version 1.215, 2015/12/16 08:52:24
|
version 1.321, 2022/07/22 12:04:24
|
Line 1
|
Line 1
|
/* $Id$ |
/* $Id$ |
$State$ |
$State$ |
$Log$ |
$Log$ |
|
Revision 1.321 2022/07/22 12:04:24 brouard |
|
Summary: r28 |
|
|
|
* imach.c (Module): Output of Wald test in the htm file and not only in the log. |
|
|
|
Revision 1.320 2022/06/02 05:10:11 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.319 2022/06/02 04:45:11 brouard |
|
* imach.c (Module): Adding the Wald tests from the log to the main |
|
htm for better display of the maximum likelihood estimators. |
|
|
|
Revision 1.318 2022/05/24 08:10:59 brouard |
|
* imach.c (Module): Some attempts to find a bug of wrong estimates |
|
of confidencce intervals with product in the equation modelC |
|
|
|
Revision 1.317 2022/05/15 15:06:23 brouard |
|
* imach.c (Module): Some minor improvements |
|
|
|
Revision 1.316 2022/05/11 15:11:31 brouard |
|
Summary: r27 |
|
|
|
Revision 1.315 2022/05/11 15:06:32 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.314 2022/04/13 17:43:09 brouard |
|
* imach.c (Module): Adding link to text data files |
|
|
|
Revision 1.313 2022/04/11 15:57:42 brouard |
|
* imach.c (Module): Error in rewriting the 'r' file with yearsfproj or yearsbproj fixed |
|
|
|
Revision 1.312 2022/04/05 21:24:39 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.311 2022/04/05 21:03:51 brouard |
|
Summary: Fixed quantitative covariates |
|
|
|
Fixed covariates (dummy or quantitative) |
|
with missing values have never been allowed but are ERRORS and |
|
program quits. Standard deviations of fixed covariates were |
|
wrongly computed. Mean and standard deviations of time varying |
|
covariates are still not computed. |
|
|
|
Revision 1.310 2022/03/17 08:45:53 brouard |
|
Summary: 99r25 |
|
|
|
Improving detection of errors: result lines should be compatible with |
|
the model. |
|
|
|
Revision 1.309 2021/05/20 12:39:14 brouard |
|
Summary: Version 0.99r24 |
|
|
|
Revision 1.308 2021/03/31 13:11:57 brouard |
|
Summary: Version 0.99r23 |
|
|
|
|
|
* imach.c (Module): Still bugs in the result loop. Thank to Holly Benett |
|
|
|
Revision 1.307 2021/03/08 18:11:32 brouard |
|
Summary: 0.99r22 fixed bug on result: |
|
|
|
Revision 1.306 2021/02/20 15:44:02 brouard |
|
Summary: Version 0.99r21 |
|
|
|
* imach.c (Module): Fix bug on quitting after result lines! |
|
(Module): Version 0.99r21 |
|
|
|
Revision 1.305 2021/02/20 15:28:30 brouard |
|
* imach.c (Module): Fix bug on quitting after result lines! |
|
|
|
Revision 1.304 2021/02/12 11:34:20 brouard |
|
* imach.c (Module): The use of a Windows BOM (huge) file is now an error |
|
|
|
Revision 1.303 2021/02/11 19:50:15 brouard |
|
* (Module): imach.c Someone entered 'results:' instead of 'result:'. Now it is an error which is printed. |
|
|
|
Revision 1.302 2020/02/22 21:00:05 brouard |
|
* (Module): imach.c Update mle=-3 (for computing Life expectancy |
|
and life table from the data without any state) |
|
|
|
Revision 1.301 2019/06/04 13:51:20 brouard |
|
Summary: Error in 'r'parameter file backcast yearsbproj instead of yearsfproj |
|
|
|
Revision 1.300 2019/05/22 19:09:45 brouard |
|
Summary: version 0.99r19 of May 2019 |
|
|
|
Revision 1.299 2019/05/22 18:37:08 brouard |
|
Summary: Cleaned 0.99r19 |
|
|
|
Revision 1.298 2019/05/22 18:19:56 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.297 2019/05/22 17:56:10 brouard |
|
Summary: Fix bug by moving date2dmy and nhstepm which gaefin=-1 |
|
|
|
Revision 1.296 2019/05/20 13:03:18 brouard |
|
Summary: Projection syntax simplified |
|
|
|
|
|
We can now start projections, forward or backward, from the mean date |
|
of inteviews up to or down to a number of years of projection: |
|
prevforecast=1 yearsfproj=15.3 mobil_average=0 |
|
or |
|
prevforecast=1 starting-proj-date=1/1/2007 final-proj-date=12/31/2017 mobil_average=0 |
|
or |
|
prevbackcast=1 yearsbproj=12.3 mobil_average=1 |
|
or |
|
prevbackcast=1 starting-back-date=1/10/1999 final-back-date=1/1/1985 mobil_average=1 |
|
|
|
Revision 1.295 2019/05/18 09:52:50 brouard |
|
Summary: doxygen tex bug |
|
|
|
Revision 1.294 2019/05/16 14:54:33 brouard |
|
Summary: There was some wrong lines added |
|
|
|
Revision 1.293 2019/05/09 15:17:34 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.292 2019/05/09 14:17:20 brouard |
|
Summary: Some updates |
|
|
|
Revision 1.291 2019/05/09 13:44:18 brouard |
|
Summary: Before ncovmax |
|
|
|
Revision 1.290 2019/05/09 13:39:37 brouard |
|
Summary: 0.99r18 unlimited number of individuals |
|
|
|
The number n which was limited to 20,000 cases is now unlimited, from firstobs to lastobs. If the number is too for the virtual memory, probably an error will occur. |
|
|
|
Revision 1.289 2018/12/13 09:16:26 brouard |
|
Summary: Bug for young ages (<-30) will be in r17 |
|
|
|
Revision 1.288 2018/05/02 20:58:27 brouard |
|
Summary: Some bugs fixed |
|
|
|
Revision 1.287 2018/05/01 17:57:25 brouard |
|
Summary: Bug fixed by providing frequencies only for non missing covariates |
|
|
|
Revision 1.286 2018/04/27 14:27:04 brouard |
|
Summary: some minor bugs |
|
|
|
Revision 1.285 2018/04/21 21:02:16 brouard |
|
Summary: Some bugs fixed, valgrind tested |
|
|
|
Revision 1.284 2018/04/20 05:22:13 brouard |
|
Summary: Computing mean and stdeviation of fixed quantitative variables |
|
|
|
Revision 1.283 2018/04/19 14:49:16 brouard |
|
Summary: Some minor bugs fixed |
|
|
|
Revision 1.282 2018/02/27 22:50:02 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.281 2018/02/27 19:25:23 brouard |
|
Summary: Adding second argument for quitting |
|
|
|
Revision 1.280 2018/02/21 07:58:13 brouard |
|
Summary: 0.99r15 |
|
|
|
New Makefile with recent VirtualBox 5.26. Bug in sqrt negatve in imach.c |
|
|
|
Revision 1.279 2017/07/20 13:35:01 brouard |
|
Summary: temporary working |
|
|
|
Revision 1.278 2017/07/19 14:09:02 brouard |
|
Summary: Bug for mobil_average=0 and prevforecast fixed(?) |
|
|
|
Revision 1.277 2017/07/17 08:53:49 brouard |
|
Summary: BOM files can be read now |
|
|
|
Revision 1.276 2017/06/30 15:48:31 brouard |
|
Summary: Graphs improvements |
|
|
|
Revision 1.275 2017/06/30 13:39:33 brouard |
|
Summary: Saito's color |
|
|
|
Revision 1.274 2017/06/29 09:47:08 brouard |
|
Summary: Version 0.99r14 |
|
|
|
Revision 1.273 2017/06/27 11:06:02 brouard |
|
Summary: More documentation on projections |
|
|
|
Revision 1.272 2017/06/27 10:22:40 brouard |
|
Summary: Color of backprojection changed from 6 to 5(yellow) |
|
|
|
Revision 1.271 2017/06/27 10:17:50 brouard |
|
Summary: Some bug with rint |
|
|
|
Revision 1.270 2017/05/24 05:45:29 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.269 2017/05/23 08:39:25 brouard |
|
Summary: Code into subroutine, cleanings |
|
|
|
Revision 1.268 2017/05/18 20:09:32 brouard |
|
Summary: backprojection and confidence intervals of backprevalence |
|
|
|
Revision 1.267 2017/05/13 10:25:05 brouard |
|
Summary: temporary save for backprojection |
|
|
|
Revision 1.266 2017/05/13 07:26:12 brouard |
|
Summary: Version 0.99r13 (improvements and bugs fixed) |
|
|
|
Revision 1.265 2017/04/26 16:22:11 brouard |
|
Summary: imach 0.99r13 Some bugs fixed |
|
|
|
Revision 1.264 2017/04/26 06:01:29 brouard |
|
Summary: Labels in graphs |
|
|
|
Revision 1.263 2017/04/24 15:23:15 brouard |
|
Summary: to save |
|
|
|
Revision 1.262 2017/04/18 16:48:12 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.261 2017/04/05 10:14:09 brouard |
|
Summary: Bug in E_ as well as in T_ fixed nres-1 vs k1-1 |
|
|
|
Revision 1.260 2017/04/04 17:46:59 brouard |
|
Summary: Gnuplot indexations fixed (humm) |
|
|
|
Revision 1.259 2017/04/04 13:01:16 brouard |
|
Summary: Some errors to warnings only if date of death is unknown but status is death we could set to pi3 |
|
|
|
Revision 1.258 2017/04/03 10:17:47 brouard |
|
Summary: Version 0.99r12 |
|
|
|
Some cleanings, conformed with updated documentation. |
|
|
|
Revision 1.257 2017/03/29 16:53:30 brouard |
|
Summary: Temp |
|
|
|
Revision 1.256 2017/03/27 05:50:23 brouard |
|
Summary: Temporary |
|
|
|
Revision 1.255 2017/03/08 16:02:28 brouard |
|
Summary: IMaCh version 0.99r10 bugs in gnuplot fixed |
|
|
|
Revision 1.254 2017/03/08 07:13:00 brouard |
|
Summary: Fixing data parameter line |
|
|
|
Revision 1.253 2016/12/15 11:59:41 brouard |
|
Summary: 0.99 in progress |
|
|
|
Revision 1.252 2016/09/15 21:15:37 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.251 2016/09/15 15:01:13 brouard |
|
Summary: not working |
|
|
|
Revision 1.250 2016/09/08 16:07:27 brouard |
|
Summary: continue |
|
|
|
Revision 1.249 2016/09/07 17:14:18 brouard |
|
Summary: Starting values from frequencies |
|
|
|
Revision 1.248 2016/09/07 14:10:18 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.247 2016/09/02 11:11:21 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.246 2016/09/02 08:49:22 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.245 2016/09/02 07:25:01 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.244 2016/09/02 07:17:34 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.243 2016/09/02 06:45:35 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.242 2016/08/30 15:01:20 brouard |
|
Summary: Fixing a lots |
|
|
|
Revision 1.241 2016/08/29 17:17:25 brouard |
|
Summary: gnuplot problem in Back projection to fix |
|
|
|
Revision 1.240 2016/08/29 07:53:18 brouard |
|
Summary: Better |
|
|
|
Revision 1.239 2016/08/26 15:51:03 brouard |
|
Summary: Improvement in Powell output in order to copy and paste |
|
|
|
Author: |
|
|
|
Revision 1.238 2016/08/26 14:23:35 brouard |
|
Summary: Starting tests of 0.99 |
|
|
|
Revision 1.237 2016/08/26 09:20:19 brouard |
|
Summary: to valgrind |
|
|
|
Revision 1.236 2016/08/25 10:50:18 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.235 2016/08/25 06:59:23 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.234 2016/08/23 16:51:20 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.233 2016/08/23 07:40:50 brouard |
|
Summary: not working |
|
|
|
Revision 1.232 2016/08/22 14:20:21 brouard |
|
Summary: not working |
|
|
|
Revision 1.231 2016/08/22 07:17:15 brouard |
|
Summary: not working |
|
|
|
Revision 1.230 2016/08/22 06:55:53 brouard |
|
Summary: Not working |
|
|
|
Revision 1.229 2016/07/23 09:45:53 brouard |
|
Summary: Completing for func too |
|
|
|
Revision 1.228 2016/07/22 17:45:30 brouard |
|
Summary: Fixing some arrays, still debugging |
|
|
|
Revision 1.226 2016/07/12 18:42:34 brouard |
|
Summary: temp |
|
|
|
Revision 1.225 2016/07/12 08:40:03 brouard |
|
Summary: saving but not running |
|
|
|
Revision 1.224 2016/07/01 13:16:01 brouard |
|
Summary: Fixes |
|
|
|
Revision 1.223 2016/02/19 09:23:35 brouard |
|
Summary: temporary |
|
|
|
Revision 1.222 2016/02/17 08:14:50 brouard |
|
Summary: Probably last 0.98 stable version 0.98r6 |
|
|
|
Revision 1.221 2016/02/15 23:35:36 brouard |
|
Summary: minor bug |
|
|
|
Revision 1.219 2016/02/15 00:48:12 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.218 2016/02/12 11:29:23 brouard |
|
Summary: 0.99 Back projections |
|
|
|
Revision 1.217 2015/12/23 17:18:31 brouard |
|
Summary: Experimental backcast |
|
|
|
Revision 1.216 2015/12/18 17:32:11 brouard |
|
Summary: 0.98r4 Warning and status=-2 |
|
|
|
Version 0.98r4 is now: |
|
- displaying an error when status is -1, date of interview unknown and date of death known; |
|
- permitting a status -2 when the vital status is unknown at a known date of right truncation. |
|
Older changes concerning s=-2, dating from 2005 have been supersed. |
|
|
Revision 1.215 2015/12/16 08:52:24 brouard |
Revision 1.215 2015/12/16 08:52:24 brouard |
Summary: 0.98r4 working |
Summary: 0.98r4 working |
|
|
Line 19
|
Line 375
|
Author: Nicolas Brouard |
Author: Nicolas Brouard |
|
|
Revision 1.210 2015/11/18 17:41:20 brouard |
Revision 1.210 2015/11/18 17:41:20 brouard |
Summary: Start working on projected prevalences |
Summary: Start working on projected prevalences Revision 1.209 2015/11/17 22:12:03 brouard |
|
|
Revision 1.209 2015/11/17 22:12:03 brouard |
|
Summary: Adding ftolpl parameter |
Summary: Adding ftolpl parameter |
Author: N Brouard |
Author: N Brouard |
|
|
Line 604
|
Line 958
|
|
|
Short summary of the programme: |
Short summary of the programme: |
|
|
This program computes Healthy Life Expectancies from |
This program computes Healthy Life Expectancies or State-specific |
cross-longitudinal data. Cross-longitudinal data consist in: -1- a |
(if states aren't health statuses) Expectancies from |
first survey ("cross") where individuals from different ages are |
cross-longitudinal data. Cross-longitudinal data consist in: |
interviewed on their health status or degree of disability (in the |
|
case of a health survey which is our main interest) -2- at least a |
-1- a first survey ("cross") where individuals from different ages |
second wave of interviews ("longitudinal") which measure each change |
are interviewed on their health status or degree of disability (in |
(if any) in individual health status. Health expectancies are |
the case of a health survey which is our main interest) |
computed from the time spent in each health state according to a |
|
model. More health states you consider, more time is necessary to reach the |
-2- at least a second wave of interviews ("longitudinal") which |
Maximum Likelihood of the parameters involved in the model. The |
measure each change (if any) in individual health status. Health |
simplest model is the multinomial logistic model where pij is the |
expectancies are computed from the time spent in each health state |
probability to be observed in state j at the second wave |
according to a model. More health states you consider, more time is |
conditional to be observed in state i at the first wave. Therefore |
necessary to reach the Maximum Likelihood of the parameters involved |
the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where |
in the model. The simplest model is the multinomial logistic model |
'age' is age and 'sex' is a covariate. If you want to have a more |
where pij is the probability to be observed in state j at the second |
complex model than "constant and age", you should modify the program |
wave conditional to be observed in state i at the first |
where the markup *Covariates have to be included here again* invites |
wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex + |
you to do it. More covariates you add, slower the |
etc , where 'age' is age and 'sex' is a covariate. If you want to |
|
have a more complex model than "constant and age", you should modify |
|
the program where the markup *Covariates have to be included here |
|
again* invites you to do it. More covariates you add, slower the |
convergence. |
convergence. |
|
|
The advantage of this computer programme, compared to a simple |
The advantage of this computer programme, compared to a simple |
Line 640
|
Line 997
|
hPijx. |
hPijx. |
|
|
Also this programme outputs the covariance matrix of the parameters but also |
Also this programme outputs the covariance matrix of the parameters but also |
of the life expectancies. It also computes the period (stable) prevalence. |
of the life expectancies. It also computes the period (stable) prevalence. |
|
|
|
Back prevalence and projections: |
|
|
|
- back_prevalence_limit(double *p, double **bprlim, double ageminpar, |
|
double agemaxpar, double ftolpl, int *ncvyearp, double |
|
dateprev1,double dateprev2, int firstpass, int lastpass, int |
|
mobilavproj) |
|
|
|
Computes the back prevalence limit for any combination of |
|
covariate values k at any age between ageminpar and agemaxpar and |
|
returns it in **bprlim. In the loops, |
|
|
|
- **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm, |
|
**savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k); |
|
|
|
- hBijx Back Probability to be in state i at age x-h being in j at x |
|
Computes for any combination of covariates k and any age between bage and fage |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
|
|
- hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres); |
|
Computes the transition matrix starting at age 'age' over |
|
'nhstepm*hstepm*stepm' months (i.e. until |
|
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
|
nhstepm*hstepm matrices. |
|
|
|
Returns p3mat[i][j][h] after calling |
|
p3mat[i][j][h]=matprod2(newm, |
|
bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, |
|
dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
|
oldm); |
|
|
|
Important routines |
|
|
|
- func (or funcone), computes logit (pij) distinguishing |
|
o fixed variables (single or product dummies or quantitative); |
|
o varying variables by: |
|
(1) wave (single, product dummies, quantitative), |
|
(2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be: |
|
% fixed dummy (treated) or quantitative (not done because time-consuming); |
|
% varying dummy (not done) or quantitative (not done); |
|
- Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities) |
|
and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually. |
|
- printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables |
|
o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if |
|
race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless. |
|
|
|
|
|
|
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
Institut national d'études démographiques, Paris. |
Institut national d'études démographiques, Paris. |
Line 702
|
Line 1107
|
/* #define DEBUGLINMIN */ |
/* #define DEBUGLINMIN */ |
/* #define DEBUGHESS */ |
/* #define DEBUGHESS */ |
#define DEBUGHESSIJ |
#define DEBUGHESSIJ |
/* #define LINMINORIGINAL /\* Don't use loop on scale in linmin (accepting nan)*\/ */ |
/* #define LINMINORIGINAL /\* Don't use loop on scale in linmin (accepting nan) *\/ */ |
#define POWELL /* Instead of NLOPT */ |
#define POWELL /* Instead of NLOPT */ |
#define POWELLF1F3 /* Skip test */ |
#define POWELLNOF3INFF1TEST /* Skip test */ |
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
|
/* #define FLATSUP *//* Suppresses directions where likelihood is flat */ |
|
|
#include <math.h> |
#include <math.h> |
#include <stdio.h> |
#include <stdio.h> |
#include <stdlib.h> |
#include <stdlib.h> |
#include <string.h> |
#include <string.h> |
|
#include <ctype.h> |
|
|
#ifdef _WIN32 |
#ifdef _WIN32 |
#include <io.h> |
#include <io.h> |
Line 757 typedef struct {
|
Line 1164 typedef struct {
|
/* #include <libintl.h> */ |
/* #include <libintl.h> */ |
/* #define _(String) gettext (String) */ |
/* #define _(String) gettext (String) */ |
|
|
#define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */ |
#define MAXLINE 2048 /* Was 256 and 1024. Overflow with 312 with 2 states and 4 covariates. Should be ok */ |
|
|
#define GNUPLOTPROGRAM "gnuplot" |
#define GNUPLOTPROGRAM "gnuplot" |
/*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ |
/*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ |
Line 772 typedef struct {
|
Line 1179 typedef struct {
|
#define NINTERVMAX 8 |
#define NINTERVMAX 8 |
#define NLSTATEMAX 8 /**< Maximum number of live states (for func) */ |
#define NLSTATEMAX 8 /**< Maximum number of live states (for func) */ |
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
#define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */ |
#define NCOVMAX 30 /**< Maximum number of covariates, including generated covariates V1*V2 */ |
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
/*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/ |
/*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/ |
#define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 |
#define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 |
#define MAXN 20000 |
/*#define MAXN 20000 */ /* Should by replaced by nobs, real number of observations and unlimited */ |
#define YEARM 12. /**< Number of months per year */ |
#define YEARM 12. /**< Number of months per year */ |
#define AGESUP 130 |
/* #define AGESUP 130 */ |
|
/* #define AGESUP 150 */ |
|
#define AGESUP 200 |
|
#define AGEINF 0 |
|
#define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */ |
#define AGEBASE 40 |
#define AGEBASE 40 |
#define AGEOVERFLOW 1.e20 |
#define AGEOVERFLOW 1.e20 |
#define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */ |
#define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */ |
Line 796 typedef struct {
|
Line 1207 typedef struct {
|
/* $State$ */ |
/* $State$ */ |
#include "version.h" |
#include "version.h" |
char version[]=__IMACH_VERSION__; |
char version[]=__IMACH_VERSION__; |
char copyright[]="October 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015"; |
char copyright[]="May 2022,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2020, Nihon University 2021-202, INED 2000-2022"; |
char fullversion[]="$Revision$ $Date$"; |
char fullversion[]="$Revision$ $Date$"; |
char strstart[80]; |
char strstart[80]; |
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
Line 805 int nagesqr=0, nforce=0; /* nagesqr=1 if
|
Line 1216 int nagesqr=0, nforce=0; /* nagesqr=1 if
|
/* Number of covariates model=V2+V1+ V3*age+V2*V4 */ |
/* Number of covariates model=V2+V1+ V3*age+V2*V4 */ |
int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */ |
int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */ |
int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */ |
int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */ |
int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */ |
int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */ |
|
int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */ |
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
int cptcoveff=0; /* Total number of covariates to vary for printing results */ |
int cptcoveff=0; /* Total number of covariates to vary for printing results */ |
|
int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */ |
|
int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */ |
|
int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */ |
|
int nsd=0; /**< Total number of single dummy variables (output) */ |
|
int nsq=0; /**< Total number of single quantitative variables (output) */ |
|
int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */ |
|
int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */ |
|
int ntveff=0; /**< ntveff number of effective time varying variables */ |
|
int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */ |
int cptcov=0; /* Working variable */ |
int cptcov=0; /* Working variable */ |
int npar=NPARMAX; |
int nobs=10; /* Number of observations in the data lastobs-firstobs */ |
|
int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */ |
|
int npar=NPARMAX; /* Number of parameters (nlstate+ndeath-1)*nlstate*ncovmodel; */ |
int nlstate=2; /* Number of live states */ |
int nlstate=2; /* Number of live states */ |
int ndeath=1; /* Number of dead states */ |
int ndeath=1; /* Number of dead states */ |
int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ |
int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ |
|
int nqv=0, ntv=0, nqtv=0; /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ |
int popbased=0; |
int popbased=0; |
|
|
int *wav; /* Number of waves for this individuual 0 is possible */ |
int *wav; /* Number of waves for this individuual 0 is possible */ |
Line 828 int **dh; /* dh[mi][i] is number of step
|
Line 1252 int **dh; /* dh[mi][i] is number of step
|
int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between |
int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between |
* wave mi and wave mi+1 is not an exact multiple of stepm. */ |
* wave mi and wave mi+1 is not an exact multiple of stepm. */ |
int countcallfunc=0; /* Count the number of calls to func */ |
int countcallfunc=0; /* Count the number of calls to func */ |
|
int selected(int kvar); /* Is covariate kvar selected for printing results */ |
|
|
double jmean=1; /* Mean space between 2 waves */ |
double jmean=1; /* Mean space between 2 waves */ |
double **matprod2(); /* test */ |
double **matprod2(); /* test */ |
double **oldm, **newm, **savm; /* Working pointers to matrices */ |
double **oldm, **newm, **savm; /* Working pointers to matrices */ |
double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ |
double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ |
|
double **ddnewms, **ddoldms, **ddsavms; /* for freeing later */ |
|
|
/*FILE *fic ; */ /* Used in readdata only */ |
/*FILE *fic ; */ /* Used in readdata only */ |
FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop; |
FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop; |
FILE *ficlog, *ficrespow; |
FILE *ficlog, *ficrespow; |
int globpr=0; /* Global variable for printing or not */ |
int globpr=0; /* Global variable for printing or not */ |
double fretone; /* Only one call to likelihood */ |
double fretone; /* Only one call to likelihood */ |
Line 853 FILE *ficrescveij;
|
Line 1281 FILE *ficrescveij;
|
char filerescve[FILENAMELENGTH]; |
char filerescve[FILENAMELENGTH]; |
FILE *ficresvij; |
FILE *ficresvij; |
char fileresv[FILENAMELENGTH]; |
char fileresv[FILENAMELENGTH]; |
FILE *ficresvpl; |
|
char fileresvpl[FILENAMELENGTH]; |
|
char title[MAXLINE]; |
char title[MAXLINE]; |
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH]; |
char model[MAXLINE]; /**< The model line */ |
|
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH], fileresplb[FILENAMELENGTH]; |
char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH]; |
char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH]; |
char tmpout[FILENAMELENGTH], tmpout2[FILENAMELENGTH]; |
char tmpout[FILENAMELENGTH], tmpout2[FILENAMELENGTH]; |
char command[FILENAMELENGTH]; |
char command[FILENAMELENGTH]; |
int outcmd=0; |
int outcmd=0; |
|
|
char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH]; |
char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH]; |
char fileresu[FILENAMELENGTH]; /* fileres without r in front */ |
char fileresu[FILENAMELENGTH]; /* fileres without r in front */ |
char filelog[FILENAMELENGTH]; /* Log file */ |
char filelog[FILENAMELENGTH]; /* Log file */ |
char filerest[FILENAMELENGTH]; |
char filerest[FILENAMELENGTH]; |
Line 893 double dval;
|
Line 1321 double dval;
|
#define FTOL 1.0e-10 |
#define FTOL 1.0e-10 |
|
|
#define NRANSI |
#define NRANSI |
#define ITMAX 200 |
#define ITMAX 200 |
|
#define ITPOWMAX 20 /* This is now multiplied by the number of parameters */ |
|
|
#define TOL 2.0e-4 |
#define TOL 2.0e-4 |
|
|
Line 939 int *ncodemaxwundef; /* ncodemax[j]= Nu
|
Line 1368 int *ncodemaxwundef; /* ncodemax[j]= Nu
|
covariate for which somebody answered including |
covariate for which somebody answered including |
undefined. Usually 3: -1, 0 and 1. */ |
undefined. Usually 3: -1, 0 and 1. */ |
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
double **pmmij, ***probs; |
double **pmmij, ***probs; /* Global pointer */ |
|
double ***mobaverage, ***mobaverages; /* New global variable */ |
double *ageexmed,*agecens; |
double *ageexmed,*agecens; |
double dateintmean=0; |
double dateintmean=0; |
|
double anprojd, mprojd, jprojd; /* For eventual projections */ |
|
double anprojf, mprojf, jprojf; |
|
|
|
double anbackd, mbackd, jbackd; /* For eventual backprojections */ |
|
double anbackf, mbackf, jbackf; |
|
double jintmean,mintmean,aintmean; |
double *weight; |
double *weight; |
int **s; /* Status */ |
int **s; /* Status */ |
double *agedc; |
double *agedc; |
double **covar; /**< covar[j,i], value of jth covariate for individual i, |
double **covar; /**< covar[j,i], value of jth covariate for individual i, |
* covar=matrix(0,NCOVMAX,1,n); |
* covar=matrix(0,NCOVMAX,1,n); |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
|
double **coqvar; /* Fixed quantitative covariate nqv */ |
|
double ***cotvar; /* Time varying covariate ntv */ |
|
double ***cotqvar; /* Time varying quantitative covariate itqv */ |
double idx; |
double idx; |
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
|
/* Some documentation */ |
|
/* Design original data |
|
* V1 V2 V3 V4 V5 V6 V7 V8 Weight ddb ddth d1st s1 V9 V10 V11 V12 s2 V9 V10 V11 V12 |
|
* < ncovcol=6 > nqv=2 (V7 V8) dv dv dv qtv dv dv dvv qtv |
|
* ntv=3 nqtv=1 |
|
* cptcovn number of covariates (not including constant and age) = # of + plus 1 = 10+1=11 |
|
* For time varying covariate, quanti or dummies |
|
* cotqvar[wav][iv(1 to nqtv)][i]= [1][12][i]=(V12) quanti |
|
* cotvar[wav][ntv+iv][i]= [3+(1 to nqtv)][i]=(V12) quanti |
|
* cotvar[wav][iv(1 to ntv)][i]= [1][1][i]=(V9) dummies at wav 1 |
|
* cotvar[wav][iv(1 to ntv)][i]= [1][2][i]=(V10) dummies at wav 1 |
|
* covar[k,i], value of kth fixed covariate dummy or quanti : |
|
* covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8) |
|
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 + V9 + V9*age + V10 |
|
* k= 1 2 3 4 5 6 7 8 9 10 11 |
|
*/ |
|
/* According to the model, more columns can be added to covar by the product of covariates */ |
|
/* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1 |
|
# States 1=Coresidence, 2 Living alone, 3 Institution |
|
# V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi |
|
*/ |
|
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
/* k 1 2 3 4 5 6 7 8 9 */ |
|
/*Typevar[k]= 0 0 0 2 1 0 2 1 0 *//*0 for simple covariate (dummy, quantitative,*/ |
|
/* fixed or varying), 1 for age product, 2 for*/ |
|
/* product */ |
|
/*Dummy[k]= 1 0 0 1 3 1 1 2 0 *//*Dummy[k] 0=dummy (0 1), 1 quantitative */ |
|
/*(single or product without age), 2 dummy*/ |
|
/* with age product, 3 quant with age product*/ |
|
/*Tvar[k]= 5 4 3 6 5 2 7 1 1 */ |
|
/* nsd 1 2 3 */ /* Counting single dummies covar fixed or tv */ |
|
/*TvarsD[nsd] 4 3 1 */ /* ID of single dummy cova fixed or timevary*/ |
|
/*TvarsDind[k] 2 3 9 */ /* position K of single dummy cova */ |
|
/* nsq 1 2 */ /* Counting single quantit tv */ |
|
/* TvarsQ[k] 5 2 */ /* Number of single quantitative cova */ |
|
/* TvarsQind 1 6 */ /* position K of single quantitative cova */ |
|
/* Tprod[i]=k 1 2 */ /* Position in model of the ith prod without age */ |
|
/* cptcovage 1 2 */ /* Counting cov*age in the model equation */ |
|
/* Tage[cptcovage]=k 5 8 */ /* Position in the model of ith cov*age */ |
|
/* Tvard[1][1]@4={4,3,1,2} V4*V3 V1*V2 */ /* Position in model of the ith prod without age */ |
|
/* TvarF TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 ID of fixed covariates or product V2, V1*V2, V1 */ |
|
/* TvarFind; TvarFind[1]=6, TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod) */ |
|
/* Type */ |
|
/* V 1 2 3 4 5 */ |
|
/* F F V V V */ |
|
/* D Q D D Q */ |
|
/* */ |
|
int *TvarsD; |
|
int *TvarsDind; |
|
int *TvarsQ; |
|
int *TvarsQind; |
|
|
|
#define MAXRESULTLINESPONE 10+1 |
|
int nresult=0; |
|
int parameterline=0; /* # of the parameter (type) line */ |
|
int TKresult[MAXRESULTLINESPONE]; |
|
int Tresult[MAXRESULTLINESPONE][NCOVMAX];/* For dummy variable , value (output) */ |
|
int Tinvresult[MAXRESULTLINESPONE][NCOVMAX];/* For dummy variable , value (output) */ |
|
int Tvresult[MAXRESULTLINESPONE][NCOVMAX]; /* For dummy variable , variable # (output) */ |
|
double Tqresult[MAXRESULTLINESPONE][NCOVMAX]; /* For quantitative variable , value (output) */ |
|
double Tqinvresult[MAXRESULTLINESPONE][NCOVMAX]; /* For quantitative variable , value (output) */ |
|
int Tvqresult[MAXRESULTLINESPONE][NCOVMAX]; /* For quantitative variable , variable # (output) */ |
|
|
|
/* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1 |
|
# States 1=Coresidence, 2 Living alone, 3 Institution |
|
# V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi |
|
*/ |
|
/* int *TDvar; /\**< TDvar[1]=4, TDvarF[2]=3, TDvar[3]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */ |
|
int *TvarF; /**< TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFind; /**< TvarFind[1]=6, TvarFind[2]=7, Tvarind[3]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
|
|
int *Tvarsel; /**< Selected covariates for output */ |
|
double *Tvalsel; /**< Selected modality value of covariate for output */ |
|
int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
|
int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ |
|
int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ |
|
int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */ |
|
int *FixedV; /** FixedV[v] 0 fixed, 1 varying */ |
int *Tage; |
int *Tage; |
|
int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ |
|
int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
|
int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
|
int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
int *Ndum; /** Freq of modality (tricode */ |
int *Ndum; /** Freq of modality (tricode */ |
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
int **Tvard, *Tprod, cptcovprod, *Tvaraff; |
int **Tvard; |
|
int *Tprod;/**< Gives the k position of the k1 product */ |
|
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 */ |
|
int *Tposprod; /**< Gives the k1 product from the k position */ |
|
/* if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) */ |
|
/* Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5(V3*V2)]=2 (2nd product without age) */ |
|
int cptcovprod, *Tvaraff, *invalidvarcomb; |
double *lsurv, *lpop, *tpop; |
double *lsurv, *lpop, *tpop; |
|
|
|
#define FD 1; /* Fixed dummy covariate */ |
|
#define FQ 2; /* Fixed quantitative covariate */ |
|
#define FP 3; /* Fixed product covariate */ |
|
#define FPDD 7; /* Fixed product dummy*dummy covariate */ |
|
#define FPDQ 8; /* Fixed product dummy*quantitative covariate */ |
|
#define FPQQ 9; /* Fixed product quantitative*quantitative covariate */ |
|
#define VD 10; /* Varying dummy covariate */ |
|
#define VQ 11; /* Varying quantitative covariate */ |
|
#define VP 12; /* Varying product covariate */ |
|
#define VPDD 13; /* Varying product dummy*dummy covariate */ |
|
#define VPDQ 14; /* Varying product dummy*quantitative covariate */ |
|
#define VPQQ 15; /* Varying product quantitative*quantitative covariate */ |
|
#define APFD 16; /* Age product * fixed dummy covariate */ |
|
#define APFQ 17; /* Age product * fixed quantitative covariate */ |
|
#define APVD 18; /* Age product * varying dummy covariate */ |
|
#define APVQ 19; /* Age product * varying quantitative covariate */ |
|
|
|
#define FTYPE 1; /* Fixed covariate */ |
|
#define VTYPE 2; /* Varying covariate (loop in wave) */ |
|
#define ATYPE 2; /* Age product covariate (loop in dh within wave)*/ |
|
|
|
struct kmodel{ |
|
int maintype; /* main type */ |
|
int subtype; /* subtype */ |
|
}; |
|
struct kmodel modell[NCOVMAX]; |
|
|
double ftol=FTOL; /**< Tolerance for computing Max Likelihood */ |
double ftol=FTOL; /**< Tolerance for computing Max Likelihood */ |
double ftolhess; /**< Tolerance for computing hessian */ |
double ftolhess; /**< Tolerance for computing hessian */ |
|
|
Line 1092 char *cutl(char *blocc, char *alocc, cha
|
Line 1657 char *cutl(char *blocc, char *alocc, cha
|
{ |
{ |
/* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' |
/* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' |
and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2') |
and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2') |
gives blocc="abcdef" and alocc="ghi2j". |
gives alocc="abcdef" and blocc="ghi2j". |
If occ is not found blocc is null and alocc is equal to in. Returns blocc |
If occ is not found blocc is null and alocc is equal to in. Returns blocc |
*/ |
*/ |
char *s, *t; |
char *s, *t; |
Line 1152 int nbocc(char *s, char occ)
|
Line 1717 int nbocc(char *s, char occ)
|
i=0; |
i=0; |
lg=strlen(s); |
lg=strlen(s); |
for(i=0; i<= lg; i++) { |
for(i=0; i<= lg; i++) { |
if (s[i] == occ ) j++; |
if (s[i] == occ ) j++; |
} |
} |
return j; |
return j; |
} |
} |
Line 1374 char *subdirf(char fileres[])
|
Line 1939 char *subdirf(char fileres[])
|
/*************** function subdirf2 ***********/ |
/*************** function subdirf2 ***********/ |
char *subdirf2(char fileres[], char *preop) |
char *subdirf2(char fileres[], char *preop) |
{ |
{ |
|
/* Example subdirf2(optionfilefiname,"FB_") with optionfilefiname="texte", result="texte/FB_texte" |
|
Errors in subdirf, 2, 3 while printing tmpout is |
|
rewritten within the same printf. Workaround: many printfs */ |
/* Caution optionfilefiname is hidden */ |
/* Caution optionfilefiname is hidden */ |
strcpy(tmpout,optionfilefiname); |
strcpy(tmpout,optionfilefiname); |
strcat(tmpout,"/"); |
strcat(tmpout,"/"); |
Line 1496 double brent(double ax, double bx, doubl
|
Line 2063 double brent(double ax, double bx, doubl
|
etemp=e; |
etemp=e; |
e=d; |
e=d; |
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
else { |
else { |
d=p/q; |
d=p/q; |
u=x+d; |
u=x+d; |
if (u-a < tol2 || b-u < tol2) |
if (u-a < tol2 || b-u < tol2) |
d=SIGN(tol1,xm-x); |
d=SIGN(tol1,xm-x); |
} |
} |
} else { |
} else { |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
Line 1515 double brent(double ax, double bx, doubl
|
Line 2082 double brent(double ax, double bx, doubl
|
} else { |
} else { |
if (u < x) a=u; else b=u; |
if (u < x) a=u; else b=u; |
if (fu <= fw || w == x) { |
if (fu <= fw || w == x) { |
v=w; |
v=w; |
w=u; |
w=u; |
fv=fw; |
fv=fw; |
fw=fu; |
fw=fu; |
} else if (fu <= fv || v == x || v == w) { |
} else if (fu <= fv || v == x || v == w) { |
v=u; |
v=u; |
fv=fu; |
fv=fu; |
} |
} |
} |
} |
} |
} |
Line 1562 values at the three points, fa, fb , and
|
Line 2129 values at the three points, fa, fb , and
|
*cx=(*bx)+GOLD*(*bx-*ax); |
*cx=(*bx)+GOLD*(*bx-*ax); |
*fc=(*func)(*cx); |
*fc=(*func)(*cx); |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc); |
printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc); |
fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc); |
fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc); |
#endif |
#endif |
while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */ |
while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/ |
r=(*bx-*ax)*(*fb-*fc); |
r=(*bx-*ax)*(*fb-*fc); |
q=(*bx-*cx)*(*fb-*fa); |
q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */ |
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ |
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ |
(2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */ |
(2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */ |
ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */ |
ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */ |
Line 1578 values at the three points, fa, fb , and
|
Line 2145 values at the three points, fa, fb , and
|
double A, fparabu; |
double A, fparabu; |
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
fparabu= *fa - A*(*ax-u)*(*ax-u); |
fparabu= *fa - A*(*ax-u)*(*ax-u); |
printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu); |
printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r); |
fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu); |
fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r); |
/* And thus,it can be that fu > *fc even if fparabu < *fc */ |
/* And thus,it can be that fu > *fc even if fparabu < *fc */ |
/* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489), |
/* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489), |
(*cx=10.098840694817, *fc=298946.631474258087), (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */ |
(*cx=10.098840694817, *fc=298946.631474258087), (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */ |
Line 1612 values at the three points, fa, fb , and
|
Line 2179 values at the three points, fa, fb , and
|
/* fu = *fc; */ |
/* fu = *fc; */ |
/* *fc =dum; */ |
/* *fc =dum; */ |
/* } */ |
/* } */ |
#ifdef DEBUG |
#ifdef DEBUGMNBRAK |
printf("mnbrak34 fu < or >= fc \n"); |
double A, fparabu; |
fprintf(ficlog, "mnbrak34 fu < fc\n"); |
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
|
fparabu= *fa - A*(*ax-u)*(*ax-u); |
|
printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r); |
|
fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r); |
#endif |
#endif |
dum=u; /* Shifting c and u */ |
dum=u; /* Shifting c and u */ |
u = *cx; |
u = *cx; |
Line 1625 values at the three points, fa, fb , and
|
Line 2195 values at the three points, fa, fb , and
|
#endif |
#endif |
} else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */ |
} else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u after c but before ulim\n"); |
printf("\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx); |
fprintf(ficlog, "mnbrak2 u after c but before ulim\n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx); |
#endif |
#endif |
fu=(*func)(u); |
fu=(*func)(u); |
if (fu < *fc) { |
if (fu < *fc) { |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u after c but before ulim AND fu < fc\n"); |
printf("\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc); |
fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc); |
|
#endif |
|
SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) |
|
SHFT(*fb,*fc,fu,(*func)(u)) |
|
#ifdef DEBUG |
|
printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx)); |
#endif |
#endif |
SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) |
|
SHFT(*fb,*fc,fu,(*func)(u)) |
|
} |
} |
} else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */ |
} else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u outside ulim (verifying that ulim is beyond c)\n"); |
printf("\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx); |
fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx); |
#endif |
#endif |
u=ulim; |
u=ulim; |
fu=(*func)(u); |
fu=(*func)(u); |
} else { /* u could be left to b (if r > q parabola has a maximum) */ |
} else { /* u could be left to b (if r > q parabola has a maximum) */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u could be left to b (if r > q parabola has a maximum)\n"); |
printf("\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q); |
fprintf(ficlog, "mnbrak2 u could be left to b (if r > q parabola has a maximum)\n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q); |
#endif |
#endif |
u=(*cx)+GOLD*(*cx-*bx); |
u=(*cx)+GOLD*(*cx-*bx); |
fu=(*func)(u); |
fu=(*func)(u); |
|
#ifdef DEBUG |
|
printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx); |
|
fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx); |
|
#endif |
} /* end tests */ |
} /* end tests */ |
SHFT(*ax,*bx,*cx,u) |
SHFT(*ax,*bx,*cx,u) |
SHFT(*fa,*fb,*fc,fu) |
SHFT(*fa,*fb,*fc,fu) |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu); |
printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc); |
fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu); |
fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc); |
#endif |
#endif |
} /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */ |
} /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */ |
} |
} |
Line 1671 int ncom;
|
Line 2248 int ncom;
|
double *pcom,*xicom; |
double *pcom,*xicom; |
double (*nrfunc)(double []); |
double (*nrfunc)(double []); |
|
|
|
#ifdef LINMINORIGINAL |
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) |
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) |
|
#else |
|
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) |
|
#endif |
{ |
{ |
double brent(double ax, double bx, double cx, |
double brent(double ax, double bx, double cx, |
double (*f)(double), double tol, double *xmin); |
double (*f)(double), double tol, double *xmin); |
Line 1715 void linmin(double p[], double xi[], int
|
Line 2296 void linmin(double p[], double xi[], int
|
#ifdef LINMINORIGINAL |
#ifdef LINMINORIGINAL |
#else |
#else |
if (fx != fx){ |
if (fx != fx){ |
xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */ |
xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */ |
printf("|"); |
printf("|"); |
fprintf(ficlog,"|"); |
fprintf(ficlog,"|"); |
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n", axs, xxs, fx,fb, fa, xx, ax, bx); |
printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n", axs, xxs, fx,fb, fa, xx, ax, bx); |
#endif |
#endif |
} |
} |
}while(fx != fx); |
}while(fx != fx && xxs > 1.e-5); |
#endif |
#endif |
|
|
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
#endif |
#endif |
|
#ifdef LINMINORIGINAL |
|
#else |
|
if(fb == fx){ /* Flat function in the direction */ |
|
xmin=xx; |
|
*flat=1; |
|
}else{ |
|
*flat=0; |
|
#endif |
|
/*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */ |
*fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/ |
*fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/ |
/* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */ |
/* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */ |
/* fmin = f(p[j] + xmin * xi[j]) */ |
/* fmin = f(p[j] + xmin * xi[j]) */ |
/* P+lambda n in that direction (lambdamin), with TOL between abscisses */ |
/* P+lambda n in that direction (lambdamin), with TOL between abscisses */ |
/* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */ |
/* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |
printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin); |
fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |
fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin); |
|
#endif |
|
#ifdef LINMINORIGINAL |
|
#else |
|
} |
#endif |
#endif |
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("linmin end "); |
printf("linmin end "); |
Line 1779 void linmin(double p[], double xi[], int
|
Line 2373 void linmin(double p[], double xi[], int
|
|
|
/*************** powell ************************/ |
/*************** powell ************************/ |
/* |
/* |
Minimization of a function func of n variables. Input consists of an initial starting point |
Minimization of a function func of n variables. Input consists in an initial starting point |
p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di- |
p[1..n] ; an initial matrix xi[1..n][1..n] whose columns contain the initial set of di- |
rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value |
rections (usually the n unit vectors); and ftol, the fractional tolerance in the function value |
such that failure to decrease by more than this amount on one iteration signals doneness. On |
such that failure to decrease by more than this amount in one iteration signals doneness. On |
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
*/ |
*/ |
|
#ifdef LINMINORIGINAL |
|
#else |
|
int *flatdir; /* Function is vanishing in that direction */ |
|
int flat=0, flatd=0; /* Function is vanishing in that direction */ |
|
#endif |
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, |
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, |
double (*func)(double [])) |
double (*func)(double [])) |
{ |
{ |
void linmin(double p[], double xi[], int n, double *fret, |
#ifdef LINMINORIGINAL |
|
void linmin(double p[], double xi[], int n, double *fret, |
double (*func)(double [])); |
double (*func)(double [])); |
int i,ibig,j; |
#else |
|
void linmin(double p[], double xi[], int n, double *fret, |
|
double (*func)(double []),int *flat); |
|
#endif |
|
int i,ibig,j,jk,k; |
double del,t,*pt,*ptt,*xit; |
double del,t,*pt,*ptt,*xit; |
double directest; |
double directest; |
double fp,fptt; |
double fp,fptt; |
Line 1817 void powell(double p[], double **xi, int
|
Line 2421 void powell(double p[], double **xi, int
|
fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); |
fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); |
/* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */ |
/* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */ |
for (i=1;i<=n;i++) { |
for (i=1;i<=n;i++) { |
printf(" %d %.12f",i, p[i]); |
|
fprintf(ficlog," %d %.12lf",i, p[i]); |
|
fprintf(ficrespow," %.12lf", p[i]); |
fprintf(ficrespow," %.12lf", p[i]); |
} |
} |
|
fprintf(ficrespow,"\n");fflush(ficrespow); |
|
printf("\n#model= 1 + age "); |
|
fprintf(ficlog,"\n#model= 1 + age "); |
|
if(nagesqr==1){ |
|
printf(" + age*age "); |
|
fprintf(ficlog," + age*age "); |
|
} |
|
for(j=1;j <=ncovmodel-2;j++){ |
|
if(Typevar[j]==0) { |
|
printf(" + V%d ",Tvar[j]); |
|
fprintf(ficlog," + V%d ",Tvar[j]); |
|
}else if(Typevar[j]==1) { |
|
printf(" + V%d*age ",Tvar[j]); |
|
fprintf(ficlog," + V%d*age ",Tvar[j]); |
|
}else if(Typevar[j]==2) { |
|
printf(" + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficlog," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
} |
|
} |
printf("\n"); |
printf("\n"); |
|
/* printf("12 47.0114589 0.0154322 33.2424412 0.3279905 2.3731903 */ |
|
/* 13 -21.5392400 0.1118147 1.2680506 1.2973408 -1.0663662 */ |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficrespow,"\n");fflush(ficrespow); |
for(i=1,jk=1; i <=nlstate; i++){ |
if(*iter <=3){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
for(j=1; j <=ncovmodel; j++){ |
|
printf("%12.7f ",p[jk]); |
|
fprintf(ficlog,"%12.7f ",p[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
} |
|
} |
|
if(*iter <=3 && *iter >1){ |
tml = *localtime(&rcurr_time); |
tml = *localtime(&rcurr_time); |
strcpy(strcurr,asctime(&tml)); |
strcpy(strcurr,asctime(&tml)); |
rforecast_time=rcurr_time; |
rforecast_time=rcurr_time; |
Line 1839 void powell(double p[], double **xi, int
|
Line 2476 void powell(double p[], double **xi, int
|
strcpy(strfor,asctime(&forecast_time)); |
strcpy(strfor,asctime(&forecast_time)); |
itmp = strlen(strfor); |
itmp = strlen(strfor); |
if(strfor[itmp-1]=='\n') |
if(strfor[itmp-1]=='\n') |
strfor[itmp-1]='\0'; |
strfor[itmp-1]='\0'; |
printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
} |
} |
Line 1853 void powell(double p[], double **xi, int
|
Line 2490 void powell(double p[], double **xi, int
|
#endif |
#endif |
printf("%d",i);fflush(stdout); /* print direction (parameter) i */ |
printf("%d",i);fflush(stdout); /* print direction (parameter) i */ |
fprintf(ficlog,"%d",i);fflush(ficlog); |
fprintf(ficlog,"%d",i);fflush(ficlog); |
|
#ifdef LINMINORIGINAL |
linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
/* Outputs are fret(new point p) p is updated and xit rescaled */ |
#else |
|
linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
|
flatdir[i]=flat; /* Function is vanishing in that direction i */ |
|
#endif |
|
/* Outputs are fret(new point p) p is updated and xit rescaled */ |
if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */ |
if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */ |
/* because that direction will be replaced unless the gain del is small */ |
/* because that direction will be replaced unless the gain del is small */ |
/* in comparison with the 'probable' gain, mu^2, with the last average direction. */ |
/* in comparison with the 'probable' gain, mu^2, with the last average direction. */ |
/* Unless the n directions are conjugate some gain in the determinant may be obtained */ |
/* Unless the n directions are conjugate some gain in the determinant may be obtained */ |
/* with the new direction. */ |
/* with the new direction. */ |
del=fabs(fptt-(*fret)); |
del=fabs(fptt-(*fret)); |
ibig=i; |
ibig=i; |
} |
} |
#ifdef DEBUG |
#ifdef DEBUG |
printf("%d %.12e",i,(*fret)); |
printf("%d %.12e",i,(*fret)); |
fprintf(ficlog,"%d %.12e",i,(*fret)); |
fprintf(ficlog,"%d %.12e",i,(*fret)); |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); |
xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); |
printf(" x(%d)=%.12e",j,xit[j]); |
printf(" x(%d)=%.12e",j,xit[j]); |
fprintf(ficlog," x(%d)=%.12e",j,xit[j]); |
fprintf(ficlog," x(%d)=%.12e",j,xit[j]); |
} |
} |
for(j=1;j<=n;j++) { |
for(j=1;j<=n;j++) { |
printf(" p(%d)=%.12e",j,p[j]); |
printf(" p(%d)=%.12e",j,p[j]); |
fprintf(ficlog," p(%d)=%.12e",j,p[j]); |
fprintf(ficlog," p(%d)=%.12e",j,p[j]); |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
Line 1882 void powell(double p[], double **xi, int
|
Line 2524 void powell(double p[], double **xi, int
|
/* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ |
/* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ |
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
/* New value of last point Pn is not computed, P(n-1) */ |
/* New value of last point Pn is not computed, P(n-1) */ |
if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */ |
for(j=1;j<=n;j++) { |
|
if(flatdir[j] >0){ |
|
printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
|
fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
|
} |
|
/* printf("\n"); */ |
|
/* fprintf(ficlog,"\n"); */ |
|
} |
|
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */ |
|
if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
/* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ |
/* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ |
/* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */ |
/* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */ |
Line 1890 void powell(double p[], double **xi, int
|
Line 2541 void powell(double p[], double **xi, int
|
/* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */ |
/* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */ |
/* By using V1+V2+V3, the gain should be 7.82, compared with basic 1+age. */ |
/* By using V1+V2+V3, the gain should be 7.82, compared with basic 1+age. */ |
/* By adding 10 parameters more the gain should be 18.31 */ |
/* By adding 10 parameters more the gain should be 18.31 */ |
|
|
/* Starting the program with initial values given by a former maximization will simply change */ |
/* Starting the program with initial values given by a former maximization will simply change */ |
/* the scales of the directions and the directions, because the are reset to canonical directions */ |
/* the scales of the directions and the directions, because the are reset to canonical directions */ |
/* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */ |
/* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */ |
Line 1918 void powell(double p[], double **xi, int
|
Line 2569 void powell(double p[], double **xi, int
|
} |
} |
#endif |
#endif |
|
|
|
|
free_vector(xit,1,n); |
free_vector(xit,1,n); |
free_vector(xits,1,n); |
free_vector(xits,1,n); |
free_vector(ptt,1,n); |
free_vector(ptt,1,n); |
free_vector(pt,1,n); |
free_vector(pt,1,n); |
return; |
return; |
} /* enough precision */ |
} /* enough precision */ |
if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); |
if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); |
for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */ |
for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */ |
ptt[j]=2.0*p[j]-pt[j]; |
ptt[j]=2.0*p[j]-pt[j]; |
xit[j]=p[j]-pt[j]; |
xit[j]=p[j]-pt[j]; |
pt[j]=p[j]; |
pt[j]=p[j]; |
} |
} |
fptt=(*func)(ptt); /* f_3 */ |
fptt=(*func)(ptt); /* f_3 */ |
#ifdef POWELLF1F3 |
#ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */ |
|
if (*iter <=4) { |
|
#else |
|
#endif |
|
#ifdef POWELLNOF3INFF1TEST /* skips test F3 <F1 */ |
#else |
#else |
if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */ |
if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */ |
#endif |
#endif |
Line 1941 void powell(double p[], double **xi, int
|
Line 2595 void powell(double p[], double **xi, int
|
/* Let f"(x2) be the 2nd derivative equal everywhere. */ |
/* Let f"(x2) be the 2nd derivative equal everywhere. */ |
/* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */ |
/* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */ |
/* will reach at f3 = fm + h^2/2 f"m ; f" = (f1 -2f2 +f3 ) / h**2 */ |
/* will reach at f3 = fm + h^2/2 f"m ; f" = (f1 -2f2 +f3 ) / h**2 */ |
/* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */ |
/* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */ |
|
/* also lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */ |
|
/* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */ |
/* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */ |
/* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */ |
|
/* Even if f3 <f1, directest can be negative and t >0 */ |
|
/* mu² and del² are equal when f3=f1 */ |
|
/* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */ |
|
/* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */ |
|
/* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0 */ |
|
/* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0 */ |
#ifdef NRCORIGINAL |
#ifdef NRCORIGINAL |
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/ |
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/ |
#else |
#else |
Line 1964 void powell(double p[], double **xi, int
|
Line 2626 void powell(double p[], double **xi, int
|
if (t < 0.0) { /* Then we use it for new direction */ |
if (t < 0.0) { /* Then we use it for new direction */ |
#else |
#else |
if (directest*t < 0.0) { /* Contradiction between both tests */ |
if (directest*t < 0.0) { /* Contradiction between both tests */ |
printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del); |
printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del); |
printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del); |
fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del); |
fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
} |
} |
if (directest < 0.0) { /* Then we use it for new direction */ |
if (directest < 0.0) { /* Then we use it for new direction */ |
#endif |
#endif |
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("Before linmin in direction P%d-P0\n",n); |
printf("Before linmin in direction P%d-P0\n",n); |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
if(j % ncovmodel == 0){ |
if(j % ncovmodel == 0){ |
Line 1982 void powell(double p[], double **xi, int
|
Line 2644 void powell(double p[], double **xi, int
|
} |
} |
} |
} |
#endif |
#endif |
|
#ifdef LINMINORIGINAL |
linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
|
#else |
|
linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
|
flatdir[i]=flat; /* Function is vanishing in that direction i */ |
|
#endif |
|
|
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
Line 1997 void powell(double p[], double **xi, int
|
Line 2665 void powell(double p[], double **xi, int
|
xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */ |
xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */ |
xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */ |
xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */ |
} |
} |
|
#ifdef LINMINORIGINAL |
|
#else |
|
for (j=1, flatd=0;j<=n;j++) { |
|
if(flatdir[j]>0) |
|
flatd++; |
|
} |
|
if(flatd >0){ |
|
printf("%d flat directions: ",flatd); |
|
fprintf(ficlog,"%d flat directions :",flatd); |
|
for (j=1;j<=n;j++) { |
|
if(flatdir[j]>0){ |
|
printf("%d ",j); |
|
fprintf(ficlog,"%d ",j); |
|
} |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
#ifdef FLATSUP |
|
free_vector(xit,1,n); |
|
free_vector(xits,1,n); |
|
free_vector(ptt,1,n); |
|
free_vector(pt,1,n); |
|
return; |
|
#endif |
|
} |
|
#endif |
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
|
|
#ifdef DEBUG |
#ifdef DEBUG |
printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
fprintf(ficlog,"Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
fprintf(ficlog,"Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
for(j=1;j<=n;j++){ |
for(j=1;j<=n;j++){ |
printf(" %.12e",xit[j]); |
printf(" %lf",xit[j]); |
fprintf(ficlog," %.12e",xit[j]); |
fprintf(ficlog," %lf",xit[j]); |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
#endif |
#endif |
} /* end of t or directest negative */ |
} /* end of t or directest negative */ |
#ifdef POWELLF1F3 |
#ifdef POWELLNOF3INFF1TEST |
|
#else |
|
} /* end if (fptt < fp) */ |
|
#endif |
|
#ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */ |
|
} /*NODIRECTIONCHANGEDUNTILNITER No change in drections until some iterations are done */ |
#else |
#else |
} /* end if (fptt < fp) */ |
|
#endif |
#endif |
} /* loop iteration */ |
} /* loop iteration */ |
} |
} |
|
|
/**** Prevalence limit (stable or period prevalence) ****************/ |
/**** Prevalence limit (stable or period prevalence) ****************/ |
|
|
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij) |
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres) |
{ |
{ |
/* Computes the prevalence limit in each live state at age x by left multiplying the unit |
/**< Computes the prevalence limit in each live state at age x and for covariate combination ij |
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
* (and selected quantitative values in nres) |
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
* by left multiplying the unit |
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
* matrix by transitions matrix until convergence is reached with precision ftolpl |
/* or prevalence in state 1, prevalence in state 2, 0 */ |
* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I |
/* newm is the matrix after multiplications, its rows are identical at a factor */ |
* Wx is row vector: population in state 1, population in state 2, population dead |
/* Initial matrix pimij */ |
* or prevalence in state 1, prevalence in state 2, 0 |
|
* newm is the matrix after multiplications, its rows are identical at a factor. |
|
* Inputs are the parameter, age, a tolerance for the prevalence limit ftolpl. |
|
* Output is prlim. |
|
* Initial matrix pimij |
|
*/ |
/* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */ |
/* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */ |
/* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */ |
/* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */ |
/* 0, 0 , 1} */ |
/* 0, 0 , 1} */ |
Line 2041 double **prevalim(double **prlim, int nl
|
Line 2744 double **prevalim(double **prlim, int nl
|
/* {0.51571254859325999, 0.4842874514067399, */ |
/* {0.51571254859325999, 0.4842874514067399, */ |
/* 0.51326036147820708, 0.48673963852179264} */ |
/* 0.51326036147820708, 0.48673963852179264} */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
|
|
int i, ii,j,k; |
int i, ii,j,k; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
/* double **matprod2(); */ /* test */ |
/* double **matprod2(); */ /* test */ |
double **out, cov[NCOVMAX+1], **pmij(); |
double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */ |
double **newm; |
double **newm; |
double agefin, delaymax=200. ; /* 100 Max number of years to converge */ |
double agefin, delaymax=200. ; /* 100 Max number of years to converge */ |
int ncvloop=0; |
int ncvloop=0; |
|
int first=0; |
|
|
min=vector(1,nlstate); |
min=vector(1,nlstate); |
max=vector(1,nlstate); |
max=vector(1,nlstate); |
meandiff=vector(1,nlstate); |
meandiff=vector(1,nlstate); |
|
|
|
/* Starting with matrix unity */ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
