\"\n",nlstate,nlstate); |
|
fprintf(ficgp,"\n#show label\nunset border;unset xtics; unset ytics;\n"); |
|
fprintf(ficgp,"\n\nset ter svg size 640, 480;set out \"%s_.svg\" \n",subdirf2(optionfilefiname,"D_")); |
|
fprintf(ficgp,"unset log y; plot [-1.2:1.2][yoff-1.2:1.2] 1/0 not; set out;reset;\n"); |
|
|
/* Contribution to likelihood */ |
/* Contribution to likelihood */ |
/* Plot the probability implied in the likelihood */ |
/* Plot the probability implied in the likelihood */ |
fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n"); |
fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n"); |
Line 5779 void printinggnuplot(char fileresu[], ch
|
Line 7024 void printinggnuplot(char fileresu[], ch
|
strcpy(dirfileres,optionfilefiname); |
strcpy(dirfileres,optionfilefiname); |
strcpy(optfileres,"vpl"); |
strcpy(optfileres,"vpl"); |
/* 1eme*/ |
/* 1eme*/ |
for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */ |
for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */ |
for (k1=1; k1<= m ; k1 ++) { /* For each valid combination of covariate */ |
for (k1=1; k1<= m ; k1 ++){ /* For each valid combination of covariate */ |
/* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files "); |
/* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
if(m != 1 && TKresult[nres]!= k1) |
lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */ |
continue; |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* We are interested in selected combination by the resultline */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); |
vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */ |
strcpy(gplotlabel,"("); |
/* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */ |
} |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
fprintf(ficgp,"\n#\n"); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
if(invalidvarcomb[k1]){ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */ |
continue; |
/* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */ |
} |
/* printf(" V%d=%d ",Tvaraff[k],vlv); */ |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1); |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1); |
} |
fprintf(ficgp,"set xlabel \"Age\" \n\ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
set ylabel \"Probability\" \n \ |
/* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
set ter svg size 640, 480\n \ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
for (i=1; i<= nlstate ; i ++) { |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
/* printf("\n#\n"); */ |
else fprintf(ficgp," %%*lf (%%*lf)"); |
fprintf(ficgp,"\n#\n"); |
} |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
/*k1=k1-1;*/ /* To be checked */ |
for (i=1; i<= nlstate ; i ++) { |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
continue; |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
|
fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
for (i=1; i<= nlstate ; i ++) { |
fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
/* fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); */ |
else fprintf(ficgp," %%*lf (%%*lf)"); |
fprintf(ficgp,"set title \"Alive state %d %s\" font \"Helvetica,12\"\n",cpt,gplotlabel); |
} |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); |
/* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */ |
if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */ |
/* k1-1 error should be nres-1*/ |
/* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
for (i=1; i<= nlstate ; i ++) { |
fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1 */ |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
if(cptcoveff ==0){ |
else fprintf(ficgp," %%*lf (%%*lf)"); |
fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line ", 2+(cpt-1), cpt ); |
} |
|
fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
/* fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); */ |
|
|
|
fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" u 1:((",subdirf2(fileresu,"P_")); |
|
if(cptcoveff ==0){ |
|
fprintf(ficgp,"$%d)) t 'Observed prevalence in state %d' with line lt 3", 2+3*(cpt-1), cpt ); |
}else{ |
}else{ |
kl=0; |
kl=0; |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
Line 5839 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
Line 7099 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
if(k==cptcoveff){ |
if(k==cptcoveff){ |
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' with line ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Observed prevalence in state %d' w l lt 2",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
6+(cpt-1), cpt ); |
2+cptcoveff*2+3*(cpt-1), cpt ); /* 4 or 6 ?*/ |
}else{ |
}else{ |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
kl++; |
kl++; |
} |
} |
} /* end covariate */ |
} /* end covariate */ |
} /* end if no covariate */ |
} /* end if no covariate */ |
} /* end if backcast */ |
|
fprintf(ficgp,"\nset out \n"); |
|
} /* k1 */ |
|
} /* cpt */ |
|
/*2 eme*/ |
|
for (k1=1; k1<= m ; k1 ++) { |
|
|
|
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); |
if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
/* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
if(cptcoveff ==0){ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line lt 3", 2+(cpt-1), cpt ); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
}else{ |
vlv= nbcode[Tvaraff[k]][lv]; |
kl=0; |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
} |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
fprintf(ficgp,"\n#\n"); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
if(invalidvarcomb[k1]){ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
continue; |
vlv= nbcode[Tvaraff[k]][lv]; |
} |
kl++; |
|
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1); |
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
if(vpopbased==0) |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage); |
if(k==cptcoveff){ |
else |
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
fprintf(ficgp,"\nreplot "); |
2+cptcoveff*2+(cpt-1), cpt ); /* 4 or 6 ?*/ |
for (i=1; i<= nlstate+1 ; i ++) { |
}else{ |
k=2*i; |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased); |
kl++; |
for (j=1; j<= nlstate+1 ; j ++) { |
} |
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
} /* end covariate */ |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} /* end if no covariate */ |
} |
if(backcast == 1){ |
if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i); |
fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1); |
/* k1-1 error should be nres-1*/ |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased); |
for (i=1; i<= nlstate ; i ++) { |
for (j=1; j<= nlstate+1 ; j ++) { |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
fprintf(ficgp,"\" t\"Backward (stable) prevalence\" w l lt 6 dt 3,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
fprintf(ficgp,"\" t\"\" w l lt 0,"); |
for (i=1; i<= nlstate ; i ++) { |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
for (j=1; j<= nlstate+1 ; j ++) { |
else fprintf(ficgp," %%*lf (%%*lf)"); |
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
} |
else fprintf(ficgp," %%*lf (%%*lf)"); |
fprintf(ficgp,"\" t\"95%% CI\" w l lt 4,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
} |
for (i=1; i<= nlstate ; i ++) { |
if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} /* state */ |
} |
} /* vpopbased */ |
fprintf(ficgp,"\" t\"\" w l lt 4"); |
fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */ |
} /* end if backprojcast */ |
} /* k1 */ |
} /* end if backcast */ |
|
/* fprintf(ficgp,"\nset out ;unset label;\n"); */ |
|
fprintf(ficgp,"\nset out ;unset title;\n"); |
/*3eme*/ |
} /* nres */ |
for (k1=1; k1<= m ; k1 ++) { |
} /* k1 */ |
|
} /* cpt */ |
|
|
for (cpt=1; cpt<= nlstate ; cpt ++) { |
|
fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files: cov=%d state=%d",k1, cpt); |
/*2 eme*/ |
|
for (k1=1; k1<= m ; k1 ++){ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); |
|
strcpy(gplotlabel,"("); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
Line 5915 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
Line 7176 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
vlv= nbcode[Tvaraff[k]][lv]; |
vlv= nbcode[Tvaraff[k]][lv]; |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
/* for(k=1; k <= ncovds; k++){ */ |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
} |
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
continue; |
continue; |
} |
} |
|
|
/* k=2+nlstate*(2*cpt-2); */ |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres); |
k=2+(nlstate+1)*(cpt-1); |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1); |
fprintf(ficgp,"\nset label \"popbased %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",vpopbased,gplotlabel); |
fprintf(ficgp,"set ter svg size 640, 480\n\ |
if(vpopbased==0){ |
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt); |
fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage); |
/*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
}else |
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
fprintf(ficgp,"\nreplot "); |
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
for (i=1; i<= nlstate+1 ; i ++) { |
fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
k=2*i; |
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1, vpopbased); |
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i); |
|
else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1); |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"\" w l lt 0,"); |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0"); |
|
else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); |
|
} /* state */ |
|
} /* vpopbased */ |
|
fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */ |
|
} /* end nres */ |
|
} /* k1 end 2 eme*/ |
|
|
|
|
|
/*3eme*/ |
|
for (k1=1; k1<= m ; k1 ++){ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
|
|
for (cpt=1; cpt<= nlstate ; cpt ++) { |
|
fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files: combination=%d state=%d",k1, cpt); |
|
strcpy(gplotlabel,"("); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
/* k=2+nlstate*(2*cpt-2); */ |
|
k=2+(nlstate+1)*(cpt-1); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"%s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); |
|
fprintf(ficgp,"set ter svg size 640, 480\n\ |
|
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),nres-1,nres-1,k,cpt); |
|
/*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
|
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
|
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
|
fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
|
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
|
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
|
|
*/ |
*/ |
for (i=1; i< nlstate ; i ++) { |
for (i=1; i< nlstate ; i ++) { |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1); |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+i,cpt,i+1); |
/* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/ |
/* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/ |
|
|
} |
} |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt); |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+nlstate,cpt); |
} |
} |
} |
fprintf(ficgp,"\nunset label;\n"); |
|
} /* end nres */ |
|
} /* end kl 3eme */ |
|
|
/* 4eme */ |
/* 4eme */ |
/* Survival functions (period) from state i in state j by initial state i */ |
/* Survival functions (period) from state i in state j by initial state i */ |
for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */ |
for (k1=1; k1<=m; k1++){ /* For each covariate and each value */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/ |
|
strcpy(gplotlabel,"("); |
|
fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
|
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; |
|
for (i=1; i<= nlstate ; i ++){ |
|
if(i==1){ |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
|
}else{ |
|
fprintf(ficgp,", '' "); |
|
} |
|
l=(nlstate+ndeath)*(i-1)+1; |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
|
for (j=2; j<= nlstate+ndeath ; j ++) |
|
fprintf(ficgp,"+$%d",k+l+j-1); |
|
fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt); |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
|
} /* end cpt state*/ |
|
} /* end nres */ |
|
} /* end covariate k1 */ |
|
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
/* 5eme */ |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt); |
/* Survival functions (period) from state i in state j by final state j */ |
|
for (k1=1; k1<= m ; k1++){ /* For each covariate combination if any */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
|
strcpy(gplotlabel,"("); |
|
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
|
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; |
|
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
|
if(j==1) |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
|
else |
|
fprintf(ficgp,", '' "); |
|
l=(nlstate+ndeath)*(cpt-1) +j; |
|
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l); |
|
/* for (i=2; i<= nlstate+ndeath ; i ++) */ |
|
/* fprintf(ficgp,"+$%d",k+l+i-1); */ |
|
fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j); |
|
} /* nlstate */ |
|
fprintf(ficgp,", '' "); |
|
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1); |
|
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
|
l=(nlstate+ndeath)*(cpt-1) +j; |
|
if(j < nlstate) |
|
fprintf(ficgp,"$%d +",k+l); |
|
else |
|
fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt); |
|
} |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
} /* end nres */ |
|
|
|
/* 6eme */ |
|
/* CV preval stable (period) for each covariate */ |
|
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */ |
|
strcpy(gplotlabel,"("); |
|
fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
Line 5957 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
Line 7407 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
vlv= nbcode[Tvaraff[k]][lv]; |
vlv= nbcode[Tvaraff[k]][lv]; |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
} |
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
continue; |
continue; |
} |
} |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
set ter svg size 640, 480\n \ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
unset log y\n \ |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
k=3; /* Offset */ |
k=3; |
for (i=1; i<= nlstate ; i ++){ /* State of origin */ |
for (i=1; i<= nlstate ; i ++){ |
if(i==1) |
if(i==1){ |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
}else{ |
else |
fprintf(ficgp,", '' "); |
fprintf(ficgp,", '' "); |
} |
l=(nlstate+ndeath)*(i-1)+1; /* 1, 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */ |
l=(nlstate+ndeath)*(i-1)+1; |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
for (j=2; j<= nlstate+ndeath ; j ++) |
for (j=2; j<= nlstate ; j ++) |
fprintf(ficgp,"+$%d",k+l+j-1); |
fprintf(ficgp,"+$%d",k+l+j-1); |
fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt); |
fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt); |
} /* nlstate */ |
|
fprintf(ficgp,"\nset out\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
|
|
/* 5eme */ |
|
/* Survival functions (period) from state i in state j by final state j */ |
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
|
|
|
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
|
set ter svg size 640, 480\n \ |
|
unset log y\n \ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; |
|
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
|
if(j==1) |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
|
else |
|
fprintf(ficgp,", '' "); |
|
l=(nlstate+ndeath)*(cpt-1) +j; |
|
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l); |
|
/* for (i=2; i<= nlstate+ndeath ; i ++) */ |
|
/* fprintf(ficgp,"+$%d",k+l+i-1); */ |
|
fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j); |
|
} /* nlstate */ |
|
fprintf(ficgp,", '' "); |
|
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1); |
|
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
|
l=(nlstate+ndeath)*(cpt-1) +j; |
|
if(j < nlstate) |
|
fprintf(ficgp,"$%d +",k+l); |
|
else |
|
fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt); |
|
} |
|
fprintf(ficgp,"\nset out\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
|
|
/* 6eme */ |
|
/* CV preval stable (period) for each covariate */ |
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
|
|
fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
|
set ter svg size 640, 480\n \ |
|
unset log y\n \ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; /* Offset */ |
|
for (i=1; i<= nlstate ; i ++){ |
|
if(i==1) |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
|
else |
|
fprintf(ficgp,", '' "); |
|
l=(nlstate+ndeath)*(i-1)+1; |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
|
for (j=2; j<= nlstate ; j ++) |
|
fprintf(ficgp,"+$%d",k+l+j-1); |
|
fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt); |
|
} /* nlstate */ |
} /* nlstate */ |
fprintf(ficgp,"\nset out\n"); |
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
|
|
|
|
/* 7eme */ |
/* 7eme */ |
if(backcast == 1){ |
if(backcast == 1){ |
/* CV back preval stable (period) for each covariate */ |
/* CV back preval stable (period) for each covariate */ |
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
if(m != 1 && TKresult[nres]!= k1) |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
continue; |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
strcpy(gplotlabel,"("); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pijb' files, covariatecombination#=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
vlv= nbcode[Tvaraff[k]][lv]; |
vlv= nbcode[Tvaraff[k]][lv]; |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
} |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
fprintf(ficgp,"\n#\n"); |
} |
if(invalidvarcomb[k1]){ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
continue; |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
} |
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
if(invalidvarcomb[k1]){ |
set ter svg size 640, 480\n \ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
unset log y\n \ |
continue; |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
} |
k=3; /* Offset */ |
|
for (i=1; i<= nlstate ; i ++){ |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
if(i==1) |
fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_")); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
else |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
fprintf(ficgp,", '' "); |
k=3; /* Offset */ |
/* l=(nlstate+ndeath)*(i-1)+1; */ |
for (i=1; i<= nlstate ; i ++){ /* State of arrival */ |
l=(nlstate+ndeath)*(cpt-1)+1; |
if(i==1) |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */ |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_")); |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */ |
else |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */ |
fprintf(ficgp,", '' "); |
/* for (j=2; j<= nlstate ; j ++) */ |
/* l=(nlstate+ndeath)*(i-1)+1; */ |
/* fprintf(ficgp,"+$%d",k+l+j-1); */ |
l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */ |
/* /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */ |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */ |
fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt); |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */ |
} /* nlstate */ |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */ |
fprintf(ficgp,"\nset out\n"); |
/* for (j=2; j<= nlstate ; j ++) */ |
|
/* fprintf(ficgp,"+$%d",k+l+j-1); */ |
|
/* /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */ |
|
fprintf(ficgp,") t \"bprev(%d,%d)\" w l",cpt,i); |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
} /* End if backcast */ |
} /* End if backcast */ |
Line 6128 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 7500 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
if(prevfcast==1){ |
if(prevfcast==1){ |
/* Projection from cross-sectional to stable (period) for each covariate */ |
/* Projection from cross-sectional to stable (period) for each covariate */ |
|
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); |
strcpy(gplotlabel,"("); |
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
vlv= nbcode[Tvaraff[k]][lv]; |
} |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
fprintf(ficgp,"\n#\n"); |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
if(invalidvarcomb[k1]){ |
} |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
continue; |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
} |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n "); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
if(invalidvarcomb[k1]){ |
set ter svg size 640, 480\n \ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
unset log y\n \ |
continue; |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
} |
for (i=1; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n "); |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
if(i==1){ |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_")); |
|
}else{ |
/* for (i=1; i<= nlstate+1 ; i ++){ /\* nlstate +1 p11 p21 p.1 *\/ */ |
fprintf(ficgp,",\\\n '' "); |
istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */ |
} |
/*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */ |
if(cptcoveff ==0){ /* No covariate */ |
for (i=istart; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
ioffset=2; /* Age is in 2 */ |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
/*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
/*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
if(i==istart){ |
fprintf(ficgp," u %d:(", ioffset); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_")); |
if(i==nlstate+1) |
}else{ |
fprintf(ficgp," $%d/(1.-$%d)) t 'pw.%d' with line ", \ |
fprintf(ficgp,",\\\n '' "); |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
} |
else |
if(cptcoveff ==0){ /* No covariate */ |
fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \ |
ioffset=2; /* Age is in 2 */ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
/*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
}else{ /* more than 2 covariates */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
if(cptcoveff ==1){ |
/*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
ioffset=4; /* Age is in 4 */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
}else{ |
fprintf(ficgp," u %d:(", ioffset); |
ioffset=6; /* Age is in 6 */ |
if(i==nlstate+1){ |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
fprintf(ficgp," $%d/(1.-$%d)):1 t 'pw.%d' with line lc variable ", \ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
} |
fprintf(ficgp,",\\\n '' "); |
fprintf(ficgp," u %d:(",ioffset); |
fprintf(ficgp," u %d:(",ioffset); |
kl=0; |
fprintf(ficgp," (($1-$2) == %d ) ? $%d/(1.-$%d) : 1/0):1 with labels center not ", \ |
strcpy(gplotcondition,"("); |
offyear, \ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate ); |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */ |
}else |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
}else{ /* more than 2 covariates */ |
vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */ |
ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/ |
kl++; |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
kl++; |
iyearc=ioffset-1; |
if(k <cptcoveff && cptcoveff>1) |
iagec=ioffset; |
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
fprintf(ficgp," u %d:(",ioffset); |
} |
kl=0; |
strcpy(gplotcondition+strlen(gplotcondition),")"); |
