Diff for /imach/src/imach.c between versions 1.33 and 1.194

version 1.33, 2002/03/12 22:13:38 version 1.194, 2015/08/18 13:32:00
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.194  2015/08/18 13:32:00  brouard
      Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.193  2015/08/04 07:17:42  brouard
   first survey ("cross") where individuals from different ages are    Summary: 0.98q4
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.192  2015/07/16 16:49:02  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: Fixing some outputs
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.191  2015/07/14 10:00:33  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: Some fixes
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.190  2015/05/05 08:51:13  brouard
   probabibility to be observed in state j at the second wave    Summary: Adding digits in output parameters (7 digits instead of 6)
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Fix 1+age+.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.189  2015/04/30 14:45:16  brouard
   where the markup *Covariates have to be included here again* invites    Summary: 0.98q2
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.187  2015/04/29 09:11:15  brouard
   identical for each individual. Also, if a individual missed an    *** empty log message ***
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.186  2015/04/23 12:01:52  brouard
     Summary: V1*age is working now, version 0.98q1
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Some codes had been disabled in order to simplify and Vn*age was
   split into an exact number (nh*stepm) of unobserved intermediate    working in the optimization phase, ie, giving correct MLE parameters,
   states. This elementary transition (by month or quarter trimester,    but, as usual, outputs were not correct and program core dumped.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.185  2015/03/11 13:26:42  brouard
   and the contribution of each individual to the likelihood is simply    Summary: Inclusion of compile and links command line for Intel Compiler
   hPijx.  
     Revision 1.184  2015/03/11 11:52:39  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Summary: Back from Windows 8. Intel Compiler
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.183  2015/03/10 20:34:32  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Summary: 0.98q0, trying with directest, mnbrak fixed
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    We use directest instead of original Powell test; probably no
   from the European Union.    incidence on the results, but better justifications;
   It is copyrighted identically to a GNU software product, ie programme and    We fixed Numerical Recipes mnbrak routine which was wrong and gave
   software can be distributed freely for non commercial use. Latest version    wrong results.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.182  2015/02/12 08:19:57  brouard
      Summary: Trying to keep directest which seems simpler and more general
 #include <math.h>    Author: Nicolas Brouard
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.181  2015/02/11 23:22:24  brouard
 #include <unistd.h>    Summary: Comments on Powell added
   
 #define MAXLINE 256    Author:
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"  
 #define FILENAMELENGTH 80    Revision 1.180  2015/02/11 17:33:45  brouard
 /*#define DEBUG*/    Summary: Finishing move from main to function (hpijx and prevalence_limit)
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.179  2015/01/04 09:57:06  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: back to OS/X
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.178  2015/01/04 09:35:48  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    *** empty log message ***
   
 #define NINTERVMAX 8    Revision 1.177  2015/01/03 18:40:56  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Summary: Still testing ilc32 on OSX
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.176  2015/01/03 16:45:04  brouard
 #define MAXN 20000    *** empty log message ***
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.175  2015/01/03 16:33:42  brouard
 #define AGEBASE 40    *** empty log message ***
   
     Revision 1.174  2015/01/03 16:15:49  brouard
 int erreur; /* Error number */    Summary: Still in cross-compilation
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.173  2015/01/03 12:06:26  brouard
 int npar=NPARMAX;    Summary: trying to detect cross-compilation
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.172  2014/12/27 12:07:47  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 int popbased=0;  
     Revision 1.171  2014/12/23 13:26:59  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Summary: Back from Visual C
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Still problem with utsname.h on Windows
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.170  2014/12/23 11:17:12  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Summary: Cleaning some \%% back to %%
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    The escape was mandatory for a specific compiler (which one?), but too many warnings.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.169  2014/12/22 23:08:31  brouard
 FILE *ficgp,*ficresprob,*ficpop;    Summary: 0.98p
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Outputs some informations on compiler used, OS etc. Testing on different platforms.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.168  2014/12/22 15:17:42  brouard
  FILE  *ficresvpl;    Summary: update
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.167  2014/12/22 13:50:56  brouard
 #define NR_END 1    Summary: Testing uname and compiler version and if compiled 32 or 64
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Testing on Linux 64
   
 #define NRANSI    Revision 1.166  2014/12/22 11:40:47  brouard
 #define ITMAX 200    *** empty log message ***
   
 #define TOL 2.0e-4    Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    * imach.c (Module): Merging 1.61 to 1.162
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.164  2014/12/16 10:52:11  brouard
 #define GOLD 1.618034    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    * imach.c (Module): Merging 1.61 to 1.162
   
 static double maxarg1,maxarg2;    Revision 1.163  2014/12/16 10:30:11  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Module): Merging 1.61 to 1.162
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.162  2014/09/25 11:43:39  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Summary: temporary backup 0.99!
 #define rint(a) floor(a+0.5)  
     Revision 1.1  2014/09/16 11:06:58  brouard
 static double sqrarg;    Summary: With some code (wrong) for nlopt
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Author:
   
 int imx;    Revision 1.161  2014/09/15 20:41:41  brouard
 int stepm;    Summary: Problem with macro SQR on Intel compiler
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.160  2014/09/02 09:24:05  brouard
 int m,nb;    *** empty log message ***
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.159  2014/09/01 10:34:10  brouard
 double **pmmij, ***probs, ***mobaverage;    Summary: WIN32
 double dateintmean=0;    Author: Brouard
   
 double *weight;    Revision 1.158  2014/08/27 17:11:51  brouard
 int **s; /* Status */    *** empty log message ***
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Author: Brouard
 double ftolhess; /* Tolerance for computing hessian */  
     In order to compile on Visual studio, time.h is now correct and time_t
 /**************** split *************************/    and tm struct should be used. difftime should be used but sometimes I
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    just make the differences in raw time format (time(&now).
 {    Trying to suppress #ifdef LINUX
    char *s;                             /* pointer */    Add xdg-open for __linux in order to open default browser.
    int  l1, l2;                         /* length counters */  
     Revision 1.156  2014/08/25 20:10:10  brouard
    l1 = strlen( path );                 /* length of path */    *** empty log message ***
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    Revision 1.155  2014/08/25 18:32:34  brouard
    s = strrchr( path, '\\' );           /* find last / */    Summary: New compile, minor changes
 #else    Author: Brouard
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.154  2014/06/20 17:32:08  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    Summary: Outputs now all graphs of convergence to period prevalence
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
       if ( getwd( dirc ) == NULL ) {    Author: Brouard
 #else  
       extern char       *getcwd( );    Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.151  2014/06/18 16:43:30  brouard
          return( GLOCK_ERROR_GETCWD );    *** empty log message ***
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.150  2014/06/18 16:42:35  brouard
    } else {                             /* strip direcotry from path */    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
       s++;                              /* after this, the filename */    Author: brouard
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.149  2014/06/18 15:51:14  brouard
       strcpy( name, s );                /* save file name */    Summary: Some fixes in parameter files errors
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Author: Nicolas Brouard
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.148  2014/06/17 17:38:48  brouard
    l1 = strlen( dirc );                 /* length of directory */    Summary: Nothing new
 #ifdef windows    Author: Brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Just a new packaging for OS/X version 0.98nS
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.147  2014/06/16 10:33:11  brouard
    s = strrchr( name, '.' );            /* find last / */    *** empty log message ***
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.146  2014/06/16 10:20:28  brouard
    l1= strlen( name);    Summary: Merge
    l2= strlen( s)+1;    Author: Brouard
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Merge, before building revised version.
    return( 0 );                         /* we're done */  
 }    Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
     Author: Nicolas Brouard
 /******************************************/  
     Lot of changes in order to output the results with some covariates
 void replace(char *s, char*t)    After the Edimburgh REVES conference 2014, it seems mandatory to
 {    improve the code.
   int i;    No more memory valgrind error but a lot has to be done in order to
   int lg=20;    continue the work of splitting the code into subroutines.
   i=0;    Also, decodemodel has been improved. Tricode is still not
   lg=strlen(t);    optimal. nbcode should be improved. Documentation has been added in
   for(i=0; i<= lg; i++) {    the source code.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.143  2014/01/26 09:45:38  brouard
   }    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 }  
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int nbocc(char *s, char occ)    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 {  
   int i,j=0;    Revision 1.142  2014/01/26 03:57:36  brouard
   int lg=20;    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   i=0;  
   lg=strlen(s);    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.141  2014/01/26 02:42:01  brouard
   }    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   return j;  
 }    Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.139  2010/06/14 07:50:17  brouard
   int i,lg,j,p=0;    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   i=0;    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.138  2010/04/30 18:19:40  brouard
   }    *** empty log message ***
   
   lg=strlen(t);    Revision 1.137  2010/04/29 18:11:38  brouard
   for(j=0; j<p; j++) {    (Module): Checking covariates for more complex models
     (u[j] = t[j]);    than V1+V2. A lot of change to be done. Unstable.
   }  
      u[p]='\0';    Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
    for(j=0; j<= lg; j++) {    of likelione (using inter/intrapolation if mle = 0) in order to
     if (j>=(p+1))(v[j-p-1] = t[j]);    get same likelihood as if mle=1.
   }    Some cleaning of code and comments added.
 }  
     Revision 1.135  2009/10/29 15:33:14  brouard
 /********************** nrerror ********************/    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
 void nrerror(char error_text[])    Revision 1.134  2009/10/29 13:18:53  brouard
 {    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.133  2009/07/06 10:21:25  brouard
   exit(1);    just nforces
 }  
 /*********************** vector *******************/    Revision 1.132  2009/07/06 08:22:05  brouard
 double *vector(int nl, int nh)    Many tings
 {  
   double *v;    Revision 1.131  2009/06/20 16:22:47  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Some dimensions resccaled
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.130  2009/05/26 06:44:34  brouard
 }    (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
 /************************ free vector ******************/    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.129  2007/08/31 13:49:27  lievre
   free((FREE_ARG)(v+nl-NR_END));    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 }  
     Revision 1.128  2006/06/30 13:02:05  brouard
 /************************ivector *******************************/    (Module): Clarifications on computing e.j
 int *ivector(long nl,long nh)  
 {    Revision 1.127  2006/04/28 18:11:50  brouard
   int *v;    (Module): Yes the sum of survivors was wrong since
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    imach-114 because nhstepm was no more computed in the age
   if (!v) nrerror("allocation failure in ivector");    loop. Now we define nhstepma in the age loop.
   return v-nl+NR_END;    (Module): In order to speed up (in case of numerous covariates) we
 }    compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
 /******************free ivector **************************/    deviation (needs data from the Hessian matrices) which slows the
 void free_ivector(int *v, long nl, long nh)    computation.
 {    In the future we should be able to stop the program is only health
   free((FREE_ARG)(v+nl-NR_END));    expectancies and graph are needed without standard deviations.
 }  
     Revision 1.126  2006/04/28 17:23:28  brouard
 /******************* imatrix *******************************/    (Module): Yes the sum of survivors was wrong since
 int **imatrix(long nrl, long nrh, long ncl, long nch)    imach-114 because nhstepm was no more computed in the age
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    loop. Now we define nhstepma in the age loop.
 {    Version 0.98h
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.125  2006/04/04 15:20:31  lievre
      Errors in calculation of health expectancies. Age was not initialized.
   /* allocate pointers to rows */    Forecasting file added.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.124  2006/03/22 17:13:53  lievre
   m += NR_END;    Parameters are printed with %lf instead of %f (more numbers after the comma).
   m -= nrl;    The log-likelihood is printed in the log file
    
      Revision 1.123  2006/03/20 10:52:43  brouard
   /* allocate rows and set pointers to them */    * imach.c (Module): <title> changed, corresponds to .htm file
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    name. <head> headers where missing.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    * imach.c (Module): Weights can have a decimal point as for
   m[nrl] -= ncl;    English (a comma might work with a correct LC_NUMERIC environment,
      otherwise the weight is truncated).
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Modification of warning when the covariates values are not 0 or
      1.
   /* return pointer to array of pointers to rows */    Version 0.98g
   return m;  
 }    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
 /****************** free_imatrix *************************/    English (a comma might work with a correct LC_NUMERIC environment,
 void free_imatrix(m,nrl,nrh,ncl,nch)    otherwise the weight is truncated).
       int **m;    Modification of warning when the covariates values are not 0 or
       long nch,ncl,nrh,nrl;    1.
      /* free an int matrix allocated by imatrix() */    Version 0.98g
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.121  2006/03/16 17:45:01  lievre
   free((FREE_ARG) (m+nrl-NR_END));    * imach.c (Module): Comments concerning covariates added
 }  
     * imach.c (Module): refinements in the computation of lli if
 /******************* matrix *******************************/    status=-2 in order to have more reliable computation if stepm is
 double **matrix(long nrl, long nrh, long ncl, long nch)    not 1 month. Version 0.98f
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Revision 1.120  2006/03/16 15:10:38  lievre
   double **m;    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    not 1 month. Version 0.98f
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.119  2006/03/15 17:42:26  brouard
   m -= nrl;    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.118  2006/03/14 18:20:07  brouard
   m[nrl] += NR_END;    (Module): varevsij Comments added explaining the second
   m[nrl] -= ncl;    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Module): Function pstamp added
   return m;    (Module): Version 0.98d
 }  
     Revision 1.117  2006/03/14 17:16:22  brouard
 /*************************free matrix ************************/    (Module): varevsij Comments added explaining the second
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    table of variances if popbased=1 .
 {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): Function pstamp added
   free((FREE_ARG)(m+nrl-NR_END));    (Module): Version 0.98d
 }  
     Revision 1.116  2006/03/06 10:29:27  brouard
 /******************* ma3x *******************************/    (Module): Variance-covariance wrong links and
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    varian-covariance of ej. is needed (Saito).
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Revision 1.115  2006/02/27 12:17:45  brouard
   double ***m;    (Module): One freematrix added in mlikeli! 0.98c
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.114  2006/02/26 12:57:58  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Some improvements in processing parameter
   m += NR_END;    filename with strsep.
   m -= nrl;  
     Revision 1.113  2006/02/24 14:20:24  brouard
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): Memory leaks checks with valgrind and:
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    datafile was not closed, some imatrix were not freed and on matrix
   m[nrl] += NR_END;    allocation too.
   m[nrl] -= ncl;  
     Revision 1.112  2006/01/30 09:55:26  brouard
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Revision 1.111  2006/01/25 20:38:18  brouard
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    (Module): Lots of cleaning and bugs added (Gompertz)
   m[nrl][ncl] += NR_END;    (Module): Comments can be added in data file. Missing date values
   m[nrl][ncl] -= nll;    can be a simple dot '.'.
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Revision 1.109  2006/01/24 19:37:15  brouard
     for (j=ncl+1; j<=nch; j++)    (Module): Comments (lines starting with a #) are allowed in data.
       m[i][j]=m[i][j-1]+nlay;  
   }    Revision 1.108  2006/01/19 18:05:42  lievre
   return m;    Gnuplot problem appeared...
 }    To be fixed
   