Line 2068 double **prevalim(double **prlim, int nl
|
Line 2773 double **prevalim(double **prlim, int nl
|
newm=savm; |
newm=savm; |
/* Covariates have to be included here again */ |
/* Covariates have to be included here again */ |
cov[2]=agefin; |
cov[2]=agefin; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agefin*agefin;; |
cov[3]= agefin*agefin; |
for (k=1; k<=cptcovn;k++) { |
} |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
for (k=1; k<=nsd;k++) { /* For single dummy covariates only */ |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
/* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */ |
/* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */ |
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
} |
/* cov[++k1]=nbcode[TvarsD[k]][codtabm(ij,k)]; */ |
/*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
/* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
/* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */ |
} |
for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; |
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
for (k=1; k<=cptcovprod;k++) /* Useless */ |
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
/* cov[++k1]=Tqresult[nres][k]; */ |
|
/* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovage;k++){ /* For product with age */ |
|
if(Dummy[Tage[k]]==2){ /* dummy with age */ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
/* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */ |
|
} else if(Dummy[Tage[k]]==3){ /* quantitative with age */ |
|
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
|
/* cov[++k1]=Tqresult[nres][k]; */ |
|
} |
|
/* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovprod;k++){ /* For product without age */ |
|
/* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */ |
|
if(Dummy[Tvard[k][1]==0]){ |
|
if(Dummy[Tvard[k][2]==0]){ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
/* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; */ |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; |
|
/* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; */ |
|
} |
|
}else{ |
|
if(Dummy[Tvard[k][2]==0]){ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; |
|
/* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; */ |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; |
|
/* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; */ |
|
} |
|
} |
|
} |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
|
/* age and covariate values of ij are in 'cov' */ |
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */ |
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */ |
|
|
savm=oldm; |
savm=oldm; |
Line 2121 double **prevalim(double **prlim, int nl
|
Line 2858 double **prevalim(double **prlim, int nl
|
free_vector(meandiff,1,nlstate); |
free_vector(meandiff,1,nlstate); |
return prlim; |
return prlim; |
} |
} |
} /* age loop */ |
} /* agefin loop */ |
/* After some age loop it doesn't converge */ |
/* After some age loop it doesn't converge */ |
printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ |
if(!first){ |
Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
first=1; |
|
printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d). Others in log file only...\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
}else if (first >=1 && first <10){ |
|
fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
first++; |
|
}else if (first ==10){ |
|
fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
printf("Warning: the stable prevalence dit not converge. This warning came too often, IMaCh will stop notifying, even in its log file. Look at the graphs to appreciate the non convergence.\n"); |
|
fprintf(ficlog,"Warning: the stable prevalence no convergence; too many cases, giving up noticing, even in log file\n"); |
|
first++; |
|
} |
|
|
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
free_vector(min,1,nlstate); |
free_vector(min,1,nlstate); |
free_vector(max,1,nlstate); |
free_vector(max,1,nlstate); |
Line 2133 Earliest age to start was %d-%d=%d, ncvl
|
Line 2882 Earliest age to start was %d-%d=%d, ncvl
|
return prlim; /* should not reach here */ |
return prlim; /* should not reach here */ |
} |
} |
|
|
/*************** transition probabilities ***************/ |
|
|
|
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
/**** Back Prevalence limit (stable or period prevalence) ****************/ |
|
|
|
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
|
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
|
double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres) |
|
{ |
|
/* Computes the prevalence limit in each live state at age x and for covariate combination ij (<=2**cptcoveff) by left multiplying the unit |
|
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
|
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
|
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
|
/* or prevalence in state 1, prevalence in state 2, 0 */ |
|
/* newm is the matrix after multiplications, its rows are identical at a factor */ |
|
/* Initial matrix pimij */ |
|
/* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */ |
|
/* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */ |
|
/* 0, 0 , 1} */ |
|
/* |
|
* and after some iteration: */ |
|
/* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */ |
|
/* 0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */ |
|
/* 0, 0 , 1} */ |
|
/* And prevalence by suppressing the deaths are close to identical rows in prlim: */ |
|
/* {0.51571254859325999, 0.4842874514067399, */ |
|
/* 0.51326036147820708, 0.48673963852179264} */ |
|
/* If we start from prlim again, prlim tends to a constant matrix */ |
|
|
|
int i, ii,j,k; |
|
int first=0; |
|
double *min, *max, *meandiff, maxmax,sumnew=0.; |
|
/* double **matprod2(); */ /* test */ |
|
double **out, cov[NCOVMAX+1], **bmij(); |
|
double **newm; |
|
double **dnewm, **doldm, **dsavm; /* for use */ |
|
double **oldm, **savm; /* for use */ |
|
|
|
double agefin, delaymax=200. ; /* 100 Max number of years to converge */ |
|
int ncvloop=0; |
|
|
|
min=vector(1,nlstate); |
|
max=vector(1,nlstate); |
|
meandiff=vector(1,nlstate); |
|
|
|
dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms; |
|
oldm=oldms; savm=savms; |
|
|
|
/* Starting with matrix unity */ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
|
|
cov[1]=1.; |
|
|
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
|
/* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */ |
|
/* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */ |
|
/* for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */ |
|
for(agefin=age; agefin<FMIN(AGESUP,age+delaymax); agefin=agefin+stepm/YEARM){ /* A changer en age */ |
|
ncvloop++; |
|
newm=savm; /* oldm should be kept from previous iteration or unity at start */ |
|
/* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */ |
|
/* Covariates have to be included here again */ |
|
cov[2]=agefin; |
|
if(nagesqr==1){ |
|
cov[3]= agefin*agefin;; |
|
} |
|
for (k=1; k<=nsd;k++) { /* For single dummy covariates only */ |
|
/* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */ |
|
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
|
/* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
|
} |
|
/* for (k=1; k<=cptcovn;k++) { */ |
|
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */ |
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
|
/* /\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\/ */ |
|
/* } */ |
|
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
|
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
|
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
|
/* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
/* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; */ |
|
/* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\/ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; */ |
|
for (k=1; k<=cptcovage;k++){ /* For product with age */ |
|
/* if(Dummy[Tvar[Tage[k]]]== 2){ /\* dummy with age *\/ ERROR ???*/ |
|
if(Dummy[Tage[k]]== 2){ /* dummy with age */ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
} else if(Dummy[Tage[k]]== 3){ /* quantitative with age */ |
|
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
|
} |
|
/* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovprod;k++){ /* For product without age */ |
|
/* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */ |
|
if(Dummy[Tvard[k][1]==0]){ |
|
if(Dummy[Tvard[k][2]==0]){ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; |
|
} |
|
}else{ |
|
if(Dummy[Tvard[k][2]==0]){ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; |
|
} |
|
} |
|
} |
|
|
|
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
|
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
|
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
|
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
|
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
|
/* ij should be linked to the correct index of cov */ |
|
/* age and covariate values ij are in 'cov', but we need to pass |
|
* ij for the observed prevalence at age and status and covariate |
|
* number: prevacurrent[(int)agefin][ii][ij] |
|
*/ |
|
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
|
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */ |
|
/* if((int)age == 86 || (int)age == 87){ */ |
|
/* printf(" Backward prevalim age=%d agefin=%d \n", (int) age, (int) agefin); */ |
|
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
|
/* printf("%d newm= ",i); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",newm[i][j]); */ |
|
/* } */ |
|
/* printf("oldm * "); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",oldm[i][j]); */ |
|
/* } */ |
|
/* printf(" bmmij "); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",pmmij[i][j]); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* } */ |
|
/* } */ |
|
savm=oldm; |
|
oldm=newm; |
|
|
|
for(j=1; j<=nlstate; j++){ |
|
max[j]=0.; |
|
min[j]=1.; |
|
} |
|
for(j=1; j<=nlstate; j++){ |
|
for(i=1;i<=nlstate;i++){ |
|
/* bprlim[i][j]= newm[i][j]/(1-sumnew); */ |
|
bprlim[i][j]= newm[i][j]; |
|
max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */ |
|
min[i]=FMIN(min[i],bprlim[i][j]); |
|
} |
|
} |
|
|
|
maxmax=0.; |
|
for(i=1; i<=nlstate; i++){ |
|
meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column, could be nan! */ |
|
maxmax=FMAX(maxmax,meandiff[i]); |
|
/* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */ |
|
} /* i loop */ |
|
*ncvyear= -( (int)age- (int)agefin); |
|
/* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
|
if(maxmax < ftolpl){ |
|
/* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
|
free_vector(min,1,nlstate); |
|
free_vector(max,1,nlstate); |
|
free_vector(meandiff,1,nlstate); |
|
return bprlim; |
|
} |
|
} /* agefin loop */ |
|
/* After some age loop it doesn't converge */ |
|
if(!first){ |
|
first=1; |
|
printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\ |
|
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
|
} |
|
fprintf(ficlog,"Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ |
|
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
|
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
|
free_vector(min,1,nlstate); |
|
free_vector(max,1,nlstate); |
|
free_vector(meandiff,1,nlstate); |
|
|
|
return bprlim; /* should not reach here */ |
|
} |
|
|
|
/*************** transition probabilities ***************/ |
|
|
|
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
{ |
{ |
/* According to parameters values stored in x and the covariate's values stored in cov, |
/* According to parameters values stored in x and the covariate's values stored in cov, |
computes the probability to be observed in state j being in state i by appying the |
computes the probability to be observed in state j (after stepm years) being in state i by appying the |
model to the ncovmodel covariates (including constant and age). |
model to the ncovmodel covariates (including constant and age). |
lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
Line 2147 double **pmij(double **ps, double *cov,
|
Line 3087 double **pmij(double **ps, double *cov,
|
j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
Outputs ps[i][j] the probability to be observed in j being in j according to |
Outputs ps[i][j] or probability to be observed in j being in i according to |
the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
|
Sum on j ps[i][j] should equal to 1. |
*/ |
*/ |
double s1, lnpijopii; |
double s1, lnpijopii; |
/*double t34;*/ |
/*double t34;*/ |
int i,j, nc, ii, jj; |
int i,j, nc, ii, jj; |
|
|
for(i=1; i<= nlstate; i++){ |
for(i=1; i<= nlstate; i++){ |
for(j=1; j<i;j++){ |
for(j=1; j<i;j++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
/*lnpijopii += param[i][j][nc]*cov[nc];*/ |
/*lnpijopii += param[i][j][nc]*cov[nc];*/ |
lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
} |
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
|
} |
|
for(j=i+1; j<=nlstate+ndeath;j++){ |
|
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
|
/*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
|
lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
|
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
|
} |
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
} |
} |
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
} |
} |
|
for(j=i+1; j<=nlstate+ndeath;j++){ |
for(i=1; i<= nlstate; i++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
s1=0; |
/*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
for(j=1; j<i; j++){ |
lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
|
for(j=i+1; j<=nlstate+ndeath; j++){ |
|
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
|
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
|
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
|
ps[i][i]=1./(s1+1.); |
|
/* Computing other pijs */ |
|
for(j=1; j<i; j++) |
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
|
for(j=i+1; j<=nlstate+ndeath; j++) |
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
|
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
|
} /* end i */ |
|
|
|
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
|
ps[ii][jj]=0; |
|
ps[ii][ii]=1; |
|
} |
} |
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
} |
} |
|
} |
|
|
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
for(i=1; i<= nlstate; i++){ |
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
s1=0; |
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
for(j=1; j<i; j++){ |
/* } */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/* printf("\n "); */ |
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
|
for(j=i+1; j<=nlstate+ndeath; j++){ |
|
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
|
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
|
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
|
ps[i][i]=1./(s1+1.); |
|
/* Computing other pijs */ |
|
for(j=1; j<i; j++) |
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
|
for(j=i+1; j<=nlstate+ndeath; j++) |
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
|
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
|
} /* end i */ |
|
|
|
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
|
ps[ii][jj]=0; |
|
ps[ii][ii]=1; |
|
} |
|
} |
|
|
|
|
|
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
|
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
|
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
|
/* } */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* printf("\n ");printf("%lf ",cov[2]);*/ |
|
/* |
|
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
|
goto end;*/ |
|
return ps; /* Pointer is unchanged since its call */ |
|
} |
|
|
|
/*************** backward transition probabilities ***************/ |
|
|
|
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
|
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
|
double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, int ij ) |
|
{ |
|
/* Computes the backward probability at age agefin, cov[2], and covariate combination 'ij'. In fact cov is already filled and x too. |
|
* Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij. |
|
*/ |
|
int i, ii, j,k; |
|
|
|
double **out, **pmij(); |
|
double sumnew=0.; |
|
double agefin; |
|
double k3=0.; /* constant of the w_x diagonal matrix (in order for B to sum to 1 even for death state) */ |
|
double **dnewm, **dsavm, **doldm; |
|
double **bbmij; |
|
|
|
doldm=ddoldms; /* global pointers */ |
|
dnewm=ddnewms; |
|
dsavm=ddsavms; |
|
|
|
/* Debug */ |
|
/* printf("Bmij ij=%d, cov[2}=%f\n", ij, cov[2]); */ |
|
agefin=cov[2]; |
|
/* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */ |
|
/* bmij *//* age is cov[2], ij is included in cov, but we need for |
|
the observed prevalence (with this covariate ij) at beginning of transition */ |
|
/* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
|
|
|
/* P_x */ |
|
pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm */ |
|
/* outputs pmmij which is a stochastic matrix in row */ |
|
|
|
/* Diag(w_x) */ |
|
/* Rescaling the cross-sectional prevalence: Problem with prevacurrent which can be zero */ |
|
sumnew=0.; |
|
/*for (ii=1;ii<=nlstate+ndeath;ii++){*/ |
|
for (ii=1;ii<=nlstate;ii++){ /* Only on live states */ |
|
/* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]); */ |
|
sumnew+=prevacurrent[(int)agefin][ii][ij]; |
|
} |
|
if(sumnew >0.01){ /* At least some value in the prevalence */ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
for (j=1;j<=nlstate+ndeath;j++) |
|
doldm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij]/sumnew : 0.0); |
|
} |
|
}else{ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
for (j=1;j<=nlstate+ndeath;j++) |
|
doldm[ii][j]=(ii==j ? 1./nlstate : 0.0); |
|
} |
|
/* if(sumnew <0.9){ */ |
|
/* printf("Problem internal bmij B: sum on i wi <0.9: j=%d, sum_i wi=%lf,agefin=%d\n",j,sumnew, (int)agefin); */ |
/* } */ |
/* } */ |
/* printf("\n ");printf("%lf ",cov[2]);*/ |
} |
/* |
k3=0.0; /* We put the last diagonal to 0 */ |
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
for (ii=nlstate+1;ii<=nlstate+ndeath;ii++){ |
goto end;*/ |
doldm[ii][ii]= k3; |
return ps; |
} |
|
/* End doldm, At the end doldm is diag[(w_i)] */ |
|
|
|
/* Left product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm): diag[(w_i)*Px */ |
|
bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* was a Bug Valgrind */ |
|
|
|
/* Diag(Sum_i w^i_x p^ij_x, should be the prevalence at age x+stepm */ |
|
/* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */ |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
sumnew=0.; |
|
for (ii=1;ii<=nlstate;ii++){ |
|
/* sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; */ |
|
sumnew+=pmmij[ii][j]*doldm[ii][ii]; /* Yes prevalence at beginning of transition */ |
|
} /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
/* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */ |
|
/* dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
|
/* }else if(agefin >= agemaxpar+stepm/YEARM){ */ |
|
/* dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
|
/* }else */ |
|
dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); |
|
} /*End ii */ |
|
} /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */ |
|
|
|
ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* was a Bug Valgrind */ |
|
/* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */ |
|
/* end bmij */ |
|
return ps; /*pointer is unchanged */ |
|
} |
|
/*************** transition probabilities ***************/ |
|
|
|
double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
|
{ |
|
/* According to parameters values stored in x and the covariate's values stored in cov, |
|
computes the probability to be observed in state j being in state i by appying the |
|
model to the ncovmodel covariates (including constant and age). |
|
lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
|
and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
|
ncth covariate in the global vector x is given by the formula: |
|
j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel |
|
j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
|
Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
|
sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
|
Outputs ps[i][j] the probability to be observed in j being in j according to |
|
the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
|
*/ |
|
double s1, lnpijopii; |
|
/*double t34;*/ |
|
int i,j, nc, ii, jj; |
|
|
|
for(i=1; i<= nlstate; i++){ |
|
for(j=1; j<i;j++){ |
|
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
|
/*lnpijopii += param[i][j][nc]*cov[nc];*/ |
|
lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
|
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
|
} |
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
|
} |
|
for(j=i+1; j<=nlstate+ndeath;j++){ |
|
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
|
/*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
|
lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
|
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
|
} |
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
} |
|
} |
|
|
|
for(i=1; i<= nlstate; i++){ |
|
s1=0; |
|
for(j=1; j<i; j++){ |
|
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
|
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
|
for(j=i+1; j<=nlstate+ndeath; j++){ |
|
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
|
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
|
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
|
ps[i][i]=1./(s1+1.); |
|
/* Computing other pijs */ |
|
for(j=1; j<i; j++) |
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
|
for(j=i+1; j<=nlstate+ndeath; j++) |
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
|
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
|
} /* end i */ |
|
|
|
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
|
ps[ii][jj]=0; |
|
ps[ii][ii]=1; |
|
} |
|
} |
|
/* Added for prevbcast */ /* Transposed matrix too */ |
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
|
s1=0.; |
|
for(ii=1; ii<= nlstate+ndeath; ii++){ |
|
s1+=ps[ii][jj]; |
|
} |
|
for(ii=1; ii<= nlstate; ii++){ |
|
ps[ii][jj]=ps[ii][jj]/s1; |
|
} |
|
} |
|
/* Transposition */ |
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
|
for(ii=jj; ii<= nlstate+ndeath; ii++){ |
|
s1=ps[ii][jj]; |
|
ps[ii][jj]=ps[jj][ii]; |
|
ps[jj][ii]=s1; |
|
} |
|
} |
|
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
|
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
|
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
|
/* } */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* printf("\n ");printf("%lf ",cov[2]);*/ |
|
/* |
|
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
|
goto end;*/ |
|
return ps; |
} |
} |
|
|
|
|
/**************** Product of 2 matrices ******************/ |
/**************** Product of 2 matrices ******************/ |
|
|
double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b) |
double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b) |
Line 2237 double **matprod2(double **out, double *
|
Line 3365 double **matprod2(double **out, double *
|
|
|
/************* Higher Matrix Product ***************/ |
/************* Higher Matrix Product ***************/ |
|
|
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) |
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres ) |
{ |
{ |
/* Computes the transition matrix starting at age 'age' over |
/* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over |
'nhstepm*hstepm*stepm' months (i.e. until |
'nhstepm*hstepm*stepm' months (i.e. until |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
nhstepm*hstepm matrices. |
nhstepm*hstepm matrices. |
Line 2271 double ***hpxij(double ***po, int nhstep
|
Line 3399 double ***hpxij(double ***po, int nhstep
|
cov[1]=1.; |
cov[1]=1.; |
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (k=1; k<=cptcovn;k++) |
} |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
for (k=1; k<=nsd;k++) { /* For single dummy covariates only */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
/* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */ |
for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */ |
/* codtabm(ij,k) (1 & (ij-1) >> (k-1))+1 */ |
/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
/* k 1 2 3 4 5 6 7 8 9 */ |
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
/*Tvar[k]= 5 4 3 6 5 2 7 1 1 */ |
for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */ |
/* nsd 1 2 3 */ /* Counting single dummies covar fixed or tv */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
/*TvarsD[nsd] 4 3 1 */ /* ID of single dummy cova fixed or timevary*/ |
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
/*TvarsDind[k] 2 3 9 */ /* position K of single dummy cova */ |
|
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
|
/* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
|
} |
|
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
|
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
|
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
|
/* printf("hPxij Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovage;k++){ /* For product with age V1+V1*age +V4 +age*V3 */ |
|
/* 1+2 Tage[1]=2 TVar[2]=1 Dummy[2]=2, Tage[2]=4 TVar[4]=3 Dummy[4]=3 quant*/ |
|
/* */ |
|
if(Dummy[Tage[k]]== 2){ /* dummy with age */ |
|
/* if(Dummy[Tvar[Tage[k]]]== 2){ /\* dummy with age *\/ */ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
} else if(Dummy[Tage[k]]== 3){ /* quantitative with age */ |
|
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
|
} |
|
/* printf("hPxij Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovprod;k++){ /* For product without age */ |
|
/* printf("hPxij Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; */ |
|
if(Dummy[Tvard[k][1]==0]){ |
|
if(Dummy[Tvard[k][2]==0]){ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; |
|
} |
|
}else{ |
|
if(Dummy[Tvard[k][2]==0]){ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; |
|
} |
|
} |
|
} |
|
/* for (k=1; k<=cptcovn;k++) */ |
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
|
/* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */ |
|
/* for (k=1; k<=cptcovprod;k++) /\* Useless because included in cptcovn *\/ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; */ |
|
|
|
|
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
|
/* right multiplication of oldm by the current matrix */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
pmij(pmmij,cov,ncovmodel,x,nlstate)); |
pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
/* if((int)age == 70){ */ |
|
/* printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */ |
|
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
|
/* printf("%d pmmij ",i); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",pmmij[i][j]); */ |
|
/* } */ |
|
/* printf(" oldm "); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",oldm[i][j]); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* } */ |
|
/* } */ |
savm=oldm; |
savm=oldm; |
oldm=newm; |
oldm=newm; |
} |
} |
Line 2299 double ***hpxij(double ***po, int nhstep
|
Line 3484 double ***hpxij(double ***po, int nhstep
|
} |
} |
/*printf("h=%d ",h);*/ |
/*printf("h=%d ",h);*/ |
} /* end h */ |
} /* end h */ |
/* printf("\n H=%d \n",h); */ |
/* printf("\n H=%d \n",h); */ |
|
return po; |
|
} |
|
|
|
/************* Higher Back Matrix Product ***************/ |
|
/* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */ |
|
double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres ) |
|
{ |
|
/* For a combination of dummy covariate ij, computes the transition matrix starting at age 'age' over |
|
'nhstepm*hstepm*stepm' months (i.e. until |
|
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
|
nhstepm*hstepm matrices. |
|
Output is stored in matrix po[i][j][h] for h every 'hstepm' step |
|
(typically every 2 years instead of every month which is too big |
|
for the memory). |
|
Model is determined by parameters x and covariates have to be |
|
included manually here. Then we use a call to bmij(x and cov) |
|
The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output |
|
*/ |
|
|
|
int i, j, d, h, k; |
|
double **out, cov[NCOVMAX+1], **bmij(); |
|
double **newm, ***newmm; |
|
double agexact; |
|
double agebegin, ageend; |
|
double **oldm, **savm; |
|
|
|
newmm=po; /* To be saved */ |
|
oldm=oldms;savm=savms; /* Global pointers */ |
|
/* Hstepm could be zero and should return the unit matrix */ |
|
for (i=1;i<=nlstate+ndeath;i++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[i][j]=(i==j ? 1.0 : 0.0); |
|
po[i][j][0]=(i==j ? 1.0 : 0.0); |
|
} |
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
|
for(h=1; h <=nhstepm; h++){ |
|
for(d=1; d <=hstepm; d++){ |
|
newm=savm; |
|
/* Covariates have to be included here again */ |
|
cov[1]=1.; |
|
agexact=age-( (h-1)*hstepm + (d) )*stepm/YEARM; /* age just before transition, d or d-1? */ |
|
/* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */ |
|
/* Debug */ |
|
/* printf("hBxij age=%lf, agexact=%lf\n", age, agexact); */ |
|
cov[2]=agexact; |
|
if(nagesqr==1) |
|
cov[3]= agexact*agexact; |
|
for (k=1; k<=cptcovn;k++){ |
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
|
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */ |
|
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
|
/* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
|
} |
|
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
|
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
|
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
|
/* printf("hPxij Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovage;k++){ /* Should start at cptcovn+1 *//* For product with age */ |
|
/* if(Dummy[Tvar[Tage[k]]]== 2){ /\* dummy with age error!!!*\/ */ |
|
if(Dummy[Tage[k]]== 2){ /* dummy with age */ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
} else if(Dummy[Tage[k]]== 3){ /* quantitative with age */ |
|
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
|
} |
|
/* printf("hBxij Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovprod;k++){ /* Useless because included in cptcovn */ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
} |
|
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
|
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
|
|
|
/* Careful transposed matrix */ |
|
/* age is in cov[2], prevacurrent at beginning of transition. */ |
|
/* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */ |
|
/* 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */ |
|
out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\ |
|
1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); |
|
/* if((int)age == 70){ */ |
|
/* printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */ |
|
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
|
/* printf("%d pmmij ",i); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",pmmij[i][j]); */ |
|
/* } */ |
|
/* printf(" oldm "); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",oldm[i][j]); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* } */ |
|
/* } */ |
|
savm=oldm; |
|
oldm=newm; |
|
} |
|
for(i=1; i<=nlstate+ndeath; i++) |
|
for(j=1;j<=nlstate+ndeath;j++) { |
|
po[i][j][h]=newm[i][j]; |
|
/* if(h==nhstepm) */ |
|
/* printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]); */ |
|
} |
|
/* printf("h=%d %.1f ",h, agexact); */ |
|
} /* end h */ |
|
/* printf("\n H=%d nhs=%d \n",h, nhstepm); */ |
return po; |
return po; |
} |
} |
|
|
|
|
#ifdef NLOPT |
#ifdef NLOPT |
double myfunc(unsigned n, const double *p1, double *grad, void *pd){ |
double myfunc(unsigned n, const double *p1, double *grad, void *pd){ |
double fret; |
double fret; |
Line 2327 double ***hpxij(double ***po, int nhstep
|
Line 3618 double ***hpxij(double ***po, int nhstep
|
double func( double *x) |
double func( double *x) |
{ |
{ |
int i, ii, j, k, mi, d, kk; |
int i, ii, j, k, mi, d, kk; |
|
int ioffset=0; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double **out; |
double **out; |
double sw; /* Sum of weights */ |
|
double lli; /* Individual log likelihood */ |
double lli; /* Individual log likelihood */ |
int s1, s2; |
int s1, s2; |
|
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
double bbh, survp; |
double bbh, survp; |
long ipmx; |
long ipmx; |
double agexact; |
double agexact; |
Line 2347 double func( double *x)
|
Line 3639 double func( double *x)
|
cov[1]=1.; |
cov[1]=1.; |
|
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for(k=1; k<=nlstate; k++) ll[k]=0.; |
|
ioffset=0; |
if(mle==1){ |
if(mle==1){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
/* Computes the values of the ncovmodel covariates of the model |
/* Computes the values of the ncovmodel covariates of the model |
depending if the covariates are fixed or variying (age dependent) and stores them in cov[] |
depending if the covariates are fixed or varying (age dependent) and stores them in cov[] |
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
to be observed in j being in i according to the model. |
to be observed in j being in i according to the model. |
*/ |
*/ |
for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */ |
ioffset=2+nagesqr ; |
cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
/* Fixed */ |
|
for (k=1; k<=ncovf;k++){ /* For each fixed covariate dummu or quant or prod */ |
|
/* # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi */ |
|
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
/* TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 ID of fixed covariates or product V2, V1*V2, V1 */ |
|
/* TvarFind; TvarFind[1]=6, TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod) */ |
|
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (TvarFind[1]=6)*/ |
|
/* V1*V2 (7) TvarFind[2]=7, TvarFind[3]=9 */ |
} |
} |
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] |
is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 |
has been calculated etc */ |
has been calculated etc */ |
|
/* For an individual i, wav[i] gives the number of effective waves */ |
|
/* We compute the contribution to Likelihood of each effective transition |
|
mw[mi][i] is real wave of the mi th effectve wave */ |
|
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] |
|
But if the variable is not in the model TTvar[iv] is the real variable effective in the model: |
|
meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i] |
|
*/ |
for(mi=1; mi<= wav[i]-1; mi++){ |
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for(k=1; k <= ncovv ; k++){ /* Varying covariates in the model (single and product but no age )"V5+V4+V3+V4*V3+V5*age+V1*age+V1" +TvarVind 1,2,3,4(V4*V3) Tvar[1]@7{5, 4, 3, 6, 5, 1, 1 ; 6 because the created covar is after V5 and is 6, minus 1+1, 3,2,1,4 positions in cotvar*/ |
|
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; but where is the crossproduct? */ |
|
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; |
|
} |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
Line 2372 double func( double *x)
|
Line 3684 double func( double *x)
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; /* Should be changed here */ |
for (kk=1; kk<=cptcovage;kk++) { |
for (kk=1; kk<=cptcovage;kk++) { |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
if(!FixedV[Tvar[Tage[kk]]]) |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
|
else |
|
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact; |
} |
} |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
savm=oldm; |
savm=oldm; |
oldm=newm; |
oldm=newm; |
} /* end mult */ |
} /* end mult */ |
|
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
/* But now since version 0.9 we anticipate for bias at large stepm. |
/* But now since version 0.9 we anticipate for bias at large stepm. |
* If stepm is larger than one month (smallest stepm) and if the exact delay |
* If stepm is larger than one month (smallest stepm) and if the exact delay |
Line 2390 double func( double *x)
|
Line 3705 double func( double *x)
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
* (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
* (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
* probability in order to take into account the bias as a fraction of the way |
* probability in order to take into account the bias as a fraction of the way |
* from savm to out if bh is negative or even beyond if bh is positive. bh varies |
* from savm to out if bh is negative or even beyond if bh is positive. bh varies |
* -stepm/2 to stepm/2 . |
* -stepm/2 to stepm/2 . |
* For stepm=1 the results are the same as for previous versions of Imach. |
* For stepm=1 the results are the same as for previous versions of Imach. |
* For stepm > 1 the results are less biased than in previous versions. |
* For stepm > 1 the results are less biased than in previous versions. |
*/ |
*/ |
s1=s[mw[mi][i]][i]; |
s1=s[mw[mi][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
bbh=(double)bh[mi][i]/(double)stepm; |
bbh=(double)bh[mi][i]/(double)stepm; |
Line 2409 double func( double *x)
|
Line 3724 double func( double *x)
|
which is also equal to probability to die before dh |
which is also equal to probability to die before dh |
minus probability to die before dh-stepm . |
minus probability to die before dh-stepm . |
In version up to 0.92 likelihood was computed |
In version up to 0.92 likelihood was computed |
as if date of death was unknown. Death was treated as any other |
as if date of death was unknown. Death was treated as any other |
health state: the date of the interview describes the actual state |
health state: the date of the interview describes the actual state |
and not the date of a change in health state. The former idea was |
and not the date of a change in health state. The former idea was |
to consider that at each interview the state was recorded |
to consider that at each interview the state was recorded |
(healthy, disable or death) and IMaCh was corrected; but when we |
(healthy, disable or death) and IMaCh was corrected; but when we |
introduced the exact date of death then we should have modified |
introduced the exact date of death then we should have modified |
the contribution of an exact death to the likelihood. This new |
the contribution of an exact death to the likelihood. This new |
contribution is smaller and very dependent of the step unit |
contribution is smaller and very dependent of the step unit |
stepm. It is no more the probability to die between last interview |
stepm. It is no more the probability to die between last interview |
and month of death but the probability to survive from last |
and month of death but the probability to survive from last |
interview up to one month before death multiplied by the |
interview up to one month before death multiplied by the |
probability to die within a month. Thanks to Chris |
probability to die within a month. Thanks to Chris |
Jackson for correcting this bug. Former versions increased |
Jackson for correcting this bug. Former versions increased |
mortality artificially. The bad side is that we add another loop |
mortality artificially. The bad side is that we add another loop |
which slows down the processing. The difference can be up to 10% |
which slows down the processing. The difference can be up to 10% |
lower mortality. |
lower mortality. |
|
*/ |
|
/* If, at the beginning of the maximization mostly, the |
|
cumulative probability or probability to be dead is |
|
constant (ie = 1) over time d, the difference is equal to |
|
0. out[s1][3] = savm[s1][3]: probability, being at state |
|
s1 at precedent wave, to be dead a month before current |
|
wave is equal to probability, being at state s1 at |
|
precedent wave, to be dead at mont of the current |
|
wave. Then the observed probability (that this person died) |
|
is null according to current estimated parameter. In fact, |
|
it should be very low but not zero otherwise the log go to |
|
infinity. |
*/ |
*/ |
/* If, at the beginning of the maximization mostly, the |
|
cumulative probability or probability to be dead is |
|
constant (ie = 1) over time d, the difference is equal to |
|
0. out[s1][3] = savm[s1][3]: probability, being at state |
|
s1 at precedent wave, to be dead a month before current |
|
wave is equal to probability, being at state s1 at |
|
precedent wave, to be dead at mont of the current |
|
wave. Then the observed probability (that this person died) |
|
is null according to current estimated parameter. In fact, |
|
it should be very low but not zero otherwise the log go to |
|
infinity. |
|
*/ |
|
/* #ifdef INFINITYORIGINAL */ |
/* #ifdef INFINITYORIGINAL */ |
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
/* #else */ |
/* #else */ |
Line 2446 double func( double *x)
|
Line 3761 double func( double *x)
|
/* else */ |
/* else */ |
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
/* #endif */ |
/* #endif */ |
lli=log(out[s1][s2] - savm[s1][s2]); |
lli=log(out[s1][s2] - savm[s1][s2]); |
|
|
} else if (s2==-2) { |
} else if ( s2==-1 ) { /* alive */ |
for (j=1,survp=0. ; j<=nlstate; j++) |
for (j=1,survp=0. ; j<=nlstate; j++) |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
/*survp += out[s1][j]; */ |
/*survp += out[s1][j]; */ |
lli= log(survp); |
lli= log(survp); |
} |
} |
|
else if (s2==-4) { |
else if (s2==-4) { |
|
for (j=3,survp=0. ; j<=nlstate; j++) |
for (j=3,survp=0. ; j<=nlstate; j++) |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
lli= log(survp); |
lli= log(survp); |
} |
} |
|
else if (s2==-5) { |
else if (s2==-5) { |
for (j=1,survp=0. ; j<=2; j++) |
for (j=1,survp=0. ; j<=2; j++) |
|
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
lli= log(survp); |
lli= log(survp); |
} |
} |
|
|
else{ |
else{ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
Line 2474 double func( double *x)
|
Line 3786 double func( double *x)
|
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
/*if(lli ==000.0)*/ |
/*if(lli ==000.0)*/ |
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
ipmx +=1; |
ipmx +=1; |
sw += weight[i]; |
sw += weight[i]; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
/* if (lli < log(mytinydouble)){ */ |
/* if (lli < log(mytinydouble)){ */ |
Line 2485 double func( double *x)
|
Line 3797 double func( double *x)
|
} /* end of individual */ |
} /* end of individual */ |
} else if(mle==2){ |
} else if(mle==2){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
ioffset=2+nagesqr ; |
|
for (k=1; k<=ncovf;k++) |
|
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i]; |
for(mi=1; mi<= wav[i]-1; mi++){ |
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for(k=1; k <= ncovv ; k++){ |
|
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; |
|
} |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
Line 2578 double func( double *x)
|
Line 3895 double func( double *x)
|
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
if( s2 > nlstate){ |
if( s2 > nlstate){ |
lli=log(out[s1][s2] - savm[s1][s2]); |
lli=log(out[s1][s2] - savm[s1][s2]); |
|
} else if ( s2==-1 ) { /* alive */ |
|
for (j=1,survp=0. ; j<=nlstate; j++) |
|
survp += out[s1][j]; |
|
lli= log(survp); |
}else{ |
}else{ |
lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
} |
} |
Line 2631 double func( double *x)
|
Line 3952 double func( double *x)
|
/*************** log-likelihood *************/ |
/*************** log-likelihood *************/ |
double funcone( double *x) |
double funcone( double *x) |
{ |
{ |
/* Same as likeli but slower because of a lot of printf and if */ |
/* Same as func but slower because of a lot of printf and if */ |
int i, ii, j, k, mi, d, kk; |
int i, ii, j, k, mi, d, kk; |
|
int ioffset=0; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double **out; |
double **out; |
double lli; /* Individual log likelihood */ |
double lli; /* Individual log likelihood */ |
double llt; |
double llt; |
int s1, s2; |
int s1, s2; |
|
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
|
|
double bbh, survp; |
double bbh, survp; |
double agexact; |
double agexact; |
double agebegin, ageend; |
double agebegin, ageend; |
Line 2650 double funcone( double *x)
|
Line 3974 double funcone( double *x)
|
cov[1]=1.; |
cov[1]=1.; |
|
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for(k=1; k<=nlstate; k++) ll[k]=0.; |
|
ioffset=0; |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
/* ioffset=2+nagesqr+cptcovage; */ |
for(mi=1; mi<= wav[i]-1; mi++){ |
ioffset=2+nagesqr; |
|
/* Fixed */ |
|
/* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ |
|
/* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ |
|
for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */ |
|
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
|
/* cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i]; */ |
|
/* cov[2+6]=covar[Tvar[6]][i]; */ |
|
/* cov[2+6]=covar[2][i]; V2 */ |
|
/* cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i]; */ |
|
/* cov[2+7]=covar[Tvar[7]][i]; */ |
|
/* cov[2+7]=covar[7][i]; V7=V1*V2 */ |
|
/* cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i]; */ |
|
/* cov[2+9]=covar[Tvar[9]][i]; */ |
|
/* cov[2+9]=covar[1][i]; V1 */ |
|
} |
|
/* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */ |
|
/* cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */ |
|
/* } */ |
|
/* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */ |
|
/* cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */ |
|
/* } */ |
|
|
|
|
|
for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ |
|
/* Wave varying (but not age varying) */ |
|
for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ |
|
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */ |
|
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; |
|
} |
|
/* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */ |
|
/* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
|
/* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */ |
|
/* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */ |
|
/* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */ |
|
/* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */ |
|
/* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ |
|
/* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
|
/* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ |
|
/* cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */ |
|
/* } */ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
Line 2663 double funcone( double *x)
|
Line 4027 double funcone( double *x)
|
agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */ |
agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */ |
ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */ |
ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */ |
for(d=0; d<dh[mi][i]; d++){ /* Delay between two effective waves */ |
for(d=0; d<dh[mi][i]; d++){ /* Delay between two effective waves */ |
|
/* for(d=0; d<=0; d++){ /\* Delay between two effective waves Only one matrix to speed up*\/ */ |
/*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
/*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
and mw[mi+1][i]. dh depends on stepm.*/ |
and mw[mi+1][i]. dh depends on stepm.*/ |
newm=savm; |
newm=savm; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; /* Here d is needed */ |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (kk=1; kk<=cptcovage;kk++) { |
for (kk=1; kk<=cptcovage;kk++) { |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
if(!FixedV[Tvar[Tage[kk]]]) |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
|
else |
|
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact; |
} |
} |
|
/* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
Line 2685 double funcone( double *x)
|
Line 4053 double funcone( double *x)
|
|
|
s1=s[mw[mi][i]][i]; |
s1=s[mw[mi][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
|
/* if(s2==-1){ */ |
|
/* printf(" ERROR s1=%d, s2=%d i=%d \n", s1, s2, i); */ |
|
/* /\* exit(1); *\/ */ |
|
/* } */ |
bbh=(double)bh[mi][i]/(double)stepm; |
bbh=(double)bh[mi][i]/(double)stepm; |
/* bias is positive if real duration |
/* bias is positive if real duration |
* is higher than the multiple of stepm and negative otherwise. |
* is higher than the multiple of stepm and negative otherwise. |
*/ |
*/ |
if( s2 > nlstate && (mle <5) ){ /* Jackson */ |
if( s2 > nlstate && (mle <5) ){ /* Jackson */ |
lli=log(out[s1][s2] - savm[s1][s2]); |
lli=log(out[s1][s2] - savm[s1][s2]); |
} else if (s2==-2) { |
} else if ( s2==-1 ) { /* alive */ |
for (j=1,survp=0. ; j<=nlstate; j++) |
for (j=1,survp=0. ; j<=nlstate; j++) |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
lli= log(survp); |
lli= log(survp); |
Line 2712 double funcone( double *x)
|
Line 4084 double funcone( double *x)
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
if(globpr){ |
if(globpr){ |
fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f %8.3f\ |
fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ |
%11.6f %11.6f %11.6f ", \ |
%11.6f %11.6f %11.6f ", \ |
num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, |
num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, |
2*weight[i]*lli,out[s1][s2],savm[s1][s2]); |
2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); |
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
llt +=ll[k]*gipmx/gsw; |
llt +=ll[k]*gipmx/gsw; |
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
} |
} |
fprintf(ficresilk," %10.6f\n", -llt); |
fprintf(ficresilk," %10.6f\n", -llt); |
} |
} |
} /* end of wave */ |
} /* end of wave */ |
} /* end of individual */ |
} /* end of individual */ |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
if(globpr==0){ /* First time we count the contributions and weights */ |
if(globpr==0){ /* First time we count the contributions and weights */ |
gipmx=ipmx; |
gipmx=ipmx; |
gsw=sw; |
gsw=sw; |
} |
} |
return -l; |
return -l; |
} |
} |
|
|
|
|
/*************** function likelione ***********/ |
/*************** function likelione ***********/ |
void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double [])) |
void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*func)(double [])) |
{ |
{ |
/* This routine should help understanding what is done with |
/* This routine should help understanding what is done with |
the selection of individuals/waves and |
the selection of individuals/waves and |
Line 2760 void likelione(FILE *ficres,double p[],
|
Line 4132 void likelione(FILE *ficres,double p[],
|
fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n"); |
fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n"); |
} |
} |
|
|
*fretone=(*funcone)(p); |
*fretone=(*func)(p); |
if(*globpri !=0){ |
if(*globpri !=0){ |
fclose(ficresilk); |
fclose(ficresilk); |
if (mle ==0) |
if (mle ==0) |
Line 2768 void likelione(FILE *ficres,double p[],
|
Line 4140 void likelione(FILE *ficres,double p[],
|
else if(mle >=1) |
else if(mle >=1) |
fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle); |
fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle); |
fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
|
fprintf(fichtm,"\n<br>Equation of the model: <b>model=1+age+%s</b><br>\n",model); |
|
|
for (k=1; k<= nlstate ; k++) { |
for (k=1; k<= nlstate ; k++) { |
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
Line 2788 void likelione(FILE *ficres,double p[],
|
Line 4160 void likelione(FILE *ficres,double p[],
|
|
|
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
{ |
{ |
int i,j, iter=0; |
int i,j,k, jk, jkk=0, iter=0; |
double **xi; |
double **xi; |
double fret; |
double fret; |
double fretone; /* Only one call to likelihood */ |
double fretone; /* Only one call to likelihood */ |
Line 2822 void mlikeli(FILE *ficres,double p[], in
|
Line 4194 void mlikeli(FILE *ficres,double p[], in
|
if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
fprintf(ficrespow,"\n"); |
fprintf(ficrespow,"\n"); |
#ifdef POWELL |
#ifdef POWELL |
powell(p,xi,npar,ftol,&iter,&fret,func); |
#ifdef LINMINORIGINAL |
#endif |
#else /* LINMINORIGINAL */ |
|
|
|
flatdir=ivector(1,npar); |
|
for (j=1;j<=npar;j++) flatdir[j]=0; |
|
#endif /*LINMINORIGINAL */ |
|
|
|
#ifdef FLATSUP |
|
powell(p,xi,npar,ftol,&iter,&fret,flatdir,func); |
|
/* reorganizing p by suppressing flat directions */ |
|
for(i=1, jk=1; i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]); |
|
if(flatdir[jk]==1){ |
|
printf(" To be skipped %d%d flatdir[%d]=%d ",i,k,jk, flatdir[jk]); |
|
} |
|
for(j=1; j <=ncovmodel; j++){ |
|
printf("%12.7f ",p[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
} |
|
} |
|
} |
|
/* skipping */ |
|
/* for(i=1, jk=1, jkk=1;(flatdir[jk]==0)&& (i <=nlstate); i++){ */ |
|
for(i=1, jk=1, jkk=1;i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]); |
|
if(flatdir[jk]==1){ |
|
printf(" To be skipped %d%d flatdir[%d]=%d jk=%d p[%d] ",i,k,jk, flatdir[jk],jk, jk); |
|
for(j=1; j <=ncovmodel; jk++,j++){ |
|
printf(" p[%d]=%12.7f",jk, p[jk]); |
|
/*q[jjk]=p[jk];*/ |
|
} |
|
}else{ |
|
printf(" To be kept %d%d flatdir[%d]=%d jk=%d q[%d]=p[%d] ",i,k,jk, flatdir[jk],jk, jkk, jk); |
|
for(j=1; j <=ncovmodel; jk++,jkk++,j++){ |
|
printf(" p[%d]=%12.7f=q[%d]",jk, p[jk],jkk); |
|
/*q[jjk]=p[jk];*/ |
|
} |
|
} |
|
printf("\n"); |
|
} |
|
fflush(stdout); |
|
} |
|
} |
|
powell(p,xi,npar,ftol,&iter,&fret,flatdir,func); |
|
#else /* FLATSUP */ |
|
powell(p,xi,npar,ftol,&iter,&fret,func); |
|
#endif /* FLATSUP */ |
|
|
|
#ifdef LINMINORIGINAL |
|
#else |
|
free_ivector(flatdir,1,npar); |
|
#endif /* LINMINORIGINAL*/ |
|
#endif /* POWELL */ |
|
|
#ifdef NLOPT |
#ifdef NLOPT |
#ifdef NEWUOA |
#ifdef NEWUOA |
Line 2851 void mlikeli(FILE *ficres,double p[], in
|
Line 4280 void mlikeli(FILE *ficres,double p[], in
|
} |
} |
nlopt_destroy(opt); |
nlopt_destroy(opt); |
#endif |
#endif |
|
#ifdef FLATSUP |
|
/* npared = npar -flatd/ncovmodel; */ |
|
/* xired= matrix(1,npared,1,npared); */ |
|
/* paramred= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ |
|
/* powell(pred,xired,npared,ftol,&iter,&fret,flatdir,func); */ |
|
/* free_matrix(xire,1,npared,1,npared); */ |
|
#else /* FLATSUP */ |
|
#endif /* FLATSUP */ |
free_matrix(xi,1,npar,1,npar); |
free_matrix(xi,1,npar,1,npar); |
fclose(ficrespow); |
fclose(ficrespow); |
printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
Line 3070 double hessij( double x[], double **hess
|
Line 4507 double hessij( double x[], double **hess
|
kmax=kmax+10; |
kmax=kmax+10; |
} |
} |
if(kmax >=10 || firstime ==1){ |
if(kmax >=10 || firstime ==1){ |
printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol); |
printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol); |
fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol); |
fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol); |
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
} |
} |
Line 3160 void ludcmp(double **a, int n, int *indx
|
Line 4597 void ludcmp(double **a, int n, int *indx
|
big=0.0; |
big=0.0; |
for (j=1;j<=n;j++) |
for (j=1;j<=n;j++) |
if ((temp=fabs(a[i][j])) > big) big=temp; |
if ((temp=fabs(a[i][j])) > big) big=temp; |
if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); |
if (big == 0.0){ |
|
printf(" Singular Hessian matrix at row %d:\n",i); |
|
for (j=1;j<=n;j++) { |
|
printf(" a[%d][%d]=%f,",i,j,a[i][j]); |
|
fprintf(ficlog," a[%d][%d]=%f,",i,j,a[i][j]); |
|
} |
|
fflush(ficlog); |
|
fclose(ficlog); |
|
nrerror("Singular matrix in routine ludcmp"); |
|
} |
vv[i]=1.0/big; |
vv[i]=1.0/big; |
} |
} |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
Line 3226 void pstamp(FILE *fichier)
|
Line 4672 void pstamp(FILE *fichier)
|
fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart); |
fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart); |
} |
} |
|
|
|
void date2dmy(double date,double *day, double *month, double *year){ |
|
double yp=0., yp1=0., yp2=0.; |
|
|
|
yp1=modf(date,&yp);/* extracts integral of date in yp and |
|
fractional in yp1 */ |
|
*year=yp; |
|
yp2=modf((yp1*12),&yp); |
|
*month=yp; |
|
yp1=modf((yp2*30.5),&yp); |
|
*day=yp; |
|
if(*day==0) *day=1; |
|
if(*month==0) *month=1; |
|
} |
|
|
|
|
|
|
/************ Frequencies ********************/ |
/************ Frequencies ********************/ |
void freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \ |
void freqsummary(char fileres[], double p[], double pstart[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \ |
int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[],\ |
int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \ |
int firstpass, int lastpass, int stepm, int weightopt, char model[]) |
int firstpass, int lastpass, int stepm, int weightopt, char model[]) |
{ /* Some frequencies */ |
{ /* Some frequencies as well as proposing some starting values */ |
|
|
int i, m, jk, j1, bool, z1,j; |
int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1; |
|
int iind=0, iage=0; |
int mi; /* Effective wave */ |
int mi; /* Effective wave */ |
int first; |
int first; |
double ***freq; /* Frequencies */ |
double ***freq; /* Frequencies */ |
double *pp, **prop; |
double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */ |
double pos,posprop, k2, dateintsum=0,k2cpt=0; |
int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb); |
|
double *meanq, *stdq, *idq; |
|
double **meanqt; |
|
double *pp, **prop, *posprop, *pospropt; |
|
double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0; |
char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH]; |
char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH]; |
double agebegin, ageend; |
double agebegin, ageend; |
|
|
pp=vector(1,nlstate); |
pp=vector(1,nlstate); |
prop=matrix(1,nlstate,iagemin,iagemax+3); |
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
|
posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ |
|
pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ |
|
/* prop=matrix(1,nlstate,iagemin,iagemax+3); */ |
|
meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
|
stdq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
|
idq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
|
meanqt=matrix(1,lastpass,1,nqtveff); |
strcpy(fileresp,"P_"); |
strcpy(fileresp,"P_"); |
strcat(fileresp,fileresu); |
strcat(fileresp,fileresu); |
/*strcat(fileresphtm,fileresu);*/ |
/*strcat(fileresphtm,fileresu);*/ |
Line 3251 void freqsummary(char fileres[], int ia
|
Line 4725 void freqsummary(char fileres[], int ia
|
fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
exit(0); |
exit(0); |
} |
} |
|
|
strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm")); |
strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm")); |
if((ficresphtm=fopen(fileresphtm,"w"))==NULL) { |
if((ficresphtm=fopen(fileresphtm,"w"))==NULL) { |
printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
Line 3261 void freqsummary(char fileres[], int ia
|
Line 4735 void freqsummary(char fileres[], int ia
|
} |
} |
else{ |
else{ |
fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
<hr size=\"2\" color=\"#EC5E5E\"> \n \ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
} |
} |
fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition</h4>\n",fileresphtm, fileresphtm); |
fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies (weight=%d) and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm, weightopt); |
|
|
strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm")); |
strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm")); |
if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) { |
if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) { |
printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
fflush(ficlog); |
fflush(ficlog); |
exit(70); |
exit(70); |
} |
} else{ |
else{ |
|
fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
,<hr size=\"2\" color=\"#EC5E5E\"> \n \ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
} |
} |
fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions by age at begin of transition </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr); |
fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>(weight=%d) frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr,weightopt); |
|
|
freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3); |
y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
|
x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
|
freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
j1=0; |
j1=0; |
|
|
j=cptcoveff; |
/* j=ncoveff; /\* Only fixed dummy covariates *\/ */ |
|
j=cptcoveff; /* Only dummy covariates of the model */ |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
|
|
|
/* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels: |
|
reference=low_education V1=0,V2=0 |
|
med_educ V1=1 V2=0, |
|
high_educ V1=0 V2=1 |
|
Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff |
|
*/ |
|
dateintsum=0; |
|
k2cpt=0; |
|
|
first=1; |
if(cptcoveff == 0 ) |
|
nl=1; /* Constant and age model only */ |
|
else |
|
nl=2; |
|
|
for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){ /* Loop on covariates combination */ |
/* if a constant only model, one pass to compute frequency tables and to write it on ficresp */ |
|
/* Loop on nj=1 or 2 if dummy covariates j!=0 |
|
* Loop on j1(1 to 2**cptcoveff) covariate combination |
|
* freq[s1][s2][iage] =0. |
|
* Loop on iind |
|
* ++freq[s1][s2][iage] weighted |
|
* end iind |
|
* if covariate and j!0 |
|
* headers Variable on one line |
|
* endif cov j!=0 |
|
* header of frequency table by age |
|
* Loop on age |
|
* pp[s1]+=freq[s1][s2][iage] weighted |
|
* pos+=freq[s1][s2][iage] weighted |
|
* Loop on s1 initial state |
|
* fprintf(ficresp |
|
* end s1 |
|
* end age |
|
* if j!=0 computes starting values |
|
* end compute starting values |
|
* end j1 |
|
* end nl |
|
*/ |
|
for (nj = 1; nj <= nl; nj++){ /* nj= 1 constant model, nl number of loops. */ |
|
if(nj==1) |
|
j=0; /* First pass for the constant */ |
|
else{ |
|
j=cptcoveff; /* Other passes for the covariate values */ |
|
} |
|
first=1; |
|
for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all covariates combination of the model, excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */ |
|
posproptt=0.; |
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
scanf("%d", i);*/ |
scanf("%d", i);*/ |
for (i=-5; i<=nlstate+ndeath; i++) |
for (i=-5; i<=nlstate+ndeath; i++) |