strcpy(gplotcondition,"("); |
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */ |
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */ |
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
if(i==nlstate+1){ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ", gplotcondition, \ |
vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
kl++; |
}else{ |
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); |
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ |
kl++; |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
if(k <cptcoveff && cptcoveff>1) |
} |
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
} /* end if covariate */ |
} |
} /* nlstate */ |
strcpy(gplotcondition+strlen(gplotcondition),")"); |
fprintf(ficgp,"\nset out\n"); |
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
|
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
|
if(i==nlstate+1){ |
|
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0):%d t 'p.%d' with line lc variable", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,iyearc, cpt ); |
|
fprintf(ficgp,",\\\n '' "); |
|
fprintf(ficgp," u %d:(",iagec); |
|
fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d/(1.-$%d) : 1/0):%d with labels center not ", gplotcondition, \ |
|
iyearc, iagec, offyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate, iyearc ); |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/ |
|
}else{ |
|
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
|
} |
|
} /* end if covariate */ |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
} /* End if prevfcast */ |
} /* End if prevfcast */ |
|
|
|
if(backcast==1){ |
|
/* Back projection from cross-sectional to stable (mixed) for each covariate */ |
|
|
|
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
strcpy(gplotlabel,"("); |
|
fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"# hbijx=backprobability over h years, hb.jx is weighted by observed prev at destination state\n "); |
/* proba elementaires */ |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n"); |
fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
|
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
|
|
|
/* for (i=1; i<= nlstate+1 ; i ++){ /\* nlstate +1 p11 p21 p.1 *\/ */ |
|
istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */ |
|
/*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */ |
|
for (i=istart; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
if(i==istart){ |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"FB_")); |
|
}else{ |
|
fprintf(ficgp,",\\\n '' "); |
|
} |
|
if(cptcoveff ==0){ /* No covariate */ |
|
ioffset=2; /* Age is in 2 */ |
|
/*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
|
/*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
|
fprintf(ficgp," u %d:(", ioffset); |
|
if(i==nlstate+1){ |
|
fprintf(ficgp," $%d/(1.-$%d)):1 t 'bw%d' with line lc variable ", \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
|
fprintf(ficgp,",\\\n '' "); |
|
fprintf(ficgp," u %d:(",ioffset); |
|
fprintf(ficgp," (($1-$2) == %d ) ? $%d : 1/0):1 with labels center not ", \ |
|
offbyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1) ); |
|
}else |
|
fprintf(ficgp," $%d/(1.-$%d)) t 'b%d%d' with line ", \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt,i ); |
|
}else{ /* more than 2 covariates */ |
|
ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
iyearc=ioffset-1; |
|
iagec=ioffset; |
|
fprintf(ficgp," u %d:(",ioffset); |
|
kl=0; |
|
strcpy(gplotcondition,"("); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */ |
|
kl++; |
|
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); |
|
kl++; |
|
if(k <cptcoveff && cptcoveff>1) |
|
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
|
} |
|
strcpy(gplotcondition+strlen(gplotcondition),")"); |
|
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
|
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
|
if(i==nlstate+1){ |
|
fprintf(ficgp,"%s ? $%d : 1/0):%d t 'bw%d' with line lc variable", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1),iyearc,cpt ); |
|
fprintf(ficgp,",\\\n '' "); |
|
fprintf(ficgp," u %d:(",iagec); |
|
/* fprintf(ficgp,"%s && (($5-$6) == %d ) ? $%d/(1.-$%d) : 1/0):5 with labels center not ", gplotcondition, \ */ |
|
fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d : 1/0):%d with labels center not ", gplotcondition, \ |
|
iyearc,iagec,offbyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), iyearc ); |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/ |
|
}else{ |
|
/* fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ */ |
|
fprintf(ficgp,"%s ? $%d : 1/0) t 'b%d%d' with line ", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), cpt,i ); |
|
} |
|
} /* end if covariate */ |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
} /* End if backcast */ |
|
|
|
|
|
/* 9eme writing MLE parameters */ |
|
fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n"); |
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
fprintf(ficgp,"# initial state %d\n",i); |
fprintf(ficgp,"# initial state %d\n",i); |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
if (k != i) { |
if (k != i) { |
fprintf(ficgp,"# current state %d\n",k); |
fprintf(ficgp,"# current state %d\n",k); |
for(j=1; j <=ncovmodel; j++){ |
for(j=1; j <=ncovmodel; j++){ |
fprintf(ficgp,"p%d=%f; ",jk,p[jk]); |
fprintf(ficgp,"p%d=%f; ",jk,p[jk]); |
jk++; |
jk++; |
} |
} |
fprintf(ficgp,"\n"); |
fprintf(ficgp,"\n"); |
} |
} |
} |
} |
} |
} |
fprintf(ficgp,"##############\n#\n"); |
fprintf(ficgp,"##############\n#\n"); |
|
|
/*goto avoid;*/ |
/*goto avoid;*/ |
fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n"); |
/* 10eme Graphics of probabilities or incidences using written MLE parameters */ |
|
fprintf(ficgp,"\n##############\n#10eme Graphics of probabilities or incidences\n#############\n"); |
fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n"); |
fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n"); |
fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n"); |
fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n"); |
fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n"); |
fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n"); |
Line 6250 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 7760 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
fprintf(ficgp,"# +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n"); |
fprintf(ficgp,"# +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n"); |
fprintf(ficgp,"#\n"); |
fprintf(ficgp,"#\n"); |
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
fprintf(ficgp,"# ng=%d\n",ng); |
fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n"); |
fprintf(ficgp,"# jk=1 to 2^%d=%d\n",cptcoveff,m); |
fprintf(ficgp,"#model=%s \n",model); |
for(jk=1; jk <=m; jk++) { |
fprintf(ficgp,"# Type of graphic ng=%d\n",ng); |
fprintf(ficgp,"# jk=%d\n",jk); |
fprintf(ficgp,"# k1=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */ |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng); |
for(k1=1; k1 <=m; k1++) /* For each combination of covariate */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
fprintf(ficgp,"\n\n# Combination of dummy k1=%d which is ",k1); |
|
strcpy(gplotlabel,"("); |
|
/*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*/ |
|
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
|
fprintf(ficgp,"\n#\n"); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres); |
|
fprintf(ficgp,"\nset key outside "); |
|
/* fprintf(ficgp,"\nset label \"%s\" at graph 1.2,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); */ |
|
fprintf(ficgp,"\nset title \"%s\" font \"Helvetica,12\"\n",gplotlabel); |
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
if (ng==1){ |
if (ng==1){ |
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
Line 6294 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 7829 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
break; |
break; |
} |
} |
ij=1;/* To be checked else nbcode[0][0] wrong */ |
ij=1;/* To be checked else nbcode[0][0] wrong */ |
for(j=3; j <=ncovmodel-nagesqr; j++) { |
ijp=1; /* product no age */ |
|
/* for(j=3; j <=ncovmodel-nagesqr; j++) { */ |
|
for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */ |
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
if(ij <=cptcovage) { /* Bug valgrind */ |
if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */ |
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
if(j==Tage[ij]) { /* Product by age To be looked at!!*/ |
fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */ |
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
if(DummyV[j]==0){ |
ij++; |
fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; |
|
}else{ /* quantitative */ |
|
fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
} |
|
ij++; |
|
} |
|
} |
|
}else if(cptcovprod >0){ |
|
if(j==Tprod[ijp]) { /* */ |
|
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
|
if(ijp <=cptcovprod) { /* Product */ |
|
if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */ |
|
if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */ |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */ |
|
fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); |
|
}else{ /* Vn is dummy and Vm is quanti */ |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
} |
|
}else{ /* Vn*Vm Vn is quanti */ |
|
if(DummyV[Tvard[ijp][2]]==0){ |
|
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); |
|
}else{ /* Both quanti */ |
|
fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
} |
|
} |
|
ijp++; |
|
} |
|
} /* end Tprod */ |
|
} else{ /* simple covariate */ |
|
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */ |
|
if(Dummy[j]==0){ |
|
fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /* */ |
|
}else{ /* quantitative */ |
|
fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
} |
} |
} |
} /* end simple */ |
else |
} /* end j */ |
fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
|
} |
|
}else{ |
}else{ |
i=i-ncovmodel; |
i=i-ncovmodel; |
if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */ |
if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */ |
fprintf(ficgp," (1."); |
fprintf(ficgp," (1."); |
} |
} |
|
|
if(ng != 1){ |
if(ng != 1){ |
fprintf(ficgp,")/(1"); |
fprintf(ficgp,")/(1"); |
|
|
for(k1=1; k1 <=nlstate; k1++){ |
for(cpt=1; cpt <=nlstate; cpt++){ |
if(nagesqr==0) |
if(nagesqr==0) |
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); |
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1); |
else /* nagesqr =1 */ |
else /* nagesqr =1 */ |
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr); |
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr); |
|
|
ij=1; |
ij=1; |
for(j=3; j <=ncovmodel-nagesqr; j++){ |
for(j=3; j <=ncovmodel-nagesqr; j++){ |
if(ij <=cptcovage) { /* Bug valgrind */ |
if(cptcovage >0){ |
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
if(ij <=cptcovage) { /* Bug valgrind */ |
/* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]); |
ij++; |
/* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
} |
ij++; |
} |
} |
else |
} |
fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
}else |
|
fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/* Valgrind bug nbcode */ |
} |
} |
fprintf(ficgp,")"); |
fprintf(ficgp,")"); |
} |
} |
fprintf(ficgp,")"); |
fprintf(ficgp,")"); |
if(ng ==2) |
if(ng ==2) |
fprintf(ficgp," t \"p%d%d\" ", k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"p%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
else /* ng= 3 */ |
else /* ng= 3 */ |
fprintf(ficgp," t \"i%d%d\" ", k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"i%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
}else{ /* end ng <> 1 */ |
}else{ /* end ng <> 1 */ |
if( k !=k2) /* logit p11 is hard to draw */ |
if( k !=k2) /* logit p11 is hard to draw */ |
fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"logit(p%d%d)\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
} |
} |
if ((k+k2)!= (nlstate*2+ndeath) && ng != 1) |
if ((k+k2)!= (nlstate*2+ndeath) && ng != 1) |
fprintf(ficgp,","); |
fprintf(ficgp,","); |
Line 6351 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 7923 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
i=i+ncovmodel; |
i=i+ncovmodel; |
} /* end k */ |
} /* end k */ |
} /* end k2 */ |
} /* end k2 */ |
fprintf(ficgp,"\n set out\n"); |
/* fprintf(ficgp,"\n set out; unset label;set key default;\n"); */ |
} /* end jk */ |
fprintf(ficgp,"\n set out; unset title;set key default;\n"); |
|
} /* end k1 */ |
} /* end ng */ |
} /* end ng */ |
/* avoid: */ |
/* avoid: */ |
fflush(ficgp); |
fflush(ficgp); |
Line 6368 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 7941 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
int mobilavrange, mob; |
int mobilavrange, mob; |
int iage=0; |
int iage=0; |
|
|
double sum=0.; |
double sum=0., sumr=0.; |
double age; |
double age; |
double *sumnewp, *sumnewm; |
double *sumnewp, *sumnewm, *sumnewmr; |
double *agemingood, *agemaxgood; /* Currently identical for all covariates */ |
double *agemingood, *agemaxgood; |
|
double *agemingoodr, *agemaxgoodr; |
|
|
|
|
/* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose */ |
/* modcovmax=2*cptcoveff; Max number of modalities. We suppose */ |
/* a covariate has 2 modalities, should be equal to ncovcombmax *\/ */ |
/* a covariate has 2 modalities, should be equal to ncovcombmax */ |
|
|
sumnewp = vector(1,ncovcombmax); |
sumnewp = vector(1,ncovcombmax); |
sumnewm = vector(1,ncovcombmax); |
sumnewm = vector(1,ncovcombmax); |
|
sumnewmr = vector(1,ncovcombmax); |
agemingood = vector(1,ncovcombmax); |
agemingood = vector(1,ncovcombmax); |
|
agemingoodr = vector(1,ncovcombmax); |
agemaxgood = vector(1,ncovcombmax); |
agemaxgood = vector(1,ncovcombmax); |
|
agemaxgoodr = vector(1,ncovcombmax); |
|
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
sumnewm[cptcod]=0.; |
sumnewm[cptcod]=0.; sumnewmr[cptcod]=0.; |
sumnewp[cptcod]=0.; |
sumnewp[cptcod]=0.; |
agemingood[cptcod]=0; |
agemingood[cptcod]=0, agemingoodr[cptcod]=0; |
agemaxgood[cptcod]=0; |
agemaxgood[cptcod]=0, agemaxgoodr[cptcod]=0; |
} |
} |
if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */ |
if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */ |
|
|
if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ |
if(mobilav==-1 || mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ |
if(mobilav==1) mobilavrange=5; /* default */ |
if(mobilav==1 || mobilav==-1) mobilavrange=5; /* default */ |
else mobilavrange=mobilav; |
else mobilavrange=mobilav; |
for (age=bage; age<=fage; age++) |
for (age=bage; age<=fage; age++) |
for (i=1; i<=nlstate;i++) |
for (i=1; i<=nlstate;i++) |
Line 6403 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 7980 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
*/ |
*/ |
for (mob=3;mob <=mobilavrange;mob=mob+2){ |
for (mob=3;mob <=mobilavrange;mob=mob+2){ |
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ |
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ |
for (i=1; i<=nlstate;i++){ |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
sumnewm[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; |
mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; |
for (cpt=1;cpt<=(mob-1)/2;cpt++){ |
for (cpt=1;cpt<=(mob-1)/2;cpt++){ |
mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; |
mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; |
mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; |
mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; |
} |
} |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; |
} |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
} |
} /* end i */ |
|
if(sumnewm[cptcod] >1.e-3) mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/sumnewm[cptcod]; /* Rescaling to sum one */ |
|
} /* end cptcod */ |
}/* end age */ |
}/* end age */ |
}/* end mob */ |
}/* end mob */ |
}else |
}else{ |
|
printf("Error internal in movingaverage, mobilav=%d.\n",mobilav); |
return -1; |
return -1; |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
} |
|
|
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ /* for each combination */ |
/* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */ |
/* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */ |
if(invalidvarcomb[cptcod]){ |
if(invalidvarcomb[cptcod]){ |
printf("\nCombination (%d) ignored because no cases \n",cptcod); |
printf("\nCombination (%d) ignored because no cases \n",cptcod); |
continue; |
continue; |
} |
} |
|
|
agemingood[cptcod]=fage-(mob-1)/2; |
for (age=fage-(mob-1)/2; age>=bage+(mob-1)/2; age--){ /*looking for the youngest and oldest good age */ |
for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */ |
|
sumnewm[cptcod]=0.; |
sumnewm[cptcod]=0.; |
|
sumnewmr[cptcod]=0.; |
for (i=1; i<=nlstate;i++){ |
for (i=1; i<=nlstate;i++){ |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */ |
|
agemingoodr[cptcod]=age; |
} |
} |
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
agemingood[cptcod]=age; |
agemingood[cptcod]=age; |
}else{ /* bad */ |
} |
for (i=1; i<=nlstate;i++){ |
} /* age */ |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ /*looking for the youngest and oldest good age */ |
} /* i */ |
|
} /* end bad */ |
|
}/* age */ |
|
sum=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any descending age!\n",cptcod); |
|
/* for (i=1; i<=nlstate;i++){ */ |
|
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
|
/* } /\* i *\/ */ |
|
} /* end bad */ |
|
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
|
/* From youngest, finding the oldest wrong */ |
|
agemaxgood[cptcod]=bage+(mob-1)/2; |
|
for (age=bage+(mob-1)/2; age<=fage; age++){ |
|
sumnewm[cptcod]=0.; |
sumnewm[cptcod]=0.; |
|
sumnewmr[cptcod]=0.; |
for (i=1; i<=nlstate;i++){ |
for (i=1; i<=nlstate;i++){ |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */ |
|
agemaxgoodr[cptcod]=age; |
} |
} |
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
agemaxgood[cptcod]=age; |
agemaxgood[cptcod]=age; |
}else{ /* bad */ |
} |
for (i=1; i<=nlstate;i++){ |
} /* age */ |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
/* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */ |
} /* i */ |
/* but they will change */ |
|
for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */ |
|
sumnewm[cptcod]=0.; |
|
sumnewmr[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
|
} |
|
if(mobilav==-1){ /* Forcing raw ages if good else agemingood */ |
|
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */ |
|
agemaxgoodr[cptcod]=age; /* age min */ |
|
for (i=1; i<=nlstate;i++) |
|
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
|
}else{ /* bad we change the value with the values of good ages */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgoodr[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}else{ |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemaxgood[cptcod]=age; |
|
}else{ /* bad we change the value with the values of good ages */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}/* end else */ |
|
sum=0.;sumr=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)age][i][cptcod]; |
|
sumr+=probs[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage); |
|
} /* end bad */ |
|
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
|
if(fabs(sumr - 1.) > 1.e-3) { /* bad */ |
|
printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage); |
} /* end bad */ |
} /* end bad */ |
}/* age */ |
}/* age */ |
sum=0.; |
|
for (i=1; i<=nlstate;i++){ |
for (age=bage+(mob-1)/2; age<=fage; age++){/* From youngest, finding the oldest wrong */ |
sum+=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
sumnewm[cptcod]=0.; |
} |
sumnewmr[cptcod]=0.; |
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
for (i=1; i<=nlstate;i++){ |
printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any ascending age!\n",cptcod); |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
/* for (i=1; i<=nlstate;i++){ */ |
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
} |
/* } /\* i *\/ */ |
if(mobilav==-1){ /* Forcing raw ages if good else agemingood */ |
} /* end bad */ |
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemingoodr[cptcod]=age; |
|
for (i=1; i<=nlstate;i++) |
|
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
|
}else{ /* bad we change the value with the values of good ages */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingoodr[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}else{ |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemingood[cptcod]=age; |
|
}else{ /* bad */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}/* end else */ |
|
sum=0.;sumr=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)age][i][cptcod]; |
|
sumr+=mobaverage[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
printf("Moving average B1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you decrease fage=%d?\n",cptcod, sum, (int) age, (int)fage); |
|
} /* end bad */ |
|
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
|
if(fabs(sumr - 1.) > 1.e-3) { /* bad */ |
|
printf("Moving average B2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase fage=%d\n",cptcod,sumr, (int)age, (int)fage); |
|
} /* end bad */ |
|
}/* age */ |
|
|
|
|
for (age=bage; age<=fage; age++){ |
for (age=bage; age<=fage; age++){ |
printf("%d %d ", cptcod, (int)age); |
/* printf("%d %d ", cptcod, (int)age); */ |
sumnewp[cptcod]=0.; |
sumnewp[cptcod]=0.; |
sumnewm[cptcod]=0.; |
sumnewm[cptcod]=0.; |
for (i=1; i<=nlstate;i++){ |
for (i=1; i<=nlstate;i++){ |
Line 6488 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 8131 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
} |
} |
/* printf("\n"); */ |
/* printf("\n"); */ |
/* } */ |
/* } */ |
|
|
/* brutal averaging */ |
/* brutal averaging */ |
for (i=1; i<=nlstate;i++){ |
/* for (i=1; i<=nlstate;i++){ */ |
for (age=1; age<=bage; age++){ |
/* for (age=1; age<=bage; age++){ */ |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
/* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */ |
/* /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */ |
} |
/* } */ |
for (age=fage; age<=AGESUP; age++){ |
/* for (age=fage; age<=AGESUP; age++){ */ |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; */ |
/* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */ |
/* /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */ |
} |
/* } */ |
} /* end i status */ |
/* } /\* end i status *\/ */ |
for (i=nlstate+1; i<=nlstate+ndeath;i++){ |
/* for (i=nlstate+1; i<=nlstate+ndeath;i++){ */ |
for (age=1; age<=AGESUP; age++){ |
/* for (age=1; age<=AGESUP; age++){ */ |
/*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/ |
/* /\*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*\/ */ |
mobaverage[(int)age][i][cptcod]=0.; |
/* mobaverage[(int)age][i][cptcod]=0.; */ |
} |
/* } */ |
} |
/* } */ |
}/* end cptcod */ |
}/* end cptcod */ |
free_vector(sumnewm,1, ncovcombmax); |
free_vector(agemaxgoodr,1, ncovcombmax); |
free_vector(sumnewp,1, ncovcombmax); |
|
free_vector(agemaxgood,1, ncovcombmax); |
free_vector(agemaxgood,1, ncovcombmax); |
free_vector(agemingood,1, ncovcombmax); |
free_vector(agemingood,1, ncovcombmax); |
|
free_vector(agemingoodr,1, ncovcombmax); |
|
free_vector(sumnewmr,1, ncovcombmax); |
|
free_vector(sumnewm,1, ncovcombmax); |
|
free_vector(sumnewp,1, ncovcombmax); |
return 0; |
return 0; |
}/* End movingaverage */ |
}/* End movingaverage */ |
|
|
|
|
/************** Forecasting ******************/ |
/************** Forecasting ******************/ |