 /*************************free ma3x ************************/    Revision 1.107  2006/01/19 16:20:37  brouard
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    Test existence of gnuplot in imach path
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Revision 1.106  2006/01/19 13:24:36  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Some cleaning and links added in html output
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.104  2005/09/30 16:11:43  lievre
 extern double *pcom,*xicom;    (Module): sump fixed, loop imx fixed, and simplifications.
 extern double (*nrfunc)(double []);    (Module): If the status is missing at the last wave but we know
      that the person is alive, then we can code his/her status as -2
 double f1dim(double x)    (instead of missing=-1 in earlier versions) and his/her
 {    contributions to the likelihood is 1 - Prob of dying from last
   int j;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   double f;    the healthy state at last known wave). Version is 0.98
   double *xt;  
      Revision 1.103  2005/09/30 15:54:49  lievre
   xt=vector(1,ncom);    (Module): sump fixed, loop imx fixed, and simplifications.
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Revision 1.102  2004/09/15 17:31:30  brouard
   free_vector(xt,1,ncom);    Add the possibility to read data file including tab characters.
   return f;  
 }    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Revision 1.100  2004/07/12 18:29:06  brouard
 {    Add version for Mac OS X. Just define UNIX in Makefile
   int iter;  
   double a,b,d,etemp;    Revision 1.99  2004/06/05 08:57:40  brouard
   double fu,fv,fw,fx;    *** empty log message ***
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.98  2004/05/16 15:05:56  brouard
   double e=0.0;    New version 0.97 . First attempt to estimate force of mortality
      directly from the data i.e. without the need of knowing the health
   a=(ax < cx ? ax : cx);    state at each age, but using a Gompertz model: log u =a + b*age .
   b=(ax > cx ? ax : cx);    This is the basic analysis of mortality and should be done before any
   x=w=v=bx;    other analysis, in order to test if the mortality estimated from the
   fw=fv=fx=(*f)(x);    cross-longitudinal survey is different from the mortality estimated
   for (iter=1;iter<=ITMAX;iter++) {    from other sources like vital statistic data.
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    The same imach parameter file can be used but the option for mle should be -3.
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);    Agnès, who wrote this part of the code, tried to keep most of the
 #ifdef DEBUG    former routines in order to include the new code within the former code.
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    The output is very simple: only an estimate of the intercept and of
 #endif    the slope with 95% confident intervals.
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;    Current limitations:
       return fx;    A) Even if you enter covariates, i.e. with the
     }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     ftemp=fu;    B) There is no computation of Life Expectancy nor Life Table.
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);    Revision 1.97  2004/02/20 13:25:42  lievre
       q=(x-v)*(fx-fw);    Version 0.96d. Population forecasting command line is (temporarily)
       p=(x-v)*q-(x-w)*r;    suppressed.
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    Revision 1.96  2003/07/15 15:38:55  brouard
       q=fabs(q);    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       etemp=e;    rewritten within the same printf. Workaround: many printfs.
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    Revision 1.95  2003/07/08 07:54:34  brouard
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    * imach.c (Repository):
       else {    (Repository): Using imachwizard code to output a more meaningful covariance
         d=p/q;    matrix (cov(a12,c31) instead of numbers.
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    Revision 1.94  2003/06/27 13:00:02  brouard
           d=SIGN(tol1,xm-x);    Just cleaning
       }  
     } else {    Revision 1.93  2003/06/25 16:33:55  brouard
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    (Module): On windows (cygwin) function asctime_r doesn't
     }    exist so I changed back to asctime which exists.
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    (Module): Version 0.96b
     fu=(*f)(u);  
     if (fu <= fx) {    Revision 1.92  2003/06/25 16:30:45  brouard
       if (u >= x) a=x; else b=x;    (Module): On windows (cygwin) function asctime_r doesn't
       SHFT(v,w,x,u)    exist so I changed back to asctime which exists.
         SHFT(fv,fw,fx,fu)  
         } else {    Revision 1.91  2003/06/25 15:30:29  brouard
           if (u < x) a=u; else b=u;    * imach.c (Repository): Duplicated warning errors corrected.
           if (fu <= fw || w == x) {    (Repository): Elapsed time after each iteration is now output. It
             v=w;    helps to forecast when convergence will be reached. Elapsed time
             w=u;    is stamped in powell.  We created a new html file for the graphs
             fv=fw;    concerning matrix of covariance. It has extension -cov.htm.
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    Revision 1.90  2003/06/24 12:34:15  brouard
             v=u;    (Module): Some bugs corrected for windows. Also, when
             fv=fu;    mle=-1 a template is output in file "or"mypar.txt with the design
           }    of the covariance matrix to be input.
         }  
   }    Revision 1.89  2003/06/24 12:30:52  brouard
   nrerror("Too many iterations in brent");    (Module): Some bugs corrected for windows. Also, when
   *xmin=x;    mle=-1 a template is output in file "or"mypar.txt with the design
   return fx;    of the covariance matrix to be input.
 }  
     Revision 1.88  2003/06/23 17:54:56  brouard
 /****************** mnbrak ***********************/    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    Revision 1.87  2003/06/18 12:26:01  brouard
             double (*func)(double))    Version 0.96
 {  
   double ulim,u,r,q, dum;    Revision 1.86  2003/06/17 20:04:08  brouard
   double fu;    (Module): Change position of html and gnuplot routines and added
      routine fileappend.
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);    Revision 1.85  2003/06/17 13:12:43  brouard
   if (*fb > *fa) {    * imach.c (Repository): Check when date of death was earlier that
     SHFT(dum,*ax,*bx,dum)    current date of interview. It may happen when the death was just
       SHFT(dum,*fb,*fa,dum)    prior to the death. In this case, dh was negative and likelihood
       }    was wrong (infinity). We still send an "Error" but patch by
   *cx=(*bx)+GOLD*(*bx-*ax);    assuming that the date of death was just one stepm after the
   *fc=(*func)(*cx);    interview.
   while (*fb > *fc) {    (Repository): Because some people have very long ID (first column)
     r=(*bx-*ax)*(*fb-*fc);    we changed int to long in num[] and we added a new lvector for
     q=(*bx-*cx)*(*fb-*fa);    memory allocation. But we also truncated to 8 characters (left
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    truncation)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    (Repository): No more line truncation errors.
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    Revision 1.84  2003/06/13 21:44:43  brouard
       fu=(*func)(u);    * imach.c (Repository): Replace "freqsummary" at a correct
     } else if ((*cx-u)*(u-ulim) > 0.0) {    place. It differs from routine "prevalence" which may be called
       fu=(*func)(u);    many times. Probs is memory consuming and must be used with
       if (fu < *fc) {    parcimony.
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
           SHFT(*fb,*fc,fu,(*func)(u))  
           }    Revision 1.83  2003/06/10 13:39:11  lievre
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    *** empty log message ***
       u=ulim;  
       fu=(*func)(u);    Revision 1.82  2003/06/05 15:57:20  brouard
     } else {    Add log in  imach.c and  fullversion number is now printed.
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  */
     }  /*
     SHFT(*ax,*bx,*cx,u)     Interpolated Markov Chain
       SHFT(*fa,*fb,*fc,fu)  
       }    Short summary of the programme:
 }    
     This program computes Healthy Life Expectancies from
 /*************** linmin ************************/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 int ncom;    interviewed on their health status or degree of disability (in the
 double *pcom,*xicom;    case of a health survey which is our main interest) -2- at least a
 double (*nrfunc)(double []);    second wave of interviews ("longitudinal") which measure each change
      (if any) in individual health status.  Health expectancies are
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    computed from the time spent in each health state according to a
 {    model. More health states you consider, more time is necessary to reach the
   double brent(double ax, double bx, double cx,    Maximum Likelihood of the parameters involved in the model.  The
                double (*f)(double), double tol, double *xmin);    simplest model is the multinomial logistic model where pij is the
   double f1dim(double x);    probability to be observed in state j at the second wave
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    conditional to be observed in state i at the first wave. Therefore
               double *fc, double (*func)(double));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   int j;    'age' is age and 'sex' is a covariate. If you want to have a more
   double xx,xmin,bx,ax;    complex model than "constant and age", you should modify the program
   double fx,fb,fa;    where the markup *Covariates have to be included here again* invites
      you to do it.  More covariates you add, slower the
   ncom=n;    convergence.
   pcom=vector(1,n);  
   xicom=vector(1,n);    The advantage of this computer programme, compared to a simple
   nrfunc=func;    multinomial logistic model, is clear when the delay between waves is not
   for (j=1;j<=n;j++) {    identical for each individual. Also, if a individual missed an
     pcom[j]=p[j];    intermediate interview, the information is lost, but taken into
     xicom[j]=xi[j];    account using an interpolation or extrapolation.  
   }  
   ax=0.0;    hPijx is the probability to be observed in state i at age x+h
   xx=1.0;    conditional to the observed state i at age x. The delay 'h' can be
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    split into an exact number (nh*stepm) of unobserved intermediate
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    states. This elementary transition (by month, quarter,
 #ifdef DEBUG    semester or year) is modelled as a multinomial logistic.  The hPx
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    matrix is simply the matrix product of nh*stepm elementary matrices
 #endif    and the contribution of each individual to the likelihood is simply
   for (j=1;j<=n;j++) {    hPijx.
     xi[j] *= xmin;  
     p[j] += xi[j];    Also this programme outputs the covariance matrix of the parameters but also
   }    of the life expectancies. It also computes the period (stable) prevalence. 
   free_vector(xicom,1,n);    
   free_vector(pcom,1,n);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /*************** powell ************************/    from the European Union.
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    It is copyrighted identically to a GNU software product, ie programme and
             double (*func)(double []))    software can be distributed freely for non commercial use. Latest version
 {    can be accessed at http://euroreves.ined.fr/imach .
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   int i,ibig,j;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   double del,t,*pt,*ptt,*xit;    
   double fp,fptt;    **********************************************************************/
   double *xits;  /*
   pt=vector(1,n);    main
   ptt=vector(1,n);    read parameterfile
   xit=vector(1,n);    read datafile
   xits=vector(1,n);    concatwav
   *fret=(*func)(p);    freqsummary
   for (j=1;j<=n;j++) pt[j]=p[j];    if (mle >= 1)
   for (*iter=1;;++(*iter)) {      mlikeli
     fp=(*fret);    print results files
     ibig=0;    if mle==1 
     del=0.0;       computes hessian
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    read end of parameter file: agemin, agemax, bage, fage, estepm
     for (i=1;i<=n;i++)        begin-prev-date,...
       printf(" %d %.12f",i, p[i]);    open gnuplot file
     printf("\n");    open html file
     for (i=1;i<=n;i++) {    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
       fptt=(*fret);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
 #ifdef DEBUG      freexexit2 possible for memory heap.
       printf("fret=%lf \n",*fret);  
 #endif    h Pij x                         | pij_nom  ficrestpij
       printf("%d",i);fflush(stdout);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       linmin(p,xit,n,fret,func);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       if (fabs(fptt-(*fret)) > del) {         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
         del=fabs(fptt-(*fret));  
         ibig=i;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       }         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
 #ifdef DEBUG    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       printf("%d %.12e",i,(*fret));     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       for (j=1;j<=n;j++) {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);    forecasting if prevfcast==1 prevforecast call prevalence()
       }    health expectancies
       for(j=1;j<=n;j++)    Variance-covariance of DFLE
         printf(" p=%.12e",p[j]);    prevalence()
       printf("\n");     movingaverage()
 #endif    varevsij() 
     }    if popbased==1 varevsij(,popbased)
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    total life expectancies
 #ifdef DEBUG    Variance of period (stable) prevalence
       int k[2],l;   end
       k[0]=1;  */
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /* #define DEBUG */
       for (j=1;j<=n;j++)  /* #define DEBUGBRENT */
         printf(" %.12e",p[j]);  #define POWELL /* Instead of NLOPT */
       printf("\n");  #define POWELLF1F3 /* Skip test */
       for(l=0;l<=1;l++) {  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
         for (j=1;j<=n;j++) {  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #include <math.h>
         }  #include <stdio.h>
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #include <stdlib.h>
       }  #include <string.h>
 #endif  
   #ifdef _WIN32
   #include <io.h>
       free_vector(xit,1,n);  #include <windows.h>
       free_vector(xits,1,n);  #include <tchar.h>
       free_vector(ptt,1,n);  #else
       free_vector(pt,1,n);  #include <unistd.h>
       return;  #endif
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #include <limits.h>
     for (j=1;j<=n;j++) {  #include <sys/types.h>
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  #if defined(__GNUC__)
       pt[j]=p[j];  #include <sys/utsname.h> /* Doesn't work on Windows */
     }  #endif
     fptt=(*func)(ptt);  
     if (fptt < fp) {  #include <sys/stat.h>
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #include <errno.h>
       if (t < 0.0) {  /* extern int errno; */
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /* #ifdef LINUX */
           xi[j][ibig]=xi[j][n];  /* #include <time.h> */
           xi[j][n]=xit[j];  /* #include "timeval.h" */
         }  /* #else */
 #ifdef DEBUG  /* #include <sys/time.h> */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /* #endif */
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  #include <time.h>
         printf("\n");  
 #endif  #ifdef GSL
       }  #include <gsl/gsl_errno.h>
     }  #include <gsl/gsl_multimin.h>
   }  #endif
 }  
   
 /**** Prevalence limit ****************/  #ifdef NLOPT
   #include <nlopt.h>
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  typedef struct {
 {    double (* function)(double [] );
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  } myfunc_data ;
      matrix by transitions matrix until convergence is reached */  #endif
   
   int i, ii,j,k;  /* #include <libintl.h> */
   double min, max, maxmin, maxmax,sumnew=0.;  /* #define _(String) gettext (String) */
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   for (ii=1;ii<=nlstate+ndeath;ii++)  #define FILENAMELENGTH 132
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
    cov[1]=1.;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
    #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #define NINTERVMAX 8
     newm=savm;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     /* Covariates have to be included here again */  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
      cov[2]=agefin;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
    #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       for (k=1; k<=cptcovn;k++) {  #define MAXN 20000
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #define YEARM 12. /**< Number of months per year */
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  #define AGESUP 130
       }  #define AGEBASE 40
       for (k=1; k<=cptcovage;k++)  #define AGEOVERFLOW 1.e20
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
       for (k=1; k<=cptcovprod;k++)  #ifdef _WIN32
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #define ODIRSEPARATOR '/'
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #else
   #define DIRSEPARATOR '/'
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
     savm=oldm;  #endif
     oldm=newm;  
     maxmax=0.;  /* $Id$ */
     for(j=1;j<=nlstate;j++){  /* $State$ */
       min=1.;  
       max=0.;  char version[]="Imach version 0.98q5, August 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       for(i=1; i<=nlstate; i++) {  char fullversion[]="$Revision$ $Date$"; 
         sumnew=0;  char strstart[80];
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
         prlim[i][j]= newm[i][j]/(1-sumnew);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         max=FMAX(max,prlim[i][j]);  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
         min=FMIN(min,prlim[i][j]);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       }  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       maxmin=max-min;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       maxmax=FMAX(maxmax,maxmin);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     }  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     if(maxmax < ftolpl){  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       return prlim;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     }  int cptcov=0; /* Working variable */
   }  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /*************** transition probabilities ***************/  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  int *wav; /* Number of waves for this individuual 0 is possible */
   double s1, s2;  int maxwav=0; /* Maxim number of waves */
   /*double t34;*/  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   int i,j,j1, nc, ii, jj;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     for(i=1; i<= nlstate; i++){                     to the likelihood and the sum of weights (done by funcone)*/
     for(j=1; j<i;j++){  int mle=1, weightopt=0;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         /*s2 += param[i][j][nc]*cov[nc];*/  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       }  int countcallfunc=0;  /* Count the number of calls to func */
       ps[i][j]=s2;  double jmean=1; /* Mean space between 2 waves */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  double **matprod2(); /* test */
     }  double **oldm, **newm, **savm; /* Working pointers to matrices */
     for(j=i+1; j<=nlstate+ndeath;j++){  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*FILE *fic ; */ /* Used in readdata only */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  FILE *ficlog, *ficrespow;
       }  int globpr=0; /* Global variable for printing or not */
       ps[i][j]=s2;  double fretone; /* Only one call to likelihood */
     }  long ipmx=0; /* Number of contributions */
   }  double sw; /* Sum of weights */
     /*ps[3][2]=1;*/  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   for(i=1; i<= nlstate; i++){  FILE *ficresilk;
      s1=0;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     for(j=1; j<i; j++)  FILE *ficresprobmorprev;
       s1+=exp(ps[i][j]);  FILE *fichtm, *fichtmcov; /* Html File */
     for(j=i+1; j<=nlstate+ndeath; j++)  FILE *ficreseij;
       s1+=exp(ps[i][j]);  char filerese[FILENAMELENGTH];
     ps[i][i]=1./(s1+1.);  FILE *ficresstdeij;
     for(j=1; j<i; j++)  char fileresstde[FILENAMELENGTH];
       ps[i][j]= exp(ps[i][j])*ps[i][i];  FILE *ficrescveij;
     for(j=i+1; j<=nlstate+ndeath; j++)  char filerescve[FILENAMELENGTH];
       ps[i][j]= exp(ps[i][j])*ps[i][i];  FILE  *ficresvij;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  char fileresv[FILENAMELENGTH];
   } /* end i */  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  char title[MAXLINE];
     for(jj=1; jj<= nlstate+ndeath; jj++){  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       ps[ii][jj]=0;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       ps[ii][ii]=1;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     }  char command[FILENAMELENGTH];
   }  int  outcmd=0;
   
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  char filelog[FILENAMELENGTH]; /* Log file */
      printf("%lf ",ps[ii][jj]);  char filerest[FILENAMELENGTH];
    }  char fileregp[FILENAMELENGTH];
     printf("\n ");  char popfile[FILENAMELENGTH];
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   goto end;*/  /* struct timezone tzp; */
     return ps;  /* extern int gettimeofday(); */
 }  struct tm tml, *gmtime(), *localtime();
   
 /**************** Product of 2 matrices ******************/  extern time_t time();
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  struct tm start_time, end_time, curr_time, last_time, forecast_time;
 {  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  struct tm tm;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized  char strcurr[80], strfor[80];
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  char *endptr;
   long i, j, k;  long lval;
   for(i=nrl; i<= nrh; i++)  double dval;
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  #define NR_END 1
         out[i][k] +=in[i][j]*b[j][k];  #define FREE_ARG char*
   #define FTOL 1.0e-10
   return out;  
 }  #define NRANSI 
   #define ITMAX 200 
   