for (jk=-5; jk<=nlstate+ndeath; jk++) |
for (s2=-5; s2<=nlstate+ndeath; s2++) |
for(m=iagemin; m <= iagemax+3; m++) |
for(m=iagemin; m <= iagemax+3; m++) |
freq[i][jk][m]=0; |
freq[i][s2][m]=0; |
|
|
for (i=1; i<=nlstate; i++) |
for (i=1; i<=nlstate; i++) { |
for(m=iagemin; m <= iagemax+3; m++) |
for(m=iagemin; m <= iagemax+3; m++) |
prop[i][m]=0; |
prop[i][m]=0; |
|
posprop[i]=0; |
|
pospropt[i]=0; |
|
} |
|
for (z1=1; z1<= nqfveff; z1++) { /* zeroing for each combination j1 as well as for the total */ |
|
idq[z1]=0.; |
|
meanq[z1]=0.; |
|
stdq[z1]=0.; |
|
} |
|
/* for (z1=1; z1<= nqtveff; z1++) { */ |
|
/* for(m=1;m<=lastpass;m++){ */ |
|
/* meanqt[m][z1]=0.; */ |
|
/* } */ |
|
/* } */ |
|
/* dateintsum=0; */ |
|
/* k2cpt=0; */ |
|
|
dateintsum=0; |
/* For that combination of covariates j1 (V4=1 V3=0 for example), we count and print the frequencies in one pass */ |
k2cpt=0; |
for (iind=1; iind<=imx; iind++) { /* For each individual iind */ |
for (i=1; i<=imx; i++) { /* For each individual i */ |
|
bool=1; |
bool=1; |
if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
if(j !=0){ |
for (z1=1; z1<=cptcoveff; z1++) |
if(anyvaryingduminmodel==0){ /* If All fixed covariates */ |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ |
if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
/* Tests if the value of each of the covariates of i is equal to filter j1 */ |
for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */ |
bool=0; |
/* if(Tvaraff[z1] ==-20){ */ |
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", |
/* /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */ |
bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1), |
/* }else if(Tvaraff[z1] ==-10){ */ |
j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
/* /\* sumnew+=coqvar[z1][iind]; *\/ */ |
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
/* }else */ |
} |
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ /* for combination j1 of covariates */ |
} /* cptcovn > 0 */ |
/* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */ |
|
bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */ |
if (bool==1){ |
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", |
|
bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1), |
|
j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
|
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
|
} /* Onlyf fixed */ |
|
} /* end z1 */ |
|
} /* cptcovn > 0 */ |
|
} /* end any */ |
|
}/* end j==0 */ |
|
if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */ |
/* for(m=firstpass; m<=lastpass; m++){ */ |
/* for(m=firstpass; m<=lastpass; m++){ */ |
for(mi=1; mi<wav[i];mi++){ |
for(mi=1; mi<wav[iind];mi++){ /* For each wave */ |
m=mw[mi][i]; |
m=mw[mi][iind]; |
/* dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective (mi) waves m=mw[mi][i] |
if(j!=0){ |
and mw[mi+1][i]. dh depends on stepm. */ |
if(anyvaryingduminmodel==1){ /* Some are varying covariates */ |
agebegin=agev[m][i]; /* Age at beginning of wave before transition*/ |
for (z1=1; z1<=cptcoveff; z1++) { |
ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /* Age at end of wave and transition */ |
if( Fixed[Tmodelind[z1]]==1){ |
if(m >=firstpass && m <=lastpass){ |
iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; |
k2=anint[m][i]+(mint[m][i]/12.); |
if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality. If covariate's |
/*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ |
value is -1, we don't select. It differs from the |
if(agev[m][i]==0) agev[m][i]=iagemax+1; /* All ages equal to 0 are in iagemax+1 */ |
constant and age model which counts them. */ |
if(agev[m][i]==1) agev[m][i]=iagemax+2; /* All ages equal to 1 are in iagemax+2 */ |
bool=0; /* not selected */ |
if (s[m][i]>0 && s[m][i]<=nlstate) /* If status at wave m is known and a live state */ |
}else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */ |
prop[s[m][i]][(int)agev[m][i]] += weight[i]; /* At age of beginning of transition, where status is known */ |
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { |
if (m<lastpass) { |
bool=0; |
/* if(s[m][i]==4 && s[m+1][i]==4) */ |
} |
/* printf(" num=%ld m=%d, i=%d s1=%d s2=%d agev at m=%d\n", num[i], m, i,s[m][i],s[m+1][i], (int)agev[m][i]); */ |
} |
if(s[m][i]==-1) |
} |
printf(" num=%ld m=%d, i=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[i], m, i,s[m][i],s[m+1][i], (int)agev[m][i],agebegin, ageend, (int)((agebegin+ageend)/2.)); |
}/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop */ |
freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; /* At age of beginning of transition, where status is known */ |
} /* end j==0 */ |
/* freq[s[m][i]][s[m+1][i]][(int)((agebegin+ageend)/2.)] += weight[i]; */ |
/* bool =0 we keep that guy which corresponds to the combination of dummy values */ |
freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */ |
if(bool==1){ /*Selected */ |
|
/* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind] |
|
and mw[mi+1][iind]. dh depends on stepm. */ |
|
agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/ |
|
ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */ |
|
if(m >=firstpass && m <=lastpass){ |
|
k2=anint[m][iind]+(mint[m][iind]/12.); |
|
/*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ |
|
if(agev[m][iind]==0) agev[m][iind]=iagemax+1; /* All ages equal to 0 are in iagemax+1 */ |
|
if(agev[m][iind]==1) agev[m][iind]=iagemax+2; /* All ages equal to 1 are in iagemax+2 */ |
|
if (s[m][iind]>0 && s[m][iind]<=nlstate) /* If status at wave m is known and a live state */ |
|
prop[s[m][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
if (m<lastpass) { |
|
/* if(s[m][iind]==4 && s[m+1][iind]==4) */ |
|
/* printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */ |
|
if(s[m][iind]==-1) |
|
printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.)); |
|
freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
for (z1=1; z1<= nqfveff; z1++) { /* Quantitative variables, calculating mean on known values only */ |
|
if(!isnan(covar[ncovcol+z1][iind])){ |
|
idq[z1]=idq[z1]+weight[iind]; |
|
meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind]; /* Computes mean of quantitative with selected filter */ |
|
/* stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; *//*error*/ |
|
stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]; /* *weight[iind];*/ /* Computes mean of quantitative with selected filter */ |
|
} |
|
} |
|
/* if((int)agev[m][iind] == 55) */ |
|
/* printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */ |
|
/* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */ |
|
freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */ |
|
} |
|
} /* end if between passes */ |
|
if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99) && (j==0)) { |
|
dateintsum=dateintsum+k2; /* on all covariates ?*/ |
|
k2cpt++; |
|
/* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */ |
} |
} |
} |
}else{ |
if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3)) && (anint[m][i]!=9999) && (mint[m][i]!=99)) { |
bool=1; |
dateintsum=dateintsum+k2; |
}/* end bool 2 */ |
k2cpt++; |
|
/* printf("i=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",i, dateintsum/k2cpt, dateintsum,k2cpt, k2); */ |
|
} |
|
/*}*/ |
|
} /* end m */ |
} /* end m */ |
|
/* for (z1=1; z1<= nqfveff; z1++) { /\* Quantitative variables, calculating mean *\/ */ |
|
/* idq[z1]=idq[z1]+weight[iind]; */ |
|
/* meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind]; /\* Computes mean of quantitative with selected filter *\/ */ |
|
/* stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; /\* *weight[iind];*\/ /\* Computes mean of quantitative with selected filter *\/ */ |
|
/* } */ |
} /* end bool */ |
} /* end bool */ |
} /* end i = 1 to imx */ |
} /* end iind = 1 to imx */ |
|
/* prop[s][age] is fed for any initial and valid live state as well as |
|
freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */ |
|
|
|
|
/* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
/* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
pstamp(ficresp); |
if(cptcoveff==0 && nj==1) /* no covariate and first pass */ |
if (cptcovn>0) { |
pstamp(ficresp); |
|
if (cptcoveff>0 && j!=0){ |
|
pstamp(ficresp); |
|
printf( "\n#********** Variable "); |
fprintf(ficresp, "\n#********** Variable "); |
fprintf(ficresp, "\n#********** Variable "); |
fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); |
fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); |
fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); |
fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); |
|
fprintf(ficlog, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++){ |
for (z1=1; z1<=cptcoveff; z1++){ |
fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
if(!FixedV[Tvaraff[z1]]){ |
fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
}else{ |
|
printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
} |
} |
} |
fprintf(ficresp, "**********\n#"); |
printf( "**********\n#"); |
|
fprintf(ficresp, "**********\n#"); |
fprintf(ficresphtm, "**********</h3>\n"); |
fprintf(ficresphtm, "**********</h3>\n"); |
fprintf(ficresphtmfr, "**********</h3>\n"); |
fprintf(ficresphtmfr, "**********</h3>\n"); |
fprintf(ficlog, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficlog, "**********\n"); |
fprintf(ficlog, "**********\n"); |
} |
} |
|
/* |
|
Printing means of quantitative variables if any |
|
*/ |
|
for (z1=1; z1<= nqfveff; z1++) { |
|
fprintf(ficlog,"Mean of fixed quantitative variable V%d on %.3g (weighted) individuals sum=%f", ncovcol+z1, idq[z1], meanq[z1]); |
|
fprintf(ficlog,", mean=%.3g\n",meanq[z1]/idq[z1]); |
|
if(weightopt==1){ |
|
printf(" Weighted mean and standard deviation of"); |
|
fprintf(ficlog," Weighted mean and standard deviation of"); |
|
fprintf(ficresphtmfr," Weighted mean and standard deviation of"); |
|
} |
|
/* mu = \frac{w x}{\sum w} |
|
var = \frac{\sum w (x-mu)^2}{\sum w} = \frac{w x^2}{\sum w} - mu^2 |
|
*/ |
|
printf(" fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1])); |
|
fprintf(ficlog," fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1])); |
|
fprintf(ficresphtmfr," fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)<p>\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1])); |
|
} |
|
/* for (z1=1; z1<= nqtveff; z1++) { */ |
|
/* for(m=1;m<=lastpass;m++){ */ |
|
/* fprintf(ficresphtmfr,"V quantitative id %d, pass id=%d, mean=%f<p>\n", z1, m, meanqt[m][z1]); */ |
|
/* } */ |
|
/* } */ |
|
|
fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">"); |
fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">"); |
|
if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */ |
|
fprintf(ficresp, " Age"); |
|
if(nj==2) for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
for(i=1; i<=nlstate;i++) { |
for(i=1; i<=nlstate;i++) { |
fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); |
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d) N(%d) N ",i,i); |
fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i); |
fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i); |
} |
} |
fprintf(ficresp, "\n"); |
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp, "\n"); |
fprintf(ficresphtm, "\n"); |
fprintf(ficresphtm, "\n"); |
|
|
/* Header of frequency table by age */ |
/* Header of frequency table by age */ |
fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">"); |
fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">"); |
fprintf(ficresphtmfr,"<th>Age</th> "); |
fprintf(ficresphtmfr,"<th>Age</th> "); |
for(jk=-1; jk <=nlstate+ndeath; jk++){ |
for(s2=-1; s2 <=nlstate+ndeath; s2++){ |
for(m=-1; m <=nlstate+ndeath; m++){ |
for(m=-1; m <=nlstate+ndeath; m++){ |
if(jk!=0 && m!=0) |
if(s2!=0 && m!=0) |
fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m); |
fprintf(ficresphtmfr,"<th>%d%d</th> ",s2,m); |
} |
} |
} |
} |
fprintf(ficresphtmfr, "\n"); |
fprintf(ficresphtmfr, "\n"); |
|
|
/* For each age */ |
/* For each age */ |
for(i=iagemin; i <= iagemax+3; i++){ |
for(iage=iagemin; iage <= iagemax+3; iage++){ |
fprintf(ficresphtm,"<tr>"); |
fprintf(ficresphtm,"<tr>"); |
if(i==iagemax+1){ |
if(iage==iagemax+1){ |
fprintf(ficlog,"1"); |
fprintf(ficlog,"1"); |
fprintf(ficresphtmfr,"<tr><th>0</th> "); |
fprintf(ficresphtmfr,"<tr><th>0</th> "); |
}else if(i==iagemax+2){ |
}else if(iage==iagemax+2){ |
fprintf(ficlog,"0"); |
fprintf(ficlog,"0"); |
fprintf(ficresphtmfr,"<tr><th>Unknown</th> "); |
fprintf(ficresphtmfr,"<tr><th>Unknown</th> "); |
}else if(i==iagemax+3){ |
}else if(iage==iagemax+3){ |
fprintf(ficlog,"Total"); |
fprintf(ficlog,"Total"); |
fprintf(ficresphtmfr,"<tr><th>Total</th> "); |
fprintf(ficresphtmfr,"<tr><th>Total</th> "); |
}else{ |
}else{ |
Line 3407 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5029 Title=%s <br>Datafile=%s Firstpass=%d La
|
first=0; |
first=0; |
printf("See log file for details...\n"); |
printf("See log file for details...\n"); |
} |
} |
fprintf(ficresphtmfr,"<tr><th>%d</th> ",i); |
fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage); |
fprintf(ficlog,"Age %d", i); |
fprintf(ficlog,"Age %d", iage); |
} |
} |
for(jk=1; jk <=nlstate ; jk++){ |
for(s1=1; s1 <=nlstate ; s1++){ |
for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) |
for(m=-1, pp[s1]=0; m <=nlstate+ndeath ; m++) |
pp[jk] += freq[jk][m][i]; |
pp[s1] += freq[s1][m][iage]; |
} |
} |
for(jk=1; jk <=nlstate ; jk++){ |
for(s1=1; s1 <=nlstate ; s1++){ |
for(m=-1, pos=0; m <=0 ; m++) |
for(m=-1, pos=0; m <=0 ; m++) |
pos += freq[jk][m][i]; |
pos += freq[s1][m][iage]; |
if(pp[jk]>=1.e-10){ |
if(pp[s1]>=1.e-10){ |
if(first==1){ |
if(first==1){ |
printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
printf(" %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]); |
} |
} |
fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]); |
}else{ |
}else{ |
if(first==1) |
if(first==1) |
printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
printf(" %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1); |
fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1); |
} |
} |
} |
} |
|
|
for(jk=1; jk <=nlstate ; jk++){ |
for(s1=1; s1 <=nlstate ; s1++){ |
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) |
/* posprop[s1]=0; */ |
pp[jk] += freq[jk][m][i]; |
for(m=0, pp[s1]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */ |
} |
pp[s1] += freq[s1][m][iage]; |
for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){ |
} /* pp[s1] is the total number of transitions starting from state s1 and any ending status until this age */ |
pos += pp[jk]; |
|
posprop += prop[jk][i]; |
for(s1=1,pos=0, pospropta=0.; s1 <=nlstate ; s1++){ |
|
pos += pp[s1]; /* pos is the total number of transitions until this age */ |
|
posprop[s1] += prop[s1][iage]; /* prop is the number of transitions from a live state |
|
from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
|
pospropta += prop[s1][iage]; /* prop is the number of transitions from a live state |
|
from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
|
} |
|
|
|
/* Writing ficresp */ |
|
if(cptcoveff==0 && nj==1){ /* no covariate and first pass */ |
|
if( iage <= iagemax){ |
|
fprintf(ficresp," %d",iage); |
|
} |
|
}else if( nj==2){ |
|
if( iage <= iagemax){ |
|
fprintf(ficresp," %d",iage); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
} |
} |
} |
for(jk=1; jk <=nlstate ; jk++){ |
for(s1=1; s1 <=nlstate ; s1++){ |
if(pos>=1.e-5){ |
if(pos>=1.e-5){ |
if(first==1) |
if(first==1) |
printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
printf(" %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos); |
fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos); |
}else{ |
}else{ |
if(first==1) |
if(first==1) |
printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
printf(" %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1); |
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1); |
} |
} |
if( i <= iagemax){ |
if( iage <= iagemax){ |
if(pos>=1.e-5){ |
if(pos>=1.e-5){ |
fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop); |
if(cptcoveff==0 && nj==1){ /* no covariate and first pass */ |
fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",i,prop[jk][i]/posprop, prop[jk][i],posprop); |
fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta); |
/*probs[i][jk][j1]= pp[jk]/pos;*/ |
}else if( nj==2){ |
/*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ |
fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta); |
} |
} |
else{ |
fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[s1][iage]/pospropta, prop[s1][iage],pospropta); |
fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop); |
/*probs[iage][s1][j1]= pp[s1]/pos;*/ |
fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",i, prop[jk][i],posprop); |
/*printf("\niage=%d s1=%d j1=%d %.5f %.0f %.0f %f",iage,s1,j1,pp[s1]/pos, pp[s1],pos,probs[iage][s1][j1]);*/ |
|
} else{ |
|
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," NaNq %.0f %.0f",prop[s1][iage],pospropta); |
|
fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[s1][iage],pospropta); |
} |
} |
} |
} |
} |
pospropt[s1] +=posprop[s1]; |
|
} /* end loop s1 */ |
for(jk=-1; jk <=nlstate+ndeath; jk++){ |
/* pospropt=0.; */ |
|
for(s1=-1; s1 <=nlstate+ndeath; s1++){ |
for(m=-1; m <=nlstate+ndeath; m++){ |
for(m=-1; m <=nlstate+ndeath; m++){ |
if(freq[jk][m][i] !=0 ) { /* minimizing output */ |
if(freq[s1][m][iage] !=0 ) { /* minimizing output */ |
if(first==1){ |
if(first==1){ |
printf(" %d%d=%.0f",jk,m,freq[jk][m][i]); |
printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); |
} |
} |
fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]); |
/* printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); */ |
|
fprintf(ficlog," %d%d=%.0f",s1,m,freq[s1][m][iage]); |
} |
} |
if(jk!=0 && m!=0) |
if(s1!=0 && m!=0) |
fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][i]); |
fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[s1][m][iage]); |
} |
} |
|
} /* end loop s1 */ |
|
posproptt=0.; |
|
for(s1=1; s1 <=nlstate; s1++){ |
|
posproptt += pospropt[s1]; |
} |
} |
fprintf(ficresphtmfr,"</tr>\n "); |
fprintf(ficresphtmfr,"</tr>\n "); |
if(i <= iagemax){ |
fprintf(ficresphtm,"</tr>\n"); |
fprintf(ficresp,"\n"); |
if((cptcoveff==0 && nj==1)|| nj==2 ) { |
fprintf(ficresphtm,"</tr>\n"); |
if(iage <= iagemax) |
|
fprintf(ficresp,"\n"); |
} |
} |
if(first==1) |
if(first==1) |
printf("Others in log...\n"); |
printf("Others in log...\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
} /* end loop i */ |
} /* end loop age iage */ |
|
|
|
fprintf(ficresphtm,"<tr><th>Tot</th>"); |
|
for(s1=1; s1 <=nlstate ; s1++){ |
|
if(posproptt < 1.e-5){ |
|
fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[s1],posproptt); |
|
}else{ |
|
fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[s1]/posproptt,pospropt[s1],posproptt); |
|
} |
|
} |
|
fprintf(ficresphtm,"</tr>\n"); |
fprintf(ficresphtm,"</table>\n"); |
fprintf(ficresphtm,"</table>\n"); |
fprintf(ficresphtmfr,"</table>\n"); |
fprintf(ficresphtmfr,"</table>\n"); |
/*}*/ |
if(posproptt < 1.e-5){ |
} /* end j1 */ |
fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
|
fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
|
fprintf(ficlog,"# This combination (%d) is not valid and no result will be produced\n",j1); |
|
printf("# This combination (%d) is not valid and no result will be produced\n",j1); |
|
invalidvarcomb[j1]=1; |
|
}else{ |
|
fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1); |
|
invalidvarcomb[j1]=0; |
|
} |
|
fprintf(ficresphtmfr,"</table>\n"); |
|
fprintf(ficlog,"\n"); |
|
if(j!=0){ |
|
printf("#Freqsummary: Starting values for combination j1=%d:\n", j1); |
|
for(i=1,s1=1; i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
for(jj=1; jj <=ncovmodel; jj++){ /* For counting s1 */ |
|
if(jj==1){ /* Constant case (in fact cste + age) */ |
|
if(j1==1){ /* All dummy covariates to zero */ |
|
freq[i][k][iagemax+4]=freq[i][k][iagemax+3]; /* Stores case 0 0 0 */ |
|
freq[i][i][iagemax+4]=freq[i][i][iagemax+3]; /* Stores case 0 0 0 */ |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
printf("%12.7f ln(%.0f/%.0f)= %f, OR=%f sd=%f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]),freq[i][k][iagemax+3]/freq[i][i][iagemax+3], sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3])); |
|
fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); |
|
pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]); |
|
} |
|
}else if((j1==1) && (jj==2 || nagesqr==1)){ /* age or age*age parameter without covariate V4*age (to be done later) */ |
|
for(iage=iagemin; iage <= iagemax+3; iage++){ |
|
x[iage]= (double)iage; |
|
y[iage]= log(freq[i][k][iage]/freq[i][i][iage]); |
|
/* printf("i=%d, k=%d, s1=%d, j1=%d, jj=%d, y[%d]=%f\n",i,k,s1,j1,jj, iage, y[iage]); */ |
|
} |
|
/* Some are not finite, but linreg will ignore these ages */ |
|
no=0; |
|
linreg(iagemin,iagemax,&no,x,y,&a,&b,&r, &sa, &sb ); /* y= a+b*x with standard errors */ |
|
pstart[s1]=b; |
|
pstart[s1-1]=a; |
|
}else if( j1!=1 && (j1==2 || (log(j1-1.)/log(2.)-(int)(log(j1-1.)/log(2.))) <0.010) && ( TvarsDind[(int)(log(j1-1.)/log(2.))+1]+2+nagesqr == jj) && Dummy[jj-2-nagesqr]==0){ /* We want only if the position, jj, in model corresponds to unique covariate equal to 1 in j1 combination */ |
|
printf("j1=%d, jj=%d, (int)(log(j1-1.)/log(2.))+1=%d, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(int)(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]); |
|
printf("j1=%d, jj=%d, (log(j1-1.)/log(2.))+1=%f, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]); |
|
pstart[s1]= log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])); |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
printf("s1=%d,i=%d,k=%d,p[%d]=%12.7f ln((%.0f/%.0f)/(%.0f/%.0f))= %f, OR=%f sd=%f \n",s1,i,k,s1,p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3],freq[i][k][iagemax+4],freq[i][i][iagemax+4], log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])),(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]), sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]+1/freq[i][k][iagemax+4]+1/freq[i][i][iagemax+4])); |
|
}else{ /* Other cases, like quantitative fixed or varying covariates */ |
|
; |
|
} |
|
/* printf("%12.7f )", param[i][jj][k]); */ |
|
/* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */ |
|
s1++; |
|
} /* end jj */ |
|
} /* end k!= i */ |
|
} /* end k */ |
|
} /* end i, s1 */ |
|
} /* end j !=0 */ |
|
} /* end selected combination of covariate j1 */ |
|
if(j==0){ /* We can estimate starting values from the occurences in each case */ |
|
printf("#Freqsummary: Starting values for the constants:\n"); |
|
fprintf(ficlog,"\n"); |
|
for(i=1,s1=1; i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
for(jj=1; jj <=ncovmodel; jj++){ |
|
pstart[s1]=p[s1]; /* Setting pstart to p values by default */ |
|
if(jj==1){ /* Age has to be done */ |
|
pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]); |
|
printf("%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); |
|
fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); |
|
} |
|
/* printf("%12.7f )", param[i][jj][k]); */ |
|
/* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */ |
|
s1++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
} |
|
} /* end of state i */ |
|
printf("#Freqsummary\n"); |
|
fprintf(ficlog,"\n"); |
|
for(s1=-1; s1 <=nlstate+ndeath; s1++){ |
|
for(s2=-1; s2 <=nlstate+ndeath; s2++){ |
|
/* param[i]|j][k]= freq[s1][s2][iagemax+3] */ |
|
printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); |
|
fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); |
|
/* if(freq[s1][s2][iage] !=0 ) { /\* minimizing output *\/ */ |
|
/* printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */ |
|
/* fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */ |
|
/* } */ |
|
} |
|
} /* end loop s1 */ |
|
|
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} /* end j=0 */ |
|
} /* end j */ |
|
|
|
if(mle == -2){ /* We want to use these values as starting values */ |
|
for(i=1, jk=1; i <=nlstate; i++){ |
|
for(j=1; j <=nlstate+ndeath; j++){ |
|
if(j!=i){ |
|
/*ca[0]= k+'a'-1;ca[1]='\0';*/ |
|
printf("%1d%1d",i,j); |
|
fprintf(ficparo,"%1d%1d",i,j); |
|
for(k=1; k<=ncovmodel;k++){ |
|
/* printf(" %lf",param[i][j][k]); */ |
|
/* fprintf(ficparo," %lf",param[i][j][k]); */ |
|
p[jk]=pstart[jk]; |
|
printf(" %f ",pstart[jk]); |
|
fprintf(ficparo," %f ",pstart[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
fprintf(ficparo,"\n"); |
|
} |
|
} |
|
} |
|
} /* end mle=-2 */ |
dateintmean=dateintsum/k2cpt; |
dateintmean=dateintsum/k2cpt; |
|
date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); |
|
|
fclose(ficresp); |
fclose(ficresp); |
fclose(ficresphtm); |
fclose(ficresphtm); |
fclose(ficresphtmfr); |
fclose(ficresphtmfr); |
free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3); |
free_vector(idq,1,nqfveff); |
|
free_vector(meanq,1,nqfveff); |
|
free_vector(stdq,1,nqfveff); |
|
free_matrix(meanqt,1,lastpass,1,nqtveff); |
|
free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
|
free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
|
free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
|
free_vector(pospropt,1,nlstate); |
|
free_vector(posprop,1,nlstate); |
|
free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
free_vector(pp,1,nlstate); |
free_vector(pp,1,nlstate); |
free_matrix(prop,1,nlstate,iagemin, iagemax+3); |
/* End of freqsummary */ |
/* End of Freq */ |
} |
|
|
|
/* Simple linear regression */ |
|
int linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb) { |
|
|
|
/* y=a+bx regression */ |
|
double sumx = 0.0; /* sum of x */ |
|
double sumx2 = 0.0; /* sum of x**2 */ |
|
double sumxy = 0.0; /* sum of x * y */ |
|
double sumy = 0.0; /* sum of y */ |
|
double sumy2 = 0.0; /* sum of y**2 */ |
|
double sume2 = 0.0; /* sum of square or residuals */ |
|
double yhat; |
|
|
|
double denom=0; |
|
int i; |
|
int ne=*no; |
|
|
|
for ( i=ifi, ne=0;i<=ila;i++) { |
|
if(!isfinite(x[i]) || !isfinite(y[i])){ |
|
/* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */ |
|
continue; |
|
} |
|
ne=ne+1; |
|
sumx += x[i]; |
|
sumx2 += x[i]*x[i]; |
|
sumxy += x[i] * y[i]; |
|
sumy += y[i]; |
|
sumy2 += y[i]*y[i]; |
|
denom = (ne * sumx2 - sumx*sumx); |
|
/* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */ |
|
} |
|
|
|
denom = (ne * sumx2 - sumx*sumx); |
|
if (denom == 0) { |
|
// vertical, slope m is infinity |
|
*b = INFINITY; |
|
*a = 0; |
|
if (r) *r = 0; |
|
return 1; |
|
} |
|
|
|
*b = (ne * sumxy - sumx * sumy) / denom; |
|
*a = (sumy * sumx2 - sumx * sumxy) / denom; |
|
if (r!=NULL) { |
|
*r = (sumxy - sumx * sumy / ne) / /* compute correlation coeff */ |
|
sqrt((sumx2 - sumx*sumx/ne) * |
|
(sumy2 - sumy*sumy/ne)); |
|
} |
|
*no=ne; |
|
for ( i=ifi, ne=0;i<=ila;i++) { |
|
if(!isfinite(x[i]) || !isfinite(y[i])){ |
|
/* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */ |
|
continue; |
|
} |
|
ne=ne+1; |
|
yhat = y[i] - *a -*b* x[i]; |
|
sume2 += yhat * yhat ; |
|
|
|
denom = (ne * sumx2 - sumx*sumx); |
|
/* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */ |
|
} |
|
*sb = sqrt(sume2/(double)(ne-2)/(sumx2 - sumx * sumx /(double)ne)); |
|
*sa= *sb * sqrt(sumx2/ne); |
|
|
|
return 0; |
} |
} |
|
|
/************ Prevalence ********************/ |
/************ Prevalence ********************/ |
Line 3505 void prevalence(double ***probs, double
|
Line 5359 void prevalence(double ***probs, double
|
We still use firstpass and lastpass as another selection. |
We still use firstpass and lastpass as another selection. |
*/ |
*/ |
|
|
int i, m, jk, j1, bool, z1,j; |
int i, m, jk, j1, bool, z1,j, iv; |
int mi; /* Effective wave */ |
int mi; /* Effective wave */ |
int iage; |
int iage; |
double agebegin, ageend; |
double agebegin, ageend; |
Line 3519 void prevalence(double ***probs, double
|
Line 5373 void prevalence(double ***probs, double
|
iagemin= (int) agemin; |
iagemin= (int) agemin; |
iagemax= (int) agemax; |
iagemax= (int) agemax; |
/*pp=vector(1,nlstate);*/ |
/*pp=vector(1,nlstate);*/ |
prop=matrix(1,nlstate,iagemin,iagemax+3); |
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
/* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
/* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
j1=0; |
j1=0; |
|
|
/*j=cptcoveff;*/ |
/*j=cptcoveff;*/ |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
first=1; |
first=0; |
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ |
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */ |
for (i=1; i<=nlstate; i++) |
for (i=1; i<=nlstate; i++) |
for(iage=iagemin; iage <= iagemax+3; iage++) |
for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++) |
prop[i][iage]=0.0; |
prop[i][iage]=0.0; |
|
printf("Prevalence combination of varying and fixed dummies %d\n",j1); |
|
/* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */ |
|
fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1); |
|
|
for (i=1; i<=imx; i++) { /* Each individual */ |
for (i=1; i<=imx; i++) { /* Each individual */ |
bool=1; |
bool=1; |
if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
/* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */ |
for (z1=1; z1<=cptcoveff; z1++) |
for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */ |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) |
m=mw[mi][i]; |
bool=0; |
/* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */ |
} |
/* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */ |
if (bool==1) { |
for (z1=1; z1<=cptcoveff; z1++){ |
/* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */ |
if( Fixed[Tmodelind[z1]]==1){ |
for(mi=1; mi<wav[i];mi++){ |
iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; |
m=mw[mi][i]; |
if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */ |
|
bool=0; |
|
}else if( Fixed[Tmodelind[z1]]== 0) /* fixed */ |
|
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { |
|
bool=0; |
|
} |
|
} |
|
if(bool==1){ /* Otherwise we skip that wave/person */ |
agebegin=agev[m][i]; /* Age at beginning of wave before transition*/ |
agebegin=agev[m][i]; /* Age at beginning of wave before transition*/ |
/* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */ |
/* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */ |
if(m >=firstpass && m <=lastpass){ |
if(m >=firstpass && m <=lastpass){ |
Line 3550 void prevalence(double ***probs, double
|
Line 5414 void prevalence(double ***probs, double
|
if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); |
if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+4+AGEMARGE){ |
|
printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); |
|
exit(1); |
|
} |
if (s[m][i]>0 && s[m][i]<=nlstate) { |
if (s[m][i]>0 && s[m][i]<=nlstate) { |
/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ |
/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ |
prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */ |
prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */ |
Line 3558 void prevalence(double ***probs, double
|
Line 5425 void prevalence(double ***probs, double
|
} /* end valid statuses */ |
} /* end valid statuses */ |
} /* end selection of dates */ |
} /* end selection of dates */ |
} /* end selection of waves */ |
} /* end selection of waves */ |
} /* end effective waves */ |
} /* end bool */ |
} /* end bool */ |
} /* end wave */ |
} |
} /* end individual */ |
for(i=iagemin; i <= iagemax+3; i++){ |
for(i=iagemin; i <= iagemax+3; i++){ |
for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
posprop += prop[jk][i]; |
posprop += prop[jk][i]; |
Line 3571 void prevalence(double ***probs, double
|
Line 5438 void prevalence(double ***probs, double
|
if(posprop>=1.e-5){ |
if(posprop>=1.e-5){ |
probs[i][jk][j1]= prop[jk][i]/posprop; |
probs[i][jk][j1]= prop[jk][i]/posprop; |
} else{ |
} else{ |
if(first==1){ |
if(!first){ |
first=0; |
first=1; |
printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]); |
printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]); |
|
}else{ |
|
fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases.\n",jk,i,jk, j1,probs[i][jk][j1]); |
} |
} |
} |
} |
} |
} |
}/* end jk */ |
}/* end jk */ |
}/* end i */ |
}/* end i */ |
/*} *//* end i1 */ |
/*} *//* end i1 */ |
} /* end j1 */ |
} /* end j1 */ |
|
|
/* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
/* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
/*free_vector(pp,1,nlstate);*/ |
/*free_vector(pp,1,nlstate);*/ |
free_matrix(prop,1,nlstate, iagemin,iagemax+3); |
free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
} /* End of prevalence */ |
} /* End of prevalence */ |
|
|
/************* Waves Concatenation ***************/ |
/************* Waves Concatenation ***************/ |
|
|
void concatwav(int wav[], int **dh, int **bh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) |
void concatwav(int wav[], int **dh, int **bh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) |
{ |
{ |
/* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. |
/* Concatenates waves: wav[i] is the number of effective (useful waves in the sense that a non interview is useless) of individual i. |
Death is a valid wave (if date is known). |
Death is a valid wave (if date is known). |
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
and mw[mi+1][i]. dh depends on stepm. |
and mw[mi+1][i]. dh depends on stepm. s[m][i] exists for any wave from firstpass to lastpass |
*/ |
*/ |
|
|
int i, mi, m; |
int i=0, mi=0, m=0, mli=0; |
/* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; |
/* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; |
double sum=0., jmean=0.;*/ |
double sum=0., jmean=0.;*/ |
int first, firstwo; |
int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0; |
int j, k=0,jk, ju, jl; |
int j, k=0,jk, ju, jl; |
double sum=0.; |
double sum=0.; |
first=0; |
first=0; |
firstwo=0; |
firstwo=0; |
|
firsthree=0; |
|
firstfour=0; |
jmin=100000; |
jmin=100000; |
jmax=-1; |
jmax=-1; |
jmean=0.; |
jmean=0.; |
|
|
|
/* Treating live states */ |
for(i=1; i<=imx; i++){ /* For simple cases and if state is death */ |
for(i=1; i<=imx; i++){ /* For simple cases and if state is death */ |
mi=0; |
mi=0; /* First valid wave */ |
m=firstpass; |
mli=0; /* Last valid wave */ |
while(s[m][i] <= nlstate){ /* a live state */ |
m=firstpass; /* Loop on waves */ |
if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5) |
while(s[m][i] <= nlstate){ /* a live state or unknown state */ |
mw[++mi][i]=m; |
if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */ |
if(m >=lastpass) |
mli=m-1;/* mw[++mi][i]=m-1; */ |
|
}else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */ |
|
mw[++mi][i]=m; /* Valid wave: incrementing mi and updating mi; mw[mi] is the wave number of mi_th valid transition */ |
|
mli=m; |
|
} /* else might be a useless wave -1 and mi is not incremented and mw[mi] not updated */ |
|
if(m < lastpass){ /* m < lastpass, standard case */ |
|
m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */ |
|
} |
|
else{ /* m = lastpass, eventual special issue with warning */ |
|
#ifdef UNKNOWNSTATUSNOTCONTRIBUTING |
break; |
break; |
else |
#else |
m++; |
if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ /* no death date and known date of interview, case -2 (vital status unknown is warned later */ |
|
if(firsthree == 0){ |
|
printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath); |
|
firsthree=1; |
|
}else if(firsthree >=1 && firsthree < 10){ |
|
fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath); |
|
firsthree++; |
|
}else if(firsthree == 10){ |
|
printf("Information, too many Information flags: no more reported to log either\n"); |
|
fprintf(ficlog,"Information, too many Information flags: no more reported to log either\n"); |
|
firsthree++; |
|
}else{ |
|
firsthree++; |
|
} |
|
mw[++mi][i]=m; /* Valid transition with unknown status */ |
|
mli=m; |
|
} |
|
if(s[m][i]==-2){ /* Vital status is really unknown */ |
|
nbwarn++; |
|
if((int)anint[m][i] == 9999){ /* Has the vital status really been verified?not a transition */ |
|
printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
|
fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
|
} |
|
break; |
|
} |
|
break; |
|
#endif |
|
}/* End m >= lastpass */ |
}/* end while */ |
}/* end while */ |
|
|
|
/* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */ |
|
/* After last pass */ |
|
/* Treating death states */ |
if (s[m][i] > nlstate){ /* In a death state */ |
if (s[m][i] > nlstate){ /* In a death state */ |
|
/* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */ |
|
/* } */ |
mi++; /* Death is another wave */ |
mi++; /* Death is another wave */ |
/* if(mi==0) never been interviewed correctly before death */ |
/* if(mi==0) never been interviewed correctly before death */ |
/* Only death is a correct wave */ |
/* Only death is a correct wave */ |
mw[mi][i]=m; |
mw[mi][i]=m; |
}else if (andc[i] != 9999) { /* A death occured after lastpass */ |
} /* else not in a death state */ |
m++; |
#ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE |
mi++; |
else if ((int) andc[i] != 9999) { /* Date of death is known */ |
s[m][i]=nlstate+1; /* We are setting the status to the last of non live state */ |
if ((int)anint[m][i]!= 9999) { /* date of last interview is known */ |
mw[mi][i]=m; |
if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* month of death occured before last wave month and status should have been death instead of -1 */ |
nbwarn++; |
nbwarn++; |
if(firstwo==0){ |
if(firstfiv==0){ |
printf("Warning! Death for individual %ld line=%d occurred after last wave %d. Since 0.98r4 we considered a status %d at wave %d\nOthers in log file only\n",num[i],i,lastpass,nlstate+1, m); |
printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred after last wave %d. Since 0.98r4 we considered a status %d at wave %d\n",num[i],i,lastpass,nlstate+1, m); |
firstfiv=1; |
firstwo=1; |
}else{ |
} |
fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
if(firstwo==1){ |
} |
fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred after last wave %d. Since 0.98r4 we considered a status %d at wave %d\n",num[i],i,lastpass,nlstate+1, m); |
s[m][i]=nlstate+1; /* Fixing the status as death. Be careful if multiple death states */ |
|
}else{ /* Month of Death occured afer last wave month, potential bias */ |
|
nberr++; |
|
if(firstwo==0){ |
|
printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
|
firstwo=1; |
|
} |
|
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
|
} |
|
}else{ /* if date of interview is unknown */ |
|
/* death is known but not confirmed by death status at any wave */ |
|
if(firstfour==0){ |
|
printf("Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
|
firstfour=1; |
|
} |
|
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
} |
} |
} |
} /* end if date of death is known */ |
wav[i]=mi; |
#endif |
|
wav[i]=mi; /* mi should be the last effective wave (or mli), */ |
|
/* wav[i]=mw[mi][i]; */ |
if(mi==0){ |
if(mi==0){ |
nbwarn++; |
nbwarn++; |
if(first==0){ |
if(first==0){ |
Line 3653 void concatwav(int wav[], int **dh, int
|
Line 5585 void concatwav(int wav[], int **dh, int
|
} /* end mi==0 */ |
} /* end mi==0 */ |
} /* End individuals */ |
} /* End individuals */ |
/* wav and mw are no more changed */ |
/* wav and mw are no more changed */ |
|
|
|
printf("Information, you have to check %d informations which haven't been logged!\n",firsthree); |
|
fprintf(ficlog,"Information, you have to check %d informations which haven't been logged!\n",firsthree); |
|
|
|
|
|
|
for(i=1; i<=imx; i++){ |
for(i=1; i<=imx; i++){ |
for(mi=1; mi<wav[i];mi++){ |
for(mi=1; mi<wav[i];mi++){ |
if (stepm <=0) |
if (stepm <=0) |
dh[mi][i]=1; |
dh[mi][i]=1; |
else{ |
else{ |
if (s[mw[mi+1][i]][i] > nlstate) { /* A death */ |
if (s[mw[mi+1][i]][i] > nlstate) { /* A death, but what if date is unknown? */ |
if (agedc[i] < 2*AGESUP) { |
if (agedc[i] < 2*AGESUP) { |
j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); |
j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); |
if(j==0) j=1; /* Survives at least one month after exam */ |
if(j==0) j=1; /* Survives at least one month after exam */ |
Line 3689 void concatwav(int wav[], int **dh, int
|
Line 5624 void concatwav(int wav[], int **dh, int
|
else{ |
else{ |
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
/* if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */ |
/* if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */ |
|
|
k=k+1; |
k=k+1; |
if (j >= jmax) { |
if (j >= jmax) { |
jmax=j; |
jmax=j; |
Line 3743 void concatwav(int wav[], int **dh, int
|
Line 5678 void concatwav(int wav[], int **dh, int
|
jmean=sum/k; |
jmean=sum/k; |
printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean); |
printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean); |
fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean); |
fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean); |
} |
} |
|
|
/*********** Tricode ****************************/ |
/*********** Tricode ****************************/ |
void tricode(int *Tvar, int **nbcode, int imx, int *Ndum) |
void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum) |
{ |
{ |
/**< Uses cptcovn+2*cptcovprod as the number of covariates */ |
/**< Uses cptcovn+2*cptcovprod as the number of covariates */ |
/* Tvar[i]=atoi(stre); find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 |
/* Tvar[i]=atoi(stre); find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 |
* Boring subroutine which should only output nbcode[Tvar[j]][k] |
* Boring subroutine which should only output nbcode[Tvar[j]][k] |
* Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2) |
* Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable |
* nbcode[Tvar[j]][1]= |
* nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually); |
*/ |
*/ |
|
|
int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX; |
int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX; |
int modmaxcovj=0; /* Modality max of covariates j */ |
int modmaxcovj=0; /* Modality max of covariates j */ |
int cptcode=0; /* Modality max of covariates j */ |
int cptcode=0; /* Modality max of covariates j */ |
int modmincovj=0; /* Modality min of covariates j */ |
int modmincovj=0; /* Modality min of covariates j */ |
|
|
|
|
cptcoveff=0; |
/* cptcoveff=0; */ |
|
/* *cptcov=0; */ |
|
|
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
|
for (k=1; k <= maxncov; k++) |
/* Loop on covariates without age and products */ |
for(j=1; j<=2; j++) |
for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */ |
nbcode[k][j]=0; /* Valgrind */ |
for (k=-1; k < maxncov; k++) Ndum[k]=0; |
|
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the |
/* Loop on covariates without age and products and no quantitative variable */ |
modality of this covariate Vj*/ |
for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */ |
ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
for (j=-1; (j < maxncov); j++) Ndum[j]=0; |
* If product of Vn*Vm, still boolean *: |
if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ |
* If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables |
switch(Fixed[k]) { |
* 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */ |
case 0: /* Testing on fixed dummy covariate, simple or product of fixed */ |
/* Finds for covariate j, n=Tvar[j] of Vn . ij is the |
modmaxcovj=0; |
modality of the nth covariate of individual i. */ |
modmincovj=0; |
if (ij > modmaxcovj) |
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
modmaxcovj=ij; |
ij=(int)(covar[Tvar[k]][i]); |
else if (ij < modmincovj) |
/* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
modmincovj=ij; |
* If product of Vn*Vm, still boolean *: |
if ((ij < -1) && (ij > NCOVMAX)){ |
* If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables |
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
* 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */ |
exit(1); |
/* Finds for covariate j, n=Tvar[j] of Vn . ij is the |
}else |
modality of the nth covariate of individual i. */ |
Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/ |
if (ij > modmaxcovj) |
/* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */ |
modmaxcovj=ij; |
/*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ |
else if (ij < modmincovj) |
/* getting the maximum value of the modality of the covariate |
modmincovj=ij; |
(should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and |
if (ij <0 || ij >1 ){ |
female is 1, then modmaxcovj=1.*/ |
printf("ERROR, IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i); |
} /* end for loop on individuals i */ |
fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i); |
printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj); |
fflush(ficlog); |
fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj); |
exit(1); |
cptcode=modmaxcovj; |
} |
/* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */ |
if ((ij < -1) || (ij > NCOVMAX)){ |
/*for (i=0; i<=cptcode; i++) {*/ |
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
for (k=modmincovj; k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */ |
exit(1); |
printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]); |
}else |
fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]); |
Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/ |
if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */ |
/* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */ |
if( k != -1){ |
/*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ |
ncodemax[j]++; /* ncodemax[j]= Number of modalities of the j th |
/* getting the maximum value of the modality of the covariate |
covariate for which somebody answered excluding |
(should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and |
undefined. Usually 2: 0 and 1. */ |
female ies 1, then modmaxcovj=1. |
} |
*/ |
ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th |
} /* end for loop on individuals i */ |
covariate for which somebody answered including |
printf(" Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); |
undefined. Usually 3: -1, 0 and 1. */ |
fprintf(ficlog," Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); |
} |
cptcode=modmaxcovj; |
/* In fact ncodemax[j]=2 (dichotom. variables only) but it could be more for |
/* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */ |
historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */ |
/*for (i=0; i<=cptcode; i++) {*/ |
} /* Ndum[-1] number of undefined modalities */ |
for (j=modmincovj; j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */ |
|
printf("Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); |
/* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */ |
fprintf(ficlog, "Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); |
/* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. |
if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */ |
If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; |
if( j != -1){ |
modmincovj=3; modmaxcovj = 7; |
ncodemax[k]++; /* ncodemax[k]= Number of modalities of the k th |
There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; |
covariate for which somebody answered excluding |
which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; |
undefined. Usually 2: 0 and 1. */ |
defining two dummy variables: variables V1_1 and V1_2. |
} |
nbcode[Tvar[j]][ij]=k; |
ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th |
nbcode[Tvar[j]][1]=0; |
covariate for which somebody answered including |
nbcode[Tvar[j]][2]=1; |
undefined. Usually 3: -1, 0 and 1. */ |
nbcode[Tvar[j]][3]=2; |
} /* In fact ncodemax[k]=2 (dichotom. variables only) but it could be more for |
To be continued (not working yet). |
* historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */ |
*/ |
} /* Ndum[-1] number of undefined modalities */ |
ij=0; /* ij is similar to i but can jump over null modalities */ |
|
for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
/* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */ |
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
/* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */ |
break; |
/* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */ |
} |
/* modmincovj=3; modmaxcovj = 7; */ |
ij++; |
/* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */ |
nbcode[Tvar[j]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/ |
/* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */ |
cptcode = ij; /* New max modality for covar j */ |
/* defining two dummy variables: variables V1_1 and V1_2.*/ |
} /* end of loop on modality i=-1 to 1 or more */ |
/* nbcode[Tvar[j]][ij]=k; */ |
|
/* nbcode[Tvar[j]][1]=0; */ |
/* for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */ |
/* nbcode[Tvar[j]][2]=1; */ |
/* /\*recode from 0 *\/ */ |
/* nbcode[Tvar[j]][3]=2; */ |
/* k is a modality. If we have model=V1+V1*sex */ |
/* To be continued (not working yet). */ |
/* then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ |
ij=0; /* ij is similar to i but can jump over null modalities */ |
/* But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */ |
|
/* } */ |
/* for (i=modmincovj; i<=modmaxcovj; i++) { */ /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
/* /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */ |
/* Skipping the case of missing values by reducing nbcode to 0 and 1 and not -1, 0, 1 */ |
/* if (ij > ncodemax[j]) { */ |
/* model=V1+V2+V3, if V2=-1, 0 or 1, then nbcode[2][1]=0 and nbcode[2][2]=1 instead of |
/* printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
* nbcode[2][1]=-1, nbcode[2][2]=0 and nbcode[2][3]=1 */ |
/* fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
/*, could be restored in the future */ |
/* break; */ |
for (i=0; i<=1; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
/* } */ |
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
/* } /\* end of loop on modality k *\/ */ |
break; |
} /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/ |
} |
|
ij++; |
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
nbcode[Tvar[k]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1 . Could be -1*/ |
|
cptcode = ij; /* New max modality for covar j */ |
|
} /* end of loop on modality i=-1 to 1 or more */ |
|
break; |
|
case 1: /* Testing on varying covariate, could be simple and |
|
* should look at waves or product of fixed * |
|
* varying. No time to test -1, assuming 0 and 1 only */ |
|
ij=0; |
|
for(i=0; i<=1;i++){ |
|
nbcode[Tvar[k]][++ij]=i; |
|
} |
|
break; |
|
default: |
|
break; |
|
} /* end switch */ |
|
} /* end dummy test */ |
|
if(Dummy[k]==1 && Typevar[k] !=1){ /* Dummy covariate and not age product */ |
|
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
|
if(isnan(covar[Tvar[k]][i])){ |
|
printf("ERROR, IMaCh doesn't treat fixed quantitative covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i); |
|
fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i); |
|
fflush(ficlog); |
|
exit(1); |
|
} |
|
} |
|
} |
|
} /* end of loop on model-covariate k. nbcode[Tvark][1]=-1, nbcode[Tvark][1]=0 and nbcode[Tvark][2]=1 sets the value of covariate k*/ |
|
|
for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ |
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
/* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ |
/* Look at fixed dummy (single or product) covariates to check empty modalities */ |
ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ |
for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ |
Ndum[ij]++; /* Might be supersed V1 + V1*age */ |
/* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ |
} |
ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ |
|
Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */ |
ij=0; |
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, {2, 1, 1, 1, 2, 1, 1, 0, 0} */ |
for (i=0; i<= maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
} /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */ |
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
|
if((Ndum[i]!=0) && (i<=ncovcol)){ |
ij=0; |
ij++; |
/* for (i=0; i<= maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */ |
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
for (k=1; k<= cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
Tvaraff[ij]=i; /*For printing (unclear) */ |
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
}else{ |
/* if((Ndum[i]!=0) && (i<=ncovcol)){ /\* Tvar[i] <= ncovmodel ? *\/ */ |
/* Tvaraff[ij]=0; */ |
if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){ /* Only Dummy and non empty in the model */ |
|
/* If product not in single variable we don't print results */ |
|
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
|
++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */ |
|
Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/ |
|
Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */ |
|
TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */ |
|
if(Fixed[k]!=0) |
|
anyvaryingduminmodel=1; |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */ |
|
/* Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */ |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */ |
|
/* Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */ |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */ |
|
/* Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */ |
|
} |
|
} /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */ |
|
/* ij--; */ |
|
/* cptcoveff=ij; /\*Number of total covariates*\/ */ |
|
*cptcov=ij; /*Number of total real effective covariates: effective |
|
* because they can be excluded from the model and real |
|
* if in the model but excluded because missing values, but how to get k from ij?*/ |
|
for(j=ij+1; j<= cptcovt; j++){ |
|
Tvaraff[j]=0; |
|
Tmodelind[j]=0; |
|
} |
|
for(j=ntveff+1; j<= cptcovt; j++){ |
|
TmodelInvind[j]=0; |
} |
} |
|
/* To be sorted */ |
|
; |
} |
} |
/* ij--; */ |
|
cptcoveff=ij; /*Number of total covariates*/ |
|
|
|
} |
|
|
|
|
|
/*********** Health Expectancies ****************/ |
/*********** Health Expectancies ****************/ |
|
|
void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] ) |
void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres ) |
|
|
{ |
{ |
/* Health expectancies, no variances */ |
/* Health expectancies, no variances */ |
Line 3888 void evsij(double ***eij, double x[], in
|
Line 5875 void evsij(double ***eij, double x[], in
|
double ***p3mat; |
double ***p3mat; |
double eip; |
double eip; |
|
|
pstamp(ficreseij); |
/* pstamp(ficreseij); */ |
fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n"); |
fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n"); |
fprintf(ficreseij,"# Age"); |
fprintf(ficreseij,"# Age"); |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
Line 3919 void evsij(double ***eij, double x[], in
|
Line 5906 void evsij(double ***eij, double x[], in
|
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
nhstepm is the number of hstepm from age to agelim |
nhstepm is the number of hstepm from age to agelim |
nstepm is the number of stepm from age to agelin. |
nstepm is the number of stepm from age to agelin. |
Look at hpijx to understand the reason of that which relies in memory size |
Look at hpijx to understand the reason which relies in memory size consideration |
and note for a fixed period like estepm months */ |
and note for a fixed period like estepm months */ |
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
survival function given by stepm (the optimization length). Unfortunately it |
survival function given by stepm (the optimization length). Unfortunately it |
Line 3951 void evsij(double ***eij, double x[], in
|
Line 5938 void evsij(double ***eij, double x[], in
|
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
|
|
hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij); |
hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres); |
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
|
|
Line 3986 void evsij(double ***eij, double x[], in
|
Line 5973 void evsij(double ***eij, double x[], in
|
|
|
} |
} |
|
|
void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] ) |
void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres ) |
|
|
{ |
{ |
/* Covariances of health expectancies eij and of total life expectancies according |
/* Covariances of health expectancies eij and of total life expectancies according |
to initial status i, ei. . |
to initial status i, ei. . |
*/ |
*/ |
int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji; |
int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji; |
int nhstepma, nstepma; /* Decreasing with age */ |
int nhstepma, nstepma; /* Decreasing with age */ |
Line 4084 void cvevsij(double ***eij, double x[],
|
Line 6071 void cvevsij(double ***eij, double x[],
|
/* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
/* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
/* if (stepm >= YEARM) hstepm=1;*/ |
/* if (stepm >= YEARM) hstepm=1;*/ |
nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */ |
nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */ |
|
|
/* If stepm=6 months */ |
/* If stepm=6 months */ |
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
|
|
/* Computing Variances of health expectancies */ |
/* Computing Variances of health expectancies */ |
/* Gradient is computed with plus gp and minus gm. Code is duplicated in order to |
/* Gradient is computed with plus gp and minus gm. Code is duplicated in order to |
decrease memory allocation */ |
decrease memory allocation */ |
Line 4099 void cvevsij(double ***eij, double x[],
|
Line 6086 void cvevsij(double ***eij, double x[],
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xm[i] = x[i] - (i==theta ?delti[theta]:0); |
xm[i] = x[i] - (i==theta ?delti[theta]:0); |
} |
} |
hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij); |
hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres); |
hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij); |
hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres); |
|
|
for(j=1; j<= nlstate; j++){ |
for(j=1; j<= nlstate; j++){ |
for(i=1; i<=nlstate; i++){ |
for(i=1; i<=nlstate; i++){ |
for(h=0; h<=nhstepm-1; h++){ |
for(h=0; h<=nhstepm-1; h++){ |
Line 4110 void cvevsij(double ***eij, double x[],
|
Line 6097 void cvevsij(double ***eij, double x[],
|
} |
} |
} |
} |
} |
} |
|
|
for(ij=1; ij<= nlstate*nlstate; ij++) |
for(ij=1; ij<= nlstate*nlstate; ij++) |
for(h=0; h<=nhstepm-1; h++){ |
for(h=0; h<=nhstepm-1; h++){ |
gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta]; |
gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta]; |
Line 4123 void cvevsij(double ***eij, double x[],
|
Line 6110 void cvevsij(double ***eij, double x[],
|
for(theta=1; theta <=npar; theta++) |
for(theta=1; theta <=npar; theta++) |
trgradg[h][j][theta]=gradg[h][theta][j]; |
trgradg[h][j][theta]=gradg[h][theta][j]; |
|
|
|
|
for(ij=1;ij<=nlstate*nlstate;ij++) |
for(ij=1;ij<=nlstate*nlstate;ij++) |
for(ji=1;ji<=nlstate*nlstate;ji++) |
for(ji=1;ji<=nlstate*nlstate;ji++) |
varhe[ij][ji][(int)age] =0.; |
varhe[ij][ji][(int)age] =0.; |
|
|
printf("%d|",(int)age);fflush(stdout); |
printf("%d|",(int)age);fflush(stdout); |
fprintf(ficlog,"%d|",(int)age);fflush(ficlog); |
fprintf(ficlog,"%d|",(int)age);fflush(ficlog); |
for(h=0;h<=nhstepm-1;h++){ |
for(h=0;h<=nhstepm-1;h++){ |
for(k=0;k<=nhstepm-1;k++){ |
for(k=0;k<=nhstepm-1;k++){ |
matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov); |
matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov); |
matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]); |
matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]); |
Line 4139 void cvevsij(double ***eij, double x[],
|
Line 6126 void cvevsij(double ***eij, double x[],
|
varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf; |
varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf; |
} |
} |
} |
} |
|
/* if((int)age ==50){ */ |
|
/* printf(" age=%d cij=%d nres=%d varhe[%d][%d]=%f ",(int)age, cij, nres, 1,2,varhe[1][2]); */ |
|
/* } */ |
/* Computing expectancies */ |
/* Computing expectancies */ |
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij); |
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate;j++) |
for(j=1; j<=nlstate;j++) |
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf; |
eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf; |
|
|
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
|
|
} |
} |
|
|
|
/* Standard deviation of expectancies ij */ |
fprintf(ficresstdeij,"%3.0f",age ); |
fprintf(ficresstdeij,"%3.0f",age ); |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
eip=0.; |
eip=0.; |
Line 4164 void cvevsij(double ***eij, double x[],
|
Line 6154 void cvevsij(double ***eij, double x[],
|
fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip)); |
fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip)); |
} |
} |
fprintf(ficresstdeij,"\n"); |
fprintf(ficresstdeij,"\n"); |
|
|
|
/* Variance of expectancies ij */ |
fprintf(ficrescveij,"%3.0f",age ); |
fprintf(ficrescveij,"%3.0f",age ); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate;j++){ |
for(j=1; j<=nlstate;j++){ |
Line 4177 void cvevsij(double ***eij, double x[],
|
Line 6168 void cvevsij(double ***eij, double x[],
|
} |
} |
} |
} |
fprintf(ficrescveij,"\n"); |
fprintf(ficrescveij,"\n"); |
|
|
} |
} |
free_matrix(gm,0,nhstepm,1,nlstate*nlstate); |
free_matrix(gm,0,nhstepm,1,nlstate*nlstate); |
free_matrix(gp,0,nhstepm,1,nlstate*nlstate); |
free_matrix(gp,0,nhstepm,1,nlstate*nlstate); |
Line 4187 void cvevsij(double ***eij, double x[],
|
Line 6178 void cvevsij(double ***eij, double x[],
|
free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
|
|
free_vector(xm,1,npar); |
free_vector(xm,1,npar); |
free_vector(xp,1,npar); |
free_vector(xp,1,npar); |
free_matrix(dnewm,1,nlstate*nlstate,1,npar); |
free_matrix(dnewm,1,nlstate*nlstate,1,npar); |
free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate); |
free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate); |
free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage); |
free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage); |
} |
} |
|
|
/************ Variance ******************/ |
/************ Variance ******************/ |
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[]) |
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres) |
{ |
{ |
/* Variance of health expectancies */ |
/** Variance of health expectancies |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ |
* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl); |
/* double **newm;*/ |
* double **newm; |
/* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/ |
* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav) |
|
*/ |
|
|
int movingaverage(); |
/* int movingaverage(); */ |
double **dnewm,**doldm; |
double **dnewm,**doldm; |
double **dnewmp,**doldmp; |
double **dnewmp,**doldmp; |
int i, j, nhstepm, hstepm, h, nstepm ; |
int i, j, nhstepm, hstepm, h, nstepm ; |
int k; |
int first=0; |
double *xp; |
int k; |
double **gp, **gm; /* for var eij */ |
double *xp; |
double ***gradg, ***trgradg; /*for var eij */ |
double **gp, **gm; /**< for var eij */ |
double **gradgp, **trgradgp; /* for var p point j */ |
double ***gradg, ***trgradg; /**< for var eij */ |
double *gpp, *gmp; /* for var p point j */ |
double **gradgp, **trgradgp; /**< for var p point j */ |
double **varppt; /* for var p point j nlstate to nlstate+ndeath */ |
double *gpp, *gmp; /**< for var p point j */ |
double ***p3mat; |
double **varppt; /**< for var p point j nlstate to nlstate+ndeath */ |
double age,agelim, hf; |
double ***p3mat; |
double ***mobaverage; |
double age,agelim, hf; |
int theta; |
/* double ***mobaverage; */ |
char digit[4]; |
int theta; |
char digitp[25]; |
char digit[4]; |
|
char digitp[25]; |
|
|
|
char fileresprobmorprev[FILENAMELENGTH]; |
|
|
|
if(popbased==1){ |
|
if(mobilav!=0) |
|
strcpy(digitp,"-POPULBASED-MOBILAV_"); |
|
else strcpy(digitp,"-POPULBASED-NOMOBIL_"); |
|
} |
|
else |
|
strcpy(digitp,"-STABLBASED_"); |
|
|
char fileresprobmorprev[FILENAMELENGTH]; |
/* if (mobilav!=0) { */ |
|
/* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */ |
|
/* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */ |
|
/* printf(" Error in movingaverage mobilav=%d\n",mobilav); */ |
|
/* } */ |
|
/* } */ |
|
|
|
strcpy(fileresprobmorprev,"PRMORPREV-"); |
|
sprintf(digit,"%-d",ij); |
|
/*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/ |
|
strcat(fileresprobmorprev,digit); /* Tvar to be done */ |
|
strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */ |
|
strcat(fileresprobmorprev,fileresu); |
|
if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprobmorprev); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev); |
|
} |
|
printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
|
fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
|
pstamp(ficresprobmorprev); |
|
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
|
fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies"); |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresprobmorprev,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,j)]); |
|
fprintf(ficresprobmorprev,"\n"); |
|
|
|
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
|
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprobmorprev," p.%-d SE",j); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j); |
|
} |
|
fprintf(ficresprobmorprev,"\n"); |
|
|
|
fprintf(ficgp,"\n# Routine varevsij"); |
|
fprintf(ficgp,"\nunset title \n"); |
|
/* fprintf(fichtm, "#Local time at start: %s", strstart);*/ |
|
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
|
fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
|
|
|
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
pstamp(ficresvij); |
|
fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are "); |
|
if(popbased==1) |
|
fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav); |
|
else |
|
fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n"); |
|
fprintf(ficresvij,"# Age"); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++) |
|
fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j); |
|
fprintf(ficresvij,"\n"); |
|
|
|
xp=vector(1,npar); |
|
dnewm=matrix(1,nlstate,1,npar); |
|
doldm=matrix(1,nlstate,1,nlstate); |
|
dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar); |
|
doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
|
|
gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath); |
|
gpp=vector(nlstate+1,nlstate+ndeath); |
|
gmp=vector(nlstate+1,nlstate+ndeath); |
|
trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
|
|
|
if(estepm < stepm){ |
|
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else hstepm=estepm; |
|
/* For example we decided to compute the life expectancy with the smallest unit */ |
|
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
|
nhstepm is the number of hstepm from age to agelim |
|
nstepm is the number of stepm from age to agelim. |
|
Look at function hpijx to understand why because of memory size limitations, |
|
we decided (b) to get a life expectancy respecting the most precise curvature of the |
|
survival function given by stepm (the optimization length). Unfortunately it |
|
means that if the survival funtion is printed every two years of age and if |
|
you sum them up and add 1 year (area under the trapezoids) you won't get the same |
|
results. So we changed our mind and took the option of the best precision. |
|
*/ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
|
agelim = AGESUP; |
|
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ |
|
nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
gradg=ma3x(0,nhstepm,1,npar,1,nlstate); |
|
gp=matrix(0,nhstepm,1,nlstate); |
|
gm=matrix(0,nhstepm,1,nlstate); |
|
|
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
} |
|
/**< Computes the prevalence limit with parameter theta shifted of delta up to ftolpl precision and |
|
* returns into prlim . |
|
*/ |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres); |
|
|
if(popbased==1){ |
/* If popbased = 1 we use crossection prevalences. Previous step is useless but prlim is created */ |
if(mobilav!=0) |
if (popbased==1) { |
strcpy(digitp,"-POPULBASED-MOBILAV_"); |
if(mobilav ==0){ |
else strcpy(digitp,"-POPULBASED-NOMOBIL_"); |
for(i=1; i<=nlstate;i++) |
} |
prlim[i][i]=probs[(int)age][i][ij]; |
else |
}else{ /* mobilav */ |
strcpy(digitp,"-STABLBASED_"); |
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
if (mobilav!=0) { |
} |
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
} |
if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ |
/**< Computes the shifted transition matrix \f$ {}{h}_p^{ij}x\f$ at horizon h. |
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
*/ |
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres); /* Returns p3mat[i][j][h] for h=0 to nhstepm */ |
} |
/**< And for each alive state j, sums over i \f$ w^i_x {}{h}_p^{ij}x\f$, which are the probability |
} |
* at horizon h in state j including mortality. |
|
*/ |
|
for(j=1; j<= nlstate; j++){ |
|
for(h=0; h<=nhstepm; h++){ |
|
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
|
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
|
} |
|
} |
|
/* Next for computing shifted+ probability of death (h=1 means |
|
computed over hstepm matrices product = hstepm*stepm months) |
|
as a weighted average of prlim(i) * p(i,j) p.3=w1*p13 + w2*p23 . |
|
*/ |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gpp[j]=0.; i<= nlstate; i++) |
|
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
|
|
/* Again with minus shift */ |
|
|
|
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
|
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
|
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres); |
|
|
|
if (popbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][ij]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
|
} |
|
} |
|
|
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres); |
|
|
|
for(j=1; j<= nlstate; j++){ /* Sum of wi * eij = e.j */ |
|
for(h=0; h<=nhstepm; h++){ |
|
for(i=1, gm[h][j]=0.;i<=nlstate;i++) |
|
gm[h][j] += prlim[i][i]*p3mat[i][j][h]; |
|
} |
|
} |
|
/* This for computing probability of death (h=1 means |
|
computed over hstepm matrices product = hstepm*stepm months) |
|
as a weighted average of prlim. |
|
*/ |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gmp[j]=0.; i<= nlstate; i++) |
|
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
/* end shifting computations */ |
|
|
strcpy(fileresprobmorprev,"PRMORPREV-"); |
/**< Computing gradient matrix at horizon h |
sprintf(digit,"%-d",ij); |
*/ |
/*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/ |
for(j=1; j<= nlstate; j++) /* vareij */ |
strcat(fileresprobmorprev,digit); /* Tvar to be done */ |
for(h=0; h<=nhstepm; h++){ |
strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */ |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
strcat(fileresprobmorprev,fileresu); |
} |
if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) { |
/**< Gradient of overall mortality p.3 (or p.j) |
printf("Problem with resultfile: %s\n", fileresprobmorprev); |
*/ |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev); |
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu mortality from j */ |
} |
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
} |
fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
|
pstamp(ficresprobmorprev); |
} /* End theta */ |
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
|
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
/* We got the gradient matrix for each theta and state j */ |
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ |
fprintf(ficresprobmorprev," p.%-d SE",j); |
|
for(i=1; i<=nlstate;i++) |
for(h=0; h<=nhstepm; h++) /* veij */ |
fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j); |
for(j=1; j<=nlstate;j++) |
} |
for(theta=1; theta <=npar; theta++) |
fprintf(ficresprobmorprev,"\n"); |
trgradg[h][j][theta]=gradg[h][theta][j]; |
|
|
fprintf(ficgp,"\n# Routine varevsij"); |
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
fprintf(ficgp,"\nunset title \n"); |
for(theta=1; theta <=npar; theta++) |
/* fprintf(fichtm, "#Local time at start: %s", strstart);*/ |
trgradgp[j][theta]=gradgp[theta][j]; |
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
/**< as well as its transposed matrix |
fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
*/ |
/* } */ |
|
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
pstamp(ficresvij); |
for(i=1;i<=nlstate;i++) |
fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are "); |
for(j=1;j<=nlstate;j++) |
if(popbased==1) |
vareij[i][j][(int)age] =0.; |
fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav); |
|
else |
/* Computing trgradg by matcov by gradg at age and summing over h |
fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n"); |
* and k (nhstepm) formula 15 of article |
fprintf(ficresvij,"# Age"); |
* Lievre-Brouard-Heathcote |
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++) |
|
fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j); |
|
fprintf(ficresvij,"\n"); |
|
|
|
xp=vector(1,npar); |
|
dnewm=matrix(1,nlstate,1,npar); |
|
doldm=matrix(1,nlstate,1,nlstate); |
|
dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar); |
|
doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
|
|
gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath); |
|
gpp=vector(nlstate+1,nlstate+ndeath); |
|
gmp=vector(nlstate+1,nlstate+ndeath); |
|
trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
|
|
|
if(estepm < stepm){ |
|
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else hstepm=estepm; |
|
/* For example we decided to compute the life expectancy with the smallest unit */ |
|
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
|
nhstepm is the number of hstepm from age to agelim |
|
nstepm is the number of stepm from age to agelim. |
|
Look at function hpijx to understand why because of memory size limitations, |
|
we decided (b) to get a life expectancy respecting the most precise curvature of the |
|
survival function given by stepm (the optimization length). Unfortunately it |
|
means that if the survival funtion is printed every two years of age and if |
|
you sum them up and add 1 year (area under the trapezoids) you won't get the same |
|
results. So we changed our mind and took the option of the best precision. |
|
*/ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
|
agelim = AGESUP; |
|
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ |
|
nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
gradg=ma3x(0,nhstepm,1,npar,1,nlstate); |
|
gp=matrix(0,nhstepm,1,nlstate); |
|
gm=matrix(0,nhstepm,1,nlstate); |
|
|
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
} |
|
|
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
|
|
|
if (popbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][ij]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
|
} |
|
} |
|
|
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); /* Returns p3mat[i][j][h] for h=1 to nhstepm */ |
|
for(j=1; j<= nlstate; j++){ |
|
for(h=0; h<=nhstepm; h++){ |
|
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
|
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
|
} |
|
} |
|
/* Next for computing probability of death (h=1 means |
|
computed over hstepm matrices product = hstepm*stepm months) |
|
as a weighted average of prlim. |
|
*/ |
*/ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gpp[j]=0.; i<= nlstate; i++) |
for(h=0;h<=nhstepm;h++){ |
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
for(k=0;k<=nhstepm;k++){ |
} |
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
/* end probability of death */ |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); |
|
for(i=1;i<=nlstate;i++) |
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
for(j=1;j<=nlstate;j++) |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
vareij[i][j][(int)age] += doldm[i][j]*hf*hf; |
|
} |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij); |
} |
|
|
if (popbased==1) { |
/* pptj is p.3 or p.j = trgradgp by cov by gradgp, variance of |
if(mobilav ==0){ |
* p.j overall mortality formula 49 but computed directly because |
for(i=1; i<=nlstate;i++) |
* we compute the grad (wix pijx) instead of grad (pijx),even if |
prlim[i][i]=probs[(int)age][i][ij]; |
* wix is independent of theta. |
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
|
} |
|
} |
|
|
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
|
|
|
for(j=1; j<= nlstate; j++){ /* Sum of wi * eij = e.j */ |
|
for(h=0; h<=nhstepm; h++){ |
|
for(i=1, gm[h][j]=0.;i<=nlstate;i++) |
|
gm[h][j] += prlim[i][i]*p3mat[i][j][h]; |
|
} |
|
} |
|
/* This for computing probability of death (h=1 means |
|
computed over hstepm matrices product = hstepm*stepm months) |
|
as a weighted average of prlim. |
|
*/ |
*/ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
for(i=1,gmp[j]=0.; i<= nlstate; i++) |
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
for(j=nlstate+1;j<=nlstate+ndeath;j++) |
} |
for(i=nlstate+1;i<=nlstate+ndeath;i++) |
/* end probability of death */ |
varppt[j][i]=doldmp[j][i]; |
|
/* end ppptj */ |
for(j=1; j<= nlstate; j++) /* vareij */ |
/* x centered again */ |
for(h=0; h<=nhstepm; h++){ |
|
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nres); |
} |
|
|
if (popbased==1) { |
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ |
if(mobilav ==0){ |
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
for(i=1; i<=nlstate;i++) |
} |
prlim[i][i]=probs[(int)age][i][ij]; |
|
}else{ /* mobilav */ |
} /* End theta */ |
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ |
} |
|
} |
for(h=0; h<=nhstepm; h++) /* veij */ |
|
for(j=1; j<=nlstate;j++) |
/* This for computing probability of death (h=1 means |
for(theta=1; theta <=npar; theta++) |
computed over hstepm (estepm) matrices product = hstepm*stepm months) |
trgradg[h][j][theta]=gradg[h][theta][j]; |
as a weighted average of prlim. |
|
*/ |
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres); |
for(theta=1; theta <=npar; theta++) |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
trgradgp[j][theta]=gradgp[theta][j]; |
for(i=1,gmp[j]=0.;i<= nlstate; i++) |
|
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
/* end probability of death */ |
for(i=1;i<=nlstate;i++) |
|
for(j=1;j<=nlstate;j++) |
fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); |
vareij[i][j][(int)age] =0.; |
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j])); |
for(h=0;h<=nhstepm;h++){ |
for(i=1; i<=nlstate;i++){ |
for(k=0;k<=nhstepm;k++){ |
fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]); |
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
} |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); |
} |
for(i=1;i<=nlstate;i++) |
fprintf(ficresprobmorprev,"\n"); |
for(j=1;j<=nlstate;j++) |
|
vareij[i][j][(int)age] += doldm[i][j]*hf*hf; |
fprintf(ficresvij,"%.0f ",age ); |
} |
for(i=1; i<=nlstate;i++) |
} |
for(j=1; j<=nlstate;j++){ |
|
fprintf(ficresvij," %.4f", vareij[i][j][(int)age]); |
/* pptj */ |
} |
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
fprintf(ficresvij,"\n"); |
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
free_matrix(gp,0,nhstepm,1,nlstate); |
for(j=nlstate+1;j<=nlstate+ndeath;j++) |
free_matrix(gm,0,nhstepm,1,nlstate); |
for(i=nlstate+1;i<=nlstate+ndeath;i++) |
free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); |
varppt[j][i]=doldmp[j][i]; |
free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); |
/* end ppptj */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* x centered again */ |
} /* End age */ |
|
free_vector(gpp,nlstate+1,nlstate+ndeath); |
prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij); |
free_vector(gmp,nlstate+1,nlstate+ndeath); |
|
free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath); |
if (popbased==1) { |
free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
if(mobilav ==0){ |
/* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */ |
for(i=1; i<=nlstate;i++) |
fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480"); |
prlim[i][i]=probs[(int)age][i][ij]; |
/* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ |
}else{ /* mobilav */ |
fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); |
for(i=1; i<=nlstate;i++) |
fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
prlim[i][i]=mobaverage[(int)age][i][ij]; |
/* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */ |
} |
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
} |
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
|
fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev)); |
/* This for computing probability of death (h=1 means |
fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev)); |
computed over hstepm (estepm) matrices product = hstepm*stepm months) |
fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev)); |
as a weighted average of prlim. |
fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev)); |
|
fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
/* fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit); |
*/ |
*/ |
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); |
/* fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
for(i=1,gmp[j]=0.;i<= nlstate; i++) |
|
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
/* end probability of death */ |
|
|
|
fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); |
|
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j])); |
|
for(i=1; i<=nlstate;i++){ |
|
fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]); |
|
} |
|
} |
|
fprintf(ficresprobmorprev,"\n"); |
|
|
|
fprintf(ficresvij,"%.0f ",age ); |
free_vector(xp,1,npar); |
for(i=1; i<=nlstate;i++) |
free_matrix(doldm,1,nlstate,1,nlstate); |
for(j=1; j<=nlstate;j++){ |
free_matrix(dnewm,1,nlstate,1,npar); |
fprintf(ficresvij," %.4f", vareij[i][j][(int)age]); |
free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
} |
free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar); |
fprintf(ficresvij,"\n"); |
free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
free_matrix(gp,0,nhstepm,1,nlstate); |
/* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
free_matrix(gm,0,nhstepm,1,nlstate); |
fclose(ficresprobmorprev); |
free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); |
fflush(ficgp); |
free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); |
fflush(fichtm); |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
} /* end varevsij */ |
} /* End age */ |
|
free_vector(gpp,nlstate+1,nlstate+ndeath); |
|
free_vector(gmp,nlstate+1,nlstate+ndeath); |
|
free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath); |
|
free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
|
/* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */ |
|
fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480"); |
|
/* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ |
|
fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); |
|
fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
/* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */ |
|
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
|
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
|
fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev)); |
|
fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev)); |
|
fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev)); |
|
fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev)); |
|
fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
/* fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit); |
|
*/ |
|
/* fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */ |
|
fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
|
|
free_vector(xp,1,npar); |
|
free_matrix(doldm,1,nlstate,1,nlstate); |
|
free_matrix(dnewm,1,nlstate,1,npar); |
|
free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar); |
|
free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
fclose(ficresprobmorprev); |
|
fflush(ficgp); |
|
fflush(fichtm); |
|
} /* end varevsij */ |
|
|
|
/************ Variance of prevlim ******************/ |
/************ Variance of prevlim ******************/ |
void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[]) |
void varprevlim(char fileresvpl[], FILE *ficresvpl, double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres) |
{ |
{ |
/* Variance of prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
/* Variance of prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
|
|
double **dnewm,**doldm; |
double **dnewmpar,**doldm; |
int i, j, nhstepm, hstepm; |
int i, j, nhstepm, hstepm; |
double *xp; |
double *xp; |
double *gp, *gm; |
double *gp, *gm; |
Line 4525 void cvevsij(double ***eij, double x[],
|
Line 6548 void cvevsij(double ***eij, double x[],
|
int theta; |
int theta; |
|
|
pstamp(ficresvpl); |
pstamp(ficresvpl); |
fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n"); |
fprintf(ficresvpl,"# Standard deviation of period (forward stable) prevalences \n"); |
fprintf(ficresvpl,"# Age"); |
fprintf(ficresvpl,"# Age "); |
|
if(nresult >=1) |
|
fprintf(ficresvpl," Result# "); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
fprintf(ficresvpl," %1d-%1d",i,i); |
fprintf(ficresvpl," %1d-%1d",i,i); |
fprintf(ficresvpl,"\n"); |
fprintf(ficresvpl,"\n"); |
|
|
xp=vector(1,npar); |
xp=vector(1,npar); |
dnewm=matrix(1,nlstate,1,npar); |
dnewmpar=matrix(1,nlstate,1,npar); |
doldm=matrix(1,nlstate,1,nlstate); |
doldm=matrix(1,nlstate,1,nlstate); |
|
|
hstepm=1*YEARM; /* Every year of age */ |
hstepm=1*YEARM; /* Every year of age */ |
Line 4552 void cvevsij(double ***eij, double x[],
|
Line 6577 void cvevsij(double ***eij, double x[],
|
for(i=1; i<=npar; i++){ /* Computes gradient */ |
for(i=1; i<=npar; i++){ /* Computes gradient */ |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
} |
} |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
/* prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */ |
else |
/* else */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
for(i=1;i<=nlstate;i++){ |
for(i=1;i<=nlstate;i++){ |
gp[i] = prlim[i][i]; |
gp[i] = prlim[i][i]; |
mgp[theta][i] = prlim[i][i]; |
mgp[theta][i] = prlim[i][i]; |
} |
} |
for(i=1; i<=npar; i++) /* Computes gradient */ |
for(i=1; i<=npar; i++) /* Computes gradient */ |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
/* prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */ |
else |
/* else */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
for(i=1;i<=nlstate;i++){ |
for(i=1;i<=nlstate;i++){ |
gm[i] = prlim[i][i]; |
gm[i] = prlim[i][i]; |
mgm[theta][i] = prlim[i][i]; |
mgm[theta][i] = prlim[i][i]; |
Line 4602 void cvevsij(double ***eij, double x[],
|
Line 6627 void cvevsij(double ***eij, double x[],
|
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
varpl[i][(int)age] =0.; |
varpl[i][(int)age] =0.; |
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
}else{ |
}else{ |
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
} |
} |
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
|
|
fprintf(ficresvpl,"%.0f ",age ); |
fprintf(ficresvpl,"%.0f ",age ); |
for(i=1; i<=nlstate;i++) |
if(nresult >=1) |
|
fprintf(ficresvpl,"%d ",nres ); |
|
for(i=1; i<=nlstate;i++){ |
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
|
/* for(j=1;j<=nlstate;j++) */ |
|
/* fprintf(ficresvpl," %d %.5f ",j,prlim[j][i]); */ |
|
} |
fprintf(ficresvpl,"\n"); |
fprintf(ficresvpl,"\n"); |
free_vector(gp,1,nlstate); |
free_vector(gp,1,nlstate); |
free_vector(gm,1,nlstate); |
free_vector(gm,1,nlstate); |
Line 4625 void cvevsij(double ***eij, double x[],
|
Line 6655 void cvevsij(double ***eij, double x[],
|
|
|
free_vector(xp,1,npar); |
free_vector(xp,1,npar); |
free_matrix(doldm,1,nlstate,1,npar); |
free_matrix(doldm,1,nlstate,1,npar); |
free_matrix(dnewm,1,nlstate,1,nlstate); |
free_matrix(dnewmpar,1,nlstate,1,nlstate); |
|
|
} |
} |
|
|
/************ Variance of one-step probabilities ******************/ |
|
void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[]) |
/************ Variance of backprevalence limit ******************/ |
|
void varbrevlim(char fileresvbl[], FILE *ficresvbl, double **varbpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **bprlim, double ftolpl, int mobilavproj, int *ncvyearp, int ij, char strstart[], int nres) |
{ |
{ |
int i, j=0, k1, l1, tj; |
/* Variance of backward prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
int k2, l2, j1, z1; |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
int k=0, l; |
|
int first=1, first1, first2; |
double **dnewmpar,**doldm; |
double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; |
int i, j, nhstepm, hstepm; |
double **dnewm,**doldm; |
|
double *xp; |
double *xp; |
double *gp, *gm; |
double *gp, *gm; |
double **gradg, **trgradg; |
double **gradg, **trgradg; |
double **mu; |
double **mgm, **mgp; |
double age, cov[NCOVMAX+1]; |
double age,agelim; |
double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */ |
|
int theta; |
int theta; |
char fileresprob[FILENAMELENGTH]; |
|
char fileresprobcov[FILENAMELENGTH]; |
pstamp(ficresvbl); |
char fileresprobcor[FILENAMELENGTH]; |
fprintf(ficresvbl,"# Standard deviation of back (stable) prevalences \n"); |
double ***varpij; |
fprintf(ficresvbl,"# Age "); |
|
if(nresult >=1) |
strcpy(fileresprob,"PROB_"); |
fprintf(ficresvbl," Result# "); |
strcat(fileresprob,fileres); |
|
if((ficresprob=fopen(fileresprob,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprob); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob); |
|
} |
|
strcpy(fileresprobcov,"PROBCOV_"); |
|
strcat(fileresprobcov,fileresu); |
|
if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprobcov); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov); |
|
} |
|
strcpy(fileresprobcor,"PROBCOR_"); |
|
strcat(fileresprobcor,fileresu); |
|
if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprobcor); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor); |
|
} |
|
printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
|
fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
|
printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); |
|
fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); |
|
printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
|
fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
|
pstamp(ficresprob); |
|
fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n"); |
|
fprintf(ficresprob,"# Age"); |
|
pstamp(ficresprobcov); |
|
fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n"); |
|
fprintf(ficresprobcov,"# Age"); |
|
pstamp(ficresprobcor); |
|
fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n"); |
|
fprintf(ficresprobcor,"# Age"); |
|
|
|
|
|
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=(nlstate+ndeath);j++){ |
fprintf(ficresvbl," %1d-%1d",i,i); |
fprintf(ficresprob," p%1d-%1d (SE)",i,j); |
fprintf(ficresvbl,"\n"); |
fprintf(ficresprobcov," p%1d-%1d ",i,j); |
|
fprintf(ficresprobcor," p%1d-%1d ",i,j); |
|
} |
|
/* fprintf(ficresprob,"\n"); |
|
fprintf(ficresprobcov,"\n"); |
|
fprintf(ficresprobcor,"\n"); |
|
*/ |
|
xp=vector(1,npar); |
xp=vector(1,npar); |
dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
dnewmpar=matrix(1,nlstate,1,npar); |
doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
doldm=matrix(1,nlstate,1,nlstate); |
mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); |
|
varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage); |
hstepm=1*YEARM; /* Every year of age */ |
first=1; |
hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ |
fprintf(ficgp,"\n# Routine varprob"); |
agelim = AGEINF; |
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
for (age=fage; age>=bage; age --){ /* If stepm=6 months */ |
fprintf(fichtm,"\n"); |
nhstepm=(int) rint((age-agelim)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
if (stepm >= YEARM) hstepm=1; |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
|
gradg=matrix(1,npar,1,nlstate); |
|
mgp=matrix(1,npar,1,nlstate); |
|
mgm=matrix(1,npar,1,nlstate); |
|
gp=vector(1,nlstate); |
|
gm=vector(1,nlstate); |
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ /* Computes gradient */ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
} |
|
if(mobilavproj > 0 ) |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
else |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
for(i=1;i<=nlstate;i++){ |
|
gp[i] = bprlim[i][i]; |
|
mgp[theta][i] = bprlim[i][i]; |
|
} |
|
for(i=1; i<=npar; i++) /* Computes gradient */ |
|
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
if(mobilavproj > 0 ) |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
else |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
for(i=1;i<=nlstate;i++){ |
|
gm[i] = bprlim[i][i]; |
|
mgm[theta][i] = bprlim[i][i]; |
|
} |
|
for(i=1;i<=nlstate;i++) |
|
gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; |
|
/* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */ |
|
} /* End theta */ |
|
|
|
trgradg =matrix(1,nlstate,1,npar); |
|
|
|
for(j=1; j<=nlstate;j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[j][theta]=gradg[theta][j]; |
|
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */ |
|
/* printf("\nmgm mgp %d ",(int)age); */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* printf(" %d ",j); */ |
|
/* for(theta=1; theta <=npar; theta++) */ |
|
/* printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* } */ |
|
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */ |
|
/* printf("\n gradg %d ",(int)age); */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* printf("%d ",j); */ |
|
/* for(theta=1; theta <=npar; theta++) */ |
|
/* printf("%d %lf ",theta,gradg[theta][j]); */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* } */ |
|
|
|
for(i=1;i<=nlstate;i++) |
|
varbpl[i][(int)age] =0.; |
|
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
|
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
|
}else{ |
|
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
|
} |
|
for(i=1;i<=nlstate;i++) |
|
varbpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
|
|
|
fprintf(ficresvbl,"%.0f ",age ); |
|
if(nresult >=1) |
|
fprintf(ficresvbl,"%d ",nres ); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresvbl," %.5f (%.5f)",bprlim[i][i],sqrt(varbpl[i][(int)age])); |
|
fprintf(ficresvbl,"\n"); |
|
free_vector(gp,1,nlstate); |
|
free_vector(gm,1,nlstate); |
|
free_matrix(mgm,1,npar,1,nlstate); |
|
free_matrix(mgp,1,npar,1,nlstate); |
|
free_matrix(gradg,1,npar,1,nlstate); |
|
free_matrix(trgradg,1,nlstate,1,npar); |
|
} /* End age */ |
|
|
|
free_vector(xp,1,npar); |
|
free_matrix(doldm,1,nlstate,1,npar); |
|
free_matrix(dnewmpar,1,nlstate,1,nlstate); |
|
|
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov); |
} |
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
|
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
/************ Variance of one-step probabilities ******************/ |
|
void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[]) |
|
{ |
|
int i, j=0, k1, l1, tj; |
|
int k2, l2, j1, z1; |
|
int k=0, l; |
|
int first=1, first1, first2; |
|
double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; |
|
double **dnewm,**doldm; |
|
double *xp; |
|
double *gp, *gm; |
|
double **gradg, **trgradg; |
|
double **mu; |
|
double age, cov[NCOVMAX+1]; |
|
double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */ |
|
int theta; |
|
char fileresprob[FILENAMELENGTH]; |
|
char fileresprobcov[FILENAMELENGTH]; |
|
char fileresprobcor[FILENAMELENGTH]; |
|
double ***varpij; |
|
|
|
strcpy(fileresprob,"PROB_"); |
|
strcat(fileresprob,fileres); |
|
if((ficresprob=fopen(fileresprob,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprob); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob); |
|
} |
|
strcpy(fileresprobcov,"PROBCOV_"); |
|
strcat(fileresprobcov,fileresu); |
|
if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprobcov); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov); |
|
} |
|
strcpy(fileresprobcor,"PROBCOR_"); |
|
strcat(fileresprobcor,fileresu); |
|
if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprobcor); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor); |
|
} |
|
printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
|
fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
|
printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); |
|
fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); |
|
printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
|
fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
|
pstamp(ficresprob); |
|
fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n"); |
|
fprintf(ficresprob,"# Age"); |
|
pstamp(ficresprobcov); |
|
fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n"); |
|
fprintf(ficresprobcov,"# Age"); |
|
pstamp(ficresprobcor); |
|
fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n"); |
|
fprintf(ficresprobcor,"# Age"); |
|
|
|
|
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprob," p%1d-%1d (SE)",i,j); |
|
fprintf(ficresprobcov," p%1d-%1d ",i,j); |
|
fprintf(ficresprobcor," p%1d-%1d ",i,j); |
|
} |
|
/* fprintf(ficresprob,"\n"); |
|
fprintf(ficresprobcov,"\n"); |
|
fprintf(ficresprobcor,"\n"); |
|
*/ |
|
xp=vector(1,npar); |
|
dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
|
doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
|
mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); |
|
varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage); |
|
first=1; |
|
fprintf(ficgp,"\n# Routine varprob"); |
|
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
|
fprintf(fichtm,"\n"); |
|
|
|
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. File %s</li>\n",optionfilehtmcov,optionfilehtmcov); |
|
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
|
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
and drawn. It helps understanding how is the covariance between two incidences.\ |
and drawn. It helps understanding how is the covariance between two incidences.\ |
They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n"); |
They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n"); |
fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \ |
fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \ |
It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \ |
It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \ |
would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \ |
would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \ |
standard deviations wide on each axis. <br>\ |
standard deviations wide on each axis. <br>\ |
Line 4718 standard deviations wide on each axis. <
|
Line 6873 standard deviations wide on each axis. <
|
and made the appropriate rotation to look at the uncorrelated principal directions.<br>\ |
and made the appropriate rotation to look at the uncorrelated principal directions.<br>\ |
To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n"); |
To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n"); |
|
|
cov[1]=1; |
cov[1]=1; |
/* tj=cptcoveff; */ |
/* tj=cptcoveff; */ |
tj = (int) pow(2,cptcoveff); |
tj = (int) pow(2,cptcoveff); |
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
j1=0; |
j1=0; |
for(j1=1; j1<=tj;j1++){ |
for(j1=1; j1<=tj;j1++){ /* For each valid combination of covariates or only once*/ |
/*for(i1=1; i1<=ncodemax[t];i1++){ */ |
if (cptcovn>0) { |
/*j1++;*/ |
fprintf(ficresprob, "\n#********** Variable "); |
if (cptcovn>0) { |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresprob, "\n#********** Variable "); |
fprintf(ficresprob, "**********\n#\n"); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresprobcov, "\n#********** Variable "); |
fprintf(ficresprob, "**********\n#\n"); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresprobcov, "\n#********** Variable "); |
fprintf(ficresprobcov, "**********\n#\n"); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprobcov, "**********\n#\n"); |
fprintf(ficgp, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficgp, "\n#********** Variable "); |
fprintf(ficgp, "**********\n#\n"); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficgp, "**********\n#\n"); |
|
|
fprintf(fichtmcov, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
|
/* for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); */ |
fprintf(fichtmcov, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtmcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
|
fprintf(ficresprobcor, "\n#********** Variable "); |
fprintf(ficresprobcor, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresprobcor, "**********\n#"); |
fprintf(ficresprobcor, "**********\n#"); |
if(invalidvarcomb[j1]){ |
} |
fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); |
|
fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); |
gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath)); |
continue; |
trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
} |
gp=vector(1,(nlstate)*(nlstate+ndeath)); |
} |
gm=vector(1,(nlstate)*(nlstate+ndeath)); |
gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath)); |
for (age=bage; age<=fage; age ++){ |
trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
cov[2]=age; |
gp=vector(1,(nlstate)*(nlstate+ndeath)); |
if(nagesqr==1) |
gm=vector(1,(nlstate)*(nlstate+ndeath)); |
cov[3]= age*age; |
for (age=bage; age<=fage; age ++){ |
for (k=1; k<=cptcovn;k++) { |
cov[2]=age; |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; |
if(nagesqr==1) |
/*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4 |
cov[3]= age*age; |
* 1 1 1 1 1 |
for (k=1; k<=cptcovn;k++) { |
* 2 2 1 1 1 |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; |
* 3 1 2 1 1 |
/*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4 |
*/ |
* 1 1 1 1 1 |
/* nbcode[1][1]=0 nbcode[1][2]=1;*/ |
* 2 2 1 1 1 |
} |
* 3 1 2 1 1 |
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
*/ |
for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
/* nbcode[1][1]=0 nbcode[1][2]=1;*/ |
for (k=1; k<=cptcovprod;k++) |
} |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
/* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
|
/* ) p nbcode[Tvar[Tage[k]]][(1 & (ij-1) >> (k-1))+1] */ |
|
/*for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
for(theta=1; theta <=npar; theta++){ |
for (k=1; k<=cptcovage;k++) |
for(i=1; i<=npar; i++) |
cov[2+Tage[k]+nagesqr]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
for (k=1; k<=cptcovprod;k++) |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
|
|
|
k=0; |
for(theta=1; theta <=npar; theta++){ |
for(i=1; i<= (nlstate); i++){ |
for(i=1; i<=npar; i++) |
for(j=1; j<=(nlstate+ndeath);j++){ |
xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
k=k+1; |
|
gp[k]=pmmij[i][j]; |
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
} |
|
} |
k=0; |
|
for(i=1; i<= (nlstate); i++){ |
for(i=1; i<=npar; i++) |
for(j=1; j<=(nlstate+ndeath);j++){ |
xp[i] = x[i] - (i==theta ?delti[theta]:(double)0); |
k=k+1; |
|
gp[k]=pmmij[i][j]; |
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
} |
k=0; |
} |
for(i=1; i<=(nlstate); i++){ |
|
for(j=1; j<=(nlstate+ndeath);j++){ |
for(i=1; i<=npar; i++) |
k=k+1; |
xp[i] = x[i] - (i==theta ?delti[theta]:(double)0); |
gm[k]=pmmij[i][j]; |
|
} |
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
} |
k=0; |
|
for(i=1; i<=(nlstate); i++){ |
for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) |
for(j=1; j<=(nlstate+ndeath);j++){ |
gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta]; |
k=k+1; |
} |
gm[k]=pmmij[i][j]; |
|
} |
for(j=1; j<=(nlstate)*(nlstate+ndeath);j++) |
} |
for(theta=1; theta <=npar; theta++) |
|
trgradg[j][theta]=gradg[theta][j]; |
for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) |
|
gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta]; |
matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); |
} |
matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg); |
|
|
|
pmij(pmmij,cov,ncovmodel,x,nlstate); |
|
|
|
k=0; |
|
for(i=1; i<=(nlstate); i++){ |
|
for(j=1; j<=(nlstate+ndeath);j++){ |
|
k=k+1; |
|
mu[k][(int) age]=pmmij[i][j]; |
|
} |
|
} |
|
for(i=1;i<=(nlstate)*(nlstate+ndeath);i++) |
|
for(j=1;j<=(nlstate)*(nlstate+ndeath);j++) |
|
varpij[i][j][(int)age] = doldm[i][j]; |
|
|
|
/*printf("\n%d ",(int)age); |
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
|
printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |
|
fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |
|
}*/ |
|
|
|
fprintf(ficresprob,"\n%d ",(int)age); |
|
fprintf(ficresprobcov,"\n%d ",(int)age); |
|
fprintf(ficresprobcor,"\n%d ",(int)age); |
|
|
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++) |
|
fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age])); |
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
|
fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]); |
|
fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]); |
|
} |
|
i=0; |
|
for (k=1; k<=(nlstate);k++){ |
|
for (l=1; l<=(nlstate+ndeath);l++){ |
|
i++; |
|
fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l); |
|
fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l); |
|
for (j=1; j<=i;j++){ |
|
/* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */ |
|
fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]); |
|
fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age])); |
|
} |
|
} |
|
}/* end of loop for state */ |
|
} /* end of loop for age */ |
|
free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); |
|
free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); |
|
free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
|
free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
|
|
|
/* Confidence intervalle of pij */ |
|
/* |
|
fprintf(ficgp,"\nunset parametric;unset label"); |
|
fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\""); |
|
fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); |
|
fprintf(fichtm,"\n<br>Probability with confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname); |
|
fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname); |
|
fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname); |
|
fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob); |
|
*/ |
|
|
|
/* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/ |
|
first1=1;first2=2; |
|
for (k2=1; k2<=(nlstate);k2++){ |
|
for (l2=1; l2<=(nlstate+ndeath);l2++){ |
|
if(l2==k2) continue; |
|
j=(k2-1)*(nlstate+ndeath)+l2; |
|
for (k1=1; k1<=(nlstate);k1++){ |
|
for (l1=1; l1<=(nlstate+ndeath);l1++){ |
|
if(l1==k1) continue; |
|
i=(k1-1)*(nlstate+ndeath)+l1; |
|
if(i<=j) continue; |
|
for (age=bage; age<=fage; age ++){ |
|
if ((int)age %5==0){ |
|
v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM; |
|
v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM; |
|
cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM; |
|
mu1=mu[i][(int) age]/stepm*YEARM ; |
|
mu2=mu[j][(int) age]/stepm*YEARM; |
|
c12=cv12/sqrt(v1*v2); |
|
/* Computing eigen value of matrix of covariance */ |
|
lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
if ((lc2 <0) || (lc1 <0) ){ |
|
if(first2==1){ |
|
first1=0; |
|
printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor); |
|
} |
|
fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog); |
|
/* lc1=fabs(lc1); */ /* If we want to have them positive */ |
|
/* lc2=fabs(lc2); */ |
|
} |
|
|
|
/* Eigen vectors */ |
for(j=1; j<=(nlstate)*(nlstate+ndeath);j++) |
v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); |
for(theta=1; theta <=npar; theta++) |
/*v21=sqrt(1.-v11*v11); *//* error */ |
trgradg[j][theta]=gradg[theta][j]; |
v21=(lc1-v1)/cv12*v11; |
|
v12=-v21; |
matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); |
v22=v11; |
matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg); |
tnalp=v21/v11; |
|
if(first1==1){ |
pmij(pmmij,cov,ncovmodel,x,nlstate); |
first1=0; |
|
printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
k=0; |
} |
for(i=1; i<=(nlstate); i++){ |
fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
for(j=1; j<=(nlstate+ndeath);j++){ |
/*printf(fignu*/ |
k=k+1; |
/* mu1+ v11*lc1*cost + v12*lc2*sin(t) */ |
mu[k][(int) age]=pmmij[i][j]; |
/* mu2+ v21*lc1*cost + v22*lc2*sin(t) */ |
} |
if(first==1){ |
} |
first=0; |
for(i=1;i<=(nlstate)*(nlstate+ndeath);i++) |
fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n"); |
for(j=1;j<=(nlstate)*(nlstate+ndeath);j++) |
fprintf(ficgp,"\nset parametric;unset label"); |
varpij[i][j][(int)age] = doldm[i][j]; |
fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); |
|
fprintf(ficgp,"\nset ter svg size 640, 480"); |
/*printf("\n%d ",(int)age); |
fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ |
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
:<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\ |
printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |
|
fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |
|
}*/ |
|
|
|
fprintf(ficresprob,"\n%d ",(int)age); |
|
fprintf(ficresprobcov,"\n%d ",(int)age); |
|
fprintf(ficresprobcor,"\n%d ",(int)age); |
|
|
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++) |
|
fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age])); |
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
|
fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]); |
|
fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]); |
|
} |
|
i=0; |
|
for (k=1; k<=(nlstate);k++){ |
|
for (l=1; l<=(nlstate+ndeath);l++){ |
|
i++; |
|
fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l); |
|
fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l); |
|
for (j=1; j<=i;j++){ |
|
/* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */ |
|
fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]); |
|
fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age])); |
|
} |
|
} |
|
}/* end of loop for state */ |
|
} /* end of loop for age */ |
|
free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); |
|
free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); |
|
free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
|
free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
|
|
|
/* Confidence intervalle of pij */ |
|
/* |
|
fprintf(ficgp,"\nunset parametric;unset label"); |
|
fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\""); |
|
fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); |
|
fprintf(fichtm,"\n<br>Probability with confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname); |
|
fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname); |
|
fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname); |
|
fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob); |
|
*/ |
|
|
|
/* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/ |
|
first1=1;first2=2; |
|
for (k2=1; k2<=(nlstate);k2++){ |
|
for (l2=1; l2<=(nlstate+ndeath);l2++){ |
|
if(l2==k2) continue; |
|
j=(k2-1)*(nlstate+ndeath)+l2; |
|
for (k1=1; k1<=(nlstate);k1++){ |
|
for (l1=1; l1<=(nlstate+ndeath);l1++){ |
|
if(l1==k1) continue; |
|
i=(k1-1)*(nlstate+ndeath)+l1; |
|
if(i<=j) continue; |
|
for (age=bage; age<=fage; age ++){ |
|
if ((int)age %5==0){ |
|
v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM; |
|
v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM; |
|
cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM; |
|
mu1=mu[i][(int) age]/stepm*YEARM ; |
|
mu2=mu[j][(int) age]/stepm*YEARM; |
|
c12=cv12/sqrt(v1*v2); |
|
/* Computing eigen value of matrix of covariance */ |
|
lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
if ((lc2 <0) || (lc1 <0) ){ |
|
if(first2==1){ |
|
first1=0; |
|
printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor); |
|
} |
|
fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog); |
|
/* lc1=fabs(lc1); */ /* If we want to have them positive */ |
|
/* lc2=fabs(lc2); */ |
|
} |
|
|
|
/* Eigen vectors */ |
|
if(1+(v1-lc1)*(v1-lc1)/cv12/cv12 <1.e-5){ |
|
printf(" Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12); |
|
fprintf(ficlog," Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12); |
|
v11=(1./sqrt(fabs(1+(v1-lc1)*(v1-lc1)/cv12/cv12))); |
|
}else |
|
v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); |
|
/*v21=sqrt(1.-v11*v11); *//* error */ |
|
v21=(lc1-v1)/cv12*v11; |
|
v12=-v21; |
|
v22=v11; |
|
tnalp=v21/v11; |
|
if(first1==1){ |
|
first1=0; |
|
printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
|
} |
|
fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
|
/*printf(fignu*/ |
|
/* mu1+ v11*lc1*cost + v12*lc2*sin(t) */ |
|
/* mu2+ v21*lc1*cost + v22*lc2*sin(t) */ |
|
if(first==1){ |
|
first=0; |
|
fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n"); |
|
fprintf(ficgp,"\nset parametric;unset label"); |
|
fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); |
|
fprintf(ficgp,"\nset ter svg size 640, 480"); |
|
fprintf(fichtmcov,"\n<p><br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ |
|
:<a href=\"%s_%d%1d%1d-%1d%1d.svg\"> \ |
%s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\ |
%s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\ |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\ |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2, \ |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12); |
fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12); |
fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ |
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ |
mu1,std,v11,sqrt(fabs(lc1)),v12,sqrt(fabs(lc2)), \ |
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
mu2,std,v21,sqrt(fabs(lc1)),v22,sqrt(fabs(lc2))); /* For gnuplot only */ |
}else{ |
}else{ |
first=0; |
first=0; |
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\ |
fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\ |
mu1,std,v11,sqrt(lc1),v12,sqrt(fabs(lc2)), \ |
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
mu2,std,v21,sqrt(lc1),v22,sqrt(fabs(lc2))); |
}/* if first */ |
}/* if first */ |
} /* age mod 5 */ |
} /* age mod 5 */ |
} /* end loop age */ |
} /* end loop age */ |
fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
first=1; |
first=1; |
} /*l12 */ |
} /*l12 */ |
} /* k12 */ |
} /* k12 */ |
} /*l1 */ |
} /*l1 */ |
}/* k1 */ |
}/* k1 */ |
/* } */ /* loop covariates */ |
} /* loop on combination of covariates j1 */ |
} |
free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); |
free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); |
free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); |
free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); |
free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar); |
free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar); |
free_vector(xp,1,npar); |
free_vector(xp,1,npar); |
fclose(ficresprob); |
fclose(ficresprob); |
fclose(ficresprobcov); |
fclose(ficresprobcov); |
fclose(ficresprobcor); |
fclose(ficresprobcor); |
fflush(ficgp); |
fflush(ficgp); |
fflush(fichtmcov); |
fflush(fichtmcov); |
} |
} |
|
|
|
|
|
/******************* Printing html file ***********/ |
/******************* Printing html file ***********/ |
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
int lastpass, int stepm, int weightopt, char model[],\ |
int lastpass, int stepm, int weightopt, char model[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int popforecast, int prevfcast, int estepm , \ |
int popforecast, int mobilav, int prevfcast, int mobilavproj, int prevbcast, int estepm , \ |
double jprev1, double mprev1,double anprev1, double dateprev1, \ |
double jprev1, double mprev1,double anprev1, double dateprev1, double dateprojd, double dateback1, \ |
double jprev2, double mprev2,double anprev2, double dateprev2){ |
double jprev2, double mprev2,double anprev2, double dateprev2, double dateprojf, double dateback2){ |
int jj1, k1, i1, cpt; |
int jj1, k1, i1, cpt, k4, nres; |
|
/* In fact some results are already printed in fichtm which is open */ |
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
</ul>"); |
</ul>"); |
|
/* fprintf(fichtm,"<ul><li> model=1+age+%s\n \ */ |
|
/* </ul>", model); */ |
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n"); |
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n"); |
fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n", |
fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n", |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm")); |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm")); |
Line 4987 void printinghtml(char fileresu[], char
|
Line 7154 void printinghtml(char fileresu[], char
|
- Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
- Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_")); |
stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
- Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
|
stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_")); |
|
fprintf(fichtm,"\ |
|
- Period (forward) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
|
- Backward prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
|
subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_")); |
|
fprintf(fichtm,"\ |
- (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
- (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
<a href=\"%s\">%s</a> <br>\n", |
<a href=\"%s\">%s</a> <br>\n", |
estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_")); |
estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_")); |
Line 4999 void printinghtml(char fileresu[], char
|
Line 7172 void printinghtml(char fileresu[], char
|
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
} |
} |
|
|
fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); |
|
|
|
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
|
fprintf(fichtm," \n<ul><li><b>Graphs (first order)</b></li><p>"); |
|
|
|
jj1=0; |
|
|
|
fprintf(fichtm," \n<ul>"); |
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k1=1; k1<=m;k1++){ /* For each combination of covariate */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
jj1++; |
|
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<li><a size=\"1\" color=\"#EC5E5E\" href=\"#rescov"); |
|
for (cpt=1; cpt<=cptcoveff;cpt++){ |
|
fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
fprintf(fichtm,"\">"); |
|
|
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
|
fprintf(fichtm,"************ Results for covariates"); |
|
for (cpt=1; cpt<=cptcoveff;cpt++){ |
|
fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); |
|
continue; |
|
} |
|
fprintf(fichtm,"</a></li>"); |
|
} /* cptcovn >0 */ |
|
} |
|
fprintf(fichtm," \n</ul>"); |
|
|
|
jj1=0; |
|
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k1=1; k1<=m;k1++){ /* For each combination of covariate */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
|
jj1=0; |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
for(k1=1; k1<=m;k1++){ |
|
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
|
jj1++; |
jj1++; |
if (cptcovn > 0) { |
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<p><a name=\"rescov"); |
|
for (cpt=1; cpt<=cptcoveff;cpt++){ |
|
fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
fprintf(fichtm,"\"</a>"); |
|
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
for (cpt=1; cpt<=cptcoveff;cpt++){ |
for (cpt=1; cpt<=cptcoveff;cpt++){ |
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); |
printf(" V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);fflush(stdout); |
|
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
|
/* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */ |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);fflush(stdout); |
|
} |
|
|
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
|
fprintf(fichtm," (model=%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); |
|
printf("\nCombination (%d) ignored because no cases \n",k1); |
|
continue; |
} |
} |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
} |
} |
/* aij, bij */ |
/* aij, bij */ |
fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \ |
fprintf(fichtm,"<br>- Logit model (yours is: logit(pij)=log(pij/pii)= aij+ bij age+%s) as a function of age: <a href=\"%s_%d-1-%d.svg\">%s_%d-1-%d.svg</a><br> \ |
<img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-1-%d.svg\">",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
/* Pij */ |
/* Pij */ |
fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \ |
fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2-%d.svg\">%s_%d-2-%d.svg</a><br> \ |
<img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-2-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
/* Quasi-incidences */ |
/* Quasi-incidences */ |
fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ |
fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ |
before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\ |
before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \ |
incidence (rates) are the limit when h tends to zero of the ratio of the probability <sub>h</sub>P<sub>ij</sub> \ |
incidence (rates) are the limit when h tends to zero of the ratio of the probability <sub>h</sub>P<sub>ij</sub> \ |
divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \ |
divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3-%d.svg\">%s_%d-3-%d.svg</a><br> \ |
<img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
/* Survival functions (period) in state j */ |
/* Survival functions (period) in state j */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Survival functions in state %d. And probability to be observed in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1); |
<img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
} |
} |
/* State specific survival functions (period) */ |
/* State specific survival functions (period) */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\ |
fprintf(fichtm,"<br>\n- Survival functions in state %d and in any other live state (total).\ |
Or probability to survive in various states (1 to %d) being in state %d at different ages.\ |
And probability to be observed in various states (up to %d) being in state %d at different ages. \ |
<a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1); |
<a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> <img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
} |
} |
/* Period (stable) prevalence in each health state */ |
/* Period (forward stable) prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1); |
<img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
} |
} |
if(prevfcast==1){ |
if(prevbcast==1){ |
/* Projection of prevalence up to period (stable) prevalence in each health state */ |
/* Backward prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
<img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1); |
<img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
} |
} |
} |
} |
|
if(prevfcast==1){ |
|
/* Projection of prevalence up to period (forward stable) prevalence in each health state */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) forward prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateprojd, dateprojf, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
|
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"F_"),subdirf2(optionfilefiname,"F_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">", |
|
subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
|
} |
|
} |
|
if(prevbcast==1){ |
|
/* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \ |
|
from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d (randomness in cross-sectional prevalence is not taken into \ |
|
account but can visually be appreciated). Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \ |
|
with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
|
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"FB_"),subdirf2(optionfilefiname,"FB_")); |
|
fprintf(fichtm," <img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
|
} |
|
} |
|
|
for(cpt=1; cpt<=nlstate;cpt++) { |
for(cpt=1; cpt<=nlstate;cpt++) { |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \ |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
<img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\"> %s.txt</a>)\n<br>",subdirf2(optionfilefiname,"E_"),subdirf2(optionfilefiname,"E_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres ); |
} |
} |
/* } /\* end i1 *\/ */ |
/* } /\* end i1 *\/ */ |
}/* End k1 */ |
}/* End k1 */ |
fprintf(fichtm,"</ul>"); |
fprintf(fichtm,"</ul>"); |
|
|
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
\n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\ |
\n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\ |
- Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \ |
- Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \ |
- 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \ |
- 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \ |
Line 5072 variances but at the covariance matrix.