void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ |
void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ |
/* proj1, year, month, day of starting projection |
/* proj1, year, month, day of starting projection |
agemin, agemax range of age |
agemin, agemax range of age |
dateprev1 dateprev2 range of dates during which prevalence is computed |
dateprev1 dateprev2 range of dates during which prevalence is computed |
anproj2 year of en of projection (same day and month as proj1). |
anproj2 year of en of projection (same day and month as proj1). |
*/ |
*/ |
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; |
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0; |
double agec; /* generic age */ |
double agec; /* generic age */ |
double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
double *popeffectif,*popcount; |
double *popeffectif,*popcount; |
Line 6543 void prevforecast(char fileres[], double
|
Line 8190 void prevforecast(char fileres[], double
|
printf("Problem with forecast resultfile: %s\n", fileresf); |
printf("Problem with forecast resultfile: %s\n", fileresf); |
fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); |
fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); |
} |
} |
printf("Computing forecasting: result on file '%s', please wait... \n", fileresf); |
printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf); |
fprintf(ficlog,"Computing forecasting: result on file '%s', please wait... \n", fileresf); |
fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf); |
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
|
|
Line 6554 void prevforecast(char fileres[], double
|
Line 8201 void prevforecast(char fileres[], double
|
if(estepm < stepm){ |
if(estepm < stepm){ |
printf ("Problem %d lower than %d\n",estepm, stepm); |
printf ("Problem %d lower than %d\n",estepm, stepm); |
} |
} |
else hstepm=estepm; |
else{ |
|
hstepm=estepm; |
|
} |
|
if(estepm > stepm){ /* Yes every two year */ |
|
stepsize=2; |
|
} |
|
|
hstepm=hstepm/stepm; |
hstepm=hstepm/stepm; |
yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and |
yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and |
Line 6567 void prevforecast(char fileres[], double
|
Line 8219 void prevforecast(char fileres[], double
|
if(jprojmean==0) jprojmean=1; |
if(jprojmean==0) jprojmean=1; |
if(mprojmean==0) jprojmean=1; |
if(mprojmean==0) jprojmean=1; |
|
|
i1=cptcoveff; |
i1=pow(2,cptcoveff); |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
|
|
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
|
|
/* if (h==(int)(YEARM*yearp)){ */ |
/* if (h==(int)(YEARM*yearp)){ */ |
for(cptcov=1, k=0;cptcov<=i1;cptcov++){ |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
for(k=1; k<=i1;k++){ |
k=k+1; |
if(i1 != 1 && TKresult[nres]!= k) |
fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#"); |
continue; |
for(j=1;j<=cptcoveff;j++) { |
if(invalidvarcomb[k]){ |
fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
printf("\nCombination (%d) projection ignored because no cases \n",k); |
} |
continue; |
fprintf(ficresf," yearproj age"); |
} |
for(j=1; j<=nlstate+ndeath;j++){ |
fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#"); |
for(i=1; i<=nlstate;i++) |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficresf," p%d%d",i,j); |
fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresf," wp.%d",j); |
} |
} |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { |
fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
fprintf(ficresf,"\n"); |
} |
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); |
fprintf(ficresf," yearproj age"); |
for (agec=fage; agec>=(ageminpar-1); agec--){ |
for(j=1; j<=nlstate+ndeath;j++){ |
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
for(i=1; i<=nlstate;i++) |
nhstepm = nhstepm/hstepm; |
fprintf(ficresf," p%d%d",i,j); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
fprintf(ficresf," wp.%d",j); |
oldm=oldms;savm=savms; |
} |
hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k); |
for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { |
|
fprintf(ficresf,"\n"); |
for (h=0; h<=nhstepm; h++){ |
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); |
if (h*hstepm/YEARM*stepm ==yearp) { |
/* for (agec=fage; agec>=(ageminpar-1); agec--){ */ |
fprintf(ficresf,"\n"); |
for (agec=fage; agec>=(bage); agec--){ |
for(j=1;j<=cptcoveff;j++) |
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
nhstepm = nhstepm/hstepm; |
fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
} |
oldm=oldms;savm=savms; |
for(j=1; j<=nlstate+ndeath;j++) { |
/* We compute pii at age agec over nhstepm);*/ |
ppij=0.; |
hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres); |
for(i=1; i<=nlstate;i++) { |
/* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */ |
if (mobilav==1) |
for (h=0; h<=nhstepm; h++){ |
ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; |
if (h*hstepm/YEARM*stepm ==yearp) { |
else { |
break; |
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; |
} |
} |
} |
if (h*hstepm/YEARM*stepm== yearp) { |
fprintf(ficresf,"\n"); |
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
for(j=1;j<=cptcoveff;j++) |
} |
fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
} /* end i */ |
fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); |
if (h*hstepm/YEARM*stepm==yearp) { |
|
fprintf(ficresf," %.3f", ppij); |
for(j=1; j<=nlstate+ndeath;j++) { |
} |
ppij=0.; |
}/* end j */ |
for(i=1; i<=nlstate;i++) { |
} /* end h */ |
if (mobilav>=1) |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k]; |
} /* end agec */ |
else { /* even if mobilav==-1 we use mobaverage, probs may not sums to 1 */ |
} /* end yearp */ |
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; |
} /* end cptcod */ |
} |
} /* end cptcov */ |
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
|
} /* end i */ |
|
fprintf(ficresf," %.3f", ppij); |
|
}/* end j */ |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* end agec */ |
|
/* diffyear=(int) anproj1+yearp-ageminpar-1; */ |
|
/*printf("Prevforecast %d+%d-%d=diffyear=%d\n",(int) anproj1, (int)yearp,(int)ageminpar,(int) anproj1-(int)ageminpar);*/ |
|
} /* end yearp */ |
|
} /* end k */ |
|
|
fclose(ficresf); |
fclose(ficresf); |
printf("End of Computing forecasting \n"); |
printf("End of Computing forecasting \n"); |
fprintf(ficlog,"End of Computing forecasting\n"); |
fprintf(ficlog,"End of Computing forecasting\n"); |
|
|
} |
} |
|
|
|
/************** Back Forecasting ******************/ |
|
void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ |
|
/* back1, year, month, day of starting backection |
|
agemin, agemax range of age |
|
dateprev1 dateprev2 range of dates during which prevalence is computed |
|
anback2 year of end of backprojection (same day and month as back1). |
|
prevacurrent and prev are prevalences. |
|
*/ |
|
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0; |
|
double agec; /* generic age */ |
|
double agelim, ppij, ppi, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
|
double *popeffectif,*popcount; |
|
double ***p3mat; |
|
/* double ***mobaverage; */ |
|
char fileresfb[FILENAMELENGTH]; |
|
|
|
agelim=AGEINF; |
|
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
|
in each health status at the date of interview (if between dateprev1 and dateprev2). |
|
We still use firstpass and lastpass as another selection. |
|
*/ |
|
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */ |
|
/* firstpass, lastpass, stepm, weightopt, model); */ |
|
|
|
/*Do we need to compute prevalence again?*/ |
|
|
|
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
|
|
|
strcpy(fileresfb,"FB_"); |
|
strcat(fileresfb,fileresu); |
|
if((ficresfb=fopen(fileresfb,"w"))==NULL) { |
|
printf("Problem with back forecast resultfile: %s\n", fileresfb); |
|
fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); |
|
} |
|
printf("\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb); |
|
fprintf(ficlog,"\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb); |
|
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
|
|
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
|
if (stepm<=12) stepsize=1; |
|
if(estepm < stepm){ |
|
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else{ |
|
hstepm=estepm; |
|
} |
|
if(estepm >= stepm){ /* Yes every two year */ |
|
stepsize=2; |
|
} |
|
|
|
hstepm=hstepm/stepm; |
|
yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and |
|
fractional in yp1 */ |
|
anprojmean=yp; |
|
yp2=modf((yp1*12),&yp); |
|
mprojmean=yp; |
|
yp1=modf((yp2*30.5),&yp); |
|
jprojmean=yp; |
|
if(jprojmean==0) jprojmean=1; |
|
if(mprojmean==0) jprojmean=1; |
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
|
printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
|
|
|
fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); |
|
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k=1; k<=i1;k++){ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
|
if(invalidvarcomb[k]){ |
|
printf("\nCombination (%d) projection ignored because no cases \n",k); |
|
continue; |
|
} |
|
fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#"); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
fprintf(ficresfb," yearbproj age"); |
|
for(j=1; j<=nlstate+ndeath;j++){ |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresfb," b%d%d",i,j); |
|
fprintf(ficresfb," b.%d",j); |
|
} |
|
for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) { |
|
/* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { */ |
|
fprintf(ficresfb,"\n"); |
|
fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); |
|
/* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */ |
|
/* for (agec=bage; agec<=agemax-1; agec++){ /\* testing *\/ */ |
|
for (agec=bage; agec<=fage; agec++){ /* testing */ |
|
/* We compute bij at age agec over nhstepm, nhstepm decreases when agec increases because of agemax;*/ |
|
nhstepm=(int) (agec-agelim) *YEARM/stepm;/* nhstepm=(int) rint((agec-agelim)*YEARM/stepm);*/ |
|
nhstepm = nhstepm/hstepm; |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
/* computes hbxij at age agec over 1 to nhstepm */ |
|
/* printf("####prevbackforecast debug agec=%.2f nhstepm=%d\n",agec, nhstepm);fflush(stdout); */ |
|
hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm, k, nres); |
|
/* hpxij(p3mat,nhstepm,agec,hstepm,p, nlstate,stepm,oldm,savm, k,nres); */ |
|
/* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */ |
|
/* printf(" agec=%.2f\n",agec);fflush(stdout); */ |
|
for (h=0; h<=nhstepm; h++){ |
|
if (h*hstepm/YEARM*stepm ==-yearp) { |
|
break; |
|
} |
|
} |
|
fprintf(ficresfb,"\n"); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec-h*hstepm/YEARM*stepm); |
|
for(i=1; i<=nlstate+ndeath;i++) { |
|
ppij=0.;ppi=0.; |
|
for(j=1; j<=nlstate;j++) { |
|
/* if (mobilav==1) */ |
|
ppij=ppij+p3mat[i][j][h]*prevacurrent[(int)agec][j][k]; |
|
ppi=ppi+prevacurrent[(int)agec][j][k]; |
|
/* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][j][k]; */ |
|
/* ppi=ppi+mobaverage[(int)agec][j][k]; */ |
|
/* else { */ |
|
/* ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; */ |
|
/* } */ |
|
fprintf(ficresfb," %.3f", p3mat[i][j][h]); |
|
} /* end j */ |
|
if(ppi <0.99){ |
|
printf("Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi); |
|
fprintf(ficlog,"Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi); |
|
} |
|
fprintf(ficresfb," %.3f", ppij); |
|
}/* end j */ |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* end agec */ |
|
} /* end yearp */ |
|
} /* end k */ |
|
|
|
/* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
|
|
fclose(ficresfb); |
|
printf("End of Computing Back forecasting \n"); |
|
fprintf(ficlog,"End of Computing Back forecasting\n"); |
|
|
|
} |
|
|
|
/* Variance of prevalence limit: varprlim */ |
|
void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){ |
|
/*------- Variance of period (stable) prevalence------*/ |
|
|
|
char fileresvpl[FILENAMELENGTH]; |
|
FILE *ficresvpl; |
|
double **oldm, **savm; |
|
double **varpl; /* Variances of prevalence limits by age */ |
|
int i1, k, nres, j ; |
|
|
|
strcpy(fileresvpl,"VPL_"); |
|
strcat(fileresvpl,fileresu); |
|
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
|
printf("Problem with variance of period (stable) prevalence resultfile: %s\n", fileresvpl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog); |
|
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k=1; k<=i1;k++){ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
|
fprintf(ficresvpl,"\n#****** "); |
|
printf("\n#****** "); |
|
fprintf(ficlog,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
|
fprintf(ficresvpl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
|
|
varpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
varprevlim(fileresvpl, ficresvpl, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyearp, k, strstart, nres); |
|
free_matrix(varpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
|
|
fclose(ficresvpl); |
|
printf("done variance-covariance of period prevalence\n");fflush(stdout); |
|
fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog); |
|
|
|
} |
|
/* Variance of back prevalence: varbprlim */ |
|
void varbprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **bprlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){ |
|
/*------- Variance of back (stable) prevalence------*/ |
|
|
|
char fileresvbl[FILENAMELENGTH]; |
|
FILE *ficresvbl; |
|
|
|
double **oldm, **savm; |
|
double **varbpl; /* Variances of back prevalence limits by age */ |
|
int i1, k, nres, j ; |
|
|
|
strcpy(fileresvbl,"VBL_"); |
|
strcat(fileresvbl,fileresu); |
|
if((ficresvbl=fopen(fileresvbl,"w"))==NULL) { |
|
printf("Problem with variance of back (stable) prevalence resultfile: %s\n", fileresvbl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(ficlog); |
|
|
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k=1; k<=i1;k++){ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
|
fprintf(ficresvbl,"\n#****** "); |
|
printf("\n#****** "); |
|
fprintf(ficlog,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
|
fprintf(ficresvbl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
|
|
varbpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
|
|
varbrevlim(fileresvbl, ficresvbl, varbpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, bprlim, ftolpl, mobilavproj, ncvyearp, k, strstart, nres); |
|
free_matrix(varbpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
|
|
fclose(ficresvbl); |
|
printf("done variance-covariance of back prevalence\n");fflush(stdout); |
|
fprintf(ficlog,"done variance-covariance of back prevalence\n");fflush(ficlog); |
|
|
|
} /* End of varbprlim */ |
|
|
/* /\************** Back Forecasting ******************\/ */ |
/************** Forecasting *****not tested NB*************/ |
/* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */ |
/* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */ |
/* /\* back1, year, month, day of starting backection */ |
|
/* agemin, agemax range of age */ |
/* int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */ |
/* dateprev1 dateprev2 range of dates during which prevalence is computed */ |
/* int *popage; */ |
/* anback2 year of en of backection (same day and month as back1). */ |
/* double calagedatem, agelim, kk1, kk2; */ |
/* *\/ */ |
|
/* int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */ |
|
/* double agec; /\* generic age *\/ */ |
|
/* double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */ |
|
/* double *popeffectif,*popcount; */ |
/* double *popeffectif,*popcount; */ |
/* double ***p3mat; */ |
/* double ***p3mat,***tabpop,***tabpopprev; */ |
/* /\* double ***mobaverage; *\/ */ |
/* /\* double ***mobaverage; *\/ */ |
/* char fileresfb[FILENAMELENGTH]; */ |
/* char filerespop[FILENAMELENGTH]; */ |
|
|
|
/* tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
/* agelim=AGESUP; */ |
/* agelim=AGESUP; */ |
/* /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */ |
/* calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */ |
/* in each health status at the date of interview (if between dateprev1 and dateprev2). */ |
|
/* We still use firstpass and lastpass as another selection. */ |
|
/* *\/ */ |
|
/* /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */ |
|
/* /\* firstpass, lastpass, stepm, weightopt, model); *\/ */ |
|
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
|
|
/* strcpy(fileresfb,"FB_"); */ |
|
/* strcat(fileresfb,fileresu); */ |
/* strcpy(filerespop,"POP_"); */ |
/* if((ficresfb=fopen(fileresfb,"w"))==NULL) { */ |
/* strcat(filerespop,fileresu); */ |
/* printf("Problem with back forecast resultfile: %s\n", fileresfb); */ |
/* if((ficrespop=fopen(filerespop,"w"))==NULL) { */ |
/* fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */ |
/* printf("Problem with forecast resultfile: %s\n", filerespop); */ |
|
/* fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */ |
/* } */ |
/* } */ |
/* printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */ |
/* printf("Computing forecasting: result on file '%s' \n", filerespop); */ |
/* fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */ |
/* fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */ |
|
|
/* if (cptcoveff==0) ncodemax[cptcoveff]=1; */ |
/* if (cptcoveff==0) ncodemax[cptcoveff]=1; */ |
|
|
/* /\* if (mobilav!=0) { *\/ */ |
/* /\* if (mobilav!=0) { *\/ */ |
/* /\* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
/* /\* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
/* /\* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */ |
/* /\* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */ |
Line 6676 void prevforecast(char fileres[], double
|
Line 8600 void prevforecast(char fileres[], double
|
/* /\* printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
/* /\* printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
/* /\* } *\/ */ |
/* /\* } *\/ */ |
/* /\* } *\/ */ |
/* /\* } *\/ */ |
|
|
/* stepsize=(int) (stepm+YEARM-1)/YEARM; */ |
/* stepsize=(int) (stepm+YEARM-1)/YEARM; */ |
/* if (stepm<=12) stepsize=1; */ |
/* if (stepm<=12) stepsize=1; */ |
/* if(estepm < stepm){ */ |
|
/* printf ("Problem %d lower than %d\n",estepm, stepm); */ |
|
/* } */ |
|
/* else hstepm=estepm; */ |
|
|
|
/* hstepm=hstepm/stepm; */ |
|
/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */ |
|
/* fractional in yp1 *\/ */ |
|
/* anprojmean=yp; */ |
|
/* yp2=modf((yp1*12),&yp); */ |
|
/* mprojmean=yp; */ |
|
/* yp1=modf((yp2*30.5),&yp); */ |
|
/* jprojmean=yp; */ |
|
/* if(jprojmean==0) jprojmean=1; */ |
|
/* if(mprojmean==0) jprojmean=1; */ |
|
|
|
/* i1=cptcoveff; */ |
|
/* if (cptcovn < 1){i1=1;} */ |
|
|
|
/* fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); */ |
/* agelim=AGESUP; */ |
|
|
/* fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */ |
/* hstepm=1; */ |
|
/* hstepm=hstepm/stepm; */ |
|
|
/* /\* if (h==(int)(YEARM*yearp)){ *\/ */ |
/* if (popforecast==1) { */ |
/* for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */ |
/* if((ficpop=fopen(popfile,"r"))==NULL) { */ |
|
/* printf("Problem with population file : %s\n",popfile);exit(0); */ |
|
/* fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */ |
|
/* } */ |
|
/* popage=ivector(0,AGESUP); */ |
|
/* popeffectif=vector(0,AGESUP); */ |
|
/* popcount=vector(0,AGESUP); */ |
|
|
|
/* i=1; */ |
|
/* while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */ |
|
|
|
/* imx=i; */ |
|
/* for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */ |
|
/* } */ |
|
|
|
/* for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */ |
/* for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */ |
/* for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */ |
/* k=k+1; */ |
/* k=k+1; */ |
/* fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */ |
/* fprintf(ficrespop,"\n#******"); */ |
/* for(j=1;j<=cptcoveff;j++) { */ |
/* for(j=1;j<=cptcoveff;j++) { */ |
/* fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
/* fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
/* } */ |
/* } */ |
/* fprintf(ficresfb," yearbproj age"); */ |
/* fprintf(ficrespop,"******\n"); */ |
/* for(j=1; j<=nlstate+ndeath;j++){ */ |
/* fprintf(ficrespop,"# Age"); */ |
/* for(i=1; i<=nlstate;i++) */ |
/* for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */ |
/* fprintf(ficresfb," p%d%d",i,j); */ |
/* if (popforecast==1) fprintf(ficrespop," [Population]"); */ |
/* fprintf(ficresfb," p.%d",j); */ |
|
/* } */ |
|
/* for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) { */ |
|
/* /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { *\/ */ |
|
/* fprintf(ficresfb,"\n"); */ |
|
/* fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */ |
|
/* for (agec=fage; agec>=(ageminpar-1); agec--){ */ |
|
/* nhstepm=(int) rint((agelim-agec)*YEARM/stepm); */ |
|
/* nhstepm = nhstepm/hstepm; */ |
|
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* oldm=oldms;savm=savms; */ |
|
/* hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k); */ |
|
/* for (h=0; h<=nhstepm; h++){ */ |
|
/* if (h*hstepm/YEARM*stepm ==yearp) { */ |
|
/* fprintf(ficresfb,"\n"); */ |
|
/* for(j=1;j<=cptcoveff;j++) */ |
|
/* fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
|
/* fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */ |
|
/* } */ |
|
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
|
/* ppij=0.; */ |
|
/* for(i=1; i<=nlstate;i++) { */ |
|
/* if (mobilav==1) */ |
|
/* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */ |
|
/* else { */ |
|
/* ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */ |
|
/* } */ |
|
/* if (h*hstepm/YEARM*stepm== yearp) { */ |
|
/* fprintf(ficresfb," %.3f", p3mat[i][j][h]); */ |
|
/* } */ |
|
/* } /\* end i *\/ */ |
|
/* if (h*hstepm/YEARM*stepm==yearp) { */ |
|
/* fprintf(ficresfb," %.3f", ppij); */ |
|
/* } */ |
|
/* }/\* end j *\/ */ |
|
/* } /\* end h *\/ */ |
|
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* } /\* end agec *\/ */ |
|
/* } /\* end yearp *\/ */ |
|
/* } /\* end cptcod *\/ */ |
|
/* } /\* end cptcov *\/ */ |
|
|
|
/* /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
|
|
/* fclose(ficresfb); */ |
|
/* printf("End of Computing Back forecasting \n"); */ |
|
/* fprintf(ficlog,"End of Computing Back forecasting\n"); */ |
|
|
|
/* } */ |
|
|
|
/************** Forecasting *****not tested NB*************/ |
|
void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ |
|
|
|
int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; |
|
int *popage; |
|
double calagedatem, agelim, kk1, kk2; |
|
double *popeffectif,*popcount; |
|
double ***p3mat,***tabpop,***tabpopprev; |
|
/* double ***mobaverage; */ |
|
char filerespop[FILENAMELENGTH]; |
|
|
|
tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
agelim=AGESUP; |
|
calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; |
|
|
|
prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
|
|
|
|
|
strcpy(filerespop,"POP_"); |
|
strcat(filerespop,fileresu); |
|
if((ficrespop=fopen(filerespop,"w"))==NULL) { |
|
printf("Problem with forecast resultfile: %s\n", filerespop); |
|
fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); |
|
} |
|
printf("Computing forecasting: result on file '%s' \n", filerespop); |
|
fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); |
|
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
|
|
|
/* if (mobilav!=0) { */ |
|
/* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ */ |
|
/* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */ |
|
/* printf(" Error in movingaverage mobilav=%d\n",mobilav); */ |