 /************* Higher Matrix Product ***************/  #define TOL 2.0e-4 
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  #define GOLD 1.618034 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  #define GLIMIT 100.0 
      (typically every 2 years instead of every month which is too big).  #define TINY 1.0e-20 
      Model is determined by parameters x and covariates have to be  
      included manually here.  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
      */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
   int i, j, d, h, k;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   double **out, cov[NCOVMAX];  #define rint(a) floor(a+0.5)
   double **newm;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   #define mytinydouble 1.0e-16
   /* Hstepm could be zero and should return the unit matrix */  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   for (i=1;i<=nlstate+ndeath;i++)  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     for (j=1;j<=nlstate+ndeath;j++){  /* static double dsqrarg; */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  static double sqrarg;
     }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   for(h=1; h <=nhstepm; h++){  int agegomp= AGEGOMP;
     for(d=1; d <=hstepm; d++){  
       newm=savm;  int imx; 
       /* Covariates have to be included here again */  int stepm=1;
       cov[1]=1.;  /* Stepm, step in month: minimum step interpolation*/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int estepm;
       for (k=1; k<=cptcovage;k++)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  int m,nb;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  long *num;
   int firstpass=0, lastpass=4,*cod, *Tage,*cens;
   int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/                     covariate for which somebody answered excluding 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/                     undefined. Usually 2: 0 and 1. */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
                    pmij(pmmij,cov,ncovmodel,x,nlstate));                               covariate for which somebody answered including 
       savm=oldm;                               undefined. Usually 3: -1, 0 and 1. */
       oldm=newm;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     }  double **pmmij, ***probs;
     for(i=1; i<=nlstate+ndeath; i++)  double *ageexmed,*agecens;
       for(j=1;j<=nlstate+ndeath;j++) {  double dateintmean=0;
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  double *weight;
          */  int **s; /* Status */
       }  double *agedc;
   } /* end h */  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   return po;                    * covar=matrix(0,NCOVMAX,1,n); 
 }                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   double  idx; 
   int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 /*************** log-likelihood *************/  int *Ndum; /** Freq of modality (tricode */
 double func( double *x)  int **codtab; /**< codtab=imatrix(1,100,1,10); */
 {  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   int i, ii, j, k, mi, d, kk;  double *lsurv, *lpop, *tpop;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   double sw; /* Sum of weights */  double ftolhess; /**< Tolerance for computing hessian */
   double lli; /* Individual log likelihood */  
   long ipmx;  /**************** split *************************/
   /*extern weight */  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   /* We are differentiating ll according to initial status */  {
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   /*for(i=1;i<imx;i++)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     printf(" %d\n",s[4][i]);    */ 
   */    char  *ss;                            /* pointer */
   cov[1]=1.;    int   l1=0, l2=0;                             /* length counters */
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    l1 = strlen(path );                   /* length of path */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     for(mi=1; mi<= wav[i]-1; mi++){    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       for (ii=1;ii<=nlstate+ndeath;ii++)      strcpy( name, path );               /* we got the fullname name because no directory */
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       for(d=0; d<dh[mi][i]; d++){        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         newm=savm;      /* get current working directory */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      /*    extern  char* getcwd ( char *buf , int len);*/
         for (kk=1; kk<=cptcovage;kk++) {  #ifdef WIN32
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
         }  #else
                  if (getcwd(dirc, FILENAME_MAX) == NULL) {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #endif
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        return( GLOCK_ERROR_GETCWD );
         savm=oldm;      }
         oldm=newm;      /* got dirc from getcwd*/
              printf(" DIRC = %s \n",dirc);
            } else {                              /* strip direcotry from path */
       } /* end mult */      ss++;                               /* after this, the filename */
            l2 = strlen( ss );                  /* length of filename */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      strcpy( name, ss );         /* save file name */
       ipmx +=1;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       sw += weight[i];      dirc[l1-l2] = '\0';                 /* add zero */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      printf(" DIRC2 = %s \n",dirc);
     } /* end of wave */    }
   } /* end of individual */    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    if( dirc[l1-1] != DIRSEPARATOR ){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      dirc[l1] =  DIRSEPARATOR;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      dirc[l1+1] = 0; 
   return -l;      printf(" DIRC3 = %s \n",dirc);
 }    }
     ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
 /*********** Maximum Likelihood Estimation ***************/      ss++;
       strcpy(ext,ss);                     /* save extension */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      l1= strlen( name);
 {      l2= strlen(ss)+1;
   int i,j, iter;      strncpy( finame, name, l1-l2);
   double **xi,*delti;      finame[l1-l2]= 0;
   double fret;    }
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)    return( 0 );                          /* we're done */
     for (j=1;j<=npar;j++)  }
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  /******************************************/
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  void replace_back_to_slash(char *s, char*t)
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  {
     int i;
 }    int lg=0;
     i=0;
 /**** Computes Hessian and covariance matrix ***/    lg=strlen(t);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    for(i=0; i<= lg; i++) {
 {      (s[i] = t[i]);
   double  **a,**y,*x,pd;      if (t[i]== '\\') s[i]='/';
   double **hess;    }
   int i, j,jk;  }
   int *indx;  
   char *trimbb(char *out, char *in)
   double hessii(double p[], double delta, int theta, double delti[]);  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   double hessij(double p[], double delti[], int i, int j);    char *s;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    s=out;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    while (*in != '\0'){
       while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   hess=matrix(1,npar,1,npar);        in++;
       }
   printf("\nCalculation of the hessian matrix. Wait...\n");      *out++ = *in++;
   for (i=1;i<=npar;i++){    }
     printf("%d",i);fflush(stdout);    *out='\0';
     hess[i][i]=hessii(p,ftolhess,i,delti);    return s;
     /*printf(" %f ",p[i]);*/  }
     /*printf(" %lf ",hess[i][i]);*/  
   }  /* char *substrchaine(char *out, char *in, char *chain) */
    /* { */
   for (i=1;i<=npar;i++) {  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
     for (j=1;j<=npar;j++)  {  /*   char *s, *t; */
       if (j>i) {  /*   t=in;s=out; */
         printf(".%d%d",i,j);fflush(stdout);  /*   while ((*in != *chain) && (*in != '\0')){ */
         hess[i][j]=hessij(p,delti,i,j);  /*     *out++ = *in++; */
         hess[j][i]=hess[i][j];      /*   } */
         /*printf(" %lf ",hess[i][j]);*/  
       }  /*   /\* *in matches *chain *\/ */
     }  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
   }  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   printf("\n");  /*   } */
   /*   in--; chain--; */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /*   while ( (*in != '\0')){ */
    /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   a=matrix(1,npar,1,npar);  /*     *out++ = *in++; */
   y=matrix(1,npar,1,npar);  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   x=vector(1,npar);  /*   } */
   indx=ivector(1,npar);  /*   *out='\0'; */
   for (i=1;i<=npar;i++)  /*   out=s; */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  /*   return out; */
   ludcmp(a,npar,indx,&pd);  /* } */
   char *substrchaine(char *out, char *in, char *chain)
   for (j=1;j<=npar;j++) {  {
     for (i=1;i<=npar;i++) x[i]=0;    /* Substract chain 'chain' from 'in', return and output 'out' */
     x[j]=1;    /* in="V1+V1*age+age*age+V2", chain="age*age" */
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    char *strloc;
       matcov[i][j]=x[i];  
     }    strcpy (out, in); 
   }    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
     printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
   printf("\n#Hessian matrix#\n");    if(strloc != NULL){ 
   for (i=1;i<=npar;i++) {      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
     for (j=1;j<=npar;j++) {      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
       printf("%.3e ",hess[i][j]);      /* strcpy (strloc, strloc +strlen(chain));*/
     }    }
     printf("\n");    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
   }    return out;
   }
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  char *cutl(char *blocc, char *alocc, char *in, char occ)
   ludcmp(a,npar,indx,&pd);  {
     /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
   /*  printf("\n#Hessian matrix recomputed#\n");       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef" and alocc="ghi2j".
   for (j=1;j<=npar;j++) {       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     for (i=1;i<=npar;i++) x[i]=0;    */
     x[j]=1;    char *s, *t;
     lubksb(a,npar,indx,x);    t=in;s=in;
     for (i=1;i<=npar;i++){    while ((*in != occ) && (*in != '\0')){
       y[i][j]=x[i];      *alocc++ = *in++;
       printf("%.3e ",y[i][j]);    }
     }    if( *in == occ){
     printf("\n");      *(alocc)='\0';
   }      s=++in;
   */    }
    
   free_matrix(a,1,npar,1,npar);    if (s == t) {/* occ not found */
   free_matrix(y,1,npar,1,npar);      *(alocc-(in-s))='\0';
   free_vector(x,1,npar);      in=s;
   free_ivector(indx,1,npar);    }
   free_matrix(hess,1,npar,1,npar);    while ( *in != '\0'){
       *blocc++ = *in++;
     }
 }  
     *blocc='\0';
 /*************** hessian matrix ****************/    return t;
 double hessii( double x[], double delta, int theta, double delti[])  }
 {  char *cutv(char *blocc, char *alocc, char *in, char occ)
   int i;  {
   int l=1, lmax=20;    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
   double k1,k2;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   double p2[NPARMAX+1];       gives blocc="abcdef2ghi" and alocc="j".
   double res;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    */
   double fx;    char *s, *t;
   int k=0,kmax=10;    t=in;s=in;
   double l1;    while (*in != '\0'){
       while( *in == occ){
   fx=func(x);        *blocc++ = *in++;
   for (i=1;i<=npar;i++) p2[i]=x[i];        s=in;
   for(l=0 ; l <=lmax; l++){      }
     l1=pow(10,l);      *blocc++ = *in++;
     delts=delt;    }
     for(k=1 ; k <kmax; k=k+1){    if (s == t) /* occ not found */
       delt = delta*(l1*k);      *(blocc-(in-s))='\0';
       p2[theta]=x[theta] +delt;    else
       k1=func(p2)-fx;      *(blocc-(in-s)-1)='\0';
       p2[theta]=x[theta]-delt;    in=s;
       k2=func(p2)-fx;    while ( *in != '\0'){
       /*res= (k1-2.0*fx+k2)/delt/delt; */      *alocc++ = *in++;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    }
        
 #ifdef DEBUG    *alocc='\0';
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    return s;
 #endif  }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  int nbocc(char *s, char occ)
         k=kmax;  {
       }    int i,j=0;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    int lg=20;
         k=kmax; l=lmax*10.;    i=0;
       }    lg=strlen(s);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    for(i=0; i<= lg; i++) {
         delts=delt;    if  (s[i] == occ ) j++;
       }    }
     }    return j;
   }  }
   delti[theta]=delts;  
   return res;  /* void cutv(char *u,char *v, char*t, char occ) */
    /* { */
 }  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 double hessij( double x[], double delti[], int thetai,int thetaj)  /*      gives u="abcdef2ghi" and v="j" *\/ */
 {  /*   int i,lg,j,p=0; */
   int i;  /*   i=0; */
   int l=1, l1, lmax=20;  /*   lg=strlen(t); */
   double k1,k2,k3,k4,res,fx;  /*   for(j=0; j<=lg-1; j++) { */
   double p2[NPARMAX+1];  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   int k;  /*   } */
   
   fx=func(x);  /*   for(j=0; j<p; j++) { */
   for (k=1; k<=2; k++) {  /*     (u[j] = t[j]); */
     for (i=1;i<=npar;i++) p2[i]=x[i];  /*   } */
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*      u[p]='\0'; */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k1=func(p2)-fx;  /*    for(j=0; j<= lg; j++) { */
    /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*   } */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /* } */
     k2=func(p2)-fx;  
    #ifdef _WIN32
     p2[thetai]=x[thetai]-delti[thetai]/k;  char * strsep(char **pp, const char *delim)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  {
     k3=func(p2)-fx;    char *p, *q;
             
     p2[thetai]=x[thetai]-delti[thetai]/k;    if ((p = *pp) == NULL)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      return 0;
     k4=func(p2)-fx;    if ((q = strpbrk (p, delim)) != NULL)
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    {
 #ifdef DEBUG      *pp = q + 1;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      *q = '\0';
 #endif    }
   }    else
   return res;      *pp = 0;
 }    return p;
   }
 /************** Inverse of matrix **************/  #endif
 void ludcmp(double **a, int n, int *indx, double *d)  
 {  /********************** nrerror ********************/
   int i,imax,j,k;  
   double big,dum,sum,temp;  void nrerror(char error_text[])
   double *vv;  {
      fprintf(stderr,"ERREUR ...\n");
   vv=vector(1,n);    fprintf(stderr,"%s\n",error_text);
   *d=1.0;    exit(EXIT_FAILURE);
   for (i=1;i<=n;i++) {  }
     big=0.0;  /*********************** vector *******************/
     for (j=1;j<=n;j++)  double *vector(int nl, int nh)
       if ((temp=fabs(a[i][j])) > big) big=temp;  {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double *v;
     vv[i]=1.0/big;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   }    if (!v) nrerror("allocation failure in vector");
   for (j=1;j<=n;j++) {    return v-nl+NR_END;
     for (i=1;i<j;i++) {  }
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /************************ free vector ******************/
       a[i][j]=sum;  void free_vector(double*v, int nl, int nh)
     }  {
     big=0.0;    free((FREE_ARG)(v+nl-NR_END));
     for (i=j;i<=n;i++) {  }
       sum=a[i][j];  
       for (k=1;k<j;k++)  /************************ivector *******************************/
         sum -= a[i][k]*a[k][j];  int *ivector(long nl,long nh)
       a[i][j]=sum;  {
       if ( (dum=vv[i]*fabs(sum)) >= big) {    int *v;
         big=dum;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         imax=i;    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
     }  }
     if (j != imax) {  
       for (k=1;k<=n;k++) {  /******************free ivector **************************/
         dum=a[imax][k];  void free_ivector(int *v, long nl, long nh)
         a[imax][k]=a[j][k];  {
         a[j][k]=dum;    free((FREE_ARG)(v+nl-NR_END));
       }  }
       *d = -(*d);  
       vv[imax]=vv[j];  /************************lvector *******************************/
     }  long *lvector(long nl,long nh)
     indx[j]=imax;  {
     if (a[j][j] == 0.0) a[j][j]=TINY;    long *v;
     if (j != n) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       dum=1.0/(a[j][j]);    if (!v) nrerror("allocation failure in ivector");
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    return v-nl+NR_END;
     }  }
   }  
   free_vector(vv,1,n);  /* Doesn't work */  /******************free lvector **************************/
 ;  void free_lvector(long *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 void lubksb(double **a, int n, int *indx, double b[])  }
 {  
   int i,ii=0,ip,j;  /******************* imatrix *******************************/
   double sum;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (i=1;i<=n;i++) {  { 
     ip=indx[i];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     sum=b[ip];    int **m; 
     b[ip]=b[i];    
     if (ii)    /* allocate pointers to rows */ 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     else if (sum) ii=i;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     b[i]=sum;    m += NR_END; 
   }    m -= nrl; 
   for (i=n;i>=1;i--) {    
     sum=b[i];    
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    /* allocate rows and set pointers to them */ 
     b[i]=sum/a[i][i];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 }    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
 /************ Frequencies ********************/    
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 {  /* Some frequencies */    
      /* return pointer to array of pointers to rows */ 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    return m; 
   double ***freq; /* Frequencies */  } 
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  /****************** free_imatrix *************************/
   FILE *ficresp;  void free_imatrix(m,nrl,nrh,ncl,nch)
   char fileresp[FILENAMELENGTH];        int **m;
          long nch,ncl,nrh,nrl; 
   pp=vector(1,nlstate);       /* free an int matrix allocated by imatrix() */ 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  { 
   strcpy(fileresp,"p");    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   strcat(fileresp,fileres);    free((FREE_ARG) (m+nrl-NR_END)); 
   if((ficresp=fopen(fileresp,"w"))==NULL) {  } 
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  /******************* matrix *******************************/
   }  double **matrix(long nrl, long nrh, long ncl, long nch)
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  {
   j1=0;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   for(k1=1; k1<=j;k1++){    m += NR_END;
    for(i1=1; i1<=ncodemax[k1];i1++){    m -= nrl;
        j1++;  
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
          scanf("%d", i);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         for (i=-1; i<=nlstate+ndeath; i++)      m[nrl] += NR_END;
          for (jk=-1; jk<=nlstate+ndeath; jk++)      m[nrl] -= ncl;
            for(m=agemin; m <= agemax+3; m++)  
              freq[i][jk][m]=0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
         dateintsum=0;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
         k2cpt=0;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
        for (i=1; i<=imx; i++) {  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
          bool=1;     */
          if  (cptcovn>0) {  }
            for (z1=1; z1<=cptcoveff; z1++)  
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*************************free matrix ************************/
                bool=0;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
          }  {
          if (bool==1) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
            for(m=firstpass; m<=lastpass; m++){    free((FREE_ARG)(m+nrl-NR_END));
              k2=anint[m][i]+(mint[m][i]/12.);  }
              if ((k2>=dateprev1) && (k2<=dateprev2)) {  
                if(agev[m][i]==0) agev[m][i]=agemax+1;  /******************* ma3x *******************************/
                if(agev[m][i]==1) agev[m][i]=agemax+2;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  {
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    double ***m;
                  dateintsum=dateintsum+k2;  
                  k2cpt++;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                }    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
              }    m -= nrl;
            }  
          }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
        }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
            m[nrl] += NR_END;
        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    m[nrl] -= ncl;
   
         if  (cptcovn>0) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
          fprintf(ficresp, "\n#********** Variable ");  
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
        fprintf(ficresp, "**********\n#");    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         }    m[nrl][ncl] += NR_END;
        for(i=1; i<=nlstate;i++)    m[nrl][ncl] -= nll;
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    for (j=ncl+1; j<=nch; j++) 
        fprintf(ficresp, "\n");      m[nrl][j]=m[nrl][j-1]+nlay;
            