|
Line 7329 variances but at the covariance matrix.
|
covariance matrix of the one-step probabilities. \ |
covariance matrix of the one-step probabilities. \ |
See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres); |
See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres); |
|
|
fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_")); |
subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
- Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_")); |
subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_")); |
|
|
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
- Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_")); |
subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \ |
- Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \ |
<a href=\"%s\">%s</a> <br>\n</li>", |
<a href=\"%s\">%s</a> <br>\n</li>", |
estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_")); |
estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \ |
- (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \ |
<a href=\"%s\">%s</a> <br>\n</li>", |
<a href=\"%s\">%s</a> <br>\n</li>", |
estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_")); |
estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n", |
- Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the forward (period) prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n", |
estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_")); |
estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n", |
- Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n", |
estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_")); |
estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\ |
- Standard deviation of forward (period) prevalences: <a href=\"%s\">%s</a> <br>\n",\ |
subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
|
|
/* if(popforecast==1) fprintf(fichtm,"\n */ |
/* if(popforecast==1) fprintf(fichtm,"\n */ |
/* - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */ |
/* - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */ |
Line 5105 See page 'Matrix of variance-covariance
|
Line 7362 See page 'Matrix of variance-covariance
|
/* <br>",fileres,fileres,fileres,fileres); */ |
/* <br>",fileres,fileres,fileres,fileres); */ |
/* else */ |
/* else */ |
/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ |
/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ |
fflush(fichtm); |
fflush(fichtm); |
fprintf(fichtm," <ul><li><b>Graphs</b></li><p>"); |
|
|
m=pow(2,cptcoveff); |
|
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
|
fprintf(fichtm," <ul><li><b>Graphs (second order)</b></li><p>"); |
|
|
m=pow(2,cptcoveff); |
jj1=0; |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
|
jj1=0; |
fprintf(fichtm," \n<ul>"); |
for(k1=1; k1<=m;k1++){ |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
for(k1=1; k1<=m;k1++){ /* For each combination of covariate */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
jj1++; |
jj1++; |
if (cptcovn > 0) { |
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<li><a size=\"1\" color=\"#EC5E5E\" href=\"#rescovsecond"); |
|
for (cpt=1; cpt<=cptcoveff;cpt++){ |
|
fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
fprintf(fichtm,"\">"); |
|
|
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
|
fprintf(fichtm,"************ Results for covariates"); |
|
for (cpt=1; cpt<=cptcoveff;cpt++){ |
|
fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); |
|
continue; |
|
} |
|
fprintf(fichtm,"</a></li>"); |
|
} /* cptcovn >0 */ |
|
} |
|
fprintf(fichtm," \n</ul>"); |
|
|
|
jj1=0; |
|
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
for(k1=1; k1<=m;k1++){ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
|
jj1++; |
|
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<p><a name=\"rescovsecond"); |
|
for (cpt=1; cpt<=cptcoveff;cpt++){ |
|
fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
fprintf(fichtm,"\"</a>"); |
|
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
for (cpt=1; cpt<=cptcoveff;cpt++) |
for (cpt=1; cpt<=cptcoveff;cpt++){ /**< cptcoveff number of variables */ |
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]); |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
printf(" V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);fflush(stdout); |
|
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
|
|
fprintf(fichtm," (model=%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model); |
|
|
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); |
|
continue; |
|
} |
} |
} |
for(cpt=1; cpt<=nlstate;cpt++) { |
for(cpt=1; cpt<=nlstate;cpt++) { |
fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \ |
fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \ |
prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d%d.svg\"> %s_%d-%d.svg <br>\ |
prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
<img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1); |
fprintf(fichtm," (data from text file <a href=\"%s\">%s</a>)\n <br>",subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"V_"), cpt,k1,nres); |
} |
} |
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \ |
health expectancies in each live states (1 to %d). If popbased=1 the smooth (due to the model) \ |
true period expectancies (those weighted with period prevalences are also\ |
true period expectancies (those weighted with period prevalences are also\ |
drawn in addition to the population based expectancies computed using\ |
drawn in addition to the population based expectancies computed using\ |
observed and cahotic prevalences: <a href=\"%s_%d.svg\">%s_%d.svg<br>\ |
observed and cahotic prevalences: <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>",nlstate, subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres); |
<img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>) \n<br>",subdirf2(optionfilefiname,"T_"),subdirf2(optionfilefiname,"T_")); |
/* } /\* end i1 *\/ */ |
fprintf(fichtm,"<img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres); |
}/* End k1 */ |
/* } /\* end i1 *\/ */ |
fprintf(fichtm,"</ul>"); |
}/* End k1 */ |
fflush(fichtm); |
}/* End nres */ |
|
fprintf(fichtm,"</ul>"); |
|
fflush(fichtm); |
} |
} |
|
|
/******************* Gnuplot file **************/ |
/******************* Gnuplot file **************/ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, char pathc[], double p[]){ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int prevbcast, char pathc[], double p[], int offyear, int offbyear){ |
|
|
char dirfileres[132],optfileres[132]; |
char dirfileres[132],optfileres[132]; |
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0; |
char gplotcondition[132], gplotlabel[132]; |
|
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,ij=0, ijp=0, l=0; |
int lv=0, vlv=0, kl=0; |
int lv=0, vlv=0, kl=0; |
int ng=0; |
int ng=0; |
int vpopbased; |
int vpopbased; |
|
int ioffset; /* variable offset for columns */ |
|
int iyearc=1; /* variable column for year of projection */ |
|
int iagec=1; /* variable column for age of projection */ |
|
int nres=0; /* Index of resultline */ |
|
int istart=1; /* For starting graphs in projections */ |
|
|
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
/* printf("Problem with file %s",optionfilegnuplot); */ |
/* printf("Problem with file %s",optionfilegnuplot); */ |
/* fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */ |
/* fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */ |
Line 5153 true period expectancies (those weighted
|
Line 7481 true period expectancies (those weighted
|
|
|
/*#ifdef windows */ |
/*#ifdef windows */ |
fprintf(ficgp,"cd \"%s\" \n",pathc); |
fprintf(ficgp,"cd \"%s\" \n",pathc); |
/*#endif */ |
/*#endif */ |
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
|
|
|
/* diagram of the model */ |
|
fprintf(ficgp,"\n#Diagram of the model \n"); |
|
fprintf(ficgp,"\ndelta=0.03;delta2=0.07;unset arrow;\n"); |
|
fprintf(ficgp,"yoff=(%d > 2? 0:1);\n",nlstate); |
|
fprintf(ficgp,"\n#Peripheral arrows\nset for [i=1:%d] for [j=1:%d] arrow i*10+j from cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.95*(cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) - cos(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta2:0)), -0.95*(sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) - sin(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d))+( i!=j?(i-j)/abs(i-j)*delta2:0)) ls (i < j? 1:2)\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
|
|
|
fprintf(ficgp,"\n#Centripete arrows (turning in other direction (1-i) instead of (i-1)) \nset for [i=1:%d] arrow (%d+1)*10+i from cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.80*(cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) ), -0.80*(sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) + yoff ) ls 4\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
|
fprintf(ficgp,"\n#show arrow\nunset label\n"); |
|
fprintf(ficgp,"\n#States labels, starting from 2 (2-i) instead of (1-i), was (i-1)\nset for [i=1:%d] label i sprintf(\"State %%d\",i) center at cos(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)), yoff+sin(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)) font \"helvetica, 16\" tc rgbcolor \"blue\"\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
|
fprintf(ficgp,"\nset label %d+1 sprintf(\"State %%d\",%d+1) center at 0.,0. font \"helvetica, 16\" tc rgbcolor \"red\"\n",nlstate,nlstate); |
|
fprintf(ficgp,"\n#show label\nunset border;unset xtics; unset ytics;\n"); |
|
fprintf(ficgp,"\n\nset ter svg size 640, 480;set out \"%s_.svg\" \n",subdirf2(optionfilefiname,"D_")); |
|
fprintf(ficgp,"unset log y; plot [-1.2:1.2][yoff-1.2:1.2] 1/0 not; set out;reset;\n"); |
|
|
/* Contribution to likelihood */ |
/* Contribution to likelihood */ |
/* Plot the probability implied in the likelihood */ |
/* Plot the probability implied in the likelihood */ |
fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n"); |
fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n"); |
fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";"); |
fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";"); |
/* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */ |
/* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */ |
fprintf(ficgp,"\nset ter pngcairo size 640, 480"); |
fprintf(ficgp,"\nset ter pngcairo size 640, 480"); |
/* nice for mle=4 plot by number of matrix products. |
/* nice for mle=4 plot by number of matrix products. |
replot "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */ |
replot "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */ |
/* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)" */ |
/* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)" */ |
/* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */ |
/* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */ |
fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_")); |
fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_")); |
fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk)); |
fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk)); |
fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_")); |
fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_")); |
fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk)); |
fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk)); |
for (i=1; i<= nlstate ; i ++) { |
for (i=1; i<= nlstate ; i ++) { |
fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i); |
fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i); |
fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot \"%s\"",subdirf(fileresilk)); |
fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot \"%s\"",subdirf(fileresilk)); |
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1); |
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1); |
for (j=2; j<= nlstate+ndeath ; j ++) { |
for (j=2; j<= nlstate+ndeath ; j ++) { |
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j); |
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j); |
} |
} |
fprintf(ficgp,";\nset out; unset ylabel;\n"); |
fprintf(ficgp,";\nset out; unset ylabel;\n"); |
} |
} |
/* unset log; plot "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */ |
/* unset log; plot "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */ |
/* fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */ |
/* fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */ |
/* fprintf(ficgp,"\nreplot \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */ |
/* fprintf(ficgp,"\nreplot \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */ |
fprintf(ficgp,"\nset out;unset log\n"); |
fprintf(ficgp,"\nset out;unset log\n"); |
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
|
|
strcpy(dirfileres,optionfilefiname); |
strcpy(dirfileres,optionfilefiname); |
strcpy(optfileres,"vpl"); |
strcpy(optfileres,"vpl"); |
/* 1eme*/ |
/* 1eme*/ |
for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */ |
for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */ |
for (k1=1; k1<= m ; k1 ++) { /* For each combination of covariate */ |
for (k1=1; k1<= m ; k1 ++){ /* For each valid combination of covariate */ |
/* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files "); |
/* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
if(m != 1 && TKresult[nres]!= k1) |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
continue; |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* We are interested in selected combination by the resultline */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
fprintf(ficgp,"\n# 1st: Forward (stable period) prevalence with CI: 'VPL_' files and live state =%d ", cpt); |
vlv= nbcode[Tvaraff[lv]][lv]; |
strcpy(gplotlabel,"("); |
fprintf(ficgp," V%d=%d ",k,vlv); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
} |
lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */ |
fprintf(ficgp,"\n#\n"); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */ |
|
/* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */ |
|
/* printf(" V%d=%d ",Tvaraff[k],vlv); */ |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
|
/* printf("\n#\n"); */ |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
/*k1=k1-1;*/ /* To be checked */ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
|
fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres); |
|
/* fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); */ |
|
fprintf(ficgp,"set title \"Alive state %d %s model=%s\" font \"Helvetica,12\"\n",cpt,gplotlabel,model); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
|
/* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */ |
|
/* k1-1 error should be nres-1*/ |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"Forward prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
/* fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); */ |
|
|
|
fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" u 1:((",subdirf2(fileresu,"P_")); |
|
if(cptcoveff ==0){ |
|
fprintf(ficgp,"$%d)) t 'Observed prevalence in state %d' with line lt 3", 2+3*(cpt-1), cpt ); |
|
}else{ |
|
kl=0; |
|
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
kl++; |
|
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
|
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
|
if(k==cptcoveff){ |
|
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Observed prevalence in state %d' w l lt 2",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
|
2+cptcoveff*2+3*(cpt-1), cpt ); /* 4 or 6 ?*/ |
|
}else{ |
|
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
|
kl++; |
|
} |
|
} /* end covariate */ |
|
} /* end if no covariate */ |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1); |
if(prevbcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */ |
fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1); |
/* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
fprintf(ficgp,"set xlabel \"Age\" \n\ |
fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */ |
set ylabel \"Probability\" \n\ |
if(cptcoveff ==0){ |
set ter svg size 640, 480\n\ |
fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line lt 3", 2+(cpt-1), cpt ); |
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
}else{ |
|
kl=0; |
for (i=1; i<= nlstate ; i ++) { |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
else fprintf(ficgp," %%*lf (%%*lf)"); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
} |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
for (i=1; i<= nlstate ; i ++) { |
vlv= nbcode[Tvaraff[k]][lv]; |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
kl++; |
else fprintf(ficgp," %%*lf (%%*lf)"); |
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
} |
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
for (i=1; i<= nlstate ; i ++) { |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
if(k==cptcoveff){ |
else fprintf(ficgp," %%*lf (%%*lf)"); |
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
} |
2+cptcoveff*2+(cpt-1), cpt ); /* 4 or 6 ?*/ |
fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); |
}else{ |
fprintf(ficgp,"\nset out \n"); |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
|
kl++; |
|
} |
|
} /* end covariate */ |
|
} /* end if no covariate */ |
|
if(prevbcast == 1){ |
|
fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
|
/* k1-1 error should be nres-1*/ |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"Backward (stable) prevalence\" w l lt 6 dt 3,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"95%% CI\" w l lt 4,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"\" w l lt 4"); |
|
} /* end if backprojcast */ |
|
} /* end if prevbcast */ |
|
/* fprintf(ficgp,"\nset out ;unset label;\n"); */ |
|
fprintf(ficgp,"\nset out ;unset title;\n"); |
|
} /* nres */ |
} /* k1 */ |
} /* k1 */ |
} /* cpt */ |
} /* cpt */ |
|
|
|
|
/*2 eme*/ |
/*2 eme*/ |
for (k1=1; k1<= m ; k1 ++) { |
for (k1=1; k1<= m ; k1 ++){ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); |
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); |
|
strcpy(gplotlabel,"("); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
vlv= nbcode[Tvaraff[lv]][lv]; |
vlv= nbcode[Tvaraff[k]][lv]; |
fprintf(ficgp," V%d=%d ",k,vlv); |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
/* for(k=1; k <= ncovds; k++){ */ |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
} |
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
continue; |
if(vpopbased==0) |
|
fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage); |
|
else |
|
fprintf(ficgp,"\nreplot "); |
|
for (i=1; i<= nlstate+1 ; i ++) { |
|
k=2*i; |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i); |
|
else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1); |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"\" w l lt 0,"); |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0"); |
|
else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); |
|
} /* state */ |
|
} /* vpopbased */ |
|
fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */ |
|
} /* k1 */ |
|
|
|
|
|
/*3eme*/ |
|
for (k1=1; k1<= m ; k1 ++) { |
|
for (cpt=1; cpt<= nlstate ; cpt ++) { |
|
fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files: cov=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[lv]][lv]; |
|
fprintf(ficgp," V%d=%d ",k,vlv); |
|
} |
} |
fprintf(ficgp,"\n#\n"); |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres); |
/* k=2+nlstate*(2*cpt-2); */ |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
k=2+(nlstate+1)*(cpt-1); |
fprintf(ficgp,"\nset label \"popbased %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",vpopbased,gplotlabel); |
fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1); |
if(vpopbased==0){ |
fprintf(ficgp,"set ter svg size 640, 480\n\ |
fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage); |
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt); |
}else |
/*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
fprintf(ficgp,"\nreplot "); |
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
for (i=1; i<= nlstate+1 ; i ++) { |
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
k=2*i; |
fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1, vpopbased); |
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
for (j=1; j<= nlstate+1 ; j ++) { |
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i); |
|
else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1); |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"\" w l lt 0,"); |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0"); |
|
else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); |
|
} /* state */ |
|
} /* vpopbased */ |
|
fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */ |
|
} /* end nres */ |
|
} /* k1 end 2 eme*/ |
|
|
*/ |
|
for (i=1; i< nlstate ; i ++) { |
|
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1); |
|
/* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/ |
|
|
|
} |
/*3eme*/ |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt); |
for (k1=1; k1<= m ; k1 ++){ |
} |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
} |
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
|
|
for (cpt=1; cpt<= nlstate ; cpt ++) { |
|
fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files: combination=%d state=%d",k1, cpt); |
|
strcpy(gplotlabel,"("); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
/* k=2+nlstate*(2*cpt-2); */ |
|
k=2+(nlstate+1)*(cpt-1); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"%s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); |
|
fprintf(ficgp,"set ter svg size 640, 480\n\ |
|
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),nres-1,nres-1,k,cpt); |
|
/*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
|
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
|
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
|
fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
|
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
|
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
|
|
|
*/ |
|
for (i=1; i< nlstate ; i ++) { |
|
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+i,cpt,i+1); |
|
/* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/ |
|
|
|
} |
|
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+nlstate,cpt); |
|
} |
|
fprintf(ficgp,"\nunset label;\n"); |
|
} /* end nres */ |
|
} /* end kl 3eme */ |
|
|
|
/* 4eme */ |
/* Survival functions (period) from state i in state j by initial state i */ |
/* Survival functions (period) from state i in state j by initial state i */ |
for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */ |
for (k1=1; k1<=m; k1++){ /* For each covariate and each value */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt); |
if(m != 1 && TKresult[nres]!= k1) |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
continue; |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
strcpy(gplotlabel,"("); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
vlv= nbcode[Tvaraff[lv]][lv]; |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
fprintf(ficgp," V%d=%d ",k,vlv); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
} |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
fprintf(ficgp,"\n#\n"); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1); |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
set ter svg size 640, 480\n\ |
} |
unset log y\n\ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
k=3; |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
for (i=1; i<= nlstate ; i ++){ |
} |
if(i==1) |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"\n#\n"); |
else |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,", '' "); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
l=(nlstate+ndeath)*(i-1)+1; |
continue; |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
} |
for (j=2; j<= nlstate+ndeath ; j ++) |
|
fprintf(ficgp,"+$%d",k+l+j-1); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt); |
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
} /* nlstate */ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
fprintf(ficgp,"\nset out\n"); |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
} /* end cpt state*/ |
k=3; |
} /* end covariate */ |
for (i=1; i<= nlstate ; i ++){ |
|
if(i==1){ |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
|
}else{ |
|
fprintf(ficgp,", '' "); |
|
} |
|
l=(nlstate+ndeath)*(i-1)+1; |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
|
for (j=2; j<= nlstate+ndeath ; j ++) |
|
fprintf(ficgp,"+$%d",k+l+j-1); |
|
fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt); |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
|
} /* end cpt state*/ |
|
} /* end nres */ |
|
} /* end covariate k1 */ |
|
|
|
/* 5eme */ |
/* Survival functions (period) from state i in state j by final state j */ |
/* Survival functions (period) from state i in state j by final state j */ |
for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */ |
for (k1=1; k1<= m ; k1++){ /* For each covariate combination if any */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
if(m != 1 && TKresult[nres]!= k1) |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
continue; |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
strcpy(gplotlabel,"("); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
vlv= nbcode[Tvaraff[lv]][lv]; |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
fprintf(ficgp," V%d=%d ",k,vlv); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
} |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
fprintf(ficgp,"\n#\n"); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1); |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
set ter svg size 640, 480\n\ |
} |
unset log y\n\ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
k=3; |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
} |
if(j==1) |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"\n#\n"); |
else |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,", '' "); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
l=(nlstate+ndeath)*(cpt-1) +j; |
continue; |
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l); |
} |
/* for (i=2; i<= nlstate+ndeath ; i ++) */ |
|
/* fprintf(ficgp,"+$%d",k+l+i-1); */ |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j); |
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
} /* nlstate */ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
fprintf(ficgp,", '' "); |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1); |
k=3; |
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
l=(nlstate+ndeath)*(cpt-1) +j; |
if(j==1) |
if(j < nlstate) |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"$%d +",k+l); |
else |
else |
fprintf(ficgp,", '' "); |
fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt); |
l=(nlstate+ndeath)*(cpt-1) +j; |
} |
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l); |
fprintf(ficgp,"\nset out\n"); |
/* for (i=2; i<= nlstate+ndeath ; i ++) */ |
} /* end cpt state*/ |
/* fprintf(ficgp,"+$%d",k+l+i-1); */ |
} /* end covariate */ |
fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j); |
|
} /* nlstate */ |
|
fprintf(ficgp,", '' "); |
|
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1); |
|
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
|
l=(nlstate+ndeath)*(cpt-1) +j; |
|
if(j < nlstate) |
|
fprintf(ficgp,"$%d +",k+l); |
|
else |
|
fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt); |
|
} |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
} /* end nres */ |
|
|
|
/* 6eme */ |
/* CV preval stable (period) for each covariate */ |
/* CV preval stable (period) for each covariate */ |
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */ |
|
strcpy(gplotlabel,"("); |
|
fprintf(ficgp,"\n#\n#\n#CV preval stable (forward): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
vlv= nbcode[Tvaraff[lv]][lv]; |
vlv= nbcode[Tvaraff[k]][lv]; |
fprintf(ficgp," V%d=%d ",k,vlv); |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
} |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
set ter svg size 640, 480\n\ |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
unset log y\n\ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; /* Offset */ |
k=3; /* Offset */ |
for (i=1; i<= nlstate ; i ++){ |
for (i=1; i<= nlstate ; i ++){ /* State of origin */ |
if(i==1) |
if(i==1) |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
else |
else |
fprintf(ficgp,", '' "); |
fprintf(ficgp,", '' "); |
l=(nlstate+ndeath)*(i-1)+1; |
l=(nlstate+ndeath)*(i-1)+1; /* 1, 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */ |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
for (j=2; j<= nlstate ; j ++) |
for (j=2; j<= nlstate ; j ++) |
fprintf(ficgp,"+$%d",k+l+j-1); |
fprintf(ficgp,"+$%d",k+l+j-1); |
fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt); |
fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt); |
} /* nlstate */ |
} /* nlstate */ |
fprintf(ficgp,"\nset out\n"); |
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
|
|
|
|
|
/* 7eme */ |
|
if(prevbcast == 1){ |
|
/* CV backward prevalence for each covariate */ |
|
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */ |
|
strcpy(gplotlabel,"("); |
|
fprintf(ficgp,"\n#\n#\n#CV Backward stable prevalence: 'pijb' files, covariatecombination#=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
|
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; /* Offset */ |
|
for (i=1; i<= nlstate ; i ++){ /* State of arrival */ |
|
if(i==1) |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_")); |
|
else |
|
fprintf(ficgp,", '' "); |
|
/* l=(nlstate+ndeath)*(i-1)+1; */ |
|
l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */ |
|
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */ |
|
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */ |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */ |
|
/* for (j=2; j<= nlstate ; j ++) */ |
|
/* fprintf(ficgp,"+$%d",k+l+j-1); */ |
|
/* /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */ |
|
fprintf(ficgp,") t \"bprev(%d,%d)\" w l",cpt,i); |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
} /* End if prevbcast */ |
|
|
|
/* 8eme */ |
if(prevfcast==1){ |
if(prevfcast==1){ |
/* Projection from cross-sectional to stable (period) for each covariate */ |
/* Projection from cross-sectional to forward stable (period) prevalence for each covariate */ |
|
|
|
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
strcpy(gplotlabel,"("); |
|
fprintf(ficgp,"\n#\n#\n#Projection of prevalence to forward stable prevalence (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n "); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
|
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
|
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
/* for (i=1; i<= nlstate+1 ; i ++){ /\* nlstate +1 p11 p21 p.1 *\/ */ |
|
istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */ |
|
/*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */ |
|
for (i=istart; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
if(i==istart){ |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_")); |
|
}else{ |
|
fprintf(ficgp,",\\\n '' "); |
|
} |
|
if(cptcoveff ==0){ /* No covariate */ |
|
ioffset=2; /* Age is in 2 */ |
|
/*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
|
/*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
|
fprintf(ficgp," u %d:(", ioffset); |
|
if(i==nlstate+1){ |
|
fprintf(ficgp," $%d/(1.-$%d)):1 t 'pw.%d' with line lc variable ", \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
|
fprintf(ficgp,",\\\n '' "); |
|
fprintf(ficgp," u %d:(",ioffset); |
|
fprintf(ficgp," (($1-$2) == %d ) ? $%d/(1.-$%d) : 1/0):1 with labels center not ", \ |
|
offyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate ); |
|
}else |
|
fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
|
}else{ /* more than 2 covariates */ |
|
ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
iyearc=ioffset-1; |
|
iagec=ioffset; |
|
fprintf(ficgp," u %d:(",ioffset); |
|
kl=0; |
|
strcpy(gplotcondition,"("); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */ |
|
kl++; |
|
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); |
|
kl++; |
|
if(k <cptcoveff && cptcoveff>1) |
|
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
|
} |
|
strcpy(gplotcondition+strlen(gplotcondition),")"); |
|
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
|
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
|
if(i==nlstate+1){ |
|
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0):%d t 'p.%d' with line lc variable", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,iyearc, cpt ); |
|
fprintf(ficgp,",\\\n '' "); |
|
fprintf(ficgp," u %d:(",iagec); |
|
fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d/(1.-$%d) : 1/0):%d with labels center not ", gplotcondition, \ |
|
iyearc, iagec, offyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate, iyearc ); |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/ |
|
}else{ |
|
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
|
} |
|
} /* end if covariate */ |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
} /* End if prevfcast */ |
|
|
|
if(prevbcast==1){ |
|
/* Back projection from cross-sectional to stable (mixed) for each covariate */ |
|
|
|
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
if(m != 1 && TKresult[nres]!= k1) |
|
continue; |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); |
strcpy(gplotlabel,"("); |
|
fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
vlv= nbcode[Tvaraff[lv]][lv]; |
vlv= nbcode[Tvaraff[k]][lv]; |
fprintf(ficgp," V%d=%d ",k,vlv); |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
} |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n "); |
fprintf(ficgp,"# hbijx=backprobability over h years, hb.jx is weighted by observed prev at destination state\n "); |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
set ter svg size 640, 480\n\ |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
unset log y\n\ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
/* for (i=1; i<= nlstate+1 ; i ++){ /\* nlstate +1 p11 p21 p.1 *\/ */ |
for (i=1; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */ |
|
/*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */ |
|
for (i=istart; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
if(i==1){ |
if(i==istart){ |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_")); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"FB_")); |
}else{ |
}else{ |
fprintf(ficgp,",\\\n '' "); |
fprintf(ficgp,",\\\n '' "); |
} |
} |
if(cptcoveff ==0){ /* No covariate */ |
if(cptcoveff ==0){ /* No covariate */ |
fprintf(ficgp," u 2:("); /* Age is in 2 */ |
ioffset=2; /* Age is in 2 */ |
/*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
/*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
if(i==nlstate+1) |
/*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
fprintf(ficgp," $%d/(1.-$%d)) t 'p.%d' with line ", \ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
2+(cpt-1)*(nlstate+1)+1+(i-1), 2+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
fprintf(ficgp," u %d:(", ioffset); |
else |
if(i==nlstate+1){ |
fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \ |
fprintf(ficgp," $%d/(1.-$%d)):1 t 'bw%d' with line lc variable ", \ |
2+(cpt-1)*(nlstate+1)+1+(i-1), 2+1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
}else{ |
fprintf(ficgp,",\\\n '' "); |
fprintf(ficgp,"u 6:(("); /* Age is in 6 */ |
fprintf(ficgp," u %d:(",ioffset); |
|
fprintf(ficgp," (($1-$2) == %d ) ? $%d : 1/0):1 with labels center not ", \ |
|
offbyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1) ); |
|
}else |
|
fprintf(ficgp," $%d/(1.-$%d)) t 'b%d%d' with line ", \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt,i ); |
|
}else{ /* more than 2 covariates */ |
|
ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/ |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
iyearc=ioffset-1; |
|
iagec=ioffset; |
|
fprintf(ficgp," u %d:(",ioffset); |
kl=0; |
kl=0; |
for (k=1; k<=cptcoveff; k++){ /* For each covariate */ |
strcpy(gplotcondition,"("); |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
vlv= nbcode[Tvaraff[lv]][lv]; |
vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */ |
kl++; |
kl++; |
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); |
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
kl++; |
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
if(k <cptcoveff && cptcoveff>1) |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
if(k==cptcoveff) |
} |
if(i==nlstate+1) |
strcpy(gplotcondition+strlen(gplotcondition),")"); |
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \ |
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
6+(cpt-1)*(nlstate+1)+1+(i-1), 6+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
else |
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \ |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
6+(cpt-1)*(nlstate+1)+1+(i-1), 6+1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
if(i==nlstate+1){ |
else{ |
fprintf(ficgp,"%s ? $%d : 1/0):%d t 'bw%d' with line lc variable", gplotcondition, \ |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv]); |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1),iyearc,cpt ); |
kl++; |
fprintf(ficgp,",\\\n '' "); |
} |
fprintf(ficgp," u %d:(",iagec); |
} /* end covariate */ |
/* fprintf(ficgp,"%s && (($5-$6) == %d ) ? $%d/(1.-$%d) : 1/0):5 with labels center not ", gplotcondition, \ */ |
|
fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d : 1/0):%d with labels center not ", gplotcondition, \ |
|
iyearc,iagec,offbyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), iyearc ); |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/ |
|
}else{ |
|
/* fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ */ |
|
fprintf(ficgp,"%s ? $%d : 1/0) t 'b%d%d' with line ", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), cpt,i ); |
|
} |
} /* end if covariate */ |
} /* end if covariate */ |
} /* nlstate */ |
} /* nlstate */ |
fprintf(ficgp,"\nset out\n"); |
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
} /* End if prevfcast */ |
} /* End if prevbcast */ |
|
|
|
|
/* proba elementaires */ |
/* 9eme writing MLE parameters */ |
fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n"); |
fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n"); |
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
fprintf(ficgp,"# initial state %d\n",i); |
fprintf(ficgp,"# initial state %d\n",i); |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
Line 5516 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 8246 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
fprintf(ficgp,"\n"); |
fprintf(ficgp,"\n"); |
} |
} |
} |
} |
} |
} |
fprintf(ficgp,"##############\n#\n"); |
fprintf(ficgp,"##############\n#\n"); |
|
|
/*goto avoid;*/ |
/*goto avoid;*/ |
fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n"); |
/* 10eme Graphics of probabilities or incidences using written MLE parameters */ |
|
fprintf(ficgp,"\n##############\n#10eme Graphics of probabilities or incidences\n#############\n"); |
fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n"); |
fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n"); |
fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n"); |
fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n"); |
fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n"); |
fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n"); |
Line 5534 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 8265 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
fprintf(ficgp,"# +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n"); |
fprintf(ficgp,"# +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n"); |
fprintf(ficgp,"# +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n"); |
fprintf(ficgp,"# +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n"); |
fprintf(ficgp,"#\n"); |
fprintf(ficgp,"#\n"); |
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
fprintf(ficgp,"# ng=%d\n",ng); |
fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n"); |
fprintf(ficgp,"# jk=1 to 2^%d=%d\n",cptcoveff,m); |
fprintf(ficgp,"#model=%s \n",model); |
for(jk=1; jk <=m; jk++) { |
fprintf(ficgp,"# Type of graphic ng=%d\n",ng); |
fprintf(ficgp,"# jk=%d\n",jk); |
fprintf(ficgp,"# k1=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */ |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng); |
for(k1=1; k1 <=m; k1++) /* For each combination of covariate */ |
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if (ng==1){ |
if(m != 1 && TKresult[nres]!= k1) |
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
continue; |
fprintf(ficgp,"\nunset log y"); |
fprintf(ficgp,"\n\n# Combination of dummy k1=%d which is ",k1); |
}else if (ng==2){ |
strcpy(gplotlabel,"("); |
fprintf(ficgp,"\nset ylabel \"Probability\"\n"); |
/*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*/ |
fprintf(ficgp,"\nset log y"); |
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
}else if (ng==3){ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n"); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
fprintf(ficgp,"\nset log y"); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
}else |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
fprintf(ficgp,"\nunset title "); |
vlv= nbcode[Tvaraff[k]][lv]; |
fprintf(ficgp,"\nplot [%.f:%.f] ",ageminpar,agemaxpar); |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
i=1; |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
for(k2=1; k2<=nlstate; k2++) { |
} |
k3=i; |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
for(k=1; k<=(nlstate+ndeath); k++) { |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
if (k != k2){ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
switch( ng) { |
} |
case 1: |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
if(nagesqr==0) |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp," p%d+p%d*x",i,i+1); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres); |
else /* nagesqr =1 */ |
fprintf(ficgp,"\nset key outside "); |
fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr); |
/* fprintf(ficgp,"\nset label \"%s\" at graph 1.2,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); */ |
break; |
fprintf(ficgp,"\nset title \"%s\" font \"Helvetica,12\"\n",gplotlabel); |
case 2: /* ng=2 */ |
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
if(nagesqr==0) |
if (ng==1){ |
fprintf(ficgp," exp(p%d+p%d*x",i,i+1); |
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
else /* nagesqr =1 */ |
fprintf(ficgp,"\nunset log y"); |
fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr); |
}else if (ng==2){ |
break; |
fprintf(ficgp,"\nset ylabel \"Probability\"\n"); |
case 3: |
fprintf(ficgp,"\nset log y"); |
if(nagesqr==0) |
}else if (ng==3){ |
fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1); |
fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n"); |
else /* nagesqr =1 */ |
fprintf(ficgp,"\nset log y"); |
fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr); |
}else |
break; |
fprintf(ficgp,"\nunset title "); |
} |
fprintf(ficgp,"\nplot [%.f:%.f] ",ageminpar,agemaxpar); |
ij=1;/* To be checked else nbcode[0][0] wrong */ |
i=1; |
for(j=3; j <=ncovmodel-nagesqr; j++) { |
for(k2=1; k2<=nlstate; k2++) { |
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
k3=i; |
if(ij <=cptcovage) { /* Bug valgrind */ |
for(k=1; k<=(nlstate+ndeath); k++) { |
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
if (k != k2){ |
fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
switch( ng) { |
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
case 1: |
ij++; |
if(nagesqr==0) |
} |
fprintf(ficgp," p%d+p%d*x",i,i+1); |
} |
else /* nagesqr =1 */ |
else |
fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr); |
fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
break; |
} |
case 2: /* ng=2 */ |
if(ng != 1){ |
if(nagesqr==0) |
fprintf(ficgp,")/(1"); |
fprintf(ficgp," exp(p%d+p%d*x",i,i+1); |
|
else /* nagesqr =1 */ |
for(k1=1; k1 <=nlstate; k1++){ |
fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr); |
if(nagesqr==0) |
break; |
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); |
case 3: |
else /* nagesqr =1 */ |
if(nagesqr==0) |
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr); |
fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1); |
|
else /* nagesqr =1 */ |
ij=1; |
fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr); |
for(j=3; j <=ncovmodel-nagesqr; j++){ |
break; |
if(ij <=cptcovage) { /* Bug valgrind */ |
} |
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
ij=1;/* To be checked else nbcode[0][0] wrong */ |
fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
ijp=1; /* product no age */ |
/* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
/* for(j=3; j <=ncovmodel-nagesqr; j++) { */ |
|
for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */ |
|
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
|
if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */ |
|
if(j==Tage[ij]) { /* Product by age To be looked at!!*/ |
|
if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */ |
|
if(DummyV[j]==0){ |
|
fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; |
|
}else{ /* quantitative */ |
|
fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
} |
|
ij++; |
|
} |
|
} |
|
}else if(cptcovprod >0){ |
|
if(j==Tprod[ijp]) { /* */ |
|
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
|
if(ijp <=cptcovprod) { /* Product */ |
|
if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */ |
|
if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */ |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */ |
|
fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); |
|
}else{ /* Vn is dummy and Vm is quanti */ |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
} |
|
}else{ /* Vn*Vm Vn is quanti */ |
|
if(DummyV[Tvard[ijp][2]]==0){ |
|
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); |
|
}else{ /* Both quanti */ |
|
fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
} |
|
} |
|
ijp++; |
|
} |
|
} /* end Tprod */ |
|
} else{ /* simple covariate */ |
|
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */ |
|
if(Dummy[j]==0){ |
|
fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /* */ |
|
}else{ /* quantitative */ |
|
fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
} |
|
} /* end simple */ |
|
} /* end j */ |
|
}else{ |
|
i=i-ncovmodel; |
|
if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */ |
|
fprintf(ficgp," (1."); |
|
} |
|
|
|
if(ng != 1){ |
|
fprintf(ficgp,")/(1"); |
|
|
|
for(cpt=1; cpt <=nlstate; cpt++){ |
|
if(nagesqr==0) |
|
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1); |
|
else /* nagesqr =1 */ |
|
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr); |
|
|
|
ij=1; |
|
for(j=3; j <=ncovmodel-nagesqr; j++){ |
|
if(cptcovage >0){ |
|
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
|
if(ij <=cptcovage) { /* Bug valgrind */ |
|
fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]); |
|
/* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
ij++; |
ij++; |
} |
} |
} |
} |
else |
}else |
fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/* Valgrind bug nbcode */ |
} |
} |
fprintf(ficgp,")"); |
fprintf(ficgp,")"); |
} |
} |
fprintf(ficgp,")"); |
fprintf(ficgp,")"); |
if(ng ==2) |
if(ng ==2) |
fprintf(ficgp," t \"p%d%d\" ", k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"p%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
else /* ng= 3 */ |
else /* ng= 3 */ |
fprintf(ficgp," t \"i%d%d\" ", k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"i%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
}else{ /* end ng <> 1 */ |
}else{ /* end ng <> 1 */ |
fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k); |
if( k !=k2) /* logit p11 is hard to draw */ |
} |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"logit(p%d%d)\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,","); |
} |
i=i+ncovmodel; |
if ((k+k2)!= (nlstate*2+ndeath) && ng != 1) |
} |
fprintf(ficgp,","); |
} /* end k */ |
if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath)) |
} /* end k2 */ |
fprintf(ficgp,","); |
fprintf(ficgp,"\n set out\n"); |
i=i+ncovmodel; |
} /* end jk */ |
} /* end k */ |
} /* end ng */ |
} /* end k2 */ |
/* avoid: */ |
/* fprintf(ficgp,"\n set out; unset label;set key default;\n"); */ |
fflush(ficgp); |
fprintf(ficgp,"\n set out; unset title;set key default;\n"); |
|
} /* end k1 */ |
|
} /* end ng */ |
|
/* avoid: */ |
|
fflush(ficgp); |
} /* end gnuplot */ |
} /* end gnuplot */ |
|
|
|
|
/*************** Moving average **************/ |
/*************** Moving average **************/ |
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){ |
/* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */ |
|
int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){ |
|
|
|
int i, cpt, cptcod; |
|
int modcovmax =1; |
|
int mobilavrange, mob; |
|
int iage=0; |
|
int firstA1=0, firstA2=0; |
|
|
|
double sum=0., sumr=0.; |
|
double age; |
|
double *sumnewp, *sumnewm, *sumnewmr; |
|
double *agemingood, *agemaxgood; |
|
double *agemingoodr, *agemaxgoodr; |
|
|
|
|
|
/* modcovmax=2*cptcoveff; Max number of modalities. We suppose */ |
|
/* a covariate has 2 modalities, should be equal to ncovcombmax */ |
|
|
|
sumnewp = vector(1,ncovcombmax); |
|
sumnewm = vector(1,ncovcombmax); |
|
sumnewmr = vector(1,ncovcombmax); |
|
agemingood = vector(1,ncovcombmax); |
|
agemingoodr = vector(1,ncovcombmax); |
|
agemaxgood = vector(1,ncovcombmax); |
|
agemaxgoodr = vector(1,ncovcombmax); |
|
|
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
|
sumnewm[cptcod]=0.; sumnewmr[cptcod]=0.; |
|
sumnewp[cptcod]=0.; |
|
agemingood[cptcod]=0, agemingoodr[cptcod]=0; |
|
agemaxgood[cptcod]=0, agemaxgoodr[cptcod]=0; |
|
} |
|
if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */ |
|
|
|
if(mobilav==-1 || mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ |
|
if(mobilav==1 || mobilav==-1) mobilavrange=5; /* default */ |
|
else mobilavrange=mobilav; |
|
for (age=bage; age<=fage; age++) |
|
for (i=1; i<=nlstate;i++) |
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++) |
|
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
|
/* We keep the original values on the extreme ages bage, fage and for |
|
fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2 |
|
we use a 5 terms etc. until the borders are no more concerned. |
|
*/ |
|
for (mob=3;mob <=mobilavrange;mob=mob+2){ |
|
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ |
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
|
sumnewm[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; |
|
for (cpt=1;cpt<=(mob-1)/2;cpt++){ |
|
mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; |
|
mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; |
|
} |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
} /* end i */ |
|
if(sumnewm[cptcod] >1.e-3) mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/sumnewm[cptcod]; /* Rescaling to sum one */ |
|
} /* end cptcod */ |
|
}/* end age */ |
|
}/* end mob */ |
|
}else{ |
|
printf("Error internal in movingaverage, mobilav=%d.\n",mobilav); |
|
return -1; |
|
} |
|
|
int i, cpt, cptcod; |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ /* for each combination */ |
int modcovmax =1; |
/* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */ |
int mobilavrange, mob; |
if(invalidvarcomb[cptcod]){ |
double age; |
printf("\nCombination (%d) ignored because no cases \n",cptcod); |
|
continue; |
modcovmax=2*cptcoveff;/* Max number of modalities. We suppose |
} |
a covariate has 2 modalities */ |
|
if (cptcovn<1) modcovmax=1; /* At least 1 pass */ |
for (age=fage-(mob-1)/2; age>=bage+(mob-1)/2; age--){ /*looking for the youngest and oldest good age */ |
|
sumnewm[cptcod]=0.; |
if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ |
sumnewmr[cptcod]=0.; |
if(mobilav==1) mobilavrange=5; /* default */ |
for (i=1; i<=nlstate;i++){ |
else mobilavrange=mobilav; |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
for (age=bage; age<=fage; age++) |
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
for (i=1; i<=nlstate;i++) |
} |
for (cptcod=1;cptcod<=modcovmax;cptcod++) |
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */ |
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
agemingoodr[cptcod]=age; |
/* We keep the original values on the extreme ages bage, fage and for |
} |
fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2 |
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
we use a 5 terms etc. until the borders are no more concerned. |
agemingood[cptcod]=age; |
*/ |
} |
for (mob=3;mob <=mobilavrange;mob=mob+2){ |
} /* age */ |
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ |
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ /*looking for the youngest and oldest good age */ |
for (i=1; i<=nlstate;i++){ |
sumnewm[cptcod]=0.; |
for (cptcod=1;cptcod<=modcovmax;cptcod++){ |
sumnewmr[cptcod]=0.; |
mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; |
for (i=1; i<=nlstate;i++){ |
for (cpt=1;cpt<=(mob-1)/2;cpt++){ |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; |
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; |
} |
} |
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */ |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; |
agemaxgoodr[cptcod]=age; |
} |
} |
} |
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
}/* end age */ |
agemaxgood[cptcod]=age; |
}/* end mob */ |
} |
}else return -1; |
} /* age */ |
return 0; |
/* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */ |
}/* End movingaverage */ |
/* but they will change */ |
|
firstA1=0;firstA2=0; |
|
for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */ |
|
sumnewm[cptcod]=0.; |
|
sumnewmr[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
|
} |
|
if(mobilav==-1){ /* Forcing raw ages if good else agemingood */ |
|
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */ |
|
agemaxgoodr[cptcod]=age; /* age min */ |
|
for (i=1; i<=nlstate;i++) |
|
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
|
}else{ /* bad we change the value with the values of good ages */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgoodr[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}else{ |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemaxgood[cptcod]=age; |
|
}else{ /* bad we change the value with the values of good ages */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}/* end else */ |
|
sum=0.;sumr=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)age][i][cptcod]; |
|
sumr+=probs[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
if(!firstA1){ |
|
firstA1=1; |
|
printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage); |
|
} |
|
fprintf(ficlog,"Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage); |
|
} /* end bad */ |
|
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
|
if(fabs(sumr - 1.) > 1.e-3) { /* bad */ |
|
if(!firstA2){ |
|
firstA2=1; |
|
printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage); |
|
} |
|
fprintf(ficlog,"Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage); |
|
} /* end bad */ |
|
}/* age */ |
|
|
|
for (age=bage+(mob-1)/2; age<=fage; age++){/* From youngest, finding the oldest wrong */ |
|
sumnewm[cptcod]=0.; |
|
sumnewmr[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
|
} |
|
if(mobilav==-1){ /* Forcing raw ages if good else agemingood */ |
|
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemingoodr[cptcod]=age; |
|
for (i=1; i<=nlstate;i++) |
|
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
|