|
/* } */ |
|
/* } */ |
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
|
if (stepm<=12) stepsize=1; |
|
|
|
agelim=AGESUP; |
|
|
|
hstepm=1; |
|
hstepm=hstepm/stepm; |
|
|
|
if (popforecast==1) { |
|
if((ficpop=fopen(popfile,"r"))==NULL) { |
|
printf("Problem with population file : %s\n",popfile);exit(0); |
|
fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); |
|
} |
|
popage=ivector(0,AGESUP); |
|
popeffectif=vector(0,AGESUP); |
|
popcount=vector(0,AGESUP); |
|
|
|
i=1; |
|
while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; |
|
|
|
imx=i; |
|
for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; |
|
} |
|
|
|
for(cptcov=1,k=0;cptcov<=i2;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
|
k=k+1; |
|
fprintf(ficrespop,"\n#******"); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficrespop,"******\n"); |
|
fprintf(ficrespop,"# Age"); |
|
for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); |
|
if (popforecast==1) fprintf(ficrespop," [Population]"); |
|
|
|
for (cpt=0; cpt<=0;cpt++) { |
/* for (cpt=0; cpt<=0;cpt++) { */ |
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
/* fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); */ |
|
|
for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
/* for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ */ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); */ |
nhstepm = nhstepm/hstepm; |
/* nhstepm = nhstepm/hstepm; */ |
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
oldm=oldms;savm=savms; |
/* oldm=oldms;savm=savms; */ |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
/* hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
|
|
for (h=0; h<=nhstepm; h++){ |
/* for (h=0; h<=nhstepm; h++){ */ |
if (h==(int) (calagedatem+YEARM*cpt)) { |
/* if (h==(int) (calagedatem+YEARM*cpt)) { */ |
fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
/* fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */ |
} |
/* } */ |
for(j=1; j<=nlstate+ndeath;j++) { |
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
kk1=0.;kk2=0; |
/* kk1=0.;kk2=0; */ |
for(i=1; i<=nlstate;i++) { |
/* for(i=1; i<=nlstate;i++) { */ |
if (mobilav==1) |
/* if (mobilav==1) */ |
kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; |
/* kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */ |
else { |
/* else { */ |
kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; |
/* kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */ |
} |
/* } */ |
} |
/* } */ |
if (h==(int)(calagedatem+12*cpt)){ |
/* if (h==(int)(calagedatem+12*cpt)){ */ |
tabpop[(int)(agedeb)][j][cptcod]=kk1; |
/* tabpop[(int)(agedeb)][j][cptcod]=kk1; */ |
/*fprintf(ficrespop," %.3f", kk1); |
/* /\*fprintf(ficrespop," %.3f", kk1); */ |
if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ |
/* if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */ |
} |
/* } */ |
} |
/* } */ |
for(i=1; i<=nlstate;i++){ |
/* for(i=1; i<=nlstate;i++){ */ |
kk1=0.; |
/* kk1=0.; */ |
for(j=1; j<=nlstate;j++){ |
/* for(j=1; j<=nlstate;j++){ */ |
kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; |
/* kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; */ |
} |
/* } */ |
tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; |
/* tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */ |
} |
/* } */ |
|
|
if (h==(int)(calagedatem+12*cpt)) |
/* if (h==(int)(calagedatem+12*cpt)) */ |
for(j=1; j<=nlstate;j++) |
/* for(j=1; j<=nlstate;j++) */ |
fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); |
/* fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */ |
} |
/* } */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
} |
/* } */ |
} |
/* } */ |
|
|
/******/ |
/* /\******\/ */ |
|
|
for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { |
/* for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { */ |
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
/* fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); */ |
for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
/* for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ */ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); */ |
nhstepm = nhstepm/hstepm; |
/* nhstepm = nhstepm/hstepm; */ |
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
oldm=oldms;savm=savms; |
/* oldm=oldms;savm=savms; */ |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
/* hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
for (h=0; h<=nhstepm; h++){ |
/* for (h=0; h<=nhstepm; h++){ */ |
if (h==(int) (calagedatem+YEARM*cpt)) { |
/* if (h==(int) (calagedatem+YEARM*cpt)) { */ |
fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
/* fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */ |
} |
/* } */ |
for(j=1; j<=nlstate+ndeath;j++) { |
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
kk1=0.;kk2=0; |
/* kk1=0.;kk2=0; */ |
for(i=1; i<=nlstate;i++) { |
/* for(i=1; i<=nlstate;i++) { */ |
kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; |
/* kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; */ |
} |
/* } */ |
if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); |
/* if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); */ |
} |
/* } */ |
} |
/* } */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
} |
/* } */ |
} |
/* } */ |
} |
/* } */ |
} |
/* } */ |
|
|
/* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
/* /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
|
if (popforecast==1) { |
/* if (popforecast==1) { */ |
free_ivector(popage,0,AGESUP); |
/* free_ivector(popage,0,AGESUP); */ |
free_vector(popeffectif,0,AGESUP); |
/* free_vector(popeffectif,0,AGESUP); */ |
free_vector(popcount,0,AGESUP); |
/* free_vector(popcount,0,AGESUP); */ |
} |
/* } */ |
free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
/* free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
/* free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
fclose(ficrespop); |
/* fclose(ficrespop); */ |
} /* End of popforecast */ |
/* } /\* End of popforecast *\/ */ |
|
|
int fileappend(FILE *fichier, char *optionfich) |
int fileappend(FILE *fichier, char *optionfich) |
{ |
{ |
Line 7190 int readdata(char datafile[], int firsto
|
Line 8989 int readdata(char datafile[], int firsto
|
/*-------- data file ----------*/ |
/*-------- data file ----------*/ |
FILE *fic; |
FILE *fic; |
char dummy[]=" "; |
char dummy[]=" "; |
int i=0, j=0, n=0, iv=0; |
int i=0, j=0, n=0, iv=0, v; |
int lstra; |
int lstra; |
int linei, month, year,iout; |
int linei, month, year,iout; |
char line[MAXLINE], linetmp[MAXLINE]; |
char line[MAXLINE], linetmp[MAXLINE]; |
char stra[MAXLINE], strb[MAXLINE]; |
char stra[MAXLINE], strb[MAXLINE]; |
char *stratrunc; |
char *stratrunc; |
|
|
|
DummyV=ivector(1,NCOVMAX); /* 1 to 3 */ |
|
FixedV=ivector(1,NCOVMAX); /* 1 to 3 */ |
|
|
|
for(v=1; v <=ncovcol;v++){ |
|
DummyV[v]=0; |
|
FixedV[v]=0; |
|
} |
|
for(v=ncovcol+1; v <=ncovcol+nqv;v++){ |
|
DummyV[v]=1; |
|
FixedV[v]=0; |
|
} |
|
for(v=ncovcol+nqv+1; v <=ncovcol+nqv+ntv;v++){ |
|
DummyV[v]=0; |
|
FixedV[v]=1; |
|
} |
|
for(v=ncovcol+nqv+ntv+1; v <=ncovcol+nqv+ntv+nqtv;v++){ |
|
DummyV[v]=1; |
|
FixedV[v]=1; |
|
} |
|
for(v=1; v <=ncovcol+nqv+ntv+nqtv;v++){ |
|
printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]); |
|
fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]); |
|
} |
|
|
if((fic=fopen(datafile,"r"))==NULL) { |
if((fic=fopen(datafile,"r"))==NULL) { |
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
Line 7227 int readdata(char datafile[], int firsto
|
Line 9048 int readdata(char datafile[], int firsto
|
/* Loops on waves */ |
/* Loops on waves */ |
for (j=maxwav;j>=1;j--){ |
for (j=maxwav;j>=1;j--){ |
for (iv=nqtv;iv>=1;iv--){ /* Loop on time varying quantitative variables */ |
for (iv=nqtv;iv>=1;iv--){ /* Loop on time varying quantitative variables */ |
cutv(stra, strb, line, ' '); |
cutv(stra, strb, line, ' '); |
if(strb[0]=='.') { /* Missing value */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
}else{ |
cotqvar[j][iv][i]=-1; /* 0.0/0.0 */ |
errno=0; |
cotvar[j][ntv+iv][i]=-1; /* For performance reasons */ |
/* what_kind_of_number(strb); */ |
if(isalpha(strb[1])) { /* .m or .d Really Missing value */ |
dval=strtod(strb,&endptr); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j); |
/* if( strb[0]=='\0' || (*endptr != '\0')){ */ |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog); |
/* if(strb != endptr && *endptr == '\0') */ |
return 1; |
/* dval=dlval; */ |
} |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
}else{ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
errno=0; |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav); |
/* what_kind_of_number(strb); */ |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog); |
dval=strtod(strb,&endptr); |
return 1; |
/* if( strb[0]=='\0' || (*endptr != '\0')){ */ |
} |
/* if(strb != endptr && *endptr == '\0') */ |
cotqvar[j][iv][i]=dval; |
/* dval=dlval; */ |
} |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
strcpy(line,stra); |
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog); |
|
return 1; |
|
} |
|
cotqvar[j][iv][i]=dval; |
|
cotvar[j][ntv+iv][i]=dval; |
|
} |
|
strcpy(line,stra); |
}/* end loop ntqv */ |
}/* end loop ntqv */ |
|
|
for (iv=ntv;iv>=1;iv--){ /* Loop on time varying dummies */ |
for (iv=ntv;iv>=1;iv--){ /* Loop on time varying dummies */ |
cutv(stra, strb, line, ' '); |
cutv(stra, strb, line, ' '); |
if(strb[0]=='.') { /* Missing value */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
}else{ |
}else{ |
errno=0; |
errno=0; |
lval=strtol(strb,&endptr,10); |
lval=strtol(strb,&endptr,10); |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
} |
} |
if(lval <-1 || lval >1){ |
if(lval <-1 || lval >1){ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j); |
Exiting.\n",lval,linei, i,line,j); |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
cotvar[j][iv][i]=(double)(lval); |
cotvar[j][iv][i]=(double)(lval); |
strcpy(line,stra); |
strcpy(line,stra); |
}/* end loop ntv */ |
}/* end loop ntv */ |
|
|
/* Statuses at wave */ |
/* Statuses at wave */ |
cutv(stra, strb, line, ' '); |
cutv(stra, strb, line, ' '); |
if(strb[0]=='.') { /* Missing value */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
}else{ |
}else{ |
errno=0; |
errno=0; |
lval=strtol(strb,&endptr,10); |
lval=strtol(strb,&endptr,10); |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
} |
} |
|
|
s[j][i]=lval; |
s[j][i]=lval; |
|
|
/* Date of Interview */ |
/* Date of Interview */ |
strcpy(line,stra); |
strcpy(line,stra); |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
} |
} |
else if( (iout=sscanf(strb,"%s.",dummy)) != 0){ |
else if( (iout=sscanf(strb,"%s.",dummy)) != 0){ |
month=99; |
month=99; |
year=9999; |
year=9999; |
}else{ |
}else{ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
anint[j][i]= (double) year; |
anint[j][i]= (double) year; |
mint[j][i]= (double)month; |
mint[j][i]= (double)month; |
strcpy(line,stra); |
strcpy(line,stra); |
} /* End loop on waves */ |
} /* End loop on waves */ |
|
|
/* Date of death */ |
/* Date of death */ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
Line 7331 int readdata(char datafile[], int firsto
|
Line 9160 int readdata(char datafile[], int firsto
|
year=9999; |
year=9999; |
}else{ |
}else{ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
andc[i]=(double) year; |
andc[i]=(double) year; |
moisdc[i]=(double) month; |
moisdc[i]=(double) month; |
Line 7348 int readdata(char datafile[], int firsto
|
Line 9177 int readdata(char datafile[], int firsto
|
}else{ |
}else{ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
if (year==9999) { |
if (year==9999) { |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog); |
return 1; |
return 1; |
|
|
} |
} |
annais[i]=(double)(year); |
annais[i]=(double)(year); |
moisnais[i]=(double)(month); |
moisnais[i]=(double)(month); |
strcpy(line,stra); |
strcpy(line,stra); |
|
|
/* Sample weight */ |
/* Sample weight */ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
errno=0; |
errno=0; |
Line 7372 int readdata(char datafile[], int firsto
|
Line 9201 int readdata(char datafile[], int firsto
|
} |
} |
weight[i]=dval; |
weight[i]=dval; |
strcpy(line,stra); |
strcpy(line,stra); |
|
|
for (iv=nqv;iv>=1;iv--){ /* Loop on fixed quantitative variables */ |
for (iv=nqv;iv>=1;iv--){ /* Loop on fixed quantitative variables */ |
cutv(stra, strb, line, ' '); |
cutv(stra, strb, line, ' '); |
if(strb[0]=='.') { /* Missing value */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
}else{ |
}else{ |
errno=0; |
errno=0; |
/* what_kind_of_number(strb); */ |
/* what_kind_of_number(strb); */ |
dval=strtod(strb,&endptr); |
dval=strtod(strb,&endptr); |
/* if(strb != endptr && *endptr == '\0') */ |
/* if(strb != endptr && *endptr == '\0') */ |
/* dval=dlval; */ |
/* dval=dlval; */ |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
coqvar[iv][i]=dval; |
coqvar[iv][i]=dval; |
|
covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ |
} |
} |
strcpy(line,stra); |
strcpy(line,stra); |
}/* end loop nqv */ |
}/* end loop nqv */ |
Line 7398 int readdata(char datafile[], int firsto
|
Line 9228 int readdata(char datafile[], int firsto
|
for (j=ncovcol;j>=1;j--){ |
for (j=ncovcol;j>=1;j--){ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if(strb[0]=='.') { /* Missing covariate value */ |
if(strb[0]=='.') { /* Missing covariate value */ |
lval=-1; |
lval=-1; |
}else{ |
}else{ |
errno=0; |
errno=0; |
lval=strtol(strb,&endptr,10); |
lval=strtol(strb,&endptr,10); |
if( strb[0]=='\0' || (*endptr != '\0')){ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line); |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line); |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
} |
} |
if(lval <-1 || lval >1){ |
if(lval <-1 || lval >1){ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j); |
Exiting.\n",lval,linei, i,line,j); |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
covar[j][i]=(double)(lval); |
covar[j][i]=(double)(lval); |
strcpy(line,stra); |
strcpy(line,stra); |
} |
} |
lstra=strlen(stra); |
lstra=strlen(stra); |
|
|
if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */ |
if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */ |
stratrunc = &(stra[lstra-9]); |
stratrunc = &(stra[lstra-9]); |
num[i]=atol(stratrunc); |
num[i]=atol(stratrunc); |
Line 7445 int readdata(char datafile[], int firsto
|
Line 9275 int readdata(char datafile[], int firsto
|
|
|
i=i+1; |
i=i+1; |
} /* End loop reading data */ |
} /* End loop reading data */ |
|
|
*imax=i-1; /* Number of individuals */ |
*imax=i-1; /* Number of individuals */ |
fclose(fic); |
fclose(fic); |
|
|
return (0); |
return (0); |
/* endread: */ |
/* endread: */ |
printf("Exiting readdata: "); |
printf("Exiting readdata: "); |
fclose(fic); |
fclose(fic); |
return (1); |
return (1); |
} |
} |
|
|
void removespace(char *str) { |
void removefirstspace(char **stri){/*, char stro[]) {*/ |
char *p1 = str, *p2 = str; |
char *p1 = *stri, *p2 = *stri; |
do |
while (*p2 == ' ') |
while (*p2 == ' ') |
p2++; |
p2++; |
/* while ((*p1++ = *p2++) !=0) */ |
while (*p1++ == *p2++); |
/* ; */ |
} |
/* do */ |
|
/* while (*p2 == ' ') */ |
int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns: |
/* p2++; */ |
* Model V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age |
/* while (*p1++ == *p2++); */ |
* - nagesqr = 1 if age*age in the model, otherwise 0. |
*stri=p2; |
* - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age |
} |
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
|
* - cptcovage number of covariates with age*products =2 |
int decoderesult ( char resultline[], int nres) |
* - cptcovs number of simple covariates |
/**< This routine decode one result line and returns the combination # of dummy covariates only **/ |
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
{ |
* which is a new column after the 9 (ncovcol) variables. |
int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0; |
* - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual |
char resultsav[MAXLINE]; |
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
int resultmodel[MAXLINE]; |
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
int modelresult[MAXLINE]; |
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
*/ |
|
|
removefirstspace(&resultline); |
|
printf("decoderesult:%s\n",resultline); |
|
|
|
if (strstr(resultline,"v") !=0){ |
|
printf("Error. 'v' must be in upper case 'V' result: %s ",resultline); |
|
fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog); |
|
return 1; |
|
} |
|
trimbb(resultsav, resultline); |
|
if (strlen(resultsav) >1){ |
|
j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */ |
|
} |
|
if(j == 0){ /* Resultline but no = */ |
|
TKresult[nres]=0; /* Combination for the nresult and the model */ |
|
return (0); |
|
} |
|
|
|
if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */ |
|
printf("ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs); |
|
fprintf(ficlog,"ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs); |
|
} |
|
for(k=1; k<=j;k++){ /* Loop on any covariate of the result line */ |
|
if(nbocc(resultsav,'=') >1){ |
|
cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' |
|
resultsav= V4=1 V5=25.1 V3=0 strb=V3=0 stra= V4=1 V5=25.1 */ |
|
cutl(strc,strd,strb,'='); /* strb:V4=1 strc=1 strd=V4 */ |
|
}else |
|
cutl(strc,strd,resultsav,'='); |
|
Tvalsel[k]=atof(strc); /* 1 */ |
|
|
|
cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */; |
|
Tvarsel[k]=atoi(strc); |
|
/* Typevarsel[k]=1; /\* 1 for age product *\/ */ |
|
/* cptcovsel++; */ |
|
if (nbocc(stra,'=') >0) |
|
strcpy(resultsav,stra); /* and analyzes it */ |
|
} |
|
/* Checking for missing or useless values in comparison of current model needs */ |
|
for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
if(Typevar[k1]==0){ /* Single covariate in model */ |
|
match=0; |
|
for(k2=1; k2 <=j;k2++){/* result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
if(Tvar[k1]==Tvarsel[k2]) {/* Tvar[1]=5 == Tvarsel[2]=5 */ |
|
modelresult[k2]=k1;/* modelresult[2]=1 modelresult[1]=2 modelresult[3]=3 modelresult[6]=4 modelresult[9]=5 */ |
|
match=1; |
|
break; |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model); |
|
} |
|
} |
|
} |
|
/* Checking for missing or useless values in comparison of current model needs */ |
|
for(k2=1; k2 <=j;k2++){ /* result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
match=0; |
|
for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
if(Typevar[k1]==0){ /* Single */ |
|
if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4 */ |
|
resultmodel[k1]=k2; /* resultmodel[2]=1 resultmodel[1]=2 resultmodel[3]=3 resultmodel[6]=4 resultmodel[9]=5 */ |
|
++match; |
|
} |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model); |
|
}else if(match > 1){ |
|
printf("Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model); |
|
} |
|
} |
|
|
|
/* We need to deduce which combination number is chosen and save quantitative values */ |
|
/* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
/* result line V4=1 V5=25.1 V3=0 V2=8 V1=1 */ |
|
/* should give a combination of dummy V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 5 + (1offset) = 6*/ |
|
/* result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
/* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/ |
|
/* 1 0 0 0 */ |
|
/* 2 1 0 0 */ |
|
/* 3 0 1 0 */ |
|
/* 4 1 1 0 */ /* V4=1, V3=1, V1=0 */ |
|
/* 5 0 0 1 */ |
|
/* 6 1 0 1 */ /* V4=1, V3=0, V1=1 */ |
|
/* 7 0 1 1 */ |
|
/* 8 1 1 1 */ |
|
/* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */ |
|
/* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */ |
|
/* V5*age V5 known which value for nres? */ |
|
/* Tqinvresult[2]=8 Tqinvresult[1]=25.1 */ |
|
for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* model line */ |
|
if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Single dummy */ |
|
k3= resultmodel[k1]; /* resultmodel[2(V4)] = 1=k3 */ |
|
k2=(int)Tvarsel[k3]; /* Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */ |
|
k+=Tvalsel[k3]*pow(2,k4); /* Tvalsel[1]=1 */ |
|
Tresult[nres][k4+1]=Tvalsel[k3];/* Tresult[nres][1]=1(V4=1) Tresult[nres][2]=0(V3=0) */ |
|
Tvresult[nres][k4+1]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */ |
|
Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */ |
|
printf("Decoderesult Dummy k=%d, V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k2, k3, (int)Tvalsel[k3], k4); |
|
k4++;; |
|
} else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Single quantitative */ |
|
k3q= resultmodel[k1]; /* resultmodel[2] = 1=k3 */ |
|
k2q=(int)Tvarsel[k3q]; /* Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */ |
|
Tqresult[nres][k4q+1]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */ |
|
Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */ |
|
Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */ |
|
printf("Decoderesult Quantitative nres=%d, V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); |
|
k4q++;; |
|
} |
|
} |
|
|
|
TKresult[nres]=++k; /* Combination for the nresult and the model */ |
|
return (0); |
|
} |
|
|
|
int decodemodel( char model[], int lastobs) |
|
/**< This routine decodes the model and returns: |
|
* Model V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age |
|
* - nagesqr = 1 if age*age in the model, otherwise 0. |
|
* - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age |
|
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
|
* - cptcovage number of covariates with age*products =2 |
|
* - cptcovs number of simple covariates |
|
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
|
* which is a new column after the 9 (ncovcol) variables. |
|
* - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual |
|
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
|
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
|
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
|
*/ |
{ |
{ |
int i, j, k, ks; |
int i, j, k, ks, v; |
int j1, k1, k2; |
int j1, k1, k2, k3, k4; |
char modelsav[80]; |
char modelsav[80]; |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
char *strpt; |
char *strpt; |
Line 7502 int decodemodel ( char model[], int last
|
Line 9461 int decodemodel ( char model[], int last
|
if ((strpt=strstr(model,"age*age")) !=0){ |
if ((strpt=strstr(model,"age*age")) !=0){ |
printf(" strpt=%s, model=%s\n",strpt, model); |
printf(" strpt=%s, model=%s\n",strpt, model); |
if(strpt != model){ |
if(strpt != model){ |
printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
corresponding column of parameters.\n",model); |
corresponding column of parameters.\n",model); |
fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
corresponding column of parameters.\n",model); fflush(ficlog); |
corresponding column of parameters.\n",model); fflush(ficlog); |
return 1; |
return 1; |
} |
} |
|
|
nagesqr=1; |
nagesqr=1; |
if (strstr(model,"+age*age") !=0) |
if (strstr(model,"+age*age") !=0) |
substrchaine(modelsav, model, "+age*age"); |
substrchaine(modelsav, model, "+age*age"); |
Line 7523 int decodemodel ( char model[], int last
|
Line 9481 int decodemodel ( char model[], int last
|
if (strlen(modelsav) >1){ |
if (strlen(modelsav) >1){ |
j=nbocc(modelsav,'+'); /**< j=Number of '+' */ |
j=nbocc(modelsav,'+'); /**< j=Number of '+' */ |
j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */ |
j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */ |
cptcovs=j+1-j1; /**< Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2 */ |