   for(i=(int)agemin; i <= (int)agemax+3; i++){    for (i=nrl+1; i<=nrh; i++) {
     if(i==(int)agemax+3)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       printf("Total");      for (j=ncl+1; j<=nch; j++) 
     else        m[i][j]=m[i][j-1]+nlay;
       printf("Age %d", i);    }
     for(jk=1; jk <=nlstate ; jk++){    return m; 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
         pp[jk] += freq[jk][m][i];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     }    */
     for(jk=1; jk <=nlstate ; jk++){  }
       for(m=-1, pos=0; m <=0 ; m++)  
         pos += freq[jk][m][i];  /*************************free ma3x ************************/
       if(pp[jk]>=1.e-10)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  {
       else    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }
      for(jk=1; jk <=nlstate ; jk++){  
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*************** function subdirf ***********/
         pp[jk] += freq[jk][m][i];  char *subdirf(char fileres[])
      }  {
     /* Caution optionfilefiname is hidden */
     for(jk=1,pos=0; jk <=nlstate ; jk++)    strcpy(tmpout,optionfilefiname);
       pos += pp[jk];    strcat(tmpout,"/"); /* Add to the right */
     for(jk=1; jk <=nlstate ; jk++){    strcat(tmpout,fileres);
       if(pos>=1.e-5)    return tmpout;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  }
       else  
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  /*************** function subdirf2 ***********/
       if( i <= (int) agemax){  char *subdirf2(char fileres[], char *preop)
         if(pos>=1.e-5){  {
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    
           probs[i][jk][j1]= pp[jk]/pos;    /* Caution optionfilefiname is hidden */
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    strcpy(tmpout,optionfilefiname);
         }    strcat(tmpout,"/");
       else    strcat(tmpout,preop);
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    strcat(tmpout,fileres);
       }    return tmpout;
     }  }
     for(jk=-1; jk <=nlstate+ndeath; jk++)  
       for(m=-1; m <=nlstate+ndeath; m++)  /*************** function subdirf3 ***********/
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  char *subdirf3(char fileres[], char *preop, char *preop2)
     if(i <= (int) agemax)  {
       fprintf(ficresp,"\n");    
     printf("\n");    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
  }    strcat(tmpout,preop);
   dateintmean=dateintsum/k2cpt;    strcat(tmpout,preop2);
      strcat(tmpout,fileres);
   fclose(ficresp);    return tmpout;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  }
   free_vector(pp,1,nlstate);  
   char *asc_diff_time(long time_sec, char ascdiff[])
   /* End of Freq */  {
 }    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
 /************ Prevalence ********************/    sec_left = (time_sec) % (60*60*24);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    hours = (sec_left) / (60*60) ;
 {  /* Some frequencies */    sec_left = (sec_left) %(60*60);
      minutes = (sec_left) /60;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    sec_left = (sec_left) % (60);
   double ***freq; /* Frequencies */    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   double *pp;    return ascdiff;
   double pos, k2;  }
   
   pp=vector(1,nlstate);  /***************** f1dim *************************/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  extern int ncom; 
    extern double *pcom,*xicom;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  extern double (*nrfunc)(double []); 
   j1=0;   
    double f1dim(double x) 
   j=cptcoveff;  { 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    int j; 
      double f;
  for(k1=1; k1<=j;k1++){    double *xt; 
     for(i1=1; i1<=ncodemax[k1];i1++){   
       j1++;    xt=vector(1,ncom); 
      for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for (i=-1; i<=nlstate+ndeath; i++)      f=(*nrfunc)(xt); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)      free_vector(xt,1,ncom); 
           for(m=agemin; m <= agemax+3; m++)    return f; 
             freq[i][jk][m]=0;  } 
        
       for (i=1; i<=imx; i++) {  /*****************brent *************************/
         bool=1;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         if  (cptcovn>0) {  {
           for (z1=1; z1<=cptcoveff; z1++)    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
               bool=0;     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
         }     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
         if (bool==1) {     * returned function value. 
           for(m=firstpass; m<=lastpass; m++){    */
             k2=anint[m][i]+(mint[m][i]/12.);    int iter; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    double a,b,d,etemp;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double fu=0,fv,fw,fx;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double ftemp=0.;
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */    double e=0.0; 
             }   
           }    a=(ax < cx ? ax : cx); 
         }    b=(ax > cx ? ax : cx); 
       }    x=w=v=bx; 
         for(i=(int)agemin; i <= (int)agemax+3; i++){    fw=fv=fx=(*f)(x); 
           for(jk=1; jk <=nlstate ; jk++){    for (iter=1;iter<=ITMAX;iter++) { 
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      xm=0.5*(a+b); 
               pp[jk] += freq[jk][m][i];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
           }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
           for(jk=1; jk <=nlstate ; jk++){      printf(".");fflush(stdout);
             for(m=-1, pos=0; m <=0 ; m++)      fprintf(ficlog,".");fflush(ficlog);
             pos += freq[jk][m][i];  #ifdef DEBUGBRENT
         }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
              fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
          for(jk=1; jk <=nlstate ; jk++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  #endif
              pp[jk] += freq[jk][m][i];      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
          }        *xmin=x; 
                  return fx; 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      } 
       ftemp=fu;
          for(jk=1; jk <=nlstate ; jk++){                if (fabs(e) > tol1) { 
            if( i <= (int) agemax){        r=(x-w)*(fx-fv); 
              if(pos>=1.e-5){        q=(x-v)*(fx-fw); 
                probs[i][jk][j1]= pp[jk]/pos;        p=(x-v)*q-(x-w)*r; 
              }        q=2.0*(q-r); 
            }        if (q > 0.0) p = -p; 
          }        q=fabs(q); 
                  etemp=e; 
         }        e=d; 
     }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
          else { 
            d=p/q; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          u=x+d; 
   free_vector(pp,1,nlstate);          if (u-a < tol2 || b-u < tol2) 
              d=SIGN(tol1,xm-x); 
 }  /* End of Freq */        } 
       } else { 
 /************* Waves Concatenation ***************/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 {      fu=(*f)(u); 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      if (fu <= fx) { 
      Death is a valid wave (if date is known).        if (u >= x) a=x; else b=x; 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        SHFT(v,w,x,u) 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        SHFT(fv,fw,fx,fu) 
      and mw[mi+1][i]. dh depends on stepm.      } else { 
      */        if (u < x) a=u; else b=u; 
         if (fu <= fw || w == x) { 
   int i, mi, m;          v=w; 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          w=u; 
      double sum=0., jmean=0.;*/          fv=fw; 
           fw=fu; 
   int j, k=0,jk, ju, jl;        } else if (fu <= fv || v == x || v == w) { 
   double sum=0.;          v=u; 
   jmin=1e+5;          fv=fu; 
   jmax=-1;        } 
   jmean=0.;      } 
   for(i=1; i<=imx; i++){    } 
     mi=0;    nrerror("Too many iterations in brent"); 
     m=firstpass;    *xmin=x; 
     while(s[m][i] <= nlstate){    return fx; 
       if(s[m][i]>=1)  } 
         mw[++mi][i]=m;  
       if(m >=lastpass)  /****************** mnbrak ***********************/
         break;  
       else  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         m++;              double (*func)(double)) 
     }/* end while */  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
     if (s[m][i] > nlstate){  the downhill direction (defined by the function as evaluated at the initial points) and returns
       mi++;     /* Death is another wave */  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
       /* if(mi==0)  never been interviewed correctly before death */  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
          /* Only death is a correct wave */     */
       mw[mi][i]=m;    double ulim,u,r,q, dum;
     }    double fu; 
   
     wav[i]=mi;    double scale=10.;
     if(mi==0)    int iterscale=0;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  
   }    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
     *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
         dh[mi][i]=1;    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
       else{    /*   *bx = *ax - (*ax - *bx)/scale; */
         if (s[mw[mi+1][i]][i] > nlstate) {    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
           if (agedc[i] < 2*AGESUP) {    /* } */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */    if (*fb > *fa) { 
           k=k+1;      SHFT(dum,*ax,*bx,dum) 
           if (j >= jmax) jmax=j;      SHFT(dum,*fb,*fa,dum) 
           if (j <= jmin) jmin=j;    } 
           sum=sum+j;    *cx=(*bx)+GOLD*(*bx-*ax); 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    *fc=(*func)(*cx); 
           }  #ifdef DEBUG
         }    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
         else{    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  #endif
           k=k+1;    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
           if (j >= jmax) jmax=j;      r=(*bx-*ax)*(*fb-*fc); 
           else if (j <= jmin)jmin=j;      q=(*bx-*cx)*(*fb-*fa); 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
           sum=sum+j;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
         }      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
         jk= j/stepm;      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
         jl= j -jk*stepm;        fu=(*func)(u); 
         ju= j -(jk+1)*stepm;  #ifdef DEBUG
         if(jl <= -ju)        /* f(x)=A(x-u)**2+f(u) */
           dh[mi][i]=jk;        double A, fparabu; 
         else        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
           dh[mi][i]=jk+1;        fparabu= *fa - A*(*ax-u)*(*ax-u);
         if(dh[mi][i]==0)        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           dh[mi][i]=1; /* At least one step */        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       }        /* And thus,it can be that fu > *fc even if fparabu < *fc */
     }        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
   }          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
   jmean=sum/k;        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  #endif 
  }  #ifdef MNBRAKORIGINAL
 /*********** Tricode ****************************/  #else
 void tricode(int *Tvar, int **nbcode, int imx)  /*       if (fu > *fc) { */
 {  /* #ifdef DEBUG */
   int Ndum[20],ij=1, k, j, i;  /*       printf("mnbrak4  fu > fc \n"); */
   int cptcode=0;  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
   cptcoveff=0;  /* #endif */
    /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
   for (k=0; k<19; k++) Ndum[k]=0;  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
   for (k=1; k<=7; k++) ncodemax[k]=0;  /*      dum=u; /\* Shifting c and u *\/ */
   /*      u = *cx; */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  /*      *cx = dum; */
     for (i=1; i<=imx; i++) {  /*      dum = fu; */
       ij=(int)(covar[Tvar[j]][i]);  /*      fu = *fc; */
       Ndum[ij]++;  /*      *fc =dum; */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  /*       } else { /\* end *\/ */
       if (ij > cptcode) cptcode=ij;  /* #ifdef DEBUG */
     }  /*       printf("mnbrak3  fu < fc \n"); */
   /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
     for (i=0; i<=cptcode; i++) {  /* #endif */
       if(Ndum[i]!=0) ncodemax[j]++;  /*      dum=u; /\* Shifting c and u *\/ */
     }  /*      u = *cx; */
     ij=1;  /*      *cx = dum; */
   /*      dum = fu; */
   /*      fu = *fc; */
     for (i=1; i<=ncodemax[j]; i++) {  /*      *fc =dum; */
       for (k=0; k<=19; k++) {  /*       } */
         if (Ndum[k] != 0) {  #ifdef DEBUG
           nbcode[Tvar[j]][ij]=k;        printf("mnbrak34  fu < or >= fc \n");
           ij++;        fprintf(ficlog, "mnbrak34 fu < fc\n");
         }  #endif
         if (ij > ncodemax[j]) break;        dum=u; /* Shifting c and u */
       }          u = *cx;
     }        *cx = dum;
   }          dum = fu;
         fu = *fc;
  for (k=0; k<19; k++) Ndum[k]=0;        *fc =dum;
   #endif
  for (i=1; i<=ncovmodel-2; i++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
       ij=Tvar[i];  #ifdef DEBUG
       Ndum[ij]++;        printf("mnbrak2  u after c but before ulim\n");
     }        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
   #endif
  ij=1;        fu=(*func)(u); 
  for (i=1; i<=10; i++) {        if (fu < *fc) { 
    if((Ndum[i]!=0) && (i<=ncov)){  #ifdef DEBUG
      Tvaraff[ij]=i;        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
      ij++;        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
    }  #endif
  }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
            SHFT(*fb,*fc,fu,(*func)(u)) 
     cptcoveff=ij-1;        } 
 }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
   #ifdef DEBUG
 /*********** Health Expectancies ****************/        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
         fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)  #endif
 {        u=ulim; 
   /* Health expectancies */        fu=(*func)(u); 
   int i, j, nhstepm, hstepm, h, nstepm, k;      } else { /* u could be left to b (if r > q parabola has a maximum) */
   double age, agelim,hf;  #ifdef DEBUG
   double ***p3mat;        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
          fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   fprintf(ficreseij,"# Health expectancies\n");  #endif
   fprintf(ficreseij,"# Age");        u=(*cx)+GOLD*(*cx-*bx); 
   for(i=1; i<=nlstate;i++)        fu=(*func)(u); 
     for(j=1; j<=nlstate;j++)      } /* end tests */
       fprintf(ficreseij," %1d-%1d",i,j);      SHFT(*ax,*bx,*cx,u) 
   fprintf(ficreseij,"\n");      SHFT(*fa,*fb,*fc,fu) 
   #ifdef DEBUG
   k=1;             /* For example stepm=6 months */        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
   hstepm=k*YEARM; /* (a) Every k years of age (in months), for example every k=2 years 24 m */        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
   hstepm=stepm;   /* or (b) We decided to compute the life expectancy with the smallest unit */  #endif
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
      nhstepm is the number of hstepm from age to agelim  } 
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  /*************** linmin ************************/
      and note for a fixed period like k years */  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
      survival function given by stepm (the optimization length). Unfortunately it  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
      means that if the survival funtion is printed only each two years of age and if  the value of func at the returned location p . This is actually all accomplished by calling the
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  routines mnbrak and brent .*/
      results. So we changed our mind and took the option of the best precision.  int ncom; 
   */  double *pcom,*xicom;
   hstepm=hstepm/stepm; /* Typically in stepm units, if k= 2 years, = 2/6 months = 4 */  double (*nrfunc)(double []); 
    