}else{ /* bad we change the value with the values of good ages */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingoodr[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}else{ |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemingood[cptcod]=age; |
|
}else{ /* bad */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}/* end else */ |
|
sum=0.;sumr=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)age][i][cptcod]; |
|
sumr+=mobaverage[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
printf("Moving average B1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you decrease fage=%d?\n",cptcod, sum, (int) age, (int)fage); |
|
} /* end bad */ |
|
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
|
if(fabs(sumr - 1.) > 1.e-3) { /* bad */ |
|
printf("Moving average B2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase fage=%d\n",cptcod,sumr, (int)age, (int)fage); |
|
} /* end bad */ |
|
}/* age */ |
|
|
|
|
|
for (age=bage; age<=fage; age++){ |
|
/* printf("%d %d ", cptcod, (int)age); */ |
|
sumnewp[cptcod]=0.; |
|
sumnewm[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewp[cptcod]+=probs[(int)age][i][cptcod]; |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
/* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */ |
|
} |
|
/* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */ |
|
} |
|
/* printf("\n"); */ |
|
/* } */ |
|
|
|
/* brutal averaging */ |
|
/* for (i=1; i<=nlstate;i++){ */ |
|
/* for (age=1; age<=bage; age++){ */ |
|
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
|
/* /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */ |
|
/* } */ |
|
/* for (age=fage; age<=AGESUP; age++){ */ |
|
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; */ |
|
/* /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */ |
|
/* } */ |
|
/* } /\* end i status *\/ */ |
|
/* for (i=nlstate+1; i<=nlstate+ndeath;i++){ */ |
|
/* for (age=1; age<=AGESUP; age++){ */ |
|
/* /\*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*\/ */ |
|
/* mobaverage[(int)age][i][cptcod]=0.; */ |
|
/* } */ |
|
/* } */ |
|
}/* end cptcod */ |
|
free_vector(agemaxgoodr,1, ncovcombmax); |
|
free_vector(agemaxgood,1, ncovcombmax); |
|
free_vector(agemingood,1, ncovcombmax); |
|
free_vector(agemingoodr,1, ncovcombmax); |
|
free_vector(sumnewmr,1, ncovcombmax); |
|
free_vector(sumnewm,1, ncovcombmax); |
|
free_vector(sumnewp,1, ncovcombmax); |
|
return 0; |
|
}/* End movingaverage */ |
|
|
|
|
|
|
/************** Forecasting ******************/ |
/************** Forecasting ******************/ |
void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ |
/* void prevforecast(char fileres[], double dateintmean, double anprojd, double mprojd, double jprojd, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anprojf, double p[], int cptcoveff)*/ |
/* proj1, year, month, day of starting projection |
void prevforecast(char fileres[], double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){ |
|
/* dateintemean, mean date of interviews |
|
dateprojd, year, month, day of starting projection |
|
dateprojf date of end of projection;year of end of projection (same day and month as proj1). |
agemin, agemax range of age |
agemin, agemax range of age |
dateprev1 dateprev2 range of dates during which prevalence is computed |
dateprev1 dateprev2 range of dates during which prevalence is computed |
anproj2 year of en of projection (same day and month as proj1). |
|
*/ |
*/ |
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; |
/* double anprojd, mprojd, jprojd; */ |
|
/* double anprojf, mprojf, jprojf; */ |
|
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0; |
double agec; /* generic age */ |
double agec; /* generic age */ |
double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
double agelim, ppij, yp,yp1,yp2; |
double *popeffectif,*popcount; |
double *popeffectif,*popcount; |
double ***p3mat; |
double ***p3mat; |
double ***mobaverage; |
/* double ***mobaverage; */ |
char fileresf[FILENAMELENGTH]; |
char fileresf[FILENAMELENGTH]; |
|
|
agelim=AGESUP; |
agelim=AGESUP; |
Line 5699 void prevforecast(char fileres[], double
|
Line 8704 void prevforecast(char fileres[], double
|
*/ |
*/ |
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */ |
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */ |
/* firstpass, lastpass, stepm, weightopt, model); */ |
/* firstpass, lastpass, stepm, weightopt, model); */ |
prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
|
|
|
strcpy(fileresf,"F_"); |
strcpy(fileresf,"F_"); |
strcat(fileresf,fileresu); |
strcat(fileresf,fileresu); |
Line 5707 void prevforecast(char fileres[], double
|
Line 8711 void prevforecast(char fileres[], double
|
printf("Problem with forecast resultfile: %s\n", fileresf); |
printf("Problem with forecast resultfile: %s\n", fileresf); |
fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); |
fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); |
} |
} |
printf("Computing forecasting: result on file '%s', please wait... \n", fileresf); |
printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf); |
fprintf(ficlog,"Computing forecasting: result on file '%s', please wait... \n", fileresf); |
fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf); |
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
|
|
if (mobilav!=0) { |
|
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
|
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
|
} |
|
} |
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
stepsize=(int) (stepm+YEARM-1)/YEARM; |
if (stepm<=12) stepsize=1; |
if (stepm<=12) stepsize=1; |
if(estepm < stepm){ |
if(estepm < stepm){ |
printf ("Problem %d lower than %d\n",estepm, stepm); |
printf ("Problem %d lower than %d\n",estepm, stepm); |
} |
} |
else hstepm=estepm; |
else{ |
|
hstepm=estepm; |
|
} |
|
if(estepm > stepm){ /* Yes every two year */ |
|
stepsize=2; |
|
} |
|
hstepm=hstepm/stepm; |
|
|
hstepm=hstepm/stepm; |
|
yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and |
/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */ |
fractional in yp1 */ |
/* fractional in yp1 *\/ */ |
anprojmean=yp; |
/* aintmean=yp; */ |
yp2=modf((yp1*12),&yp); |
/* yp2=modf((yp1*12),&yp); */ |
mprojmean=yp; |
/* mintmean=yp; */ |
yp1=modf((yp2*30.5),&yp); |
/* yp1=modf((yp2*30.5),&yp); */ |
jprojmean=yp; |
/* jintmean=yp; */ |
if(jprojmean==0) jprojmean=1; |
/* if(jintmean==0) jintmean=1; */ |
if(mprojmean==0) jprojmean=1; |
/* if(mintmean==0) mintmean=1; */ |
|
|
i1=cptcoveff; |
|
|
/* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ |
|
/* date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); */ |
|
/* date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); */ |
|
i1=pow(2,cptcoveff); |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); |
|
|
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
|
|
/* if (h==(int)(YEARM*yearp)){ */ |
/* if (h==(int)(YEARM*yearp)){ */ |
for(cptcov=1, k=0;cptcov<=i1;cptcov++){ |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
for(k=1; k<=i1;k++){ |
k=k+1; |
if(i1 != 1 && TKresult[nres]!= k) |
fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#"); |
continue; |
for(j=1;j<=cptcoveff;j++) { |
if(invalidvarcomb[k]){ |
fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
printf("\nCombination (%d) projection ignored because no cases \n",k); |
} |
continue; |
fprintf(ficresf," yearproj age"); |
} |
for(j=1; j<=nlstate+ndeath;j++){ |
fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#"); |
for(i=1; i<=nlstate;i++) |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficresf," p%d%d",i,j); |
fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresf," p.%d",j); |
} |
} |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { |
fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
fprintf(ficresf," yearproj age"); |
|
for(j=1; j<=nlstate+ndeath;j++){ |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresf," p%d%d",i,j); |
|
fprintf(ficresf," wp.%d",j); |
|
} |
|
for (yearp=0; yearp<=(anprojf-anprojd);yearp +=stepsize) { |
|
fprintf(ficresf,"\n"); |
|
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jprojd,mprojd,anprojd+yearp); |
|
/* for (agec=fage; agec>=(ageminpar-1); agec--){ */ |
|
for (agec=fage; agec>=(bage); agec--){ |
|
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
|
nhstepm = nhstepm/hstepm; |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
/* We compute pii at age agec over nhstepm);*/ |
|
hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres); |
|
/* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */ |
|
for (h=0; h<=nhstepm; h++){ |
|
if (h*hstepm/YEARM*stepm ==yearp) { |
|
break; |
|
} |
|
} |
fprintf(ficresf,"\n"); |
fprintf(ficresf,"\n"); |
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); |
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
for (agec=fage; agec>=(ageminpar-1); agec--){ |
fprintf(ficresf,"%.f %.f ",anprojd+yearp,agec+h*hstepm/YEARM*stepm); |
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
|
nhstepm = nhstepm/hstepm; |
for(j=1; j<=nlstate+ndeath;j++) { |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
ppij=0.; |
oldm=oldms;savm=savms; |
for(i=1; i<=nlstate;i++) { |
hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k); |
if (mobilav>=1) |
|
ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k]; |
|
else { /* even if mobilav==-1 we use mobaverage, probs may not sums to 1 */ |
|
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; |
|
} |
|
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
|
} /* end i */ |
|
fprintf(ficresf," %.3f", ppij); |
|
}/* end j */ |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* end agec */ |
|
/* diffyear=(int) anproj1+yearp-ageminpar-1; */ |
|
/*printf("Prevforecast %d+%d-%d=diffyear=%d\n",(int) anproj1, (int)yearp,(int)ageminpar,(int) anproj1-(int)ageminpar);*/ |
|
} /* end yearp */ |
|
} /* end k */ |
|
|
for (h=0; h<=nhstepm; h++){ |
|
if (h*hstepm/YEARM*stepm ==yearp) { |
|
fprintf(ficresf,"\n"); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); |
|
} |
|
for(j=1; j<=nlstate+ndeath;j++) { |
|
ppij=0.; |
|
for(i=1; i<=nlstate;i++) { |
|
if (mobilav==1) |
|
ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; |
|
else { |
|
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; |
|
} |
|
if (h*hstepm/YEARM*stepm== yearp) { |
|
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
|
} |
|
} /* end i */ |
|
if (h*hstepm/YEARM*stepm==yearp) { |
|
fprintf(ficresf," %.3f", ppij); |
|
} |
|
}/* end j */ |
|
} /* end h */ |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* end agec */ |
|
} /* end yearp */ |
|
} /* end cptcod */ |
|
} /* end cptcov */ |
|
|
|
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
|
|
fclose(ficresf); |
fclose(ficresf); |
printf("End of Computing forecasting \n"); |
printf("End of Computing forecasting \n"); |
fprintf(ficlog,"End of Computing forecasting\n"); |
fprintf(ficlog,"End of Computing forecasting\n"); |
|
|
} |
} |
|
|
/************** Forecasting *****not tested NB*************/ |
/************** Back Forecasting ******************/ |
void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ |
/* void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */ |
|
void prevbackforecast(char fileres[], double ***prevacurrent, double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){ |
int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; |
/* back1, year, month, day of starting backprojection |
int *popage; |
agemin, agemax range of age |
double calagedatem, agelim, kk1, kk2; |
dateprev1 dateprev2 range of dates during which prevalence is computed |
|
anback2 year of end of backprojection (same day and month as back1). |
|
prevacurrent and prev are prevalences. |
|
*/ |
|
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0; |
|
double agec; /* generic age */ |
|
double agelim, ppij, ppi, yp,yp1,yp2; /* ,jintmean,mintmean,aintmean;*/ |
double *popeffectif,*popcount; |
double *popeffectif,*popcount; |
double ***p3mat,***tabpop,***tabpopprev; |
double ***p3mat; |
double ***mobaverage; |
/* double ***mobaverage; */ |
char filerespop[FILENAMELENGTH]; |
char fileresfb[FILENAMELENGTH]; |
|
|
|
agelim=AGEINF; |
|
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
|
in each health status at the date of interview (if between dateprev1 and dateprev2). |
|
We still use firstpass and lastpass as another selection. |
|
*/ |
|
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */ |
|
/* firstpass, lastpass, stepm, weightopt, model); */ |
|
|
tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
/*Do we need to compute prevalence again?*/ |
tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
agelim=AGESUP; |
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; |
|
|
|
prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
strcpy(fileresfb,"FB_"); |
|
strcat(fileresfb,fileresu); |
|
if((ficresfb=fopen(fileresfb,"w"))==NULL) { |
|
printf("Problem with back forecast resultfile: %s\n", fileresfb); |
|
fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); |
|
} |
|
printf("\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb); |
|
fprintf(ficlog,"\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb); |
|
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
|
|
strcpy(filerespop,"POP_"); |
|
strcat(filerespop,fileresu); |
stepsize=(int) (stepm+YEARM-1)/YEARM; |
if((ficrespop=fopen(filerespop,"w"))==NULL) { |
if (stepm<=12) stepsize=1; |
printf("Problem with forecast resultfile: %s\n", filerespop); |
if(estepm < stepm){ |
fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); |
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else{ |
|
hstepm=estepm; |
} |
} |
printf("Computing forecasting: result on file '%s' \n", filerespop); |
if(estepm >= stepm){ /* Yes every two year */ |
fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); |
stepsize=2; |
|
} |
|
|
|
hstepm=hstepm/stepm; |
|
/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */ |
|
/* fractional in yp1 *\/ */ |
|
/* aintmean=yp; */ |
|
/* yp2=modf((yp1*12),&yp); */ |
|
/* mintmean=yp; */ |
|
/* yp1=modf((yp2*30.5),&yp); */ |
|
/* jintmean=yp; */ |
|
/* if(jintmean==0) jintmean=1; */ |
|
/* if(mintmean==0) jintmean=1; */ |
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); |
|
printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); |
|
|
|
fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); |
|
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k=1; k<=i1;k++){ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
|
if(invalidvarcomb[k]){ |
|
printf("\nCombination (%d) projection ignored because no cases \n",k); |
|
continue; |
|
} |
|
fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#"); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
fprintf(ficresfb," yearbproj age"); |
|
for(j=1; j<=nlstate+ndeath;j++){ |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresfb," b%d%d",i,j); |
|
fprintf(ficresfb," b.%d",j); |
|
} |
|
for (yearp=0; yearp>=(anbackf-anbackd);yearp -=stepsize) { |
|
/* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { */ |
|
fprintf(ficresfb,"\n"); |
|
fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jbackd,mbackd,anbackd+yearp); |
|
/* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */ |
|
/* for (agec=bage; agec<=agemax-1; agec++){ /\* testing *\/ */ |
|
for (agec=bage; agec<=fage; agec++){ /* testing */ |
|
/* We compute bij at age agec over nhstepm, nhstepm decreases when agec increases because of agemax;*/ |
|
nhstepm=(int) (agec-agelim) *YEARM/stepm;/* nhstepm=(int) rint((agec-agelim)*YEARM/stepm);*/ |
|
nhstepm = nhstepm/hstepm; |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
/* computes hbxij at age agec over 1 to nhstepm */ |
|
/* printf("####prevbackforecast debug agec=%.2f nhstepm=%d\n",agec, nhstepm);fflush(stdout); */ |
|
hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm, k, nres); |
|
/* hpxij(p3mat,nhstepm,agec,hstepm,p, nlstate,stepm,oldm,savm, k,nres); */ |
|
/* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */ |
|
/* printf(" agec=%.2f\n",agec);fflush(stdout); */ |
|
for (h=0; h<=nhstepm; h++){ |
|
if (h*hstepm/YEARM*stepm ==-yearp) { |
|
break; |
|
} |
|
} |
|
fprintf(ficresfb,"\n"); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficresfb,"%.f %.f ",anbackd+yearp,agec-h*hstepm/YEARM*stepm); |
|
for(i=1; i<=nlstate+ndeath;i++) { |
|
ppij=0.;ppi=0.; |
|
for(j=1; j<=nlstate;j++) { |
|
/* if (mobilav==1) */ |
|
ppij=ppij+p3mat[i][j][h]*prevacurrent[(int)agec][j][k]; |
|
ppi=ppi+prevacurrent[(int)agec][j][k]; |
|
/* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][j][k]; */ |
|
/* ppi=ppi+mobaverage[(int)agec][j][k]; */ |
|
/* else { */ |
|
/* ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; */ |
|
/* } */ |
|
fprintf(ficresfb," %.3f", p3mat[i][j][h]); |
|
} /* end j */ |
|
if(ppi <0.99){ |
|
printf("Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi); |
|
fprintf(ficlog,"Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi); |
|
} |
|
fprintf(ficresfb," %.3f", ppij); |
|
}/* end j */ |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* end agec */ |
|
} /* end yearp */ |
|
} /* end k */ |
|
|
|
/* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
|
|
fclose(ficresfb); |
|
printf("End of Computing Back forecasting \n"); |
|
fprintf(ficlog,"End of Computing Back forecasting\n"); |
|
|
|
} |
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
/* Variance of prevalence limit: varprlim */ |
|
void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){ |
|
/*------- Variance of forward period (stable) prevalence------*/ |
|
|
|
char fileresvpl[FILENAMELENGTH]; |
|
FILE *ficresvpl; |
|
double **oldm, **savm; |
|
double **varpl; /* Variances of prevalence limits by age */ |
|
int i1, k, nres, j ; |
|
|
|
strcpy(fileresvpl,"VPL_"); |
|
strcat(fileresvpl,fileresu); |
|
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
|
printf("Problem with variance of forward period (stable) prevalence resultfile: %s\n", fileresvpl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog); |
|
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
if (mobilav!=0) { |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
for(k=1; k<=i1;k++){ |
if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ |
if(i1 != 1 && TKresult[nres]!= k) |
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
continue; |
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
fprintf(ficresvpl,"\n#****** "); |
|
printf("\n#****** "); |
|
fprintf(ficlog,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
|
fprintf(ficresvpl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
|
|
varpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
varprevlim(fileresvpl, ficresvpl, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyearp, k, strstart, nres); |
|
free_matrix(varpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
} |
} |
} |
|
|
fclose(ficresvpl); |
|
printf("done variance-covariance of forward period prevalence\n");fflush(stdout); |
|
fprintf(ficlog,"done variance-covariance of forward period prevalence\n");fflush(ficlog); |
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
} |
if (stepm<=12) stepsize=1; |
/* Variance of back prevalence: varbprlim */ |
|
void varbprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **bprlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){ |
|
/*------- Variance of back (stable) prevalence------*/ |
|
|
|
char fileresvbl[FILENAMELENGTH]; |
|
FILE *ficresvbl; |
|
|
|
double **oldm, **savm; |
|
double **varbpl; /* Variances of back prevalence limits by age */ |
|
int i1, k, nres, j ; |
|
|
|
strcpy(fileresvbl,"VBL_"); |
|
strcat(fileresvbl,fileresu); |
|
if((ficresvbl=fopen(fileresvbl,"w"))==NULL) { |
|
printf("Problem with variance of back (stable) prevalence resultfile: %s\n", fileresvbl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(ficlog); |
|
|
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k=1; k<=i1;k++){ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
|
fprintf(ficresvbl,"\n#****** "); |
|
printf("\n#****** "); |
|
fprintf(ficlog,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
|
fprintf(ficresvbl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
|
|
varbpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
|
|
varbrevlim(fileresvbl, ficresvbl, varbpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, bprlim, ftolpl, mobilavproj, ncvyearp, k, strstart, nres); |
|
free_matrix(varbpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
|
|
fclose(ficresvbl); |
|
printf("done variance-covariance of back prevalence\n");fflush(stdout); |
|
fprintf(ficlog,"done variance-covariance of back prevalence\n");fflush(ficlog); |
|
|
|
} /* End of varbprlim */ |
|
|
|
/************** Forecasting *****not tested NB*************/ |
|
/* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */ |
|
|
agelim=AGESUP; |
/* int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */ |
|
/* int *popage; */ |
|
/* double calagedatem, agelim, kk1, kk2; */ |
|
/* double *popeffectif,*popcount; */ |
|
/* double ***p3mat,***tabpop,***tabpopprev; */ |
|
/* /\* double ***mobaverage; *\/ */ |
|
/* char filerespop[FILENAMELENGTH]; */ |
|
|
|
/* tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* agelim=AGESUP; */ |
|
/* calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */ |
|
|
|
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
|
|
|
|
|
/* strcpy(filerespop,"POP_"); */ |
|
/* strcat(filerespop,fileresu); */ |
|
/* if((ficrespop=fopen(filerespop,"w"))==NULL) { */ |
|
/* printf("Problem with forecast resultfile: %s\n", filerespop); */ |
|
/* fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */ |
|
/* } */ |
|
/* printf("Computing forecasting: result on file '%s' \n", filerespop); */ |
|
/* fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */ |
|
|
|
/* if (cptcoveff==0) ncodemax[cptcoveff]=1; */ |
|
|
|
/* /\* if (mobilav!=0) { *\/ */ |
|
/* /\* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
/* /\* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */ |
|
/* /\* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
|
/* /\* printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* } *\/ */ |
|
|
|
/* stepsize=(int) (stepm+YEARM-1)/YEARM; */ |
|
/* if (stepm<=12) stepsize=1; */ |
|
|
hstepm=1; |
/* agelim=AGESUP; */ |
hstepm=hstepm/stepm; |
|
|
|
if (popforecast==1) { |
/* hstepm=1; */ |
if((ficpop=fopen(popfile,"r"))==NULL) { |
/* hstepm=hstepm/stepm; */ |
printf("Problem with population file : %s\n",popfile);exit(0); |
|
fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); |
/* if (popforecast==1) { */ |
} |
/* if((ficpop=fopen(popfile,"r"))==NULL) { */ |
popage=ivector(0,AGESUP); |
/* printf("Problem with population file : %s\n",popfile);exit(0); */ |
popeffectif=vector(0,AGESUP); |
/* fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */ |
popcount=vector(0,AGESUP); |
/* } */ |
|
/* popage=ivector(0,AGESUP); */ |
|
/* popeffectif=vector(0,AGESUP); */ |
|
/* popcount=vector(0,AGESUP); */ |
|
|
i=1; |
/* i=1; */ |
while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; |
/* while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */ |
|
|
imx=i; |
/* imx=i; */ |
for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; |
/* for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */ |
} |
/* } */ |
|
|
for(cptcov=1,k=0;cptcov<=i2;cptcov++){ |
/* for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
/* for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */ |
k=k+1; |
/* k=k+1; */ |
fprintf(ficrespop,"\n#******"); |
/* fprintf(ficrespop,"\n#******"); */ |
for(j=1;j<=cptcoveff;j++) { |
/* for(j=1;j<=cptcoveff;j++) { */ |
fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
} |
/* } */ |
fprintf(ficrespop,"******\n"); |
/* fprintf(ficrespop,"******\n"); */ |
fprintf(ficrespop,"# Age"); |
/* fprintf(ficrespop,"# Age"); */ |
for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); |
/* for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */ |
if (popforecast==1) fprintf(ficrespop," [Population]"); |
/* if (popforecast==1) fprintf(ficrespop," [Population]"); */ |
|
|
for (cpt=0; cpt<=0;cpt++) { |
/* for (cpt=0; cpt<=0;cpt++) { */ |
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
/* fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); */ |
|
|
for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
/* for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ */ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); */ |
nhstepm = nhstepm/hstepm; |
/* nhstepm = nhstepm/hstepm; */ |
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
oldm=oldms;savm=savms; |
/* oldm=oldms;savm=savms; */ |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
/* hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
|
|
for (h=0; h<=nhstepm; h++){ |
|
if (h==(int) (calagedatem+YEARM*cpt)) { |
|
fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
|
} |
|
for(j=1; j<=nlstate+ndeath;j++) { |
|
kk1=0.;kk2=0; |
|
for(i=1; i<=nlstate;i++) { |
|
if (mobilav==1) |
|
kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; |
|
else { |
|
kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; |
|
} |
|
} |
|
if (h==(int)(calagedatem+12*cpt)){ |
|
tabpop[(int)(agedeb)][j][cptcod]=kk1; |
|
/*fprintf(ficrespop," %.3f", kk1); |
|
if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ |
|
} |
|
} |
|
for(i=1; i<=nlstate;i++){ |
|
kk1=0.; |
|
for(j=1; j<=nlstate;j++){ |
|
kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; |
|
} |
|
tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; |
|
} |
|
|
|
if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) |
|
fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} |
|
} |
|
|
|
/******/ |
|
|
|
for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { |
|
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
|
for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
|
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
|
nhstepm = nhstepm/hstepm; |
|
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* for (h=0; h<=nhstepm; h++){ */ |
oldm=oldms;savm=savms; |
/* if (h==(int) (calagedatem+YEARM*cpt)) { */ |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
/* fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */ |
for (h=0; h<=nhstepm; h++){ |
/* } */ |
if (h==(int) (calagedatem+YEARM*cpt)) { |
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
/* kk1=0.;kk2=0; */ |
} |
/* for(i=1; i<=nlstate;i++) { */ |
for(j=1; j<=nlstate+ndeath;j++) { |
/* if (mobilav==1) */ |
kk1=0.;kk2=0; |
/* kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */ |
for(i=1; i<=nlstate;i++) { |
/* else { */ |
kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; |
/* kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */ |
} |
/* } */ |
if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); |
/* } */ |
} |
/* if (h==(int)(calagedatem+12*cpt)){ */ |
} |
/* tabpop[(int)(agedeb)][j][cptcod]=kk1; */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* /\*fprintf(ficrespop," %.3f", kk1); */ |
} |
/* if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */ |
} |
/* } */ |
} |
/* } */ |
} |
/* for(i=1; i<=nlstate;i++){ */ |
|
/* kk1=0.; */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; */ |
|
/* } */ |
|
/* tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */ |
|
/* } */ |
|
|
|
/* if (h==(int)(calagedatem+12*cpt)) */ |
|
/* for(j=1; j<=nlstate;j++) */ |
|
/* fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */ |
|
/* } */ |
|
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* } */ |
|
/* } */ |
|
|
|
/* /\******\/ */ |
|
|
|
/* for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { */ |
|
/* fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); */ |
|
/* for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ */ |
|
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); */ |
|
/* nhstepm = nhstepm/hstepm; */ |
|
|
|
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* oldm=oldms;savm=savms; */ |
|
/* hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
|
/* for (h=0; h<=nhstepm; h++){ */ |
|
/* if (h==(int) (calagedatem+YEARM*cpt)) { */ |
|
/* fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */ |
|
/* } */ |
|
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
|
/* kk1=0.;kk2=0; */ |
|
/* for(i=1; i<=nlstate;i++) { */ |
|
/* kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; */ |
|
/* } */ |
|
/* if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); */ |
|
/* } */ |
|
/* } */ |
|
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
|
|
/* /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
|
|
/* if (popforecast==1) { */ |
|
/* free_ivector(popage,0,AGESUP); */ |
|
/* free_vector(popeffectif,0,AGESUP); */ |
|
/* free_vector(popcount,0,AGESUP); */ |
|
/* } */ |
|
/* free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* fclose(ficrespop); */ |
|
/* } /\* End of popforecast *\/ */ |
|
|
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
|
|
if (popforecast==1) { |
|
free_ivector(popage,0,AGESUP); |
|
free_vector(popeffectif,0,AGESUP); |
|
free_vector(popcount,0,AGESUP); |
|
} |
|
free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
fclose(ficrespop); |
|
} /* End of popforecast */ |
|
|
|
int fileappend(FILE *fichier, char *optionfich) |
int fileappend(FILE *fichier, char *optionfich) |
{ |
{ |
if((fichier=fopen(optionfich,"a"))==NULL) { |
if((fichier=fopen(optionfich,"a"))==NULL) { |
Line 6105 void prwizard(int ncovmodel, int nlstate
|
Line 9388 void prwizard(int ncovmodel, int nlstate
|
/******************* Gompertz Likelihood ******************************/ |
/******************* Gompertz Likelihood ******************************/ |
double gompertz(double x[]) |
double gompertz(double x[]) |
{ |
{ |
double A,B,L=0.0,sump=0.,num=0.; |
double A=0.0,B=0.,L=0.0,sump=0.,num=0.; |
int i,n=0; /* n is the size of the sample */ |
int i,n=0; /* n is the size of the sample */ |
|
|
for (i=0;i<=imx-1 ; i++) { |
for (i=1;i<=imx ; i++) { |
sump=sump+weight[i]; |
sump=sump+weight[i]; |
/* sump=sump+1;*/ |
/* sump=sump+1;*/ |
num=num+1; |
num=num+1; |
} |
} |
|
L=0.0; |
|
/* agegomp=AGEGOMP; */ |
/* for (i=0; i<=imx; i++) |
/* for (i=0; i<=imx; i++) |
if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ |
if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ |
|
|
for (i=1;i<=imx ; i++) |
for (i=1;i<=imx ; i++) { |
{ |
/* mu(a)=mu(agecomp)*exp(teta*(age-agegomp)) |
if (cens[i] == 1 && wav[i]>1) |
mu(a)=x[1]*exp(x[2]*(age-agegomp)); x[1] and x[2] are per year. |
A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))); |
* L= Product mu(agedeces)exp(-\int_ageexam^agedc mu(u) du ) for a death between agedc (in month) |
|
* and agedc +1 month, cens[i]=0: log(x[1]/YEARM) |
if (cens[i] == 0 && wav[i]>1) |
* + |
|
* exp(-\int_ageexam^agecens mu(u) du ) when censored, cens[i]=1 |
|
*/ |
|
if (wav[i] > 1 || agedc[i] < AGESUP) { |
|
if (cens[i] == 1){ |
|
A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))); |
|
} else if (cens[i] == 0){ |
A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))) |
A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))) |
+log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM); |
+log(x[1]/YEARM) +x[2]*(agedc[i]-agegomp)+log(YEARM); |
|
} else |
|
printf("Gompertz cens[%d] neither 1 nor 0\n",i); |
/*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ |
/*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ |
if (wav[i] > 1 ) { /* ??? */ |
L=L+A*weight[i]; |
L=L+A*weight[i]; |
|
/* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ |
/* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ |
} |
} |
} |
} |
|
|
/*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ |
/*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ |
|
|
return -2*L*num/sump; |
return -2*L*num/sump; |
} |
} |
Line 6143 double gompertz(double x[])
|
Line 9432 double gompertz(double x[])
|
/******************* Gompertz_f Likelihood ******************************/ |
/******************* Gompertz_f Likelihood ******************************/ |
double gompertz_f(const gsl_vector *v, void *params) |
double gompertz_f(const gsl_vector *v, void *params) |
{ |
{ |
double A,B,LL=0.0,sump=0.,num=0.; |
double A=0.,B=0.,LL=0.0,sump=0.,num=0.; |
double *x= (double *) v->data; |
double *x= (double *) v->data; |
int i,n=0; /* n is the size of the sample */ |
int i,n=0; /* n is the size of the sample */ |
|
|
Line 6233 int readdata(char datafile[], int firsto
|
Line 9522 int readdata(char datafile[], int firsto
|
/*-------- data file ----------*/ |
/*-------- data file ----------*/ |
FILE *fic; |
FILE *fic; |
char dummy[]=" "; |
char dummy[]=" "; |
int i=0, j=0, n=0; |
int i=0, j=0, n=0, iv=0, v; |
|
int lstra; |
int linei, month, year,iout; |
int linei, month, year,iout; |
|
int noffset=0; /* This is the offset if BOM data file */ |
char line[MAXLINE], linetmp[MAXLINE]; |
char line[MAXLINE], linetmp[MAXLINE]; |
char stra[MAXLINE], strb[MAXLINE]; |
char stra[MAXLINE], strb[MAXLINE]; |
char *stratrunc; |
char *stratrunc; |
int lstra; |
|
|
|
|
DummyV=ivector(1,NCOVMAX); /* 1 to 3 */ |
|
FixedV=ivector(1,NCOVMAX); /* 1 to 3 */ |
|
|
|
for(v=1; v <=ncovcol;v++){ |
|
DummyV[v]=0; |
|
FixedV[v]=0; |
|
} |
|
for(v=ncovcol+1; v <=ncovcol+nqv;v++){ |
|
DummyV[v]=1; |
|
FixedV[v]=0; |
|
} |
|
for(v=ncovcol+nqv+1; v <=ncovcol+nqv+ntv;v++){ |
|
DummyV[v]=0; |
|
FixedV[v]=1; |
|
} |
|
for(v=ncovcol+nqv+ntv+1; v <=ncovcol+nqv+ntv+nqtv;v++){ |
|
DummyV[v]=1; |
|
FixedV[v]=1; |
|
} |
|
for(v=1; v <=ncovcol+nqv+ntv+nqtv;v++){ |
|
printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]); |
|
fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]); |
|
} |
|
|
if((fic=fopen(datafile,"r"))==NULL) { |
if((fic=fopen(datafile,"r"))==NULL) { |
printf("Problem while opening datafile: %s\n", datafile);fflush(stdout); |
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1; |
fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; |
} |
} |
|
|
i=1; |
/* Is it a BOM UTF-8 Windows file? */ |
|
/* First data line */ |
linei=0; |
linei=0; |
|
while(fgets(line, MAXLINE, fic)) { |
|
noffset=0; |
|
if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */ |
|
{ |
|
noffset=noffset+3; |
|
printf("# Data file '%s' is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);fflush(stdout); |
|
fprintf(ficlog,"# Data file '%s' is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile); |
|
fflush(ficlog); return 1; |
|
} |
|
/* else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/ |
|
else if( line[0] == (char)0xFF && line[1] == (char)0xFE) |
|
{ |
|
noffset=noffset+2; |
|
printf("# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout); |
|
fprintf(ficlog,"# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile); |
|
fflush(ficlog); return 1; |
|
} |
|
else if( line[0] == 0 && line[1] == 0) |
|
{ |
|
if( line[2] == (char)0xFE && line[3] == (char)0xFF){ |
|
noffset=noffset+4; |
|
printf("# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout); |
|
fprintf(ficlog,"# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile); |
|
fflush(ficlog); return 1; |
|
} |
|
} else{ |
|
;/*printf(" Not a BOM file\n");*/ |
|
} |
|
/* If line starts with a # it is a comment */ |
|
if (line[noffset] == '#') { |
|
linei=linei+1; |
|
break; |
|
}else{ |
|
break; |
|
} |
|
} |
|
fclose(fic); |
|
if((fic=fopen(datafile,"r"))==NULL) { |
|
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
|
fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; |
|
} |
|
/* Not a Bom file */ |
|
|
|
i=1; |
while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) { |
while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) { |
linei=linei+1; |
linei=linei+1; |
for(j=strlen(line); j>=0;j--){ /* Untabifies line */ |
for(j=strlen(line); j>=0;j--){ /* Untabifies line */ |
Line 6265 int readdata(char datafile[], int firsto
|
Line 9623 int readdata(char datafile[], int firsto
|
} |
} |
trimbb(linetmp,line); /* Trims multiple blanks in line */ |
trimbb(linetmp,line); /* Trims multiple blanks in line */ |
strcpy(line, linetmp); |
strcpy(line, linetmp); |
|
|
|
/* Loops on waves */ |
for (j=maxwav;j>=1;j--){ |
for (j=maxwav;j>=1;j--){ |
|
for (iv=nqtv;iv>=1;iv--){ /* Loop on time varying quantitative variables */ |
|
cutv(stra, strb, line, ' '); |
|
if(strb[0]=='.') { /* Missing value */ |
|
lval=-1; |
|
cotqvar[j][iv][i]=-1; /* 0.0/0.0 */ |
|
cotvar[j][ntv+iv][i]=-1; /* For performance reasons */ |
|
if(isalpha(strb[1])) { /* .m or .d Really Missing value */ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog); |
|
return 1; |
|
} |
|
}else{ |
|
errno=0; |
|
/* what_kind_of_number(strb); */ |
|
dval=strtod(strb,&endptr); |
|
/* if( strb[0]=='\0' || (*endptr != '\0')){ */ |
|
/* if(strb != endptr && *endptr == '\0') */ |
|
/* dval=dlval; */ |
|
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog); |
|
return 1; |
|
} |
|
cotqvar[j][iv][i]=dval; |
|
cotvar[j][ntv+iv][i]=dval; |
|
} |
|
strcpy(line,stra); |
|
}/* end loop ntqv */ |
|
|
|
for (iv=ntv;iv>=1;iv--){ /* Loop on time varying dummies */ |
|
cutv(stra, strb, line, ' '); |
|
if(strb[0]=='.') { /* Missing value */ |
|
lval=-1; |
|
}else{ |
|
errno=0; |
|
lval=strtol(strb,&endptr,10); |
|
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog); |
|
return 1; |
|
} |
|
} |
|
if(lval <-1 || lval >1){ |
|
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
|
Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \ |
|
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
|
For example, for multinomial values like 1, 2 and 3,\n \ |
|
build V1=0 V2=0 for the reference value (1),\n \ |
|
V1=1 V2=0 for (2) \n \ |
|
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
|
output of IMaCh is often meaningless.\n \ |
|
Exiting.\n",lval,linei, i,line,iv,j); |
|
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
|
Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \ |
|
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
|
For example, for multinomial values like 1, 2 and 3,\n \ |
|
build V1=0 V2=0 for the reference value (1),\n \ |
|
V1=1 V2=0 for (2) \n \ |
|
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
|
output of IMaCh is often meaningless.\n \ |
|
Exiting.\n",lval,linei, i,line,iv,j);fflush(ficlog); |
|
return 1; |
|
} |
|
cotvar[j][iv][i]=(double)(lval); |
|
strcpy(line,stra); |
|
}/* end loop ntv */ |
|
|
|
/* Statuses at wave */ |
cutv(stra, strb, line, ' '); |
cutv(stra, strb, line, ' '); |
if(strb[0]=='.') { /* Missing status */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
}else{ |
}else{ |
errno=0; |
errno=0; |
lval=strtol(strb,&endptr,10); |
lval=strtol(strb,&endptr,10); |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
} |
} |
|
|
s[j][i]=lval; |
s[j][i]=lval; |
|
|
|
/* Date of Interview */ |
strcpy(line,stra); |
strcpy(line,stra); |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
Line 6296 int readdata(char datafile[], int firsto
|
Line 9726 int readdata(char datafile[], int firsto
|
return 1; |
return 1; |
} |
} |
anint[j][i]= (double) year; |
anint[j][i]= (double) year; |
mint[j][i]= (double)month; |
mint[j][i]= (double)month; |
|
/* if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){ */ |
|
/* printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */ |
|
/* fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */ |
|
/* } */ |
strcpy(line,stra); |
strcpy(line,stra); |
} /* ENd Waves */ |
} /* End loop on waves */ |
|
|
|
/* Date of death */ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
} |
} |
Line 6308 int readdata(char datafile[], int firsto
|
Line 9743 int readdata(char datafile[], int firsto
|
year=9999; |
year=9999; |
}else{ |
}else{ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
andc[i]=(double) year; |
andc[i]=(double) year; |
moisdc[i]=(double) month; |
moisdc[i]=(double) month; |
strcpy(line,stra); |
strcpy(line,stra); |
|
|
|
/* Date of birth */ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
} |
} |
Line 6324 int readdata(char datafile[], int firsto
|
Line 9760 int readdata(char datafile[], int firsto
|
}else{ |
}else{ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
if (year==9999) { |
if (year==9999) { |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog); |
return 1; |
return 1; |
|
|
} |
} |
annais[i]=(double)(year); |
annais[i]=(double)(year); |
moisnais[i]=(double)(month); |
moisnais[i]=(double)(month); |
|
for (j=1;j<=maxwav;j++){ |
|
if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){ |
|
printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j,(int)moisnais[i],(int)annais[i]); |
|
fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j, (int)moisnais[i],(int)annais[i]); |
|
} |
|
} |
|
|
strcpy(line,stra); |
strcpy(line,stra); |
|
|
|
/* Sample weight */ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
errno=0; |
errno=0; |
dval=strtod(strb,&endptr); |
dval=strtod(strb,&endptr); |
Line 6348 int readdata(char datafile[], int firsto
|
Line 9792 int readdata(char datafile[], int firsto
|
weight[i]=dval; |
weight[i]=dval; |
strcpy(line,stra); |
strcpy(line,stra); |
|
|
|
for (iv=nqv;iv>=1;iv--){ /* Loop on fixed quantitative variables */ |
|
cutv(stra, strb, line, ' '); |
|
if(strb[0]=='.') { /* Missing value */ |
|
lval=-1; |
|
coqvar[iv][i]=NAN; |
|
covar[ncovcol+iv][i]=NAN; /* including qvar in standard covar for performance reasons */ |
|
}else{ |
|
errno=0; |
|
/* what_kind_of_number(strb); */ |
|
dval=strtod(strb,&endptr); |
|
/* if(strb != endptr && *endptr == '\0') */ |
|
/* dval=dlval; */ |
|
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog); |
|
return 1; |
|
} |
|
coqvar[iv][i]=dval; |
|
covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ |
|
} |
|
strcpy(line,stra); |
|
}/* end loop nqv */ |
|
|
|
/* Covariate values */ |
for (j=ncovcol;j>=1;j--){ |
for (j=ncovcol;j>=1;j--){ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if(strb[0]=='.') { /* Missing status */ |
if(strb[0]=='.') { /* Missing covariate value */ |
lval=-1; |
lval=-1; |
}else{ |
}else{ |
errno=0; |
errno=0; |
Line 6365 int readdata(char datafile[], int firsto
|
Line 9834 int readdata(char datafile[], int firsto
|
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j); |
Exiting.\n",lval,linei, i,line,j); |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
Line 6386 int readdata(char datafile[], int firsto
|
Line 9855 int readdata(char datafile[], int firsto
|
strcpy(line,stra); |
strcpy(line,stra); |
} |
} |
lstra=strlen(stra); |
lstra=strlen(stra); |
|
|
if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */ |
if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */ |
stratrunc = &(stra[lstra-9]); |
stratrunc = &(stra[lstra-9]); |
num[i]=atol(stratrunc); |
num[i]=atol(stratrunc); |
Line 6398 int readdata(char datafile[], int firsto
|
Line 9867 int readdata(char datafile[], int firsto
|
|
|
i=i+1; |
i=i+1; |
} /* End loop reading data */ |
} /* End loop reading data */ |
|
|
*imax=i-1; /* Number of individuals */ |
*imax=i-1; /* Number of individuals */ |
fclose(fic); |
fclose(fic); |
|
|
return (0); |
return (0); |
/* endread: */ |
/* endread: */ |
printf("Exiting readdata: "); |
printf("Exiting readdata: "); |
fclose(fic); |
fclose(fic); |
return (1); |
return (1); |
|
} |
|
|
|
void removefirstspace(char **stri){/*, char stro[]) {*/ |
|
char *p1 = *stri, *p2 = *stri; |
|
while (*p2 == ' ') |
|
p2++; |
|
/* while ((*p1++ = *p2++) !=0) */ |
|
/* ; */ |
|
/* do */ |
|
/* while (*p2 == ' ') */ |
|
/* p2++; */ |
|
/* while (*p1++ == *p2++); */ |
|
*stri=p2; |
|
} |
|
|
|
int decoderesult ( char resultline[], int nres) |
|
/**< This routine decode one result line and returns the combination # of dummy covariates only **/ |
|
{ |
|
int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0; |
|
char resultsav[MAXLINE]; |
|
int resultmodel[MAXLINE]; |
|
int modelresult[MAXLINE]; |
|
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
|
|
|
removefirstspace(&resultline); |
|
|
|
if (strstr(resultline,"v") !=0){ |
|
printf("Error. 'v' must be in upper case 'V' result: %s ",resultline); |
|
fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog); |
|
return 1; |
|
} |
|
trimbb(resultsav, resultline); |
|
if (strlen(resultsav) >1){ |
|
j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */ |
|
} |
|
if(j == 0){ /* Resultline but no = */ |
|
TKresult[nres]=0; /* Combination for the nresult and the model */ |
|
return (0); |
|
} |
|
if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */ |
|
printf("ERROR: the number of variables in this result line, %d, differs from the number of variables used in the model line, %d.\n",j, cptcovs); |
|
fprintf(ficlog,"ERROR: the number of variables in the resultline, %d, differs from the number of variables used in the model line, %d.\n",j, cptcovs); |
|
} |
|
for(k=1; k<=j;k++){ /* Loop on any covariate of the result line */ |
|
if(nbocc(resultsav,'=') >1){ |
|
cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' (stra is the rest of the resultline to be analyzed in the next loop *//* resultsav= "V4=1 V5=25.1 V3=0" stra= "V5=25.1 V3=0" strb= "V4=1" */ |
|
cutl(strc,strd,strb,'='); /* strb:"V4=1" strc="1" strd="V4" */ |
|
}else |
|
cutl(strc,strd,resultsav,'='); |
|
Tvalsel[k]=atof(strc); /* 1 */ /* Tvalsel of k is the float value of the kth covariate appearing in this result line */ |
|
|
|
cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */; |
|
Tvarsel[k]=atoi(strc); /* 4 */ /* Tvarsel is the id of the kth covariate in the result line Tvarsel[1] in "V4=1.." is 4.*/ |
|
/* Typevarsel[k]=1; /\* 1 for age product *\/ */ |
|
/* cptcovsel++; */ |
|
if (nbocc(stra,'=') >0) |
|
strcpy(resultsav,stra); /* and analyzes it */ |
|
} |
|
/* Checking for missing or useless values in comparison of current model needs */ |
|
for(k1=1; k1<= cptcovt ;k1++){ /* Loop on model. model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
if(Typevar[k1]==0){ /* Single covariate in model *//*0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
|
match=0; |
|
for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5 */ |
|
modelresult[k2]=k1;/* modelresult[2]=1 modelresult[1]=2 modelresult[3]=3 modelresult[6]=4 modelresult[9]=5 */ |
|
match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */ |
|
break; |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line: V%d is missing in result: %s according to model=%s\n",k1, resultline, model); |
|
fprintf(ficlog,"Error in result line: V%d is missing in result: %s according to model=%s\n",k1, resultline, model); |
|
return 1; |
|
} |
|
} |
|
} |
|
/* Checking for missing or useless values in comparison of current model needs */ |
|
for(k2=1; k2 <=j;k2++){ /* Loop on resultline variables: result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
match=0; |
|
for(k1=1; k1<= cptcovt ;k1++){ /* loop on model: model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
if(Typevar[k1]==0){ /* Single */ |
|
if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4 */ |
|
resultmodel[k1]=k2; /* k2th variable of the model corresponds to k1 variable of the model. resultmodel[2]=1 resultmodel[1]=2 resultmodel[3]=3 resultmodel[6]=4 resultmodel[9]=5 */ |
|
++match; |
|
} |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model); |
|
fprintf(ficlog,"Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model); |
|
return 1; |
|
}else if(match > 1){ |
|
printf("Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model); |
|
fprintf(ficlog,"Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model); |
|
return 1; |
|
} |
|
} |
|
|
|
/* We need to deduce which combination number is chosen and save quantitative values */ |
|
/* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
/* result line V4=1 V5=25.1 V3=0 V2=8 V1=1 */ |
|
/* should give a combination of dummy V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 5 + (1offset) = 6*/ |
|
/* result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
/* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/ |
|
/* 1 0 0 0 */ |
|
/* 2 1 0 0 */ |
|
/* 3 0 1 0 */ |
|
/* 4 1 1 0 */ /* V4=1, V3=1, V1=0 */ |
|
/* 5 0 0 1 */ |
|
/* 6 1 0 1 */ /* V4=1, V3=0, V1=1 */ |
|
/* 7 0 1 1 */ |
|
/* 8 1 1 1 */ |
|
/* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */ |
|
/* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */ |
|
/* V5*age V5 known which value for nres? */ |
|
/* Tqinvresult[2]=8 Tqinvresult[1]=25.1 */ |
|
for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* loop on model line */ |
|
if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Single dummy */ |
|
k3= resultmodel[k1]; /* resultmodel[2(V4)] = 1=k3 */ |
|
k2=(int)Tvarsel[k3]; /* Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */ |
|
k+=Tvalsel[k3]*pow(2,k4); /* Tvalsel[1]=1 */ |
|
Tresult[nres][k4+1]=Tvalsel[k3];/* Tresult[nres][1]=1(V4=1) Tresult[nres][2]=0(V3=0) */ |
|
Tvresult[nres][k4+1]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */ |
|
Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */ |
|
printf("Decoderesult Dummy k=%d, V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k2, k3, (int)Tvalsel[k3], k4); |
|
k4++;; |
|
} else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Single quantitative */ |
|
k3q= resultmodel[k1]; /* resultmodel[1(V5)] = 25.1=k3q */ |
|
k2q=(int)Tvarsel[k3q]; /* Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */ |
|
Tqresult[nres][k4q+1]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */ |
|
Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */ |
|
Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */ |
|
printf("Decoderesult Quantitative nres=%d, V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); |
|
k4q++;; |
|
} |
|
} |
|
|
|
TKresult[nres]=++k; /* Combination for the nresult and the model */ |
|
return (0); |
} |
} |
void removespace(char *str) { |
|
char *p1 = str, *p2 = str; |
int decodemodel( char model[], int lastobs) |
do |
/**< This routine decodes the model and returns: |
while (*p2 == ' ') |
* Model V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age |
p2++; |
* - nagesqr = 1 if age*age in the model, otherwise 0. |
while (*p1++ == *p2++); |
* - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age |
} |
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
|
* - cptcovage number of covariates with age*products =2 |
int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns: |
* - cptcovs number of simple covariates |
* Model V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age |
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
* - nagesqr = 1 if age*age in the model, otherwise 0. |
* which is a new column after the 9 (ncovcol) variables. |
* - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age |
* - if k is a product Vn*Vm, covar[k][i] is filled with correct values for each individual |
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
* - cptcovage number of covariates with age*products =2 |
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
* - cptcovs number of simple covariates |
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
*/ |
* which is a new column after the 9 (ncovcol) variables. |
/* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
* - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual |
|
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
|
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
|
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
|
*/ |
|
{ |
{ |
int i, j, k, ks; |
int i, j, k, ks, v; |
int j1, k1, k2; |
int j1, k1, k2, k3, k4; |
char modelsav[80]; |
char modelsav[80]; |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
char *strpt; |
char *strpt; |
Line 6457 int decodemodel ( char model[], int last
|
Line 10057 int decodemodel ( char model[], int last
|
if ((strpt=strstr(model,"age*age")) !=0){ |
if ((strpt=strstr(model,"age*age")) !=0){ |
printf(" strpt=%s, model=%s\n",strpt, model); |
printf(" strpt=%s, model=%s\n",strpt, model); |
if(strpt != model){ |
if(strpt != model){ |
printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
corresponding column of parameters.\n",model); |
corresponding column of parameters.\n",model); |
fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
corresponding column of parameters.\n",model); fflush(ficlog); |
corresponding column of parameters.\n",model); fflush(ficlog); |
return 1; |
return 1; |
} |
} |
|
|
nagesqr=1; |
nagesqr=1; |
if (strstr(model,"+age*age") !=0) |
if (strstr(model,"+age*age") !=0) |
substrchaine(modelsav, model, "+age*age"); |
substrchaine(modelsav, model, "+age*age"); |
Line 6478 int decodemodel ( char model[], int last
|
Line 10077 int decodemodel ( char model[], int last
|
if (strlen(modelsav) >1){ |
if (strlen(modelsav) >1){ |
j=nbocc(modelsav,'+'); /**< j=Number of '+' */ |
j=nbocc(modelsav,'+'); /**< j=Number of '+' */ |
j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */ |
j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */ |
cptcovs=j+1-j1; /**< Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2 */ |
cptcovs=j+1-j1; /**< Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2 */ |
cptcovt= j+1; /* Number of total covariates in the model, not including |
cptcovt= j+1; /* Number of total covariates in the model, not including |
* cst, age and age*age |
* cst, age and age*age |
* V1+V1*age+ V3 + V3*V4+age*age=> 4*/ |
* V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/ |
/* including age products which are counted in cptcovage. |
/* including age products which are counted in cptcovage. |
* but the covariates which are products must be treated |
* but the covariates which are products must be treated |
* separately: ncovn=4- 2=2 (V1+V3). */ |
* separately: ncovn=4- 2=2 (V1+V3). */ |
cptcovprod=j1; /**< Number of products V1*V2 +v3*age = 2 */ |
cptcovprod=j1; /**< Number of products V1*V2 +v3*age = 2 */ |
cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */ |
cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */ |
|
|
|
|
/* Design |
/* Design |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight |
* < ncovcol=8 > |
* < ncovcol=8 > |
Line 6496 int decodemodel ( char model[], int last
|
Line 10095 int decodemodel ( char model[], int last
|
* k= 1 2 3 4 5 6 7 8 |
* k= 1 2 3 4 5 6 7 8 |
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
* covar[k,i], value of kth covariate if not including age for individual i: |
* covar[k,i], value of kth covariate if not including age for individual i: |
* covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8) |
* covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8) |
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[4]=3 Tvar[8]=8 |
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[2]=1 Tvar[4]=3 Tvar[8]=8 |
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
* Tage[++cptcovage]=k |
* Tage[++cptcovage]=k |
* if products, new covar are created after ncovcol with k1 |
* if products, new covar are created after ncovcol with k1 |
Line 6511 int decodemodel ( char model[], int last
|
Line 10110 int decodemodel ( char model[], int last
|
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 d1 d1 d2 d2 |
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 d1 d1 d2 d2 |
* k= 1 2 3 4 5 6 7 8 9 10 11 12 |
* k= 1 2 3 4 5 6 7 8 9 10 11 12 |
* Tvar[k]= 2 1 3 3 10 11 8 8 5 6 7 8 |
* Tvar[k]= 2 1 3 3 10 11 8 8 5 6 7 8 |
* p Tvar[1]@12={2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
* p Tvar[1]@12={2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
* p Tprod[1]@2={ 6, 5} |
* p Tprod[1]@2={ 6, 5} |
*p Tvard[1][1]@4= {7, 8, 5, 6} |
*p Tvard[1][1]@4= {7, 8, 5, 6} |
* covar[k][i]= V2 V1 ? V3 V5*V6? V7*V8? ? V8 |
* covar[k][i]= V2 V1 ? V3 V5*V6? V7*V8? ? V8 |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
*How to reorganize? |
*How to reorganize? Tvars(orted) |
* Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age |
* Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age |
* Tvars {2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
* Tvars {2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
* {2, 1, 4, 8, 5, 6, 3, 7} |
* {2, 1, 4, 8, 5, 6, 3, 7} |
* Struct [] |
* Struct [] |
*/ |
*/ |
|
|
/* This loop fills the array Tvar from the string 'model'.*/ |
/* This loop fills the array Tvar from the string 'model'.*/ |
/* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */ |
/* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */ |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 */ |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 */ |
Line 6537 int decodemodel ( char model[], int last
|
Line 10136 int decodemodel ( char model[], int last
|
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */ |
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */ |
/* |
/* |
* Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */ |
* Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */ |
for(k=cptcovt; k>=1;k--) /**< Number of covariates */ |
for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/ |
Tvar[k]=0; |
Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0; |
|
} |
cptcovage=0; |
cptcovage=0; |
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */ |
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model line */ |
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' |
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' cutl from left to right |
modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ |
modelsav==V2+V1+V5*age+V4+V3*age strb=V3*age stra=V2+V1V5*age+V4 */ /* <model> "V5+V4+V3+V4*V3+V5*age+V1*age+V1" strb="V5" stra="V4+V3+V4*V3+V5*age+V1*age+V1" */ |
if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ |
if (nbocc(modelsav,'+')==0) |
|
strcpy(strb,modelsav); /* and analyzes it */ |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
/*scanf("%d",i);*/ |
/*scanf("%d",i);*/ |
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */ |
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V5*age+ V4+V3*age strb=V3*age */ |
cutl(strc,strd,strb,'*'); /**< strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */ |
cutl(strc,strd,strb,'*'); /**< k=1 strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */ |
if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */ |
if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */ |
/* covar is not filled and then is empty */ |
/* covar is not filled and then is empty */ |
cptcovprod--; |
cptcovprod--; |
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
Tvar[k]=atoi(stre); /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
Tvar[k]=atoi(stre); /* V2+V1+V5*age+V4+V3*age Tvar[5]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
cptcovage++; /* Sums the number of covariates which include age as a product */ |
Typevar[k]=1; /* 1 for age product */ |
Tage[cptcovage]=k; /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
cptcovage++; /* Counts the number of covariates which include age as a product */ |
|
Tage[cptcovage]=k; /* V2+V1+V4+V3*age Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
/*printf("stre=%s ", stre);*/ |
/*printf("stre=%s ", stre);*/ |
} else if (strcmp(strd,"age")==0) { /* or age*Vn */ |
} else if (strcmp(strd,"age")==0) { /* or age*Vn */ |
cptcovprod--; |
cptcovprod--; |
cutl(stre,strb,strc,'V'); |
cutl(stre,strb,strc,'V'); |
Tvar[k]=atoi(stre); |
Tvar[k]=atoi(stre); |
|
Typevar[k]=1; /* 1 for age product */ |
cptcovage++; |
cptcovage++; |
Tage[cptcovage]=k; |
Tage[cptcovage]=k; |
} else { /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2 strb=V3*V2*/ |
} else { /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2 strb=V3*V2*/ |
Line 6567 int decodemodel ( char model[], int last
|
Line 10170 int decodemodel ( char model[], int last
|
cptcovn++; |
cptcovn++; |
cptcovprodnoage++;k1++; |
cptcovprodnoage++;k1++; |
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but |
Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but |
because this model-covariate is a construction we invent a new column |
because this model-covariate is a construction we invent a new column |
ncovcol + k1 |
which is after existing variables ncovcol+nqv+ntv+nqtv + k1 |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2 |
If already ncovcol=4 and model=V2 + V1 +V1*V4 +age*V3 +V3*V2 |
Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */ |
thus after V4 we invent V5 and V6 because age*V3 will be computed in 4 |
|
Tvar[3=V1*V4]=4+1=5 Tvar[5=V3*V2]=4 + 2= 6, Tvar[4=age*V3]=4 etc */ |
|
Typevar[k]=2; /* 2 for double fixed dummy covariates */ |
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ |
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ |
|
Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 */ |
Tvard[k1][1] =atoi(strc); /* m 1 for V1*/ |
Tvard[k1][1] =atoi(strc); /* m 1 for V1*/ |
Tvard[k1][2] =atoi(stre); /* n 4 for V4*/ |
Tvard[k1][2] =atoi(stre); /* n 4 for V4*/ |
k2=k2+2; |
k2=k2+2; /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */ |
Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */ |
/* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */ |
Tvar[cptcovt+k2+1]=Tvard[k1][2]; /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */ |
/* Tvar[cptcovt+k2+1]=Tvard[k1][2]; /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */ |
|
/*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */ |
|
/* 1 2 3 4 5 | Tvar[5+1)=1, Tvar[7]=2 */ |
for (i=1; i<=lastobs;i++){ |
for (i=1; i<=lastobs;i++){ |
/* Computes the new covariate which is a product of |
/* Computes the new covariate which is a product of |
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
Line 6586 int decodemodel ( char model[], int last
|
Line 10194 int decodemodel ( char model[], int last
|
} |
} |
} /* End age is not in the model */ |
} /* End age is not in the model */ |
} /* End if model includes a product */ |
} /* End if model includes a product */ |
else { /* no more sum */ |
else { /* not a product */ |
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
/* scanf("%d",i);*/ |
/* scanf("%d",i);*/ |
cutl(strd,strc,strb,'V'); |
cutl(strd,strc,strb,'V'); |
ks++; /**< Number of simple covariates */ |
ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */ |
cptcovn++; |
cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */ |
Tvar[k]=atoi(strd); |
Tvar[k]=atoi(strd); |
|
Typevar[k]=0; /* 0 for simple covariates */ |
} |
} |
strcpy(modelsav,stra); /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ |
strcpy(modelsav,stra); /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ |
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); |
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); |
scanf("%d",i);*/ |
scanf("%d",i);*/ |
} /* end of loop + on total covariates */ |
} /* end of loop + on total covariates */ |
} /* end if strlen(modelsave == 0) age*age might exist */ |
} /* end if strlen(modelsave == 0) age*age might exist */ |
} /* end if strlen(model == 0) */ |
} /* end if strlen(model == 0) */ |
|
|
/*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. |
/*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. |
If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ |
If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ |
|
|
/* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); |
/* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); |
printf("cptcovprod=%d ", cptcovprod); |
printf("cptcovprod=%d ", cptcovprod); |
fprintf(ficlog,"cptcovprod=%d ", cptcovprod); |
fprintf(ficlog,"cptcovprod=%d ", cptcovprod); |
|
scanf("%d ",i);*/ |
scanf("%d ",i);*/ |
|
|
|
|
/* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind |
|
of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */ |
|
/* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1 = 5 possible variables data: 2 fixed 3, varying |
|
model= V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place |
|
k = 1 2 3 4 5 6 7 8 9 |
|
Tvar[k]= 5 4 3 1+1+2+1+1=6 5 2 7 1 5 |
|
Typevar[k]= 0 0 0 2 1 0 2 1 0 |
|
Fixed[k] 1 1 1 1 3 0 0 or 2 2 3 |
|
Dummy[k] 1 0 0 0 3 1 1 2 3 |
|
Tmodelind[combination of covar]=k; |
|
*/ |
|
/* Dispatching between quantitative and time varying covariates */ |
|
/* If Tvar[k] >ncovcol it is a product */ |
|
/* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p Vp=Vn*Vm for product */ |
|
/* Computing effective variables, ie used by the model, that is from the cptcovt variables */ |
|
printf("Model=1+age+%s\n\ |
|
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
|
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
|
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
|
fprintf(ficlog,"Model=1+age+%s\n\ |
|
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
|
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
|
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
|
for(k=-1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;} |
|
for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */ |
|
if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */ |
|
Fixed[k]= 0; |
|
Dummy[k]= 0; |
|
ncoveff++; |
|
ncovf++; |
|
nsd++; |
|
modell[k].maintype= FTYPE; |
|
TvarsD[nsd]=Tvar[k]; |
|
TvarsDind[nsd]=k; |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
}else if( Tvar[k] <=ncovcol && Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */ |
|
Fixed[k]= 0; |
|
Dummy[k]= 0; |
|
ncoveff++; |
|
ncovf++; |
|
modell[k].maintype= FTYPE; |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
}else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */ |
|
Fixed[k]= 0; |
|
Dummy[k]= 1; |
|
nqfveff++; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FQ; |
|
nsq++; |
|
TvarsQ[nsq]=Tvar[k]; |
|
TvarsQind[nsq]=k; |
|
ncovf++; |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
ntveff++; /* Only simple time varying dummy variable */ |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VD; |
|
nsd++; |
|
TvarsD[nsd]=Tvar[k]; |
|
TvarsDind[nsd]=k; |
|
ncovv++; /* Only simple time varying variables */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; /* TvarVind[2]=2 TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
|
TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4 TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ |
|
TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ |
|
printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv); |
|
printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv); |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
nqtveff++; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VQ; |
|
ncovv++; /* Only simple time varying variables */ |
|
nsq++; |
|
TvarsQ[nsq]=Tvar[k]; /* k=1 Tvar=5 nsq=1 TvarsQ[1]=5 */ |
|
TvarsQind[nsq]=k; |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
|
TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */ |
|
/* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */ |
|
printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv); |
|
printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv); |
|
}else if (Typevar[k] == 1) { /* product with age */ |
|
ncova++; |
|
TvarA[ncova]=Tvar[k]; |
|
TvarAind[ncova]=k; |
|
if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */ |
|
Fixed[k]= 2; |
|
Dummy[k]= 2; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APFD; |
|
/* ncoveff++; */ |
|
}else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/ |
|
Fixed[k]= 2; |
|
Dummy[k]= 3; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APFQ; /* Product age * fixed quantitative */ |
|
/* nqfveff++; /\* Only simple fixed quantitative variable *\/ */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv ){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 2; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APVD; /* Product age * varying dummy */ |
|
/* ntveff++; /\* Only simple time varying dummy variable *\/ */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 3; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APVQ; /* Product age * varying quantitative */ |
|
/* nqtveff++;/\* Only simple time varying quantitative variable *\/ */ |
|
} |
|
}else if (Typevar[k] == 2) { /* product without age */ |
|
k1=Tposprod[k]; |
|
if(Tvard[k1][1] <=ncovcol){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDD; /* Product fixed dummy * fixed dummy */ |
|
ncovf++; /* Fixed variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 0; /* or 2 ?*/ |
|
Dummy[k]= 1; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed dummy * fixed quantitative */ |
|
ncovf++; /* Varying variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product fixed dummy * varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed dummy * varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 0; /* or 2 ?*/ |
|
Dummy[k]= 1; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed quantitative * fixed dummy */ |
|
ncovf++; /* Fixed variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed quantitative * varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product fixed quantitative * varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * fixed dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * fixed quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * time varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * time varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * fixed dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * fixed quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * time varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * time varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else{ |
|
printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
} /*end k1*/ |
|
}else{ |
|
printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
|
fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
|
} |
|
printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
|
printf(" modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype); |
|
fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
|
} |
|
/* Searching for doublons in the model */ |
|
for(k1=1; k1<= cptcovt;k1++){ |
|
for(k2=1; k2 <k1;k2++){ |
|
/* if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ */ |
|
if((Typevar[k1]==Typevar[k2]) && (Fixed[k1]==Fixed[k2]) && (Dummy[k1]==Dummy[k2] )){ |
|
if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */ |
|
if(Tvar[k1]==Tvar[k2]){ |
|
printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); |
|
fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); fflush(ficlog); |
|
return(1); |
|
} |
|
}else if (Typevar[k1] ==2){ |
|
k3=Tposprod[k1]; |
|
k4=Tposprod[k2]; |
|
if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){ |
|
printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
|
fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
|
return(1); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn); |
|
fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn); |
|
printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq); |
|
fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq); |
return (0); /* with covar[new additional covariate if product] and Tage if age */ |
return (0); /* with covar[new additional covariate if product] and Tage if age */ |
/*endread:*/ |
/*endread:*/ |
printf("Exiting decodemodel: "); |
printf("Exiting decodemodel: "); |
return (1); |
return (1); |
} |
} |
|
|
int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn ) |
int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn ) |
{ |
{/* Check ages at death */ |
int i, m; |
int i, m; |
|
int firstone=0; |
|
|
for (i=1; i<=imx; i++) { |
for (i=1; i<=imx; i++) { |
for(m=2; (m<= maxwav); m++) { |
for(m=2; (m<= maxwav); m++) { |
if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){ |
if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){ |
anint[m][i]=9999; |
anint[m][i]=9999; |
s[m][i]=-1; |
if (s[m][i] != -2) /* Keeping initial status of unknown vital status */ |
|
s[m][i]=-1; |
} |
} |
if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){ |
if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){ |
*nberr = *nberr + 1; |
*nberr = *nberr + 1; |
printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr); |
if(firstone == 0){ |
fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr); |
firstone=1; |
s[m][i]=-1; |
printf("Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\nOther similar cases in log file\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m); |
|
} |
|
fprintf(ficlog,"Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m); |
|
s[m][i]=-1; /* Droping the death status */ |
} |
} |
if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ |
if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ |
(*nberr)++; |
(*nberr)++; |
printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); |
printf("Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\nOther similar cases in log file\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m); |
fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); |
fprintf(ficlog,"Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m); |
s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */ |
s[m][i]=-2; /* We prefer to skip it (and to skip it in version 0.8a1 too */ |
} |
} |
} |
} |
} |
} |
Line 6759 BOOL IsWow64()
|
Line 10669 BOOL IsWow64()
|
#endif |
#endif |
|
|
void syscompilerinfo(int logged) |
void syscompilerinfo(int logged) |
{ |
{ |
/* #include "syscompilerinfo.h"*/ |
#include <stdint.h> |
|
|
|
/* #include "syscompilerinfo.h"*/ |
/* command line Intel compiler 32bit windows, XP compatible:*/ |
/* command line Intel compiler 32bit windows, XP compatible:*/ |
/* /GS /W3 /Gy |
/* /GS /W3 /Gy |
/Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D |
/Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D |
Line 6795 void syscompilerinfo(int logged)
|
Line 10707 void syscompilerinfo(int logged)
|
/ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF |
/ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF |
/NOLOGO /TLBID:1 |
/NOLOGO /TLBID:1 |
*/ |
*/ |
|
|
|
|
#if defined __INTEL_COMPILER |
#if defined __INTEL_COMPILER |
#if defined(__GNUC__) |
#if defined(__GNUC__) |
struct utsname sysInfo; /* For Intel on Linux and OS/X */ |
struct utsname sysInfo; /* For Intel on Linux and OS/X */ |
Line 6811 void syscompilerinfo(int logged)
|
Line 10725 void syscompilerinfo(int logged)
|
} |
} |
#endif |
#endif |
|
|
#include <stdint.h> |
|
|
|
printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:"); |
printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:"); |
#if defined(__clang__) |
#if defined(__clang__) |
printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */ |
printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */ |
Line 6898 void syscompilerinfo(int logged)
|
Line 10810 void syscompilerinfo(int logged)
|
#endif |
#endif |
#endif |
#endif |
|
|
// void main() |
// void main () |
// { |
// { |
#if defined(_MSC_VER) |
#if defined(_MSC_VER) |
if (IsWow64()){ |
if (IsWow64()){ |
Line 6916 void syscompilerinfo(int logged)
|
Line 10828 void syscompilerinfo(int logged)
|
#endif |
#endif |
|
|
|
|
} |
} |
|
|
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){ |
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){ |
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Prevalence limit (forward period or forward stable prevalence) --------------*/ |
int i, j, k, i1 ; |
int i, j, k, i1, k4=0, nres=0 ; |
/* double ftolpl = 1.e-10; */ |
/* double ftolpl = 1.e-10; */ |
double age, agebase, agelim; |
double age, agebase, agelim; |
double tot; |
double tot; |
Line 6928 void syscompilerinfo(int logged)
|
Line 10840 void syscompilerinfo(int logged)
|
strcpy(filerespl,"PL_"); |
strcpy(filerespl,"PL_"); |
strcat(filerespl,fileresu); |
strcat(filerespl,fileresu); |
if((ficrespl=fopen(filerespl,"w"))==NULL) { |
if((ficrespl=fopen(filerespl,"w"))==NULL) { |
printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
printf("Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
fprintf(ficlog,"Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
} |
} |
printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl); |
printf("\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl); |
fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl); |
fprintf(ficlog,"\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl); |
pstamp(ficrespl); |
pstamp(ficrespl); |
fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficrespl,"# Forward period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficrespl,"#Age "); |
fprintf(ficrespl,"#Age "); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); |
fprintf(ficrespl,"\n"); |
fprintf(ficrespl,"\n"); |
|
|
/* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */ |
/* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */ |
|
|
agebase=ageminpar; |
agebase=ageminpar; |
agelim=agemaxpar; |
agelim=agemaxpar; |
|
|
i1=pow(2,cptcoveff); |
/* i1=pow(2,ncoveff); */ |
if (cptcovn < 1){i1=1;} |
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
|
if (cptcovn < 1){i1=1;} |
|
|
for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
for(k=1; k<=i1;k++){ /* For each combination k of dummy covariates in the model */ |
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
|
|
|
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
|
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
k=k+1; |
/* k=k+1; */ |
/* to clean */ |
/* to clean */ |
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
fprintf(ficrespl,"#******"); |
fprintf(ficrespl,"#******"); |
printf("#******"); |
printf("#******"); |
fprintf(ficlog,"#******"); |
fprintf(ficlog,"#******"); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff ;j++) {/* all covariates */ |
fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/ |
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
} |
} |
fprintf(ficrespl,"******\n"); |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
printf("******\n"); |
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
fprintf(ficlog,"******\n"); |
fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
fprintf(ficrespl,"#Age "); |
} |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficrespl,"******\n"); |
fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
printf("******\n"); |
} |
fprintf(ficlog,"******\n"); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); |
if(invalidvarcomb[k]){ |
fprintf(ficrespl,"Total Years_to_converge\n"); |
printf("\nCombination (%d) ignored because no case \n",k); |
|
fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); |
for (age=agebase; age<=agelim; age++){ |
fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); |
|
continue; |
|
} |
|
|
|
fprintf(ficrespl,"#Age "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); |
|
fprintf(ficrespl,"Total Years_to_converge\n"); |
|
|
|
for (age=agebase; age<=agelim; age++){ |
/* for (age=agebase; age<=agebase; age++){ */ |
/* for (age=agebase; age<=agebase; age++){ */ |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k); |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); |
fprintf(ficrespl,"%.0f ",age ); |
fprintf(ficrespl,"%.0f ",age ); |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
tot=0.; |
tot=0.; |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
tot += prlim[i][i]; |
tot += prlim[i][i]; |
fprintf(ficrespl," %.5f", prlim[i][i]); |
fprintf(ficrespl," %.5f", prlim[i][i]); |
} |
} |
fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp); |
fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp); |
} /* Age */ |
} /* Age */ |
/* was end of cptcod */ |
/* was end of cptcod */ |
} /* cptcov */ |
} /* cptcov */ |
return 0; |
} /* nres */ |
|
return 0; |
} |
} |
|
|
|
int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){ |
|
/*--------------- Back Prevalence limit (backward stable prevalence) --------------*/ |
|
|
|
/* Computes the back prevalence limit for any combination of covariate values |
|
* at any age between ageminpar and agemaxpar |
|
*/ |
|
int i, j, k, i1, nres=0 ; |
|
/* double ftolpl = 1.e-10; */ |
|
double age, agebase, agelim; |
|
double tot; |
|
/* double ***mobaverage; */ |
|
/* double **dnewm, **doldm, **dsavm; /\* for use *\/ */ |
|
|
|
strcpy(fileresplb,"PLB_"); |
|
strcat(fileresplb,fileresu); |
|
if((ficresplb=fopen(fileresplb,"w"))==NULL) { |
|
printf("Problem with backward prevalence resultfile: %s\n", fileresplb);return 1; |
|
fprintf(ficlog,"Problem with backward prevalence resultfile: %s\n", fileresplb);return 1; |
|
} |
|
printf("Computing backward prevalence: result on file '%s' \n", fileresplb); |
|
fprintf(ficlog,"Computing backward prevalence: result on file '%s' \n", fileresplb); |
|
pstamp(ficresplb); |
|
fprintf(ficresplb,"# Backward prevalence. Precision given by ftolpl=%g \n", ftolpl); |
|
fprintf(ficresplb,"#Age "); |
|
for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i); |
|
fprintf(ficresplb,"\n"); |
|
|
|
|
|
/* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */ |
|
|
|
agebase=ageminpar; |
|
agelim=agemaxpar; |
|
|
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
|
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
|
fprintf(ficresplb,"#******"); |
|
printf("#******"); |
|
fprintf(ficlog,"#******"); |
|
for(j=1;j<=cptcoveff ;j++) {/* all covariates */ |
|
fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
|
fprintf(ficresplb,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
if(invalidvarcomb[k]){ |
|
printf("\nCombination (%d) ignored because no cases \n",k); |
|
fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); |
|
fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); |
|
continue; |
|
} |
|
|
|
fprintf(ficresplb,"#Age "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for(i=1; i<=nlstate;i++) fprintf(ficresplb," %d-%d ",i,i); |
|
fprintf(ficresplb,"Total Years_to_converge\n"); |
|
|
|
|
|
for (age=agebase; age<=agelim; age++){ |
|
/* for (age=agebase; age<=agebase; age++){ */ |
|
if(mobilavproj > 0){ |
|
/* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
/* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k, nres); |
|
}else if (mobilavproj == 0){ |
|
printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
|
fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
|
exit(1); |
|
}else{ |
|
/* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres); |
|
/* printf("TOTOT\n"); */ |
|
/* exit(1); */ |
|
} |
|
fprintf(ficresplb,"%.0f ",age ); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
tot=0.; |
|
for(i=1; i<=nlstate;i++){ |
|
tot += bprlim[i][i]; |
|
fprintf(ficresplb," %.5f", bprlim[i][i]); |
|
} |
|
fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp); |
|
} /* Age */ |
|
/* was end of cptcod */ |
|
/*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */ |
|
} /* end of any combination */ |
|
} /* end of nres */ |
|
/* hBijx(p, bage, fage); */ |
|
/* fclose(ficrespijb); */ |
|
|
|
return 0; |
|
} |
|
|
int hPijx(double *p, int bage, int fage){ |
int hPijx(double *p, int bage, int fage){ |
/*------------- h Pij x at various ages ------------*/ |
/*------------- h Pij x at various ages ------------*/ |
|
|
Line 6997 int hPijx(double *p, int bage, int fage)
|
Line 11036 int hPijx(double *p, int bage, int fage)
|
int agelim; |
int agelim; |
int hstepm; |
int hstepm; |
int nhstepm; |
int nhstepm; |
int h, i, i1, j, k; |
int h, i, i1, j, k, k4, nres=0; |
|
|
double agedeb; |
double agedeb; |
double ***p3mat; |
double ***p3mat; |
Line 7016 int hPijx(double *p, int bage, int fage)
|
Line 11055 int hPijx(double *p, int bage, int fage)
|
agelim=AGESUP; |
agelim=AGESUP; |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
|
|
/* hstepm=1; aff par mois*/ |
/* hstepm=1; aff par mois*/ |
pstamp(ficrespij); |
pstamp(ficrespij); |
fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); |
fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); |
i1= pow(2,cptcoveff); |
i1= pow(2,cptcoveff); |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* k=k+1; */ |
/* k=k+1; */ |
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k=1; k<=i1;k++){ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
fprintf(ficrespij,"\n#****** "); |
fprintf(ficrespij,"\n#****** "); |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
fprintf(ficrespij,"******\n"); |
fprintf(ficrespij,"******\n"); |
|
|
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ |
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ |
Line 7038 int hPijx(double *p, int bage, int fage)
|
Line 11084 int hPijx(double *p, int bage, int fage)
|
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres); |
fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate+ndeath;j++) |
for(j=1; j<=nlstate+ndeath;j++) |
Line 7057 int hPijx(double *p, int bage, int fage)
|
Line 11103 int hPijx(double *p, int bage, int fage)
|
} |
} |
/*}*/ |
/*}*/ |
} |
} |
return 0; |
return 0; |
} |
} |
|
|
|
int hBijx(double *p, int bage, int fage, double ***prevacurrent){ |
|
/*------------- h Bij x at various ages ------------*/ |
|
|
|
int stepsize; |
|
/* int agelim; */ |
|
int ageminl; |
|
int hstepm; |
|
int nhstepm; |
|
int h, i, i1, j, k, nres; |
|
|
|
double agedeb; |
|
double ***p3mat; |
|
|
|
strcpy(filerespijb,"PIJB_"); strcat(filerespijb,fileresu); |
|
if((ficrespijb=fopen(filerespijb,"w"))==NULL) { |
|
printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1; |
|
fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1; |
|
} |
|
printf("Computing pij back: result on file '%s' \n", filerespijb); |
|
fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb); |
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
|
/*if (stepm<=24) stepsize=2;*/ |
|
|
|
/* agelim=AGESUP; */ |
|
ageminl=AGEINF; /* was 30 */ |
|
hstepm=stepsize*YEARM; /* Every year of age */ |
|
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
|
|
|
/* hstepm=1; aff par mois*/ |
|
pstamp(ficrespijb); |
|
fprintf(ficrespijb,"#****** h Bij x Back probability to be in state i at age x-h being in j at x: B1j+B2j+...=1 "); |
|
i1= pow(2,cptcoveff); |
|
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
|
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
|
/* k=k+1; */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
|
fprintf(ficrespijb,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
|
fprintf(ficrespijb,"******\n"); |
|
if(invalidvarcomb[k]){ /* Is it necessary here? */ |
|
fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); |
|
continue; |
|
} |
|
|
|
/* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */ |
|
for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */ |
|
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */ |
|
nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm+0.1)-1; /* Typically 20 years = 20*12/6=40 or 55*12/24=27.5-1.1=>27 */ |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 or 28*/ |
|
|
|
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
|
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */ |
|
/* and memory limitations if stepm is small */ |
|
|
|
/* oldm=oldms;savm=savms; */ |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
|
hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres); |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */ |
|
fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j="); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespijb," %1d-%1d",i,j); |
|
fprintf(ficrespijb,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm ); |
|
/* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */ |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespijb," %.5f", p3mat[i][j][h]); |
|
fprintf(ficrespijb,"\n"); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespijb,"\n"); |
|
} /* end age deb */ |
|
} /* end combination */ |
|
} /* end nres */ |
|
return 0; |
|
} /* hBijx */ |
|
|
|
|
/***********************************************/ |
/***********************************************/ |
Line 7075 int main(int argc, char *argv[])
|
Line 11210 int main(int argc, char *argv[])
|
double ssval; |
double ssval; |
#endif |
#endif |
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; |
int i,j, k, iter=0,m,size=100, cptcod; /* Suppressing because nobs */ |
|
/* int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; */ |
int ncvyear=0; /* Number of years needed for the period prevalence to converge */ |
int ncvyear=0; /* Number of years needed for the period prevalence to converge */ |
int jj, ll, li, lj, lk; |
int jj, ll, li, lj, lk; |
int numlinepar=0; /* Current linenumber of parameter file */ |
int numlinepar=0; /* Current linenumber of parameter file */ |
Line 7083 int main(int argc, char *argv[])
|
Line 11219 int main(int argc, char *argv[])
|
int itimes; |
int itimes; |
int NDIM=2; |
int NDIM=2; |
int vpopbased=0; |
int vpopbased=0; |
|
int nres=0; |
|
int endishere=0; |
|
int noffset=0; |
|
int ncurrv=0; /* Temporary variable */ |
|
|
char ca[32], cb[32]; |
char ca[32], cb[32]; |
/* FILE *fichtm; *//* Html File */ |
/* FILE *fichtm; *//* Html File */ |
/* FILE *ficgp;*/ /*Gnuplot File */ |
/* FILE *ficgp;*/ /*Gnuplot File */ |
Line 7091 int main(int argc, char *argv[])
|
Line 11231 int main(int argc, char *argv[])
|
double agedeb=0.; |
double agedeb=0.; |
|
|
double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW; |
double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW; |
|
double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */ |
|
|
double fret; |
double fret; |
double dum=0.; /* Dummy variable */ |
double dum=0.; /* Dummy variable */ |
double ***p3mat; |
double ***p3mat; |
double ***mobaverage; |
/* double ***mobaverage; */ |
|
double wald; |
|
|
char line[MAXLINE]; |
char line[MAXLINE]; |
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
|
|
char model[MAXLINE], modeltemp[MAXLINE]; |
char modeltemp[MAXLINE]; |
|
char resultline[MAXLINE]; |
|
|
char pathr[MAXLINE], pathimach[MAXLINE]; |
char pathr[MAXLINE], pathimach[MAXLINE]; |
char *tok, *val; /* pathtot */ |
char *tok, *val; /* pathtot */ |
int firstobs=1, lastobs=10; |
int firstobs=1, lastobs=10; /* nobs = lastobs-firstobs declared globally ;*/ |
int c, h , cpt, c2; |
int c, h , cpt, c2; |
int jl=0; |
int jl=0; |
int i1, j1, jk, stepsize=0; |
int i1, j1, jk, stepsize=0; |
Line 7111 int main(int argc, char *argv[])
|
Line 11255 int main(int argc, char *argv[])
|
|
|
int *tab; |
int *tab; |
int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
|
/* double anprojd, mprojd, jprojd; /\* For eventual projections *\/ */ |
|
/* double anprojf, mprojf, jprojf; */ |
|
/* double jintmean,mintmean,aintmean; */ |
|
int prvforecast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */ |
|
int prvbackcast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */ |
|
double yrfproj= 10.0; /* Number of years of forward projections */ |
|
double yrbproj= 10.0; /* Number of years of backward projections */ |
|
int prevbcast=0; /* defined as global for mlikeli and mle, replacing backcast */ |
int mobilav=0,popforecast=0; |
int mobilav=0,popforecast=0; |
int hstepm=0, nhstepm=0; |
int hstepm=0, nhstepm=0; |
int agemortsup; |
int agemortsup; |
Line 7121 int main(int argc, char *argv[])
|
Line 11273 int main(int argc, char *argv[])
|
double bage=0, fage=110., age, agelim=0., agebase=0.; |
double bage=0, fage=110., age, agelim=0., agebase=0.; |
double ftolpl=FTOL; |
double ftolpl=FTOL; |
double **prlim; |
double **prlim; |
double ***param; /* Matrix of parameters */ |
double **bprlim; |
double *p; |
double ***param; /* Matrix of parameters, param[i][j][k] param=ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel) |
|
state of origin, state of destination including death, for each covariate: constante, age, and V1 V2 etc. */ |
|
double ***paramstart; /* Matrix of starting parameter values */ |
|
double *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */ |
double **matcov; /* Matrix of covariance */ |
double **matcov; /* Matrix of covariance */ |
double **hess; /* Hessian matrix */ |
double **hess; /* Hessian matrix */ |
double ***delti3; /* Scale */ |
double ***delti3; /* Scale */ |
double *delti; /* Scale */ |
double *delti; /* Scale */ |
double ***eij, ***vareij; |
double ***eij, ***vareij; |
double **varpl; /* Variances of prevalence limits by age */ |
double **varpl; /* Variances of prevalence limits by age */ |
|
|
double *epj, vepp; |
double *epj, vepp; |
|
|
double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000; |
double dateprev1, dateprev2; |
|
double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0, dateprojd=0, dateprojf=0; |
|
double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0, datebackd=0, datebackf=0; |
|
|
|
|
double **ximort; |
double **ximort; |
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
int *dcwave; |
int *dcwave; |
Line 7208 int main(int argc, char *argv[])
|
Line 11368 int main(int argc, char *argv[])
|
if(pathr[0] == '\0') break; /* Dirty */ |
if(pathr[0] == '\0') break; /* Dirty */ |
} |
} |
} |
} |
|
else if (argc<=2){ |
|
strcpy(pathtot,argv[1]); |
|
} |
else{ |
else{ |
strcpy(pathtot,argv[1]); |
strcpy(pathtot,argv[1]); |
|
strcpy(z,argv[2]); |
|
printf("\nargv[2]=%s z=%c\n",argv[2],z[0]); |
} |
} |
/*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/ |
/*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/ |
/*cygwin_split_path(pathtot,path,optionfile); |
/*cygwin_split_path(pathtot,path,optionfile); |
Line 7287 int main(int argc, char *argv[])
|
Line 11452 int main(int argc, char *argv[])
|
exit(70); |
exit(70); |
} |
} |
|
|
|
|
|
|
strcpy(filereso,"o"); |
strcpy(filereso,"o"); |
strcat(filereso,fileresu); |
strcat(filereso,fileresu); |
if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */ |
if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */ |
Line 7297 int main(int argc, char *argv[])
|
Line 11460 int main(int argc, char *argv[])
|
fflush(ficlog); |
fflush(ficlog); |
goto end; |
goto end; |
} |
} |
|
/*-------- Rewriting parameter file ----------*/ |
|
strcpy(rfileres,"r"); /* "Rparameterfile */ |
|
strcat(rfileres,optionfilefiname); /* Parameter file first name */ |
|
strcat(rfileres,"."); /* */ |
|
strcat(rfileres,optionfilext); /* Other files have txt extension */ |
|
if((ficres =fopen(rfileres,"w"))==NULL) { |
|
printf("Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fflush(ficlog); |
|
goto end; |
|
} |
|
fprintf(ficres,"#IMaCh %s\n",version); |
|
|
|
|
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
numlinepar=0; |
numlinepar=0; |
|
/* Is it a BOM UTF-8 Windows file? */ |
/* First parameter line */ |
/* First parameter line */ |
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
|
noffset=0; |
|
if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */ |
|
{ |
|
noffset=noffset+3; |
|
printf("# File is an UTF8 Bom.\n"); // 0xBF |
|
} |
|
/* else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/ |
|
else if( line[0] == (char)0xFF && line[1] == (char)0xFE) |
|
{ |
|
noffset=noffset+2; |
|
printf("# File is an UTF16BE BOM file\n"); |
|
} |
|
else if( line[0] == 0 && line[1] == 0) |
|
{ |
|
if( line[2] == (char)0xFE && line[3] == (char)0xFF){ |
|
noffset=noffset+4; |
|
printf("# File is an UTF16BE BOM file\n"); |
|
} |
|
} else{ |
|
;/*printf(" Not a BOM file\n");*/ |
|
} |
|
|
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
if (line[noffset] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
|
fputs(line,ficres); |
fputs(line,ficlog); |
fputs(line,ficlog); |
continue; |
continue; |
}else |
}else |
Line 7317 int main(int argc, char *argv[])
|
Line 11516 int main(int argc, char *argv[])
|
title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){ |
title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){ |
if (num_filled != 5) { |
if (num_filled != 5) { |
printf("Should be 5 parameters\n"); |
printf("Should be 5 parameters\n"); |
|
fprintf(ficlog,"Should be 5 parameters\n"); |
} |
} |
numlinepar++; |
numlinepar++; |
printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
} |
} |
/* Second parameter line */ |
/* Second parameter line */ |
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
/* If line starts with a # it is a comment */ |
/* while(fscanf(ficpar,"%[^\n]", line)) { */ |
|
/* If line starts with a # it is a comment. Strangely fgets reads the EOL and fputs doesn't */ |
if (line[0] == '#') { |
if (line[0] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
printf("%s",line); |
fputs(line,ficparo); |
fprintf(ficres,"%s",line); |
fputs(line,ficlog); |
fprintf(ficparo,"%s",line); |
|
fprintf(ficlog,"%s",line); |
continue; |
continue; |
}else |
}else |
break; |
break; |
} |
} |
if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \ |
if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \ |
&ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){ |
&ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){ |
if (num_filled != 8) { |
if (num_filled != 11) { |
printf("Not 8 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
printf("but line=%s\n",line); |
printf("but line=%s\n",line); |
|
fprintf(ficlog,"Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
|
fprintf(ficlog,"but line=%s\n",line); |
|
} |
|
if( lastpass > maxwav){ |
|
printf("Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav); |
|
fprintf(ficlog,"Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav); |
|
fflush(ficlog); |
|
goto end; |
} |
} |
printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt); |
printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
|
fprintf(ficparo,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
|
fprintf(ficres,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, 0, weightopt); |
|
fprintf(ficlog,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
} |
} |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
/*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
/*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
Line 7348 int main(int argc, char *argv[])
|
Line 11564 int main(int argc, char *argv[])
|
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
if (line[0] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
printf("%s",line); |
fputs(line,ficparo); |
fprintf(ficres,"%s",line); |
fputs(line,ficlog); |
fprintf(ficparo,"%s",line); |
|
fprintf(ficlog,"%s",line); |
continue; |
continue; |
}else |
}else |
break; |
break; |
} |
} |
if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ |
if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ |
if (num_filled == 0) |
if (num_filled != 1){ |
model[0]='\0'; |
printf("ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line); |
else if (num_filled != 1){ |
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line); |
printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
|
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
|
model[0]='\0'; |
model[0]='\0'; |
goto end; |
goto end; |
} |
} |
Line 7373 int main(int argc, char *argv[])
|
Line 11588 int main(int argc, char *argv[])
|
} |
} |
/* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */ |
/* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */ |
printf("model=1+age+%s\n",model);fflush(stdout); |
printf("model=1+age+%s\n",model);fflush(stdout); |
|
fprintf(ficparo,"model=1+age+%s\n",model);fflush(stdout); |
|
fprintf(ficres,"model=1+age+%s\n",model);fflush(stdout); |
|
fprintf(ficlog,"model=1+age+%s\n",model);fflush(stdout); |
} |
} |
/* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */ |
/* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */ |
/* numlinepar=numlinepar+3; /\* In general *\/ */ |
/* numlinepar=numlinepar+3; /\* In general *\/ */ |
/* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */ |
/* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */ |
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); |
/* fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */ |
fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model); |
/* fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */ |
fflush(ficlog); |
fflush(ficlog); |
/* if(model[0]=='#'|| model[0]== '\0'){ */ |
/* if(model[0]=='#'|| model[0]== '\0'){ */ |
if(model[0]=='#'){ |
if(model[0]=='#'){ |
printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \ |
printf("Error in 'model' line: model should start with 'model=1+age+' and end without space \n \ |
'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \ |
'model=1+age+' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age' or \n \ |
'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n"); \ |
'model=1+age+V1+V2' or 'model=1+age+V1+V2+V1*V2' etc. \n"); \ |
if(mle != -1){ |
if(mle != -1){ |
printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n"); |
printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter vectors and subdiagonal covariance matrix.\n"); |
exit(1); |
exit(1); |
} |
} |
} |
} |
Line 7406 int main(int argc, char *argv[])
|
Line 11624 int main(int argc, char *argv[])
|
ungetc(c,ficpar); |
ungetc(c,ficpar); |
|
|
|
|
covar=matrix(0,NCOVMAX,1,n); /**< used in readdata */ |
covar=matrix(0,NCOVMAX,firstobs,lastobs); /**< used in readdata */ |
|
if(nqv>=1)coqvar=matrix(1,nqv,firstobs,lastobs); /**< Fixed quantitative covariate */ |
|
if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,firstobs,lastobs); /**< Time varying quantitative covariate */ |
|
if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,firstobs,lastobs); /**< Time varying covariate (dummy and quantitative)*/ |
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
v1+v2*age+v2*v3 makes cptcovn = 3 |
v1+v2*age+v2*v3 makes cptcovn = 3 |
Line 7428 int main(int argc, char *argv[])
|
Line 11649 int main(int argc, char *argv[])
|
delti=delti3[1][1]; |
delti=delti3[1][1]; |
/*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/ |
/*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/ |
if(mle==-1){ /* Print a wizard for help writing covariance matrix */ |
if(mle==-1){ /* Print a wizard for help writing covariance matrix */ |
|
/* We could also provide initial parameters values giving by simple logistic regression |
|
* only one way, that is without matrix product. We will have nlstate maximizations */ |
|
/* for(i=1;i<nlstate;i++){ */ |
|
/* /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */ |
|
/* mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */ |
|
/* } */ |
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
Line 7436 int main(int argc, char *argv[])
|
Line 11663 int main(int argc, char *argv[])
|
fclose (ficlog); |
fclose (ficlog); |
goto end; |
goto end; |
exit(0); |
exit(0); |
} |
} else if(mle==-5) { /* Main Wizard */ |
else if(mle==-3) { /* Main Wizard */ |
|
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
matcov=matrix(1,npar,1,npar); |
matcov=matrix(1,npar,1,npar); |
hess=matrix(1,npar,1,npar); |
hess=matrix(1,npar,1,npar); |
} |
} else{ /* Begin of mle != -1 or -5 */ |
else{ |
|
/* Read guessed parameters */ |
/* Read guessed parameters */ |
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
Line 7459 int main(int argc, char *argv[])
|
Line 11684 int main(int argc, char *argv[])
|
ungetc(c,ficpar); |
ungetc(c,ficpar); |
|
|
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
|
paramstart= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
for(i=1; i <=nlstate; i++){ |
for(i=1; i <=nlstate; i++){ |
j=0; |
j=0; |
for(jj=1; jj <=nlstate+ndeath; jj++){ |
for(jj=1; jj <=nlstate+ndeath; jj++){ |
if(jj==i) continue; |
if(jj==i) continue; |
j++; |
j++; |
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
} |
|
ungetc(c,ficpar); |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
if ((i1 != i) || (j1 != jj)){ |
if ((i1 != i) || (j1 != jj)){ |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
Line 7494 run imach with mle=-1 to get a correct t
|
Line 11729 run imach with mle=-1 to get a correct t
|
} |
} |
} |
} |
fflush(ficlog); |
fflush(ficlog); |
|
|
/* Reads scales values */ |
/* Reads parameters values */ |
p=param[1][1]; |
p=param[1][1]; |
|
pstart=paramstart[1][1]; |
|
|
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
Line 7533 run imach with mle=-1 to get a correct t
|
Line 11769 run imach with mle=-1 to get a correct t
|
} |
} |
} |
} |
fflush(ficlog); |
fflush(ficlog); |
|
|
/* Reads covariance matrix */ |
/* Reads covariance matrix */ |
delti=delti3[1][1]; |
delti=delti3[1][1]; |
|
|
|
|
/* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */ |
/* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */ |
|
|
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
ungetc(c,ficpar); |
ungetc(c,ficpar); |
Line 7550 run imach with mle=-1 to get a correct t
|
Line 11786 run imach with mle=-1 to get a correct t
|
fputs(line,ficlog); |
fputs(line,ficlog); |
} |
} |
ungetc(c,ficpar); |
ungetc(c,ficpar); |
|
|
matcov=matrix(1,npar,1,npar); |
matcov=matrix(1,npar,1,npar); |
hess=matrix(1,npar,1,npar); |
hess=matrix(1,npar,1,npar); |
for(i=1; i <=npar; i++) |
for(i=1; i <=npar; i++) |
for(j=1; j <=npar; j++) matcov[i][j]=0.; |
for(j=1; j <=npar; j++) matcov[i][j]=0.; |
|
|
/* Scans npar lines */ |
/* Scans npar lines */ |
for(i=1; i <=npar; i++){ |
for(i=1; i <=npar; i++){ |
count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk); |
count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk); |
if(count != 3){ |
if(count != 3){ |
printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
Line 7567 Please run with mle=-1 to get a correct
|
Line 11803 Please run with mle=-1 to get a correct
|
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
exit(1); |
exit(1); |
}else |
}else{ |
if(mle==1) |
if(mle==1) |
printf("%1d%1d%1d",i1,j1,jk); |
printf("%1d%1d%d",i1,j1,jk); |
fprintf(ficlog,"%1d%1d%1d",i1,j1,jk); |
} |
fprintf(ficparo,"%1d%1d%1d",i1,j1,jk); |
fprintf(ficlog,"%1d%1d%d",i1,j1,jk); |
|
fprintf(ficparo,"%1d%1d%d",i1,j1,jk); |
for(j=1; j <=i; j++){ |
for(j=1; j <=i; j++){ |
fscanf(ficpar," %le",&matcov[i][j]); |
fscanf(ficpar," %le",&matcov[i][j]); |
if(mle==1){ |
if(mle==1){ |
Line 7583 Please run with mle=-1 to get a correct
|
Line 11820 Please run with mle=-1 to get a correct
|
fscanf(ficpar,"\n"); |
fscanf(ficpar,"\n"); |
numlinepar++; |
numlinepar++; |
if(mle==1) |
if(mle==1) |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficparo,"\n"); |
fprintf(ficparo,"\n"); |
} |
} |
Line 7598 Please run with mle=-1 to get a correct
|
Line 11835 Please run with mle=-1 to get a correct
|
|
|
fflush(ficlog); |
fflush(ficlog); |
|
|
/*-------- Rewriting parameter file ----------*/ |
|
strcpy(rfileres,"r"); /* "Rparameterfile */ |
|
strcat(rfileres,optionfilefiname); /* Parameter file first name*/ |
|
strcat(rfileres,"."); /* */ |
|
strcat(rfileres,optionfilext); /* Other files have txt extension */ |
|
if((ficres =fopen(rfileres,"w"))==NULL) { |
|
printf("Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end; |
|
} |
|
fprintf(ficres,"#%s\n",version); |
|
} /* End of mle != -3 */ |
} /* End of mle != -3 */ |
|
|
/* Main data |
/* Main data |
*/ |
*/ |
n= lastobs; |
nobs=lastobs-firstobs+1; /* was = lastobs;*/ |
num=lvector(1,n); |
/* num=lvector(1,n); */ |
moisnais=vector(1,n); |
/* moisnais=vector(1,n); */ |
annais=vector(1,n); |
/* annais=vector(1,n); */ |
moisdc=vector(1,n); |
/* moisdc=vector(1,n); */ |
andc=vector(1,n); |
/* andc=vector(1,n); */ |
agedc=vector(1,n); |
/* weight=vector(1,n); */ |
cod=ivector(1,n); |
/* agedc=vector(1,n); */ |
weight=vector(1,n); |
/* cod=ivector(1,n); */ |
for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */ |
/* for(i=1;i<=n;i++){ */ |
mint=matrix(1,maxwav,1,n); |
num=lvector(firstobs,lastobs); |
anint=matrix(1,maxwav,1,n); |
moisnais=vector(firstobs,lastobs); |
s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ |
annais=vector(firstobs,lastobs); |
|
moisdc=vector(firstobs,lastobs); |
|
andc=vector(firstobs,lastobs); |
|
weight=vector(firstobs,lastobs); |
|
agedc=vector(firstobs,lastobs); |
|
cod=ivector(firstobs,lastobs); |
|
for(i=firstobs;i<=lastobs;i++){ |
|
num[i]=0; |
|
moisnais[i]=0; |
|
annais[i]=0; |
|
moisdc[i]=0; |
|
andc[i]=0; |
|
agedc[i]=0; |
|
cod[i]=0; |
|
weight[i]=1.0; /* Equal weights, 1 by default */ |
|
} |
|
mint=matrix(1,maxwav,firstobs,lastobs); |
|
anint=matrix(1,maxwav,firstobs,lastobs); |
|
s=imatrix(1,maxwav+1,firstobs,lastobs); /* s[i][j] health state for wave i and individual j */ |
tab=ivector(1,NCOVMAX); |
tab=ivector(1,NCOVMAX); |
ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
Line 7634 Please run with mle=-1 to get a correct
|
Line 11879 Please run with mle=-1 to get a correct
|
goto end; |
goto end; |
|
|
/* Calculation of the number of parameters from char model */ |
/* Calculation of the number of parameters from char model */ |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 |
k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4 |
k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4 |
k=3 V4 Tvar[k=3]= 4 (from V4) |
k=3 V4 Tvar[k=3]= 4 (from V4) |
k=2 V1 Tvar[k=2]= 1 (from V1) |
k=2 V1 Tvar[k=2]= 1 (from V1) |
k=1 Tvar[1]=2 (from V2) |
k=1 Tvar[1]=2 (from V2) |
*/ |
*/ |
|
|
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
|
TvarsDind=ivector(1,NCOVMAX); /* */ |
|
TvarsD=ivector(1,NCOVMAX); /* */ |
|
TvarsQind=ivector(1,NCOVMAX); /* */ |
|
TvarsQ=ivector(1,NCOVMAX); /* */ |
|
TvarF=ivector(1,NCOVMAX); /* */ |
|
TvarFind=ivector(1,NCOVMAX); /* */ |
|
TvarV=ivector(1,NCOVMAX); /* */ |
|
TvarVind=ivector(1,NCOVMAX); /* */ |
|
TvarA=ivector(1,NCOVMAX); /* */ |
|
TvarAind=ivector(1,NCOVMAX); /* */ |
|
TvarFD=ivector(1,NCOVMAX); /* */ |
|
TvarFDind=ivector(1,NCOVMAX); /* */ |
|
TvarFQ=ivector(1,NCOVMAX); /* */ |
|
TvarFQind=ivector(1,NCOVMAX); /* */ |
|
TvarVD=ivector(1,NCOVMAX); /* */ |
|
TvarVDind=ivector(1,NCOVMAX); /* */ |
|
TvarVQ=ivector(1,NCOVMAX); /* */ |
|
TvarVQind=ivector(1,NCOVMAX); /* */ |
|
|
|
Tvalsel=vector(1,NCOVMAX); /* */ |
|
Tvarsel=ivector(1,NCOVMAX); /* */ |
|
Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */ |
|
Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */ |
|
Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */ |
/* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). |
/* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). |
For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, |
For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, |
Tvar[4=age*V3] is 3 and 'age' is recorded in Tage. |
Tvar[4=age*V3] is 3 and 'age' is recorded in Tage. |
Line 7650 Please run with mle=-1 to get a correct
|
Line 11920 Please run with mle=-1 to get a correct
|
ncovcol + k1 |
ncovcol + k1 |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3 |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3 |
Tvar[3=V1*V4]=4+1 etc */ |
Tvar[3=V1*V4]=4+1 etc */ |
Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */ |
Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */ |
|
Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */ |
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 |
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 |
if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) |
if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) |
|
Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 |
*/ |
*/ |
Tvaraff=ivector(1,NCOVMAX); /* Unclear */ |
Tvaraff=ivector(1,NCOVMAX); /* Unclear */ |
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
Line 7662 Please run with mle=-1 to get a correct
|
Line 11934 Please run with mle=-1 to get a correct
|
4 covariates (3 plus signs) |
4 covariates (3 plus signs) |
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
*/ |
*/ |
|
Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an |
|
* individual dummy, fixed or varying: |
|
* Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4, |
|
* 3, 1, 0, 0, 0, 0, 0, 0}, |
|
* model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , |
|