cptcovs=j+1-j1; /**< Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2 */ |
cptcovt= j+1; /* Number of total covariates in the model, not including |
cptcovt= j+1; /* Number of total covariates in the model, not including |
* cst, age and age*age |
* cst, age and age*age |
* V1+V1*age+ V3 + V3*V4+age*age=> 4*/ |
* V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/ |
/* including age products which are counted in cptcovage. |
/* including age products which are counted in cptcovage. |
* but the covariates which are products must be treated |
* but the covariates which are products must be treated |
* separately: ncovn=4- 2=2 (V1+V3). */ |
* separately: ncovn=4- 2=2 (V1+V3). */ |
cptcovprod=j1; /**< Number of products V1*V2 +v3*age = 2 */ |
cptcovprod=j1; /**< Number of products V1*V2 +v3*age = 2 */ |
cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */ |
cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */ |
|
|
|
|
/* Design |
/* Design |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight |
* < ncovcol=8 > |
* < ncovcol=8 > |
Line 7541 int decodemodel ( char model[], int last
|
Line 9499 int decodemodel ( char model[], int last
|
* k= 1 2 3 4 5 6 7 8 |
* k= 1 2 3 4 5 6 7 8 |
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
* covar[k,i], value of kth covariate if not including age for individual i: |
* covar[k,i], value of kth covariate if not including age for individual i: |
* covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8) |
* covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8) |
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[4]=3 Tvar[8]=8 |
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[2]=1 Tvar[4]=3 Tvar[8]=8 |
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
* Tage[++cptcovage]=k |
* Tage[++cptcovage]=k |
* if products, new covar are created after ncovcol with k1 |
* if products, new covar are created after ncovcol with k1 |
Line 7567 int decodemodel ( char model[], int last
|
Line 9525 int decodemodel ( char model[], int last
|
* {2, 1, 4, 8, 5, 6, 3, 7} |
* {2, 1, 4, 8, 5, 6, 3, 7} |
* Struct [] |
* Struct [] |
*/ |
*/ |
|
|
/* This loop fills the array Tvar from the string 'model'.*/ |
/* This loop fills the array Tvar from the string 'model'.*/ |
/* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */ |
/* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */ |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 */ |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 */ |
Line 7582 int decodemodel ( char model[], int last
|
Line 9540 int decodemodel ( char model[], int last
|
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */ |
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */ |
/* |
/* |
* Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */ |
* Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */ |
for(k=cptcovt; k>=1;k--) /**< Number of covariates */ |
for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/ |
Tvar[k]=0; |
Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0; |
|
} |
cptcovage=0; |
cptcovage=0; |
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */ |
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */ |
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' |
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' |
modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ |
modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ |
if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ |
if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
/*scanf("%d",i);*/ |
/*scanf("%d",i);*/ |
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */ |
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */ |
cutl(strc,strd,strb,'*'); /**< strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */ |
cutl(strc,strd,strb,'*'); /**< strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */ |
if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */ |
if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */ |
/* covar is not filled and then is empty */ |
/* covar is not filled and then is empty */ |
cptcovprod--; |
cptcovprod--; |
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
Tvar[k]=atoi(stre); /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
Tvar[k]=atoi(stre); /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
cptcovage++; /* Sums the number of covariates which include age as a product */ |
Typevar[k]=1; /* 1 for age product */ |
Tage[cptcovage]=k; /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
cptcovage++; /* Sums the number of covariates which include age as a product */ |
/*printf("stre=%s ", stre);*/ |
Tage[cptcovage]=k; /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
} else if (strcmp(strd,"age")==0) { /* or age*Vn */ |
/*printf("stre=%s ", stre);*/ |
cptcovprod--; |
} else if (strcmp(strd,"age")==0) { /* or age*Vn */ |
cutl(stre,strb,strc,'V'); |
cptcovprod--; |
Tvar[k]=atoi(stre); |
cutl(stre,strb,strc,'V'); |
cptcovage++; |
Tvar[k]=atoi(stre); |
Tage[cptcovage]=k; |
Typevar[k]=1; /* 1 for age product */ |
} else { /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2 strb=V3*V2*/ |
cptcovage++; |
/* loops on k1=1 (V3*V2) and k1=2 V4*V3 */ |
Tage[cptcovage]=k; |
cptcovn++; |
} else { /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2 strb=V3*V2*/ |
cptcovprodnoage++;k1++; |
/* loops on k1=1 (V3*V2) and k1=2 V4*V3 */ |
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
cptcovn++; |
Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but |
cptcovprodnoage++;k1++; |
because this model-covariate is a construction we invent a new column |
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
ncovcol + k1 |
Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2 |
because this model-covariate is a construction we invent a new column |
Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */ |
which is after existing variables ncovcol+nqv+ntv+nqtv + k1 |
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2 |
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ |
Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */ |
Tvard[k1][1] =atoi(strc); /* m 1 for V1*/ |
Typevar[k]=2; /* 2 for double fixed dummy covariates */ |
Tvard[k1][2] =atoi(stre); /* n 4 for V4*/ |
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
k2=k2+2; |
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ |
Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */ |
Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */ |
Tvar[cptcovt+k2+1]=Tvard[k1][2]; /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */ |
Tvard[k1][1] =atoi(strc); /* m 1 for V1*/ |
for (i=1; i<=lastobs;i++){ |
Tvard[k1][2] =atoi(stre); /* n 4 for V4*/ |
/* Computes the new covariate which is a product of |
k2=k2+2; /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */ |
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
/* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */ |
covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
/* Tvar[cptcovt+k2+1]=Tvard[k1][2]; /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */ |
} |
/*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */ |
} /* End age is not in the model */ |
/* 1 2 3 4 5 | Tvar[5+1)=1, Tvar[7]=2 */ |
} /* End if model includes a product */ |
for (i=1; i<=lastobs;i++){ |
else { /* no more sum */ |
/* Computes the new covariate which is a product of |
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
/* scanf("%d",i);*/ |
covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
cutl(strd,strc,strb,'V'); |
} |
ks++; /**< Number of simple covariates */ |
} /* End age is not in the model */ |
cptcovn++; |
} /* End if model includes a product */ |
Tvar[k]=atoi(strd); |
else { /* no more sum */ |
} |
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
strcpy(modelsav,stra); /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ |
/* scanf("%d",i);*/ |
|
cutl(strd,strc,strb,'V'); |
|
ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */ |
|
cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */ |
|
Tvar[k]=atoi(strd); |
|
Typevar[k]=0; /* 0 for simple covariates */ |
|
} |
|
strcpy(modelsav,stra); /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ |
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); |
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); |
scanf("%d",i);*/ |
scanf("%d",i);*/ |
} /* end of loop + on total covariates */ |
} /* end of loop + on total covariates */ |
} /* end if strlen(modelsave == 0) age*age might exist */ |
} /* end if strlen(modelsave == 0) age*age might exist */ |
} /* end if strlen(model == 0) */ |
} /* end if strlen(model == 0) */ |
|
|
/*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. |
/*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. |
If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ |
If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ |
|
|
/* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); |
/* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); |
printf("cptcovprod=%d ", cptcovprod); |
printf("cptcovprod=%d ", cptcovprod); |
fprintf(ficlog,"cptcovprod=%d ", cptcovprod); |
fprintf(ficlog,"cptcovprod=%d ", cptcovprod); |
|
scanf("%d ",i);*/ |
scanf("%d ",i);*/ |
|
|
|
|
/* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind |
|
of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */ |
|
/* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1 = 5 possible variables data: 2 fixed 3, varying |
|
model= V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place |
|
k = 1 2 3 4 5 6 7 8 9 |
|
Tvar[k]= 5 4 3 1+1+2+1+1=6 5 2 7 1 5 |
|
Typevar[k]= 0 0 0 2 1 0 2 1 1 |
|
Fixed[k] 1 1 1 1 3 0 0 or 2 2 3 |
|
Dummy[k] 1 0 0 0 3 1 1 2 3 |
|
Tmodelind[combination of covar]=k; |
|
*/ |
|
/* Dispatching between quantitative and time varying covariates */ |
|
/* If Tvar[k] >ncovcol it is a product */ |
|
/* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p Vp=Vn*Vm for product */ |
|
/* Computing effective variables, ie used by the model, that is from the cptcovt variables */ |
|
printf("Model=%s\n\ |
|
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
|
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
|
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
|
fprintf(ficlog,"Model=%s\n\ |
|
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
|
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
|
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
|
for(k=1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;} |
|
for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */ |
|
if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */ |
|
Fixed[k]= 0; |
|
Dummy[k]= 0; |
|
ncoveff++; |
|
ncovf++; |
|
nsd++; |
|
modell[k].maintype= FTYPE; |
|
TvarsD[nsd]=Tvar[k]; |
|
TvarsDind[nsd]=k; |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
}else if( Tvar[k] <=ncovcol && Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */ |
|
Fixed[k]= 0; |
|
Dummy[k]= 0; |
|
ncoveff++; |
|
ncovf++; |
|
modell[k].maintype= FTYPE; |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
}else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */ |
|
Fixed[k]= 0; |
|
Dummy[k]= 1; |
|
nqfveff++; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FQ; |
|
nsq++; |
|
TvarsQ[nsq]=Tvar[k]; |
|
TvarsQind[nsq]=k; |
|
ncovf++; |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
ntveff++; /* Only simple time varying dummy variable */ |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VD; |
|
nsd++; |
|
TvarsD[nsd]=Tvar[k]; |
|
TvarsDind[nsd]=k; |
|
ncovv++; /* Only simple time varying variables */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; /* TvarVind[2]=2 TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
|
TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4 TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ |
|
TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ |
|
printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv); |
|
printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv); |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
nqtveff++; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VQ; |
|
ncovv++; /* Only simple time varying variables */ |
|
nsq++; |
|
TvarsQ[nsq]=Tvar[k]; |
|
TvarsQind[nsq]=k; |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
|
TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */ |
|
/* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */ |
|
printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv); |
|
printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv); |
|
}else if (Typevar[k] == 1) { /* product with age */ |
|
ncova++; |
|
TvarA[ncova]=Tvar[k]; |
|
TvarAind[ncova]=k; |
|
if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */ |
|
Fixed[k]= 2; |
|
Dummy[k]= 2; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APFD; |
|
/* ncoveff++; */ |
|
}else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/ |
|
Fixed[k]= 2; |
|
Dummy[k]= 3; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APFQ; /* Product age * fixed quantitative */ |
|
/* nqfveff++; /\* Only simple fixed quantitative variable *\/ */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv ){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 2; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APVD; /* Product age * varying dummy */ |
|
/* ntveff++; /\* Only simple time varying dummy variable *\/ */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 3; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APVQ; /* Product age * varying quantitative */ |
|
/* nqtveff++;/\* Only simple time varying quantitative variable *\/ */ |
|
} |
|
}else if (Typevar[k] == 2) { /* product without age */ |
|
k1=Tposprod[k]; |
|
if(Tvard[k1][1] <=ncovcol){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDD; /* Product fixed dummy * fixed dummy */ |
|
ncovf++; /* Fixed variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 0; /* or 2 ?*/ |
|
Dummy[k]= 1; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed dummy * fixed quantitative */ |
|
ncovf++; /* Varying variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product fixed dummy * varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed dummy * varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 0; /* or 2 ?*/ |
|
Dummy[k]= 1; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed quantitative * fixed dummy */ |
|
ncovf++; /* Fixed variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed quantitative * varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product fixed quantitative * varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * fixed dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * fixed quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * time varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * time varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * fixed dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * fixed quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * time varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * time varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else{ |
|
printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
} /*end k1*/ |
|
}else{ |
|
printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
|
fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
|
} |
|
printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
|
printf(" modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype); |
|
fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
|
} |
|
/* Searching for doublons in the model */ |
|
for(k1=1; k1<= cptcovt;k1++){ |
|
for(k2=1; k2 <k1;k2++){ |
|
if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ |
|
if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */ |
|
if(Tvar[k1]==Tvar[k2]){ |
|
printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
|
fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
|
return(1); |
|
} |
|
}else if (Typevar[k1] ==2){ |
|
k3=Tposprod[k1]; |
|
k4=Tposprod[k2]; |
|
if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){ |
|
printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
|
fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
|
return(1); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn); |
|
fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn); |
|
printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq); |
|
fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq); |
return (0); /* with covar[new additional covariate if product] and Tage if age */ |
return (0); /* with covar[new additional covariate if product] and Tage if age */ |
/*endread:*/ |
/*endread:*/ |
printf("Exiting decodemodel: "); |
printf("Exiting decodemodel: "); |
return (1); |
return (1); |
} |
} |
|
|
int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn ) |
int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn ) |
{ |
{/* Check ages at death */ |
int i, m; |
int i, m; |
int firstone=0; |
int firstone=0; |
|
|
Line 7678 int calandcheckages(int imx, int maxwav,
|
Line 9939 int calandcheckages(int imx, int maxwav,
|
*nberr = *nberr + 1; |
*nberr = *nberr + 1; |
if(firstone == 0){ |
if(firstone == 0){ |
firstone=1; |
firstone=1; |
printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m); |
printf("Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\nOther similar cases in log file\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m); |
} |
} |
fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m); |
fprintf(ficlog,"Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m); |
s[m][i]=-1; |
s[m][i]=-1; /* Droping the death status */ |
} |
} |
if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ |
if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ |
(*nberr)++; |
(*nberr)++; |
printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); |
printf("Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\nOther similar cases in log file\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m); |
fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); |
fprintf(ficlog,"Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m); |
s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */ |
s[m][i]=-2; /* We prefer to skip it (and to skip it in version 0.8a1 too */ |
} |
} |
} |
} |
} |
} |
Line 7970 void syscompilerinfo(int logged)
|
Line 10231 void syscompilerinfo(int logged)
|
|
|
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){ |
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){ |
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
int i, j, k, i1 ; |
int i, j, k, i1, k4=0, nres=0 ; |
/* double ftolpl = 1.e-10; */ |
/* double ftolpl = 1.e-10; */ |
double age, agebase, agelim; |
double age, agebase, agelim; |
double tot; |
double tot; |
Line 7981 int prevalence_limit(double *p, double *
|
Line 10242 int prevalence_limit(double *p, double *
|
printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
} |
} |
printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl); |
printf("\nComputing period (stable) prevalence: result on file '%s' \n", filerespl); |
fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl); |
fprintf(ficlog,"\nComputing period (stable) prevalence: result on file '%s' \n", filerespl); |
pstamp(ficrespl); |
pstamp(ficrespl); |
fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficrespl,"#Age "); |
fprintf(ficrespl,"#Age "); |
Line 7994 int prevalence_limit(double *p, double *
|
Line 10255 int prevalence_limit(double *p, double *
|
agebase=ageminpar; |
agebase=ageminpar; |
agelim=agemaxpar; |
agelim=agemaxpar; |
|
|
i1=pow(2,cptcoveff); |
/* i1=pow(2,ncoveff); */ |
|
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
for(k=1; k<=i1;k++){ |
for(k=1; k<=i1;k++){ /* For each combination k of dummy covariates in the model */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
if(i1 != 1 && TKresult[nres]!= k) |
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
continue; |
/* k=k+1; */ |
|
/* to clean */ |
|
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
|
fprintf(ficrespl,"#******"); |
|
printf("#******"); |
|
fprintf(ficlog,"#******"); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficrespl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
if(invalidvarcomb[k]){ |
|
printf("\nCombination (%d) ignored because no cases \n",k); |
|
fprintf(ficrespl,"#Combination (%d) ignored because no cases \n",k); |
|
fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); |
|
continue; |
|
} |
|
|
|
fprintf(ficrespl,"#Age "); |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
for(j=1;j<=cptcoveff;j++) { |
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
} |
/* k=k+1; */ |
for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); |
/* to clean */ |
fprintf(ficrespl,"Total Years_to_converge\n"); |
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
|
fprintf(ficrespl,"#******"); |
for (age=agebase; age<=agelim; age++){ |
printf("#******"); |
/* for (age=agebase; age<=agebase; age++){ */ |
fprintf(ficlog,"#******"); |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k); |
for(j=1;j<=cptcoveff ;j++) {/* all covariates */ |
fprintf(ficrespl,"%.0f ",age ); |
fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/ |
for(j=1;j<=cptcoveff;j++) |
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
tot=0.; |
} |
for(i=1; i<=nlstate;i++){ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
tot += prlim[i][i]; |
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
fprintf(ficrespl," %.5f", prlim[i][i]); |
fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
} |
fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp); |
} |
} /* Age */ |
fprintf(ficrespl,"******\n"); |
/* was end of cptcod */ |
printf("******\n"); |
} /* cptcov */ |
fprintf(ficlog,"******\n"); |
|
if(invalidvarcomb[k]){ |
|
printf("\nCombination (%d) ignored because no case \n",k); |
|
fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); |
|
fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); |
|
continue; |
|
} |
|
|
|
fprintf(ficrespl,"#Age "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); |
|
fprintf(ficrespl,"Total Years_to_converge\n"); |
|
|
|
for (age=agebase; age<=agelim; age++){ |
|
/* for (age=agebase; age<=agebase; age++){ */ |
|
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); |
|
fprintf(ficrespl,"%.0f ",age ); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
tot=0.; |
|
for(i=1; i<=nlstate;i++){ |
|
tot += prlim[i][i]; |
|
fprintf(ficrespl," %.5f", prlim[i][i]); |
|
} |
|
fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp); |
|
} /* Age */ |
|
/* was end of cptcod */ |
|
} /* cptcov */ |
|
} /* nres */ |
return 0; |
return 0; |
} |
} |
|
|
Line 8053 int back_prevalence_limit(double *p, dou
|
Line 10325 int back_prevalence_limit(double *p, dou
|
/* Computes the back prevalence limit for any combination of covariate values |
/* Computes the back prevalence limit for any combination of covariate values |
* at any age between ageminpar and agemaxpar |
* at any age between ageminpar and agemaxpar |
*/ |
*/ |
int i, j, k, i1 ; |
int i, j, k, i1, nres=0 ; |
/* double ftolpl = 1.e-10; */ |
/* double ftolpl = 1.e-10; */ |
double age, agebase, agelim; |
double age, agebase, agelim; |
double tot; |
double tot; |
Line 8083 int back_prevalence_limit(double *p, dou
|
Line 10355 int back_prevalence_limit(double *p, dou
|
|
|
i1=pow(2,cptcoveff); |
i1=pow(2,cptcoveff); |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
for(k=1; k<=i1;k++){ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