   agelim=AGESUP;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  { 
     /* nhstepm age range expressed in number of stepm */    double brent(double ax, double bx, double cx, 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);                 double (*f)(double), double tol, double *xmin); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double f1dim(double x); 
     /* if (stepm >= YEARM) hstepm=1;*/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                double *fc, double (*func)(double)); 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int j; 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double xx,xmin,bx,ax; 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    double fx,fb,fa;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    double scale=10., axs, xxs, xxss; /* Scale added for infinity */
     for(i=1; i<=nlstate;i++)   
       for(j=1; j<=nlstate;j++)    ncom=n; 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    pcom=vector(1,n); 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    xicom=vector(1,n); 
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    nrfunc=func; 
         }    for (j=1;j<=n;j++) { 
     fprintf(ficreseij,"%3.0f",age );      pcom[j]=p[j]; 
     for(i=1; i<=nlstate;i++)      xicom[j]=xi[j]; 
       for(j=1; j<=nlstate;j++){    } 
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);  
       }    /* axs=0.0; */
     fprintf(ficreseij,"\n");    /* xxss=1; /\* 1 and using scale *\/ */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    xxs=1;
   }    /* do{ */
 }      ax=0.;
       xx= xxs;
 /************ Variance ******************/      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
 {      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
   /* Variance of health expectancies */      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
   double **newm;      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
   double **dnewm,**doldm;      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
   int i, j, nhstepm, hstepm, h;    /*   if (fx != fx){ */
   int k, cptcode;    /*    xxs=xxs/scale; /\* Trying a smaller xx, closer to initial ax=0 *\/ */
   double *xp;    /*    printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx); */
   double **gp, **gm;    /*   } */
   double ***gradg, ***trgradg;    /* }while(fx != fx); */
   double ***p3mat;  
   double age,agelim;  #ifdef DEBUGLINMIN
   int theta;    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   #endif
    fprintf(ficresvij,"# Covariances of life expectancies\n");    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
   fprintf(ficresvij,"# Age");    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
   for(i=1; i<=nlstate;i++)    /* fmin = f(p[j] + xmin * xi[j]) */
     for(j=1; j<=nlstate;j++)    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
   fprintf(ficresvij,"\n");  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   xp=vector(1,npar);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   dnewm=matrix(1,nlstate,1,npar);  #endif
   doldm=matrix(1,nlstate,1,nlstate);  #ifdef DEBUGLINMIN
      printf("linmin end ");
   hstepm=1*YEARM; /* Every year of age */  #endif
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for (j=1;j<=n;j++) { 
   agelim = AGESUP;      /* printf(" before xi[%d]=%12.8f", j,xi[j]); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      /* if(xxs <1.0) */
     if (stepm >= YEARM) hstepm=1;      /*   printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      p[j] += xi[j]; /* Parameters values are updated accordingly */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    } 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* printf("\n"); */
     gp=matrix(0,nhstepm,1,nlstate);  #ifdef DEBUGLINMIN
     gm=matrix(0,nhstepm,1,nlstate);    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     for (j=1;j<=n;j++) { 
     for(theta=1; theta <=npar; theta++){      printf(" xi[%d]= %12.7f p[%d]= %12.7f",j,xi[j],j,p[j]);
       for(i=1; i<=npar; i++){ /* Computes gradient */      if(j % ncovmodel == 0)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        printf("\n");
       }    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #endif
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
       if (popbased==1) {  } 
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  
       }  /*************** powell ************************/
    /*
       for(j=1; j<= nlstate; j++){  Minimization of a function func of n variables. Input consists of an initial starting point
         for(h=0; h<=nhstepm; h++){  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  such that failure to decrease by more than this amount on one iteration signals doneness. On
         }  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
       }  function value at p , and iter is the number of iterations taken. The routine linmin is used.
       */
       for(i=1; i<=npar; i++) /* Computes gradient */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              double (*func)(double [])) 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    void linmin(double p[], double xi[], int n, double *fret, 
                  double (*func)(double [])); 
       if (popbased==1) {    int i,ibig,j; 
         for(i=1; i<=nlstate;i++)    double del,t,*pt,*ptt,*xit;
           prlim[i][i]=probs[(int)age][i][ij];    double directest;
       }    double fp,fptt;
     double *xits;
       for(j=1; j<= nlstate; j++){    int niterf, itmp;
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    pt=vector(1,n); 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    ptt=vector(1,n); 
         }    xit=vector(1,n); 
       }    xits=vector(1,n); 
     *fret=(*func)(p); 
       for(j=1; j<= nlstate; j++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
         for(h=0; h<=nhstepm; h++){      rcurr_time = time(NULL);  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for (*iter=1;;++(*iter)) { 
         }      fp=(*fret); /* From former iteration or initial value */
     } /* End theta */      ibig=0; 
       del=0.0; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      rlast_time=rcurr_time;
       /* (void) gettimeofday(&curr_time,&tzp); */
     for(h=0; h<=nhstepm; h++)      rcurr_time = time(NULL);  
       for(j=1; j<=nlstate;j++)      curr_time = *localtime(&rcurr_time);
         for(theta=1; theta <=npar; theta++)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
           trgradg[h][j][theta]=gradg[h][theta][j];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
     for(i=1;i<=nlstate;i++)      for (i=1;i<=n;i++) {
       for(j=1;j<=nlstate;j++)        printf(" %d %.12f",i, p[i]);
         vareij[i][j][(int)age] =0.;        fprintf(ficlog," %d %.12lf",i, p[i]);
     for(h=0;h<=nhstepm;h++){        fprintf(ficrespow," %.12lf", p[i]);
       for(k=0;k<=nhstepm;k++){      }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      printf("\n");
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      fprintf(ficlog,"\n");
         for(i=1;i<=nlstate;i++)      fprintf(ficrespow,"\n");fflush(ficrespow);
           for(j=1;j<=nlstate;j++)      if(*iter <=3){
             vareij[i][j][(int)age] += doldm[i][j];        tml = *localtime(&rcurr_time);
       }        strcpy(strcurr,asctime(&tml));
     }        rforecast_time=rcurr_time; 
     h=1;        itmp = strlen(strcurr);
     if (stepm >= YEARM) h=stepm/YEARM;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     fprintf(ficresvij,"%.0f ",age );          strcurr[itmp-1]='\0';
     for(i=1; i<=nlstate;i++)        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       for(j=1; j<=nlstate;j++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);        for(niterf=10;niterf<=30;niterf+=10){
       }          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
     fprintf(ficresvij,"\n");          forecast_time = *localtime(&rforecast_time);
     free_matrix(gp,0,nhstepm,1,nlstate);          strcpy(strfor,asctime(&forecast_time));
     free_matrix(gm,0,nhstepm,1,nlstate);          itmp = strlen(strfor);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          if(strfor[itmp-1]=='\n')
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          strfor[itmp-1]='\0';
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   } /* End age */          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
          }
   free_vector(xp,1,npar);      }
   free_matrix(doldm,1,nlstate,1,npar);      for (i=1;i<=n;i++) { /* For each direction i */
   free_matrix(dnewm,1,nlstate,1,nlstate);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
         fptt=(*fret); 
 }  #ifdef DEBUG
             printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 /************ Variance of prevlim ******************/            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  #endif
 {            printf("%d",i);fflush(stdout); /* print direction (parameter) i */
   /* Variance of prevalence limit */        fprintf(ficlog,"%d",i);fflush(ficlog);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
   double **newm;                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
   double **dnewm,**doldm;        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
   int i, j, nhstepm, hstepm;          /* because that direction will be replaced unless the gain del is small */
   int k, cptcode;          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
   double *xp;          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
   double *gp, *gm;          /* with the new direction. */
   double **gradg, **trgradg;          del=fabs(fptt-(*fret)); 
   double age,agelim;          ibig=i; 
   int theta;        } 
      #ifdef DEBUG
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        printf("%d %.12e",i,(*fret));
   fprintf(ficresvpl,"# Age");        fprintf(ficlog,"%d %.12e",i,(*fret));
   for(i=1; i<=nlstate;i++)        for (j=1;j<=n;j++) {
       fprintf(ficresvpl," %1d-%1d",i,i);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   fprintf(ficresvpl,"\n");          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   xp=vector(1,npar);        }
   dnewm=matrix(1,nlstate,1,npar);        for(j=1;j<=n;j++) {
   doldm=matrix(1,nlstate,1,nlstate);          printf(" p(%d)=%.12e",j,p[j]);
            fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   hstepm=1*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        printf("\n");
   agelim = AGESUP;        fprintf(ficlog,"\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #endif
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      } /* end loop on each direction i */
     if (stepm >= YEARM) hstepm=1;      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
     gradg=matrix(1,npar,1,nlstate);      /* New value of last point Pn is not computed, P(n-1) */
     gp=vector(1,nlstate);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
     gm=vector(1,nlstate);        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
         /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
     for(theta=1; theta <=npar; theta++){        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
       for(i=1; i<=npar; i++){ /* Computes gradient */        /* decreased of more than 3.84  */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
       }        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /* By adding 10 parameters more the gain should be 18.31 */
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];        /* Starting the program with initial values given by a former maximization will simply change */
            /* the scales of the directions and the directions, because the are reset to canonical directions */
       for(i=1; i<=npar; i++) /* Computes gradient */        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  #ifdef DEBUG
       for(i=1;i<=nlstate;i++)        int k[2],l;
         gm[i] = prlim[i][i];        k[0]=1;
         k[1]=-1;
       for(i=1;i<=nlstate;i++)        printf("Max: %.12e",(*func)(p));
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        fprintf(ficlog,"Max: %.12e",(*func)(p));
     } /* End theta */        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
     trgradg =matrix(1,nlstate,1,npar);          fprintf(ficlog," %.12e",p[j]);
         }
     for(j=1; j<=nlstate;j++)        printf("\n");
       for(theta=1; theta <=npar; theta++)        fprintf(ficlog,"\n");
         trgradg[j][theta]=gradg[theta][j];        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
     for(i=1;i<=nlstate;i++)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       varpl[i][(int)age] =0.;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          }
     for(i=1;i<=nlstate;i++)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
     fprintf(ficresvpl,"%.0f ",age );  #endif
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");        free_vector(xit,1,n); 
     free_vector(gp,1,nlstate);        free_vector(xits,1,n); 
     free_vector(gm,1,nlstate);        free_vector(ptt,1,n); 
     free_matrix(gradg,1,npar,1,nlstate);        free_vector(pt,1,n); 
     free_matrix(trgradg,1,nlstate,1,npar);        return; 
   } /* End age */      } /* enough precision */ 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   free_vector(xp,1,npar);      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
   free_matrix(doldm,1,nlstate,1,npar);        ptt[j]=2.0*p[j]-pt[j]; 
   free_matrix(dnewm,1,nlstate,1,nlstate);        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
 }      } 
       fptt=(*func)(ptt); /* f_3 */
 /************ Variance of one-step probabilities  ******************/  #ifdef POWELLF1F3
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  #else
 {      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   int i, j;  #endif
   int k=0, cptcode;        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
   double **dnewm,**doldm;        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   double *xp;        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
   double *gp, *gm;        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   double **gradg, **trgradg;        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   double age,agelim, cov[NCOVMAX];        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
   int theta;        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   char fileresprob[FILENAMELENGTH];  #ifdef NRCORIGINAL
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
   strcpy(fileresprob,"prob");  #else
   strcat(fileresprob,fileres);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        t= t- del*SQR(fp-fptt);
     printf("Problem with resultfile: %s\n", fileresprob);  #endif
   }        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);  #ifdef DEBUG
          printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   xp=vector(1,npar);        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                 (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   cov[1]=1;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   for (age=bage; age<=fage; age ++){        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     cov[2]=age;  #endif
     gradg=matrix(1,npar,1,9);  #ifdef POWELLORIGINAL
     trgradg=matrix(1,9,1,npar);        if (t < 0.0) { /* Then we use it for new direction */
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  #else
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        if (directest*t < 0.0) { /* Contradiction between both tests */
              printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
     for(theta=1; theta <=npar; theta++){          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
       for(i=1; i<=npar; i++)          fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
              } 
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        if (directest < 0.0) { /* Then we use it for new direction */
      #endif
       k=0;  #ifdef DEBUGLINMIN
       for(i=1; i<= (nlstate+ndeath); i++){          printf("Before linmin in direction P%d-P0\n",n);
         for(j=1; j<=(nlstate+ndeath);j++){          for (j=1;j<=n;j++) { 
            k=k+1;            printf("Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
           gp[k]=pmmij[i][j];            if(j % ncovmodel == 0)
         }              printf("\n");
       }          }
   #endif
       for(i=1; i<=npar; i++)          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #ifdef DEBUGLINMIN
              for (j=1;j<=n;j++) { 
             printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            if(j % ncovmodel == 0)
       k=0;              printf("\n");
       for(i=1; i<=(nlstate+ndeath); i++){          }
         for(j=1; j<=(nlstate+ndeath);j++){  #endif
           k=k+1;          for (j=1;j<=n;j++) { 
           gm[k]=pmmij[i][j];            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
         }            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
       }          }
                printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
     }  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for(theta=1; theta <=npar; theta++)          for(j=1;j<=n;j++){
       trgradg[j][theta]=gradg[theta][j];            printf(" %.12e",xit[j]);
              fprintf(ficlog," %.12e",xit[j]);
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          }
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          printf("\n");
           fprintf(ficlog,"\n");
      pmij(pmmij,cov,ncovmodel,x,nlstate);  #endif
         } /* end of t or directest negative */
      k=0;  #ifdef POWELLF1F3
      for(i=1; i<=(nlstate+ndeath); i++){  #else
        for(j=1; j<=(nlstate+ndeath);j++){      } /* end if (fptt < fp)  */
          k=k+1;  #endif
          gm[k]=pmmij[i][j];    } /* loop iteration */ 
         }  } 
      }  
        /**** Prevalence limit (stable or period prevalence)  ****************/
      /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
          {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));       matrix by transitions matrix until convergence is reached */
      }*/    
     int i, ii,j,k;
   fprintf(ficresprob,"\n%d ",(int)age);    double min, max, maxmin, maxmax,sumnew=0.;
     /* double **matprod2(); */ /* test */
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){    double **out, cov[NCOVMAX+1], **pmij();
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    double **newm;
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    double agefin, delaymax=50 ; /* Max number of years to converge */
   }    
     for (ii=1;ii<=nlstate+ndeath;ii++)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      for (j=1;j<=nlstate+ndeath;j++){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    
 }    cov[1]=1.;
  free_vector(xp,1,npar);    
 fclose(ficresprob);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 }      newm=savm;
       /* Covariates have to be included here again */
 /******************* Printing html file ***********/      cov[2]=agefin;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, int lastpass, int stepm, int weightopt, char model[],int imx,int jmin, int jmax, double jmeanint,char optionfile[],char optionfilehtm[],char rfileres[] ){      if(nagesqr==1)
   int jj1, k1, i1, cpt;        cov[3]= agefin*agefin;;
   FILE *fichtm;      for (k=1; k<=cptcovn;k++) {
   /*char optionfilehtm[FILENAMELENGTH];*/        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
   strcpy(optionfilehtm,optionfile);      }
   strcat(optionfilehtm,".htm");      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]*cov[2];
     printf("Problem with %s \n",optionfilehtm), exit(0);      for (k=1; k<=cptcovprod;k++) /* Useless */
   }        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.71e </font> <hr size=\"2\" color=\"#EC5E5E\">      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 Total number of observations=%d <br>      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 <hr  size=\"2\" color=\"#EC5E5E\">      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 <li>Outputs files<br><br>\n      
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      savm=oldm;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>      oldm=newm;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>      maxmax=0.;
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      for(j=1;j<=nlstate;j++){
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        min=1.;
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>        max=0.;
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        for(i=1; i<=nlstate; i++) {
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>          sumnew=0;
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>          prlim[i][j]= newm[i][j]/(1-sumnew);
         - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
         <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
 fprintf(fichtm," <li>Graphs</li><p>");        }
         maxmin=max-min;
  m=cptcoveff;        maxmax=FMAX(maxmax,maxmin);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      } /* j loop */
       if(maxmax < ftolpl){
  jj1=0;        return prlim;
  for(k1=1; k1<=m;k1++){      }
    for(i1=1; i1<=ncodemax[k1];i1++){    } /* age loop */
        jj1++;    return prlim; /* should not reach here */
        if (cptcovn > 0) {  }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)  /*************** transition probabilities ***************/ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
        }  {
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    /* According to parameters values stored in x and the covariate's values stored in cov,
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);           computes the probability to be observed in state j being in state i by appying the
        for(cpt=1; cpt<nlstate;cpt++){       model to the ncovmodel covariates (including constant and age).
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
        }       ncth covariate in the global vector x is given by the formula:
     for(cpt=1; cpt<=nlstate;cpt++) {       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 interval) in state (%d): v%s%d%d.gif <br>       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);         sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
      }       Outputs ps[i][j] the probability to be observed in j being in j according to
      for(cpt=1; cpt<=nlstate;cpt++) {       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    */
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double s1, lnpijopii;
      }    /*double t34;*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    int i,j, nc, ii, jj;
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      for(i=1; i<= nlstate; i++){
 fprintf(fichtm,"\n</body>");        for(j=1; j<i;j++){
    }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
    }            /*lnpijopii += param[i][j][nc]*cov[nc];*/
 fclose(fichtm);            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
 }  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           }
 /******************* Gnuplot file **************/          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double agemin, double agemaxpar, double fage , char pathc[], double p[]){  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        for(j=i+1; j<=nlstate+ndeath;j++){
           for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   strcpy(optionfilegnuplot,optionfilefiname);            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   strcat(optionfilegnuplot,".plt");            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
     printf("Problem with file %s",optionfilegnuplot);          }
   }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }
 #ifdef windows      }
     fprintf(ficgp,"cd \"%s\" \n",pathc);      
 #endif      for(i=1; i<= nlstate; i++){
 m=pow(2,cptcoveff);        s1=0;
          for(j=1; j<i; j++){
  /* 1eme*/          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   for (cpt=1; cpt<= nlstate ; cpt ++) {          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
    for (k1=1; k1<= m ; k1 ++) {        }
         for(j=i+1; j<=nlstate+ndeath; j++){
 #ifdef windows          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 #endif        }
 #ifdef unix        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);        ps[i][i]=1./(s1+1.);
 #endif        /* Computing other pijs */
         for(j=1; j<i; j++)
 for (i=1; i<= nlstate ; i ++) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(j=i+1; j<=nlstate+ndeath; j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          ps[i][j]= exp(ps[i][j])*ps[i][i];
 }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      } /* end i */
     for (i=1; i<= nlstate ; i ++) {      
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(jj=1; jj<= nlstate+ndeath; jj++){
 }          ps[ii][jj]=0;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          ps[ii][ii]=1;
      for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      
 }        
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 #ifdef unix      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 fprintf(ficgp,"\nset ter gif small size 400,300");      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 #endif      /*   } */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      /*   printf("\n "); */
    }      /* } */
   }      /* printf("\n ");printf("%lf ",cov[2]);*/
   /*2 eme*/      /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
   for (k1=1; k1<= m ; k1 ++) {        goto end;*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      return ps;
      }
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;  /**************** Product of 2 matrices ******************/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  {
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 }         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    /* in, b, out are matrice of pointers which should have been initialized 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       before: only the contents of out is modified. The function returns
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       a pointer to pointers identical to out */
       for (j=1; j<= nlstate+1 ; j ++) {    int i, j, k;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for(i=nrl; i<= nrh; i++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");      for(k=ncolol; k<=ncoloh; k++){
 }          out[i][k]=0.;
       fprintf(ficgp,"\" t\"\" w l 0,");        for(j=ncl; j<=nch; j++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          out[i][k] +=in[i][j]*b[j][k];
       for (j=1; j<= nlstate+1 ; j ++) {      }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    return out;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }    
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");  /************* Higher Matrix Product ***************/
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   }  {
      /* Computes the transition matrix starting at age 'age' over 
   /*3eme*/       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   for (k1=1; k1<= m ; k1 ++) {       nhstepm*hstepm matrices. 
     for (cpt=1; cpt<= nlstate ; cpt ++) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       k=2+nlstate*(cpt-1);       (typically every 2 years instead of every month which is too big 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);       for the memory).
       for (i=1; i< nlstate ; i ++) {       Model is determined by parameters x and covariates have to be 
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);       included manually here. 
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       */
     }  
     }    int i, j, d, h, k;
      double **out, cov[NCOVMAX+1];
   /* CV preval stat */    double **newm;
     for (k1=1; k1<= m ; k1 ++) {    double agexact;
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;    /* Hstepm could be zero and should return the unit matrix */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemaxpar,fileres,k1,k+cpt+1,k+1);    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
       for (i=1; i< nlstate ; i ++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
         fprintf(ficgp,"+$%d",k+i+1);        po[i][j][0]=(i==j ? 1.0 : 0.0);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      }
          /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       l=3+(nlstate+ndeath)*cpt;    for(h=1; h <=nhstepm; h++){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      for(d=1; d <=hstepm; d++){
       for (i=1; i< nlstate ; i ++) {        newm=savm;
         l=3+(nlstate+ndeath)*cpt;        /* Covariates have to be included here again */
         fprintf(ficgp,"+$%d",l+i+1);        cov[1]=1.;
       }        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          cov[2]=agexact;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        if(nagesqr==1)
     }          cov[3]= agexact*agexact;
   }          for (k=1; k<=cptcovn;k++) 
            cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /* proba elementaires */        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
    for(i=1,jk=1; i <=nlstate; i++){          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     for(k=1; k <=(nlstate+ndeath); k++){          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
       if (k != i) {        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         for(j=1; j <=ncovmodel; j++){          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           fprintf(ficgp,"\n");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     }        savm=oldm;
     }        oldm=newm;
       }
     for(jk=1; jk <=m; jk++) {      for(i=1; i<=nlstate+ndeath; i++)
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemaxpar);        for(j=1;j<=nlstate+ndeath;j++) {
    i=1;          po[i][j][h]=newm[i][j];
    for(k2=1; k2<=nlstate; k2++) {          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
      k3=i;        }
      for(k=1; k<=(nlstate+ndeath); k++) {      /*printf("h=%d ",h);*/
        if (k != k2){    } /* end h */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  /*     printf("\n H=%d \n",h); */
 ij=1;    return po;
         for(j=3; j <=ncovmodel; j++) {  }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  #ifdef NLOPT
             ij++;    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
           }    double fret;
           else    double *xt;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int j;
         }    myfunc_data *d2 = (myfunc_data *) pd;
           fprintf(ficgp,")/(1");  /* xt = (p1-1); */
            xt=vector(1,n); 
         for(k1=1; k1 <=nlstate; k1++){      for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
 ij=1;    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
           for(j=3; j <=ncovmodel; j++){    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    printf("Function = %.12lf ",fret);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
             ij++;    printf("\n");
           }   free_vector(xt,1,n);
           else    return fret;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  }
           }  #endif
           fprintf(ficgp,")");  
         }  /*************** log-likelihood *************/
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  double func( double *x)
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  {
         i=i+ncovmodel;    int i, ii, j, k, mi, d, kk;
        }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      }    double **out;
    }    double sw; /* Sum of weights */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    double lli; /* Individual log likelihood */
    }    int s1, s2;
        double bbh, survp;
   fclose(ficgp);    long ipmx;
 }  /* end gnuplot */    double agexact;
     /*extern weight */
     /* We are differentiating ll according to initial status */
 /*************** Moving average **************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 void movingaverage(double agedeb, double fage,double agemin, double ***mobaverage){    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   int i, cpt, cptcod;    */
     for (agedeb=agemin; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)    ++countcallfunc;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  
           mobaverage[(int)agedeb][i][cptcod]=0.;    cov[1]=1.;
      