* V1 df, V2 qf, V3 & V4 dv, V5 qv |
|
* Tmodelind[1]@9={9,0,3,2,}*/ |
|
TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/ |
|
TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an |
|
* individual quantitative, fixed or varying: |
|
* Tmodelqind[1]=1,Tvaraff[1]@9={4, |
|
* 3, 1, 0, 0, 0, 0, 0, 0}, |
|
* model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
/* Main decodemodel */ |
/* Main decodemodel */ |
|
|
|
|
if(decodemodel(model, lastobs) == 1) |
if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3 = {4, 3, 5}*/ |
goto end; |
goto end; |
|
|
if((double)(lastobs-imx)/(double)imx > 1.10){ |
if((double)(lastobs-imx)/(double)imx > 1.10){ |
Line 7687 Please run with mle=-1 to get a correct
|
Line 11971 Please run with mle=-1 to get a correct
|
|
|
|
|
agegomp=(int)agemin; |
agegomp=(int)agemin; |
free_vector(moisnais,1,n); |
free_vector(moisnais,firstobs,lastobs); |
free_vector(annais,1,n); |
free_vector(annais,firstobs,lastobs); |
/* free_matrix(mint,1,maxwav,1,n); |
/* free_matrix(mint,1,maxwav,1,n); |
free_matrix(anint,1,maxwav,1,n);*/ |
free_matrix(anint,1,maxwav,1,n);*/ |
/* free_vector(moisdc,1,n); */ |
/* free_vector(moisdc,1,n); */ |
Line 7712 Please run with mle=-1 to get a correct
|
Line 11996 Please run with mle=-1 to get a correct
|
*/ |
*/ |
|
|
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
/* */ |
/* Concatenates waves */ |
|
|
free_vector(moisdc,1,n); |
free_vector(moisdc,firstobs,lastobs); |
free_vector(andc,1,n); |
free_vector(andc,firstobs,lastobs); |
|
|
/* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ |
/* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ |
|
|
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
ncodemax[1]=1; |
ncodemax[1]=1; |
Ndum =ivector(-1,NCOVMAX); |
Ndum =ivector(-1,NCOVMAX); |
if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */ |
cptcoveff=0; |
tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ |
if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */ |
|
tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ |
|
} |
|
|
|
ncovcombmax=pow(2,cptcoveff); |
|
invalidvarcomb=ivector(1, ncovcombmax); |
|
for(i=1;i<ncovcombmax;i++) |
|
invalidvarcomb[i]=0; |
|
|
/* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in |
/* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in |
V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/ |
V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/ |
/* 1 to ncodemax[j] which is the maximum value of this jth covariate */ |
/* 1 to ncodemax[j] which is the maximum value of this jth covariate */ |
|
|
/* codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */ |
/* codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */ |
/*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/ |
/*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/ |
/* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/ |
/* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/ |
Line 7739 Please run with mle=-1 to get a correct
|
Line 12030 Please run with mle=-1 to get a correct
|
*/ |
*/ |
|
|
h=0; |
h=0; |
|
|
|
|
/*if (cptcovn > 0) */ |
/*if (cptcovn > 0) */ |
|
|
|
|
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
|
|
/**< codtab(h,k) k = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1 |
/**< codtab(h,k) k = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1 |
Line 7784 Please run with mle=-1 to get a correct
|
Line 12071 Please run with mle=-1 to get a correct
|
* bbbbbbbb |
* bbbbbbbb |
* 76543210 |
* 76543210 |
* h-1 00000101 (6-1=5) |
* h-1 00000101 (6-1=5) |
*(h-1)>>(k-1)= 00000001 >> (2-1) = 1 right shift |
*(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift |
* & |
* & |
* 1 00000001 (1) |
* 1 00000001 (1) |
* 00000001 = 1 & ((h-1) >> (k-1)) |
* 00000000 = 1 & ((h-1) >> (k-1)) |
* +1= 00000010 =2 |
* +1= 00000001 =1 |
* |
* |
* h=14, k=3 => h'=h-1=13, k'=k-1=2 |
* h=14, k=3 => h'=h-1=13, k'=k-1=2 |
* h' 1101 =2^3+2^2+0x2^1+2^0 |
* h' 1101 =2^3+2^2+0x2^1+2^0 |
Line 7810 Please run with mle=-1 to get a correct
|
Line 12097 Please run with mle=-1 to get a correct
|
* 2211 |
* 2211 |
* V1=1+1, V2=0+1, V3=1+1, V4=1+1 |
* V1=1+1, V2=0+1, V3=1+1, V4=1+1 |
* V3=2 |
* V3=2 |
|
* codtabm and decodtabm are identical |
*/ |
*/ |
|
|
/* /\* for(h=1; h <=100 ;h++){ *\/ */ |
|
/* /\* printf("h=%2d ", h); *\/ */ |
|
/* /\* for(k=1; k <=10; k++){ *\/ */ |
|
/* /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */ |
|
/* /\* codtab[h][k]=codtabm(h,k); *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* printf("\n"); *\/ */ |
|
/* } */ |
|
/* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */ |
|
/* for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/ */ |
|
/* for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */ |
|
/* for(cpt=1; cpt <=pow(2,k-1); cpt++){ /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/ */ |
|
/* h++; */ |
|
/* if (h>m) */ |
|
/* h=1; */ |
|
/* codtab[h][k]=j; */ |
|
/* /\* codtab[12][3]=1; *\/ */ |
|
/* /\*codtab[h][Tvar[k]]=j;*\/ */ |
|
/* /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
/* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); |
|
codtab[1][2]=1;codtab[2][2]=2; */ |
|
/* for(i=1; i <=m ;i++){ */ |
|
/* for(k=1; k <=cptcovn; k++){ */ |
|
/* printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* } */ |
|
/* scanf("%d",i);*/ |
|
|
|
free_ivector(Ndum,-1,NCOVMAX); |
free_ivector(Ndum,-1,NCOVMAX); |
|
|
Line 7918 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 12174 Title=%s <br>Datafile=%s Firstpass=%d La
|
#endif |
#endif |
|
|
|
|
/* Calculates basic frequencies. Computes observed prevalence at single age |
/* Calculates basic frequencies. Computes observed prevalence at single age |
|
and for any valid combination of covariates |
and prints on file fileres'p'. */ |
and prints on file fileres'p'. */ |
freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ |
freqsummary(fileres, p, pstart, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \ |
firstpass, lastpass, stepm, weightopt, model); |
firstpass, lastpass, stepm, weightopt, model); |
|
|
fprintf(fichtm,"\n"); |
fprintf(fichtm,"\n"); |
fprintf(fichtm,"<br>Total number of observations=%d <br>\n\ |
fprintf(fichtm,"<h4>Parameter line 2</h4><ul><li>Tolerance for the convergence of the likelihood: ftol=%g \n<li>Interval for the elementary matrix (in month): stepm=%d",\ |
|
ftol, stepm); |
|
fprintf(fichtm,"\n<li>Number of fixed dummy covariates: ncovcol=%d ", ncovcol); |
|
ncurrv=1; |
|
for(i=ncurrv; i <=ncovcol; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li> Number of fixed quantitative variables: nqv=%d ", nqv); |
|
ncurrv=i; |
|
for(i=ncurrv; i <=ncurrv-1+nqv; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li> Number of time varying (wave varying) dummy covariates: ntv=%d ", ntv); |
|
ncurrv=i; |
|
for(i=ncurrv; i <=ncurrv-1+ntv; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li>Number of time varying quantitative covariates: nqtv=%d ", nqtv); |
|
ncurrv=i; |
|
for(i=ncurrv; i <=ncurrv-1+nqtv; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li>Weights column \n<br>Number of alive states: nlstate=%d <br>Number of death states (not really implemented): ndeath=%d \n<li>Number of waves: maxwav=%d \n<li>Parameter for maximization (1), using parameter values (0), for design of parameters and variance-covariance matrix: mle=%d \n<li>Does the weight column be taken into account (1), or not (0): weight=%d</ul>\n", \ |
|
nlstate, ndeath, maxwav, mle, weightopt); |
|
|
|
fprintf(fichtm,"<h4> Diagram of states <a href=\"%s_.svg\">%s_.svg</a></h4> \n\ |
|
<img src=\"%s_.svg\">", subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_")); |
|
|
|
|
|
fprintf(fichtm,"\n<h4>Some descriptive statistics </h4>\n<br>Number of (used) observations=%d <br>\n\ |
Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ |
Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ |
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
imx,agemin,agemax,jmin,jmax,jmean); |
imx,agemin,agemax,jmin,jmax,jmean); |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
|
|
|
|
/* For Powell, parameters are in a vector p[] starting at p[1] |
/* For Powell, parameters are in a vector p[] starting at p[1] |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
p=param[1][1]; /* *(*(*(param +1)+1)+0) */ |
p=param[1][1]; /* *(*(*(param +1)+1)+0) */ |
Line 7943 Interval (in months) between two waves:
|
Line 12220 Interval (in months) between two waves:
|
/* For mortality only */ |
/* For mortality only */ |
if (mle==-3){ |
if (mle==-3){ |
ximort=matrix(1,NDIM,1,NDIM); |
ximort=matrix(1,NDIM,1,NDIM); |
|
for(i=1;i<=NDIM;i++) |
|
for(j=1;j<=NDIM;j++) |
|
ximort[i][j]=0.; |
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
cens=ivector(1,n); |
cens=ivector(firstobs,lastobs); |
ageexmed=vector(1,n); |
ageexmed=vector(firstobs,lastobs); |
agecens=vector(1,n); |
agecens=vector(firstobs,lastobs); |
dcwave=ivector(1,n); |
dcwave=ivector(firstobs,lastobs); |
|
|
for (i=1; i<=imx; i++){ |
for (i=1; i<=imx; i++){ |
dcwave[i]=-1; |
dcwave[i]=-1; |
for (m=firstpass; m<=lastpass; m++) |
for (m=firstpass; m<=lastpass; m++) |
Line 7958 Interval (in months) between two waves:
|
Line 12238 Interval (in months) between two waves:
|
break; |
break; |
} |
} |
} |
} |
|
|
for (i=1; i<=imx; i++) { |
for (i=1; i<=imx; i++) { |
if (wav[i]>0){ |
if (wav[i]>0){ |
ageexmed[i]=agev[mw[1][i]][i]; |
ageexmed[i]=agev[mw[1][i]][i]; |
j=wav[i]; |
j=wav[i]; |
agecens[i]=1.; |
agecens[i]=1.; |
|
|
if (ageexmed[i]> 1 && wav[i] > 0){ |
if (ageexmed[i]> 1 && wav[i] > 0){ |
agecens[i]=agev[mw[j][i]][i]; |
agecens[i]=agev[mw[j][i]][i]; |
cens[i]= 1; |
cens[i]= 1; |
Line 7981 Interval (in months) between two waves:
|
Line 12261 Interval (in months) between two waves:
|
ximort[i][j]=(i == j ? 1.0 : 0.0); |
ximort[i][j]=(i == j ? 1.0 : 0.0); |
} |
} |
|
|
/*p[1]=0.0268; p[NDIM]=0.083;*/ |
p[1]=0.0268; p[NDIM]=0.083; |
/*printf("%lf %lf", p[1], p[2]);*/ |
/* printf("%lf %lf", p[1], p[2]); */ |
|
|
|
|
#ifdef GSL |
#ifdef GSL |
Line 8091 Interval (in months) between two waves:
|
Line 12371 Interval (in months) between two waves:
|
|
|
for(i=1; i <=NDIM; i++) |
for(i=1; i <=NDIM; i++) |
for(j=i+1;j<=NDIM;j++) |
for(j=i+1;j<=NDIM;j++) |
matcov[i][j]=matcov[j][i]; |
matcov[i][j]=matcov[j][i]; |
|
|
printf("\nCovariance matrix\n "); |
printf("\nCovariance matrix\n "); |
fprintf(ficlog,"\nCovariance matrix\n "); |
fprintf(ficlog,"\nCovariance matrix\n "); |
for(i=1; i <=NDIM; i++) { |
for(i=1; i <=NDIM; i++) { |
for(j=1;j<=NDIM;j++){ |
for(j=1;j<=NDIM;j++){ |
printf("%f ",matcov[i][j]); |
printf("%f ",matcov[i][j]); |
fprintf(ficlog,"%f ",matcov[i][j]); |
fprintf(ficlog,"%f ",matcov[i][j]); |
} |
} |
printf("\n "); fprintf(ficlog,"\n "); |
printf("\n "); fprintf(ficlog,"\n "); |
} |
} |
Line 8108 Interval (in months) between two waves:
|
Line 12388 Interval (in months) between two waves:
|
printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
} |
} |
lsurv=vector(1,AGESUP); |
lsurv=vector(agegomp,AGESUP); |
lpop=vector(1,AGESUP); |
lpop=vector(agegomp,AGESUP); |
tpop=vector(1,AGESUP); |
tpop=vector(agegomp,AGESUP); |
lsurv[agegomp]=100000; |
lsurv[agegomp]=100000; |
|
|
for (k=agegomp;k<=AGESUP;k++) { |
for (k=agegomp;k<=AGESUP;k++) { |
Line 8139 Interval (in months) between two waves:
|
Line 12419 Interval (in months) between two waves:
|
|
|
|
|
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
|
ageminpar=50; |
|
agemaxpar=100; |
if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){ |
if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){ |
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Line 8146 Please run with mle=-1 to get a correct
|
Line 12428 Please run with mle=-1 to get a correct
|
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
}else |
}else{ |
|
printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar); |
|
fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar); |
printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p); |
printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p); |
|
} |
printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \ |
printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \ |
stepm, weightopt,\ |
stepm, weightopt,\ |
model,imx,p,matcov,agemortsup); |
model,imx,p,matcov,agemortsup); |
|
|
free_vector(lsurv,1,AGESUP); |
free_vector(lsurv,agegomp,AGESUP); |
free_vector(lpop,1,AGESUP); |
free_vector(lpop,agegomp,AGESUP); |
free_vector(tpop,1,AGESUP); |
free_vector(tpop,agegomp,AGESUP); |
#ifdef GSL |
|
free_ivector(cens,1,n); |
|
free_vector(agecens,1,n); |
|
free_ivector(dcwave,1,n); |
|
free_matrix(ximort,1,NDIM,1,NDIM); |
free_matrix(ximort,1,NDIM,1,NDIM); |
|
free_ivector(dcwave,firstobs,lastobs); |
|
free_vector(agecens,firstobs,lastobs); |
|
free_vector(ageexmed,firstobs,lastobs); |
|
free_ivector(cens,firstobs,lastobs); |
|
#ifdef GSL |
#endif |
#endif |
} /* Endof if mle==-3 mortality only */ |
} /* Endof if mle==-3 mortality only */ |
/* Standard */ |
/* Standard */ |
Line 8173 Please run with mle=-1 to get a correct
|
Line 12459 Please run with mle=-1 to get a correct
|
printf("\n"); |
printf("\n"); |
if(mle>=1){ /* Could be 1 or 2, Real Maximization */ |
if(mle>=1){ /* Could be 1 or 2, Real Maximization */ |
/* mlikeli uses func not funcone */ |
/* mlikeli uses func not funcone */ |
|
/* for(i=1;i<nlstate;i++){ */ |
|
/* /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */ |
|
/* mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */ |
|
/* } */ |
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
} |
} |
if(mle==0) {/* No optimization, will print the likelihoods for the datafile */ |
if(mle==0) {/* No optimization, will print the likelihoods for the datafile */ |
Line 8188 Please run with mle=-1 to get a correct
|
Line 12478 Please run with mle=-1 to get a correct
|
printf("\n"); |
printf("\n"); |
|
|
/*--------- results files --------------*/ |
/*--------- results files --------------*/ |
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model); |
/* fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); */ |
|
|
|
|
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); /* Printing model equation */ |
fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
|
|
printf("#model= 1 + age "); |
|
fprintf(ficres,"#model= 1 + age "); |
|
fprintf(ficlog,"#model= 1 + age "); |
|
fprintf(fichtm,"\n<ul><li> model=1+age+%s\n \ |
|
</ul>", model); |
|
|
|
fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">\n"); |
|
fprintf(fichtm, "<tr><th>Model=</th><th>1</th><th>+ age</th>"); |
|
if(nagesqr==1){ |
|
printf(" + age*age "); |
|
fprintf(ficres," + age*age "); |
|
fprintf(ficlog," + age*age "); |
|
fprintf(fichtm, "<th>+ age*age</th>"); |
|
} |
|
for(j=1;j <=ncovmodel-2;j++){ |
|
if(Typevar[j]==0) { |
|
printf(" + V%d ",Tvar[j]); |
|
fprintf(ficres," + V%d ",Tvar[j]); |
|
fprintf(ficlog," + V%d ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]); |
|
}else if(Typevar[j]==1) { |
|
printf(" + V%d*age ",Tvar[j]); |
|
fprintf(ficres," + V%d*age ",Tvar[j]); |
|
fprintf(ficlog," + V%d*age ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d*age</th>",Tvar[j]); |
|
}else if(Typevar[j]==2) { |
|
printf(" + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficres," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficlog," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(fichtm, "<th>+ V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
} |
|
} |
|
printf("\n"); |
|
fprintf(ficres,"\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(fichtm, "</tr>"); |
|
fprintf(fichtm, "\n"); |
|
|
|
|
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
if (k != i) { |
if (k != i) { |
|
fprintf(fichtm, "<tr>"); |
printf("%d%d ",i,k); |
printf("%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficres,"%1d%1d ",i,k); |
fprintf(ficres,"%1d%1d ",i,k); |
|
fprintf(fichtm, "<td>%1d%1d</td>",i,k); |
for(j=1; j <=ncovmodel; j++){ |
for(j=1; j <=ncovmodel; j++){ |
printf("%12.7f ",p[jk]); |
printf("%12.7f ",p[jk]); |
fprintf(ficlog,"%12.7f ",p[jk]); |
fprintf(ficlog,"%12.7f ",p[jk]); |
fprintf(ficres,"%12.7f ",p[jk]); |
fprintf(ficres,"%12.7f ",p[jk]); |
|
fprintf(fichtm, "<td>%12.7f</td>",p[jk]); |
jk++; |
jk++; |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficres,"\n"); |
fprintf(ficres,"\n"); |
|
fprintf(fichtm, "</tr>\n"); |
} |
} |
} |
} |
} |
} |
|
/* fprintf(fichtm,"</tr>\n"); */ |
|
fprintf(fichtm,"</table>\n"); |
|
fprintf(fichtm, "\n"); |
|
|
if(mle != 0){ |
if(mle != 0){ |
/* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */ |
/* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */ |
ftolhess=ftol; /* Usually correct */ |
ftolhess=ftol; /* Usually correct */ |
hesscov(matcov, hess, p, npar, delti, ftolhess, func); |
hesscov(matcov, hess, p, npar, delti, ftolhess, func); |
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
|
fprintf(fichtm, "\n<p>Parameters, Wald tests and Wald-based confidence intervals\n</br> W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n</br> And Wald-based confidence intervals plus and minus 1.96 * W \n </br> It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n</br>"); |
|
fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">"); |
|
fprintf(fichtm, "\n<tr><th>Model=</th><th>1</th><th>+ age</th>"); |
|
if(nagesqr==1){ |
|
printf(" + age*age "); |
|
fprintf(ficres," + age*age "); |
|
fprintf(ficlog," + age*age "); |
|
fprintf(fichtm, "<th>+ age*age</th>"); |
|
} |
|
for(j=1;j <=ncovmodel-2;j++){ |
|
if(Typevar[j]==0) { |
|
printf(" + V%d ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]); |
|
}else if(Typevar[j]==1) { |
|
printf(" + V%d*age ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d*age</th>",Tvar[j]); |
|
}else if(Typevar[j]==2) { |
|
fprintf(fichtm, "<th>+ V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
} |
|
} |
|
fprintf(fichtm, "</tr>\n"); |
|
|
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
if (k != i) { |
if (k != i) { |
|
fprintf(fichtm, "<tr valign=top>"); |
printf("%d%d ",i,k); |
printf("%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
|
fprintf(fichtm, "<td>%1d%1d</td>",i,k); |
for(j=1; j <=ncovmodel; j++){ |
for(j=1; j <=ncovmodel; j++){ |
printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
wald=p[jk]/sqrt(matcov[jk][jk]); |
fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
printf("%12.7f(%12.7f) sqrt(W)=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
|
fprintf(ficlog,"%12.7f(%12.7f) sqrt(W)=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
|
if(fabs(wald) > 1.96){ |
|
fprintf(fichtm, "<td><b>%12.7f</b></br> (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk])); |
|
}else{ |
|
fprintf(fichtm, "<td>%12.7f (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk])); |
|
} |
|
fprintf(fichtm,"sqrt(W)=%8.3f</br>",wald); |
|
fprintf(fichtm,"[%12.7f;%12.7f]</br></td>", p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
jk++; |
jk++; |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
|
fprintf(fichtm, "</tr>\n"); |
} |
} |
} |
} |
} |
} |
} /* end of hesscov and Wald tests */ |
} /* end of hesscov and Wald tests */ |
|
fprintf(fichtm,"</table>\n"); |
|
|
/* */ |
/* */ |
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
printf("# Scales (for hessian or gradient estimation)\n"); |
printf("# Scales (for hessian or gradient estimation)\n"); |
Line 8343 Please run with mle=-1 to get a correct
|
Line 12715 Please run with mle=-1 to get a correct
|
|
|
fflush(ficlog); |
fflush(ficlog); |
fflush(ficres); |
fflush(ficres); |
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
if (line[0] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
fputs(line,ficlog); |
fputs(line,ficlog); |
continue; |
fputs(line,ficres); |
}else |
continue; |
break; |
}else |
} |
break; |
|
} |
|
|
/* while((c=getc(ficpar))=='#' && c!= EOF){ */ |
/* while((c=getc(ficpar))=='#' && c!= EOF){ */ |
/* ungetc(c,ficpar); */ |
/* ungetc(c,ficpar); */ |
/* fgets(line, MAXLINE, ficpar); */ |
/* fgets(line, MAXLINE, ficpar); */ |
Line 8365 Please run with mle=-1 to get a correct
|
Line 12738 Please run with mle=-1 to get a correct
|
|
|
estepm=0; |
estepm=0; |
if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){ |
if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){ |
|
|
if (num_filled != 6) { |
if (num_filled != 6) { |
printf("Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n"); |
printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
printf("but line=%s\n",line); |
fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
goto end; |
goto end; |
|
} |
|
printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl); |
} |
} |
printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl); |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
} |
/*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
|
/*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
|
|
|
/* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */ |
/* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */ |
if (estepm==0 || estepm < stepm) estepm=stepm; |
if (estepm==0 || estepm < stepm) estepm=stepm; |
if (fage <= 2) { |
if (fage <= 2) { |
Line 8386 Please run with mle=-1 to get a correct
|
Line 12759 Please run with mle=-1 to get a correct
|
fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); |
fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); |
fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
|
|
/* Other stuffs, more or less useful */ |
/* Other stuffs, more or less useful */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while(fgets(line, MAXLINE, ficpar)) { |
ungetc(c,ficpar); |
/* If line starts with a # it is a comment */ |
fgets(line, MAXLINE, ficpar); |
if (line[0] == '#') { |
fputs(line,stdout); |
numlinepar++; |
fputs(line,ficparo); |
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
fputs(line,ficres); |
|
continue; |
|
}else |
|
break; |
} |
} |
ungetc(c,ficpar); |
|
|
if((num_filled=sscanf(line,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav)) !=EOF){ |
fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); |
|
fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
if (num_filled != 7) { |
fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
printf("Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004 mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fprintf(ficlog,"Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004 mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
goto end; |
|
} |
while((c=getc(ficpar))=='#' && c!= EOF){ |
printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
ungetc(c,ficpar); |
fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fgets(line, MAXLINE, ficpar); |
fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fputs(line,stdout); |
fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fputs(line,ficparo); |
} |
|
|
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
fputs(line,ficres); |
|
continue; |
|
}else |
|
break; |
} |
} |
ungetc(c,ficpar); |
|
|
|
|
|
dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; |
dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; |
dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; |
dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; |
|
|
fscanf(ficpar,"pop_based=%d\n",&popbased); |
if((num_filled=sscanf(line,"pop_based=%d\n",&popbased)) !=EOF){ |
fprintf(ficlog,"pop_based=%d\n",popbased); |
if (num_filled != 1) { |
fprintf(ficparo,"pop_based=%d\n",popbased); |
printf("Error: Not 1 (data)parameters in line but %d, for example:pop_based=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
fprintf(ficres,"pop_based=%d\n",popbased); |
fprintf(ficlog,"Error: Not 1 (data)parameters in line but %d, for example: pop_based=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
|
goto end; |
while((c=getc(ficpar))=='#' && c!= EOF){ |
} |
ungetc(c,ficpar); |
printf("pop_based=%d\n",popbased); |
fgets(line, MAXLINE, ficpar); |
fprintf(ficlog,"pop_based=%d\n",popbased); |
fputs(line,stdout); |
fprintf(ficparo,"pop_based=%d\n",popbased); |
fputs(line,ficparo); |
fprintf(ficres,"pop_based=%d\n",popbased); |
} |
} |
ungetc(c,ficpar); |
|
|
/* Results */ |
fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj); |
endishere=0; |
fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
nresult=0; |
printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
parameterline=0; |
fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
do{ |
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
if(!fgets(line, MAXLINE, ficpar)){ |
/* day and month of proj2 are not used but only year anproj2.*/ |
endishere=1; |
|
parameterline=15; |
|
}else if (line[0] == '#') { |
|
/* If line starts with a # it is a comment */ |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
fputs(line,ficres); |
|
continue; |
|
}else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp)) |
|
parameterline=11; |
|
else if(sscanf(line,"prevbackcast=%[^\n]\n",modeltemp)) |
|
parameterline=12; |
|
else if(sscanf(line,"result:%[^\n]\n",modeltemp)){ |
|
parameterline=13; |
|
} |
|
else{ |
|
parameterline=14; |
|
} |
|
switch (parameterline){ /* =0 only if only comments */ |
|
case 11: |
|
if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF && (num_filled == 8)){ |
|
fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.; |
|
dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.; |
|
prvforecast = 1; |
|
} |
|
else if((num_filled=sscanf(line,"prevforecast=%d yearsfproj=%lf mobil_average=%d\n",&prevfcast,&yrfproj,&mobilavproj)) !=EOF){/* && (num_filled == 3))*/ |
|
printf("prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj); |
|
fprintf(ficlog,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj); |
|
fprintf(ficres,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj); |
|
prvforecast = 2; |
|
} |
|
else { |
|
printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearsfproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
goto end; |
|
} |
|
break; |
|
case 12: |
|
if((num_filled=sscanf(line,"prevbackcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&prevbcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF && (num_filled == 8)){ |
|
fprintf(ficparo,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
printf("prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficlog,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficres,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
/* day and month of back2 are not used but only year anback2.*/ |
|
dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.; |
|
dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.; |
|
prvbackcast = 1; |
|
} |
|
else if((num_filled=sscanf(line,"prevbackcast=%d yearsbproj=%lf mobil_average=%d\n",&prevbcast,&yrbproj,&mobilavproj)) ==3){/* && (num_filled == 3))*/ |
|
printf("prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj); |
|
fprintf(ficlog,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj); |
|
fprintf(ficres,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj); |
|
prvbackcast = 2; |
|
} |
|
else { |
|
printf("Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearsbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
goto end; |
|
} |
|
break; |
|
case 13: |
|
num_filled=sscanf(line,"result:%[^\n]\n",resultline); |
|
nresult++; /* Sum of resultlines */ |
|
printf("Result %d: result:%s\n",nresult, resultline); |
|
if(nresult > MAXRESULTLINESPONE-1){ |
|
printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres); |
|
fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres); |
|
goto end; |
|
} |
|
if(!decoderesult(resultline, nresult)){ /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */ |
|
fprintf(ficparo,"result: %s\n",resultline); |
|
fprintf(ficres,"result: %s\n",resultline); |
|
fprintf(ficlog,"result: %s\n",resultline); |
|
} else |
|
goto end; |
|
break; |
|
case 14: |
|
printf("Error: Unknown command '%s'\n",line); |
|
fprintf(ficlog,"Error: Unknown command '%s'\n",line); |
|
if(line[0] == ' ' || line[0] == '\n'){ |
|
printf("It should not be an empty line '%s'\n",line); |
|
fprintf(ficlog,"It should not be an empty line '%s'\n",line); |
|
} |
|
if(ncovmodel >=2 && nresult==0 ){ |
|
printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line); |
|
fprintf(ficlog,"ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line); |
|
} |
|
/* goto end; */ |
|
break; |
|
case 15: |
|
printf("End of resultlines.\n"); |
|
fprintf(ficlog,"End of resultlines.\n"); |
|
break; |
|
default: /* parameterline =0 */ |
|
nresult=1; |
|
decoderesult(".",nresult ); /* No covariate */ |
|
} /* End switch parameterline */ |
|
}while(endishere==0); /* End do */ |
|
|
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */ |
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */ |
/* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */ |
/* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */ |
|
|
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){ |
if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){ |
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
}else |
}else{ |
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, pathc,p); |
/* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */ |
|
/* It seems that anprojd which is computed from the mean year at interview which is known yet because of freqsummary */ |
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\ |
/* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ /* Done in freqsummary */ |
model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,estepm, \ |
if(prvforecast==1){ |
jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2); |
dateprojd=(jproj1+12*mproj1+365*anproj1)/365; |
|
jprojd=jproj1; |
/*------------ free_vector -------------*/ |
mprojd=mproj1; |
/* chdir(path); */ |
anprojd=anproj1; |
|
dateprojf=(jproj2+12*mproj2+365*anproj2)/365; |
|
jprojf=jproj2; |
|
mprojf=mproj2; |
|
anprojf=anproj2; |
|
} else if(prvforecast == 2){ |
|
dateprojd=dateintmean; |
|
date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); |
|
dateprojf=dateintmean+yrfproj; |
|
date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); |
|
} |
|
if(prvbackcast==1){ |
|
datebackd=(jback1+12*mback1+365*anback1)/365; |
|
jbackd=jback1; |
|
mbackd=mback1; |
|
anbackd=anback1; |
|
datebackf=(jback2+12*mback2+365*anback2)/365; |
|
jbackf=jback2; |
|
mbackf=mback2; |
|
anbackf=anback2; |
|
} else if(prvbackcast == 2){ |
|
datebackd=dateintmean; |
|
date2dmy(datebackd,&jbackd, &mbackd, &anbackd); |
|
datebackf=dateintmean-yrbproj; |
|
date2dmy(datebackf,&jbackf, &mbackf, &anbackf); |
|
} |
|
|
|
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, prevbcast, pathc,p, (int)anprojd-bage, (int)anbackd-fage); |
|
} |
|
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \ |
|
model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,prevbcast, estepm, \ |
|
jprev1,mprev1,anprev1,dateprev1, dateprojd, datebackd,jprev2,mprev2,anprev2,dateprev2,dateprojf, datebackf); |
|
|
|
/*------------ free_vector -------------*/ |
|
/* chdir(path); */ |
|
|
/* free_ivector(wav,1,imx); */ /* Moved after last prevalence call */ |
/* free_ivector(wav,1,imx); */ /* Moved after last prevalence call */ |
/* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(mw,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(mw,1,lastpass-firstpass+2,1,imx); */ |
free_lvector(num,1,n); |
free_lvector(num,firstobs,lastobs); |
free_vector(agedc,1,n); |
free_vector(agedc,firstobs,lastobs); |
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
fclose(ficparo); |
fclose(ficparo); |
fclose(ficres); |
fclose(ficres); |
|
|
|
|
/* Other results (useful)*/ |
/* Other results (useful)*/ |
|
|
|
|
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*#include "prevlim.h"*/ /* Use ficrespl, ficlog */ |
/*#include "prevlim.h"*/ /* Use ficrespl, ficlog */ |
prlim=matrix(1,nlstate,1,nlstate); |
prlim=matrix(1,nlstate,1,nlstate); |
prevalence_limit(p, prlim, ageminpar, agemaxpar, ftolpl, &ncvyear); |
prevalence_limit(p, prlim, ageminpar, agemaxpar, ftolpl, &ncvyear); |
fclose(ficrespl); |
fclose(ficrespl); |
|
|
#ifdef FREEEXIT2 |
|
#include "freeexit2.h" |
|
#endif |
|
|
|
/*------------- h Pij x at various ages ------------*/ |
/*------------- h Pij x at various ages ------------*/ |
/*#include "hpijx.h"*/ |
/*#include "hpijx.h"*/ |
hPijx(p, bage, fage); |
hPijx(p, bage, fage); |
fclose(ficrespij); |
fclose(ficrespij); |
|
|
/*-------------- Variance of one-step probabilities---*/ |
/* ncovcombmax= pow(2,cptcoveff); */ |
|
/*-------------- Variance of one-step probabilities---*/ |
k=1; |
k=1; |
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
|
|
|
/* Prevalence for each covariate combination in probs[age][status][cov] */ |
probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); |
probs= ma3x(AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
for(i=1;i<=AGESUP;i++) |
for(i=AGEINF;i<=AGESUP;i++) |
for(j=1;j<=NCOVMAX;j++) |
for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */ |
for(k=1;k<=NCOVMAX;k++) |
for(k=1;k<=ncovcombmax;k++) |
probs[i][j][k]=0.; |
probs[i][j][k]=0.; |
|
prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, |
|
ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
|
if (mobilav!=0 ||mobilavproj !=0 ) { |
|
mobaverages= ma3x(AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
|
for(i=AGEINF;i<=AGESUP;i++) |
|
for(j=1;j<=nlstate+ndeath;j++) |
|
for(k=1;k<=ncovcombmax;k++) |
|
mobaverages[i][j][k]=0.; |
|
mobaverage=mobaverages; |
|
if (mobilav!=0) { |
|
printf("Movingaveraging observed prevalence\n"); |
|
fprintf(ficlog,"Movingaveraging observed prevalence\n"); |
|
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
|
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
|
} |
|
} else if (mobilavproj !=0) { |
|
printf("Movingaveraging projected observed prevalence\n"); |
|
fprintf(ficlog,"Movingaveraging projected observed prevalence\n"); |
|
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj); |
|
printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj); |
|
} |
|
}else{ |
|
printf("Internal error moving average\n"); |
|
fflush(stdout); |
|
exit(1); |
|
} |
|
}/* end if moving average */ |
|
|
/*---------- Forecasting ------------------*/ |
/*---------- Forecasting ------------------*/ |
/*if((stepm == 1) && (strcmp(model,".")==0)){*/ |
if(prevfcast==1){ |
if(prevfcast==1){ |
/* /\* if(stepm ==1){*\/ */ |
/* if(stepm ==1){*/ |
/* /\* anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */ |
prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); |
/*This done previously after freqsummary.*/ |
/* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/ |
/* dateprojd=(jproj1+12*mproj1+365*anproj1)/365; */ |
/* } */ |
/* dateprojf=(jproj2+12*mproj2+365*anproj2)/365; */ |
/* else{ */ |
|
/* erreur=108; */ |
/* } else if (prvforecast==2){ */ |
/* printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ |
/* /\* if(stepm ==1){*\/ */ |
/* fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */ |
/* /\* anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */ |
/* } */ |
/* } */ |
|
/*prevforecast(fileresu, dateintmean, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);*/ |
|
prevforecast(fileresu,dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, p, cptcoveff); |
} |
} |
|
|
|
/* Prevbcasting */ |
|
if(prevbcast==1){ |
|
ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
|
ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
|
ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
|
|
|
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
|
|
|
bprlim=matrix(1,nlstate,1,nlstate); |
|
|
|
back_prevalence_limit(p, bprlim, ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj); |
|
fclose(ficresplb); |
|
|
|
hBijx(p, bage, fage, mobaverage); |
|
fclose(ficrespijb); |
|
|
|
/* /\* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, *\/ */ |
|
/* /\* mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); *\/ */ |
|
/* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, */ |
|
/* mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */ |
|
prevbackforecast(fileresu, mobaverage, dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, |
|
mobilavproj, bage, fage, firstpass, lastpass, p, cptcoveff); |
|
|
|
|
|
varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff); |
|
|
|
|
|
free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
|
free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
|
free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
|
free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
|
} /* end Prevbcasting */ |
|
|
|
|
/* ------ Other prevalence ratios------------ */ |
/* ------ Other prevalence ratios------------ */ |
|
|
/* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */ |
|
|
|
prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
|
/* printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d, mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\ |
|
ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass); |
|
*/ |
|
free_ivector(wav,1,imx); |
free_ivector(wav,1,imx); |
free_imatrix(dh,1,lastpass-firstpass+2,1,imx); |
free_imatrix(dh,1,lastpass-firstpass+2,1,imx); |
free_imatrix(bh,1,lastpass-firstpass+2,1,imx); |
free_imatrix(bh,1,lastpass-firstpass+2,1,imx); |
free_imatrix(mw,1,lastpass-firstpass+2,1,imx); |
free_imatrix(mw,1,lastpass-firstpass+2,1,imx); |
|
|
|
|
if (mobilav!=0) { |
|
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
|
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
|
} |
|
} |
|
|
|
|
|
/*---------- Health expectancies, no variances ------------*/ |
/*---------- Health expectancies, no variances ------------*/ |
|
|
strcpy(filerese,"E_"); |
strcpy(filerese,"E_"); |
strcat(filerese,fileresu); |
strcat(filerese,fileresu); |
if((ficreseij=fopen(filerese,"w"))==NULL) { |
if((ficreseij=fopen(filerese,"w"))==NULL) { |
Line 8545 Please run with mle=-1 to get a correct
|
Line 13118 Please run with mle=-1 to get a correct
|
} |
} |
printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout); |
printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout); |
fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog); |
fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog); |
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
|
fprintf(ficreseij,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficreseij,"******\n"); |
|
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
pstamp(ficreseij); |
oldm=oldms;savm=savms; |
|
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart); |
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
|
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
|
fprintf(ficreseij,"\n#****** "); |
|
printf("\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficreseij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
|
fprintf(ficreseij,"******\n"); |
|
printf("******\n"); |
|
|
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
/*}*/ |
oldm=oldms;savm=savms; |
|
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres); |
|
|
|
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
} |
} |
fclose(ficreseij); |
fclose(ficreseij); |
printf("done evsij\n");fflush(stdout); |
printf("done evsij\n");fflush(stdout); |
fprintf(ficlog,"done evsij\n");fflush(ficlog); |
fprintf(ficlog,"done evsij\n");fflush(ficlog); |
|
|
/*---------- Health expectancies and variances ------------*/ |
|
|
/*---------- State-specific expectancies and variances ------------*/ |
|
|
strcpy(filerest,"T_"); |
strcpy(filerest,"T_"); |
strcat(filerest,fileresu); |
strcat(filerest,fileresu); |
if((ficrest=fopen(filerest,"w"))==NULL) { |
if((ficrest=fopen(filerest,"w"))==NULL) { |
Line 8577 Please run with mle=-1 to get a correct
|
Line 13162 Please run with mle=-1 to get a correct
|
} |
} |
printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout); |
printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout); |
fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog); |
fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog); |
|
|
|
|
strcpy(fileresstde,"STDE_"); |
strcpy(fileresstde,"STDE_"); |
strcat(fileresstde,fileresu); |
strcat(fileresstde,fileresu); |
if((ficresstdeij=fopen(fileresstde,"w"))==NULL) { |
if((ficresstdeij=fopen(fileresstde,"w"))==NULL) { |
printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
} |
} |
printf(" Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde); |
printf(" Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde); |
fprintf(ficlog," Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde); |
fprintf(ficlog," Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde); |
|
|
strcpy(filerescve,"CVE_"); |
strcpy(filerescve,"CVE_"); |
strcat(filerescve,fileresu); |
strcat(filerescve,fileresu); |
if((ficrescveij=fopen(filerescve,"w"))==NULL) { |
if((ficrescveij=fopen(filerescve,"w"))==NULL) { |
printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0); |
printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0); |
fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0); |
fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0); |
} |
} |
printf(" Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve); |
printf(" Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve); |
fprintf(ficlog," Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve); |
fprintf(ficlog," Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve); |
|
|
strcpy(fileresv,"V_"); |
strcpy(fileresv,"V_"); |
strcat(fileresv,fileresu); |
strcat(fileresv,fileresu); |
Line 8603 Please run with mle=-1 to get a correct
|
Line 13186 Please run with mle=-1 to get a correct
|
printf("Problem with variance resultfile: %s\n", fileresv);exit(0); |
printf("Problem with variance resultfile: %s\n", fileresv);exit(0); |
fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); |
fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); |
} |
} |
printf(" Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(stdout); |
printf(" Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout); |
fprintf(ficlog," Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(ficlog); |
fprintf(ficlog," Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog); |
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
if (cptcovn < 1){i1=1;} |
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
fprintf(ficrest,"\n#****** "); |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
for(j=1;j<=cptcoveff;j++) |
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
|
printf("\n# model %s \n#****** Result for:", model); |
|
fprintf(ficrest,"\n# model %s \n#****** Result for:", model); |
|
fprintf(ficlog,"\n# model %s \n#****** Result for:", model); |
|
for(j=1;j<=cptcoveff;j++){ |
|
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
fprintf(ficrest,"******\n"); |
fprintf(ficrest,"******\n"); |
|
fprintf(ficlog,"******\n"); |
|
printf("******\n"); |
|
|
fprintf(ficresstdeij,"\n#****** "); |
fprintf(ficresstdeij,"\n#****** "); |
fprintf(ficrescveij,"\n#****** "); |
fprintf(ficrescveij,"\n#****** "); |
Line 8621 Please run with mle=-1 to get a correct
|
Line 13219 Please run with mle=-1 to get a correct
|
fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
} |
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficresstdeij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficrescveij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
fprintf(ficresstdeij,"******\n"); |
fprintf(ficresstdeij,"******\n"); |
fprintf(ficrescveij,"******\n"); |
fprintf(ficrescveij,"******\n"); |
|
|
fprintf(ficresvij,"\n#****** "); |
fprintf(ficresvij,"\n#****** "); |
|
/* pstamp(ficresvij); */ |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
} |
fprintf(ficresvij,"******\n"); |
fprintf(ficresvij,"******\n"); |
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
printf(" cvevsij %d, ",k); |
printf(" cvevsij "); |
fprintf(ficlog, " cvevsij %d, ",k); |
fprintf(ficlog, " cvevsij "); |
cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart); |
cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres); |
printf(" end cvevsij \n "); |
printf(" end cvevsij \n "); |
fprintf(ficlog, " end cvevsij \n "); |
fprintf(ficlog, " end cvevsij \n "); |
|
|
Line 8644 Please run with mle=-1 to get a correct
|
Line 13250 Please run with mle=-1 to get a correct
|
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
pstamp(ficrest); |
pstamp(ficrest); |
|
|
|
epj=vector(1,nlstate+1); |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
oldm=oldms;savm=savms; /* ZZ Segmentation fault */ |
oldm=oldms;savm=savms; /* ZZ Segmentation fault */ |
cptcod= 0; /* To be deleted */ |
cptcod= 0; /* To be deleted */ |
printf("varevsij %d \n",vpopbased); |
printf("varevsij vpopbased=%d \n",vpopbased); |
fprintf(ficlog, "varevsij %d \n",vpopbased); |
fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased); |
varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */ |
varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */ |
fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# (weighted average of eij where weights are "); |
fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# (weighted average of eij where weights are "); |
if(vpopbased==1) |
if(vpopbased==1) |
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
else |
else |
fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n"); |
fprintf(ficrest,"the age specific forward period (stable) prevalences in each health state \n"); |
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); |
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
fprintf(ficrest,"\n"); |
fprintf(ficrest,"\n"); |
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
epj=vector(1,nlstate+1); |
printf("Computing age specific forward period (stable) prevalences in each health state \n"); |
printf("Computing age specific period (stable) prevalences in each health state \n"); |
fprintf(ficlog,"Computing age specific forward period (stable) prevalences in each health state \n"); |
fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n"); |
|
for(age=bage; age <=fage ;age++){ |
for(age=bage; age <=fage ;age++){ |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */ |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */ |
if (vpopbased==1) { |
if (vpopbased==1) { |
if(mobilav ==0){ |
if(mobilav ==0){ |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
Line 8698 Please run with mle=-1 to get a correct
|
Line 13303 Please run with mle=-1 to get a correct
|
fprintf(ficrest,"\n"); |
fprintf(ficrest,"\n"); |
} |
} |
} /* End vpopbased */ |
} /* End vpopbased */ |
|
free_vector(epj,1,nlstate+1); |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_vector(epj,1,nlstate+1); |
printf("done selection\n");fflush(stdout); |
printf("done \n");fflush(stdout); |
fprintf(ficlog,"done selection\n");fflush(ficlog); |
fprintf(ficlog,"done\n");fflush(ficlog); |
|
|
|
/*}*/ |
} /* End k selection */ |
} /* End k */ |
|
free_vector(weight,1,n); |
printf("done State-specific expectancies\n");fflush(stdout); |
|
fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog); |
|
|
|
/* variance-covariance of forward period prevalence*/ |
|
varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff); |
|
|
|
|
|
free_vector(weight,firstobs,lastobs); |
free_imatrix(Tvard,1,NCOVMAX,1,2); |
free_imatrix(Tvard,1,NCOVMAX,1,2); |
free_imatrix(s,1,maxwav+1,1,n); |
free_imatrix(s,1,maxwav+1,firstobs,lastobs); |
free_matrix(anint,1,maxwav,1,n); |
free_matrix(anint,1,maxwav,firstobs,lastobs); |
free_matrix(mint,1,maxwav,1,n); |
free_matrix(mint,1,maxwav,firstobs,lastobs); |
free_ivector(cod,1,n); |
free_ivector(cod,firstobs,lastobs); |
free_ivector(tab,1,NCOVMAX); |
free_ivector(tab,1,NCOVMAX); |
fclose(ficresstdeij); |
fclose(ficresstdeij); |
fclose(ficrescveij); |
fclose(ficrescveij); |
fclose(ficresvij); |
fclose(ficresvij); |
fclose(ficrest); |
fclose(ficrest); |
printf("done Health expectancies\n");fflush(stdout); |
|
fprintf(ficlog,"done Health expectancies\n");fflush(ficlog); |
|
fclose(ficpar); |
fclose(ficpar); |
|
|
/*------- Variance of period (stable) prevalence------*/ |
|
|
|
strcpy(fileresvpl,"VPL_"); |
|
strcat(fileresvpl,fileresu); |
|
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
|
printf("Problem with variance of period (stable) prevalence resultfile: %s\n", fileresvpl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog); |
|
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
|
fprintf(ficresvpl,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficresvpl,"******\n"); |
|
|
|
varpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart); |
|
free_matrix(varpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
|
|
fclose(ficresvpl); |
|
printf("done variance-covariance of period prevalence\n");fflush(stdout); |
|
fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog); |
|
|
|
/*---------- End : free ----------------*/ |
/*---------- End : free ----------------*/ |
if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
if (mobilav!=0 ||mobilavproj !=0) |
free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX); |
free_ma3x(mobaverages,AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */ |
} /* mle==-3 arrives here for freeing */ |
free_ma3x(probs,AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
/* endfree:*/ |
|
free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
} /* mle==-3 arrives here for freeing */ |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
/* endfree:*/ |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(covar,0,NCOVMAX,1,n); |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(matcov,1,npar,1,npar); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(hess,1,npar,1,npar); |
if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,firstobs,lastobs); |
/*free_vector(delti,1,npar);*/ |
if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,firstobs,lastobs); |
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
if(nqv>=1)free_matrix(coqvar,1,nqv,firstobs,lastobs); |
free_matrix(agev,1,maxwav,1,imx); |
free_matrix(covar,0,NCOVMAX,firstobs,lastobs); |
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_matrix(matcov,1,npar,1,npar); |
|
free_matrix(hess,1,npar,1,npar); |
free_ivector(ncodemax,1,NCOVMAX); |
/*free_vector(delti,1,npar);*/ |
free_ivector(ncodemaxwundef,1,NCOVMAX); |
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ivector(Tvar,1,NCOVMAX); |
free_matrix(agev,1,maxwav,1,imx); |
free_ivector(Tprod,1,NCOVMAX); |
free_ma3x(paramstart,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ivector(Tvaraff,1,NCOVMAX); |
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ivector(Tage,1,NCOVMAX); |
|
|
free_ivector(ncodemax,1,NCOVMAX); |
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
free_ivector(ncodemaxwundef,1,NCOVMAX); |
/* free_imatrix(codtab,1,100,1,10); */ |
free_ivector(Dummy,-1,NCOVMAX); |
|
free_ivector(Fixed,-1,NCOVMAX); |
|
free_ivector(DummyV,1,NCOVMAX); |
|
free_ivector(FixedV,1,NCOVMAX); |
|
free_ivector(Typevar,-1,NCOVMAX); |
|
free_ivector(Tvar,1,NCOVMAX); |
|
free_ivector(TvarsQ,1,NCOVMAX); |
|
free_ivector(TvarsQind,1,NCOVMAX); |
|
free_ivector(TvarsD,1,NCOVMAX); |
|
free_ivector(TvarsDind,1,NCOVMAX); |
|
free_ivector(TvarFD,1,NCOVMAX); |
|
free_ivector(TvarFDind,1,NCOVMAX); |
|
free_ivector(TvarF,1,NCOVMAX); |
|
free_ivector(TvarFind,1,NCOVMAX); |
|
free_ivector(TvarV,1,NCOVMAX); |
|
free_ivector(TvarVind,1,NCOVMAX); |
|
free_ivector(TvarA,1,NCOVMAX); |
|
free_ivector(TvarAind,1,NCOVMAX); |
|
free_ivector(TvarFQ,1,NCOVMAX); |
|
free_ivector(TvarFQind,1,NCOVMAX); |
|
free_ivector(TvarVD,1,NCOVMAX); |
|
free_ivector(TvarVDind,1,NCOVMAX); |
|
free_ivector(TvarVQ,1,NCOVMAX); |
|
free_ivector(TvarVQind,1,NCOVMAX); |
|
free_ivector(Tvarsel,1,NCOVMAX); |
|
free_vector(Tvalsel,1,NCOVMAX); |
|
free_ivector(Tposprod,1,NCOVMAX); |
|
free_ivector(Tprod,1,NCOVMAX); |
|
free_ivector(Tvaraff,1,NCOVMAX); |
|
free_ivector(invalidvarcomb,1,ncovcombmax); |
|
free_ivector(Tage,1,NCOVMAX); |
|
free_ivector(Tmodelind,1,NCOVMAX); |
|
free_ivector(TmodelInvind,1,NCOVMAX); |
|
free_ivector(TmodelInvQind,1,NCOVMAX); |
|
|
|
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
|
/* free_imatrix(codtab,1,100,1,10); */ |
fflush(fichtm); |
fflush(fichtm); |
fflush(ficgp); |
fflush(ficgp); |
|
|
|
|
if((nberr >0) || (nbwarn>0)){ |
if((nberr >0) || (nbwarn>0)){ |
printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn); |
printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn); |
fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn); |
fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn); |
}else{ |
}else{ |
printf("End of Imach\n"); |
printf("End of Imach\n"); |
fprintf(ficlog,"End of Imach\n"); |
fprintf(ficlog,"End of Imach\n"); |
Line 8800 Please run with mle=-1 to get a correct
|
Line 13415 Please run with mle=-1 to get a correct
|
printf("Local time at start %s\nLocal time at end %s",strstart, strtend); |
printf("Local time at start %s\nLocal time at end %s",strstart, strtend); |
fprintf(ficlog,"Local time at start %s\nLocal time at end %s\n",strstart, strtend); |
fprintf(ficlog,"Local time at start %s\nLocal time at end %s\n",strstart, strtend); |
printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
|
|
printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
Line 8813 Please run with mle=-1 to get a correct
|
Line 13428 Please run with mle=-1 to get a correct
|
fclose(ficgp); |
fclose(ficgp); |
fclose(ficlog); |
fclose(ficlog); |
/*------ End -----------*/ |
/*------ End -----------*/ |
|
|
|
|
|
/* Executes gnuplot */ |
printf("Before Current directory %s!\n",pathcd); |
|
|
printf("Before Current directory %s!\n",pathcd); |
#ifdef WIN32 |
#ifdef WIN32 |
if (_chdir(pathcd) != 0) |
if (_chdir(pathcd) != 0) |
printf("Can't move to directory %s!\n",path); |
printf("Can't move to directory %s!\n",path); |
if(_getcwd(pathcd,MAXLINE) > 0) |
if(_getcwd(pathcd,MAXLINE) > 0) |
#else |
#else |
if(chdir(pathcd) != 0) |
if(chdir(pathcd) != 0) |
printf("Can't move to directory %s!\n", path); |
printf("Can't move to directory %s!\n", path); |
if (getcwd(pathcd, MAXLINE) > 0) |
if (getcwd(pathcd, MAXLINE) > 0) |
#endif |
#endif |
printf("Current directory %s!\n",pathcd); |
printf("Current directory %s!\n",pathcd); |
/*strcat(plotcmd,CHARSEPARATOR);*/ |
/*strcat(plotcmd,CHARSEPARATOR);*/ |
Line 8849 Please run with mle=-1 to get a correct
|
Line 13466 Please run with mle=-1 to get a correct
|
|
|
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
|
strcpy(pplotcmd,plotcmd); |
|
|
if((outcmd=system(plotcmd)) != 0){ |
if((outcmd=system(plotcmd)) != 0){ |
printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
printf("Error in gnuplot, command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot); |
sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot); |
if((outcmd=system(plotcmd)) != 0) |
if((outcmd=system(plotcmd)) != 0){ |
printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd); |
printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd); |
|
strcpy(plotcmd,pplotcmd); |
|
} |
} |
} |
printf(" Successful, please wait..."); |
printf(" Successful, please wait..."); |
while (z[0] != 'q') { |
while (z[0] != 'q') { |
Line 8877 Please run with mle=-1 to get a correct
|
Line 13497 Please run with mle=-1 to get a correct
|
else if (z[0] == 'g') system(plotcmd); |
else if (z[0] == 'g') system(plotcmd); |
else if (z[0] == 'q') exit(0); |
else if (z[0] == 'q') exit(0); |
} |
} |
end: |
end: |
while (z[0] != 'q') { |
while (z[0] != 'q') { |
printf("\nType q for exiting: "); fflush(stdout); |
printf("\nType q for exiting: "); fflush(stdout); |
scanf("%s",z); |
scanf("%s",z); |
} |
} |
|
printf("End\n"); |
|
exit(0); |
} |
} |