if(i1 != 1 && TKresult[nres]!= k) |
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
continue; |
/* k=k+1; */ |
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
/* to clean */ |
fprintf(ficresplb,"#******"); |
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
printf("#******"); |
fprintf(ficresplb,"#******"); |
fprintf(ficlog,"#******"); |
printf("#******"); |
for(j=1;j<=cptcoveff ;j++) {/* all covariates */ |
fprintf(ficlog,"#******"); |
fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
for(j=1;j<=cptcoveff;j++) { |
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
} |
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
} |
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
fprintf(ficresplb,"******\n"); |
fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
printf("******\n"); |
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
fprintf(ficlog,"******\n"); |
} |
if(invalidvarcomb[k]){ |
fprintf(ficresplb,"******\n"); |
printf("\nCombination (%d) ignored because no cases \n",k); |
printf("******\n"); |
fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); |
fprintf(ficlog,"******\n"); |
fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); |
if(invalidvarcomb[k]){ |
continue; |
printf("\nCombination (%d) ignored because no cases \n",k); |
} |
fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); |
|
fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); |
|
continue; |
|
} |
|
|
fprintf(ficresplb,"#Age "); |
fprintf(ficresplb,"#Age "); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
} |
} |
for(i=1; i<=nlstate;i++) fprintf(ficresplb," %d-%d ",i,i); |
for(i=1; i<=nlstate;i++) fprintf(ficresplb," %d-%d ",i,i); |
fprintf(ficresplb,"Total Years_to_converge\n"); |
fprintf(ficresplb,"Total Years_to_converge\n"); |
|
|
|
|
for (age=agebase; age<=agelim; age++){ |
for (age=agebase; age<=agelim; age++){ |
/* for (age=agebase; age<=agebase; age++){ */ |
/* for (age=agebase; age<=agebase; age++){ */ |
if(mobilavproj > 0){ |
if(mobilavproj > 0){ |
/* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
/* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
/* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
/* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k); |
bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k, nres); |
}else if (mobilavproj == 0){ |
}else if (mobilavproj == 0){ |
printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
exit(1); |
exit(1); |
}else{ |
}else{ |
/* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
/* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k); |
bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres); |
} |
/* printf("TOTOT\n"); */ |
fprintf(ficresplb,"%.0f ",age ); |
/* exit(1); */ |
for(j=1;j<=cptcoveff;j++) |
} |
fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresplb,"%.0f ",age ); |
tot=0.; |
for(j=1;j<=cptcoveff;j++) |
for(i=1; i<=nlstate;i++){ |
fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
tot += bprlim[i][i]; |
tot=0.; |
fprintf(ficresplb," %.5f", bprlim[i][i]); |
for(i=1; i<=nlstate;i++){ |
} |
tot += bprlim[i][i]; |
fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp); |
fprintf(ficresplb," %.5f", bprlim[i][i]); |
} /* Age */ |
} |
/* was end of cptcod */ |
fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp); |
} /* cptcov */ |
} /* Age */ |
|
/* was end of cptcod */ |
|
/*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */ |
|
} /* end of any combination */ |
|
} /* end of nres */ |
/* hBijx(p, bage, fage); */ |
/* hBijx(p, bage, fage); */ |
/* fclose(ficrespijb); */ |
/* fclose(ficrespijb); */ |
|
|
Line 8157 int hPijx(double *p, int bage, int fage)
|
Line 10435 int hPijx(double *p, int bage, int fage)
|
int agelim; |
int agelim; |
int hstepm; |
int hstepm; |
int nhstepm; |
int nhstepm; |
int h, i, i1, j, k; |
int h, i, i1, j, k, k4, nres=0; |
|
|
double agedeb; |
double agedeb; |
double ***p3mat; |
double ***p3mat; |
Line 8184 int hPijx(double *p, int bage, int fage)
|
Line 10462 int hPijx(double *p, int bage, int fage)
|
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* k=k+1; */ |
/* k=k+1; */ |
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k=1; k<=i1;k++){ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
fprintf(ficrespij,"\n#****** "); |
fprintf(ficrespij,"\n#****** "); |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
fprintf(ficrespij,"******\n"); |
fprintf(ficrespij,"******\n"); |
|
|
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ |
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ |
Line 8198 int hPijx(double *p, int bage, int fage)
|
Line 10483 int hPijx(double *p, int bage, int fage)
|
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres); |
fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate+ndeath;j++) |
for(j=1; j<=nlstate+ndeath;j++) |
Line 8228 int hPijx(double *p, int bage, int fage)
|
Line 10513 int hPijx(double *p, int bage, int fage)
|
int ageminl; |
int ageminl; |
int hstepm; |
int hstepm; |
int nhstepm; |
int nhstepm; |
int h, i, i1, j, k; |
int h, i, i1, j, k, nres; |
|
|
double agedeb; |
double agedeb; |
double ***p3mat; |
double ***p3mat; |
Line 8251 int hPijx(double *p, int bage, int fage)
|
Line 10536 int hPijx(double *p, int bage, int fage)
|
|
|
/* hstepm=1; aff par mois*/ |
/* hstepm=1; aff par mois*/ |
pstamp(ficrespijb); |
pstamp(ficrespijb); |
fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x "); |
fprintf(ficrespijb,"#****** h Bij x Back probability to be in state i at age x-h being in j at x: B1j+B2j+...=1 "); |
i1= pow(2,cptcoveff); |
i1= pow(2,cptcoveff); |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* k=k+1; */ |
/* k=k+1; */ |
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
fprintf(ficrespijb,"\n#****** "); |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
for(j=1;j<=cptcoveff;j++) |
if(i1 != 1 && TKresult[nres]!= k) |
fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
continue; |
fprintf(ficrespijb,"******\n"); |
fprintf(ficrespijb,"\n#****** "); |
if(invalidvarcomb[k]){ |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); |
fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
continue; |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
} |
fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
/* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */ |
fprintf(ficrespijb,"******\n"); |
for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */ |
if(invalidvarcomb[k]){ /* Is it necessary here? */ |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */ |
fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); |
nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
continue; |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */ |
} |
|
|
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
/* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */ |
|
for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */ |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */ |
/* oldm=oldms;savm=savms; */ |
nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */ |
hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k); |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */ |
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j="); |
|
for(i=1; i<=nlstate;i++) |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */ |
for(j=1; j<=nlstate+ndeath;j++) |
/* and memory limitations if stepm is small */ |
fprintf(ficrespijb," %1d-%1d",i,j); |
|
fprintf(ficrespijb,"\n"); |
/* oldm=oldms;savm=savms; */ |
for (h=0; h<=nhstepm; h++){ |
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres); |
fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm ); |
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */ |
/* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */ |
fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j="); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate+ndeath;j++) |
for(j=1; j<=nlstate+ndeath;j++) |
fprintf(ficrespijb," %.5f", p3mat[i][j][h]); |
fprintf(ficrespijb," %1d-%1d",i,j); |
|
fprintf(ficrespijb,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm ); |
|
/* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */ |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespijb," %.5f", p3mat[i][j][h]); |
|
fprintf(ficrespijb,"\n"); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
fprintf(ficrespijb,"\n"); |
fprintf(ficrespijb,"\n"); |
} |
} /* end age deb */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
} /* end combination */ |
fprintf(ficrespijb,"\n"); |
} /* end nres */ |
} |
|
/*}*/ |
|
} |
|
return 0; |
return 0; |
} /* hBijx */ |
} /* hBijx */ |
|
|
Line 8324 int main(int argc, char *argv[])
|
Line 10617 int main(int argc, char *argv[])
|
int itimes; |
int itimes; |
int NDIM=2; |
int NDIM=2; |
int vpopbased=0; |
int vpopbased=0; |
|
int nres=0; |
|
int endishere=0; |
|
int noffset=0; |
|
int ncurrv=0; /* Temporary variable */ |
|
|
char ca[32], cb[32]; |
char ca[32], cb[32]; |
/* FILE *fichtm; *//* Html File */ |
/* FILE *fichtm; *//* Html File */ |
/* FILE *ficgp;*/ /*Gnuplot File */ |
/* FILE *ficgp;*/ /*Gnuplot File */ |
Line 8342 int main(int argc, char *argv[])
|
Line 10639 int main(int argc, char *argv[])
|
char line[MAXLINE]; |
char line[MAXLINE]; |
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
|
|
char model[MAXLINE], modeltemp[MAXLINE]; |
char modeltemp[MAXLINE]; |
|
char resultline[MAXLINE]; |
|
|
char pathr[MAXLINE], pathimach[MAXLINE]; |
char pathr[MAXLINE], pathimach[MAXLINE]; |
char *tok, *val; /* pathtot */ |
char *tok, *val; /* pathtot */ |
int firstobs=1, lastobs=10; |
int firstobs=1, lastobs=10; |
Line 8366 int main(int argc, char *argv[])
|
Line 10665 int main(int argc, char *argv[])
|
double **prlim; |
double **prlim; |
double **bprlim; |
double **bprlim; |
double ***param; /* Matrix of parameters */ |
double ***param; /* Matrix of parameters */ |
double *p; |
double ***paramstart; /* Matrix of starting parameter values */ |
|
double *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */ |
double **matcov; /* Matrix of covariance */ |
double **matcov; /* Matrix of covariance */ |
double **hess; /* Hessian matrix */ |
double **hess; /* Hessian matrix */ |
double ***delti3; /* Scale */ |
double ***delti3; /* Scale */ |
double *delti; /* Scale */ |
double *delti; /* Scale */ |
double ***eij, ***vareij; |
double ***eij, ***vareij; |
double **varpl; /* Variances of prevalence limits by age */ |
double **varpl; /* Variances of prevalence limits by age */ |
|
|
double *epj, vepp; |
double *epj, vepp; |
|
|
double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000; |
double dateprev1, dateprev2; |
double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000; |
double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0; |
|
double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0; |
|
|
double **ximort; |
double **ximort; |
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
Line 8543 int main(int argc, char *argv[])
|
Line 10845 int main(int argc, char *argv[])
|
fflush(ficlog); |
fflush(ficlog); |
goto end; |
goto end; |
} |
} |
|
/*-------- Rewriting parameter file ----------*/ |
|
strcpy(rfileres,"r"); /* "Rparameterfile */ |
|
strcat(rfileres,optionfilefiname); /* Parameter file first name */ |
|
strcat(rfileres,"."); /* */ |
|
strcat(rfileres,optionfilext); /* Other files have txt extension */ |
|
if((ficres =fopen(rfileres,"w"))==NULL) { |
|
printf("Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fflush(ficlog); |
|
goto end; |
|
} |
|
fprintf(ficres,"#IMaCh %s\n",version); |
|
|
|
|
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
numlinepar=0; |
numlinepar=0; |
|
/* Is it a BOM UTF-8 Windows file? */ |
/* First parameter line */ |
/* First parameter line */ |
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
|
noffset=0; |
|
if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */ |
|
{ |
|
noffset=noffset+3; |
|
printf("# File is an UTF8 Bom.\n"); // 0xBF |
|
} |
|
else if( line[0] == (char)0xFE && line[1] == (char)0xFF) |
|
{ |
|
noffset=noffset+2; |
|
printf("# File is an UTF16BE BOM file\n"); |
|
} |
|
else if( line[0] == 0 && line[1] == 0) |
|
{ |
|
if( line[2] == (char)0xFE && line[3] == (char)0xFF){ |
|
noffset=noffset+4; |
|
printf("# File is an UTF16BE BOM file\n"); |
|
} |
|
} else{ |
|
;/*printf(" Not a BOM file\n");*/ |
|
} |
|
|
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
if (line[noffset] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
|
fputs(line,ficres); |
fputs(line,ficlog); |
fputs(line,ficlog); |
continue; |
continue; |
}else |
}else |
Line 8574 int main(int argc, char *argv[])
|
Line 10911 int main(int argc, char *argv[])
|
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
|
fputs(line,ficres); |
fputs(line,ficlog); |
fputs(line,ficlog); |
continue; |
continue; |
}else |
}else |
Line 8596 int main(int argc, char *argv[])
|
Line 10934 int main(int argc, char *argv[])
|
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
|
fputs(line,ficres); |
fputs(line,ficlog); |
fputs(line,ficlog); |
continue; |
continue; |
}else |
}else |
break; |
break; |
} |
} |
if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ |
if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ |
if (num_filled == 0) |
if (num_filled == 0){ |
model[0]='\0'; |
printf("ERROR %d: Model should be at minimum 'model=1+age.' WITHOUT space:'%s'\n",num_filled, line); |
else if (num_filled != 1){ |
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' WITHOUT space:'%s'\n",num_filled, line); |
|
model[0]='\0'; |
|
goto end; |
|
} else if (num_filled != 1){ |
printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
model[0]='\0'; |
model[0]='\0'; |
Line 8653 int main(int argc, char *argv[])
|
Line 10995 int main(int argc, char *argv[])
|
|
|
|
|
covar=matrix(0,NCOVMAX,1,n); /**< used in readdata */ |
covar=matrix(0,NCOVMAX,1,n); /**< used in readdata */ |
coqvar=matrix(1,nqv,1,n); /**< used in readdata */ |
if(nqv>=1)coqvar=matrix(1,nqv,1,n); /**< Fixed quantitative covariate */ |
cotvar=ma3x(1,maxwav,1,ntv,1,n); /**< used in readdata */ |
if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,1,n); /**< Time varying quantitative covariate */ |
cotqvar=ma3x(1,maxwav,1,ntqv,1,n); /**< used in readdata */ |
if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,1,n); /**< Time varying covariate (dummy and quantitative)*/ |
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
v1+v2*age+v2*v3 makes cptcovn = 3 |
v1+v2*age+v2*v3 makes cptcovn = 3 |
Line 8677 int main(int argc, char *argv[])
|
Line 11019 int main(int argc, char *argv[])
|
delti=delti3[1][1]; |
delti=delti3[1][1]; |
/*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/ |
/*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/ |
if(mle==-1){ /* Print a wizard for help writing covariance matrix */ |
if(mle==-1){ /* Print a wizard for help writing covariance matrix */ |
|
/* We could also provide initial parameters values giving by simple logistic regression |
|
* only one way, that is without matrix product. We will have nlstate maximizations */ |
|
/* for(i=1;i<nlstate;i++){ */ |
|
/* /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */ |
|
/* mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */ |
|
/* } */ |
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
Line 8706 int main(int argc, char *argv[])
|
Line 11054 int main(int argc, char *argv[])
|
ungetc(c,ficpar); |
ungetc(c,ficpar); |
|
|
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
|
paramstart= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
for(i=1; i <=nlstate; i++){ |
for(i=1; i <=nlstate; i++){ |
j=0; |
j=0; |
for(jj=1; jj <=nlstate+ndeath; jj++){ |
for(jj=1; jj <=nlstate+ndeath; jj++){ |
if(jj==i) continue; |
if(jj==i) continue; |
j++; |
j++; |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
if ((i1 != i) || (j1 != jj)){ |
if ((i1 != i) || (j1 != jj)){ |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
It might be a problem of design; if ncovcol and the model are correct\n \ |
It might be a problem of design; if ncovcol and the model are correct\n \ |
run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1); |
run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1); |
exit(1); |
exit(1); |
} |
} |
fprintf(ficparo,"%1d%1d",i1,j1); |
fprintf(ficparo,"%1d%1d",i1,j1); |
if(mle==1) |
if(mle==1) |
printf("%1d%1d",i,jj); |
printf("%1d%1d",i,jj); |
fprintf(ficlog,"%1d%1d",i,jj); |
fprintf(ficlog,"%1d%1d",i,jj); |
for(k=1; k<=ncovmodel;k++){ |
for(k=1; k<=ncovmodel;k++){ |
fscanf(ficpar," %lf",¶m[i][j][k]); |
fscanf(ficpar," %lf",¶m[i][j][k]); |
if(mle==1){ |
if(mle==1){ |
printf(" %lf",param[i][j][k]); |
printf(" %lf",param[i][j][k]); |
fprintf(ficlog," %lf",param[i][j][k]); |
fprintf(ficlog," %lf",param[i][j][k]); |
} |
} |
else |
else |
fprintf(ficlog," %lf",param[i][j][k]); |
fprintf(ficlog," %lf",param[i][j][k]); |
fprintf(ficparo," %lf",param[i][j][k]); |
fprintf(ficparo," %lf",param[i][j][k]); |
} |
} |
fscanf(ficpar,"\n"); |
fscanf(ficpar,"\n"); |
numlinepar++; |
numlinepar++; |
if(mle==1) |
if(mle==1) |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficparo,"\n"); |
fprintf(ficparo,"\n"); |
} |
} |
} |
} |
fflush(ficlog); |
fflush(ficlog); |
|
|
/* Reads scales values */ |
/* Reads parameters values */ |
p=param[1][1]; |
p=param[1][1]; |
|
pstart=paramstart[1][1]; |
|
|
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
Line 8758 run imach with mle=-1 to get a correct t
|
Line 11108 run imach with mle=-1 to get a correct t
|
|
|
for(i=1; i <=nlstate; i++){ |
for(i=1; i <=nlstate; i++){ |
for(j=1; j <=nlstate+ndeath-1; j++){ |
for(j=1; j <=nlstate+ndeath-1; j++){ |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
if ( (i1-i) * (j1-j) != 0){ |
if ( (i1-i) * (j1-j) != 0){ |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1); |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1); |
exit(1); |
exit(1); |
} |
} |
printf("%1d%1d",i,j); |
printf("%1d%1d",i,j); |
fprintf(ficparo,"%1d%1d",i1,j1); |
fprintf(ficparo,"%1d%1d",i1,j1); |
fprintf(ficlog,"%1d%1d",i1,j1); |
fprintf(ficlog,"%1d%1d",i1,j1); |
for(k=1; k<=ncovmodel;k++){ |
for(k=1; k<=ncovmodel;k++){ |
fscanf(ficpar,"%le",&delti3[i][j][k]); |
fscanf(ficpar,"%le",&delti3[i][j][k]); |
printf(" %le",delti3[i][j][k]); |
printf(" %le",delti3[i][j][k]); |
fprintf(ficparo," %le",delti3[i][j][k]); |
fprintf(ficparo," %le",delti3[i][j][k]); |
fprintf(ficlog," %le",delti3[i][j][k]); |
fprintf(ficlog," %le",delti3[i][j][k]); |
} |
} |
fscanf(ficpar,"\n"); |
fscanf(ficpar,"\n"); |
numlinepar++; |
numlinepar++; |
printf("\n"); |
printf("\n"); |
fprintf(ficparo,"\n"); |
fprintf(ficparo,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
} |
} |
} |
} |
fflush(ficlog); |
fflush(ficlog); |
|
|
/* Reads covariance matrix */ |
/* Reads covariance matrix */ |
delti=delti3[1][1]; |
delti=delti3[1][1]; |
|
|
Line 8805 run imach with mle=-1 to get a correct t
|
Line 11155 run imach with mle=-1 to get a correct t
|
|
|
/* Scans npar lines */ |
/* Scans npar lines */ |
for(i=1; i <=npar; i++){ |
for(i=1; i <=npar; i++){ |
count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk); |
count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk); |
if(count != 3){ |
if(count != 3){ |
printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
exit(1); |
exit(1); |
}else{ |
}else{ |
if(mle==1) |
if(mle==1) |
printf("%1d%1d%1d",i1,j1,jk); |
printf("%1d%1d%d",i1,j1,jk); |
} |
} |
fprintf(ficlog,"%1d%1d%1d",i1,j1,jk); |
fprintf(ficlog,"%1d%1d%d",i1,j1,jk); |
fprintf(ficparo,"%1d%1d%1d",i1,j1,jk); |
fprintf(ficparo,"%1d%1d%d",i1,j1,jk); |
for(j=1; j <=i; j++){ |
for(j=1; j <=i; j++){ |
fscanf(ficpar," %le",&matcov[i][j]); |
fscanf(ficpar," %le",&matcov[i][j]); |
if(mle==1){ |
if(mle==1){ |
printf(" %.5le",matcov[i][j]); |
printf(" %.5le",matcov[i][j]); |
} |
} |
fprintf(ficlog," %.5le",matcov[i][j]); |
fprintf(ficlog," %.5le",matcov[i][j]); |
fprintf(ficparo," %.5le",matcov[i][j]); |
fprintf(ficparo," %.5le",matcov[i][j]); |
} |
} |
fscanf(ficpar,"\n"); |
fscanf(ficpar,"\n"); |
numlinepar++; |
numlinepar++; |
Line 8838 Please run with mle=-1 to get a correct
|
Line 11188 Please run with mle=-1 to get a correct
|
/* End of read covariance matrix npar lines */ |
/* End of read covariance matrix npar lines */ |
for(i=1; i <=npar; i++) |
for(i=1; i <=npar; i++) |
for(j=i+1;j<=npar;j++) |
for(j=i+1;j<=npar;j++) |
matcov[i][j]=matcov[j][i]; |
matcov[i][j]=matcov[j][i]; |
|
|
if(mle==1) |
if(mle==1) |
printf("\n"); |
printf("\n"); |
Line 8846 Please run with mle=-1 to get a correct
|
Line 11196 Please run with mle=-1 to get a correct
|
|
|
fflush(ficlog); |
fflush(ficlog); |
|
|
/*-------- Rewriting parameter file ----------*/ |
|
strcpy(rfileres,"r"); /* "Rparameterfile */ |
|
strcat(rfileres,optionfilefiname); /* Parameter file first name*/ |
|
strcat(rfileres,"."); /* */ |
|
strcat(rfileres,optionfilext); /* Other files have txt extension */ |
|
if((ficres =fopen(rfileres,"w"))==NULL) { |
|
printf("Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end; |
|
} |
|
fprintf(ficres,"#%s\n",version); |
|
} /* End of mle != -3 */ |
} /* End of mle != -3 */ |
|
|
/* Main data |
/* Main data |
Line 8870 Please run with mle=-1 to get a correct
|
Line 11210 Please run with mle=-1 to get a correct
|
agedc=vector(1,n); |
agedc=vector(1,n); |
cod=ivector(1,n); |
cod=ivector(1,n); |
for(i=1;i<=n;i++){ |
for(i=1;i<=n;i++){ |
num[i]=0; |
num[i]=0; |
moisnais[i]=0; |
moisnais[i]=0; |
annais[i]=0; |
annais[i]=0; |
moisdc[i]=0; |
moisdc[i]=0; |
andc[i]=0; |
andc[i]=0; |
agedc[i]=0; |
agedc[i]=0; |
cod[i]=0; |
cod[i]=0; |
weight[i]=1.0; /* Equal weights, 1 by default */ |
weight[i]=1.0; /* Equal weights, 1 by default */ |
} |
} |
mint=matrix(1,maxwav,1,n); |
mint=matrix(1,maxwav,1,n); |
anint=matrix(1,maxwav,1,n); |
anint=matrix(1,maxwav,1,n); |
s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ |
s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ |
Line 8891 Please run with mle=-1 to get a correct
|
Line 11231 Please run with mle=-1 to get a correct
|
goto end; |
goto end; |
|
|
/* Calculation of the number of parameters from char model */ |
/* Calculation of the number of parameters from char model */ |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 |
k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4 |
k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4 |
k=3 V4 Tvar[k=3]= 4 (from V4) |
k=3 V4 Tvar[k=3]= 4 (from V4) |
k=2 V1 Tvar[k=2]= 1 (from V1) |
k=2 V1 Tvar[k=2]= 1 (from V1) |
k=1 Tvar[1]=2 (from V2) |
k=1 Tvar[1]=2 (from V2) |
*/ |
*/ |
|
|
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
|
TvarsDind=ivector(1,NCOVMAX); /* */ |
|
TvarsD=ivector(1,NCOVMAX); /* */ |
|
TvarsQind=ivector(1,NCOVMAX); /* */ |
|
TvarsQ=ivector(1,NCOVMAX); /* */ |
|
TvarF=ivector(1,NCOVMAX); /* */ |
|
TvarFind=ivector(1,NCOVMAX); /* */ |
|
TvarV=ivector(1,NCOVMAX); /* */ |
|
TvarVind=ivector(1,NCOVMAX); /* */ |
|
TvarA=ivector(1,NCOVMAX); /* */ |
|
TvarAind=ivector(1,NCOVMAX); /* */ |
|
TvarFD=ivector(1,NCOVMAX); /* */ |
|
TvarFDind=ivector(1,NCOVMAX); /* */ |
|
TvarFQ=ivector(1,NCOVMAX); /* */ |
|
TvarFQind=ivector(1,NCOVMAX); /* */ |
|
TvarVD=ivector(1,NCOVMAX); /* */ |
|
TvarVDind=ivector(1,NCOVMAX); /* */ |
|
TvarVQ=ivector(1,NCOVMAX); /* */ |
|
TvarVQind=ivector(1,NCOVMAX); /* */ |
|
|
|
Tvalsel=vector(1,NCOVMAX); /* */ |
|
Tvarsel=ivector(1,NCOVMAX); /* */ |
|
Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */ |
|
Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */ |
|
Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */ |
/* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). |
/* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). |
For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, |
For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, |
Tvar[4=age*V3] is 3 and 'age' is recorded in Tage. |
Tvar[4=age*V3] is 3 and 'age' is recorded in Tage. |
Line 8907 Please run with mle=-1 to get a correct
|
Line 11272 Please run with mle=-1 to get a correct
|
ncovcol + k1 |
ncovcol + k1 |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3 |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3 |
Tvar[3=V1*V4]=4+1 etc */ |
Tvar[3=V1*V4]=4+1 etc */ |
Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */ |
Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */ |
|
Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */ |
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 |
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 |
if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) |
if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) |
|
Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 |
*/ |
*/ |
Tvaraff=ivector(1,NCOVMAX); /* Unclear */ |
Tvaraff=ivector(1,NCOVMAX); /* Unclear */ |
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
Line 8919 Please run with mle=-1 to get a correct
|
Line 11286 Please run with mle=-1 to get a correct
|
4 covariates (3 plus signs) |
4 covariates (3 plus signs) |
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
*/ |
*/ |
|
Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an |
|
* individual dummy, fixed or varying: |
|
* Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4, |
|
* 3, 1, 0, 0, 0, 0, 0, 0}, |
|
* model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , |
|
* V1 df, V2 qf, V3 & V4 dv, V5 qv |
|
* Tmodelind[1]@9={9,0,3,2,}*/ |
|
TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/ |
|
TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an |
|
* individual quantitative, fixed or varying: |
|
* Tmodelqind[1]=1,Tvaraff[1]@9={4, |
|
* 3, 1, 0, 0, 0, 0, 0, 0}, |
|
* model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
/* Main decodemodel */ |
/* Main decodemodel */ |
|
|
|
|
Line 8969 Please run with mle=-1 to get a correct
|
Line 11348 Please run with mle=-1 to get a correct
|
*/ |
*/ |
|
|
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
/* */ |
/* Concatenates waves */ |
|
|
free_vector(moisdc,1,n); |
free_vector(moisdc,1,n); |
free_vector(andc,1,n); |
free_vector(andc,1,n); |
Line 8978 Please run with mle=-1 to get a correct
|
Line 11357 Please run with mle=-1 to get a correct
|
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
ncodemax[1]=1; |
ncodemax[1]=1; |
Ndum =ivector(-1,NCOVMAX); |
Ndum =ivector(-1,NCOVMAX); |
cptcoveff=0; |
cptcoveff=0; |
if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */ |
if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */ |
tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ |
tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ |
} |
} |
|
|
ncovcombmax=pow(2,cptcoveff); |
ncovcombmax=pow(2,cptcoveff); |
invalidvarcomb=ivector(1, ncovcombmax); |
invalidvarcomb=ivector(1, ncovcombmax); |
for(i=1;i<ncovcombmax;i++) |
for(i=1;i<ncovcombmax;i++) |
invalidvarcomb[i]=0; |
invalidvarcomb[i]=0; |
|
|
/* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in |
/* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in |
V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/ |
V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/ |
/* 1 to ncodemax[j] which is the maximum value of this jth covariate */ |
/* 1 to ncodemax[j] which is the maximum value of this jth covariate */ |
|
|
/* codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */ |
/* codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */ |
/*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/ |
/*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/ |
/* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/ |
/* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/ |
Line 9150 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 11529 Title=%s <br>Datafile=%s Firstpass=%d La
|
/* Calculates basic frequencies. Computes observed prevalence at single age |
/* Calculates basic frequencies. Computes observed prevalence at single age |
and for any valid combination of covariates |
and for any valid combination of covariates |
and prints on file fileres'p'. */ |
and prints on file fileres'p'. */ |
freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \ |
freqsummary(fileres, p, pstart, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \ |
firstpass, lastpass, stepm, weightopt, model); |
firstpass, lastpass, stepm, weightopt, model); |
|
|
fprintf(fichtm,"\n"); |
fprintf(fichtm,"\n"); |
fprintf(fichtm,"<br>Total number of observations=%d <br>\n\ |
fprintf(fichtm,"<h4>Parameter line 2</h4><ul><li>Tolerance for the convergence of the likelihood: ftol=%f \n<li>Interval for the elementary matrix (in month): stepm=%d",\ |
|
ftol, stepm); |
|
fprintf(fichtm,"\n<li>Number of fixed dummy covariates: ncovcol=%d ", ncovcol); |
|
ncurrv=1; |
|
for(i=ncurrv; i <=ncovcol; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li> Number of fixed quantitative variables: nqv=%d ", nqv); |
|
ncurrv=i; |
|
for(i=ncurrv; i <=ncurrv-1+nqv; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li> Number of time varying (wave varying) covariates: ntv=%d ", ntv); |
|
ncurrv=i; |
|
for(i=ncurrv; i <=ncurrv-1+ntv; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li>Number of quantitative time varying covariates: nqtv=%d ", nqtv); |
|
ncurrv=i; |
|
for(i=ncurrv; i <=ncurrv-1+nqtv; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li>Weights column \n<br>Number of alive states: nlstate=%d <br>Number of death states (not really implemented): ndeath=%d \n<li>Number of waves: maxwav=%d \n<li>Parameter for maximization (1), using parameter values (0), for design of parameters and variance-covariance matrix: mle=%d \n<li>Does the weight column be taken into account (1), or not (0): weight=%d</ul>\n", \ |
|
nlstate, ndeath, maxwav, mle, weightopt); |
|
|
|
fprintf(fichtm,"<h4> Diagram of states <a href=\"%s_.svg\">%s_.svg</a></h4> \n\ |
|
<img src=\"%s_.svg\">", subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_")); |
|
|
|
|
|
fprintf(fichtm,"\n<h4>Some descriptive statistics </h4>\n<br>Total number of observations=%d <br>\n\ |
Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ |
Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ |
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
imx,agemin,agemax,jmin,jmax,jmean); |
imx,agemin,agemax,jmin,jmax,jmean); |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
|
|
/* For Powell, parameters are in a vector p[] starting at p[1] |
/* For Powell, parameters are in a vector p[] starting at p[1] |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
Line 9172 Interval (in months) between two waves:
|
Line 11572 Interval (in months) between two waves:
|
/* For mortality only */ |
/* For mortality only */ |
if (mle==-3){ |
if (mle==-3){ |
ximort=matrix(1,NDIM,1,NDIM); |
ximort=matrix(1,NDIM,1,NDIM); |
for(i=1;i<=NDIM;i++) |
for(i=1;i<=NDIM;i++) |
for(j=1;j<=NDIM;j++) |
for(j=1;j<=NDIM;j++) |
ximort[i][j]=0.; |
ximort[i][j]=0.; |
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
cens=ivector(1,n); |
cens=ivector(1,n); |
ageexmed=vector(1,n); |
ageexmed=vector(1,n); |
Line 9184 Interval (in months) between two waves:
|
Line 11584 Interval (in months) between two waves:
|
for (i=1; i<=imx; i++){ |
for (i=1; i<=imx; i++){ |
dcwave[i]=-1; |
dcwave[i]=-1; |
for (m=firstpass; m<=lastpass; m++) |
for (m=firstpass; m<=lastpass; m++) |
if (s[m][i]>nlstate) { |
if (s[m][i]>nlstate) { |
dcwave[i]=m; |
dcwave[i]=m; |
/* printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/ |
/* printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/ |
break; |
break; |
} |
} |
} |
} |
|
|
for (i=1; i<=imx; i++) { |
for (i=1; i<=imx; i++) { |
if (wav[i]>0){ |
if (wav[i]>0){ |
ageexmed[i]=agev[mw[1][i]][i]; |
ageexmed[i]=agev[mw[1][i]][i]; |
j=wav[i]; |
j=wav[i]; |
agecens[i]=1.; |
agecens[i]=1.; |
|
|
if (ageexmed[i]> 1 && wav[i] > 0){ |
if (ageexmed[i]> 1 && wav[i] > 0){ |
agecens[i]=agev[mw[j][i]][i]; |
agecens[i]=agev[mw[j][i]][i]; |
cens[i]= 1; |
cens[i]= 1; |
}else if (ageexmed[i]< 1) |
}else if (ageexmed[i]< 1) |
cens[i]= -1; |
cens[i]= -1; |
if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass) |
if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass) |
cens[i]=0 ; |
cens[i]=0 ; |
} |
} |
else cens[i]=-1; |
else cens[i]=-1; |
} |
} |
|
|
for (i=1;i<=NDIM;i++) { |
for (i=1;i<=NDIM;i++) { |
for (j=1;j<=NDIM;j++) |
for (j=1;j<=NDIM;j++) |
ximort[i][j]=(i == j ? 1.0 : 0.0); |
ximort[i][j]=(i == j ? 1.0 : 0.0); |
} |
} |
|
|
/*p[1]=0.0268; p[NDIM]=0.083;*/ |
/*p[1]=0.0268; p[NDIM]=0.083;*/ |
Line 9410 Please run with mle=-1 to get a correct
|
Line 11810 Please run with mle=-1 to get a correct
|
printf("\n"); |
printf("\n"); |
if(mle>=1){ /* Could be 1 or 2, Real Maximization */ |
if(mle>=1){ /* Could be 1 or 2, Real Maximization */ |
/* mlikeli uses func not funcone */ |
/* mlikeli uses func not funcone */ |
|
/* for(i=1;i<nlstate;i++){ */ |
|
/* /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */ |
|
/* mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */ |
|
/* } */ |
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
} |
} |
if(mle==0) {/* No optimization, will print the likelihoods for the datafile */ |
if(mle==0) {/* No optimization, will print the likelihoods for the datafile */ |
Line 9425 Please run with mle=-1 to get a correct
|
Line 11829 Please run with mle=-1 to get a correct
|
printf("\n"); |
printf("\n"); |
|
|
/*--------- results files --------------*/ |
/*--------- results files --------------*/ |
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model); |
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); |
|
|
|
|
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
Line 9433 Please run with mle=-1 to get a correct
|
Line 11837 Please run with mle=-1 to get a correct
|
fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
if (k != i) { |
if (k != i) { |
printf("%d%d ",i,k); |
printf("%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficres,"%1d%1d ",i,k); |
fprintf(ficres,"%1d%1d ",i,k); |
for(j=1; j <=ncovmodel; j++){ |
for(j=1; j <=ncovmodel; j++){ |
printf("%12.7f ",p[jk]); |
printf("%12.7f ",p[jk]); |
fprintf(ficlog,"%12.7f ",p[jk]); |
fprintf(ficlog,"%12.7f ",p[jk]); |
fprintf(ficres,"%12.7f ",p[jk]); |
fprintf(ficres,"%12.7f ",p[jk]); |
jk++; |
jk++; |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficres,"\n"); |
fprintf(ficres,"\n"); |
} |
} |
} |
} |
} |
} |
if(mle != 0){ |
if(mle != 0){ |
Line 9456 Please run with mle=-1 to get a correct
|
Line 11860 Please run with mle=-1 to get a correct
|
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
if (k != i) { |
if (k != i) { |
printf("%d%d ",i,k); |
printf("%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
for(j=1; j <=ncovmodel; j++){ |
for(j=1; j <=ncovmodel; j++){ |
printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
jk++; |
jk++; |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
} |
} |
} |
} |
} |
} |
} /* end of hesscov and Wald tests */ |
} /* end of hesscov and Wald tests */ |
|
|
/* */ |
/* */ |
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
printf("# Scales (for hessian or gradient estimation)\n"); |
printf("# Scales (for hessian or gradient estimation)\n"); |
fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n"); |
fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n"); |
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
for(j=1; j <=nlstate+ndeath; j++){ |
for(j=1; j <=nlstate+ndeath; j++){ |
if (j!=i) { |
if (j!=i) { |
fprintf(ficres,"%1d%1d",i,j); |
fprintf(ficres,"%1d%1d",i,j); |
printf("%1d%1d",i,j); |
printf("%1d%1d",i,j); |
fprintf(ficlog,"%1d%1d",i,j); |
fprintf(ficlog,"%1d%1d",i,j); |
for(k=1; k<=ncovmodel;k++){ |
for(k=1; k<=ncovmodel;k++){ |
printf(" %.5e",delti[jk]); |
printf(" %.5e",delti[jk]); |
fprintf(ficlog," %.5e",delti[jk]); |
fprintf(ficlog," %.5e",delti[jk]); |
fprintf(ficres," %.5e",delti[jk]); |
fprintf(ficres," %.5e",delti[jk]); |
jk++; |
jk++; |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficres,"\n"); |
fprintf(ficres,"\n"); |
} |
} |
} |
} |
} |
} |
|
|
Line 9515 Please run with mle=-1 to get a correct
|
Line 11919 Please run with mle=-1 to get a correct
|
for(itimes=1;itimes<=2;itimes++){ |
for(itimes=1;itimes<=2;itimes++){ |
jj=0; |
jj=0; |
for(i=1; i <=nlstate; i++){ |
for(i=1; i <=nlstate; i++){ |
for(j=1; j <=nlstate+ndeath; j++){ |
for(j=1; j <=nlstate+ndeath; j++){ |
if(j==i) continue; |
if(j==i) continue; |
for(k=1; k<=ncovmodel;k++){ |
for(k=1; k<=ncovmodel;k++){ |
jj++; |
jj++; |
ca[0]= k+'a'-1;ca[1]='\0'; |
ca[0]= k+'a'-1;ca[1]='\0'; |
if(itimes==1){ |
if(itimes==1){ |
if(mle>=1) |
if(mle>=1) |
printf("#%1d%1d%d",i,j,k); |
printf("#%1d%1d%d",i,j,k); |
fprintf(ficlog,"#%1d%1d%d",i,j,k); |
fprintf(ficlog,"#%1d%1d%d",i,j,k); |
fprintf(ficres,"#%1d%1d%d",i,j,k); |
fprintf(ficres,"#%1d%1d%d",i,j,k); |
}else{ |
}else{ |
if(mle>=1) |
if(mle>=1) |
printf("%1d%1d%d",i,j,k); |
printf("%1d%1d%d",i,j,k); |
fprintf(ficlog,"%1d%1d%d",i,j,k); |
fprintf(ficlog,"%1d%1d%d",i,j,k); |
fprintf(ficres,"%1d%1d%d",i,j,k); |
fprintf(ficres,"%1d%1d%d",i,j,k); |
} |
} |
ll=0; |
ll=0; |
for(li=1;li <=nlstate; li++){ |
for(li=1;li <=nlstate; li++){ |
for(lj=1;lj <=nlstate+ndeath; lj++){ |
for(lj=1;lj <=nlstate+ndeath; lj++){ |
if(lj==li) continue; |
if(lj==li) continue; |
for(lk=1;lk<=ncovmodel;lk++){ |
for(lk=1;lk<=ncovmodel;lk++){ |
ll++; |
ll++; |
if(ll<=jj){ |
if(ll<=jj){ |
cb[0]= lk +'a'-1;cb[1]='\0'; |
cb[0]= lk +'a'-1;cb[1]='\0'; |
if(ll<jj){ |
if(ll<jj){ |
if(itimes==1){ |
if(itimes==1){ |
if(mle>=1) |
if(mle>=1) |
printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
}else{ |
}else{ |
if(mle>=1) |
if(mle>=1) |
printf(" %.5e",matcov[jj][ll]); |
printf(" %.5e",matcov[jj][ll]); |
fprintf(ficlog," %.5e",matcov[jj][ll]); |
fprintf(ficlog," %.5e",matcov[jj][ll]); |
fprintf(ficres," %.5e",matcov[jj][ll]); |
fprintf(ficres," %.5e",matcov[jj][ll]); |
} |
} |
}else{ |
}else{ |
if(itimes==1){ |
if(itimes==1){ |
if(mle>=1) |
if(mle>=1) |
printf(" Var(%s%1d%1d)",ca,i,j); |
printf(" Var(%s%1d%1d)",ca,i,j); |
fprintf(ficlog," Var(%s%1d%1d)",ca,i,j); |
fprintf(ficlog," Var(%s%1d%1d)",ca,i,j); |
fprintf(ficres," Var(%s%1d%1d)",ca,i,j); |
fprintf(ficres," Var(%s%1d%1d)",ca,i,j); |
}else{ |
}else{ |
if(mle>=1) |
if(mle>=1) |
printf(" %.7e",matcov[jj][ll]); |
printf(" %.7e",matcov[jj][ll]); |
fprintf(ficlog," %.7e",matcov[jj][ll]); |
fprintf(ficlog," %.7e",matcov[jj][ll]); |
fprintf(ficres," %.7e",matcov[jj][ll]); |
fprintf(ficres," %.7e",matcov[jj][ll]); |
} |
} |
} |
} |
} |
} |
} /* end lk */ |
} /* end lk */ |
} /* end lj */ |
} /* end lj */ |
} /* end li */ |
} /* end li */ |
if(mle>=1) |
if(mle>=1) |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficres,"\n"); |
fprintf(ficres,"\n"); |
numlinepar++; |
numlinepar++; |
} /* end k*/ |
} /* end k*/ |
} /*end j */ |
} /*end j */ |
} /* end i */ |
} /* end i */ |
} /* end itimes */ |
} /* end itimes */ |
|
|
fflush(ficlog); |
fflush(ficlog); |
fflush(ficres); |
fflush(ficres); |
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
if (line[0] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
fputs(line,ficlog); |
fputs(line,ficlog); |
continue; |
continue; |
}else |
}else |
break; |
break; |
} |
} |
|
|
/* while((c=getc(ficpar))=='#' && c!= EOF){ */ |
/* while((c=getc(ficpar))=='#' && c!= EOF){ */ |
/* ungetc(c,ficpar); */ |
/* ungetc(c,ficpar); */ |
/* fgets(line, MAXLINE, ficpar); */ |
/* fgets(line, MAXLINE, ficpar); */ |
Line 9602 Please run with mle=-1 to get a correct
|
Line 12006 Please run with mle=-1 to get a correct
|
|
|
estepm=0; |
estepm=0; |
if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){ |
if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){ |
|
|
if (num_filled != 6) { |
if (num_filled != 6) { |
printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
goto end; |
goto end; |
} |
} |
printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl); |
printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl); |
} |
} |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
/*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
/*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
|
|
/* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */ |
/* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */ |
if (estepm==0 || estepm < stepm) estepm=stepm; |
if (estepm==0 || estepm < stepm) estepm=stepm; |
if (fage <= 2) { |
if (fage <= 2) { |
Line 9625 Please run with mle=-1 to get a correct
|
Line 12029 Please run with mle=-1 to get a correct
|
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
|
|
/* Other stuffs, more or less useful */ |
/* Other stuffs, more or less useful */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while(fgets(line, MAXLINE, ficpar)) { |
ungetc(c,ficpar); |
/* If line starts with a # it is a comment */ |
fgets(line, MAXLINE, ficpar); |
if (line[0] == '#') { |
fputs(line,stdout); |
numlinepar++; |
fputs(line,ficparo); |
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
} |
} |
ungetc(c,ficpar); |
|
|
if((num_filled=sscanf(line,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav)) !=EOF){ |
fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); |
|
fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
if (num_filled != 7) { |
fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
printf("Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004 mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fprintf(ficlog,"Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004 mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
goto end; |
|
} |
while((c=getc(ficpar))=='#' && c!= EOF){ |
printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
ungetc(c,ficpar); |
fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fgets(line, MAXLINE, ficpar); |
fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fputs(line,stdout); |
fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fputs(line,ficparo); |
} |
|
|
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
} |
} |
ungetc(c,ficpar); |
|
|
|
|
|
dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; |
dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; |
dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; |
dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; |
|
|
fscanf(ficpar,"pop_based=%d\n",&popbased); |
if((num_filled=sscanf(line,"pop_based=%d\n",&popbased)) !=EOF){ |
fprintf(ficlog,"pop_based=%d\n",popbased); |
if (num_filled != 1) { |
fprintf(ficparo,"pop_based=%d\n",popbased); |
printf("Error: Not 1 (data)parameters in line but %d, for example:pop_based=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
fprintf(ficres,"pop_based=%d\n",popbased); |
fprintf(ficlog,"Error: Not 1 (data)parameters in line but %d, for example: pop_based=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
|
goto end; |
while((c=getc(ficpar))=='#' && c!= EOF){ |
} |
ungetc(c,ficpar); |
printf("pop_based=%d\n",popbased); |
fgets(line, MAXLINE, ficpar); |
fprintf(ficlog,"pop_based=%d\n",popbased); |
fputs(line,stdout); |
fprintf(ficparo,"pop_based=%d\n",popbased); |
fputs(line,ficparo); |
fprintf(ficres,"pop_based=%d\n",popbased); |
} |
|
ungetc(c,ficpar); |
|
|
|
fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj); |
|
fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
|
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
} |
} |
ungetc(c,ficpar); |
|
|
/* Results */ |
fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj); |
nresult=0; |
fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
do{ |
fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
if(!fgets(line, MAXLINE, ficpar)){ |
fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
endishere=1; |
/* day and month of proj2 are not used but only year anproj2.*/ |
parameterline=14; |
|
}else if (line[0] == '#') { |
|
/* If line starts with a # it is a comment */ |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp)) |
|
parameterline=11; |
|
else if(sscanf(line,"backcast=%[^\n]\n",modeltemp)) |
|
parameterline=12; |
|
else if(sscanf(line,"result:%[^\n]\n",modeltemp)) |
|
parameterline=13; |
|
else{ |
|
parameterline=14; |
|
} |
|
switch (parameterline){ |
|
case 11: |
|
if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF){ |
|
if (num_filled != 8) { |
|
printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
|
fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
|
goto end; |
|
} |
|
fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.; |
|
dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.; |
|
|
|
} |
|
break; |
|
case 12: |
|
/*fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);*/ |
|
if((num_filled=sscanf(line,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF){ |
|
if (num_filled != 8) { |
|
printf("Error: Not 8 (data)parameters in line but %d, for example:backcast=1 starting-back-date=1/1/1990 final-back-date=1/1/1970 mobil_average=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
|
fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:backcast=1 starting-back-date=1/1/1990 final-back-date=1/1/1970 mobil_average=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
|
goto end; |
|
} |
|
printf("backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.; |
|
dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.; |
|
} |
|
break; |
|
case 13: |
|
if((num_filled=sscanf(line,"result:%[^\n]\n",resultline)) !=EOF){ |
|
if (num_filled == 0){ |
|
resultline[0]='\0'; |
|
printf("Warning %d: no result line! It should be at minimum 'result: V2=0 V1=1 or result:.\n%s\n", num_filled, line); |
|
fprintf(ficlog,"Warning %d: no result line! It should be at minimum 'result: V2=0 V1=1 or result:.\n%s\n", num_filled, line); |
|
break; |
|
} else if (num_filled != 1){ |
|
printf("ERROR %d: result line! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",num_filled, line); |
|
fprintf(ficlog,"ERROR %d: result line! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",num_filled, line); |
|
} |
|
nresult++; /* Sum of resultlines */ |
|
printf("Result %d: result=%s\n",nresult, resultline); |
|
if(nresult > MAXRESULTLINES){ |
|
printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult); |
|
fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult); |
|
goto end; |
|
} |
|
decoderesult(resultline, nresult); /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */ |
|
fprintf(ficparo,"result: %s\n",resultline); |
|
fprintf(ficres,"result: %s\n",resultline); |
|
fprintf(ficlog,"result: %s\n",resultline); |
|
break; |
|
case 14: |
|
if(ncovmodel >2 && nresult==0 ){ |
|
printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line); |
|
goto end; |
|
} |
|
break; |
|
default: |
|
nresult=1; |
|
decoderesult(".",nresult ); /* No covariate */ |
|
} |
|
} /* End switch parameterline */ |
|
}while(endishere==0); /* End do */ |
|
|
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */ |
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */ |
/* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */ |
/* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */ |
|
|
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){ |