     for (agedeb=agemin+4; agedeb<=fage; agedeb++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    if(mle==1){
           for (cpt=0;cpt<=4;cpt++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        /* Computes the values of the ncovmodel covariates of the model
           }           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
         }           to be observed in j being in i according to the model.
       }         */
     }        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
                cov[2+nagesqr+k]=covar[Tvar[k]][i];
 }        }
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
 /************** Forecasting ******************/           has been calculated etc */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            for (j=1;j<=nlstate+ndeath;j++){
   int *popage;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *popeffectif,*popcount;            }
   double ***p3mat;          for(d=0; d<dh[mi][i]; d++){
   char fileresf[FILENAMELENGTH];            newm=savm;
             agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
  agelim=AGESUP;            cov[2]=agexact;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            if(nagesqr==1)
               cov[3]= agexact*agexact;
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
              }
   strcpy(fileresf,"f");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   strcat(fileresf,fileres);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if((ficresf=fopen(fileresf,"w"))==NULL) {            savm=oldm;
     printf("Problem with forecast resultfile: %s\n", fileresf);            oldm=newm;
   }          } /* end mult */
   printf("Computing forecasting: result on file '%s' \n", fileresf);        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
   if (mobilav==1) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           * the nearest (and in case of equal distance, to the lowest) interval but now
     movingaverage(agedeb, fage, agemin, mobaverage);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   stepsize=(int) (stepm+YEARM-1)/YEARM;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   if (stepm<=12) stepsize=1;           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
   agelim=AGESUP;           * For stepm > 1 the results are less biased than in previous versions. 
             */
   hstepm=1;          s1=s[mw[mi][i]][i];
   hstepm=hstepm/stepm;          s2=s[mw[mi+1][i]][i];
   yp1=modf(dateintmean,&yp);          bbh=(double)bh[mi][i]/(double)stepm; 
   anprojmean=yp;          /* bias bh is positive if real duration
   yp2=modf((yp1*12),&yp);           * is higher than the multiple of stepm and negative otherwise.
   mprojmean=yp;           */
   yp1=modf((yp2*30.5),&yp);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   jprojmean=yp;          if( s2 > nlstate){ 
   if(jprojmean==0) jprojmean=1;            /* i.e. if s2 is a death state and if the date of death is known 
   if(mprojmean==0) jprojmean=1;               then the contribution to the likelihood is the probability to 
                 die between last step unit time and current  step unit time, 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);               which is also equal to probability to die before dh 
                 minus probability to die before dh-stepm . 
   for(cptcov=1;cptcov<=i2;cptcov++){               In version up to 0.92 likelihood was computed
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          as if date of death was unknown. Death was treated as any other
       k=k+1;          health state: the date of the interview describes the actual state
       fprintf(ficresf,"\n#******");          and not the date of a change in health state. The former idea was
       for(j=1;j<=cptcoveff;j++) {          to consider that at each interview the state was recorded
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          (healthy, disable or death) and IMaCh was corrected; but when we
       }          introduced the exact date of death then we should have modified
       fprintf(ficresf,"******\n");          the contribution of an exact death to the likelihood. This new
       fprintf(ficresf,"# StartingAge FinalAge");          contribution is smaller and very dependent of the step unit
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          stepm. It is no more the probability to die between last interview
                and month of death but the probability to survive from last
                interview up to one month before death multiplied by the
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          probability to die within a month. Thanks to Chris
         fprintf(ficresf,"\n");          Jackson for correcting this bug.  Former versions increased
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){          lower mortality.
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            */
           nhstepm = nhstepm/hstepm;          /* If, at the beginning of the maximization mostly, the
                       cumulative probability or probability to be dead is
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);             constant (ie = 1) over time d, the difference is equal to
           oldm=oldms;savm=savms;             0.  out[s1][3] = savm[s1][3]: probability, being at state
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);               s1 at precedent wave, to be dead a month before current
                     wave is equal to probability, being at state s1 at
           for (h=0; h<=nhstepm; h++){             precedent wave, to be dead at mont of the current
             if (h==(int) (calagedate+YEARM*cpt)) {             wave. Then the observed probability (that this person died)
               fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);             is null according to current estimated parameter. In fact,
             }             it should be very low but not zero otherwise the log go to
             for(j=1; j<=nlstate+ndeath;j++) {             infinity.
               kk1=0.;kk2=0;          */
               for(i=1; i<=nlstate;i++) {                /* #ifdef INFINITYORIGINAL */
                 if (mobilav==1)  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  /* #else */
                 else {  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  /*          lli=log(mytinydouble); */
                 }  /*        else */
                  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
               }  /* #endif */
               if (h==(int)(calagedate+12*cpt)){              lli=log(out[s1][s2] - savm[s1][s2]);
                 fprintf(ficresf," %.3f", kk1);  
                                  } else if  (s2==-2) {
               }            for (j=1,survp=0. ; j<=nlstate; j++) 
             }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           }            /*survp += out[s1][j]; */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli= log(survp);
         }          }
       }          
     }          else if  (s2==-4) { 
   }            for (j=3,survp=0. ; j<=nlstate; j++)  
                      survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            lli= log(survp); 
           } 
   fclose(ficresf);  
 }          else if  (s2==-5) { 
 /************** Forecasting ******************/            for (j=1,survp=0. ; j<=2; j++)  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              lli= log(survp); 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          } 
   int *popage;          
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          else{
   double *popeffectif,*popcount;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double ***p3mat,***tabpop,***tabpopprev;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   char filerespop[FILENAMELENGTH];          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*if(lli ==000.0)*/
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   agelim=AGESUP;          ipmx +=1;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          /* if (lli < log(mytinydouble)){ */
            /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
            /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
   strcpy(filerespop,"pop");          /* } */
   strcat(filerespop,fileres);        } /* end of wave */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      } /* end of individual */
     printf("Problem with forecast resultfile: %s\n", filerespop);    }  else if(mle==2){
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   if (mobilav==1) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     movingaverage(agedeb, fage, agemin, mobaverage);            }
   }          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
   stepsize=(int) (stepm+YEARM-1)/YEARM;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if (stepm<=12) stepsize=1;            cov[2]=agexact;
              if(nagesqr==1)
   agelim=AGESUP;              cov[3]= agexact*agexact;
              for (kk=1; kk<=cptcovage;kk++) {
   hstepm=1;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   hstepm=hstepm/stepm;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if (popforecast==1) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if((ficpop=fopen(popfile,"r"))==NULL) {            savm=oldm;
       printf("Problem with population file : %s\n",popfile);exit(0);            oldm=newm;
     }          } /* end mult */
     popage=ivector(0,AGESUP);        
     popeffectif=vector(0,AGESUP);          s1=s[mw[mi][i]][i];
     popcount=vector(0,AGESUP);          s2=s[mw[mi+1][i]][i];
              bbh=(double)bh[mi][i]/(double)stepm; 
     i=1;            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          ipmx +=1;
              sw += weight[i];
     imx=i;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        } /* end of wave */
   }      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
   for(cptcov=1;cptcov<=i2;cptcov++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
       k=k+1;        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficrespop,"\n#******");          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1;j<=cptcoveff;j++) {            for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficrespop,"******\n");            }
       fprintf(ficrespop,"# Age");          for(d=0; d<dh[mi][i]; d++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            newm=savm;
       if (popforecast==1)  fprintf(ficrespop," [Population]");            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  cov[2]=agexact;
       for (cpt=0; cpt<=0;cpt++) {            if(nagesqr==1)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                cov[3]= agexact*agexact;
                    for (kk=1; kk<=cptcovage;kk++) {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            }
           nhstepm = nhstepm/hstepm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            savm=oldm;
           oldm=oldms;savm=savms;            oldm=newm;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            } /* end mult */
                
           for (h=0; h<=nhstepm; h++){          s1=s[mw[mi][i]][i];
             if (h==(int) (calagedate+YEARM*cpt)) {          s2=s[mw[mi+1][i]][i];
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          bbh=(double)bh[mi][i]/(double)stepm; 
             }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             for(j=1; j<=nlstate+ndeath;j++) {          ipmx +=1;
               kk1=0.;kk2=0;          sw += weight[i];
               for(i=1; i<=nlstate;i++) {                        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 if (mobilav==1)        } /* end of wave */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      } /* end of individual */
                 else {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                 }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
               }        for(mi=1; mi<= wav[i]-1; mi++){
               if (h==(int)(calagedate+12*cpt)){          for (ii=1;ii<=nlstate+ndeath;ii++)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            for (j=1;j<=nlstate+ndeath;j++){
                   /*fprintf(ficrespop," %.3f", kk1);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               }            }
             }          for(d=0; d<dh[mi][i]; d++){
             for(i=1; i<=nlstate;i++){            newm=savm;
               kk1=0.;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 for(j=1; j<=nlstate;j++){            cov[2]=agexact;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            if(nagesqr==1)
                 }              cov[3]= agexact*agexact;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];            for (kk=1; kk<=cptcovage;kk++) {
             }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            savm=oldm;
         }            oldm=newm;
       }          } /* end mult */
          
   /******/          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          if( s2 > nlstate){ 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              lli=log(out[s1][s2] - savm[s1][s2]);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){          }else{
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           nhstepm = nhstepm/hstepm;          }
                    ipmx +=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          sw += weight[i];
           oldm=oldms;savm=savms;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for (h=0; h<=nhstepm; h++){        } /* end of wave */
             if (h==(int) (calagedate+YEARM*cpt)) {      } /* end of individual */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             for(j=1; j<=nlstate+ndeath;j++) {        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
               kk1=0.;kk2=0;        for(mi=1; mi<= wav[i]-1; mi++){
               for(i=1; i<=nlstate;i++) {                        for (ii=1;ii<=nlstate+ndeath;ii++)
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                for (j=1;j<=nlstate+ndeath;j++){
               }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }            }
           }          for(d=0; d<dh[mi][i]; d++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            newm=savm;
         }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            cov[2]=agexact;
    }            if(nagesqr==1)
   }              cov[3]= agexact*agexact;
              for (kk=1; kk<=cptcovage;kk++) {
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             }
   if (popforecast==1) {          
     free_ivector(popage,0,AGESUP);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_vector(popeffectif,0,AGESUP);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_vector(popcount,0,AGESUP);            savm=oldm;
   }            oldm=newm;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          } /* end mult */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        
   fclose(ficrespop);          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 /***********************************************/          ipmx +=1;
 /**************** Main Program *****************/          sw += weight[i];
 /***********************************************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 int main(int argc, char *argv[])        } /* end of wave */
 {      } /* end of individual */
     } /* End of if */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double agedeb, agefin,hf;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
   double fret;  }
   double **xi,tmp,delta;  
   /*************** log-likelihood *************/
   double dum; /* Dummy variable */  double funcone( double *x)
   double ***p3mat;  {
   int *indx;    /* Same as likeli but slower because of a lot of printf and if */
   char line[MAXLINE], linepar[MAXLINE];    int i, ii, j, k, mi, d, kk;
   char title[MAXLINE];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    double **out;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    double lli; /* Individual log likelihood */
      double llt;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    int s1, s2;
     double bbh, survp;
   char filerest[FILENAMELENGTH];    double agexact;
   char fileregp[FILENAMELENGTH];    /*extern weight */
   char popfile[FILENAMELENGTH];    /* We are differentiating ll according to initial status */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int firstobs=1, lastobs=10;    /*for(i=1;i<imx;i++) 
   int sdeb, sfin; /* Status at beginning and end */      printf(" %d\n",s[4][i]);
   int c,  h , cpt,l;    */
   int ju,jl, mi;    cov[1]=1.;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
   double bage, fage, age, agelim, agebase;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double ftolpl=FTOL;          for (j=1;j<=nlstate+ndeath;j++){
   double **prlim;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *severity;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***param; /* Matrix of parameters */          }
   double  *p;        for(d=0; d<dh[mi][i]; d++){
   double **matcov; /* Matrix of covariance */          newm=savm;
   double ***delti3; /* Scale */          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double *delti; /* Scale */          cov[2]=agexact;
   double ***eij, ***vareij;          if(nagesqr==1)
   double **varpl; /* Variances of prevalence limits by age */            cov[3]= agexact*agexact;
   double *epj, vepp;          for (kk=1; kk<=cptcovage;kk++) {
   double kk1, kk2;            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          }
    
           /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   char version[80]="Imach version 0.71e, March 2002, INED-EUROREVES ";          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   char *alph[]={"a","a","b","c","d","e"}, str[4];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   char z[1]="c", occ;          savm=oldm;
 #include <sys/time.h>          oldm=newm;
 #include <time.h>        } /* end mult */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        
          s1=s[mw[mi][i]][i];
   /* long total_usecs;        s2=s[mw[mi+1][i]][i];
   struct timeval start_time, end_time;        bbh=(double)bh[mi][i]/(double)stepm; 
          /* bias is positive if real duration
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */         * is higher than the multiple of stepm and negative otherwise.
          */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
   printf("\n%s",version);          lli=log(out[s1][s2] - savm[s1][s2]);
   if(argc <=1){        } else if  (s2==-2) {
     printf("\nEnter the parameter file name: ");          for (j=1,survp=0. ; j<=nlstate; j++) 
     scanf("%s",pathtot);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   }          lli= log(survp);
   else{        }else if (mle==1){
     strcpy(pathtot,argv[1]);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }        } else if(mle==2){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   /*cygwin_split_path(pathtot,path,optionfile);        } else if(mle==3){  /* exponential inter-extrapolation */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   /* cutv(path,optionfile,pathtot,'\\');*/        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        } else{  /* mle=0 back to 1 */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   chdir(path);          /*lli=log(out[s1][s2]); */ /* Original formula */
   replace(pathc,path);        } /* End of if */
         ipmx +=1;
 /*-------- arguments in the command line --------*/        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcpy(fileres,"r");        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   strcat(fileres, optionfilefiname);        if(globpr){
   strcat(fileres,".txt");    /* Other files have txt extension */          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
   /*---------arguments file --------*/                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     printf("Problem with optionfile %s\n",optionfile);            llt +=ll[k]*gipmx/gsw;
     goto end;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   }          }
           fprintf(ficresilk," %10.6f\n", -llt);
   strcpy(filereso,"o");        }
   strcat(filereso,fileres);      } /* end of wave */
   if((ficparo=fopen(filereso,"w"))==NULL) {    } /* end of individual */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /* Reads comments: lines beginning with '#' */    if(globpr==0){ /* First time we count the contributions and weights */
   while((c=getc(ficpar))=='#' && c!= EOF){      gipmx=ipmx;
     ungetc(c,ficpar);      gsw=sw;
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    return -l;
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  
   /*************** function likelione ***********/
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  {
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    /* This routine should help understanding what is done with 
 while((c=getc(ficpar))=='#' && c!= EOF){       the selection of individuals/waves and
     ungetc(c,ficpar);       to check the exact contribution to the likelihood.
     fgets(line, MAXLINE, ficpar);       Plotting could be done.
     puts(line);     */
     fputs(line,ficparo);    int k;
   }  
   ungetc(c,ficpar);    if(*globpri !=0){ /* Just counts and sums, no printings */
        strcpy(fileresilk,"ilk"); 
          strcat(fileresilk,fileres);
   covar=matrix(0,NCOVMAX,1,n);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   cptcovn=0;        printf("Problem with resultfile: %s\n", fileresilk);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
   ncovmodel=2+cptcovn;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   /* Read guess parameters */      for(k=1; k<=nlstate; k++) 
   /* Reads comments: lines beginning with '#' */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);  
     puts(line);    *fretone=(*funcone)(p);
     fputs(line,ficparo);    if(*globpri !=0){
   }      fclose(ficresilk);
   ungetc(c,ficpar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
        fflush(fichtm); 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    } 
     for(i=1; i <=nlstate; i++)    return;
     for(j=1; j <=nlstate+ndeath-1; j++){  }
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);  /*********** Maximum Likelihood Estimation ***************/
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         printf(" %lf",param[i][j][k]);  {
         fprintf(ficparo," %lf",param[i][j][k]);    int i,j, iter=0;
       }    double **xi;
       fscanf(ficpar,"\n");    double fret;
       printf("\n");    double fretone; /* Only one call to likelihood */
       fprintf(ficparo,"\n");    /*  char filerespow[FILENAMELENGTH];*/
     }  
    #ifdef NLOPT
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    int creturn;
     nlopt_opt opt;
   p=param[1][1];    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
      double *lb;
   /* Reads comments: lines beginning with '#' */    double minf; /* the minimum objective value, upon return */
   while((c=getc(ficpar))=='#' && c!= EOF){    double * p1; /* Shifted parameters from 0 instead of 1 */
     ungetc(c,ficpar);    myfunc_data dinst, *d = &dinst;
     fgets(line, MAXLINE, ficpar);  #endif
     puts(line);  
     fputs(line,ficparo);  
   }    xi=matrix(1,npar,1,npar);
   ungetc(c,ficpar);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        xi[i][j]=(i==j ? 1.0 : 0.0);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   for(i=1; i <=nlstate; i++){    strcpy(filerespow,"pow"); 
     for(j=1; j <=nlstate+ndeath-1; j++){    strcat(filerespow,fileres);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("%1d%1d",i,j);      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficparo,"%1d%1d",i1,j1);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         printf(" %le",delti3[i][j][k]);    for (i=1;i<=nlstate;i++)
         fprintf(ficparo," %le",delti3[i][j][k]);      for(j=1;j<=nlstate+ndeath;j++)
       }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       fscanf(ficpar,"\n");    fprintf(ficrespow,"\n");
       printf("\n");  #ifdef POWELL
       fprintf(ficparo,"\n");    powell(p,xi,npar,ftol,&iter,&fret,func);
     }  #endif
   }  
   delti=delti3[1][1];  #ifdef NLOPT
    #ifdef NEWUOA
   /* Reads comments: lines beginning with '#' */    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){  #else
     ungetc(c,ficpar);    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
     fgets(line, MAXLINE, ficpar);  #endif
     puts(line);    lb=vector(0,npar-1);
     fputs(line,ficparo);    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
   }    nlopt_set_lower_bounds(opt, lb);
   ungetc(c,ficpar);    nlopt_set_initial_step1(opt, 0.1);
      
   matcov=matrix(1,npar,1,npar);    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   for(i=1; i <=npar; i++){    d->function = func;
     fscanf(ficpar,"%s",&str);    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     printf("%s",str);    nlopt_set_min_objective(opt, myfunc, d);
     fprintf(ficparo,"%s",str);    nlopt_set_xtol_rel(opt, ftol);
     for(j=1; j <=i; j++){    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
       fscanf(ficpar," %le",&matcov[i][j]);      printf("nlopt failed! %d\n",creturn); 
       printf(" %.5le",matcov[i][j]);    }
       fprintf(ficparo," %.5le",matcov[i][j]);    else {
     }      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
     fscanf(ficpar,"\n");      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
     printf("\n");      iter=1; /* not equal */
     fprintf(ficparo,"\n");    }
   }    nlopt_destroy(opt);
   for(i=1; i <=npar; i++)  #endif
     for(j=i+1;j<=npar;j++)    free_matrix(xi,1,npar,1,npar);
       matcov[i][j]=matcov[j][i];    fclose(ficrespow);
        printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   printf("\n");    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   
     /*-------- Rewriting paramater file ----------*/  }
      strcpy(rfileres,"r");    /* "Rparameterfile */  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  /**** Computes Hessian and covariance matrix ***/
      strcat(rfileres,".");    /* */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  {
     if((ficres =fopen(rfileres,"w"))==NULL) {    double  **a,**y,*x,pd;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    double **hess;
     }    int i, j;
     fprintf(ficres,"#%s\n",version);    int *indx;
      
     /*-------- data file ----------*/    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     if((fic=fopen(datafile,"r"))==NULL)    {    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       printf("Problem with datafile: %s\n", datafile);goto end;    void lubksb(double **a, int npar, int *indx, double b[]) ;
     }    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
     n= lastobs;    hess=matrix(1,npar,1,npar);
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);    printf("\nCalculation of the hessian matrix. Wait...\n");
     num=ivector(1,n);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     moisnais=vector(1,n);    for (i=1;i<=npar;i++){
     annais=vector(1,n);      printf("%d",i);fflush(stdout);
     moisdc=vector(1,n);      fprintf(ficlog,"%d",i);fflush(ficlog);
     andc=vector(1,n);     
     agedc=vector(1,n);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     cod=ivector(1,n);      
     weight=vector(1,n);      /*  printf(" %f ",p[i]);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     mint=matrix(1,maxwav,1,n);    }
     anint=matrix(1,maxwav,1,n);    
     s=imatrix(1,maxwav+1,1,n);    for (i=1;i<=npar;i++) {
     adl=imatrix(1,maxwav+1,1,n);          for (j=1;j<=npar;j++)  {
     tab=ivector(1,NCOVMAX);        if (j>i) { 
     ncodemax=ivector(1,8);          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     i=1;          hess[i][j]=hessij(p,delti,i,j,func,npar);
     while (fgets(line, MAXLINE, fic) != NULL)    {          
       if ((i >= firstobs) && (i <=lastobs)) {          hess[j][i]=hess[i][j];    
                  /*printf(" %lf ",hess[i][j]);*/
         for (j=maxwav;j>=1;j--){        }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      }
           strcpy(line,stra);    }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    printf("\n");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"\n");
         }  
            printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    
     a=matrix(1,npar,1,npar);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    y=matrix(1,npar,1,npar);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    x=vector(1,npar);
     indx=ivector(1,npar);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    for (i=1;i<=npar;i++)
         for (j=ncov;j>=1;j--){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    ludcmp(a,npar,indx,&pd);
         }  
         num[i]=atol(stra);    for (j=1;j<=npar;j++) {
              for (i=1;i<=npar;i++) x[i]=0;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      x[j]=1;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
         i=i+1;        matcov[i][j]=x[i];
       }      }
     }    }
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/    printf("\n#Hessian matrix#\n");
   imx=i-1; /* Number of individuals */    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
   /* for (i=1; i<=imx; i++){      for (j=1;j<=npar;j++) { 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        printf("%.3e ",hess[i][j]);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        fprintf(ficlog,"%.3e ",hess[i][j]);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      }
     }      printf("\n");
       fprintf(ficlog,"\n");
     for (i=1; i<=imx; i++)    }
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/  
     /* Recompute Inverse */
   /* Calculation of the number of parameter from char model*/    for (i=1;i<=npar;i++)
   Tvar=ivector(1,15);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   Tprod=ivector(1,15);    ludcmp(a,npar,indx,&pd);
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);    /*  printf("\n#Hessian matrix recomputed#\n");
   Tage=ivector(1,15);        
        for (j=1;j<=npar;j++) {
   if (strlen(model) >1){      for (i=1;i<=npar;i++) x[i]=0;
     j=0, j1=0, k1=1, k2=1;      x[j]=1;
     j=nbocc(model,'+');      lubksb(a,npar,indx,x);
     j1=nbocc(model,'*');      for (i=1;i<=npar;i++){ 
     cptcovn=j+1;        y[i][j]=x[i];
     cptcovprod=j1;        printf("%.3e ",y[i][j]);
            fprintf(ficlog,"%.3e ",y[i][j]);
          }
     strcpy(modelsav,model);      printf("\n");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      fprintf(ficlog,"\n");
       printf("Error. Non available option model=%s ",model);    }
       goto end;    */
     }  
        free_matrix(a,1,npar,1,npar);
     for(i=(j+1); i>=1;i--){    free_matrix(y,1,npar,1,npar);
       cutv(stra,strb,modelsav,'+');    free_vector(x,1,npar);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    free_ivector(indx,1,npar);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    free_matrix(hess,1,npar,1,npar);
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {  
         cutv(strd,strc,strb,'*');  }
         if (strcmp(strc,"age")==0) {  
           cptcovprod--;  /*************** hessian matrix ****************/
           cutv(strb,stre,strd,'V');  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           Tvar[i]=atoi(stre);  {
           cptcovage++;    int i;
             Tage[cptcovage]=i;    int l=1, lmax=20;
             /*printf("stre=%s ", stre);*/    double k1,k2;
         }    double p2[MAXPARM+1]; /* identical to x */
         else if (strcmp(strd,"age")==0) {    double res;
           cptcovprod--;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           cutv(strb,stre,strc,'V');    double fx;
           Tvar[i]=atoi(stre);    int k=0,kmax=10;
           cptcovage++;    double l1;
           Tage[cptcovage]=i;  
         }    fx=func(x);
         else {    for (i=1;i<=npar;i++) p2[i]=x[i];
           cutv(strb,stre,strc,'V');    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
           Tvar[i]=ncov+k1;      l1=pow(10,l);
           cutv(strb,strc,strd,'V');      delts=delt;
           Tprod[k1]=i;      for(k=1 ; k <kmax; k=k+1){
           Tvard[k1][1]=atoi(strc);        delt = delta*(l1*k);
           Tvard[k1][2]=atoi(stre);        p2[theta]=x[theta] +delt;
           Tvar[cptcovn+k2]=Tvard[k1][1];        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        p2[theta]=x[theta]-delt;
           for (k=1; k<=lastobs;k++)        k2=func(p2)-fx;
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        /*res= (k1-2.0*fx+k2)/delt/delt; */
           k1++;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           k2=k2+2;        
         }  #ifdef DEBUGHESS
       }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       else {        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  #endif
        /*  scanf("%d",i);*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       cutv(strd,strc,strb,'V');        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       Tvar[i]=atoi(strc);          k=kmax;
       }        }
       strcpy(modelsav,stra);          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);          k=kmax; l=lmax*10;
         scanf("%d",i);*/        }
     }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 }          delts=delt;
          }
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      }
   printf("cptcovprod=%d ", cptcovprod);    }
   scanf("%d ",i);*/    delti[theta]=delts;
     fclose(fic);    return res; 
     
     /*  if(mle==1){*/  }
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     }  {
     /*-calculation of age at interview from date of interview and age at death -*/    int i;
     agev=matrix(1,maxwav,1,imx);    int l=1, lmax=20;
     double k1,k2,k3,k4,res,fx;
    for (i=1; i<=imx; i++)    double p2[MAXPARM+1];
      for(m=2; (m<= maxwav); m++)    int k;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;    fx=func(x);
          s[m][i]=-1;    for (k=1; k<=2; k++) {
        }      for (i=1;i<=npar;i++) p2[i]=x[i];
          p2[thetai]=x[thetai]+delti[thetai]/k;
     for (i=1; i<=imx; i++)  {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      k1=func(p2)-fx;
       for(m=1; (m<= maxwav); m++){    
         if(s[m][i] >0){      p2[thetai]=x[thetai]+delti[thetai]/k;
           if (s[m][i] == nlstate+1) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             if(agedc[i]>0)      k2=func(p2)-fx;
               if(moisdc[i]!=99 && andc[i]!=9999)    
               agev[m][i]=agedc[i];      p2[thetai]=x[thetai]-delti[thetai]/k;
             else {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               if (andc[i]!=9999){      k3=func(p2)-fx;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    
               agev[m][i]=-1;      p2[thetai]=x[thetai]-delti[thetai]/k;
               }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             }      k4=func(p2)-fx;
           }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           else if(s[m][i] !=9){ /* Should no more exist */  #ifdef DEBUG
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             if(mint[m][i]==99 || anint[m][i]==9999)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               agev[m][i]=1;  #endif
             else if(agev[m][i] <agemin){    }
               agemin=agev[m][i];    return res;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  }
             }  
             else if(agev[m][i] >agemax){  /************** Inverse of matrix **************/
               agemax=agev[m][i];  void ludcmp(double **a, int n, int *indx, double *d) 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  { 
             }    int i,imax,j,k; 
             /*agev[m][i]=anint[m][i]-annais[i];*/    double big,dum,sum,temp; 
             /*   agev[m][i] = age[i]+2*m;*/    double *vv; 
           }   
           else { /* =9 */    vv=vector(1,n); 
             agev[m][i]=1;    *d=1.0; 
             s[m][i]=-1;    for (i=1;i<=n;i++) { 
           }      big=0.0; 
         }      for (j=1;j<=n;j++) 
         else /*= 0 Unknown */        if ((temp=fabs(a[i][j])) > big) big=temp; 
           agev[m][i]=1;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       }      vv[i]=1.0/big; 
        } 
     }    for (j=1;j<=n;j++) { 
     for (i=1; i<=imx; i++)  {      for (i=1;i<j;i++) { 
       for(m=1; (m<= maxwav); m++){        sum=a[i][j]; 
         if (s[m][i] > (nlstate+ndeath)) {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           printf("Error: Wrong value in nlstate or ndeath\n");          a[i][j]=sum; 
           goto end;      } 
         }      big=0.0; 
       }      for (i=j;i<=n;i++) { 
     }        sum=a[i][j]; 
         for (k=1;k<j;k++) 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     free_vector(severity,1,maxwav);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     free_imatrix(outcome,1,maxwav+1,1,n);          big=dum; 
     free_vector(moisnais,1,n);          imax=i; 
     free_vector(annais,1,n);        } 
     /* free_matrix(mint,1,maxwav,1,n);      } 
        free_matrix(anint,1,maxwav,1,n);*/      if (j != imax) { 
     free_vector(moisdc,1,n);        for (k=1;k<=n;k++) { 
     free_vector(andc,1,n);          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
              a[j][k]=dum; 
     wav=ivector(1,imx);        } 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        *d = -(*d); 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        vv[imax]=vv[j]; 
          } 
     /* Concatenates waves */      indx[j]=imax; 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
         dum=1.0/(a[j][j]); 
       Tcode=ivector(1,100);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      } 
       ncodemax[1]=1;    } 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    free_vector(vv,1,n);  /* Doesn't work */
        ;
    codtab=imatrix(1,100,1,10);  } 
    h=0;  
    m=pow(2,cptcoveff);  void lubksb(double **a, int n, int *indx, double b[]) 
    { 
    for(k=1;k<=cptcoveff; k++){    int i,ii=0,ip,j; 
      for(i=1; i <=(m/pow(2,k));i++){    double sum; 
        for(j=1; j <= ncodemax[k]; j++){   
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    for (i=1;i<=n;i++) { 
            h++;      ip=indx[i]; 
            if (h>m) h=1;codtab[h][k]=j;      sum=b[ip]; 
          }      b[ip]=b[i]; 
        }      if (ii) 
      }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
    }      else if (sum) ii=i; 
       b[i]=sum; 
     } 
    /*for(i=1; i <=m ;i++){    for (i=n;i>=1;i--) { 
      for(k=1; k <=cptcovn; k++){      sum=b[i]; 
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      }      b[i]=sum/a[i][i]; 
      printf("\n");    } 
    }  } 
    scanf("%d",i);*/  
      void pstamp(FILE *fichier)
    /* Calculates basic frequencies. Computes observed prevalence at single age  {
        and prints on file fileres'p'. */    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
      