if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){ |
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
}else{ |
}else{ |
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p); |
/* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */ |
|
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, backcast, pathc,p, (int)anproj1-bage, (int)anback1-fage); |
} |
} |
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \ |
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \ |
model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \ |
model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,backcast, estepm, \ |
jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2); |
jprev1,mprev1,anprev1,dateprev1, dateproj1, dateback1,jprev2,mprev2,anprev2,dateprev2,dateproj2, dateback2); |
|
|
/*------------ free_vector -------------*/ |
/*------------ free_vector -------------*/ |
/* chdir(path); */ |
/* chdir(path); */ |
|
|
/* free_ivector(wav,1,imx); */ /* Moved after last prevalence call */ |
/* free_ivector(wav,1,imx); */ /* Moved after last prevalence call */ |
/* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */ |
Line 9732 Please run with mle=-1 to get a correct
|
Line 12222 Please run with mle=-1 to get a correct
|
/*#include "hpijx.h"*/ |
/*#include "hpijx.h"*/ |
hPijx(p, bage, fage); |
hPijx(p, bage, fage); |
fclose(ficrespij); |
fclose(ficrespij); |
|
|
/* ncovcombmax= pow(2,cptcoveff); */ |
/* ncovcombmax= pow(2,cptcoveff); */ |
/*-------------- Variance of one-step probabilities---*/ |
/*-------------- Variance of one-step probabilities---*/ |
k=1; |
k=1; |
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
|
|
/* Prevalence for each covariates in probs[age][status][cov] */ |
/* Prevalence for each covariate combination in probs[age][status][cov] */ |
probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
probs= ma3x(AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
for(i=1;i<=AGESUP;i++) |
for(i=AGEINF;i<=AGESUP;i++) |
for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */ |
for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */ |
for(k=1;k<=ncovcombmax;k++) |
for(k=1;k<=ncovcombmax;k++) |
probs[i][j][k]=0.; |
probs[i][j][k]=0.; |
prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, |
|
ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
if (mobilav!=0 ||mobilavproj !=0 ) { |
if (mobilav!=0 ||mobilavproj !=0 ) { |
mobaverages= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
mobaverages= ma3x(AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
for(i=1;i<=AGESUP;i++) |
for(i=AGEINF;i<=AGESUP;i++) |
for(j=1;j<=nlstate;j++) |
for(j=1;j<=nlstate+ndeath;j++) |
for(k=1;k<=ncovcombmax;k++) |
for(k=1;k<=ncovcombmax;k++) |
mobaverages[i][j][k]=0.; |
mobaverages[i][j][k]=0.; |
mobaverage=mobaverages; |
mobaverage=mobaverages; |
if (mobilav!=0) { |
if (mobilav!=0) { |
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){ |
printf("Movingaveraging observed prevalence\n"); |
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
fprintf(ficlog,"Movingaveraging observed prevalence\n"); |
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){ |
} |
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
} |
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
/* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */ |
} |
/* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
} else if (mobilavproj !=0) { |
else if (mobilavproj !=0) { |
printf("Movingaveraging projected observed prevalence\n"); |
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){ |
fprintf(ficlog,"Movingaveraging projected observed prevalence\n"); |
fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj); |
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){ |
printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj); |
fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj); |
} |
printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj); |
|
} |
|
}else{ |
|
printf("Internal error moving average\n"); |
|
fflush(stdout); |
|
exit(1); |
} |
} |
}/* end if moving average */ |
}/* end if moving average */ |
|
|
/*---------- Forecasting ------------------*/ |
/*---------- Forecasting ------------------*/ |
/*if((stepm == 1) && (strcmp(model,".")==0)){*/ |
|
if(prevfcast==1){ |
if(prevfcast==1){ |
/* if(stepm ==1){*/ |
/* if(stepm ==1){*/ |
prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); |
prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); |
} |
} |
|
|
|
/* Backcasting */ |
if(backcast==1){ |
if(backcast==1){ |
ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
Line 9782 Please run with mle=-1 to get a correct
|
Line 12279 Please run with mle=-1 to get a correct
|
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
|
|
bprlim=matrix(1,nlstate,1,nlstate); |
bprlim=matrix(1,nlstate,1,nlstate); |
|
|
back_prevalence_limit(p, bprlim, ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj); |
back_prevalence_limit(p, bprlim, ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj); |
fclose(ficresplb); |
fclose(ficresplb); |
|
|
hBijx(p, bage, fage, mobaverage); |
hBijx(p, bage, fage, mobaverage); |
fclose(ficrespijb); |
fclose(ficrespijb); |
free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
|
|
|
/* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj, |
prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, |
bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */ |
mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); |
|
varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff); |
|
|
|
|
|
free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
} |
} /* end Backcasting */ |
|
|
|
|
/* ------ Other prevalence ratios------------ */ |
/* ------ Other prevalence ratios------------ */ |
|
|
Line 9815 Please run with mle=-1 to get a correct
|
Line 12316 Please run with mle=-1 to get a correct
|
} |
} |
printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout); |
printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout); |
fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog); |
fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog); |
|
|
|
pstamp(ficreseij); |
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
fprintf(ficreseij,"\n#****** "); |
fprintf(ficreseij,"\n#****** "); |
|
printf("\n#****** "); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficreseij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
} |
} |
fprintf(ficreseij,"******\n"); |
fprintf(ficreseij,"******\n"); |
|
printf("******\n"); |
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart); |
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres); |
|
|
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
} |
} |
fclose(ficreseij); |
fclose(ficreseij); |
printf("done evsij\n");fflush(stdout); |
printf("done evsij\n");fflush(stdout); |
fprintf(ficlog,"done evsij\n");fflush(ficlog); |
fprintf(ficlog,"done evsij\n");fflush(ficlog); |
|
|
|
|
/*---------- Health expectancies and variances ------------*/ |
/*---------- State-specific expectancies and variances ------------*/ |
|
|
|
|
strcpy(filerest,"T_"); |
strcpy(filerest,"T_"); |
strcat(filerest,fileresu); |
strcat(filerest,fileresu); |
Line 9844 Please run with mle=-1 to get a correct
|
Line 12360 Please run with mle=-1 to get a correct
|
} |
} |
printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout); |
printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout); |
fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog); |
fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog); |
|
|
|
|
strcpy(fileresstde,"STDE_"); |
strcpy(fileresstde,"STDE_"); |
strcat(fileresstde,fileresu); |
strcat(fileresstde,fileresu); |
if((ficresstdeij=fopen(fileresstde,"w"))==NULL) { |
if((ficresstdeij=fopen(fileresstde,"w"))==NULL) { |
printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
} |
} |
printf(" Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde); |
printf(" Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde); |
fprintf(ficlog," Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde); |
fprintf(ficlog," Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde); |
|
|
strcpy(filerescve,"CVE_"); |
strcpy(filerescve,"CVE_"); |
strcat(filerescve,fileresu); |
strcat(filerescve,fileresu); |
if((ficrescveij=fopen(filerescve,"w"))==NULL) { |
if((ficrescveij=fopen(filerescve,"w"))==NULL) { |
printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0); |
printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0); |
fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0); |
fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0); |
} |
} |
printf(" Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve); |
printf(" Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve); |
fprintf(ficlog," Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve); |
fprintf(ficlog," Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve); |
|
|
strcpy(fileresv,"V_"); |
strcpy(fileresv,"V_"); |
strcat(fileresv,fileresu); |
strcat(fileresv,fileresu); |
Line 9870 Please run with mle=-1 to get a correct
|
Line 12384 Please run with mle=-1 to get a correct
|
printf("Problem with variance resultfile: %s\n", fileresv);exit(0); |
printf("Problem with variance resultfile: %s\n", fileresv);exit(0); |
fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); |
fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); |
} |
} |
printf(" Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(stdout); |
printf(" Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout); |
fprintf(ficlog," Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(ficlog); |
fprintf(ficlog," Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog); |
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
if (cptcovn < 1){i1=1;} |
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
fprintf(ficrest,"\n#****** "); |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
for(j=1;j<=cptcoveff;j++) |
if(i1 != 1 && TKresult[nres]!= k) |
fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
continue; |
|
printf("\n#****** Result for:"); |
|
fprintf(ficrest,"\n#****** Result for:"); |
|
fprintf(ficlog,"\n#****** Result for:"); |
|
for(j=1;j<=cptcoveff;j++){ |
|
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
fprintf(ficrest,"******\n"); |
fprintf(ficrest,"******\n"); |
|
fprintf(ficlog,"******\n"); |
|
printf("******\n"); |
|
|
fprintf(ficresstdeij,"\n#****** "); |
fprintf(ficresstdeij,"\n#****** "); |
fprintf(ficrescveij,"\n#****** "); |
fprintf(ficrescveij,"\n#****** "); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
} |
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficresstdeij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficrescveij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
fprintf(ficresstdeij,"******\n"); |
fprintf(ficresstdeij,"******\n"); |
fprintf(ficrescveij,"******\n"); |
fprintf(ficrescveij,"******\n"); |
|
|
fprintf(ficresvij,"\n#****** "); |
fprintf(ficresvij,"\n#****** "); |
|
/* pstamp(ficresvij); */ |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
fprintf(ficresvij,"******\n"); |
fprintf(ficresvij,"******\n"); |
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
printf(" cvevsij %d, ",k); |
printf(" cvevsij "); |
fprintf(ficlog, " cvevsij %d, ",k); |
fprintf(ficlog, " cvevsij "); |
cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart); |
cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres); |
printf(" end cvevsij \n "); |
printf(" end cvevsij \n "); |
fprintf(ficlog, " end cvevsij \n "); |
fprintf(ficlog, " end cvevsij \n "); |
|
|
Line 9911 Please run with mle=-1 to get a correct
|
Line 12448 Please run with mle=-1 to get a correct
|
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
pstamp(ficrest); |
pstamp(ficrest); |
|
|
|
epj=vector(1,nlstate+1); |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
oldm=oldms;savm=savms; /* ZZ Segmentation fault */ |
oldm=oldms;savm=savms; /* ZZ Segmentation fault */ |
cptcod= 0; /* To be deleted */ |
cptcod= 0; /* To be deleted */ |
printf("varevsij %d \n",vpopbased); |
printf("varevsij vpopbased=%d \n",vpopbased); |
fprintf(ficlog, "varevsij %d \n",vpopbased); |
fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased); |
varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */ |
varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */ |
fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# (weighted average of eij where weights are "); |
fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# (weighted average of eij where weights are "); |
if(vpopbased==1) |
if(vpopbased==1) |
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
else |
else |
fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n"); |
fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n"); |
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); |
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
fprintf(ficrest,"\n"); |
fprintf(ficrest,"\n"); |
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
epj=vector(1,nlstate+1); |
printf("Computing age specific period (stable) prevalences in each health state \n"); |
printf("Computing age specific period (stable) prevalences in each health state \n"); |
fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n"); |
fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n"); |
for(age=bage; age <=fage ;age++){ |
for(age=bage; age <=fage ;age++){ |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */ |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */ |
if (vpopbased==1) { |
if (vpopbased==1) { |
if(mobilav ==0){ |
if(mobilav ==0){ |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
prlim[i][i]=probs[(int)age][i][k]; |
prlim[i][i]=probs[(int)age][i][k]; |
}else{ /* mobilav */ |
}else{ /* mobilav */ |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
prlim[i][i]=mobaverage[(int)age][i][k]; |
prlim[i][i]=mobaverage[(int)age][i][k]; |
} |
} |
} |
} |
|
|
|
fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav); |
fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav); |
/* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */ |
/* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */ |
/* printf(" age %4.0f ",age); */ |
/* printf(" age %4.0f ",age); */ |
for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ |
for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ |
for(i=1, epj[j]=0.;i <=nlstate;i++) { |
for(i=1, epj[j]=0.;i <=nlstate;i++) { |
epj[j] += prlim[i][i]*eij[i][j][(int)age]; |
epj[j] += prlim[i][i]*eij[i][j][(int)age]; |
/*ZZZ printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ |
/*ZZZ printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ |
/* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */ |
/* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */ |
} |
} |
epj[nlstate+1] +=epj[j]; |
epj[nlstate+1] +=epj[j]; |
} |
} |
/* printf(" age %4.0f \n",age); */ |
/* printf(" age %4.0f \n",age); */ |
|
|
for(i=1, vepp=0.;i <=nlstate;i++) |
for(i=1, vepp=0.;i <=nlstate;i++) |
for(j=1;j <=nlstate;j++) |
for(j=1;j <=nlstate;j++) |
vepp += vareij[i][j][(int)age]; |
vepp += vareij[i][j][(int)age]; |
fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); |
fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); |
for(j=1;j <=nlstate;j++){ |
for(j=1;j <=nlstate;j++){ |
fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); |
fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); |
} |
} |
fprintf(ficrest,"\n"); |
fprintf(ficrest,"\n"); |
} |
} |
} /* End vpopbased */ |
} /* End vpopbased */ |
|
free_vector(epj,1,nlstate+1); |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_vector(epj,1,nlstate+1); |
printf("done selection\n");fflush(stdout); |
printf("done \n");fflush(stdout); |
fprintf(ficlog,"done selection\n");fflush(ficlog); |
fprintf(ficlog,"done\n");fflush(ficlog); |
|
|
|
/*}*/ |
} /* End k selection */ |
} /* End k */ |
|
|
printf("done State-specific expectancies\n");fflush(stdout); |
|
fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog); |
|
|
|
/* variance-covariance of period prevalence*/ |
|
varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff); |
|
|
|
|
free_vector(weight,1,n); |
free_vector(weight,1,n); |
free_imatrix(Tvard,1,NCOVMAX,1,2); |
free_imatrix(Tvard,1,NCOVMAX,1,2); |
free_imatrix(s,1,maxwav+1,1,n); |
free_imatrix(s,1,maxwav+1,1,n); |
Line 9984 Please run with mle=-1 to get a correct
|
Line 12527 Please run with mle=-1 to get a correct
|
fclose(ficrescveij); |
fclose(ficrescveij); |
fclose(ficresvij); |
fclose(ficresvij); |
fclose(ficrest); |
fclose(ficrest); |
printf("done Health expectancies\n");fflush(stdout); |
|
fprintf(ficlog,"done Health expectancies\n");fflush(ficlog); |
|
fclose(ficpar); |
fclose(ficpar); |
|
|
/*------- Variance of period (stable) prevalence------*/ |
|
|
|
strcpy(fileresvpl,"VPL_"); |
|
strcat(fileresvpl,fileresu); |
|
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
|
printf("Problem with variance of period (stable) prevalence resultfile: %s\n", fileresvpl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog); |
|
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
|
fprintf(ficresvpl,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficresvpl,"******\n"); |
|
|
|
varpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart); |
|
free_matrix(varpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
|
|
fclose(ficresvpl); |
|
printf("done variance-covariance of period prevalence\n");fflush(stdout); |
|
fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog); |
|
|
|
/*---------- End : free ----------------*/ |
/*---------- End : free ----------------*/ |
if (mobilav!=0 ||mobilavproj !=0) |
if (mobilav!=0 ||mobilavproj !=0) |
free_ma3x(mobaverages,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */ |
free_ma3x(mobaverages,AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */ |
free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
free_ma3x(probs,AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); |
} /* mle==-3 arrives here for freeing */ |
} /* mle==-3 arrives here for freeing */ |
/* endfree:*/ |
/* endfree:*/ |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_ma3x(cotqvar,1,maxwav,1,ntqv,1,n); |
if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,1,n); |
free_ma3x(cotvar,1,maxwav,1,ntv,1,n); |
if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n); |
free_matrix(coqvar,1,maxwav,1,n); |
if(nqv>=1)free_matrix(coqvar,1,nqv,1,n); |
free_matrix(covar,0,NCOVMAX,1,n); |
free_matrix(covar,0,NCOVMAX,1,n); |
free_matrix(matcov,1,npar,1,npar); |
free_matrix(matcov,1,npar,1,npar); |
free_matrix(hess,1,npar,1,npar); |
free_matrix(hess,1,npar,1,npar); |
/*free_vector(delti,1,npar);*/ |
/*free_vector(delti,1,npar);*/ |
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_matrix(agev,1,maxwav,1,imx); |
free_matrix(agev,1,maxwav,1,imx); |
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ma3x(paramstart,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
|
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ivector(ncodemax,1,NCOVMAX); |
|
free_ivector(ncodemaxwundef,1,NCOVMAX); |
free_ivector(ncodemax,1,NCOVMAX); |
free_ivector(Tvar,1,NCOVMAX); |
free_ivector(ncodemaxwundef,1,NCOVMAX); |
free_ivector(Tprod,1,NCOVMAX); |
free_ivector(Dummy,-1,NCOVMAX); |
free_ivector(Tvaraff,1,NCOVMAX); |
free_ivector(Fixed,-1,NCOVMAX); |
free_ivector(invalidvarcomb,1,ncovcombmax); |
free_ivector(DummyV,1,NCOVMAX); |
free_ivector(Tage,1,NCOVMAX); |
free_ivector(FixedV,1,NCOVMAX); |
|
free_ivector(Typevar,-1,NCOVMAX); |
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
free_ivector(Tvar,1,NCOVMAX); |
/* free_imatrix(codtab,1,100,1,10); */ |
free_ivector(TvarsQ,1,NCOVMAX); |
|
free_ivector(TvarsQind,1,NCOVMAX); |
|
free_ivector(TvarsD,1,NCOVMAX); |
|
free_ivector(TvarsDind,1,NCOVMAX); |
|
free_ivector(TvarFD,1,NCOVMAX); |
|
free_ivector(TvarFDind,1,NCOVMAX); |
|
free_ivector(TvarF,1,NCOVMAX); |
|
free_ivector(TvarFind,1,NCOVMAX); |
|
free_ivector(TvarV,1,NCOVMAX); |
|
free_ivector(TvarVind,1,NCOVMAX); |
|
free_ivector(TvarA,1,NCOVMAX); |
|
free_ivector(TvarAind,1,NCOVMAX); |
|
free_ivector(TvarFQ,1,NCOVMAX); |
|
free_ivector(TvarFQind,1,NCOVMAX); |
|
free_ivector(TvarVD,1,NCOVMAX); |
|
free_ivector(TvarVDind,1,NCOVMAX); |
|
free_ivector(TvarVQ,1,NCOVMAX); |
|
free_ivector(TvarVQind,1,NCOVMAX); |
|
free_ivector(Tvarsel,1,NCOVMAX); |
|
free_vector(Tvalsel,1,NCOVMAX); |
|
free_ivector(Tposprod,1,NCOVMAX); |
|
free_ivector(Tprod,1,NCOVMAX); |
|
free_ivector(Tvaraff,1,NCOVMAX); |
|
free_ivector(invalidvarcomb,1,ncovcombmax); |
|
free_ivector(Tage,1,NCOVMAX); |
|
free_ivector(Tmodelind,1,NCOVMAX); |
|
free_ivector(TmodelInvind,1,NCOVMAX); |
|
free_ivector(TmodelInvQind,1,NCOVMAX); |
|
|
|
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
|
/* free_imatrix(codtab,1,100,1,10); */ |
fflush(fichtm); |
fflush(fichtm); |
fflush(ficgp); |
fflush(ficgp); |
|
|
|
|
if((nberr >0) || (nbwarn>0)){ |
if((nberr >0) || (nbwarn>0)){ |
printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn); |
printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn); |
fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn); |
fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn); |
Line 10072 Please run with mle=-1 to get a correct
|
Line 12613 Please run with mle=-1 to get a correct
|
printf("Local time at start %s\nLocal time at end %s",strstart, strtend); |
printf("Local time at start %s\nLocal time at end %s",strstart, strtend); |
fprintf(ficlog,"Local time at start %s\nLocal time at end %s\n",strstart, strtend); |
fprintf(ficlog,"Local time at start %s\nLocal time at end %s\n",strstart, strtend); |
printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
|
|
printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
Line 10085 Please run with mle=-1 to get a correct
|
Line 12626 Please run with mle=-1 to get a correct
|
fclose(ficgp); |
fclose(ficgp); |
fclose(ficlog); |
fclose(ficlog); |
/*------ End -----------*/ |
/*------ End -----------*/ |
|
|
|
|
printf("Before Current directory %s!\n",pathcd); |
printf("Before Current directory %s!\n",pathcd); |
#ifdef WIN32 |
#ifdef WIN32 |
if (_chdir(pathcd) != 0) |
if (_chdir(pathcd) != 0) |
printf("Can't move to directory %s!\n",path); |
printf("Can't move to directory %s!\n",path); |
if(_getcwd(pathcd,MAXLINE) > 0) |
if(_getcwd(pathcd,MAXLINE) > 0) |
#else |
#else |
if(chdir(pathcd) != 0) |
if(chdir(pathcd) != 0) |
printf("Can't move to directory %s!\n", path); |
printf("Can't move to directory %s!\n", path); |
if (getcwd(pathcd, MAXLINE) > 0) |
if (getcwd(pathcd, MAXLINE) > 0) |
#endif |
#endif |
printf("Current directory %s!\n",pathcd); |
printf("Current directory %s!\n",pathcd); |
/*strcat(plotcmd,CHARSEPARATOR);*/ |
/*strcat(plotcmd,CHARSEPARATOR);*/ |
Line 10121 Please run with mle=-1 to get a correct
|
Line 12662 Please run with mle=-1 to get a correct
|
|
|
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
|
|
if((outcmd=system(plotcmd)) != 0){ |
if((outcmd=system(plotcmd)) != 0){ |
printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
Line 10149 Please run with mle=-1 to get a correct
|
Line 12690 Please run with mle=-1 to get a correct
|
else if (z[0] == 'g') system(plotcmd); |
else if (z[0] == 'g') system(plotcmd); |
else if (z[0] == 'q') exit(0); |
else if (z[0] == 'q') exit(0); |
} |
} |
end: |
end: |
while (z[0] != 'q') { |
while (z[0] != 'q') { |
printf("\nType q for exiting: "); fflush(stdout); |
printf("\nType q for exiting: "); fflush(stdout); |
scanf("%s",z); |
scanf("%s",z); |