      /************ Frequencies ********************/
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {  /* Some frequencies */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int i, m, jk, j1, bool, z1,j;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    int first;
          double ***freq; /* Frequencies */
     /* For Powell, parameters are in a vector p[] starting at p[1]    double *pp, **prop;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    char fileresp[FILENAMELENGTH];
     
     if(mle==1){    pp=vector(1,nlstate);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     }    strcpy(fileresp,"p");
        strcat(fileresp,fileres);
     /*--------- results files --------------*/    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, weightopt,model);      printf("Problem with prevalence resultfile: %s\n", fileresp);
        fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
    jk=1;    }
    fprintf(ficres,"# Parameters\n");    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
    printf("# Parameters\n");    j1=0;
    for(i=1,jk=1; i <=nlstate; i++){    
      for(k=1; k <=(nlstate+ndeath); k++){    j=cptcoveff;
        if (k != i)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
          {  
            printf("%d%d ",i,k);    first=1;
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
              printf("%f ",p[jk]);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
              fprintf(ficres,"%f ",p[jk]);    /*    j1++; */
              jk++;    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
            }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
            printf("\n");          scanf("%d", i);*/
            fprintf(ficres,"\n");        for (i=-5; i<=nlstate+ndeath; i++)  
          }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
      }            for(m=iagemin; m <= iagemax+3; m++)
    }              freq[i][jk][m]=0;
  if(mle==1){        
     /* Computing hessian and covariance matrix */        for (i=1; i<=nlstate; i++)  
     ftolhess=ftol; /* Usually correct */          for(m=iagemin; m <= iagemax+3; m++)
     hesscov(matcov, p, npar, delti, ftolhess, func);            prop[i][m]=0;
  }        
     fprintf(ficres,"# Scales\n");        dateintsum=0;
     printf("# Scales\n");        k2cpt=0;
      for(i=1,jk=1; i <=nlstate; i++){        for (i=1; i<=imx; i++) {
       for(j=1; j <=nlstate+ndeath; j++){          bool=1;
         if (j!=i) {          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
           fprintf(ficres,"%1d%1d",i,j);            for (z1=1; z1<=cptcoveff; z1++)       
           printf("%1d%1d",i,j);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
           for(k=1; k<=ncovmodel;k++){                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
             printf(" %.5e",delti[jk]);                bool=0;
             fprintf(ficres," %.5e",delti[jk]);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
             jk++;                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
           }                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
           printf("\n");                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
           fprintf(ficres,"\n");              } 
         }          }
       }   
      }          if (bool==1){
                for(m=firstpass; m<=lastpass; m++){
     k=1;              k2=anint[m][i]+(mint[m][i]/12.);
     fprintf(ficres,"# Covariance\n");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     printf("# Covariance\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     for(i=1;i<=npar;i++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       /*  if (k>nlstate) k=1;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       i1=(i-1)/(ncovmodel*nlstate)+1;                if (m<lastpass) {
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       printf("%s%d%d",alph[k],i1,tab[i]);*/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       fprintf(ficres,"%3d",i);                }
       printf("%3d",i);                
       for(j=1; j<=i;j++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         fprintf(ficres," %.5e",matcov[i][j]);                  dateintsum=dateintsum+k2;
         printf(" %.5e",matcov[i][j]);                  k2cpt++;
       }                }
       fprintf(ficres,"\n");                /*}*/
       printf("\n");            }
       k++;          }
     }        } /* end i */
             
     while((c=getc(ficpar))=='#' && c!= EOF){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       ungetc(c,ficpar);        pstamp(ficresp);
       fgets(line, MAXLINE, ficpar);        if  (cptcovn>0) {
       puts(line);          fprintf(ficresp, "\n#********** Variable "); 
       fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficresp, "**********\n#");
     ungetc(c,ficpar);          fprintf(ficlog, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemaxpar, &bage, &fage);          fprintf(ficlog, "**********\n#");
            }
     if (fage <= 2) {        for(i=1; i<=nlstate;i++) 
       bage = agemin;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fage = agemaxpar;        fprintf(ficresp, "\n");
     }        
            for(i=iagemin; i <= iagemax+3; i++){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          if(i==iagemax+3){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);            fprintf(ficlog,"Total");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemaxpar,bage,fage);          }else{
              if(first==1){
     while((c=getc(ficpar))=='#' && c!= EOF){              first=0;
     ungetc(c,ficpar);              printf("See log file for details...\n");
     fgets(line, MAXLINE, ficpar);            }
     puts(line);            fprintf(ficlog,"Age %d", i);
     fputs(line,ficparo);          }
   }          for(jk=1; jk <=nlstate ; jk++){
   ungetc(c,ficpar);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                pp[jk] += freq[jk][m][i]; 
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          }
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for(jk=1; jk <=nlstate ; jk++){
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for(m=-1, pos=0; m <=0 ; m++)
                    pos += freq[jk][m][i];
   while((c=getc(ficpar))=='#' && c!= EOF){            if(pp[jk]>=1.e-10){
     ungetc(c,ficpar);              if(first==1){
     fgets(line, MAXLINE, ficpar);                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     puts(line);              }
     fputs(line,ficparo);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   }            }else{
   ungetc(c,ficpar);              if(first==1)
                  printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          }
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);          for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficparo,"pop_based=%d\n",popbased);              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   fprintf(ficres,"pop_based=%d\n",popbased);                pp[jk] += freq[jk][m][i];
            }       
   while((c=getc(ficpar))=='#' && c!= EOF){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     ungetc(c,ficpar);            pos += pp[jk];
     fgets(line, MAXLINE, ficpar);            posprop += prop[jk][i];
     puts(line);          }
     fputs(line,ficparo);          for(jk=1; jk <=nlstate ; jk++){
   }            if(pos>=1.e-5){
   ungetc(c,ficpar);              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            }else{
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);            if( i <= iagemax){
     fgets(line, MAXLINE, ficpar);              if(pos>=1.e-5){
     puts(line);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     fputs(line,ficparo);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   ungetc(c,ficpar);              }
               else
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          }
           
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
 /*------------ gnuplot -------------*/              if(freq[jk][m][i] !=0 ) {
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, agemin,agemaxpar,fage, pathc,p);              if(first==1)
                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 /*------------ free_vector  -------------*/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
  chdir(path);              }
            if(i <= iagemax)
  free_ivector(wav,1,imx);            fprintf(ficresp,"\n");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          if(first==1)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              printf("Others in log...\n");
  free_ivector(num,1,n);          fprintf(ficlog,"\n");
  free_vector(agedc,1,n);        }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        /*}*/
  fclose(ficparo);    }
  fclose(ficres);    dateintmean=dateintsum/k2cpt; 
    
 /*--------- index.htm --------*/    fclose(ficresp);
     free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres);    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      /* End of Freq */
   /*--------------- Prevalence limit --------------*/  }
    
   strcpy(filerespl,"pl");  /************ Prevalence ********************/
   strcat(filerespl,fileres);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   }       in each health status at the date of interview (if between dateprev1 and dateprev2).
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);       We still use firstpass and lastpass as another selection.
   fprintf(ficrespl,"#Prevalence limit\n");    */
   fprintf(ficrespl,"#Age ");   
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    int i, m, jk, j1, bool, z1,j;
   fprintf(ficrespl,"\n");  
      double **prop;
   prlim=matrix(1,nlstate,1,nlstate);    double posprop; 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double  y2; /* in fractional years */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int iagemin, iagemax;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int first; /** to stop verbosity which is redirected to log file */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    iagemin= (int) agemin;
   k=0;    iagemax= (int) agemax;
   agebase=agemin;    /*pp=vector(1,nlstate);*/
   agelim=agemaxpar;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   ftolpl=1.e-10;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   i1=cptcoveff;    j1=0;
   if (cptcovn < 1){i1=1;}    
     /*j=cptcoveff;*/
   for(cptcov=1;cptcov<=i1;cptcov++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
         k=k+1;    first=1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
         fprintf(ficrespl,"\n#******");      /*for(i1=1; i1<=ncodemax[k1];i1++){
         for(j=1;j<=cptcoveff;j++)        j1++;*/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        
         fprintf(ficrespl,"******\n");        for (i=1; i<=nlstate; i++)  
                  for(m=iagemin; m <= iagemax+3; m++)
         for (age=agebase; age<=agelim; age++){            prop[i][m]=0.0;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       
           fprintf(ficrespl,"%.0f",age );        for (i=1; i<=imx; i++) { /* Each individual */
           for(i=1; i<=nlstate;i++)          bool=1;
           fprintf(ficrespl," %.5f", prlim[i][i]);          if  (cptcovn>0) {
           fprintf(ficrespl,"\n");            for (z1=1; z1<=cptcoveff; z1++) 
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       }                bool=0;
     }          } 
   fclose(ficrespl);          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   /*------------- h Pij x at various ages ------------*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   printf("Computing pij: result on file '%s' \n", filerespij);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                    prop[s[m][i]][(int)agev[m][i]] += weight[i];
   stepsize=(int) (stepm+YEARM-1)/YEARM;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   /*if (stepm<=24) stepsize=2;*/                } 
               }
   agelim=AGESUP;            } /* end selection of waves */
   hstepm=stepsize*YEARM; /* Every year of age */          }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        }
          for(i=iagemin; i <= iagemax+3; i++){  
   k=0;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   for(cptcov=1;cptcov<=i1;cptcov++){            posprop += prop[jk][i]; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          } 
       k=k+1;          
         fprintf(ficrespij,"\n#****** ");          for(jk=1; jk <=nlstate ; jk++){     
         for(j=1;j<=cptcoveff;j++)            if( i <=  iagemax){ 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              if(posprop>=1.e-5){ 
         fprintf(ficrespij,"******\n");                probs[i][jk][j1]= prop[jk][i]/posprop;
                      } else{
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                if(first==1){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                  first=0;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                }
           oldm=oldms;savm=savms;              }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              } 
           fprintf(ficrespij,"# Age");          }/* end jk */ 
           for(i=1; i<=nlstate;i++)        }/* end i */ 
             for(j=1; j<=nlstate+ndeath;j++)      /*} *//* end i1 */
               fprintf(ficrespij," %1d-%1d",i,j);    } /* end j1 */
           fprintf(ficrespij,"\n");    
           for (h=0; h<=nhstepm; h++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    /*free_vector(pp,1,nlstate);*/
             for(i=1; i<=nlstate;i++)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
               for(j=1; j<=nlstate+ndeath;j++)  }  /* End of prevalence */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");  /************* Waves Concatenation ***************/
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           fprintf(ficrespij,"\n");  {
         }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     }       Death is a valid wave (if date is known).
   }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/       and mw[mi+1][i]. dh depends on stepm.
        */
   fclose(ficrespij);  
     int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   /*---------- Forecasting ------------------*/       double sum=0., jmean=0.;*/
   if((stepm == 1) && (strcmp(model,".")==0)){    int first;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    int j, k=0,jk, ju, jl;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    double sum=0.;
     free_matrix(mint,1,maxwav,1,n);    first=0;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    jmin=100000;
     free_vector(weight,1,n);}    jmax=-1;
   else{    jmean=0.;
     erreur=108;    for(i=1; i<=imx; i++){
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      mi=0;
   }      m=firstpass;
        while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   /*---------- Health expectancies and variances ------------*/          mw[++mi][i]=m;
         if(m >=lastpass)
   strcpy(filerest,"t");          break;
   strcat(filerest,fileres);        else
   if((ficrest=fopen(filerest,"w"))==NULL) {          m++;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      }/* end while */
   }      if (s[m][i] > nlstate){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   strcpy(filerese,"e");        mw[mi][i]=m;
   strcat(filerese,fileres);      }
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      wav[i]=mi;
   }      if(mi==0){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        nbwarn++;
         if(first==0){
  strcpy(fileresv,"v");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   strcat(fileresv,fileres);          first=1;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        if(first==1){
   }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        }
       } /* end mi==0 */
   k=0;    } /* End individuals */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(i=1; i<=imx; i++){
       k=k+1;      for(mi=1; mi<wav[i];mi++){
       fprintf(ficrest,"\n#****** ");        if (stepm <=0)
       for(j=1;j<=cptcoveff;j++)          dh[mi][i]=1;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        else{
       fprintf(ficrest,"******\n");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
       fprintf(ficreseij,"\n#****** ");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       for(j=1;j<=cptcoveff;j++)              if(j==0) j=1;  /* Survives at least one month after exam */
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);              else if(j<0){
       fprintf(ficreseij,"******\n");                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficresvij,"\n#****** ");                j=1; /* Temporary Dangerous patch */
       for(j=1;j<=cptcoveff;j++)                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficresvij,"******\n");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              k=k+1;
       oldm=oldms;savm=savms;              if (j >= jmax){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);                  jmax=j;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                ijmax=i;
       oldm=oldms;savm=savms;              }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);              if (j <= jmin){
                    jmin=j;
                 ijmin=i;
                }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");              sum=sum+j;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       fprintf(ficrest,"\n");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
       epj=vector(1,nlstate+1);          }
       for(age=bage; age <=fage ;age++){          else{
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         if (popbased==1) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];            k=k+1;
         }            if (j >= jmax) {
                      jmax=j;
         fprintf(ficrest," %4.0f",age);              ijmax=i;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            else if (j <= jmin){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];              jmin=j;
           }              ijmin=i;
           epj[nlstate+1] +=epj[j];            }
         }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         for(i=1, vepp=0.;i <=nlstate;i++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           for(j=1;j <=nlstate;j++)            if(j<0){
             vepp += vareij[i][j][(int)age];              nberr++;
         fprintf(ficrest," %7.2f (%7.2f)", epj[nlstate+1],sqrt(vepp));              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for(j=1;j <=nlstate;j++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficrest," %7.2f (%7.2f)", epj[j],sqrt(vareij[j][j][(int)age]));            }
         }            sum=sum+j;
         fprintf(ficrest,"\n");          }
       }          jk= j/stepm;
     }          jl= j -jk*stepm;
   }          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   fclose(ficreseij);            if(jl==0){
   fclose(ficresvij);              dh[mi][i]=jk;
   fclose(ficrest);              bh[mi][i]=0;
   fclose(ficpar);            }else{ /* We want a negative bias in order to only have interpolation ie
   free_vector(epj,1,nlstate+1);                    * to avoid the price of an extra matrix product in likelihood */
                dh[mi][i]=jk+1;
   /*------- Variance limit prevalence------*/                bh[mi][i]=ju;
             }
   strcpy(fileresvpl,"vpl");          }else{
   strcat(fileresvpl,fileres);            if(jl <= -ju){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              dh[mi][i]=jk;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);              bh[mi][i]=jl;       /* bias is positive if real duration
     exit(0);                                   * is higher than the multiple of stepm and negative otherwise.
   }                                   */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);            }
             else{
   k=0;              dh[mi][i]=jk+1;
   for(cptcov=1;cptcov<=i1;cptcov++){              bh[mi][i]=ju;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            }
       k=k+1;            if(dh[mi][i]==0){
       fprintf(ficresvpl,"\n#****** ");              dh[mi][i]=1; /* At least one step */
       for(j=1;j<=cptcoveff;j++)              bh[mi][i]=ju; /* At least one step */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficresvpl,"******\n");            }
                } /* end if mle */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;      } /* end wave */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    }
     }    jmean=sum/k;
  }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   fclose(ficresvpl);   }
   
   /*---------- End : free ----------------*/  /*********** Tricode ****************************/
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
    {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       * Boring subroutine which should only output nbcode[Tvar[j]][k]
       * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);     * nbcode[Tvar[j]][1]= 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
      int modmaxcovj=0; /* Modality max of covariates j */
   free_matrix(matcov,1,npar,1,npar);    int cptcode=0; /* Modality max of covariates j */
   free_vector(delti,1,npar);    int modmincovj=0; /* Modality min of covariates j */
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
     cptcoveff=0; 
   if(erreur >0)   
     printf("End of Imach with error %d\n",erreur);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    /* Loop on covariates without age and products */
      for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      for (k=-1; k < maxncov; k++) Ndum[k]=0;
   /*printf("Total time was %d uSec.\n", total_usecs);*/      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
   /*------ End -----------*/                                 modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                       * If product of Vn*Vm, still boolean *:
  end:                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 #ifdef windows                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   /* chdir(pathcd);*/        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 #endif                                        modality of the nth covariate of individual i. */
  /*system("wgnuplot graph.plt");*/        if (ij > modmaxcovj)
  /*system("../gp37mgw/wgnuplot graph.plt");*/          modmaxcovj=ij; 
  /*system("cd ../gp37mgw");*/        else if (ij < modmincovj) 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          modmincovj=ij; 
  strcpy(plotcmd,GNUPLOTPROGRAM);        if ((ij < -1) && (ij > NCOVMAX)){
  strcat(plotcmd," ");          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
  strcat(plotcmd,optionfilegnuplot);          exit(1);
  system(plotcmd);        }else
         Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
 #ifdef windows        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   while (z[0] != 'q') {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     chdir(path);        /* getting the maximum value of the modality of the covariate
     printf("\nType e to edit output files, c to start again, and q for exiting: ");           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
     scanf("%s",z);           female is 1, then modmaxcovj=1.*/
     if (z[0] == 'c') system("./imach");      } /* end for loop on individuals i */
     else if (z[0] == 'e') {      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       chdir(path);      fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       system(optionfilehtm);      cptcode=modmaxcovj;
     }      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     else if (z[0] == 'q') exit(0);     /*for (i=0; i<=cptcode; i++) {*/
   }      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
 #endif        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
 }        fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
         if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
           if( k != -1){
             ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered excluding 
                                undefined. Usually 2: 0 and 1. */
           }
           ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered including 
                                undefined. Usually 3: -1, 0 and 1. */
         }
         /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       } /* Ndum[-1] number of undefined modalities */
   
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
          If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
          There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
          which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
          defining two dummy variables: variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
          nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
       */
       ij=0; /* ij is similar to i but can jumps over null modalities */
       for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 to 1*/
           if (Ndum[i] == 0) { /* If at least one individual responded to this modality k */
             break;
           }
           ij++;
           nbcode[Tvar[j]][ij]=i;  /* stores the original modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
           cptcode = ij; /* New max modality for covar j */
       } /* end of loop on modality i=-1 to 1 or more */
         
       /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
       /*  /\*recode from 0 *\/ */
       /*                               k is a modality. If we have model=V1+V1*sex  */
       /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
       /*  } */
       /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
       /*  if (ij > ncodemax[j]) { */
       /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
       /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
       /*    break; */
       /*  } */
       /*   }  /\* end of loop on modality k *\/ */
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     
     for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; /* Might be supersed V1 + V1*age */
    } 
   
    ij=0;
    for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      if((Ndum[i]!=0) && (i<=ncovcol)){
        ij++;
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
        Tvaraff[ij]=i; /*For printing (unclear) */
      }else{
          /* Tvaraff[ij]=0; */
      }
    }
    /* ij--; */
    cptcoveff=ij; /*Number of total covariates*/
   
   }
   
   
   /*********** Health Expectancies ****************/
   
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   {
     /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3mat;
     double eip;
   
     pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
     int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and T statistics are in the log file.<br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                else
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){ 
                  if(nagesqr==0)
                    fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
     
                  ij=1;
                  for(j=3; j <=ncovmodel-nagesqr; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtab[ij][Tvar[Tage[k]]]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(0);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar=numlinepar+3; /* In general */
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
       model[strlen(model)-1]='\0';
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /* codtab[12][3]=1; */
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       printf("Parameters and 95%% confidence intervals\n");
       fprintf(ficlog, "Parameters, T and confidence intervals\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f T=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-2*sqrt(matcov[jk][jk]),p[jk]+2*sqrt(matcov[jk][jk]));
               fprintf(ficlog,"%12.7f T=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-2*sqrt(matcov[jk][jk]),p[jk]+2*sqrt(matcov[jk][jk]));
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
           }
         }
       }
   
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.33  
changed lines
  Added in v.1.194


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>